
Department of Computer Science
Graphical User Interface for CompilerOptimizations with Simple-SUIFBrian HarveyDepartment of Computer ScienceUniversity of CaliforniaRiverside, CA 92521briancs.ucr.edu

Gary TysonDepartment of Computer ScienceUniversity of CaliforniaRiverside, CA 92521tysoncs.ucr.eduUCR-CS-96-5Technical Report
C

COLLEGE OF ENGINEERINGUNIVERSITY OF CALIFORNIARIVERSIDE

UNIVERSITY OF CALIFORNIARIVERSIDEGraphical User Interface for CompilerOptimizations with Simple-SUIFA Thesis submitted in partial satisfactionof the requirements for the degree ofMaster of ScienceinComputer SciencebyBrian Keith HarveyDecember, 1996
Thesis Committee:Professor Gary Tyson, ChairpersonProfessor Thomas PayneProfessor Frank Vahid

Copyright byBrian Keith Harvey1996

ABSTRACT OF THE THESISGraphical User Interface for Compiler Optimizations with Simple-SUIFbyBrian Keith HarveyMaster of Science, Graduate Program in Computer ScienceUniversity of California, Riverside, December, 1996Professor Gary Tyson, ChairpersonVery few tools exist which support the process of studying back end optimiza-tions. Currently, researchers examining di�erent back end optimizations must relyon general debugging tools or design their own tools to help in the generation ofoptimizing functions. A tool designed to give information speci�cally tailored foroptimization designers is necessary. Such a tool would allow researchers to viewthe results of a newly designed optimization or analyze how the intermediate codeof a program changes depending on the order in which transformations are applied.More e�cient development of optimization routines should be the result of usingthis tool.This thesis presents the Visual Simple-SUIF Compiler (VSSC) package, de-signed to accomplish these tasks by providing an interactive framework that fa-cilitates the development of code transformations in the back end component ofa compiler. Code transformation algorithms are viewed by stepping through thetransformation while actual changes to the intermediate code are performed visu-ally. Transformations can be applied to the intermediate code in any order and can

be undone. Capabilities such as these aid in the educational process of learningoptimization algorithms and in the testing of newly developed optimizations.A tool of this nature requires several key components that integrate well witheach other to form a single framework. These components include: an easilyextendible compiler with a simple, yet functional, intermediate format, a graphicaluser interface toolkit to implement the graphical \interactive" component of sucha tool, and a subsystem for drawing graphs which are common data structuresused in code transformations.VSSC incorporates a graphical user interface (Tcl/Tk), the Simple-SUIF com-piler framework, and the DOT graph drawing tool to visually illustrate data
owanalysis and code transformations. VSSC has many advantages that make it usefulto both optimization researchers and students alike.The goal of this thesis to describe the design and implementation of a frameworkwhich integrates these components as well as outlining the bene�ts the use of atool based on this framework provides.

Contents
1 Introduction 11.1 Front End . 21.2 Intermediate Representation . 31.3 Back End . 51.3.1 Constructing Code Optimizers 61.4 Design Tools for Developing Optimizers 71.5 VSSC . 81.6 Thesis Organization . 122 Retargetable Compilers 132.1 Requirements for a Retargetable Compiler 132.2 GNU C Compiler (GCC) . 142.3 LCC . 152.4 SUIF Compiler System . 172.4.1 SUIF Intermediate Format 182.4.2 SUIF Transformation Environent 192.4.3 Simple-SUIF . 212.5 Summary . 25v

3 Compiler Visualization Tools 263.1 Graph Drawing Tools . 273.1.1 VCG . 273.1.2 dflo . 283.1.3 DOT . 293.2 Visual Compiler Tools . 293.2.1 Visual SUIF Browser . 303.2.2 UW Illustrated Compiler . 313.2.3 xvpodb . 323.3 Summary . 344 VSSC Design and Implementation 354.1 Design Goals . 354.2 Organization of VSSC Framework 384.3 Implementation of VSSC . 394.3.1 Graphical User Interface . 394.3.2 Incorporating tcldot into VSSC 444.3.3 SUIF . 454.3.4 Simple-SUIF . 474.3.5 Transformation Log . 484.3.6 Undo Transformation . 504.4 Programmer Interface . 514.5 Sample Optimization . 534.6 Summary . 53

5 VSSC Framework Examples 565.1 Introduction . 565.2 Example Graphs . 575.2.1 Flow Graph . 575.2.2 Direct Acyclic Graph . 605.2.3 Register-Interference Graph 645.3 Example Optimization:Elimination of Dead Code . 655.3.1 Dead Code Elimination . 655.3.2 Live Variable Analysis . 655.3.3 Eliminating Dead Code in Bubblesort Example 675.4 Example Optimization:Propagating Available Copy Instructions 695.4.1 Copy Propagation . 695.4.2 Available Code Analysis . 715.4.3 Example of Copy Propagation 725.5 Example: Register Allocation . 755.6 Summary . 786 Conclusions and Future Direction 796.1 Future Work . 80Bibliography 82A VSSC User Manual 88A.1 Introduction . 88

A.2 SUIF . 89A.3 Simple-SUIF . 89A.3.1 Simple-SUIF Intermediate Format 90A.3.2 Simple-SUIF API . 93A.3.3 Example of Simple-SUIF . 96A.4 VSSC . 97A.4.1 Introduction . 97A.4.2 VSSC API . 100A.4.3 Installing VSSC Components 107A.4.4 Environment Variables . 108A.4.5 Using VSSC . 108A.4.6 Your First VSSC Optimization 110A.5 VSSC Tips . 112A.5.1 Debugging VSSC Optimizations 112A.5.2 printsimple . 113A.5.3 Non-GUI VSSC . 113A.5.4 Making Assertions . 114A.5.5 Using Data Structures . 115A.5.6 Examples using SUIF data structures and VSSC API 121

List of Figures
1.1 Language-processing system . 21.2 Simpli�ed model of compiler . 32.1 C and SUIF intermediate format version of same example program 202.2 SimpleSUIF version of example code used in Figure 2.1 222.3 simple instr structure used to represent a Simple-SUIF instruction 243.1 dflo data-
ow equations to compute liveness 283.2 DOT generated
ow graph for quicksort algorithm 303.3 Main window of xvpodb application 334.1 Internal organization of VSSC framework 394.2 Screenshot of VSSC compiler . 414.3 Current status component . 424.4 Graph component . 434.5 Intermediate Code component . 444.6 Simple-SUIF component passing lists of Simple-SUIF instructionsone at a time for each function to an optimization routine. 484.7 Internal organization of the transformation log 494.8 The beginnings of a sample optimization 54ix

5.1 Example C program of bubblesort 595.2 Simple-SUIF version of bubblesort partitioned into basic blocks . . 595.3 Flow graph of basic blocks for bubblesort example shown in Figure5.2 . 605.4 Result of DAG construction for basic block #6 in bubblesort example 625.5 Directed acyclic graph for basic block #4 in bubblesort example . . 635.6 Directed acyclic graph for basic block #5 in bubblesort example . . 635.7 Register-interference graph for bubblesort example 645.8 Algorithm for live variable analysis 665.9 Various results after performing live variable analysis 675.10 Algorithm for the removable of dead code 685.11 Live-variable analysis information for basic block #8 in bubblesortexample. 695.12 Copy propagation algorithm . 705.13 Algorithm for available code analysis 725.14 C and Simple-SUIF versions of copy propagation example 735.15 Various results after performing available expression analysis 745.16 Instructions that changed as a result of copy propagation on examplein Figure 5.14 . 755.17 Graph-coloring heuristic algorithm for register-interference graph . . 765.18 C and Simple-SUIF versions of register allocation example 775.19 Register-interference graph for simple example in Figure 5.18 775.20 Intermediate code of example in Figure 5.18 after register allocation 78A.1 simple instr structure used to represent a Simple-SUIF instruction 92

A.2 Example demonstrating the di�erent instruction formats 93A.3 Simple-SUIF API . 94A.4 Example C code to add a new Simple-SUIF instruction 95A.5 Simple-SUIF base types . 95A.6 Side-by-side comparison of C and Simple-SUIF 96A.7 Screenshot of VSSC compiler in action 99A.8 Optimizations API . 101A.9 Current Status Area API . 102A.10 Header �le for BasicBlock class . 102A.11 Intermediate Code API . 104A.12 Graph widget API . 105A.13 Graph widget API . 106A.14 Box that pops up when user clicks on graph node with left mousebutton . 106A.15 Miscellaneous VSSC commands . 107A.16 Environment variables that need to be set before using VSSC . . . 108A.17 Sample optimization registration 109A.18 Sample Make�le . 110A.19 Sample main.cc . 111A.20 Assertions provided by SUIF . 114A.21 Generic List class . 117A.22 Associative List class . 118A.23 Double Linked List class . 118A.24 Bit set class . 119A.25 Extendible array class . 120

A.26 Example 1 source code . 122A.27 Example 2 source code . 123

List of Tables
1.1 Some of the types of graph that can be constructed and displayedin VSSC . 102.1 Valid Simple-SUIF instructions . 234.1 VSSC components and where to �nd them 384.2 Some commands in the tcldot API 464.3 Command-line
ags accepted by a VSSC Compiler 535.1 Bitsets used during live variable analysis 665.2 Bitsets used during available code analysis 71A.1 Valid Simple-SUIF instructions . 91A.2 VSSC components and where to �nd them 107

xiii

Chapter 1
Introduction
Compilers play an important part in the �eld of Computer Science; they take aprogram that we have written and translate it to a form which can be executedon a computer. This can be done by reading a program written in a high-levellanguage, called the source language, and translating it into an equivalent programin another language called the target language. A variety of compilers exist todaybecause there are numerous source languages and many di�erent target languages.Target languages range from the machine language for one of numerous di�erentarchitectures to other high-level programming languages.It is a common misconception that the process of compiling source code intoan executable is performed by a single program. In actuality, this process is per-formed by an entire set of programs, each with its speci�c task, that together forma language-processing system [1]. This system typically includes: a preprocessorwhich performs macro expansion, header �le inclusion, and perhaps language ex-tensions, a compiler which takes this modi�ed source code and translates it intoequivalent assembly code, an assembler which converts assembly code generated1

by the compiler into relocatable machine code, and a loader/linker which takesdi�erent modules of machine code and libraries and combines them into a sin-gle executable, altering reference addresses as needed. This language-processingsystem and its components are shown in Figure 1.1. This �gure shows how theoriginal source code transforms into the �nal executable program.
Assembly Program

for Target Architecture

Relocatable Machine

Code Module

Source

Program

Original

Source Code Executable

Preprocessor Assembler Loader/LinkerCompiler

Relocatable Machine

Code Modules

LibariesFigure 1.1: Language-processing systemThe functionality of the compiler module in a language-processing system canbe separated into two main components [1]. The front end takes source code, per-forms lexical, syntactic, and semantic analysis on it and produces an intermediaterepresentation of that code. The back end takes the intermediate representation,optimizes it, and generates assembly code for the target machine. As shown inFigure 1.2, the intermediate representation acts as the glue that connects the frontand back ends together to produce a compiler.1.1 Front EndThe front end takes source code and converts it to a format that is an intermediaterepresentation of that source code. This process includes checking the syntax ofthe source code and checking the semantics of the source code. There exist severalwell-known tools to help compiler writers with the front end. These tools, which

Intermediate

RepresentationEnd

Front Back

End

Source

Code

Assembly

CodeFigure 1.2: Simpli�ed model of compilerinclude lex [23], yacc [20], and ANTLR [29], use a speci�cation of the sourcelanguage to generate a translator from the source language to an intermediatespeci�cation. This is often accomplished by using combinations of these toolstargeting each to a portion of the translation. For example, lex generates a lexicalanalyzer which translates the source tokens to a token stream; similarly, yaccgenerates a syntactic parser which translates the token stream into a parse treerepresentation of the original source program. The theory behind the translationprocess performed by the front end is fairly mature and so are the tools whichcreate these translators. Most of the recent front end research concentrates on thedesign and implementation of new language features.1.2 Intermediate RepresentationThe intermediate representation separates the front end, which deals with sourcelanguage issues, from the back end, which deals with target issues. There areseveral properties necessary to make an intermediate representation useful. First

of all, it should be easy to generate from a variety of front ends. This allows itto remain useful as languages evolve (e.g. C!C++). Secondly, the intermediaterepresentation should be easy to manipulate during code transformations. Thissimpli�es the coding of the various analysis and transformations and allows changesto be made to the intermediate representation without di�culty. Finally, it mustbe machine-independent. This means that the intermediate code knows nothingabout the target architecture. For example, it does not care about the number ofregisters the target provides and instead assumes an unlimited number of registers.Because it is machine-independent, intermediate code usually looks like assemblycode for a virtual machine. This machine-independent feature means that theintermediate code can be retargeted to many di�erent architectures simply byusing a di�erent back end and the compiler can use a machine-independent codeoptimizer in the back end.The importance of a good intermediate representation is prevalent even in to-day's technologies. Java [18], a popular Internet programming language, translatesJava source code into a bytecode format which acts as an assembly language fora virtual machine. This bytecode is the intermediate format between the sourcecode and a running program. When a Java program is \executed", the bytecodeis simply interpreted1. Java bytecode can be run, without modi�cation, on anyoperating system that the Java interpreter has been ported to.1Recent advancements have produced Java Just-In-Time compilers, which use the Java byte-code as an intermediate representation for a completely separate compilation.

1.3 Back EndTwo tasks of the back end of an optimizing compiler are to modify the intermediatecode to improve overall code performance by performing various code transforma-tions and optimizations and to translate the intermediate code to assembly codefor the target architecture.Most recent research in compilers has concentrated around the optimizer com-ponent of the compiler. The optimizer determines what the �nal assembly codewill look like and how fast it will run. The task performed by the optimizer mustbe separated into transformations or phases in order to make this enormous taskmanageable. The function of the optimizer is complicated by the fact that transfor-mations cannot always be applied in any order. Additionally, these transformationsnormally cannot be combined because each transformation usually performs a spe-ci�c task which requires data
ow information useful for only that transformation.The need to separate the optimization phases leads to some di�culties in or-dering the transformations. Given a set transformations to perform, the followingsituation can occur: Once a certain optimization is done, a subsequent optimiza-tion may be unable to make any useful changes because of the changes made inthe �rst transformation; whereas, if this second optimization had been executedbefore the other one, its transformations would have been more bene�cial. Unfor-tunately, it is very di�cult for a compiler back end to determine in what order theoptimizations should be made.This problem, called the phase-ordering problem, has been studied for manyyears. One example of this problem deals with register allocation and instructionscheduling. If register allocation is performed before scheduling, it may introduce

arti�cial data precedence, keeping the instruction scheduler from generating thebest schedule. However, performing register allocation after instruction schedul-ing may result in the need for more registers. The phase-ordering problem canbe di�cult to avoid. Research in this area has proposed several solutions forspeci�c transformations in which the phases are combined. A framework for de-scribing optimizations and an example framework in which constant propagation,value numbering and unreachable-code elimination are combined is presented in[7]. Combining these phases allows for more information about the program tobe discovered and thus more opportunities for optimization. In [25], register allo-cation and instruction scheduling are combined. A heuristic algorithm is used inwhich weights are used for controlling register pressure and instruction parallelism.Finally, a compiler in which the code generation phase and a machine-directedpeephole optimizer are tightly integrated is described in [13] and [14]. These twocomponents can be combined because they are both simple pattern matchers. Apeephole optimizer replaces patterns of code with more e�cient code while a codegenerator matches patterns of intermediate code and replaces them with assemblycode. This compiler uses a single rule-based pattern matching system which makesthe compiler simple, fast, and retargetable.1.3.1 Constructing Code OptimizersCurrently, few tools exist to help construct code optimizers. This is slowly changingas the importance of optimization grows. One such tool to appear is Sharlit [39].Built to work with the SUIF compiler system, Sharlit helps in constructing data
ow analyzers and the transformations that use data
ow analysis information.Compiler writers are able to construct global analyzes and optimizations with the

following modular components:
ow graphs,
ow values (values that
ow throughthe graph),
ow functions that represent the e�ect of
ow graph nodes and pathson
ow values, action routines that are used to perform program optimizationsbased on the previous data
ow analysis, and path simpli�cation rules that showhow to combine
ow functions into other
ow functions.Like the front end of a compiler, the code generation stage of the back endis not as actively studied because the process is relatively simple: convert fromone representation to another. Some tools exist to help compiler writers with thisfunctionality of the back end. These tools, such as iburg [11], burg [12], and Twig[38], act as code generator generators. Each of these tools reads in a speci�cationand generates C code to perform the code generation based on the speci�cation.The speci�cation usually speci�es the cost of operands and instruction in the inter-mediate format. These tools use tree pattern matching and dynamic programmingto produce a code generator. The main di�erence between the various code gen-erator generators mentioned is how they implement their tree pattern matchingand whether the dynamic programming is done when the tool is used or if it isembedded in the generated code generator.1.4 Design Tools for Developing OptimizersThere are few tools which support the process of studying back end optimiza-tions. Currently, researchers examining di�erent back end optimizations must relyon general debugging tools or design their own tools to help in the generation ofoptimizing functions. A tool designed to give information speci�cally tailored foroptimization designers is necessary. This tool would give researchers the ability to

analyze how their new optimization (or existing optimizations) and the interme-diate code are a�ected when performing optimizations in di�erent orders. Moree�cient development of optimization routines should be the result of using such atool.In order to develop such a tool, the intermediate format used in the compilerneeds to be well designed and should not change between code transformations; theSUIF (Stanford University Intermediate Format) compiler [42] has such an inter-mediate format. The SUIF system is organized as a set of compiler passes built ontop of a kernel that de�nes the intermediate format. Each pass is implemented asa separate program which reads in the SUIF representation of the source programfrom a �le generated by the front end, performs some code transformation, andthen writes out the resulting SUIF representation to a �le. Since the SUIF formatnever changes, these passes can be performed in any order.SUIF provides the necessary platform for true development of a tool designedto support the development of code transformations. The work described in theremainder of this thesis develops one such tool, the Visual Simple-SUIF Compilerpackage.1.5 VSSCThe topic of this thesis is the Visual Simple-SUIF Compiler (VSSC) package whichwe have developed. This package is designed to provide an interactive frameworkthat allows the development of compiler optimizations. It incorporates a graphicaluser interface with an underlying Simple-SUIF compiler framework to illustratedata
ow analysis and code transformations. VSSC has many advantages that

make it useful to both optimization researchers and students alike.Built on top of the SUIF compiler, VSSC inherits all the strengths of SUIFas well as adding new ones. As in the SUIF compiler, it is easy to add newoptimizations to a VSSC compiler and to perform optimizations in any order. Theuser can select which optimizations to perform through the use of a graphicalinterface. Transformations can be applied in any order and as many times asdesired. This \interactive" ability allows the user to see the e�ects di�erent codetransformations have on the intermediate code after each transformation, as well asviewing the e�ects of di�erent implementations of a particular code transformation(e.g. di�erent methods of doing dead code elimination). This ability also allowsa researcher to see the di�erent results of the intermediate code depending onthe order that the transformations are performed. In addition, the researchercan select a transformation to be performed based on the observed characteristicsof the current state of the intermediate code. VSSC allows transformations tobe undone, so the user can perform an optimization, undo it, and then performanother optimization. Another advantage provided by VSSC is that its GUI libraryallows the optimization designer freedom in controlling what information the GUIdisplays to the user.A VSSC compiler runs until the user exits allowing intermediate code to bestudied inde�nitely between code transformations and viewed at each step duringa code transformation. VSSC provides the ability for the optimization writer todisplay a graph during the transformation. Table 1.1 shows some of the possibletypes of graphs that can be displayed using VSSC. Examples of these graphs willbe demonstrated in Section 5.2.Showing a graph during the code transformation aids the user in understanding

Type of Graph Purpose in a Compiler
Flow Graph This type of graph illustrates the
ow-of-control information for a procedure. Eachnode in the graph represents a basic block,a sequence of consecutive statements in which
ow of control enters only at the beginningand exits only at the end. There is a directededge in the graph from block Bi to block Bjif Bj can immediately follow Bi in some exe-cution sequence.

Directed Acyclic Graph
In a DAG, the information of how the valuecomputed by each statement in a basic blockis used in subsequent statements of the sameblock is shown. This information can beused to �nd common subexpressions (thoseexpressions which are computed more thanonce can be eliminated). Leaves in this graphare unique identi�ers (variable names of con-stants) and interior nodes are mathematicaloperators.Register-Interference Graph This type of graph is sometimes used whenimplementing register allocation using graphcoloring. The nodes in this graph are symbolicregisters and an edge connects two nodes (reg-isters) if one register is live at a point wherethe other is de�ned.Table 1.1: Some of the types of graph that can be constructed and displayed inVSSCthe steps in the code transformation as well as emphasizing the importance of thatgraph data structure in the code transformation. For example, a
ow graph allowsthe user to view the various possible execution paths between basic blocks in theintermediate code.Perhaps one of the most important bene�ts provided by VSSC is the ability tostep through an optimization. Much in the same way that you can step throughcode in a code debugger such as GDB [35], the VSSC package allows the optimiza-

tion writer to con�gure steps within the optimization and when the optimization isperformed in the VSSC compiler, the GUI user can step through the optimizationat his or her own pace. The optimization writer has complete freedom to includewhatever actions he or she likes within each step.Finally, since people tend to learn better by visualization as well as being able tostep through an optimization at their own speed, the VSSC package is particularlyhelpful when used in the academic environment. VSSC can be used as a teachingtool in courses on optimizing compilers. Students taking a course in optimizingcompilers can use VSSC in two ways. The �rst way in which it could be used is thatthe instructor provides to the students a ready-made VSSC compiler which alreadyimplements various optimizations. The students can then use VSSC to augmenttheir learning of an optimization presented by their instructor by stepping throughit with VSSC on any C code they wish. In this way, VSSC can be a teaching toolfor the study of compiler back ends.Students can also bene�t from using VSSC when writing their own optimiza-tions. In a typical optimizing compiler course, students implement such standardoptimizations as dead-code elimination, common subexpression elimination, andothers described in [1]. Students can use VSSC to facilitate their understanding ofwhat happens during one of these optimizations. VSSC can show them the resultsof a particular data
ow analysis and the e�ects of a transformation. Students canlearn only so much from a textbook and from trying out an optimization on paper.They can gain more insight about the optimization when they can actually see itin action on the screen in front of them. VSSC has been used in the graduate com-piler course at the University of California, Riverside. Students implemented basicblock detection, various data
ow analysis, and register allocation using VSSC.

1.6 Thesis OrganizationChapter 2 provides background information on various retargetable compilers andthe intermediate representations they use. It concludes with a description of thecompiler used by VSSC. Chapter 3 includes descriptions of work in the area ofcompiler visualization tools and previous work related to VSSC. Chapter 4 de-scribes the overall design, organization, and implementation of VSSC. Examplesof a VSSC compiler performing various optimizations, as well as various types ofgraphs that can be displayed with VSSC, are shown in Chapter 5. Chapter 6 pro-vides a conclusion along with a discussion of possible future directions for VSSC.Appendix A provides a user's manual for VSSC that describes VSSC's applicationprogram interface (API), how to get started using VSSC, and various tips andsuggestions on the use of the package.

Chapter 2
Retargetable Compilers
In order to implement the functionality proposed in VSSC, an easily extendiblecompiler with a robust intermediate format was needed. This chapter discussesseveral free C compilers including the intermediate format that they use. Theirvarious strengths and weaknesses will be presented as well as an analysis of theirsuitability for the VSSC framework.2.1 Requirements for a Retargetable CompilerA retargetable compiler is one that can support multiple targets by incorporat-ing multiple back ends to generate code for di�erent target architectures. Thiscapability of a compiler is strongly in
uenced by the intermediate language usedby the compiler. In order to make retargeting easy, the intermediate languageneeds to be machine-independent. If it doesn't rely on the characteristics of thetarget architecture, then a code generator can be written to generate code fromthat intermediate code for virtually any architecture.Academic and research groups tend to use retargetable compilers to allow for13

greater
exibility in educational and research goals. Because they are retargetable,they usually also run on the various architectures in use at that institution. It is notsurprising that retargetable compilers are better organized than their monolithiccounterparts. In order to be retargetable, the compiler needs to have a well-de�ned interface and be modular in design. Most research groups also tend to usefree retargetable compilers for obvious reasons. In a situation where you want totest out a new compiler feature, it is easier to incorporate it in into an existingcompiler for which you have the source code than constructing your own compilerfrom scratch or purchasing a source code license for a commercial compiler.In this section we look at three popular retargetable compilers in order todetermine which one best supports the VSSC framework. These compilers are:the GNU gcc compiler [34] developed by Richard Stallman (and numerous otherpeople), the lcc compiler [9] developed by Christopher W. Fraser at AT&T BellLaboratories and David R. Hanson at Princeton University, and the SUIF compiler[42] developed by Monica Lam at Stanford University. These systems are brie
yevaluated below.2.2 GNU C Compiler (GCC)The GNU C Compiler (GCC) [34], which can compile C, C++, and Objective-Ccode, is arguably the world's most popular free compiler. GCC's greatest strengthis that fact that GCC has been ported to and has been retargeted to many di�erentoperating systems and architectures. This wide-range of use is made possible byGCC's robust intermediate format.GCC's front end converts the source code into a Lisp-like register transfer

language (RTL). The RTL describes each target-dependent instruction in a target-independent algebraic form that de�nes the semantics of an instruction. Aftervarious code transformations are performed on the RTL, GCC's back end takesthis RTL and generates code for the target architecture. The speci�cation of thetarget architecture is based on a machine description that identi�es the target codeto generate for each possible expression in the RTL.The widespread use of the GNU Compiler and the large number of contributorsto its set of supported optimizations has led to a complex implementation. TheGCC design lacks modularity and is somewhat monolithic in design. In addition,the optimization passes made on the RTL have become so dependent on each otherover the years that the passes need to be done in a speci�c order. These limitationsmake it very di�cult to implement the functionality planned for VSSC using theGCC compiler.2.3 LCCThe lcc compiler [9] [10] is an ANSI C compliant retargetable compiler that cangenerate code for VAX, Motorola 68020, i386, SPARC, and MIPS R3000 architec-tures. Developed by Christopher W. Fraser at AT&T Bell Laboratories and DavidR. Hanson at Princeton University, lcc is heavily used at both institutions.lcc has many features that make it popular. The simple and compact design oflcc makes it one of the smallest and fastest ANSI C compilers available. Probablythe most useful feature of lcc is the quality of its the documentation. The authorsused the noweb [31] system to generate a textbook [10] and the source code for lccfrom a single source. Therefore, the textbook, which describes the implementation

of lcc, includes most of the code of lcc along with the explanation of that codeand how it contributes to the implementation. When generating the textbook,noweb system automatically cross-references all code segments so a reader of thetextbook can easily navigate the source code. This is very helpful, since the sourcecode is presented in the textbook in an order that follows the description of theimplementation.The target-independent front end and the target-dependent back end of lccexist together in a single executable glued together by an e�cient interface. Thisinterface consists of only 18 functions and the C code being compiled is representedby a 36-operator dag language [8]. This language is the intermediate format of lccand represents the source program as it goes from the front end to the back end inthe compilation process. The dag language has gone through many changes duringthe development of lcc. In each change, the authors usually took a more complexoperator out of the dag language and added functionality for it in the front end.Consequently, each change made the back end less complex.lcc has a number of features, which are not normally found in other compil-ers, that increase its usefulness to the user. Command-line
ags can specify thatthe code generated will check for the dereferencing of a null pointer (a commonprogramming mistake in C), print out function call/return traces, and generate ex-ecution pro�les. When lcc performs frequency-based pro�ling, it generates codethat keeps track of the number of times each expression is calculated. This allowsprogrammers to try to simplify those expressions that are frequently calculated.The accumulated pro�ling data can be displayed and analyzed.lcc, despite its many strengths, has several weaknesses. First of all, it is notan optimizing compiler. While its front end performs some target-independent op-

timizations such as local common subexpression elimination, constant folding, andother simple transformations, no other optimizations are speci�ed. Other typicalcompiler systems implement many more global and target-dependent optimiza-tions. Another weakness is the tightly-coupled design between the front and backends. While this design allows lcc to be a small and fast compiler, it can be di�-cult for a researcher to use lcc for a large back-end compilation environment. Thedesign and organization of lcc is so highly optimized for compilation speed andcode compactness that small changes to one component may greatly a�ect othercomponents. Other compiler systems, such as SUIF described in the next section,are more modular and robust in their design. This modularity allows a researcherto concentrate only on what they need to, without worrying about how it a�ectsthe rest of the compiler system.2.4 SUIF Compiler SystemThe SUIF research compiler system [42] [43], developed by a team of researchersunder the direction of Monica Lam at Stanford University, is centered around therobust design of its intermediate format called SUIF (Stanford University Interme-diate Format). The system has been designed and organized in such a way that itis easy to modify and extend the base system to generate custom compilers. TheSUIF team took considerable e�ort to make the system usable by other researchgroups. For this reason, many researchers around the world use the SUIF compilersystem to evaluate new compiler techniques and perform research on analysis andoptimization algorithms.The SUIF system is organized into two components. The kernel of the SUIF

compiler de�nes the central core of the compiler. The design goals of the kernelare [43]:� to make all program information necessary for scalar and parallel compileroptimizations easily available� to foster code reuse, sharing, and modularity� to support experimentation and system prototyping.The kernel performs three major tasks: it de�nes and manages the intermediateformat SUIF, it provides a set of routines for manipulating the intermediate format,and it provides an information and communication interface between compilerpasses.2.4.1 SUIF Intermediate FormatThe SUIF intermediate format is di�erent from the intermediate formats used bythe previously discussed compilers. Those intermediate formats are very low-levelwhile SUIF's intermediate format is a \mixed-level" program representation in-corporating both low-level and high-level information. The high-level informationincludes: loops, conditional statements, and array access operations. The low-levelinformation includes: assembly-like intermediate code, jumps and branches to la-bels, and symbolic registers. One of the features of the SUIF compiler system isits ability for determining the amount of parallelism in a program1. The inclusionof these high-level constructs simpli�es the design of analyzers and optimizers.For example, there are many optimizations that deal with loops. However, these1This information can be used to increase program parallelism and locality.

optimizations must detect the loops using data-
ow analysis. An optimization inSUIF does not need to perform such analysis, because loop information alreadyexists in the intermediate format. Figure 2.1 shows a sample C program and theSUIF intermediate format of the same example program (using the printsuifprogram2).2.4.2 SUIF Transformation EnvironentThe second component of the SUIF system is a set of compiler passes that performvarious transformations on the intermediate format. Usually, each pass reads inthe intermediate code, performs some transformation, analysis, or optimization,and then writes out the intermediate code. Since each pass can exist as a separateexecutable in the SUIF system, passes can be run in any order in the compilationprocess. Information can be relayed from pass to pass by annotating componentsin the intermediate format. To aid in the creation of SUIF compiler passes, theSUIF system contains a robust set of libraries, commonly used data structures,and support routines.

2Actually, printsuif displays a lot more information about the SUIF intermediate formatfor this C code, but to save space, only part of the information is shown here for comparisonpurposes.

int main(int argc, char **argv){ int x, y, z;for (x=0; x<100; x++){ z = 0;for (y=0; y<x; y++){ if (y+z < x)z++;}}printf("z= %d\n", z);}
PROC P:.main["line": 2 "example.c"]1: mrk["line": 5 "example.c"]2: FOR (Index=main.x Test=SLT Cont=L:main.L1 Brk=L:main.L2)FOR LB28: ldc t:g4 (i.32) 0FOR UB30: ldc t:g4 (i.32) 100FOR STEP32: ldc t:g4 (i.32) 1FOR LANDING PADFOR BODY6: mrk["line": 7 "example.c"]7: ldc t:g4 (i.32) main.z = 08: mrk["line": 9 "example.c"]9: FOR (Index=main.y Test=SLT Cont=L:main.L3 Brk=L:main.L4)FOR LB22: ldc t:g4 (i.32) 0FOR UBmain.xFOR STEP25: ldc t:g4 (i.32) 1FOR LANDING PADFOR BODY13: mrk["line": 11 "example.c"]14: IF (Jumpto=L:main.L5)IF HEADER15: bfalse e1, L:main.L516: e1: sl t:g31 (i.32) e2, main.x17: e2: add t:g4 (i.32) main.y, main.zIF THEN18: mrk["line": 12 "example.c"]19: add t:g4 (i.32) main.z = main.z, e120: e1: ldc t:g4 (i.32) 1IF ELSEIF ENDFOR END26: mrk["line": 9 "example.c"]FOR END34: mrk["line": 15 "example.c"]35: cal t:g4 (i.32) <nullop> = e1(e2, main.z)36: e1: ldc t:g39 (p.32) <P:.printf,0>42: e2: ldc t:g34 (p.32) <.__tmp_string_0,0>39: mrk["line": 16 "example.c"]40: ret e141: e1: ldc t:g4 (i.32) 0PROC ENDFigure 2.1: C and SUIF intermediate format version of same example program

The SUIF compiler may not be the fastest or the most robust compiler, but the
exibility and extensibility of its design outweighs these possible shortcomings forthe study of back-end code transformations. The SUIF compiler is not meant tobe a production quality compiler. Instead it is meant to act as a research vehicle,designed to support modularity and experimentation at the cost of the speed oftranslation.2.4.3 Simple-SUIFSince the SUIF compiler is a complete ANSI C compiler, it is a little too complexfor use in a college course in compilers. The SUIF Compiler group at Stanforddeveloped a package called Simple-SUIF [36] which acts as a wrapper for SUIFby providing a simpli�ed interface to the intermediate format generated by theSUIF compiler. When using Simple-SUIF, the SUIF intermediate format remainsthe same internally, but di�ers in the way the programmer interacts with thesystem. This simpli�ed interface allows students to write their own optimizationsfor a fully-functional ANSI C compiler without learning the high-level constructsrequired to perform compiler transformations (e.g. interprocedural analysis).Figure 2.2 shows the Simple-SUIF version of the example code in Figure 2.1.As you can see, the instructions in Simple-SUIF's intermediate format resembleassembly language instructions (op dst,src1,src2) or three-address C instructions(dst = src1 op src2). Each instruction has an unique opcode associated withit. The instructions are grouped into six di�erent categories called instruction for-mats. Table 2.1 shows all the valid Simple-SUIF instructions. For each instruction,the following information is also shown: the opcode, the Simple-SUIF name, theinstruction format, and a short explanation of that instruction.

Procedure main:ldc (s.32) t6 = 0cpy (s.32) r3 = t6L9:ldc (s.32) t7 = 0cpy (s.32) r5 = t7ldc (s.32) t8 = 0sl (s.32) t9 = t8, r3bfls t9, L6ldc (s.32) t10 = 0cpy (s.32) r4 = t10L7:add (s.32) t11 = r4, r5sl (s.32) t12 = t11, r3bfls t12, L5ldc (s.32) t13 = 1add (s.32) t14 = r5, t13cpy (s.32) r5 = t14L5:L3:ldc (s.32) t15 = 1add (s.32) t16 = r4, t15cpy (s.32) r4 = t16sle (s.32) t17 = r3, r4bfls t17, L7L4:jmp __done8L6:ldc (s.32) t18 = 0cpy (s.32) r4 = t18__done8:L1:ldc (s.32) t19 = 1add (s.32) t20 = r3, t19cpy (s.32) r3 = t20ldc (s.32) t21 = 100sle (s.32) t22 = t21, r3bfls t22, L9L2:ldc (a.32) t23 = &printf + 0ldc (a.32) t24 = &__tmp_string_0 + 0call (s.32) *t23 (t24, r5)ldc (s.32) t25 = 0ret t25Figure 2.2: SimpleSUIF version of example code used in Figure 2.1A Simple-SUIF instruction is represented by the simple instr structure. Fig-ure 2.3 shows the simple instr structure and its contents. When writing anoptimization pass with Simple-SUIF, the intermediate format is given to the pro-grammer as a linked list of these instructions. The optimization can then managethe items in this linked list. When an optimization is performed, the elements inthe linked list are modi�ed and the linked list is returned back to the Simple-SUIFlibrary. This intermediate code is then saved back to a �le.

Simple-SUIF InstructionsOpcode Instr. Name Instruction Format PurposeNo operand instructionsNOP OP nop BASE FORM No nothing at allOne source operand (src1) instructionsRET OP ret BASE FORM Return from a procedureTwo source operand (src1, src2) instructionsSTR OP str BASE FORM Store the value in the src2register at the address contained in thesrc1 registerMCPY OP mcpy BASE FORM Memory-to-memory copyUnary instructions (dst, src1)CPY OP cpy BASE FORM Copy the src1 register to thedst registerCVT OP cvt BASE FORM Convert the src1 register tothe result type and put it in thedst registerNEG OP neg BASE FORM NegationNOT OP not BASE FORM Bit-wise inversionLOAD OP load BASE FORM Load the value at the address containedin the src1 register and put it inthe dst registerBinary instructions (dst, src1, src2)ADD OP add BASE FORM dst = src1+ src2SUB OP sub BASE FORM dst = src1� src2MUL OP mul BASE FORM dst = src1 � src2DIV OP div BASE FORM dst = src1=src2REM OP rem BASE FORM dst = src1%src2MOD OP mod BASE FORM dst = abs(src1%src2)AND OP and BASE FORM Bit-wise ANDIOR OP ior BASE FORM Bit-wise inclusive ORXOR OP xor BASE FORM Bit-wise exclusive ORASR OP asr BASE FORM Signed shift rightLSL OP lsr BASE FORM Unsigned shift rightLSR OP lsl BASE FORM Unsigned shift leftROT OP rot BASE FORM Rotate value in src1 register left(positive value) or right (negative value) bythe amount speci�ed in the src2registerSEQ OP seq BASE FORM dst = (src1 == src2)SNE OP sne BASE FORM dst = (src1! = src2)SL OP sl BASE FORM dst = (src1 < src2)SLE OP sle BASE FORM dst = (src1 <= src2)Branch and jump instructionsJMP OP jmp BJ FORM Unconditional jump: goto targetBTRUE OP btru BJ FORM Branch if true: if (src1) goto targetBFALSE OP b
s BJ FORM Branch if false: if (!src1) goto targetMiscellaneousLDC OP ldc LDC FORM Load a constant valueCALL OP call CALL FORM Call a procedureMBR OP mbr MBR FORM Multi-way branchLABEL OP lab LABEL FORM Label pseudo-instructionTable 2.1: Valid Simple-SUIF instructions

simple_op opcode; /* the opcode */
simple_type *type; /* type of the result */
struct simple_instr *next; /* ptr to next instruction */
struct simple_instr *prev; /* ptr to previous instruction */

union u; /* the variant part of the union is determined
 by the result of simple_op_format(opcode) */

/* BASE_FORM */
struct base {

}

 simple_reg *src1; /* source 1 */
 simple_reg *dst; /* destination */

 simple_reg *src2; /* source 2 */

}

/* LABEL_FORM */
struct label {
 simple_sym *lab; /* the symbol for this label */
}

/* BJ_FORM */
struct bj {

}
 simple_reg *src; /* source register */
 simple_sym *target; /* branch target label */

}

/* LDC_FORM */
struct ldc {

 simple_immed value; /* immediate constant */
 simple_reg *dst; /* destination */

/* CALL_FORM */
struct call {
 simple_reg *dst; /* return value destination */
 simple_reg *proc; /* address of the callee */

 simple_reg **argsl /* array of arguments */
 unsigned nargs; /* number of arguments. */

/* MBR_FORM */
struct MBR {
 simple_reg *src; /* branch selector */
 int offset; /* branch selector offset */
 simple_sym *deflab; /* label of default target */
 unsigned ntargets; /* number of possible targets */
 simple_sym **targets; /* array of labels */
}

Figure 2.3: simple instr structure used to represent a Simple-SUIF instructionAs you can see from Figure 2.3, the simple instr structure contains a member,u, which is a union of many other structures3. Each of the structures in the unionrepresents a di�erent instruction format in which all the Simple-SUIF instructionopcodes map to. The Simple-SUIF library contains support routines to help theprogrammer deal with this data structure. Appendix A provides more informationon how to use and interact with Simple-SUIF.3A union is used to save memory since an instruction can only be one type of instructionformat.

2.5 SummaryIn this chapter, three retargetable compiler systems were examined for use as thecompiler base for the VSSC framework. The stengths and weaknesses of each werepresented. At one end of the spectrum is GCC, a large, slow, monolithic compilerwith very good optimization routines. At the other end of the spectrum is lcc,a small, fast, non-optimizing compiler whose compact design makes it di�cult toexpand. The design and organization of these compilers would not �t well in theVSSC framework.The features of the SUIF compiler framework ful�ll the design goals of the VSSCframework far better than those of GCC or lcc. The modular design of the SUIFcompiler framework allows it to be integrated easily into the VSSC framework.Using the SUIF intermediate format, VSSC has ability to perform optimizationsin any order. Finally, incorporating the Simple-SUIF package allows VSSC to beused by both researchers and students.

Chapter 3
Compiler Visualization Tools
Due to recent advances in GUI technology, graphical user interfaces are now becom-ing easier to create. This allows a program that was previously text-based to havea graphical front end to improve user interaction. A graphical user interface allowscompilicated information to be presented more understandable manner. A com-piler is a good example of a text-based program that can bene�t from a graphicaluser interface. Such an interface would allow the compiler to display informationof interest to those debugging a component of the compiler or learning about thecompilation process.Perhaps an important piece of information that should be displayed in thegraphical user interface of a compiler while the back end is executing is the variousdata structures used in code transformations. These structures can be displayedto illustrate both the analysis and transformation algorithms required to performa particular optimization. In order to display various types of graphs, a toolto handle the graph drawing capabilities is needed. This chapter �rst discussesvarious graph drawing tools, which are an important component of most compiler26

visualization tools, since graphs are the primary data structures in compilers. Thesecond part of this chapter is a discussion of several compiler visualization projectssimilar to VSSC.3.1 Graph Drawing ToolsThe graph drawing process is complicated. There is an large amount of researchbeing done in this �eld [3] and many algorithms have been designed to draw graphsthat look aesthetically pleasing. As a result of this research, many graph drawingtools exist to demonstrate the feasibility of these graph drawing algorithms. Suchtools include: �graph [15], daVinci [16], GraphEd [19], and DOT [21]. Mosttools are stand-alone programs, while others such as DOT can be integrated into anexisting GUI such as Tcl/Tk [28] [40].There are several other graph drawing tools that are more specialized in theirfunctionality in that they are used to draw many of the data structures presentin compilers:
ow graphs, syntax trees, call graphs, and data dependence graphs.Two such tools are dflo [44] and VCG [32]. VCG is used to graphically displaytypical data structures found in a compiler, while dlfo can be used to solve data-
ow equations.3.1.1 VCGTextual representations of compiler data structures, such as trees or graphs, canoften be confusing or unreadable. VCG shows trees and graphs in a natural waythat allows powerful debugging of the internals of a compiler and the examinationof the e�ects of transformations on the intermediate representation.

The speci�cation of a graph is supplied to VCG, which then assigns horizontaland vertical positions to each node and computes splines for the edges in such asway that the edges do not overlap with nodes. Constructed graphs can be foldedallowing unimportant parts of the graph to be hidden, while important componentscan be shown in more detail. The output of the constructed graph can viewed usinga self-contained X-windows tool or saved as a postscript �le.3.1.2 dflodflo [44] is a tool that inputs: a description of a
ow graph, the variables assignedand expressions computed in each
ow graph node, and a system of data-
owequations. It then solves the data-
ow equations and allows the user to interac-tively view the results. The
ow graphs generated by dflo look very nice and thedata-
ow equations are easy to construct. Figure 3.1 shows the dflo data-
owequations to compute liveness.{ LIVE edge - [0] = any succs(LIVE) * TRANSUP + EXPOSEUP;LIVE.in node - [1] = LIVE.out * TRANS + EXPOSEUP ;LIVE.out node - [1] = any succs(LIVE.in) }Figure 3.1: dflo data-
ow equations to compute livenessUnfortunately, dflo uses the commercial Motif graphical user interface as itsGUI front end. It therefore can not be incorporated into VSSC, since a design goalof VSSC is to only use freely available software.

3.1.3 DOTNeither VCG nor dlfo would integrate well into the VSSC framework. Thesetools are designed to be standalone programs, which are di�cult to incorporateinto a larger package like VSSC. We chose to integrate the DOT [21] package withVSSC to implement the graph drawing capabilities VSSC provides.DOT is a general graph drawing tool which draws directed graphs using a four-step algorithm [17]:1. Assigns discrete ranks to nodes. These ranks determine the Y coordinates inthe �nal drawing.2. Orders nodes within ranks to avoid crossings.3. Assigns X coordinates to nodes while keeping edges short.4. Routes edge splines between nodes that have edges.The graphs produced by DOT are well suited to display the graph data structureinformation necessary in a compiler. Figure 3.2 shows a sample
ow graph for animplementation of the quicksort algorithm. The drawing and layout algorithmsused in DOT are able to generate the graphs fast enough to support interactive GUIs.A detailed explanation of DOT and how it is integrated into the VSSC frameworkis presented in Section 4.3.2.3.2 Visual Compiler ToolsPreviously there were very few compiler visualization tools or visual compilers.Compiler systems tended to be text-based and not designed for use with a graphical

B0

B1

B2 B3

B4

B5

B6

B7

B8

B9 B10

B11

B12

B13Figure 3.2: DOT generated
ow graph for quicksort algorithmuser interface (GUI). However, more recent compiler systems such as SUIF havebeen designed with modularity in mind, diminishing the amount of work neededto add a GUI to the system. Several compiler visualization tools that in
uencedthe design of VSSC are presented in this section.3.2.1 Visual SUIF BrowserOne the many tools that have been written for SUIF include a visual SUIF browser[24]. Here is the o�cial description [41]:The Visual Browser is a graphical user interface, which runs underX, for browsing through SUIF intermediate representation code. Itcan open multiple windows for SUIF �les, source �les, and output Ccode, and clicking on an object in any of those windows will highlight

the corresponding piece of code in the other windows. Other featuresinclude the ability to search for objects with given properties, �lter outdetails which are not currently interesting, and collapse and expandthe representation of internals of given nodes.While this tool acts more as an information browser and is not relevant to thepurpose of VSSC, it provides a similar functionality in that it displays the currentstate of the SUIF intermediate code. Like VSSC, it is also uses Tcl/Tk for its GUIinterface.3.2.2 UW Illustrated CompilerThe University of Washington developed the UW Illustrated Compiler (icomp)[2], which lets a user interactively browse through textual and graphical views ofcontrol and data structures during the compilation of a program. Almost everypart of the compilation process can be viewed including: lexical analysis, parsing,semantic analysis, and code generation. icomp uses a construct called hookpoints,which are similar to breakpoints, but instead of stopping the execution of theprogram at a hookpoint, the icomp display updates windows that have changedsince the last hookpoint was executed. Hookpoints are used to synchronize theillustration of the program with the state of the compiler.The main purpose of icomp is to illustrate the compilation process to under-graduate students. It provides no interface that researchers can use to develop newcomponents easily and no optimizations can be performed. While icomp may seemto have limited features, it was one of the �rst visual compiler tools written andserved its purpose well. Students who used the system provided positive feedback

regarding its use and its presentation of information.3.2.3 xvpodbThe tool that most closely matches the goals of VSSC is xvpodb, designed byMicky Boyd and David Whalley of Florida State University. xvpodb is a graphicaloptimization viewer for the vpo optimizer [4]. It had the following design goals [5]:� The program should appear in a easily readable display that is automaticallyupdated each time the data structure is changed.� Indicate the exact portions of the representations that were altered during atransformation.� Allow data breakpoints to be used.� Provide the capability to examine the e�ect of transformations by processingthem in forward or in reverse order.xvpodb runs as a separate process and communicates with vpo via sockets. vposends to a xvpodb process messages that describe the changes to make to the RTLsbeing displayed. Figure 3.3 shows the main window of xvpodb. The RTLs aredisplayed in their basic blocks with arrows illustrating the
ow graph. Buttons atthe bottom of the screen allow the user to step forward or backward in the currenttransformation.The main data structures used by xvpodb are the Optimization List and theScreen List. The Optimization List is a list of messages received from the optimizerthat describe that changes to make to each RTL as well as information on what to

Figure 3.3: Main window of xvpodb applicationdisplay when stepping in reverse. The screen list contains a list of what informationis currently being displayed on the screen as well as the current state of each RTL.xvpodb and VSSC are very similar in their functionality and design goals. How-ever, there are several di�erences. First of all, xvpodb does not allow the userto control the optimizations; it can only be used as a viewing tool, while VSSCwas designed to give the user full interactive control of the compilation process.Secondly, xvpodb does not allow the user to back out of a transformation, a func-tion that VSSC provides. This ability to undo transformations allows a user to

remove the e�ects of a transformation that turned out to be inappropriate or in-e�ective. The authors of xvpodb claim that adding this functionality would not bedi�cult for them, but, they have not yet implemented it. One functionality thatxpodb provides that VSSC does not yet provide is the ability the backstep withina transformation. Both systems allow the user to step forward through a transfor-mation, but xvpodb also allows the user to step backwards within a transformation.VSSC allows backstepping at the granularity of a transformation, but not at eachstep of a transformation.3.3 SummaryAn important component of a compiler with a graphical user interface is the abilityto display information about internal data structures used within the compiler.Various types of graphs are used in the back end of a compiler. Rather thanimplement complicated graph drawing algorithms to draw these graphs, VSSCuses an existing tool that integrates well in the VSSC framework. This chapterdiscussed several graph drawing tools that specialize in drawing the types of graphscommon in compilers. Information was then presented describing previous work inthe area of compiler visualization tools. The compiler visualization tools describedwere: the Visual SUIF Browser, the UW Illustrated Compiler, and xvpodb.The �eld of compiler visualization tools is relatively young, but with the adventof powerful, easy-to-use GUI languages such as Tcl/Tk, more tools should becomeavailable.

Chapter 4
VSSC Design and Implementation
The Visual Simple-SUIF Compiler (VSSC) package is designed to provide an inter-active framework that facilitates the development of compiler optimizations. Thischapter discusses the various design goals of the VSSC framework and how theywere met in the actual implementation. Supporting tools that were used and howthey were integrated with the VSSC framework are also discussed. The chapterconcludes with a description of the VSSC interface and a sample optimization thatdemonstrates how an optimization designer would register an optimization usingthe VSSC package and the SUIF compiler.4.1 Design GoalsThe overall goal in the design and implementation of the VSSC framework is toprovide an interface to allow the study of optimizations. The following character-istics are desirable in this interface:� To be as extendible as possible, the framework should allow new transforma-tions to be added easily. 35

The VSSC library includes an interface in which any number of transforma-tions are \registered" with the VSSC compiler that is generated.� The ability to specify the order in which transformations are applied givesthe VSSC user the ability to apply transformations in any order and as manytimes as desired. In order to implement such a feature, a suitable compileris needed that supports these abilities.The VSSC GUI allows the user to select from a menu which transformationto perform next. The underlying compiler used by VSSC is SUIF, whichallows transformations to be applied in any order. Section 2.4 describes theSUIF compiler in more detail.� Support for backing out or undoing a transformation. This requires theability to revert back to a previous version of the intermediate representa-tion. This action undoes any changes made by the current transformation inprogress or the previously completed transformation. This characteristic canbe extremely helpful in several situations: comparing two di�erent imple-mentations of the same optimization and evaluating di�erent transformationorderings.For example, an optimization can be performed and the results observed.Then that transformation is undone and another implementation of the sametransformation is performed. The user can then compare the results of thetwo transformations and determine whether the two implementations of thesame transformation produced the same resulting intermediate code.The ability to undo transformations can also help researchers studying thephase-ordering problem. The researcher would perform an ordering of trans-

formations and see the result. All those transformations would then be un-done and a di�erent ordering of those transformations would be performed.The researcher could then determine if the ordering of the transformationsresulted in di�erent intermediate code and which orderings result in moreoptimized intermediate code.An undo feature is also useful whenever, during one of the steps of a trans-formation, the user notices that the transformation incorrectly modi�es partof the intermediate representation. At that point, the transformation can beundone before it �nishes, reverting the intermediate representation back toits state before the current transformation. VSSC allows the user to undo atransformation at any point. The user can even undo multiple transforma-tions, reverting back as far as the original intermediate code.� The intermediate format used should be simple, easy to read, and identi�able.VSSC uses the Simple-SUIF interface which provides such an intermediateformat. Simple-SUIF is described in more detail in Section 2.4.3.� VSSC should provide the user a graphical interface capable of displayinginformation related to the code transformation (in this case, intermediatecode and graphs) in an aesthetically pleasing manner. Such an interface isgenerally easier to use. No typing is necessary; just point and click.The interaction between the VSSC compiler and its user is completely graph-ical. The GUI is implemented using Tcl/Tk [28] [40]. Further informationabout Tcl/Tk is presented in section 4.3.1 below.� VSSC should facilitate classroom instruction of compiler optimizations. Veryfew tools exist today that can be used to teach students compiler optimiza-

tions graphically. To be an e�ective teaching tool, the users should be ableto follow an optimization at their own pace. VSSC provides a stepping func-tionality that allows the user to step through an optimization.� To be widely used as a tool in the academic research arena, VSSC should bebased only on freely available software. Table 4.1 lists the software compo-nents integrated with VSSC and where they can be obtained. These compo-nents are discussed in Section 4.3 below.GNU C/C++ ftp://prep.ai.mit.edu/pub/gnu/gcc-2.7.2.tar.gzSUIF http://suif.stanford.edu/ftp://suif.stanford.edu/pub/suif/basesuif-1.1.2.tar.gzSimple-SUIF ftp://suif.stanford.edu/pub/suif/simplesuif-1.0.0.beta.1.tar.gzTcl/Tk http://www.sunlabs.com/research/tcl/ftp://ftp.sunlabs.com/pub/tcl/DOT/tcldot http://www.research.att.com/sw/tools/reuse/Table 4.1: VSSC components and where to �nd them
4.2 Organization of VSSC FrameworkThe VSSC framework is implemented as a library that is linked in with the opti-mization writer's code. This library, along with the libraries for SUIF, Simple-SUIFand tcldot, contains everything that is needed to construct a VSSC compiler. TheVSSC library acts as a manager of the various sub-libraries it uses. It takes thestrengths of each sub-library and works around their implementation weaknessesto produce a tightly integrated system. Figure 4.1 depicts those components ofthe VSSC framework and how these components interact. Information on how toobtain and install these packages can found in Section A.4.3 of Appendix A.The next section describes the components of the VSSC framework and how

Display

Components
Intermediate

Code

Text Widget

Flow Graph

DAG

Interference

Graph

Graphical User Interface

Tk

Tcl Interpreter

tcldot Graph

SUIF

Simple-SUIFRegistered

Optimizations

Transformation Log

VSSC Framework

Programmer’s

Optimizations

Figure 4.1: Internal organization of VSSC frameworkthey integrate with each other.4.3 Implementation of VSSCEach of the components in Figure 4.1 provides a solution of one or more of thedesign goals proposed in Section 4.1. The core of the VSSC framework is imple-mented in C/C++. It would be possible to implement the functionality providedby VSSC in any high-level programming language that can be linked with theexisting C/C++ libraries1.4.3.1 Graphical User InterfaceA primary component of the VSSC framework is the graphical user interface. Thiscomponent implements several of the design goals outlined previously. The GUIallows the VSSC compiler to be \interactive" as well as providing the ability todisplay the intermediate code and various graphs simultaneously. Visual changes1The SUIF, Simple-SUIF, Tcl/Tk, and tcldot libraries are all C or C++ libraries

to the intermediate code and graphs can be animated. The GUI is also the keycomponent that allows the user to select which transformations to perform and inwhat order to execute them.Tcl/Tk [28] [40], developed by John Ousterhout at the University of California,Berkeley, is a scripting language. The Tcl/Tk graphical user interface is used toimplement VSSC's GUI. It is a simple and portable toolkit that can be easilyintegrated with C/C++ code. Tcl is the scripting language itself while Tk is anextension to Tcl that provides X windows GUI development capabilities. Together,they have become very popular for three reasons:� Because the language is interpreted, there are no waits for long compilations.Code can be tested immediately, yielding fast development cycles.� Tk provides a high-level interface to the complicated X windows system.Simple user interfaces can be created with just a few lines of code.� Simpli�cation of the development of the user interface allows the programmerto concentrate more on the internal core of the application.The VSSC framework includes an embedded Tcl/Tk interpreter, which pro-vides the rest of VSSC library direct communication with the display and accessto the display components. Figure 4.2 shows the VSSC window displaying theintermediate representation and
ow graph of quicksort.The VSSC GUI contains three main areas over which the user has control.Figure 4.3 shows the �rst area (Current Status) which resides in the top left cornerof the VSSC interface. This area simply acts as a general information area. SinceVSSC allows the user to step through the optimization (much like a step in a

Figure 4.2: Screenshot of VSSC compiler

debugger), this �rst area contains two buttons that allow the user to be able tostep forward or undo an entire transformation. During each step, any number ofactions (ie adding/deleting instructions/graph nodes) can occur. The optimizationwriter decides what happens during each step.
Figure 4.3: Current status componentThe area below the Current Status area contains a graph widget. In this areathe optimization writer can create graphs. The most common types of graphs thatcan be created are
ow graphs, directed acyclic graphs (DAGs), and interferencegraphs2. Each node in the graph widget can have arbitrary data associated with it.This data is displayed when the user clicks on the graph node with the left mousebutton. Clicking in the box that contains the data hides it. Figure 4.4 shows asample graph component.The last area, located on the right hand side of the screen, is a text widgetcontaining the Simple-SUIF intermediate code. The code presented in this widgetis usually contained within basic blocks (as in Figure 4.5).The VSSC compiler contains several menus. The File menu provides the abil-ity to quit the compiler, dump a copy of the graph currently being displayed toa �le, and enter Tcl/Tk commands directly. This last feature is a debugging toolfor extending the VSSC GUI component. The Optimizations menu lists the trans-2Graphs of these types will be demonstrated in Chapter 5.2

Figure 4.4: Graph componentformation routines registered and available in this VSSC compiler. Selecting anentry in this menu causes that transformation to occur on the current state ofthe intermediate code. During the execution of the transformation, this menu isunavailable, because a new transformation cannot be started while another one isin progress. Once the current transformation has completed, however, this menuis again available. If a transformation is undone, this menu also becomes available,since this action terminates the current transformation. Section 4.3.6 describes theundo feature in more detail.The Display Components component of the VSSC framework manages every-

Figure 4.5: Intermediate Code componentthing that is displayed on the screen and updates the display depending on com-mands it receives from each entry in the transformation log. The transformationlog is described in detail in Section 4.3.5.4.3.2 Incorporating tcldot into VSSCA graphical user interface for a compiler tool should be able to display the typesof graph data structures that are commonly used in compiler tools. Applicationsof graph visualization are discussed in [27], while the issue of graph visualizationfrom the viewpoint of compilers is discussed in detail in [33].

Rather than implement custom graph drawing algorithms within the VSSCGUI, we chose to integrate an existing graph drawing package in the VSSC frame-work. We chose to use tcldot [22], which is part of a larger package, DOT [21],developed by Eleftherios Koutso�os and Stephen C. North at AT&T Bell Labora-tories.tcldot is a version of DOT that can be used to produce graphs in a Tk canvaswidget. VSSC embeds tcldot within its framework and uses it to draw graphs ona canvas located in the Graph Component of the GUI. The DOT/tcldot API [22],part of which is shown in Table 4.2, includes many commands such as creatingand destroying graph nodes and edges between nodes. The VSSC library providesa Graph class that acts as a wrapper for tcldot and allows the programmer tocontrol the information being displayed in the graph using C/C++ code. VSSC'sgraph class also allows the programmer to annotate information with each node.This information is displayed in a pop-up box whenever the user clicks on the nodein the graph.4.3.3 SUIFThe SUIF component provides two functions. First, it converts the C input �leinto the SUIF intermediate format. This action is performed by calling the SUIFcompiler, which performs all the front end translation. This functionality is im-portant in meeting the design goal of using a simple intermediate format. Afterthis �rst translation process, the Simple-SUIF component of VSSC converts thethe intermediate format generated by the SUIF compiler into Simple-SUIF. Thisprocess will be described in Section 4.3.4.The other function provided by the SUIF library is the use of data structures

Commands Purposedotnew graphtype Creates a new graph of type graph, digraph,graph strict, or digraph strict. A graphhandle is return that is used on all future ref-erences to this graph.dotread �leHandle Reads a graph from a �le handle.graphHandle dotwrite �leHandle Saves a graph to a �le in one of several for-mats.graphHandle addnode Adds a node to a graph. Returns a handle forthat node.graphHandle addedge Adds an edge to a graph. Returns a handlefor that edge.handle delete Deletes a node, edge, or entire graph.handle setattributes Set the attributes for a node, edge, or graph.graphHandle layout Computes layout of nodes and edges.graphHandle render Returns list of Tk canvas commands whichcan be evaled to draw the graph in a canvas.Table 4.2: Some commands in the tcldot APIto help implement the other components of the VSSC framework.Writing compiler optimizations (or any large project) requires that you managecomplex data structures. Commonly used data structures in compiler optimiza-tions and compiler tools include lists, trees, arrays, bit sets, and graphs.There are many popular data structure libraries that work well. One suchlibrary is LEDA [26]. LEDA was considered for use in VSSC during the designphase, but it was rejected because it would add another package to the list ofpackages VSSC already requires.Fortunately, the SUIF libraries include most of the commonly used data struc-tures needed in compiler tools. The VSSC framework uses many of the generic datastructures provided by SUIF. These data structures are described in more detail insection A.5.5 of Appendix A and Chapter 11 of the SUIF Library Documentation

[37].4.3.4 Simple-SUIFOne of the major design goals of the VSSC framework is to use an intermediateformat that is simple, easy to read, and familiar looking. As described in section2.4.3, Simple-SUIF acts as a wrapper for SUIF by providing a simpli�ed interfaceto the intermediate format generated by the SUIF compiler. When using Simple-SUIF, the SUIF intermediate format remains the same internally, but di�ers in theway the programmer interacts with it.The Simple-SUIF component in the VSSC framework provides several di�erentimportant functions. First it converts the SUIF format generated by the SUIFcomponent into the Simple-SUIF format. This is done by making several calls tothe SUIF program, porky, which performs several types of code transformations.porky is used to remove all of the high-level construct information from the SUIFintermediate format (eg. loops). The result of this transformation is a more low-level intermediate format that can be converted into Simple-SUIF instructions bythe Simple-SUIF component.The second job of the Simple-SUIF component is to manage how the Simple-SUIF instructions are used by the programmer writing the optimization. When aregistered optimization is selected to run, this component uses the Simple-SUIFlibrary to read in the intermediate format from a �le, convert it to Simple-SUIFusing porky, and then passes a list of instructions to the registered optimizationroutine. This routine can then do whatever it wants with the list. The only require-ment is that the routine return a doubly-linked list of Simple-SUIF instructionsback to the Simple-SUIF component. The returned linked-list is then written back

Simple-SUIF

Component

Optimization

Routineint main(int argc, char **argv)

void quicksort(int, int)Figure 4.6: Simple-SUIF component passing lists of Simple-SUIF instructions oneat a time for each function to an optimization routine.out to a �le in SUIF format. This �le is re-read when a subsequent optimizationis performed. If a structurally correct doubly-linked list is not returned, the entireframework will exit with an error. It is the programmer's responsibility to ensurethat a correct list is returned.If the intermediate code contains more than one function, each function con-sisting of a list of Simple-SUIF instructions is passed to the selected optimizationroutine sequentially as shown in Figure 4.6. Simple-SUIF processes one functionto completion before the next one is processed. This design simpli�es the structurefor the compiler writer but severely limits the ability to perform interproceduralanalysis3.Finally, the Simple-SUIF library includes routines to help with the manage-ment of Simple-SUIF instructions. It includes routines for creating, removing, anddetermining the format of Simple-SUIF instructions.4.3.5 Transformation LogEach transformation is decomposed into a set of steps. These steps are de�ned bythe optimization writer and any number of actions can occur between steps. Typ-ically though, only one or two major actions (ie adding or deleting an instructionor graph node) are performed during each step. All the steps for a single transfor-3Though standard SUIF provides this ability through the use of annotations, Simple-SUIFdoes not.

mation are stored in one transformation log which acts as a recording of what todisplay in the graphical user interface. This log, implemented as a linked-list, isshown in Figure 4.7. It is similar in design to the Optimization List used in xvpodb[5] except that each log entry can have more than one event.
Display Commands

Tranformation

Steps

Transformation Log

Figure 4.7: Internal organization of the transformation logWhen the user starts a transformation within a VSSC compiler, the transfor-mation does not occur in real-time but executes to completion in the backgroundwhile all VSSC transformation actions and de�ned steps are stored in a new trans-formation log. The VSSC GUI plays this log by executing its display actions forthe user. When the user �rst selects the step button, the �rst step in the transfor-mation log is performed; usually, the �rst step involves displaying the basic blocksof intermediate code in the text widget. Future selections of the step button causesubsequent steps in the transformation log to be processed. When the last stepin the transformation log is executed, the transformation is �nished and a pop-upwindow appears notifying the user. At this point, the user has to ability to performanother transformation on the current state of the intermediate code or undo thee�ects of this last transformation and revert back to the previous version of the

intermediate code.4.3.6 Undo TransformationOne of the design goals of VSSC is to provide the ability to undo transformations.This capability yields bene�ts in two situations. First, it can be helpful when an-alyzing two di�erent implementations of the same optimization (e.g.two di�erentimplementations of dead code elimination). One optimization can be performedand the results observed and then that transformation can be undone and anotherimplementation of the transformation can be performed. The user can then com-pare the results of the two transformations. Another situation in which undoingtransformation is extremely valuable is when a researcher is analyzing the phase-ordering problem. The researcher can perform an ordering of transformations andsee the result. All those transformations can be then undone and a di�erent or-dering of those transformations can be performed producing a possibly di�erentresult than the �rst ordering.This feature is easy to incorporate into the VSSC framework because of the
exibility on the overall design. Since the SUIF format, and therefore Simple-SUIF, is always stored in a �le, VSSC keeps the results before and after eachtransformation in a SUIF �le. This organization acts as a stack of transformations.When the user requests to undo a transformation (which can happen at any timeduring the use of a VSSC compiler, even during the middle of a transformation), thecurrent intermediate code is forgotten and the previous version of the intermediatecode is popped o� the stack. When the user selects the next transformation toexecute, the Simple-SUIF component of the VSSC framework uses the previousversion of the intermediate format. A VSSC compiler allows the user to undo

transformations all the way back to the beginning, since the VSSC frameworkremembers all versions of the intermediate code during a single execution of aVSSC compiler.4.4 Programmer InterfaceThe VSSC framework is a library that is linked in with the optimization writer'scode. When this library is linked in, the resulting executable is a new VSSC com-piler. This compiler gives its users access to those code transformations/optimizationsthat were written by the optimization writer and subsequently registered with theVSSC library. The VSSC compiler only knows about those code transformationsthat have been registered with the VSSC library. The process of registering re-quires the optimization writer to include code that calls a C function that registersa function to be called whenever the VSSC compiler user wishes to perform thattransformation. This process is similar to a callback function, which is commonlyused in programming with graphical user interfaces. An example of this registra-tion process can be found in section 4.5.The typical organization of a VSSC compiler source code consists of a mainfunction which registers the various optimizations and a set of optimization rou-tines. The main function concludes with a call to vssc init suif. This lastprocedure call never returns, so the programmer should not include any code afterit, and performs a number of tasks.First, it initializes the SUIF and Simple-SUIF subsystems. This includes con-verting the C source code being compiled into a Simple-SUIF format. Secondly,

vssc init suif parses the command-line
ags shown in Table 4.34. A VSSC com-piler has the ability to run in two di�erent modes. The �rst mode is the normalmode that pops up a graphical user interface and allows the user to perform thetransformations available in the VSSC compiler in any order. The other modeallows the VSSC compiler to run without a graphical user interface. When it isrun without a graphical user interface, the user must specify with command-line
ags which transformations to perform and what order to perform them in. Thistext-only mode does not allow the user to undo transformations. Also, since thismode is non-graphical, very little information is displayed as the transformationsare performed. The results of each transformation are stored in a separate �le.The user can then use the Simple-SUIF command, printsimple, to look at eachtransformation result and track the changes made in the source code from it orig-inal form to its resulting form5. Therefore, when parsing the command-line
ags,the VSSC system needs to determine the mode in which to execute, and if run innon-graphical mode, it needs to determine which transformations the user wants toperform and whether or not these transformations exist in the VSSC compiler. Ifbeing run in graphical mode, vssc init suif starts up the graphical user interfaceand initializes its components.To access the VSSC API, the programmer needs to include a single header �lefor each package: VSSC, SUIF, and Simple-SUIF. The VSSC compiler also needsto be linked with the libraries for SUIF, Simple-SUIF, Tcl/Tk, tcldot, and VSSClibraries. Section A.4.6 in Appendix A describes in more detail the sample opti-mization in the next section as well as instructions on how to download a sample4Example uses of these command-line
ags are shown in Section A.5.3 in Appendix A.5These �les are also generated when the VSSC compiler is run in graphical mode.

-v Executes the VSSC compiler in graphical mode.-O When the VSSC compiler is executed in non-graphical mode each -O
ag speci�es what opti-mization to perform. When this
ag is used, the-v cannot be used.-d Executes the VSSC compiler in debug mode. Thisallows a debugger (e.g. GDB) to be used to debugcode in a transformation. The compiler can be ineither graphical or non-graphical mode.Table 4.3: Command-line
ags accepted by a VSSC Compileroptimization that includes a SUIF-like Make�le to produce a VSSC compiler withall the required libraries linked in.4.5 Sample OptimizationIn this section, we present sample code that shows a sample optimization and howit gets registered. Calls to GUI->step() signify the end of a step. VSSC APIcommands executed between calls to GUI->step() are those that are executedduring a single step within a transformation executed in a VSSC compiler. Figure4.8 below shows this example code.4.6 SummaryIn this chapter, the design goals of the VSSC framework were presented along withan explanation of how they were implemented. The organization of the VSSCframework was then described followed by an explanation of the framework's com-ponents. The SUIF compiler and Simple-SUIF were used to implemented theintermediate format and the ability to selectively apply transformations to the in-

#include <stdio.h>#include <vssc_simple.h>#include "BasicBlock.h"#include "FlowGraph.h"simple_instr *dead_code(simple_instr *inlist, char *procedure_name){ FlowGraph *FG;/* Set what the procedure name is and what basicblock we're looking at. */GUI->set_procedure_name(procedure_name);GUI->set_basicblock_number(BLANK);GUI->set_graph_type("Flow Graph");fprintf(stderr, "Doing deadcode elimination\n");FG = new FlowGraph(inlist, procedure_name);/* Optimization code */GUI->step();/* Optimization code */GUI->step();/* Optimization code */GUI->step();/* Etc. */return FG->instructions_head;}int main(int argc, char *argv[]){ vssc_register_opt("Dead Code Elimination", "deadcode", dead_code);vssc_init_suif(argc, argv);} Figure 4.8: The beginnings of a sample optimization

termediate code. Tcl/Tk was used as the language to implement the graphical userinterface. Finally, the DOT drawing package was used to allow the GUI to displayvarious types of graph data structures. The chapter concluded with a desciptionof the VSSC programmer interface and a sample optimization.

Chapter 5
VSSC Framework Examples
5.1 IntroductionA variety of compiler analysis and transformations as well as a diverse collectionof graphs typically found in compiler transformations have been implemented todemonstrate the capabilities of the VSSC framework. This chapter will describesome transformations to show the capabilities provided by the VSSC framework.Section 5.2 shows the various graphs that have been implemented. These include a
ow graph, directed acyclic graph, and a register-interference graph. An examplein which live-variable analysis is performed followed by dead-code elimination isshown in Section 5.3. Finally, Section 5.4 shows an example in which available-expression analysis is performed followed by copy propagation. The algorithmsdiscussed in this section are described in [1] and [30].

56

5.2 Example GraphsGraph data structures are used throughout a compiler. The front end uses a parsetree (an acyclic graph with a single node recognized as the \root") when parsingthe source code during syntax analysis. During syntax-directed translation, syntaxtrees are used to represent language constructs. The syntax tree is traversed in thefront end to construct the intermediate representation. The back end of a compileralso uses a variety of graph data structures. This section provides examples thatshow how three di�erent graph data structures can be used in the VSSC frameworkto convey information related to the intermediate code.5.2.1 Flow GraphA
ow graph illustrates the
ow-of-control information for an individual function.Each node in the graph represents a basic block1. There is a directed edge in thegraph from block Bi to block Bj if Bj can immediately follow Bi in some executionsequence. In this scenario, Bj is a successor of Bi while Bi is a predecessor ofBj. Therefore, the directed edges in a
ow graph represent edges to successors. Itshould also be noted that a basic block can have multiple predecessors and multiplesuccessors.Before a
ow graph can be constructed, the basic blocks of a procedure needto be determined. Algorithm 9.1 in [1] described a two-step method:1. First determine the set of leaders, the �rst statements of basic blocks. Therules used are the following:1A basic block is a maximal sequence of consecutive statements in which
ow of control entersonly at the beginning of the block and exits only at the end of the block.

(a) The �rst statement (in the procedure) is a leader.(b) Any statement that is the target of a conditional or unconditional goto(essentially a control-successor) is a leader.(c) Any statement that immediately follows a goto or conditional goto state-ment is a leader.2. For each leader, its basic block consists of the leader and all consecutivestatements after it, up to, but not including, the next leader (or the end ofthe procedure).Once the basic blocks have been found, the successors of an individual blockcan be determined by looking at the last statement in the block and determiningthe possible blocks to which control can
ow. In constructing a
ow graph, thefollowing simple algorithm can be used:1. For each basic block found in the previous algorithm, create a node in the
ow graph to represent that basic block.2. For each basic block Bi, determine the successor blocks by looking at thelast instruction(a) For each successor block Bj, create an edge in the
ow graph from Bito Bj. In the data structure representing Bi, remember that Bj is asuccessor and in the data structure representing Bj, remember that Biis a predecessor. This information is used in various data-
ow analysisalgorithms, including those discussed in Sections 5.3 and 5.4.

int main(){ int A[] = {4,8,2,7,1,13,19,11,3,0,18,12,17,9,16,10,15,14,6,5};int i, j, temp;for (i=18; i>=0; i--){ for (j=0; j<=i; j++){ if (A[j] > A[j+1]){ temp = A[j];A[j] = A[j+1];A[j+1] = temp;}}}}Figure 5.1: Example C program of bubblesortProcedure main:BASICBLOCK 0:BASICBLOCK 1:ldc (a.32) t4 = &__tmp_string_0 + 0ldc (a.32) t5 = &A + 0mcpy *t5 = *t4ldc (s.32) t6 = 18cpy (s.32) r1 = t6BASICBLOCK 2:L9: ldc (s.32) t7 = 0sle (s.32) t8 = t7, r1bfls t8, L6BASICBLOCK 3:ldc (s.32) t9 = 0cpy (s.32) r2 = t9BASICBLOCK 4:L7: ldc (a.32) t10 = &A + 0ldc (s.32) t11 = 4mul (s.32) t12 = r2, t11ldc (s.32) t13 = 4add (s.32) t14 = t12, t13add (a.32) t15 = t10, t14load (s.32) t16 = *t15ldc (a.32) t17 = &A + 0ldc (s.32) t18 = 4mul (s.32) t19 = r2, t18add (a.32) t20 = t17, t19load (s.32) t21 = *t20sl (s.32) t22 = t16, t21bfls t22, L5BASICBLOCK 5:ldc (a.32) t23 = &A + 0ldc (s.32) t24 = 4mul (s.32) t25 = r2, t24add (a.32) t26 = t23, t25load (s.32) t27 = *t26cpy (s.32) r3 = t27ldc (a.32) t28 = &A + 0ldc (s.32) t29 = 4mul (s.32) t30 = r2, t29add (a.32) t31 = t28, t30

ldc (a.32) t32 = &A + 0ldc (s.32) t33 = 4mul (s.32) t34 = r2, t33ldc (s.32) t35 = 4add (s.32) t36 = t34, t35add (a.32) t37 = t32, t36mcpy *t31 = *t37ldc (a.32) t38 = &A + 0ldc (s.32) t39 = 4mul (s.32) t40 = r2, t39ldc (s.32) t41 = 4add (s.32) t42 = t40, t41add (a.32) t43 = t38, t42str *t43 = r3BASICBLOCK 6:L5:L3: ldc (s.32) t44 = 1add (s.32) t45 = r2, t44cpy (s.32) r2 = t45sl (s.32) t46 = r1, r2bfls t46, L7BASICBLOCK 7:L4: jmp __done8BASICBLOCK 8:L6: ldc (s.32) t47 = 0cpy (s.32) r2 = t47BASICBLOCK 9:__done8:L1: ldc (s.32) t48 = -1add (s.32) t49 = r1, t48cpy (s.32) r1 = t49ldc (s.32) t50 = 0sl (s.32) t51 = r1, t50bfls t51, L9BASICBLOCK 10:L2: ldc (s.32) t52 = 0ret t52Figure 5.2: Simple-SUIF version of bubblesort partitioned into basic blocks

Figure 5.1 shows an implementation of the bubblesort algorithm. The Simple-SUIF version of this code partitioned into basic blocks by the above algorithmis shown in Figure 5.2. It is not uncommon for a small input source �le to berepresented by many times more lines of intermediate code. Finally, the
ow graphrepresenting the
ow-of-control between these basic blocks in shown in Figure 5.3.
B0

B1

B2

B3

B8

B4

B5

B6

B7

B9

B10Figure 5.3: Flow graph of basic blocks for bubblesort example shown in Figure 5.2
5.2.2 Direct Acyclic GraphDirected acyclic graphs (DAGs) are useful data structures in compiler transfor-mations. A DAG usually represents a single basic block and contains informationdepicting how the value computed by each statement in the basic block is used insubsequent statements of the same block. This information can be used to �ndcommon subexpressions (those expressions that are computed more than once)

as well as determining which statements in the block could have their value usedoutside the block. Nodes within a DAG are labeled using the following rules [1]:1. Each leaf in the graph is labeled by a unique identi�er, which is either aconstant value such as \4" or \56", a register, or a symbol name.2. Interior nodes are labeled by an operator symbol. These nodes representcomputations with one or two operands. For such a node, there is a directededge from the node to each node which represents the current value of eachoperand.3. Nodes are optionally given a sequence of identi�ers for labels. Non-leaf nodesrepresent values that have been computed. This sequence of identi�ers rep-resents those identi�ers which have the same computed value. For example,if there is an interior node labeled \�" and the current basic block containsseveral statements each of which computes 2 � 3, each destination register inthese computations will be in the identi�er list for the same \�" node becauseeach of those registers represents the same computed value.For an example showing the construction of a DAG, consider the followingsequence of Simple-SUIF instructions (basic block #6 in the bubblesort examplein Figure 5.2): ldc t44 = 1add t45 = r2, t44cpy r2 = t45sl t46 = r1, r2The steps taken in constructing the DAG representing this sequence of instruc-tions (see Figure 5.4) are:

1. ldc t44 = 1(a) Create a leaf node labeled \1".(b) Add \t44" to the identi�er list of the newly created node \1".2. add t45 = r2, t44(a) Create a leaf node labeled \r2".(b) Create a parent node \+" with edges to the children nodes \r2" and\1" (\1" is the node which contains the current value of \t44").(c) Add \t45" to the identi�er list of the newly created node \+".3. cpy r2 = t45(a) Add \r2" to the identi�er list of the node which represents the currentvalue of \t45" (node \+").4. sl t46 = r1, r2(a) Create a leaf node labeled \r1".(b) Create a parent node \<" with edges to the children nodes \r1" and\+" (\+" is the node which contains the current value of \r2").(c) Add \t46" to the identi�er list of the newly created node \<".
1 r2

+ r1

<

Figure 5.4: Result of DAG construction for basic block #6 in bubblesort exampleSlightly more complex DAGs of basic blocks 4 and 5 from the bubblesort exam-ple (Figure 5.2) are shown in Figures 5.5 and 5.6. These �gures also demonstrate

VSSC's ability to associate arbitrary text with each individual node in a graph.In the graphs shown, the identi�er list indicating which registers contain the valuecomputed at this node is displayed when a node is selected2.

Figure 5.5: Directed acyclic graph for basic block #4 in bubblesort example

Figure 5.6: Directed acyclic graph for basic block #5 in bubblesort exampleIn Figure 5.6, the \�" node has the registers t25, t30, t34 and t40 in its iden-ti�er list. This information indicates that the same expression, r2� 4, is computed2These �gures were generated using the VSSC compiler's ability to dump the current contentsof the graph to a postscript �le.

four times within this basic block. Only the �rst of these computations is reallyneeded, while the other three are wasteful in computing a value that has alreadybeen computed. Common subexpression elimination could now be performed toreplace these last three \common subexpressions" with a reference to the registerthat contains the result of the �rst occurrence of the expression. This transfor-mation is useful in reducing execution time when the common subexpressions aremultiplies or divides, which are normally high latency operations.5.2.3 Register-Interference GraphA register-interference graph is used to implement register allocation via a graph-coloring method. The nodes in this graph are symbolic registers and an edgeconnects two nodes (registers) if one register is live at a point where the other isde�ned. In order to make these edges, live variable analysis needs to be performed�rst.Figure 5.7 shows the register-interference graph for the bubblesort Simple-SUIFcode shown in Figure 5.2.
t4

t5 t6

r1

t7

r2

t11t14

t15

t16

t17

t19

t20

t21

t23

t24

t25

t26

t27

r3

t28

t29

t31

t34

t35

t38

t39 t40

t50 t51

t8t9

t10

t13

t12

t18 t22 t30

t32

t33t36t37 t41t42t43 t44t45 t46t47 t48

t49 t52

Figure 5.7: Register-interference graph for bubblesort example

5.3 Example Optimization:Elimination of Dead Code5.3.1 Dead Code EliminationDead-code elimination is one of the most common optimizations. Simply stated,dead-code optimization removes code that is dead. Code that cannot be reachedalong any path of execution is considered dead. Also, a statement in the interme-diate code is dead if it calculates a result that will never be used. Since the resultis never used, one can remove this entire statement without changing the meaningof the program. It can determine whether the destination of a statement is deadby performing live variable analysis. A variable that is not live is considered dead.The next section describes how to compute liveness information.5.3.2 Live Variable AnalysisPerforming live variable analysis provides important information about the vari-ables (registers) in the intermediate code. For any point in the intermediate code,live variable analysis can determine for any variable, whether or not that variableis used in any of the possible paths in the
ow graph from that point. If thereis a future use of a variable, then that variable is considered live at that point.Otherwise, it is considered dead there, because its value will not be used again.The live-variable analysis algorithm uses bitset data structures to hold livenessinformation. Each basic block contains the bitsets shown in Table 5.1. The bits ina bitset map directly to the variable with the same number. For example, bit 4 ina bitset refers to register 4.

It is important to note that the Simple-SUIF intermediate representation [36]guarantees that a temporary register is de�ned only once and it is used only oncewithin the same basic block in which it was de�ned. For this reason, live-variableanalysis only keeps track of Simple-SUIF pseudo registers.Bitset Purposein The set of variables live at the entrance ofthe basic block.out The set of variables live at the exit of thebasic block.def The set of variables assigned values in thebasic block prior to any use of that variablein the basic block.use The set of variables whose values may beused in the basic block before any de�ni-tion of that variable in the basic block.Table 5.1: Bitsets used during live variable analysisGiven the def and use bitsets computed for each basic block, the algorithm[1]in Figure 5.8 will perform live variable analysis computing the in and out bitsetsfor each basic block.foreach basic block BB.in = Empty Setwhile there are any changes to any B.in's{ foreach basic block B{ B.out = union of all S.in's for each successor S of BB.in = union of B.use and (B.out - B.def)}} Figure 5.8: Algorithm for live variable analysisEssentially, for each basic block B, variables that are live at the end of B are

those that are live at the entrances to some successor block of B. Those variablesthat are live at the entrance to B are those which have a use in B plus those thatare live at the exit of B and are not de�ned (killed) within B. This algorithmpropagates liveness information backwards through the
ow graph until no newinformation gets propagated, i.e., stability has been achieved.

Figure 5.9: Various results after performing live variable analysisFigure 5.9 shows the �nal bitset information for several basic blocks in theintermediate representation of the bubblesort example.5.3.3 Eliminating Dead Code in Bubblesort ExampleFigure 5.10 shows a simple version of the dead-code elimination algorithm similarto the algorithm in [30].More often than not, the source program is not responsible for dead code thatappears in the intermediate code. The dead code may actually appear as a resultof previous code transformations or by the way the front end converts the source

foreach Basic block B{ Bitset currentlyLive = B.outforeach instruction I in B from last to first{ if I.dest is currentlyLive{ Remove I.dest from currentlyLiveAdd I.src1 to currentlyLiveAdd I.src2 to currentlyLive}elseremove instruction I since its destination is dead}} Figure 5.10: Algorithm for the removable of dead codelanguage into the intermediate representation. An example of this occurred whenthe bubblesort C code was translated into Simple-SUIF intermediate code by thefront end of the SUIF compiler. Basic block #8 of the intermediate representationcontains instructions that simply load the constant 0 into register r2. Performingdead-code elimination removes these two instructions from the basic block. It isnot important to understand why this code was generated in this example is notimportant. What is important is to understand why dead-code elimination decidedto remove these two instructions.Figure 5.11 shows the initial information determined by live-variable analysisfor basic block #8 in the bubblesort example. This information indicates thatonly register r1 is live at the beginning and exit of the basic block. Register r2is de�ned within the block, possibly making it live, but since the out bitset doesnot contain r2, the dead-code elimination algorithm knows that there isn't of useof r2 after this block, and therefore it is dead. The statement that de�nes r2 isremoved, which causes the only use of register t47 to disappear so the preceding

statement which de�nes t47 can also be removed.The VSSC API provides the ability to animate the deletion of an instruction.In this case, the instructions will
ash red before they are removed. Other featuresprovided by he VSSC API are described in Section A.4.2 of Appendix A.
Figure 5.11: Live-variable analysis information for basic block #8 in bubblesortexample.
5.4 Example Optimization:Propagating Available Copy Instructions5.4.1 Copy PropagationAt a point in the program, in which X is a source operand, if there exists a copyinstruction (register-to-register copy) 3 X = Y that is currently available, then theoperand X at this point in the intermediate code can be replaced with Y sinceX = Y is available. Determining the availability of an instruction is discussedin Section 5.4.2. This valid transformation can cause many copy instructions tobecome dead. They can then be removed by dead-code elimination.A slightly di�erent version of copy propagation is presented in [30]. In thisversion, a modi�ed version of available-expression analysis is performed. Instead of3In Simple-SUIF, this instruction is the CPY OP instruction, which copies the value in the src1register into the dest register.

looking for available expressions, available instruction forms are discovered. Givenan instruction, X = Y + Z, its instruction form is that instruction itself. Otheroccurrences in the intermediate code of that same instruction are occurrences ofthat instruction form.Figure 5.12 shows the algorithm for replacing operands with the destinationsof available copy instructions. Available-code analysis must be performed �rst inorder to determine which copy instructions are available.foreach instruction form i{ Bitset K[i] = the set of all instructionforms of which i's destination is an operand}foreach Basic block B{ Bitset currentlyAvailable = B.outforeach instruction I in B from last to first{ if there exists an available copy instruction whose dst=I.src1I.src1 = dstif there exists an available copy instruction whose dst=I.src2I.src2 = dstif (!currentlyAvailable[I's form]){ currentlyAvailable -= K[I's form]if ((I.dst != I.src1) && (I.dst != I.src2))currentlyAvailable += I's form}}} Figure 5.12: Copy propagation algorithm

5.4.2 Available Code AnalysisLive-variable analysis dealt with the liveness of individual variables. However, notall analysis look solely at individual variables. Available-code analysis (similarto available-expression analysis) looks at statements, which in Simple-SUIF maycontain one or more operands and possibly a destination. This analysis is used todetermine for a particular point in the intermediate code, which statements areavailable at that point. A statement is available at a point in the intermediaterepresentation if on all paths leading up to this point there is an occurrence ofthat instruction's form and the instruction's operands and destination are notsubsequently de�ned along the paths from that occurrence to the given point.This analysis algorithm uses bitset data structures to hold availability informa-tion. Each basic block contains the bitsets shown in table 5.2. The universal bitsetU is also de�ned to contain all of the unique instruction forms in the intermediatecode. Bitset Purposein The set of instruction forms in U availableat the entrance of the basic block.out The set of instruction forms in U availableat the exit of the basic block.gen The set of instruction forms in U that oc-cur in B and whose operands are not killedbefore the exit of B.kill The set of instruction forms in U that havean operand that gets de�ned (killed) in thisbasic block.Table 5.2: Bitsets used during available code analysisGiven the gen and kill bitsets computed for each basic block, the algorithm

(a minor variant of available-expression analysis)[1] in Figure 5.13 can be usedto compute the in and out bitsets for each basic block, propagating availabilityinformation as far as possible at the same time:InitialB.in = Empty SetInitialB.out = InitialB.genFor B != InitialBB.out = U - B.killchange = truewhile (change == true){ change = falseforeach basic block B != InitialB{ B.in = intersection of all P.out's for each predecessor P of Boldout = B.outB.out = union of B.gen and (B.in - B.kill)if (B.out != oldout)change = true}} Figure 5.13: Algorithm for available code analysisEssentially, for each basic block B, statements that are available at the be-ginning of B are those that are available at the exits of each of the predecessorblocks of B. Those statements that are available at the exit of B are those that aregenerated in B along with those that are available at the entrance of B and are notkilled within B. The above algorithm propagates availability information forwardthrough the
ow graph until no new information gets propagated.5.4.3 Example of Copy PropagationIn this section, a di�erent, shorter example is used instead of the bubblesort usedin previous sections. The code in this example, shown in Figure 5.14, is not meant

to perform any useful task other than to serve as example code for the followingdiscussion. However, it has many copy instructions that are available.int main(){ int i, j, k;i = 4;j = i;if (j == 3) goto L1;k = 2;L1:i = j+7;while (1)i++;}
Procedure main:BASICBLOCK 0:BASICBLOCK 1:ldc (s.32) t4 = 4cpy (s.32) r1 = t4cpy (s.32) r2 = r1ldc (s.32) t5 = 3seq (s.32) t6 = r2, t5bfls t6, L2BASICBLOCK 2:jmp L1BASICBLOCK 3:L2: ldc (s.32) t7 = 2cpy (s.32) r3 = t7BASICBLOCK 4:L1: ldc (s.32) t8 = 7add (s.32) t9 = r2, t8cpy (s.32) r1 = t9BASICBLOCK 5:L6: ldc (s.32) t10 = 1add (s.32) t11 = r1, t10cpy (s.32) r1 = t11L4: jmp L6BASICBLOCK 6:L5:L3: ldc (s.32) t12 = 0ret t12Figure 5.14: C and Simple-SUIF versions of copy propagation exampleFigure 5.15 shows the bitset information for several basic blocks in the interme-diate representation of the simple example program after available-code analysishas been performed. The bits in the bitsets used in this analysis do not refer toregisters as they did in live-variable analysis. Instead they refer to instructionforms. Each unique instruction form in the intermediate presentation is assigned adi�erent id, which is the bit used to represent that form in the bitsets. When thenode for basic block 0 is clicked on, a mapping appears in the data window thatshows the id assigned to each unique instruction form.

Figure 5.15: Various results after performing available expression analysis

When the copy-propagation algorithm in Figure 5.12 is performed, two instruc-tions end up having one of their sources replaced by the destination of an availablecopy instruction. Figure 5.16 shows that an instruction in basic block #1 andan instruction in basic block #4 had a source register changed because the copyinstruction, cpy (s.32) r1 = t4 was available.

Figure 5.16: Instructions that changed as a result of copy propagation on examplein Figure 5.14
5.5 Example: Register AllocationOnce the register-interference graph for a procedure has been constructed, registerallocation can be performed using graph coloring. Graph coloring refers to theprocess of assigning a color to each node in the graph in such a way that no twoadjacent nodes have the same color. The number of colors available is equal tothe number of physical machine registers and each color maps to an individualmachine register. If the graph can be colored, this means that all interferingsymbolic registers can be assigned di�erent physical machine registers. In other

words, two symbolic registers that have overlapping live ranges will not collide,because they will be stored in two di�erent physical machine registers.The problem of graph coloring is NP-complete. However, several heuristic algo-rithms exist. One such heuristic is Chaitin's [6] graph coloring heuristic. Assumingthat the register spilling is not being performed and the number of physical ma-chine registers is k, this heuristic can be implemented by applying the algorithmshown in Figure 5.17 to an existing register-interference graph.While there are still nodes left in the graph{ If there exists a node n with less than k neighbors{ push n onto a stackremove n and its edges from the graph}elsereturn (graph cannot be colored using k colors via this heuristic)}/* Graph is k-colorable, now assign the colors */While the stack is not empty{ Remove node n from the stackReinsert node n and its edges into the graphAssign n a color that is different from those colors of its neighbors}Figure 5.17: Graph-coloring heuristic algorithm for register-interference graphFor this example, we use the simple program shown in Figure 5.18. Before per-forming register allocation, we must �rst construct the register-interface graph,which is explained in Section 5.2.3. Figure 5.19 shows the resulting register-interface graph for this example.

int main(int argc, char **argv){ int i, j, k;j = 1;for (i=0; i<=23; i++){ j = (k*k)+(i+j);}}
Procedure main:BASICBLOCK 0:BASICBLOCK 1:ldc (s.32) t6 = 1cpy (s.32) r4 = t6ldc (s.32) t7 = 0cpy (s.32) r3 = t7BASICBLOCK 2:L3: mul (s.32) t8 = r5, r5add (s.32) t9 = r3, r4add (s.32) t10 = t8, t9cpy (s.32) r4 = t10L1: ldc (s.32) t11 = 1add (s.32) t12 = r3, t11cpy (s.32) r3 = t12ldc (s.32) t13 = 23sl (s.32) t14 = t13, r3bfls t14, L3BASICBLOCK 3:L2: ldc (s.32) t15 = 0ret t15Figure 5.18: C and Simple-SUIF versions of register allocation example

t6

r4

t11t12

t7

r3

r5

t9t10t13t14

t8 t15

Figure 5.19: Register-interference graph for simple example in Figure 5.18

Assuming that our target architecture contains 32 integer registers, Figure 5.20shows the intermediate code after the register allocation is performed using thegraph-coloring heuristic described in Figure 5.17.Procedure main:BASICBLOCK 0:BASICBLOCK 1:ldc (s.32) m0 = 1cpy (s.32) m0 = m0ldc (s.32) m1 = 0cpy (s.32) m1 = m1BASICBLOCK 2:L3: mul (s.32) m2 = m3, m3add (s.32) m0 = m1, m0add (s.32) m0 = m2, m0cpy (s.32) m0 = m0L1: ldc (s.32) m2 = 1add (s.32) m1 = m1, m2cpy (s.32) m1 = m1ldc (s.32) m2 = 23sl (s.32) m2 = m2, m1bfls m2, L3BASICBLOCK 3:L2: ldc (s.32) m0 = 0ret m0Figure 5.20: Intermediate code of example in Figure 5.18 after register allocation
5.6 SummaryThis chapter demonstrated the various type of graphs and transformations thathave been implemented with the VSSC framework. The graphs implemented in-clude: a
ow graph, which describes the
ow-of-control between basic blocks, adirected acyclic graph, which shows commonly computed subexpression, and aregister-interference graph, which shows those registers whose live ranges over-lapped and thus interfere. The code transformations implemented were: the re-moval of dead code, copy propagation, and register allocation.These examples show many of the capabilities provided by the VSSC frameworkand are a representation of the types of transformations that can be implemented.

Chapter 6
Conclusions and Future Direction
The Visual Simple-SUIF Compiler system is a completely interactive frameworkthat facilitates the study of back-end optimizations. A tightly integrated systemof free software components has been combined to produce a tool that can be usedto visualize a code transformation step-by-step, perform transformations in anyorder, and undo a previously executed transformation. The SUIF compiler andSimple-SUIF were used to implemented the intermediate format and the ability toselectively apply transformations to the intermediate code. Tcl/Tk was used asthe language to implement the graphical user interface for the VSSC framework.Finally, the DOT drawing package was used to allow the GUI to display varioustypes of graph data structures.A tool such as VSSC contributes greatly to the area of compiler research. Thecapabilities provided by VSSC aid two groups of individuals in compiler research.First of all, researchers in the area of compiler optimizations can use the VSSCframework to develop and test new code transformations. VSSC allows researchersto analyze how a new transformation modi�es the intermediate code and how79

other transformations can be a�ected by the changes made by a transformation.Transformations can be applied in any other and undone multiple times.Students are the second group of individuals that can bene�t from using VSSC.VSSC facilitates classroom instruction of compiler optimizations. The ability tostep through an optimization allows the student to visualize code optimizations athis or her own pace. The ability to undo a transformation allows the students torepeat the same transformation multiple times without having to restart the com-piler. The viability of VSSC as a teaching aid was demonstrated in the graduatecompiler course at the University of California Riverside. Students implementedbasic block detection, various data-
ow analysis, global common-subexpressionelimination, and register allocation using VSSC.6.1 Future WorkCurrently, the VSSC framework is a viable solution as a tool for analyzing back-end optimizations in a compiler. However, there are several features that shouldbe implemented to provide greater ease of use and functionality:� Currently, VSSC allows backstepping at the granularity of transformationsand allows the user to step forward through a transformation. The abil-ity to step backwards within the granularity of a transformation should beimplemented to provide greater debugging capabilities. Time constraintsprevented this feature from being implemented in the current version of theVSSC framework.� When a code transformation is selected by the user, the optimization isperformed and its actions are saved to a log with is then played back to the

user as they step through the transformation. A nice feature would be theability to save a transformation log generated by a transformation that hasbeen applied. This log could then be reloaded at a later time and played backas though the transformation had just been applied. Instructors in compilercourses can create such logs to give to their students to strengthen classroominstruction.� Currently, live-variable analysis, dead-code elimination, available-code anal-ysis, copy propagation, and a simple form of register allocation have beenimplemented by the author. There are numerous other algorithms and codetransformation techniques that could be implemented to further demonstratethe capabilities of the VSSC framework.� The VSSC framework is currently unable to perform analysis above the levelof a procedure due to limitations in the Simple-SUIF library. Perhaps aworkaround could be developed to implement the ability to perform inter-procedural analysis and the construction of call graphs.Finally, constructive feedback from those who have used the VSSC frameworkcan be used to further improve its functionality.

Bibliography
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,tools. Addison-Wesley, 1986.[2] Kristy Andrews, Robert R. Henry, and Wayne K. Yamamoto. Design andimplementation of the UW illustrated compiler. Technical Report 88-03-07,University of Washington, March 1988.[3] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.Algorithms for drawing graphs: an annotated bibliography, June 1994.[4] Manuel E. Benitez and Jack W. Davidson. A portable global optimizer andlinker. In Proceedings of the SIGPLAN'88 Conference on Programming Lan-guage Design and Implementation, pages 329{338, Atlanta, Georgia, USA,June 1988.[5] Mickey R. Boyd and David B. Whalley. Graphical visualization of compileroptimizations. Journal of Programming Languages, pages 69{94, June 1995.[6] G. J. Chaitin. Register allocation and spilling via graph coloring. In Pro-ceedings of the SIGPLAN '82 Symposium on Compiler Construction, pages98{105. ACM, ACM, 1982. Available as SIGPLAN Notices 17(6) June 1982.82

[7] Cli� Click and Keith D. Cooper. Combining analyses, combining optimiza-tions. ACM Transactions on Programming Languages and Systems, 17(2):181{196, March 1995.[8] Christopher W. Fraser and David R. Hanson. A code generation interfacefor ANSI C. Technical Report TR-270-90, Department of Computer Science,Princeton University, June 1990.[9] Christopher W. Fraser and David R. Hanson. A retargetable compiler forANSI C. SIGPLAN Notices, 26(10):29{43, October 1991.[10] Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler:Design and Implementation. Benjamin/Cummings Pub. Co., Redwood City,CA, USA, 1995.[11] Christopher W. Fraser, David R. Hanson, and T. A. Proebsting. Engineeringa simple, e�cient code generator generator. ACM Letters on ProgrammingLanguages and Systems, 1(3):213{226, September 1992.[12] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. BURG{fast optimal instruction selection and tree parsing. Technical Report TR 1066,Computer Sciences Department, University of Wisconsin-Madison, December1991.[13] Christopher W. Fraser and Alan L. Wendt. Integrating code generation andoptimization. In SIGPLAN '86 Symposium on Compiler Construction, pages242{248, Palo Alto, CA, June 1986. Association for Computing Machinery,SIGPLAN.

[14] Christopher W. Fraser and Alan L. Wendt. Automatic generation of fastoptimizing code generators. SIGPLAN Notices, 23(7):79{84, July 1988. Pro-ceedings of the ACM SIGPLAN '88 Conference on Programming LanguageDesign and Implementation.[15] Carsten Friedrich. The �graph library. Technical Report MIP-9520, Fakult�atf�ur Mathematik und Informatik, Universit�at Passau, December 1995.[16] M. Fr�ohlich and M. Werner. The graph visualization system daVinci - A userinterface for applications. Technical Report 5/94, Department of ComputerScience; University of Bremen, September 1994.[17] E. R. Gansner, E. Koutso�os, S. C. North, and K.-P. Vo. A technique for draw-ing directed graphs. IEEE Transactions on Software Engineering, 19(3):214{230, March 1993.[18] James Gosling and Henry McGilton. The java language environment { Awhitepaper. Technical report, Sum Microsystems, October 1995.[19] Michael Himsolt. GraphEd User Manual, 1990.[20] S. C. Johnson. YACC: Yet another compiler compiler. Computer ScienceTechnical Report #32, Bell Laboratories, Murray Hill, NJ, 1975.[21] E. Koutso�os and S. C. North. Drawing graphs with dot. Technical report,AT&T Bell Laboratories, Murray Hill, NJ, October 1993.[22] E. Koutso�os and S. C. North. TCLDOT(1). Unix Manual Page, March 1995.[23] M. E. Lesk and E. Schmidt. Lex { A lexical analyzer generator. ComputerScience Technical Report #39, Bell Laboratories, Murray Hill, NJ, 1975.

[24] Jing Yee Lim. A visual browser for SUIF. In SUIF Compiler Workshop,January 1996.[25] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen. Combin-ing register allocation and instruction scheduling. Technical Note STAN//CS-TN-95-22, Stanford University, Department of Computer Science, August1995.[26] S. Naher. LEDA | a library of e�cient data types and algorithms. LectureNotes in Computer Science, 665:710{??, 1993.[27] Stephen C. North and Eleftherios Koutso�os. Application of graph visualiza-tion. In Proceedings of Graphics Interface '94, pages 235{245, Ban�, Alberta,Canada, May 1994. Canadian Information Processing Society.[28] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, Reading, Mas-sachusetts, 1994.[29] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator.Software Practice and Experience, 25(7):789{810, July 1995.[30] Thomas H. Payne. Compiler design. CS201 Lecture Notes, October 1996.[31] Norman Ramsey. Literate-Programming can be simple and extensible. Techni-cal report, Department of Computer Science, Princeton University, Princeton,New Jersey, October 1993.[32] G. Sander. VCG visualization of compiler graphs. User documentationV1.130, February 1995.

[33] G. Sander. Graph layout for applications in compiler construction. TechnicalReport A/01/96, Universit�at des Saarlandes, February 1996.[34] Richard Stallman. Using and porting GNU CC. Free Software Foundation,675 Mass Ave, Cambridge, MA 02139, USA, Tel: (617) 876-3296, USA, lastupdated 26 november 1995 for version 2.7.2 edition, 1995.[35] Richard Stallman and Roland H. Pesch. Debugging with GDB: the GNUsource-level debugger. 675 Mass Ave, Cambridge, MA 02139, USA, Tel: (617)876-3296, USA, 4.12, for GDB version 4.14 edition, January 1995.[36] Stanford Compiler Group. The Simple-SUIF Compiler Guide, 1.0 edition. Asimple interface to SUIF for compiler courses.[37] Stanford Compiler Group. The SUIF Library, 1.0 edition. A set of coreroutines for manipulating SUIF data structures.[38] Steven Tjiang. Twig reference manual. Comp. Sci. Tech. Rep. 120, AT&TBell Laboratories, January 1986.[39] Steven W. K. Tjiang and John L. Hennessy. Sharlit|A tool for buildingoptimizers. In ACM SIGPLAN '92 Conference on Programming LanguageDesign and Implementation, pages 82{93, July 1992.[40] Brent Welch. Practical Programming in Tcl and Tk. Prentice-Hall, EnglewoodCli�s, NJ 07632, USA, 1995.[41] Chris Wilson. Announcing the new SUIF visual browser package. suif-announcesuif.stanford.edu mailing list, April 1996.

[42] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe,Jennifer Anderson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall,Monica Lam, and John Hennessy. SUIF: An infrastructure for research onparallelizing and optimizing compilers. ACM SIGPLAN Notices, 29(12):31{37, December 1994.[43] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe,Jennifer Anderson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall,Monica Lam, and John Hennessy. An Overview of the SUIF Compiler System.[44] Michael Wolfe. d
o compiler graph display tool. USENET posting tocomp.compilers, August 1996.

Appendix A
VSSC User Manual
A.1 IntroductionThis document is provided as a user's manual for using the Visual Simple-SUIFpackage (VSSC). A user should be able to e�ectively use the VSSC package todevelop graphical compiler optimizations by just reading this document and notreading the thesis describing VSSC. In addition to the more technically orientedinformation describing how to get VSSC compiled and installed at your site andtips to make writing compiler optimizations with VSSC easier, the informationcontained within this document is a subset of the information contained withinthe thesis that this document is an appendix to.This document begins by describing the SUIF and Simple-SUIF packages. TheVSSC package is then covered in detail. Examples are provided throughout thedocument.

88

A.2 SUIFThe SUIF compiler system, developed by a team of researchers at Stanford Uni-versity, is centered around the design of its intermediate format, SUIF (StanfordUniversity Intermediate Format). The system has been designed and organizedin such a way that it is easy to modify and extend for your own personal needs.Because of its
exibility, many researchers around the world use the SUIF compilersystem to evaluate new compiler techniques and perform research in the area ofcompilers. While the SUIF compiler may not be the fastest or most robust. Its
exibility and extensibility outweighs these possible shortcomings for most people.The SUIF system is organized into two parts. The �rst part is a core whichmanages the intermediate format. The second part is a set of compiler passeswhich perform some transformations on the intermediate format. Usually, eachpass reads in the intermediate code, performs some transformation, analysis, oroptimization, and then writes out the intermediate code. Since each pass usuallyexists as a separate executable in the SUIF system, passes can be run in any orderin the compilation process. To aid in the creation of SUIF passes, the SUIF systemcontains a robust set of libraries and support routines.A.3 Simple-SUIFDue to the fact that SUIF compiler is a complete ANSI C compiler, it is verycomplete and complex. Because it is a little too complex for use in a college coursein compilers, the SUIF group at Stanford developed a package called Simple-SUIF which acts as a wrapper for SUIF by providing a simpli�ed interface to

the SUIF compiler and the intermediate format generated by the SUIF compiler.This simpli�ed interface allows students to write their own optimizations for afully-functional ANSI C compiler.Information about Simple-SUIF can be found in the document, \The Simple-SUIF Compiler Guide"1 for version 1.0 of Simple-SUIF. Most of the informationpresented in this section comes from that document. More detailed explanationsand descriptions of the topics mentioned in this section can be found in thatdocument.VSSC is built around Simple-SUIF. However, its interaction with Simple-SUIFis slightly di�erent. Because of this, the interaction with Simple-SUIF described inchapter 2 of the Simple-SUIF documentation should be ignored. Section A.4 of thisdocument describes how to use VSSC with Simple-SUIF and how its interactionis slightly di�erent.A.3.1 Simple-SUIF Intermediate FormatThe instructions in Simple-SUIF's intermediate format resemble assembly languageinstructions (op dst,src1,src2) or three-address C instructions (dst = src1 op src2).Each instruction has an unique opcode associated with it. The instructions aregrouped into six di�erent categories called instruction formats. Table A.1 shows allthe valid Simple-SUIF instructions. For each instruction, the following informationis also shown: its opcode, its Simple-SUIF name, its instruction format, and a shortexplanation of that instruction.
1http://suif.stanford.edu/suif/docs/simple toc.html

Simple-SUIF InstructionsOpcode Instr. Name Instruction Format PurposeNo operand instructionsNOP OP nop BASE FORM No nothing at allOne source operand (src1) instructionsRET OP ret BASE FORM Return from a procedureTwo source operand (src1, src2) instructionsSTR OP str BASE FORM Store the value in the src2register at the address contained in thesrc1 registerMCPY OP mcpy BASE FORM Memory-to-memory copyUnary instructions (dst, src1)CPY OP cpy BASE FORM Copy the src1 register to thedst registerCVT OP cvt BASE FORM Convert the src1 register tothe result type and put it in thedst registerNEG OP neg BASE FORM NegationNOT OP not BASE FORM Bit-wise inversionLOAD OP load BASE FORM Load the value at the address containedin the src1 register and put it inthe dst registerBinary instructions (dst, src1, src2)ADD OP add BASE FORM dst = src1+ src2SUB OP sub BASE FORM dst = src1� src2MUL OP mul BASE FORM dst = src1 � src2DIV OP div BASE FORM dst = src1=src2REM OP rem BASE FORM dst = src1%src2MOD OP mod BASE FORM dst = abs(src1%src2)AND OP and BASE FORM Bit-wise ANDIOR OP ior BASE FORM Bit-wise inclusive ORXOR OP xor BASE FORM Bit-wise exclusive ORASR OP asr BASE FORM Signed shift rightLSL OP lsr BASE FORM Unsigned shift rightLSR OP lsl BASE FORM Unsigned shift leftROT OP rot BASE FORM Rotate value in src1 register left(positive value) or right (negative value) bythe amount speci�ed in the src2registerSEQ OP seq BASE FORM dst = (src1 == src2)SNE OP sne BASE FORM dst = (src1! = src2)SL OP sl BASE FORM dst = (src1 < src2)SLE OP sle BASE FORM dst = (src1 <= src2)Branch and jump instructionsJMP OP jmp BJ FORM Unconditional jump: goto targetBTRUE OP btru BJ FORM Branch if true: if (src1) goto targetBFALSE OP b
s BJ FORM Branch if false: if (!src1) goto targetMiscellaneousLDC OP ldc LDC FORM Load a constant valueCALL OP call CALL FORM Call a procedureMBR OP mbr MBR FORM Multi-way branchLABEL OP lab LABEL FORM Label pseudo-instructionTable A.1: Valid Simple-SUIF instructions

A Simple-SUIF instruction is represented by the simple instr structure. Fig-ure A.1 shows the simple instr structure and its contents. This �gure does notshow the format of the structures used within the simple instr structure. Moreinformation about the contents of the simple reg, simple sym, simple immed,and simple type structures can be found in the simple.h header �le.
simple_op opcode; /* the opcode */
simple_type *type; /* type of the result */
struct simple_instr *next; /* ptr to next instruction */
struct simple_instr *prev; /* ptr to previous instruction */

union u; /* the variant part of the union is determined
 by the result of simple_op_format(opcode) */

/* BASE_FORM */
struct base {

}

 simple_reg *src1; /* source 1 */
 simple_reg *dst; /* destination */

 simple_reg *src2; /* source 2 */

}

/* LABEL_FORM */
struct label {
 simple_sym *lab; /* the symbol for this label */
}

/* BJ_FORM */
struct bj {

}
 simple_reg *src; /* source register */
 simple_sym *target; /* branch target label */

}

/* LDC_FORM */
struct ldc {

 simple_immed value; /* immediate constant */
 simple_reg *dst; /* destination */

/* CALL_FORM */
struct call {
 simple_reg *dst; /* return value destination */
 simple_reg *proc; /* address of the callee */

 simple_reg **argsl /* array of arguments */
 unsigned nargs; /* number of arguments. */

/* MBR_FORM */
struct MBR {
 simple_reg *src; /* branch selector */
 int offset; /* branch selector offset */
 simple_sym *deflab; /* label of default target */
 unsigned ntargets; /* number of possible targets */
 simple_sym **targets; /* array of labels */
}

Figure A.1: simple instr structure used to represent a Simple-SUIF instructionAs you can see from the �gure, the simple instr structure contains a member uwhich is a union of many other structures. A union is used to save memory since an

instruction can only be of type of instruction format. Each of the structures in theunion represents a di�erent instruction format. Given a Simple-SUIF instructionit is very easy to access the data contained within the union. For example, sayyou wanted to print out all the branch target labels that existed in a linked list ofSimple-SUIF instructions. Those instructions which would have branch targets arethose that belong to the BJ FORM and MBR FORM (branch and multi-waybranch) formats. The code in Figure A.2 demonstrates how to accomplish thistask (the call to simple op format is described in section A.3.2):void print_branch_targets(simple_instr *inlist){ simple_instr *curr_instr;curr_instr = inlist;/* foreach instruction in the linked list of Simple-SUIF instructions. */while (curr_instr != NULL){ /* See if this instruction belongs to the BJ_FORM or MBR_FORMinstruction formats. */switch (simple_op_format(curr_instr->opcode)){ case BJ_FORM:/* This instruction format has 1 target. */printf("Branch target: %s\n", curr_instr->u.bj.target->name);break;case MBR_FORM:/* This instruction format has mulitple targetsincluding a default target (like a C switchstatement) */printf("MBR: default label: %s\n", curr_instr->u.mbr.deflab->name);for (int i=0; i<(int)curr_instr->u.mbr.ntargets; i++){ printf("MBR: target #%i: %s\n",i, curr_instr->u.mbr.targets[i]->name);}break;default:/* Ignore everyone else. */break;};curr_instr = curr_instr->next;}}Figure A.2: Example demonstrating the di�erent instruction formatsA.3.2 Simple-SUIF APIThe application program interface (API) of a library is the documented set ofcommands that are available to the user of that library. Simple-SUIF provides a

small API which allows you to easily work with the Simple-SUIF library. The APIcontains the commands shown in Figure A.3.simple instr *new instr(simple op op, simple type *t) Allocate andinitialize a new Simple-SUIF instruction. It only sets the opcode, format,and return type �elds. You need to setup everything else (dst, src1,and src2) as needed.void free instr(simple instr *s) Deallocates a Simple-SUIF instruction.simple reg *new register(simple type *t, reg kind k) Allocates a newSimple-SUIF register.simple sym *new label() Creates a new Simple-SUIF label. This is doesnot create a new Simple-SUIF instruction (with a format type of LA-BEL FORM) but instead inserts this new symbol into the symbol table.You must then call the new instr command above to create the labelinstruction.simple type *get ptr type(simple type *t) Get a type that is a pointerto another type.char *simple op name(simple op o) Returns the name of an opcode as atext string.simple format simple op format(simple op o) Given an opcode, returnsthe format of that opcode.Figure A.3: Simple-SUIF APISimple-SUIF also de�nes TRUE and FALSE which can be used in conditionalstatements.The following code segment as well as the previous example demonstrate someof the commands in the Simple-SUIF API. In the following example, we have thefollowing linked list of instructions with the variable curr instr pointing the lastone:cpy (s.32) r3 = t9ldc (s.32) t68 = 1 <- current_instr

Say we want to add a new instruction, add (s.32) t69 = r3, t68, right aftercurr instr. The code to do this is shown in Figure A.4.simple_instr *ni;ni = new_instr(ADD_OP, simple_type_signed);/* Insert new instruction into current linked list of instructionsright after curr_instr. */ni->next = curr_instr->next;ni->prev = curr_instr;curr_instr->next = ni;ni->next->prev = ni;/* Fill in the blanks in the new instruction. *//* dst. Create a new temporary register of type signed int. */ni->u.base.dst = new_register(simple_type_signed, TEMP_REG);/* For src1 and src2, simple use the same pointers the two previousinstructions use. */ni->u.base.src1 = curr_instr->prev->u.base.dst;ni->u.base.src2 = curr_instr->u.ldc.dst;/* NOTE: If you create an instruction in which a src field is empty(ie src2 is empty in a cpy instruction), you need to set thatempty field equal to NO_REGISTER */Figure A.4: Example C code to add a new Simple-SUIF instructionAs you can see in the example above, the return type of the newly createdinstruction is a signed integer. simple type signed is global variable used inseveral places in the above code above to represent that return type. It is amongseveral "base types" Simple-SUIF de�nes which are shown in Figure A.5.VOID TYPE Used to indicate that there is no value present.SIGNED TYPE Signed integers.UNSIGNED TYPE Unsigned integers.FLOAT TYPE Floating-point values.ADDRESS TYPE Pointers.RECORD TYPE Structures, unions, and arrays.Figure A.5: Simple-SUIF base typesThe above example also makes reference to an enumerated type TEMP REG.TEMP REG is one of three types of registers used in Simple-SUIF. The three

types are TEMP REG,PSEUDO REG, andMACHINE REG. You can �ndmore information about these three types of registers in the Simple-SUIF docu-mentation.A.3.3 Example of Simple-SUIFWe conclude this section on Simple-SUIF with a side-by-side comparison of asample C �le and it Simple-SUIF equivalent. These are shown in Figure A.6. Youshould be able to associate the Simple-SUIF instructions with their correspondingC instructions.test(){ int a, b, c, d, e, f, g;a = 1;b = 2;c = a + b;g = f - e;d = d - c;while (a > 0) {a = c - d;if (g == d * e)b = b - 1;c = c * f;}f = g - a;c = b + e;}
Procedure test:ldc (s.32) t8 = 1cpy (s.32) r1 = t8ldc (s.32) t9 = 2cpy (s.32) r2 = t9add (s.32) t10 = r1, r2cpy (s.32) r3 = t10sub (s.32) t11 = r6, r5cpy (s.32) r7 = t11sub (s.32) t12 = r4, r3cpy (s.32) r4 = t12ldc (s.32) t13 = 0sl (s.32) t14 = t13, r1bfls t14, L1L4: sub (s.32) t15 = r3, r4cpy (s.32) r1 = t15mul (s.32) t16 = r4, r5seq (s.32) t17 = r7, t16bfls t17, L5ldc (s.32) t18 = 1sub (s.32) t19 = r2, t18cpy (s.32) r2 = t19L5: mul (s.32) t20 = r3, r6cpy (s.32) r3 = t20L2: ldc (s.32) t21 = 0sl (s.32) t22 = t21, r1btru t22, L4L3:L1: sub (s.32) t23 = r7, r1cpy (s.32) r6 = t23add (s.32) t24 = r2, r5cpy (s.32) r3 = t24ldc (s.32) t25 = 0ret t25Figure A.6: Side-by-side comparison of C and Simple-SUIF

A.4 VSSCA.4.1 IntroductionMost modern compilers today perform the standard code optimizations describedin compiler textbooks. SUIF's
exibility allows compiler researchers to develop newoptimization routines with it easier than with other more complex compilers suchas GCC. While a new optimization routine may look good on paper, sometimesits e�ectiveness and the impact it can make on intermediate code isn't apparentunless the researcher can visualize the transformations made by the optimization.Being able to step through the transformations also yields bene�ts. Anyone whohas ever used a debugger such a gdb knows that one of the best features of adebugger to the ability to step through the code. Stepping through code allows theuser to progress at his/her own pace and view the current state of the program atany point.VSSC provides the same bene�ts as a debugger when dealing with code opti-mizations. When stepping through the transformations made by an optimization,a VSSC user can view the current state of the intermediate code, a graph repre-senting the
ow between basic blocks or perhaps a directed acyclic graph showingdependencies between operands in instructions, and the current bitsets for eachbasic block when doing data
ow analysis. A side bene�t of the VSSC system isthat it can also be used in compiler courses at academic institutions as a teachingtool. By stepping through the implementations of the classic optimization tech-niques such as dead code elimination, copy propagation, register allocation, etc.,students can gain a better understanding of these technique because they will beviewing them as they happen graphically.

VSSC is based upon Simple-SUIF, however it does not use Simple-SUIF inthe way it was originally intended. Simple-SUIF was designed so that a programlinked with the Simple-SUIF library could only make one optimization pass foreach procedure in an input �le during the execution of a compiler optimization. Inother words, say you wrote a program, linked with the Simple-SUIF library, thatperforms dead code elimination. All that program would do is read in the SUIF �le,perform that optimization, and write the new SUIF code back out to a �le. Simple-SUIF provides no mechanism for performing multiple passes (ie optimizations)during a single execution. While this follows along nicely with the rest of thedesign philosophy for SUIF, that all code transformations are performed as a seriesof \passes", it does not allow one to construct a single Simple-SUIF \optimizingcompiler" that can perform multiple optizations during a single execution of the\compiler".A VSSC compiler overcomes this shortcoming of Simple-SUIF. It does so bymanaging all the SUIF and Simple-SUIF libraries and SUIF executables into asingle executable that allows the user to be able to perform multiple optimizationsduring the execution of the \visual" VSSC compiler.Figure A.7 shows what the VSSC compiler looks like while it is running. Thescreen consists of three main areas of which you have control over.The �rst area (Current Status) in the top left simply acts as a general informa-tion area. Since VSSC allows the user to step through the optimization (much likea step in a debugger), this �rst area contains two buttons that allow the user to beable to step forward and backward. During each step, any number of actions (ieadding/deleting instructions/graph nodes) can occur. It is up to the optimizationwriter to decide what happens.

Figure A.7: Screenshot of VSSC compiler in action

The area below the �rst area contains a graph widget. In this area the opti-mization writer can create graphs. The most common types of graphs that couldbe created are
owgraphs and directed acyclic graphs (DAGs). Each node in thegraph widget can have arbitrary data associated with it. This data is displayedwhen the user clicks on the graph node with the left mouse button. Clicking inthe box that contains the data hides it. The last area on the right hand side of thescreen is a text widget which contains the Simple-SUIF intermediate code. Thecode presented in this widget usually is contained within basic blocks (as they arein the �gure).The next section describes the API available to you that allows you, the opti-mization writer, to interact with these areas on the screen.A.4.2 VSSC APIThe VSSC API is grouped into several sections described below. An example isprovided for most of the API routines. More examples can be found in sectionA.4.6 and A.5.6. To use the VSSC API, #include <vssc simple.h> at the top ofyour �les. The GUI and GRAPH variables used below are global variables. Youdo not need to extern them.Optimization RoutinesThis section describes those commands for dealing with the optimization routinesthat you write. Figure A.8 shows these commands. Section A.4.6 describes howand when you need to use these routines and shows examples of their use.

void vssc register opt(char *name, char *
agname, simple instr *(*procedure)(simple instr *, char *))The �rst parameter to vssc register opt is a full text string giving thename of the optimization. This is the name which appears as an entry ina VSSC compiler's "optimizations" menu. The second parameter is a textstring which is the
ag used to signify this optimization when running aVSSC compiler in non-graphical mode (see Section A.5.3 for more detailson this mode). The last parameter is the procedure (whose signature mustmatch that of the parameter above) to call to perform the optimization.GUI!step() As mentioned earlier in this document, VSSC allows the user tostep through the optimization. The optimization writer decides what shouldoccur during each step. A step boundary is speci�ed by calling GUI!step().When this command is executed, the VSSC API commands that were calledsince the last call to GUI!step() would be executed when the user pressesthe Step button.vssc init suif(int, char **) After all optimization routines have been regis-tered, a call to this sets everything in motion. You shouldn't have anycode after this call. The �rst parameter is usually argc and the secondparameter is usually argv. See Section A.4.6 to see an example of its use.Usually, your main.cc contains only calls to vssc register opt to registerthe various optimizations routines you have written for your VSSC compilerfollowed by a call to vssc init suif to get the VSSC system started.Figure A.8: Optimizations APICurrent Status AreaThis section describes those commands for modifying what is displayed in theCurrent Status area. Figure A.9 shows these commands.Intermediate Code (Text Widget)This section describes those commands which control what basicblocks and in-structions are displayed in the text widget. VSSC de�nes a BasicBlock class foryou called BasicBlock base. VSSC expects you to use this class when using BasicBlocks in VSSC. Figure A.10 shows the header �le for the BasicBlock base class:

void GUI!set procedure name(char *string); Sets the string displayed inthe Procedure Name: �eld.void GUI!set basicblock num(int number); Set the number displayed inthe BasicBlock: �eld. Use BLANK for the parameter if you don't wantany value displayed.GUI->set_basicblock_num(3);Figure A.9: Current Status Area API#ifndef BASICBLOCK_BASE_H#define BASICBLOCK_BASE_Hextern "C"{#include <simple.h>}#include <suif.h>class BasicBlock_base{public:BasicBlock_base(simple_instr *start_instr,simple_instr *end_instr,unsigned int new_id);unsigned int size() {return count;}unsigned int get_id() {return id;}simple_instr *get_start() {return start;}simple_instr *get_end() {return end;}void print();protected:unsigned int count;unsigned int id;simple_instr *start;simple_instr *end;};#endif Figure A.10: Header �le for BasicBlock classAs you can see, this class is very small, simple, and its interface is self-explanatory.You will most likely need to derive your own BasicBlock class in your own codeusing this class as a parent class. For example, when doing data
ow analysis, yourderived BasicBlock class can contain the various bitsets needed in that analysis.See the supplied example code described in section A.4.6 for more details on howto make this derived class. One important thing to keep in mind is that if yourderived class overrides any of the above routines in the parent class, those routines

need to call the corresponding routine in the parent class. This is most apparentwhen dealing with the constructor for the BasicBlock base class. For example, ifyour derived BasicBlock class overrides the constructor, it also needs to call theconstructor in the parent class. The supplied example code described in sectionA.4.6 demonstrates this.Figure A.11 shows the API for dealing with the text widget on the screen.Graph WidgetThis section covers those commands which control the information displayed in thegraph widget. The graph widget API is shown in Figures A.12 and A.13. VSSCde�nes a simple Graph class which is su�cient enough but can be used as a baseclass for your own derived Graph class (like the BasicBlock class in the previoussection). You'll probably won't need to derive your own Graph class but if you dodecide to, make sure that you follow the same precautions mentioned previouslyand for any procedure you override, make sure it calls the same procedure in thisbase class.A reminder that the GRAPH variable mentioned below is an instantiationof the VSSC Graph class and exists as a global variable (no need to extern).Of course, if you derived your own Graph class, you would need to instantiateit as a global variable and the calls to the Graph widget API would change to:<your graph class>->routine(...);.

void GUI!add basicblock(BasicBlock base *BB, BasicBlock base *after, bool animate=FALSE); Givena pointer to an instance of the BasicBlock base class (or a derived class),insert that basic block (along with its instructions automatically) into thetext widget. If after is NULL, inserts it at the end of the text widget. Ifafter is not NULL, it inserts the basic block after the basic block pointedat by after in the text widget (a runtime error is generated if the afterbasic block doesn't exist in the text widget yet. animate is an optionalboolean parameter that speci�es whether to animate the insertion of all theinstructions.GUI->add_basicblock(BB, NULL, FALSE);void GUI!add instruction(simple instr *simple, BasicBlock base *BB, bool animate=FALSE); Insertsthe Simple-SUIF instruction simple at the beginning of basic block BB inthe text widget. A runtime error is generated if BB doesn't exist in thetext widget yet. animate is an optional boolean parameter that speci�eswhether the insertion of the instruction should be animated.GUI->add_instruction(new_instr, BasicBlocks[3], TRUE);void GUI!add instruction(simple instr *simple, simple instr *after, bool animate=FALSE); Insertsthe Simple-SUIF instruction simple after the instruction after in the textwidget. A runtime error is generated if after doesn't exist in the text widgetyet. animate is an optional boolean parameter that speci�es whether theinsertion of the instruction should be animated.GUI->add_instruction(new_instr, new_instr->prev, TRUE);void GUI!remove instruction(simple instr *simple, bool animate=FALSE); Removes the instruc-tion simple from the text widget. A runtime error is generated if simpledoesn't exist in the text widget yet. animate is an optional boolean parame-ter that speci�es whether the deletion of the instruction should be animate.GUI->remove_instruction(dead_instr);Figure A.11: Intermediate Code API

void GUI!set graph type(char *string); Sets the string displayed at the topof the Graph widget. This value starts out as Graph.GRAPH->set_graph_type("Flow Graph");GraphNode* GRAPH!addNode(char *name, bool animate=FALSE)Create a new node in the Graph widget with the name name. animate isan optional argument which indicates whether the addition of this nodeshould be animated or not. This routines returns a pointer to a GraphNodestructure which is used by VSSC to represent this node. All furtherinteractions which this node requires the returned GraphNode pointer as aparameter. To make things easy, your derived BasicBlock base class couldcontain a GraphNode * data item that you can save this pointer in (sinceyou usually associate a node in a Flow Graph with a basic block). An erroris generated is you try to create a new node with the same name as anexisting one.GraphNode *GN = GRAPH->addNode("B2", TRUE);void GRAPH!addEdge(GraphNode *, GraphNode *); Given pointersto two VSSC graph nodes, create an edge between them in the graph. Youcan create a self-edge. An error is generated if either of the graph nodesdon't exist or an edge already exists between these nodes.GRAPH->addEdge(GN1, GN2);int GRAPH!nodeExists(char *name); Returns TRUE if the node with thesame name exists in the graph already and FALSE if it doesn't.int GRAPH!nodeExists(GraphNode *); Returns TRUE if this node existsin the graph already and FALSE if it doesn't.int GRAPH!edgeExists(GraphNode *, GraphNode *); Returns TRUEif an edge exists between the two nodes in the graph already and FALSE ifit doesn't.void GRAPH!removeNode(char *name, bool animate=FALSE)Remove a node from the Graph widget. animate is an optional argumentwhich indicates whether the deletion of this node should be animated ornot. When a node is removed, all edges between that node and other nodesare also removed. An error is generated is you try to remove a node thatdoesn't exist in this graph.GRAPH->removeNode(GN, TRUE);Figure A.12: Graph widget API

void GRAPH!removeEdge(GraphNode *, GraphNode *); Given point-ers to two VSSC graph nodes, removes the edge between them in the graph.An error is generated if the edge doesn't exist already between these nodes.GRAPH->removeEdge(GN3, GN7);void GRAPH!addDataItem(GraphNode *, char *key, char *data);Associates arbitrary textual data with a graph node. Data is supplied as akey along with actual data. When displayed (when the user clicks on thegraph node with the left mouse button), key is italicized following by dataas shown in Figure A.14. Data items for a graph node are overwritten byjust calling this routine again with the same key. An error is generated ifthe graph node doesn't exist in this graph.GRAPH->addDataItem(GN2, "live", "(4) (5) (8)");void GRAPH!removeDataItem(GraphNode *, char *key); Removesthe key data item for the speci�ed node. An error is generated is the graphnode doesn't already exist in the graph.GRAPH->removeDataItem(GN6, "live");Figure A.13: Graph widget API

Figure A.14: Box that pops up when user clicks on graph node with left mousebutton

Miscellaneous CommandsThis section describes extra commands provided in the VSSC library. Figure A.15shows these commands.void simple instr print(FILE *fd, simple instr *s) Given a Simple-SUIFinstruction, prints a textual representation of it to the supplied �le pointer.The �le pointer can be for a �le (created by a call to fopen) or it can be std-out or stderr. Most of this code comes from the Simple-SUIF printsimplecommand.char *vssc simple text(simple instr *s) Given a Simple-SUIF instruction,returns a string that represents a textual version of the instruction (as itwould appear in printsimple or in the text widget.Figure A.15: Miscellaneous VSSC commands
A.4.3 Installing VSSC ComponentsTable A.2 lists packages that are required to be installed before VSSC can be used.GNU C/C++ ftp://prep.ai.mit.edu/pub/gnu/gcc-2.7.2.tar.gzSUIF http://suif.stanford.edu/ftp://suif.stanford.edu/pub/suif/basesuif-1.1.2.tar.gzSimple-SUIF ftp://suif.stanford.edu/pub/suif/simplesuif-1.0.0.beta.1.tar.gzTcl/Tk http://www.sunlabs.com/research/tcl/ftp://ftp.sunlabs.com/pub/tcl/DOT/tcldot http://www.research.att.com/sw/tools/reuse/Table A.2: VSSC components and where to �nd themInformation on how to install these packages can be found in the documentationincluded with each package.

A.4.4 Environment VariablesIn order to use the VSSC package, a VSSC compiler, or compile a VSSC compiler,the same environment variables that are needed for using SUIF need to be set. Thesettings shown in Figure A.16 (for either [t]csh or bash) are for the Linux machinesin the Department of Computer Science at the University of California Riverside.Insert these commands at the end of your shell's startup �le (.[t]cshrc for [t]cshor .profile for bash) so you don't have to type them in each time you log in.[t]cshsetenv MACHINE i586-linuxsetenv SUIFHOME /usr/local/suifsetenv SUIFPATH $SUIFHOME/$MACHINE/bin:/usr/bin:/usr/local/binsetenv COMPILER_NAME gccsetenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$SUIFHOME/$MACHINE/solibsetenv PATH ${PATH}:$SUIFHOME/$MACHINE/binbashexport MACHINE=i586-linuxexport SUIFHOME=/usr/local/suifexport SUIFPATH=$SUIFHOME/$MACHINE/bin:/usr/bin:/usr/local/binexport COMPILER_NAME=gccexport LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$SUIFHOME/$MACHINE/solibexport PATH=${PATH}:$SUIFHOME/$MACHINE/binFigure A.16: Environment variables that need to be set before using VSSCThe LD LIBRARY PATH environment variable is needed if any of theSUIF, Simple-SUIF, or VSSC systems are compiled as shared libraries on yoursystem.A.4.5 Using VSSCThe VSSC system allow an in�nite numbers of optimizations to be used withit. For each optimization, the optimization writer registers a procedure with thefollowing signature with the VSSC system:

simple_instr *procedure_name(simple_instr *inlist, char *procedure_name)Registering your procedure is done by calling (de�ned in vssc simple.h anddescribed in Sections A.4.2 and A.4.6):void vssc_register_opt(char *name, char *flagname,simple_instr *(*procedure)(simple_instr *, char *));The code in Figure A.17 (derived from main.cc in the example skeleton �lesmentioned in section A.4.6) demonstrates the registration of an optimization rou-tine for dead code elimination:#include <stdio.h>#include <vssc_simple.h>simple_instr *dead_code(simple_instr *inlist, char *procedure_name){ GUI->set_procedure_name(procedure_name);GUI->set_basicblock_number(0);GUI->set_graph_type("Flow Graph");FlowGraph *FG = new FlowGraph(inlist, procedure_name);/* Optimization code */GUI->step();/* Optimization code */GUI->step();/* Optimization code */GUI->step();return inlist;}int main(int argc, char *argv[]){ vssc_register_opt("Dead Code Elimination", "deadcode", dead_code);vssc_init_suif(argc, argv);} Figure A.17: Sample optimization registrationAs you can see from the example code above, the optimization writer's regis-tered procedure is given by the VSSC system, a NULL terminated (last element'snext pointer is NULL) linked list of Simple-SUIF instructions and the name ofthe procedure these instructions belong to. The user can them modify the linked

list in any valid manner (such as performing useful optimizations!). The proceduremust return a NULL terminated linked list of Simple-SUIF instructions back tothe VSSC system. This linked list is of the same format and organization as theone passed in. If a non-NULL terminated or malformed linked list of Simple-SUIFinstructions is returned, the VSSC system will get confused and most likely quitwith an error.A.4.6 Your First VSSC OptimizationTo start writing your own optimization routines, download via anonymous ftp,ftp://ftp.cs.ucr.edu/pub/publications/thesis/brian harvey/skeleton.tar.gz,which creates a new subdirectory for you which contains a Makefile, a main.cc,and several other �les to start you o�. The Makefile makes use of the SUIFmake�les to make it less complicated. The sample Makefile is shown in FigureA.18.## Sample Makefile to generate your own VSSC compiler### change 'mycompiler' to whatever you want.#TARGET = mycompilerPACKAGE_NAME = mycompilerSUPER_PACKAGES_PATH = vssc# Don't change this unless you know what you're doing!LIBS = -L/usr/X11/lib -lvssc -lsimple -lsuif -lX11 \-ltk4.1 -ltcl7.5 -ltcldot -ldl# List all .c files hereCSRCS =# List all .cc files hereSRCS = BasicBlock.cc FlowGraph.cc main.cc# List all .o files here. (Each .c and .cc file has a .o file)OBJS = BasicBlock.o FlowGraph.o main.oEXTRA_CFLAGS = $(INCLDIRFLAG)all: proginclude $(SUIFHOME)/Makefile.std Figure A.18: Sample Make�le

Typing make will compile your code (those �les listed in the SRCS andCSRCS sections in the Make�le) and generate your very own VSSC compiler(called mycompiler in this example Make�le).In main.cc (similar to the example code shown in the previous section), asample optimization procedures are declared and registered with the VSSC system.All you need to do is write the optimization routines! Figure A.19 shows thecontents of main.cc:#include <stdio.h>#include <vssc_simple.h>#include "BasicBlock.h"#include "FlowGraph.h"simple_instr *dead_code(simple_instr *inlist, char *procedure_name){ FlowGraph *FG;/* Set what the procedure name is and what basicblock we're looking at. */GUI->set_procedure_name(procedure_name);GUI->set_basicblock_number(BLANK);GUI->set_graph_type("Flow Graph");fprintf(stderr, "Doing deadcode elimination\n");FG = new FlowGraph(inlist, procedure_name);/* Optimization code */GUI->step();/* Optimization code */GUI->step();/* Optimization code */GUI->step();/* Etc. */return FG->instructions_head;}simple_instr *cse(simple_instr *inlist, char *procedure_name){ fprintf(stderr, "Doing common subexpression elmination\n");return inlist;}int main(int argc, char *argv[]){ vssc_register_opt("Local Common Subexpression Elimination", "cse", cse);vssc_register_opt("Dead Code Elimination", "deadcode", dead_code);vssc_init_suif(argc, argv);} Figure A.19: Sample main.cc

NOTE: The skeleton code provided is meant to be an example only. It is veryincomplete and will not run correctly as is. It is provided to you as an exampleto help to get started and to give you some idea how you might want to organizeyour code.After you've taken the skeleton �les and written some code, try compiling it,and run your newly created VSSC compiler (called mycompiler in the exampleMakefile but you can change the name if you want to) with a C �le:mycompiler -v test1.cThe -v option indicates that you want to bring up the VSSC GUI. Your VSSCcompiler can also run on a non-graphical mode. See Section A.5.3 for more details.When you are done using your VSSC compiler, a �le will be left in the currentdirectory with the name <file>.suif. This binary �le is in the SUIF intermediateformat and its contents can be printed out by the printsimple command. SeeSection A.5.2 for more details.A.5 VSSC TipsThe following tips are provided to make writing your compiler optimizations usingVSSC easier.A.5.1 Debugging VSSC OptimizationsAt some point while you're writing VSSC optimizations, you may �nd that youneed to run your optimizations through a debugger like GDB. Because of the wayVSSC is implemented, gdb won't be able to step through your optimization. If

your optimization happens to cause a segmentation violation (segfault), VSSC willcatch it and gracefully quit notifying you of the problem. To use gdb with yourVSSC compiler, run your VSSC compiler with the -d option. This lets the VSSCsystem know that you want to debug your code and gdb will be able to step throughyour optimization. The only limitation when using the -d
ag is that the VSSCsystem can only perform one optimization pass. If you try to perform a secondoptimization, an error will be generated and your VSSC compiler will quit.A.5.2 printsimpleprintsimple is a program provided by the Simple-SUIF distribution. It can beused to print out the contents of the Simple-SUIF �les produced by VSSC (those�les ending in .suif). An example of output is shown in Section A.3.3.A.5.3 Non-GUI VSSCA VSSC compiler has the capability to be run in a non-graphical mode. Invokingthe compiler without the -v
ag causes it to not run in graphical mode. However,in order to have the compiler perform optimizations, these optimization must bespeci�ed on the command-line. The -O optname
ag is used to specify an op-timization to be run. optname is the same string that the optimization writerused for the second parameter of vssc register opt. An in�nite number of -O
ags can appear during the invocation of the VSSC compiler in non-graphicalmode. For example, the following command performs deadcode elimination, fol-lowed by common sub-expression elimination, followed by deadcode eliminationagain (deadcode and cse are the command-line
ags speci�ed when the deadcode

elimination and common sub-expression elimination optimizations were registeredwith the VSSC system by the optimization writer):mycompiler -O deadcode -O cse -O deadcode quicksort.cAs was mentioned previously, the VSSC compiler produces a SUIF format �lewhich contains the results of all the optimizations that were performed.A.5.4 Making AssertionsIt is good programming practice to use assert statements in your code. Assertions,which act as an error checking mechanism, are tests for things that never shouldoccur the program was executing correctly. If an assertion fails during programexecution, the program immediately aborts. SUIF provides two extended versionsof the C assert statement which are shown in Figure A.20.assert(expression) SUIF overrides the assert statement provided in the StandardC library. This version prints out more detailed information about wherethe assertion failed.assert msg(expression, (printf message)) Besides an expression to be tested,like assert, assert msg also allows a printf style message for the secondparameter (don't forget the parenthesis around the second argument!). Thismessage is printed out if the assertion fails. For example:assert_msg(curr_instr != NULL,("curr_instr is NULL in procedure %s", procedure_name));Figure A.20: Assertions provided by SUIF

A.5.5 Using Data StructuresIf you didn't already know, writing compiler optimizations (or any large project) re-quires that you manage a lot of data in data structures. Commonly used data struc-tures in compiler optimizations include lists, arrays, bitsets, and graphs. While it'spossible for you to write your own data structures and routines to manage them,this task can be time-wasting and tedious. You would have to design, implement,and debug everything yourself. Usually, it is easier to use a data structure librarythat has been developed and tested by someone else.Fortunately, the SUIF libraries include most of the commonly used data struc-tures needed in compiler optimizations so you don't have to write them yourself.These data structures and examples of their use are shown below. Most the datastructure classes provided by SUIF are meant to be base classes. They have noinformation about what the type of the data they are supposed to contain. In mostcases, you have to create a derived class for a particular data item you with thatdata structure to contain. For example, the �rst class described below, glist, isuseless if used as is. However, you can create a derived class which implements ageneric linked-list list of whatever data item type you wish (eg list of instructionstructures or list of basic blocks). SUIF provides powerful macros which createthese derived classes for you. Simply specify the type of the data item you wantthat data structure to store and a macro creates a new class for you automatically.These macros, which are provided for most of the SUIF data structure classes, per-form the same functionality as C++ templates. In each data structure descriptionbelow, we show an example using the macro for the data structure (if one exists)to create a new class and then exercise some of the commands for that class by

adding, searching for, and deleting a data item in a instance of the new class thatwas created.The macros also generate a method for iterating through the items in the datastructure class it generates. Using the iterator, you can easily step through thedata structure if you need to perform the same action on each element in thedata structure. Examples of how to use this iterator is also shown in some of theexamples.These data structures, shown in Figures A.21, A.22, A.23, A.24, and A.25, aredescribed in more detail in Chapter 11, Generic Data Structures, of the document\The SUIF Library Version 1.0" 2. You can also �nd out more about each datastructure class (including API calls not listed below because they are not commonlyused) by looking at the actual header �le for the class in$SUIFHOME/include/suif/class.h. To use these data structures and their macrosin your code, you just need to #include <suif.h>.SUIF also provides other data structure classes such as hash tables and move-to-front lists. Information about them can be found in their header �les and theSUIF library documentation mentioned above.

2http://suif.stanford.edu/suif/docs/suif 91.html#SEC91

Data Structure: Generic ListClass Name: glistDescription: Implemented as a singly linked list, this is a generic list class.Macro: DECLARE LIST CLASSAPI: boolean is_empty() constglist_e *head() constglist_e *tail() constglist_e *push(glist_e *e)glist_e *pop()glist_e *append(glist_e *e)glist_e *insert_before(glist_e *e, glist_e *pos)glist_e *insert_after(glist_e *e, glist_e *pos)glist_e *remove(glist_e *e)void erase() /* deletes items from list */int count()boolean contains(const glist_e *e)glist_e *operator[](int ndx)Example: DECLARE_LIST_CLASS(NodeList, GraphNode *);NodeList nodes;/* Add item */GraphNode *tmp;nodes.append(tmp);/* Search for item */if (nodes.contains(tmp)){ /* Found it! */}/* Remove item */nodes.remove(tmp);Figure A.21: Generic List class

Data Structure: Association ListClass Name: alistDescription: An element in an association list contains both a key and data pointer. The data associatedwith a key can be retrieved with a simple lookup method. There exists no macro for this data structurebut one really isn't need. The data and key �elds in an association list item are of type void * so thekey can be of any type as well as the type of what the data represents.Macro: No macroAPI: alist_e *head()alist_e *tail()alist_e *push(alist_e *e)alist_e *pop()alist_e *remove(alist_e *e)alist_e *enter(void *k, void *i)alist_e *search(void *k)void *lookup(void *k)boolean exists(void *k, void **i = NULL)Example: alist nodes;/* Add item */tmpnode = new GraphNode;tmpnode->title = strdup(name);nodes.enter(tmpnode, NULL);/* Search for item */alist_iter node_iter(&nodes);alist_e *item;while (!node_iter.is_empty()){ item = node_iter.step();if (!strcmp(((GraphNode *)item->key)->title, name))/* Found it! */}/* Remove item */alist_e *item = new alist_e(node, node);nodes.remove(item);Figure A.22: Associative List class
Data Structure: Doubly-Linked ListClass Name: dlistDescription: Essentialy the same as the generic list except it is implmented as a doubly-linked list.Macro: DECLARE DLIST CLASSAPI: Same API as generic listFigure A.23: Double Linked List class

Data Structure: Bit VectorClass Name: bitsetDescription: Standard bitset class (bit vector representation is implemented as a doubly-linked list for a setof integers).Macro: no macroAPI: bit_set() { first = 0; last = 0; bits = NULL; }bit_set(int f, int l, boolean no_clear = FALSE);~bit_set() { delete bits; }void expand(int f, int l, boolean no_clear = FALSE);int lb() { return first; }int ub() { return last; }void clear(); /* clear all the bits to 0 */void universal(); /* set all bits to 1 */void add(int e); /* set bit e to 1 */void remove(int e); /* reset bit e to 0 */void invert(); /* invert all bits */boolean contains(int e);void set_union(bit_set *l, bit_set *r);void set_intersect(bit_set *l, bit_set *r);void copy(bit_set *s);void transfer(bit_set *src, boolean del = TRUE);void operator=(bit_set &b) { copy(&b); }void operator+=(bit_set &r); /* bit-wise OR */void operator*=(bit_set &r); /* bit-wise AND */void operator-=(bit_set &r); /* bit-wise subtraction */boolean operator==(bit_set &r); /* bit-wise comparison */boolean operator!=(bit_set &b) { return !(*this == b); }boolean operator<=(bit_set &r); /* subset of the bits? */boolean operator^(bit_set &r); /* test for non-empty is implmented as a doubly-linked listintersection */boolean is_empty(); /* all zeros? */boolean is_universal(); /* all ones? */int count(); /* count the 1 bits */void print(FILE *fp = stdout, char *fmt = "%d,");Figure A.24: Bit set class

Data Structure: Extensible ArraysClass Name: x arrayDescription: An array class that has no size limit. This class implements the [] operator so that elementsof the array can be accessed just like in regular C arrays (ie A[5]).Macro: DECLARE X ARRAYAPI: x_array(int sz); /* sz is initial size. */~x_array();void *& operator[](int i);int extend(void *e);int ub(); /* Return number of elements in array. */Example: DECLARE_X_ARRAY(NodeArray, GraphNode *);NodeArray nodes;/* Add item */GraphNode *tmp = GRAPH->addNode("B2", NULL);nodes.extend(tmp);/* Search for item (GraphNode *tmp2) */for (int i=0; i<nodes.ub(); i++){ tmp = (GraphNode *)nodes[i];if (tmp == tmp2){ /* Found it! */}}/* Remove item: You can't really remove an array index but you canremove what it points to (after you find it first) leavinga "hole" in the array. *//* Remove GraphNode *tmp3 */for (int i=0; i<nodes.ub(); i++){ tmp = (GraphNode *)nodes[i];if (tmp == tmp3){ /* Found it. */delete(tmp);nodes[i] = NULL;}} Figure A.25: Extendible array class

A.5.6 Examples using SUIF data structures and VSSC APIThis section contains several examples using the SUIF data structures and theVSSC API commands. The code given in these examples is not meant to work byitself and some of it may be pseudo-code. It is provided only as an example tohelp you get comfortable writing your own optimizations in VSSC.Example 1In this example, shown in Figure A.26, we de�ne a simple symbol table class thatuses the generic list data structure as a data structure for all the symbols. Theincomplete class shown exercises some of the operations you can perform on thegeneric list. In your optimizations, you probably won't need a symbol table class.This is just an example!Example 2In this example, shown in Figure A.27, we create an extensible array of pointersto basic blocks. For each basic block we �nd we add it into the VSSC text widgetas well as inserting a node representing it into the VSSC graph widget. Then wego through the array to print out the contents of each basic block.

class SymbolTable{ private:DECLARE_LIST_CLASS(SymTab, SymbolTable_Entry *);SymTab T;public:void enter(SymbolTable_Entry *e);void remove(SymbolTable_Entry *e);void print();};void SymbolTable::enter(SymbolTable_Entry *e){ if (T.contains(e))printf("Error: symbol table already contains item");elseT.append(e);}void SymbolTable::remove(SymbolTable_Entry *e){ if (!T.contains(e))printf("Error: symbol table already contains item");elseT.remove(e);}void SymbolTable::print(){ SymTab_iter node_iter(&T);SymTab_e *item;while (!node_iter.is_empty()){ item = node_iter.step();printf("Symbol: [%s]\n", item->name);}} Figure A.26: Example 1 source code

#include <vssc_simple.h>class BasicBlock{ public:int id; /* BasicBlock number (eg BasicBlock 4)...};DECLARE_X_ARRAY(BasicBlocks, BasicBlock *);BasicBlocks BBs; /* BBs is an extensible array of pointers toBasicBlock items */int main(int argc, char **argv){ foreach Basic Block BB that we find{ BBs.extend(BB);/* Add basic block to end of text widget with no animation */GUI->add_basicblock(BB, NULL, FALSE);/* Add node to graph representing basicblock and add adataitem for that node which contains the id of theBasicBlock"BasicBlock: 4" */char node[10];sprintf(node, "B%i", BB->id);GraphNode *BBnode = GRAPH->addNode(node, FALSE);sprintf(node, "%i", id);GRAPH->addDataItem(BBnode, "BasicBlock:", node);}/* foreach Basic Block */for (i=0;i<BBs.ub(); i++){ BasicBlock *BB = (BasicBlock *)BBs[i];/* Print out instructions in basicblock. */simple_instr *instr;instr = BB->head();while (instr != BB->tail){ simple_instr_print(stdout, instr);instr = instr->next;}simple_instr_print(stdout, instr); /* Tail instruction */}} Figure A.27: Example 2 source code

