
On the Power of Circular Splicing Systems

and DNA Computability

Takashi YOKOMORI Satoshi KOBAYASHI

Dept. of Computer Science and Information Mathematics

University of Electro-Communications

1-5-1 Chofugaoka, Chofu, Tokyo 182, JAPAN

Tel.: +81-424-83-2161 ex.4375, Fax.: +81-424-82-3055

yokomori@cs.uec.ac.jp, satoshi@cs.uec.ac.jp

and

Claudio FERRETTI

Department of Computer Science

University of Milano

via Comelico 39, 20135 Milano, ITALY

ferretti@imiucca.csi.unimi.it

Abstract

From a biological motivation of interactions between

linear and circular DNA sequences, we propose a new

type of splicing models called circular H systems and

show that they have the same computational power as

Turing machines. It is also shown that there e�ec-

tively exists a universal circular H system which can

simulate any circular H system with the same termi-

nal alphabet, which strongly suggests a feasible design

for a DNA computer based on circular splicing.

1 Introduction

Since Adleman's breath-taking paper on molecular

(DNA) computing ([1]), there have already been quite

a few papers on this challenging topic : [10] shows

how to solve NP-complete problems using DNA, while

[3] discusses a design method for simulating a Turing

machine by molecular biological techniques and shows

how to compute PSPACE, and [4]) gives a methodol-

ogy for breaking the DES using techniques in genetic

engineering.

In response to the rapid stream of experimental re-

search on this new computation paradigm, a series

of papers on theoretical research on DNA computing

has lately been attracting much attention in computer

science, which has been originated by Head's work on

splicing systems (or H systems) and their languages

for modeling DNA recombination ([8]). Those discuss

a variety of topics including the regularity of splicing

DNA languages, the language-theoretic properties of

circular DNA languages ([9, 15, 19]), and the universal

computability of extended models of splicing systems

([11, 12, 13, 14]). Among others, [6] shows the exis-

tence of a universal extended splicing system which

can simulate the behavior of any other extended splic-

ing system.

In this paper, we introduce a new type of splic-

ing operations to propose a new splicing model called

circular H systems. The schematic de�nition for this

new type of splicing is given in Figure 1 where, be-

sides usual (linear) strings over some alphabet, circu-

lar strings are involved in the splicing operations as

well.

Suppose that x = x

1

u

1

u

2

x

2

is a linear string and

y = y

1

u

3

u

4

y

2

is a circular string over some �nite al-

phabet � (see Figure 1). Then, following the notation

in [6], as some of the existing papers ([9, 15, 19]) sug-

gest, it seems to be biologically reasonable that apply-

ing a splicing rule r = u

1

#u

2

$u

3

#u

4

yields a longer

linear string z = x

1

u

1

u

4

y

2

y

1

u

3

u

2

x

2

or sometimes two

linear strings z

1

= x

1

u

1

u

4

y

2

and z

2

= y

1

u

3

u

2

x

2

, as

a recombination behavior at splicing sites u

1

u

2

and

u

3

u

4

of x and y, respectively, where # and $ are spe-

cial symbols not in �. It is well recognized in molec-

ular biology that some kinds of DNA molecules may

form both linear and circular strings, depending upon

a biochemical circumstance.

We are mainly interested in the e�ects caused by

interactive behaviors of linear and circular DNA se-

quences in the splicing mechanism. Therefore, we will

consider a splicing operation which, given x and y with

r, produces one linear z

1

and one circular z

2

, which we

call circular splicing. This type of splicing might also

be taken as a natural (biological) modi�cation (under

the existence of su�cient quantity of ligases) of the

usual splicing in the case of linear strings investigated

so far in the literature. Together with this splicing

mode, a circular H system is de�ned as an extended H

system (studied in the existing literature) having not

u ux

y y

1

2

x 21

1

2

u3 4
u

x1 u1 u 4 y
2

y

2

1

u
u

x

ligation

cut

recombination

x 1 u1 u 4 y
2 y1 3u u 22

y

x

z

:

z

1 2 1 u u
2

z y 3 2

circular
splicing

rule
u1# $u2 #u u3 4

x

x

Figure 1. Circular Splicings

3
2

only a set of linear strings but also a set of circular

axioms as well.

The motivation of introducing circular splicing

rules and a new model based on the splicing mech-

anism may be justi�ed at least twofold. First, it

is reported by molecular biologist that, for instance,

a kind of this type of splicing occurs in a recombi-

nation (transposition) mechanism between bacterial

chromosomes and F plasmids in E. Coli in the real

world. Sometimes transposons, DNA sequences able

to insert themselves at a new location in the genome

without any sequence relationship to the target locus,

could cause DNA recombinations similar to the circu-

lar splicing mentioned above.

Second, from the practical viewpoint of designing

\DNA computers" based on this computation mecha-

nism of circular splicing, we believe that the model

of circular H systems de�ned as above has a cer-

tain advantage over any other existing type of splicing

model, in that a variety of techniques in state-of-the-

art molecular biology will make the \circular compu-

tation" via circular splicing more feasible one.

The goal of this paper is to show that (i) circular

H systems are computationally equivalent to Turing

machines, (ii) there is a universal circular H system

which can simulate the behavior of any other circu-

lar H system, (iii) there is a simple normal form for

the class of circular H systems. Surprisingly, all these

results are obtained without considering multiplicity

constraint, which is in marked contrast to the previ-

ous results for linear H systems.

Because of its simplicity of the splicing mechanism,

the fact of the existence of the universal circular H sys-

tem directly implies a feasible implementation proce-

dure for building DNA (test tube) computers in vitro.

These practical issues on DNA computer architecture

should be discussed in great detail somewhere else, but

is beyond the topic covered by this paper.

2 Preliminary

Following the notations and de�nitions in [7] and

[6], V

�

is the set of all (�nite length) strings over a

�nite alphabet V . The empty string is denoted by �,

and V

+

= V

�

� f�g. For a string x 2 V

�

, jxj denotes

the length of x, i.e., the number of symbols from V

comprising x. A language is any set of strings over

a �nite alphabet. A language is �-free if it does not

contain the empty string �. Throughout this paper,

we assume that any language is �-free. The family of

recursively enumerable languages is denoted by RE .

We will introduce Post systems originally proposed

in [16] but here we are only concerned with their spe-

cial forms, because it is su�cient for our purpose.

A Post Normal system (PN system) is a quadruple

G = (V;�; P; A), where V and � are �nite alphabets

such that � � V , and P is a �nite set of rules of

the form : uX ! Xw (X : unique variable not in V ,

u;w 2 V

�

). A(� V

+

) is a �nite set of axioms. (Note

that G has only one variableX , and V is the alphabet

of constants in the de�nition of Post systems.)

Given strings �; � 2 V

�

, a binary relation =) is

de�ned as follows:

�) � i� 9uX ! Xw 2 P; � 2 V

�

[� = u�; � = �w]:

The re
exive and transitive closure of =) is denoted

by =)

�

. For a given G, a language generated by G is

de�ned as

L(G) = fw 2 �

�

j9u 2 A [u =)

�

w]g:

By POST , we denote the family of languages gener-

ated by Post Normal systems.

Lemma 1 ([18]) POST = RE :

In order to prove our �rst result, we need some more

preliminary results about Post systems.

A generalized regular Post system (GRP system) is

a quadruple G = (V;�; P; A), where V and � are �nite

alphabets such that � � V , and P is a �nite set of

rules whose forms are either uX ! wX or aX ! Xb

(X: unique variable not in V , u;w 2 V

�

, a; b 2 V).

A(� V

+

) is a �nite set of axioms.

Given strings �; � 2 V

�

, a binary relation =) is

de�ned as follows:

� =) � i�

either 9uX ! wX 2 P; � 2 V

�

[� = u�; � = w�]

or 9aX ! Xb 2 P; � 2 V

�

[� = a�; � = �b].

The re
exive and transitive closure of =) is denoted

by =)

�

. For a given G, a language generated by G is

de�ned as

L(G) = fw 2 �

�

j9u 2 A [u =)

�

w]g:

By GRPS, we denote the family of languages gen-

erated by generalized regular Post systems. Then, we

can easily prove the following theorem.

Lemma 2 For a given PN system G, there e�ectively

exists a GRP system G

0

such that L(G) = L(G

0

).

From Lemma 1 and Turing-Church thesis, we have the

following :

Corollary 3 POST = GRPS = RE .

3 Circular H Systems and Their Lan-

guages

[Circular Strings]

Following [9] and [19], a circular string consisting

of a

1

; :::; a

m

in this order is denoted by

^a

1

� � � a

m

and one of its linearized froms is : a

1

� � � a

m

. (The

symbol ^ is reserved to indicate circularity.) When we

want to indicate that a string x is circular, we denote

it by ^x. Note that in this notation, for example,

^atcg, ^tcga, ^cgat, and ^gatc are all notations for

the same circular string. The set of all circular strings

over � is denoted by �^.

3.1 Circular H Systems

We now introduce a new type of circular splicing

models based on the notion of a circular splicing op-

eration with modes.

[Circular Splicing with Modes]

For two linear strings x; z 2 V

�

and two circular

strings ^y, ^w 2 V ^, and a rule r = u

1

#u

2

$u

3

#u

4

,

we �rst de�ne the circular splicing operation by

(x;^y) j=

r

(z; ^w) i�

(

x = x

1

u

1

u

2

x

2

; ^y = ^y

1

u

3

u

4

y

2

z = x

1

u

1

u

4

y

2

; ^w = ^y

1

u

3

u

2

x

2

; ::: (�)

for some x

1

; x

2

; y

1

; y

2

2 V

�

(Note that in the circular splicing, an ordered pair of

linear and circular strings yields another ordered pair

of linear and circular strings with the help of one ap-

plication of a splicing rule.)

In the de�nition (*) above, we note that since ^y is

a circular string, for any ^y and r = u

1

#u

2

$u

3

#u

4

,

there is more than one possible representations of the

form : ^y = y

1

u

3

u

4

y

2

, where y

1

y

2

6= �. This implies

that the splicing result (z;^w) in (*) can be di�erent,

depending on the manner of representing an identical

circular string ^y.

One of the ways of �xing this ambiguity of the def-

inition (*) is to consider the splicing modes as follows.

We say that u

3

u

4

appears in y in the mode:

pre�x i� y = u

3

u

4

y

0

; for some y

0

2 V

�

;

su�x i� y = y

0

u

3

u

4

; for some y

0

2 V

�

:

In fact, these notions have already been introduced in

[14] in the context of splicing linear strings. Following

[14], we denote these modes by p, s and letM = fp; sg.

We now de�ne the circular splicing operation with

mode as follows : For g 2 M and a rule r =

u

1

#u

2

$u

3

#u

4

,

(x, ^y) j=

g

r

(z, ^w) i�

u

3

u

4

appears in y in the mode g, and

(x, ^y) j=

r

(z, ^w).

A circular H system (CH system) is a quadruple

H = (V;�; A;R), where V is a �nite alphabet, � � V ,

A � V

�

[V ^, and R � (V

�

#V

�

$V

�

#V

�

)�M (M =

fp; sg, and #; $ are special symbols not in V). A =

A

`

[A

c

is the set of axioms, whereA

`

and A

c

consisting

of linear and circular strings over V , respectively, R is

the set of splicing rules with mode.

Note that [9] has already suggested this type of

splicing models, and similar types of splicing systems

are also proposed and investigated under the termi-

nology of \mixed splicing" systems but only in the

context of non-extended models (i.e., without intro-

ducing terminal alphabet �) in [15, 19].

In what follows, we are concerned with CH system

where A and R are both non-empty �nite sets, sim-

ply because it will turn out that �nite sets are already

su�cient for proving the computational universality

of CH systems considered in this paper.

For a CH system H = (V;�; A;R), a language

L � V

�

[V ^, we de�ne

�(L) = fz 2 V

�

, ^w 2 V ^ j (x;^y) j=

g

r

(z, ^w), for

some x, ^y 2 L; (r;g) 2 Rg,

and de�ne

�

�

(L) =

[

i�0

�

i

(L);

(

�

0

(L) = L

�

i+1

(L) = �

i

(L) [�(�

i

(L))

for i � 0:

The language L

`

(H) of linear strings over � is de�ned

as follows :

L

`

(H) = �

�

(A) \ �

�

.

3.2 Primitive Operations by Circular

Splicings

We consider what kinds of primitive operations on

strings can be performed by a variety of circular splic-

ing mechanism with modes. We analyse and select

the following three as a minimal set of primitive op-

erations, realizable in one step by the circular splic-

ing with modes, where a symbol B in each operation

works as a block symbol, and j indicates a position to

be separated, u;w; x are in �

�

, B and @ are in V ��.

1. [Replacement] (REP) : (Bj@w; ^xj@u) j=

s

r

(B@u; ^x@w) for r = B#@w$#@u.

In the circular string ^@ux(=^x@u), the sub-

string u is replaced with w, producing the circular

string ^@wx(=^x@w).

2. [Rotation] (ROT) : (Bjw@; ^xj@u) j=

s

r

(B@u; ^xw@) for r = B#w@$#@u.

In the circular string ^@ux(= ^x@u), the sub-

string @u is replaced with w@, producing the cir-

cular string ^@xw(= ^xw@).

3. [Cut Linearization] (CL) : (jB;^@jx) j=

p

r

(x; ^@B) for r = #B$@#.

The circular string ^@x is linearized into x.

In fact, it will soon turn out that these operations

are powerful enough for achieving the universal com-

putability. Our �rst main result is as follows :

Lemma 4 For any recursively enumerable language

L, there e�ectively exists a CH system H such that

L

`

(H) = L.

Proof. By Corollary 3, for any recursively enumer-

able language L, let G = (V;�; P; A) be a GRP sys-

tem such that L = L(G), where we may assume that

P does not have a rule of the form uX ! X. (Any

rule of the form uX ! X can be replaced with a set

of rules fuaX ! aX ja 2 V g. Recall that as stated in

Section 2, we deal with only �-free languages in this

paper.)

Now, construct a CH system H = (V

0

;�; A

0

; R) as

follows:

V

0

= V [f@;@

0

;B;B

0

g;

A

0

= A

`

[A

c

= fB@w j uX ! wX 2 Pg

[fBb@ j bX ! Xb 2 Pg

[f@

0

;B

0

g [f^@x j x 2 Ag; and

R = f(B#@w$#@u; s) j uX ! wX 2 Pg

(corresponding to REP)

[f(B#b@$#@b; s) j bX ! Xb 2 Pg

(corresponding to ROT)

[f(#B

0

$@#; p)g (corresponding to CL)

[f(@

0

#$#@; s)g:

(Symbols @ (@

0

) and B (B

0

) are special ones not in �

to used, respectively, as a marker indicating a splicing

location and as a 'block symbol' in H.)

(1) Suppose that, for u; v; w 2 V

�

, it holds that

uv =) wv by a rule uX ! wX in G. Then, we see

that

(i) (Bj@w; ^vj@u) j=

s

r

(B@u; ^v@w)

for r = B#@w$#@u and B@w 2 A

`

,

(ii) (jB

0

; ^@jwv) j=

p

r

0

(wv; ^@B

0

)

for r

0

= #B

0

$@# and B

0

2 A

`

.

(Note that ^v@w =^@wv.) Thus, we have a circular

string ^@wv in (i) and its linearized string wv in (ii).

(2) Suppose that, for b 2 V , v 2 V

�

, it holds that

bv =) vb by a rule bX ! Xb in G. Then, we see that

(i) (Bjb@; ^vj@b) j=

s

r

(B@b;^vb@)

for r = B#b@$#@b and Bb@ 2 A

`

,

(ii) (jB

0

; ^@jvb) j=

p

r

0

(vb; ^@B

0

)

for r

0

= #B

0

$@# and B

0

2 A

`

.

Thus, we have a circular string ^vb@(=^@vb) in (i)

and its linearized string vb in (ii). (Note that v may

contain some barred symbols b.)

(3) Suppose that we have a circular string ^z@ such

that x =)

�

z for some x 2 A in G. Then, we see that

(iii) (@

0

j; ^zj@) j=

s

r

00

(@

0

@; ^z)

for r

00

= @

0

#$#@ and @

0

2 A

`

.

Thus, we have a circular string ^z such that x =)

�

z

for some x 2 A in G.

Observe that once the symbol B (B

0

) has been in-

corporated into a linear (circular) string by a splicing

(i) ((ii)), there is no way to remove it from the string.

Also, once a circular string has lost the marker @ by a

splicing (ii) or (iii), the resulting string has no chance

to be spliced further more.

Now, let us �rst calculate the set of all circular

strings generated by H . Then, we see that

�

�

(A

0

) \ V

0

^ =

f^z@;^zj9x 2 A [x =)

�

z] in G g [f^@B

0

; ^B

0

g

[f^B

0

@w

i1

� � �w

ip

; ^B

0

w

i1

� � �w

ip

j p � 1;

w

ij

in fw jX ! wX 2 Pgg.

After these observation, we now consider the set of all

linear strings in �

�

(A

0

). That is, from the manner of

constructing R of H, we calculate

�

�

(A

0

) \ V

0�

=

A

`

[fzj9x 2 A[x =)

�

z] in Gg

[fB@u j uX ! wX 2 Pg

[fB@b j bX ! Xb 2 Pg

[fw

i1

� � �w

ip

B

0

j p � 1; w

ij

2 fw jX ! wX 2 Pg g

[f@

0

@ g.

Hence, it holds that

L

`

(H) = �

�

(A

0

) \�

�

= L:2

Corollary 5 A language is recursively enumerable i�

it is generated by a CH system whose rule set com-

prises types of REP, ROT and CL.

Note that in fact only REP and ROT realized by using

only the su�x mode are playing an essential role in the

computation.

By CH

`

denote the family of all languages L

`

(H)

generated by CH systems H . Then, Lemma 4 and

Turing-Church thesis lead to the following.

Theorem 6 RE = CH

`

.

4 Universal Circular System

From the practical point of view of \programmable

DNA computers", it is obviously important to have

a universal CH system H

u

= (V

u

;�; A

u

; R

u

) in the

following sense : given an alphabet � and for every

CH system H = (V;�; A;R), there e�ectively exists a

�nite set A

H

such that L

`

(H) = L

`

(H

0

u

), where H

0

u

=

(V

u

;�; A

u

[A

H

;R

u

), A

u

is a �nite set of V

�

u

[V

u

^

and R

u

is a �nite set of (V

�

u

#V

�

u

$V

�

u

#V

�

u

)�M .

We are going to show that there e�ectively exists a

universal CH system H

u

for the class of CH systems.

The proof is as a whole similar to that of the existence

of a universal H system in [6], however we will take

more direct path to the goal by way of Post Systems

rather than type-0 grammars or Turing machines.

Theorem 7 Given any alphabet �, there e�ectively

exists a universal CH system H

0

u

for the class of CH

systems over �.

Proof. Starting with any CH system H with termi-

nal alphabet �, from Lemma 1 and Theorem 6, there

e�ectively exists a PN system G = (V;�; P; A) such

that L(G) = L

`

(H).

For the class of PN systems with the terminal al-

phabet �, we �rst consider a kind of a universal

Post system for the class of PN systems, that is,

a Post system G

u

= (V

v

u

; V

c

u

; P

u

;�) such that for

any PN system G = (V;�; P; A) there is a string

w(G) in V

�

c

u

such that L(G) = L(G

0

u

), where G

0

u

=

(V

v

u

; V

c

u

; P

u

; fw(G)g) and without loss of generality

we may assume that G has a unique axiom A = fSg.

In fact, this string w(G) is constructed as follows:

w(G) = dh(u

1

)ch(w

1

)d � � � dh(u

k

)ch(w

k

)d%h(S)

if P = fu

1

X ! Xw

1

; :::; u

k

X ! Xw

k

g;

where h is a mapping de�ned by h(Z

i

) = c

1

c

i

2

c

1

for

each Z

i

2 V � � = fZ

1

; :::; Z

n

g and h(a) = a(a 2 �).

Actually, construct G

u

as follows:

V

v

u

= fX

1

;X

2

; X

3

; X; Y;Zg,

V

c

u

= fc

1

; c

2

; c; d;%g [�; and

P

u

= fX

1

dY cZdX

2

%Y X

3

! X

1

dY cZdX

2

%X

3

Zg

[fY%X ! Xg.

Thus, we have obtained a Post system G

u

= (V

v

u

,

V

c

u

; P

u

, �) with the terminal alphabet � such that

L(G) = L(G

0

u

), where G

0

u

=(V

v

u

; V

c

u

; P

u

; fw(G)g).

Then, from the main theorem in [16], one can

convert G

u

into a Post Normal system

~

G

u

=

(

~

V

u

;�;

~

P

u

;�) such that L(G

0

u

) = L(

~

G

0

u

), where

~

G

0

u

=

(

~

V

u

;�;

~

P

u

; fw

0

(G)g) and w

0

(G) is a modi�cation of

w(G). Further, using Lemma 2, one can also e�ec-

tively �nd a GRP system

~

G

00

u

such that L(

~

G

0

u

) =

L(

~

G

00

u

).

Now, applying the proof procedure of Lemma 4

to

~

G

00

u

, we eventually obtain a CH system H

0

u

=

(V

0

u

;�; A

0

u

[A

H

;R

0

u

) satisfying that

L

`

(H

0

u

) = L(

~

G

00

u

) = L(

~

G

0

u

) = L(G

0

u

) = L(G) = L

`

(H);

whereA

H

is obtained from w(G) which depends on H.

Thus, H

u

= (V

0

u

;�; A

0

u

; R

0

u

) is a universal CH system.

2

5 A Normal Form for CH Systems

We consider in this section the following problem

: given a CH system H, �nd an equivalent CH sys-

tem H

0

which is as simple as possible under a certain

criterion.

To this end, following [11] we consider some special

types of CH systems. Given a positive integer k � 1,

a CH system H = (V;�; A;R) is said to be k-limited

i� for every u

1

#u

2

$u

3

#u

4

2 R, it holds that ju

i

j � k

(for i = 1; 2; 3; 4).

Now we present the following result whose proof is

omitted here due to the space limitation. (See [21] for

the proof.)

Theorem 8 Given any CH system H , one can e�ec-

tively �nd an equivalent 3-limited CH system H

0

.

Thus, this result provides us with a kind of normal

form theorem for the class of CH systems. As far as

we know, this would be the simplest splicing systems

with the universal computability.

It should be noted that this 3-limitedness property

of CH systems has a very signi�cant meaning in the

biological sense, in particular from the viewpoint of

designing DNA computer as brie
y mentioned below.

6 Discussions

Since Tom Head's pioneering paper [8] on his splic-

ing systems for modeling DNA recombination behav-

iors, Paun and his group have made a series of inten-

sive studies on an extended version of splicing systems

where most of the problems considered can be formu-

lated in the following: Starting with a language A

from a family F

1

and a language R from a family F

2

,

investigate properties of the family of languages �

�

(A)

or �

�

(A)\�

�

thus obtained, where � is a splicing op-

eration realized by a rule of the form u

1

#u

2

$u

3

#u

4

in R with or without multiplicity, where F

1

and F

2

range within Chomsky's hierarchy. ([11, 12, 13]). In

[6] Freund et al show the existence of universal splicing

systems for several types of extended splicing systems,

suggesting the possible design for programmable DNA

computer based on the splicing model.

In contrast, a relatively few works on circular splic-

ing systems and their languages are known. Tom

Head, the initiator of this research area of formal splic-

ing systems, reviews previous work on splicing sys-

tems and addresses the signi�cance of studying this

new type of \mixed splicing" systems as well as that

of multiplicity notions in the standard splicing model

([9]). Siromoney et al propose several splicing opera-

tions involving circular strings as well and show some

non-regualrity circular example generated by a mixed

splicing system with �nite axioms and rules ([19]). A

paper by Pixton ([15]) provides us with intensive stud-

ies on the regularity properties of linear, circular and

mixed splicing languages. All these work are, how-

ever, concerned with only the original (non-extended)

model of splicing systems, while we are dealing with

extended models of mixed splicing systems in this ar-

ticle. In a separate paper ([5]), we have discussed

some new developments on the computational power

of splicing systems in which, by establishing interest-

ing relationships between splicing systems and Post

systems, new characterizations of families of regular

and recursively enumerable languages are presented

in the framework of extended splicing systems.

A molecular biological observation reports that

lambda phage DNA can easily change its form from

linear to circular and vice versa. When lambda phage

DNA is transposed in a bacterial DNA like E.Coli

DNA, it forms a circular then is incorporated into a

host DNA by splicing (crossing over), resulting that

the original genes A and B in lambda phage can be

reordered as B and A in the recombinant DNA.

These may support the appropriateness of the no-

tion of circular H systems and give some justi�cation

of our splicing models. It should be noted that the

circularity plays a critical role in achieving the uni-

versal computability of Turing machine in our model.

u

v

w@

v

@

local site

Figure 2. Basic Operation for DNA Computing

In more detailed discussion, because of the circular-

ity of a DNA sequence, performing a rewriting rule

uX ! Xw with w 6= � (in Post Normal system) by

circular splicing can easily be carried out so that only

a local splicing site of �xed length should be preserved

during the splicing process (see Figure 2). In fact,

Theorem 8 suggests that it su�ces to keep the length

6 window for each splicing rule. This local feature is

extremely important when we design an architecture

for programmable DNA computers and may provide

feasible procedures to realize it. This observation also

suggests the high feasibility of a universal CH system.

Finally, as for the DNA implementation of rotation

operation, one can �nd some detailed discussion in [2],

while [17] discusses the DNA and restriction enzyme

implementation of Turing machines.

Acknowledgements

This work was supported in part by Grant No.

JSPS-RFTF 96I00101 from Research-for-the-Future

Program of the Japan Society for the Promotion of

Science.

References

[1] L. Adleman. Molecular computation of solutions

to combinatorial problems. Science, 266:1021{1024,

1994.

[2] M. Arita and M. Hagiya. Joining and rotating data

with molecules. In Proc. of IEEE Intern. Conf. Evol.

Comput.(ICEC'97), (this volume) 1997.

[3] D. Beaver. A universal molecular computer. In DNA

Based Computers (Lipton and Baum, eds.), DIMACS

series, Vol.27, Proc. of a DIMAC Workshop, AMS,

pages 29{36, 1996.

[4] D. Boneh, C. Dunworth, and R. Lipton. Breaking

DES using a molecular computer. In DNA Based

Computers (Lipton and Baum, eds.), DIMACS series,

Vol.27, Proc. of a DIMACWorkshop, AMS, pages 37{

65, 1996.

[5] C. Ferretti and S. Kobayashi. DNA splicing systems

and Post systems. In Proc. of Paci�c Symposium

on Biocomputing, Hawaii, World Scienti�c Publisher,

pp.288-299. 1996.

[6] R. Freund, L. Kari, and Gh. Paun. DNA computing

based on splicing : The existence of universal com-

puters. J. ACM, to appear.

[7] M.A. Harrison. Introduction to Formal Language The-

ory. Addison-Wesley, Reading, MA, 1978.

[8] T. Head. Formal language theory and DNA : An anal-

ysis of the generative capacity of speci�c recombinant

behaviors. Bulletin of Mathematical Biology, 49:737{

759, 1987.

[9] T. Head. Splicing schemes and DNA. In Lindenmayer

Systems (G.Rozenberg and A.Salomma, eds.), pages

371{383. Springer-Verlag, 1992.

[10] R. Lipton. Using DNA to solve NP-complete prob-

lems. Science, 268: 542{545, 1995.

[11] Gh. Paun. On the splicing operation. Discrete Applied

Mathematics, 70: 57{79, 1996.

[12] Gh. Paun. On the power of the splicing operation.

Intern. Journal Comput. Math., to appear, 1996.

[13] Gh. Paun. Regular extended H systems are computa-

tionally universal. J. Automata, Languages and Com-

binatorics, 1: 27{36, 1996.

[14] Gh. Paun, G. Rozenberg, and A. Salomaa. Comput-

ing by splicing. Theoretical Computer Science, to ap-

pear, 1996.

[15] D. Pixton. Regularity of splicing languages. Discrete

Applied Mathematics, 69: 101{124, 1996.

[16] E. L. Post. Formal reductions of the general combina-

torial decision problem. American Journal of Mathe-

matics, 65:197{215, 1943.

[17] P.W.K. Rothemund. A DNA and restriction enzyme

implementation of Turing machines. In DNA Based

Computers (Lipton and Baum, eds.), DIMACS series,

Vol.27, Proc. of a DIMACWorkshop, AMS, pages 75{

119, 1996.

[18] A. Salomaa. Computation and Automata. Cambridge

University Press, 1985.

[19] R. Siromoney, K.G. Subramanian, and V.R. Dare.

Circular DNA and splicing systems. In Proc. of In-

tern. Conference on Parallel Image Analysis, Lec-

ture Notes in Computer Science 654, Springer-Verlag,

pages 260{273, 1992.

[20] T. Yokomori and S. Kobayashi. DNA evolutionary

linguistics and RNA structure modeling: A computa-

tional approach. In Proc. of IEEE Symp. on Intelli-

gence in Neural and Biological Systems, pages 38{45,

1995.

[21] T. Yokomori, S. Kobayashi and C. Ferretti. DNA

On the power of circular splicing systems and DNA

computability, Technical report, Dept. of Comput.

Sci. and Inform. Math., Univ. of Electro-Commun.,

CSIM 95-01, 1995.

