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ABSTRACT OF THE THESIS

Graphical User Interface for Compiler Optimizations with Simple-SUIF

by
Brian Keith Harvey
Master of Science, Graduate Program in Computer Science
University of California, Riverside, December, 1996

Professor Gary Tyson, Chairperson

Very few tools exist which support the process of studying back end optimiza-
tions. Currently, researchers examining different back end optimizations must rely
on general debugging tools or design their own tools to help in the generation of
optimizing functions. A tool designed to give information specifically tailored for
optimization designers is necessary. Such a tool would allow researchers to view
the results of a newly designed optimization or analyze how the intermediate code
of a program changes depending on the order in which transformations are applied.
More efficient development of optimization routines should be the result of using
this tool.

This thesis presents the Visual Simple-SUIF Compiler (VSSC) package, de-
signed to accomplish these tasks by providing an interactive framework that fa-
cilitates the development of code transformations in the back end component of
a compiler. Code transformation algorithms are viewed by stepping through the
transformation while actual changes to the intermediate code are performed visu-

ally. Transformations can be applied to the intermediate code in any order and can



be undone. Capabilities such as these aid in the educational process of learning
optimization algorithms and in the testing of newly developed optimizations.

A tool of this nature requires several key components that integrate well with
each other to form a single framework. These components include: an easily
extendible compiler with a simple, yet functional, intermediate format, a graphical
user interface toolkit to implement the graphical “interactive” component of such
a tool, and a subsystem for drawing graphs which are common data structures
used in code transformations.

VSSC incorporates a graphical user interface (Tcl/Tk), the Simple-SUIF com-
piler framework, and the DOT graph drawing tool to visually illustrate data flow
analysis and code transformations. VSSC has many advantages that make it useful
to both optimization researchers and students alike.

The goal of this thesis to describe the design and implementation of a framework
which integrates these components as well as outlining the benefits the use of a

tool based on this framework provides.
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Chapter 1

Introduction

Compilers play an important part in the field of Computer Science; they take a
program that we have written and translate it to a form which can be executed
on a computer. This can be done by reading a program written in a high-level
language, called the source language, and translating it into an equivalent program
in another language called the target language. A variety of compilers exist today
because there are numerous source languages and many different target languages.
Target languages range from the machine language for one of numerous different
architectures to other high-level programming languages.

It is a common misconception that the process of compiling source code into
an executable is performed by a single program. In actuality, this process is per-
formed by an entire set of programs, each with its specific task, that together form
a language-processing system [1]. This system typically includes: a preprocessor
which performs macro expansion, header file inclusion, and perhaps language ex-
tensions, a compiler which takes this modified source code and translates it into

equivalent assembly code, an assembler which converts assembly code generated



by the compiler into relocatable machine code, and a loader/linker which takes
different modules of machine code and libraries and combines them into a sin-
gle executable, altering reference addresses as needed. This language-processing
system and its components are shown in Figure 1.1. This figure shows how the

original source code transforms into the final executable program.

Executable

Original Source Assembly Program Relocatable M achine
; Source Code Program for Target Architecture Code Module

Libaries Relocatable Machine
Code Modules

Figure 1.1: Language-processing system

The functionality of the compiler module in a language-processing system can
be separated into two main components [1]. The front end takes source code, per-
forms lexical, syntactic, and semantic analysis on it and produces an intermediate
representation of that code. The back end takes the intermediate representation,
optimizes it, and generates assembly code for the target machine. As shown in
Figure 1.2, the intermediate representation acts as the glue that connects the front

and back ends together to produce a compiler.

1.1 Front End

The front end takes source code and converts it to a format that is an intermediate
representation of that source code. This process includes checking the syntax of
the source code and checking the semantics of the source code. There exist several

well-known tools to help compiler writers with the front end. These tools, which



Source
Code

Front Intermediate Back

Assembly
Code

Figure 1.2: Simplified model of compiler

include lex [23], yacc [20], and ANTLR [29], use a specification of the source
language to generate a translator from the source language to an intermediate
specification. This is often accomplished by using combinations of these tools
targeting each to a portion of the translation. For example, lex generates a lexical
analyzer which translates the source tokens to a token stream; similarly, yacc
generates a syntactic parser which translates the token stream into a parse tree
representation of the original source program. The theory behind the translation
process performed by the front end is fairly mature and so are the tools which
create these translators. Most of the recent front end research concentrates on the

design and implementation of new language features.

1.2 Intermediate Representation

The intermediate representation separates the front end, which deals with source
language issues, from the back end, which deals with target issues. There are

several properties necessary to make an intermediate representation useful. First



of all, it should be easy to generate from a variety of front ends. This allows it
to remain useful as languages evolve (e.g. C—C++). Secondly, the intermediate
representation should be easy to manipulate during code transformations. This
simplifies the coding of the various analysis and transformations and allows changes
to be made to the intermediate representation without difficulty. Finally, it must
be machine-independent. This means that the intermediate code knows nothing
about the target architecture. For example, it does not care about the number of
registers the target provides and instead assumes an unlimited number of registers.
Because it is machine-independent, intermediate code usually looks like assembly
code for a virtual machine. This machine-independent feature means that the
intermediate code can be retargeted to many different architectures simply by
using a different back end and the compiler can use a machine-independent code
optimizer in the back end.

The importance of a good intermediate representation is prevalent even in to-
day’s technologies. Java [18], a popular Internet programming language, translates
Java source code into a bytecode format which acts as an assembly language for
a virtual machine. This bytecode is the intermediate format between the source
code and a running program. When a Java program is “executed”, the bytecode
is simply interpreted'. Java bytecode can be run, without modification, on any

operating system that the Java interpreter has been ported to.

'Recent advancements have produced Java Just-In-Time compilers, which use the Java byte-
code as an intermediate representation for a completely separate compilation.



1.3 Back End

Two tasks of the back end of an optimizing compiler are to modify the intermediate
code to improve overall code performance by performing various code transforma-
tions and optimizations and to translate the intermediate code to assembly code
for the target architecture.

Most recent research in compilers has concentrated around the optimizer com-
ponent of the compiler. The optimizer determines what the final assembly code
will look like and how fast it will run. The task performed by the optimizer must
be separated into transformations or phases in order to make this enormous task
manageable. The function of the optimizer is complicated by the fact that transfor-
mations cannot always be applied in any order. Additionally, these transformations
normally cannot be combined because each transformation usually performs a spe-
cific task which requires data flow information useful for only that transformation.

The need to separate the optimization phases leads to some difficulties in or-
dering the transformations. Given a set transformations to perform, the following
situation can occur: Once a certain optimization is done, a subsequent optimiza-
tion may be unable to make any useful changes because of the changes made in
the first transformation; whereas, if this second optimization had been executed
before the other one, its transformations would have been more beneficial. Unfor-
tunately, it is very difficult for a compiler back end to determine in what order the
optimizations should be made.

This problem, called the phase-ordering problem, has been studied for many
years. One example of this problem deals with register allocation and instruction

scheduling. If register allocation is performed before scheduling, it may introduce



artificial data precedence, keeping the instruction scheduler from generating the
best schedule. However, performing register allocation after instruction schedul-
ing may result in the need for more registers. The phase-ordering problem can
be difficult to avoid. Research in this area has proposed several solutions for
specific transformations in which the phases are combined. A framework for de-
scribing optimizations and an example framework in which constant propagation,
value numbering and unreachable-code elimination are combined is presented in
[7]. Combining these phases allows for more information about the program to
be discovered and thus more opportunities for optimization. In [25], register allo-
cation and instruction scheduling are combined. A heuristic algorithm is used in
which weights are used for controlling register pressure and instruction parallelism.
Finally, a compiler in which the code generation phase and a machine-directed
peephole optimizer are tightly integrated is described in [13] and [14]. These two
components can be combined because they are both simple pattern matchers. A
peephole optimizer replaces patterns of code with more efficient code while a code
generator matches patterns of intermediate code and replaces them with assembly
code. This compiler uses a single rule-based pattern matching system which makes

the compiler simple, fast, and retargetable.

1.3.1 Constructing Code Optimizers

Currently, few tools exist to help construct code optimizers. This is slowly changing
as the importance of optimization grows. One such tool to appear is Sharlit [39].
Built to work with the SUIF compiler system, Sharlit helps in constructing data
flow analyzers and the transformations that use data flow analysis information.

Compiler writers are able to construct global analyzes and optimizations with the



following modular components: flow graphs, flow values (values that flow through
the graph), flow functions that represent the effect of flow graph nodes and paths
on flow values, action routines that are used to perform program optimizations
based on the previous data flow analysis, and path simplification rules that show
how to combine flow functions into other flow functions.

Like the front end of a compiler, the code generation stage of the back end
is not as actively studied because the process is relatively simple: convert from
one representation to another. Some tools exist to help compiler writers with this
functionality of the back end. These tools, such as iburg [11], burg [12], and Twig
[38], act as code generator generators. Each of these tools reads in a specification
and generates C code to perform the code generation based on the specification.
The specification usually specifies the cost of operands and instruction in the inter-
mediate format. These tools use tree pattern matching and dynamic programming
to produce a code generator. The main difference between the various code gen-
erator generators mentioned is how they implement their tree pattern matching
and whether the dynamic programming is done when the tool is used or if it is

embedded in the generated code generator.

1.4 Design Tools for Developing Optimizers

There are few tools which support the process of studying back end optimiza-
tions. Currently, researchers examining different back end optimizations must rely
on general debugging tools or design their own tools to help in the generation of
optimizing functions. A tool designed to give information specifically tailored for

optimization designers is necessary. This tool would give researchers the ability to



analyze how their new optimization (or existing optimizations) and the interme-
diate code are affected when performing optimizations in different orders. More
efficient development of optimization routines should be the result of using such a
tool.

In order to develop such a tool, the intermediate format used in the compiler
needs to be well designed and should not change between code transformations; the
SUIF (Stanford University Intermediate Format) compiler [42] has such an inter-
mediate format. The SUIF system is organized as a set of compiler passes built on
top of a kernel that defines the intermediate format. Each pass is implemented as
a separate program which reads in the SUIF representation of the source program
from a file generated by the front end, performs some code transformation, and
then writes out the resulting SUIF representation to a file. Since the SUIF format
never changes, these passes can be performed in any order.

SUIF provides the necessary platform for true development of a tool designed
to support the development of code transformations. The work described in the
remainder of this thesis develops one such tool, the Visual Simple-SUIF Compiler

package.

1.5 VSSC

The topic of this thesis is the Visual Simple-SUIF Compiler (VSSC) package which
we have developed. This package is designed to provide an interactive framework
that allows the development of compiler optimizations. It incorporates a graphical
user interface with an underlying Simple-SUIF compiler framework to illustrate

data flow analysis and code transformations. VSSC has many advantages that



make it useful to both optimization researchers and students alike.

Built on top of the SUIF compiler, VSSC inherits all the strengths of SUIF
as well as adding new ones. As in the SUIF compiler, it is easy to add new
optimizations to a VSSC compiler and to perform optimizations in any order. The
user can select which optimizations to perform through the use of a graphical
interface. Transformations can be applied in any order and as many times as
desired. This “interactive” ability allows the user to see the effects different code
transformations have on the intermediate code after each transformation, as well as
viewing the effects of different implementations of a particular code transformation
(e.g. different methods of doing dead code elimination). This ability also allows
a researcher to see the different results of the intermediate code depending on
the order that the transformations are performed. In addition, the researcher
can select a transformation to be performed based on the observed characteristics
of the current state of the intermediate code. VSSC allows transformations to
be undone, so the user can perform an optimization, undo it, and then perform
another optimization. Another advantage provided by VSSC is that its GUI library
allows the optimization designer freedom in controlling what information the GUI
displays to the user.

A VSSC compiler runs until the user exits allowing intermediate code to be
studied indefinitely between code transformations and viewed at each step during
a code transformation. VSSC provides the ability for the optimization writer to
display a graph during the transformation. Table 1.1 shows some of the possible
types of graphs that can be displayed using VSSC. Examples of these graphs will
be demonstrated in Section 5.2.

Showing a graph during the code transformation aids the user in understanding



Type of Graph Purpose in a Compiler

This type of graph illustrates the flow-of-
control information for a procedure. FEach
node in the graph represents a basic block,
a sequence of consecutive statements in which
Flow Graph flow of control enters only at the beginning
and exits only at the end. There is a directed
edge in the graph from block B; to block B;
if B; can immediately follow B; in some exe-
cution sequence.

In a DAG, the information of how the value
computed by each statement in a basic block
is used in subsequent statements of the same
block is shown. This information can be
used to find common subexpressions (those
expressions which are computed more than
once can be eliminated). Leaves in this graph
are unique identifiers (variable names of con-
stants) and interior nodes are mathematical
operators.

Directed Acyclic Graph

This type of graph is sometimes used when
implementing register allocation using graph
coloring. The nodes in this graph are symbolic
registers and an edge connects two nodes (reg-
isters) if one register is live at a point where
the other is defined.

Register-Interference Graph

Table 1.1: Some of the types of graph that can be constructed and displayed in
VSSC

the steps in the code transformation as well as emphasizing the importance of that
graph data structure in the code transformation. For example, a flow graph allows
the user to view the various possible execution paths between basic blocks in the
intermediate code.

Perhaps one of the most important benefits provided by VSSC is the ability to
step through an optimization. Much in the same way that you can step through

code in a code debugger such as GDB [35], the VSSC package allows the optimiza-



tion writer to configure steps within the optimization and when the optimization is
performed in the VSSC compiler, the GUI user can step through the optimization
at his or her own pace. The optimization writer has complete freedom to include
whatever actions he or she likes within each step.

Finally, since people tend to learn better by visualization as well as being able to
step through an optimization at their own speed, the VSSC package is particularly
helpful when used in the academic environment. VSSC can be used as a teaching
tool in courses on optimizing compilers. Students taking a course in optimizing
compilers can use VSSC in two ways. The first way in which it could be used is that
the instructor provides to the students a ready-made VSSC compiler which already
implements various optimizations. The students can then use VSSC to augment
their learning of an optimization presented by their instructor by stepping through
it with VSSC on any C code they wish. In this way, VSSC can be a teaching tool
for the study of compiler back ends.

Students can also benefit from using VSSC when writing their own optimiza-
tions. In a typical optimizing compiler course, students implement such standard
optimizations as dead-code elimination, common subexpression elimination, and
others described in [1]. Students can use VSSC to facilitate their understanding of
what happens during one of these optimizations. VSSC can show them the results
of a particular data flow analysis and the effects of a transformation. Students can
learn only so much from a textbook and from trying out an optimization on paper.
They can gain more insight about the optimization when they can actually see it
in action on the screen in front of them. VSSC has been used in the graduate com-
piler course at the University of California, Riverside. Students implemented basic

block detection, various data flow analysis, and register allocation using VSSC.



1.6 Thesis Organization

Chapter 2 provides background information on various retargetable compilers and
the intermediate representations they use. It concludes with a description of the
compiler used by VSSC. Chapter 3 includes descriptions of work in the area of
compiler visualization tools and previous work related to VSSC. Chapter 4 de-
scribes the overall design, organization, and implementation of VSSC. Examples
of a VSSC compiler performing various optimizations, as well as various types of
graphs that can be displayed with VSSC, are shown in Chapter 5. Chapter 6 pro-
vides a conclusion along with a discussion of possible future directions for VSSC.
Appendix A provides a user’s manual for VSSC that describes VSSC’s application
program interface (API), how to get started using VSSC, and various tips and

suggestions on the use of the package.



Chapter 2

Retargetable Compilers

In order to implement the functionality proposed in VSSC, an easily extendible
compiler with a robust intermediate format was needed. This chapter discusses
several free C compilers including the intermediate format that they use. Their
various strengths and weaknesses will be presented as well as an analysis of their

suitability for the VSSC framework.

2.1 Requirements for a Retargetable Compiler

A retargetable compiler is one that can support multiple targets by incorporat-
ing multiple back ends to generate code for different target architectures. This
capability of a compiler is strongly influenced by the intermediate language used
by the compiler. In order to make retargeting easy, the intermediate language
needs to be machine-independent. If it doesn’t rely on the characteristics of the
target architecture, then a code generator can be written to generate code from
that intermediate code for virtually any architecture.

Academic and research groups tend to use retargetable compilers to allow for

13



greater flexibility in educational and research goals. Because they are retargetable,
they usually also run on the various architectures in use at that institution. It is not
surprising that retargetable compilers are better organized than their monolithic
counterparts. In order to be retargetable, the compiler needs to have a well-
defined interface and be modular in design. Most research groups also tend to use
free retargetable compilers for obvious reasons. In a situation where you want to
test out a new compiler feature, it is easier to incorporate it in into an existing
compiler for which you have the source code than constructing your own compiler
from scratch or purchasing a source code license for a commercial compiler.

In this section we look at three popular retargetable compilers in order to
determine which one best supports the VSSC framework. These compilers are:
the GNU gcc compiler [34] developed by Richard Stallman (and numerous other
people), the 1cc compiler [9] developed by Christopher W. Fraser at AT&T Bell
Laboratories and David R. Hanson at Princeton University, and the SUIF compiler
[42] developed by Monica Lam at Stanford University. These systems are briefly

evaluated below.

2.2 GNU C Compiler (GCCQC)

The GNU C Compiler (GCC) [34], which can compile C, C++, and Objective-C
code, is arguably the world’s most popular free compiler. GCC’s greatest strength
is that fact that GCC has been ported to and has been retargeted to many different
operating systems and architectures. This wide-range of use is made possible by
GCC’s robust intermediate format.

GCC’s front end converts the source code into a Lisp-like register transfer



language (RTL). The RTL describes each target-dependent instruction in a target-
independent algebraic form that defines the semantics of an instruction. After
various code transformations are performed on the RTL, GCC’s back end takes
this RTL and generates code for the target architecture. The specification of the
target architecture is based on a machine description that identifies the target code
to generate for each possible expression in the RTL.

The widespread use of the GNU Compiler and the large number of contributors
to its set of supported optimizations has led to a complex implementation. The
GCC design lacks modularity and is somewhat monolithic in design. In addition,
the optimization passes made on the RTL have become so dependent on each other
over the years that the passes need to be done in a specific order. These limitations
make it very difficult to implement the functionality planned for VSSC using the
GCC compiler.

2.3 LCC

The 1cc compiler [9] [10] is an ANSI C compliant retargetable compiler that can
generate code for VAX, Motorola 68020, 1386, SPARC, and MIPS R3000 architec-
tures. Developed by Christopher W. Fraser at AT&T Bell Laboratories and David
R. Hanson at Princeton University, 1cc is heavily used at both institutions.

lcc has many features that make it popular. The simple and compact design of
lcc makes it one of the smallest and fastest ANSI C compilers available. Probably
the most useful feature of 1cc is the quality of its the documentation. The authors
used the noweb [31] system to generate a textbook [10] and the source code for 1cc

from a single source. Therefore, the textbook, which describes the implementation



of 1cc, includes most of the code of 1cc along with the explanation of that code
and how it contributes to the implementation. When generating the textbook,
noweb system automatically cross-references all code segments so a reader of the
textbook can easily navigate the source code. This is very helpful, since the source
code is presented in the textbook in an order that follows the description of the
implementation.

The target-independent front end and the target-dependent back end of lcc
exist together in a single executable glued together by an efficient interface. This
interface consists of only 18 functions and the C code being compiled is represented
by a 36-operator dag language [8]. This language is the intermediate format of 1cc
and represents the source program as it goes from the front end to the back end in
the compilation process. The dag language has gone through many changes during
the development of 1cc. In each change, the authors usually took a more complex
operator out of the dag language and added functionality for it in the front end.
Consequently, each change made the back end less complex.

lcc has a number of features, which are not normally found in other compil-
ers, that increase its usefulness to the user. Command-line flags can specify that
the code generated will check for the dereferencing of a null pointer (a common
programming mistake in C), print out function call /return traces, and generate ex-
ecution profiles. When 1cc performs frequency-based profiling, it generates code
that keeps track of the number of times each expression is calculated. This allows
programmers to try to simplify those expressions that are frequently calculated.
The accumulated profiling data can be displayed and analyzed.

lcc, despite its many strengths, has several weaknesses. First of all, it is not

an optimizing compiler. While its front end performs some target-independent op-



timizations such as local common subexpression elimination, constant folding, and
other simple transformations, no other optimizations are specified. Other typical
compiler systems implement many more global and target-dependent optimiza-
tions. Another weakness is the tightly-coupled design between the front and back
ends. While this design allows 1cc to be a small and fast compiler, it can be diffi-
cult for a researcher to use 1cc for a large back-end compilation environment. The
design and organization of 1cc is so highly optimized for compilation speed and
code compactness that small changes to one component may greatly affect other
components. Other compiler systems, such as SUIF described in the next section,
are more modular and robust in their design. This modularity allows a researcher
to concentrate only on what they need to, without worrying about how it affects

the rest of the compiler system.

2.4 SUIF Compiler System

The SUIF research compiler system [42] [43], developed by a team of researchers
under the direction of Monica Lam at Stanford University, is centered around the
robust design of its intermediate format called SUIF (Stanford University Interme-
diate Format). The system has been designed and organized in such a way that it
is easy to modify and extend the base system to generate custom compilers. The
SUIF team took considerable effort to make the system usable by other research
groups. For this reason, many researchers around the world use the SUIF compiler
system to evaluate new compiler techniques and perform research on analysis and
optimization algorithms.

The SUIF system is organized into two components. The kernel of the SUIF



compiler defines the central core of the compiler. The design goals of the kernel

are [43]:

e to make all program information necessary for scalar and parallel compiler

optimizations easily available
e to foster code reuse, sharing, and modularity

e to support experimentation and system prototyping.

The kernel performs three major tasks: it defines and manages the intermediate
format SUIF, it provides a set of routines for manipulating the intermediate format,
and it provides an information and communication interface between compiler

passes.

2.4.1 SUIF Intermediate Format

The SUIF intermediate format is different from the intermediate formats used by
the previously discussed compilers. Those intermediate formats are very low-level
while SUIF’s intermediate format is a “mixed-level” program representation in-
corporating both low-level and high-level information. The high-level information
includes: loops, conditional statements, and array access operations. The low-level
information includes: assembly-like intermediate code, jumps and branches to la-
bels, and symbolic registers. One of the features of the SUIF compiler system is
its ability for determining the amount of parallelism in a program'. The inclusion
of these high-level constructs simplifies the design of analyzers and optimizers.

For example, there are many optimizations that deal with loops. However, these

!This information can be used to increase program parallelism and locality.



optimizations must detect the loops using data-flow analysis. An optimization in
SUIF does not need to perform such analysis, because loop information already
exists in the intermediate format. Figure 2.1 shows a sample C program and the
SUIF intermediate format of the same example program (using the printsuif

program?).

2.4.2 SUIF Transformation Environent

The second component of the SUIF system is a set of compiler passes that perform
various transformations on the intermediate format. Usually, each pass reads in
the intermediate code, performs some transformation, analysis, or optimization,
and then writes out the intermediate code. Since each pass can exist as a separate
executable in the SUIF system, passes can be run in any order in the compilation
process. Information can be relayed from pass to pass by annotating components
in the intermediate format. To aid in the creation of SUIF compiler passes, the
SUIF system contains a robust set of libraries, commonly used data structures,

and support routines.

2Actually, printsuif displays a lot more information about the SUIF intermediate format
for this C code, but to save space, only part of the information is shown here for comparison
purposes.



int main(int argc, char *xargv)

{

int x, y, z;
for (x=0; x<100; x++)

{
z = 0;
for (y=0; y<x; y++)
{
if (y+z < x)
z++;
3
¥

printf("z= %d\n", z);

PROC P:.main
["1line": 2 "example.c"]
1: mrk
["1line": 5 "example.c"]
2: FOR (Index=main.x Test=SLT Cont=L:main.L1 Brk=L:main.L2)
FOR LB
28: ldc t:g4 (i.32) 0
FOR UB
30: ldc t:g4 (i.32) 100
FOR STEP
32: ldc t:g4 (i.32) 1
FOR LANDING PAD

FOR BODY
6: mrk
["line": 7 "example.c"]
7: ldc t:g4 (i.32) main.z = 0
8: mrk
["1line": 9 "example.c"]
9: FOR (Index=main.y Test=SLT Cont=L:main.L3 Brk=L:main.L4)
FOR LB
22: ldc t:g4 (i.32) 0
FOR UB
main.x
FOR STEP
25: ldc t:g4 (i.32) 1
FOR LANDING PAD
FOR BODY
13: mrk
["line": 11 "example.c"]
14: IF (Jumpto=L:main.L5)
IF HEADER
15: bfalse el, L:main.L5
16: el: sl t:g31 (i.32) e2, main.x
17: e2: add t:g4 (i.32) main.y, main.z
IF THEN
18: mrk
["1line": 12 "example.c"]
19: add t:g4 (i.32) main.z = main.z, el
20: el: ldc t:g4 (i.32) 1
IF ELSE
IF END
FOR END
26: mrk
["line": 9 "example.c"]
FOR END
34: mrk

["line": 15 "example.c"]
35: cal t:g4 (i.32) <nullop> = el(e2, main.z)
36: el: ldc t:g39 (p.32) <P:.printf,0>
42: e2: ldc t:g34 (p.32) <.__tmp_string_0,0>

39: mrk
["1line": 16 "example.c"]
40: ret el
41: el: ldc t:g4 (i.32) 0
PROC END

Figure 2.1: C and SUIF intermediate format version of same example program




The SUIF compiler may not be the fastest or the most robust compiler, but the
flexibility and extensibility of its design outweighs these possible shortcomings for
the study of back-end code transformations. The SUIF compiler is not meant to
be a production quality compiler. Instead it is meant to act as a research vehicle,
designed to support modularity and experimentation at the cost of the speed of

translation.

2.4.3 Simple-SUIF

Since the SUIF compiler is a complete ANSI C compiler, it is a little too complex
for use in a college course in compilers. The SUIF Compiler group at Stanford
developed a package called Simple-SUIF [36] which acts as a wrapper for SUIF
by providing a simplified interface to the intermediate format generated by the
SUIF compiler. When using Simple-SUIF, the SUIF intermediate format remains
the same internally, but differs in the way the programmer interacts with the
system. This simplified interface allows students to write their own optimizations
for a fully-functional ANSI C compiler without learning the high-level constructs
required to perform compiler transformations (e.g. interprocedural analysis).
Figure 2.2 shows the Simple-SUIF version of the example code in Figure 2.1.
As you can see, the instructions in Simple-SUIF’s intermediate format resemble
assembly language instructions (op dst,srcl,src2) or three-address C instructions
(dst = srcl op src2). Each instruction has an unique opcode associated with
it. The instructions are grouped into six different categories called instruction for-
mats. Table 2.1 shows all the valid Simple-SUIF instructions. For each instruction,
the following information is also shown: the opcode, the Simple-SUIF name, the

instruction format, and a short explanation of that instruction.



Procedure main:
lde (s.32) t6 =
cpy (s.32) r3 = t6
L9:
ldec (s.32) t7 =0
cpy (s.32) 15 = t7
ldc (s.32) t8 =0
sl (s.32) t9 = t8, r3
bfls t9, L6
lde (s.32) t10 =0
cpy (s.32) r4 = t10
L7:
add (s.32) t11 = r4, 5
sl (s.32) t12 = t11, r3
bfls t12, L&
lde (s.32) t13 =1
add (s.32) t14 = r5, t13
cpy (s.32) 5 = ti14
L5:
L3:
ldc (s.32) ti15 =1
add (s.32) t16 = r4, ti5
cpy (s.32) r4 = ti16
sle (s.32) t17 = r3, r4
bfls £17, L7
L4:
jmp __done8
L6:
lde (s.32) t18 =0
cpy (s.32) r4 = t18
__done8:
Li:
lde (s.32) t19 =1
add (s.32) t20 = r3, t19
cpy (s.32) r3 = t20
lde (s.32) t21 = 100
sle (s.32) t22 = t21, r3
bfls £22, L9
L2:
ldc (a.32) t23 = &printf + 0
lde (a.32) t24 = &__tmp_string 0 + 0
call (s.32) *t23 (t24, r5)
lde (s.32) t25 =0
ret t25

Figure 2.2: SimpleSUIF version of example code used in Figure 2.1

A Simple-SUIF instruction is represented by the simple_instr structure. Fig-
ure 2.3 shows the simple_instr structure and its contents. When writing an
optimization pass with Simple-SUIF, the intermediate format is given to the pro-
grammer as a linked list of these instructions. The optimization can then manage
the items in this linked list. When an optimization is performed, the elements in
the linked list are modified and the linked list is returned back to the Simple-SUIF

library. This intermediate code is then saved back to a file.



Simple-SUIF Instructions

Opcode | Instr. Name | Instruction Format | Purpose
No operand instructions
NOP_OP | nop | BASE_FORM | No nothing at all
One source operand (srcl) instructions
RET_OP [ ret [ BASE_.FORM [ Return from a procedure
Two source operand (srcl, src2) instructions
STR_OP str BASE_FORM Store the value in the src2
register at the address contained in the
srcl register
MCPY_OP mecpy BASE_FORM Memory-to-memory copy
Unary instructions (dst, srcl)
CPY_OP cpy BASE_FORM Copy the srcl register to the
dst register
CVT_OP cvt BASE_FORM Convert the srcl register to
the result type and put it in the
dst register
NEG_OP neg BASE_FORM Negation
NOT_OP not BASE_FORM Bit-wise inversion
LOAD_OP load BASE_FORM Load the value at the address contained
in the srcl register and put it in
the dst register
Binary instructions (dst, srcl, src2)
ADD_OP add BASE_FORM dst = srcl + src2
SUB_OP sub BASE_FORM dst = srcl — src2
MUL_OP mul BASE_FORM dst = srcl * src2
DIV_OP div BASE_FORM dst = srcl/src2
REM_OP rem BASE_FORM dst = src1%src2
MOD_OP mod BASE_FORM dst = abs(srcl%src2)
AND_OP and BASE_FORM Bit-wise AND
IOR_OP ior BASE_FORM Bit-wise inclusive OR
XOR_OP xor BASE_FORM Bit-wise exclusive OR
ASR_OP asr BASE_FORM Signed shift right
LSL_OP Isr BASE_FORM Unsigned shift right
LSR_OP Isl BASE_FORM Unsigned shift left
ROT_OP rot BASE_FORM Rotate value in srcl register left
(positive value) or right (negative value) by
the amount specified in the src2
register
SEQ_OP seq BASE_FORM dst = (srcl == src2)
SNE_OP sne BASE_FORM dst = (srcl! = src2)
SL_OP sl BASE_FORM dst = (srcl < src2)
SLE_OP sle BASE_FORM dst = (srcl <= src2)
Branch and jump instructions
JMP_OP jmp BJ_FORM Unconditional jump: goto target
BTRUE_OP btru BJ_FORM Branch if true: if (srcl) goto target
BFALSE_OP bfls BJ_FORM Branch if false: if (!src1l) goto target
Miscellaneous
LDC_OP ldc LDC_FORM Load a constant value
CALL_OP call CALL_FORM Call a procedure
MBR_OP mbr MBR_FORM Multi-way branch
LABEL_OP lab LABEL_FORM Label pseudo-instruction

Table 2.1: Valid Simple-SUIF instructions




si npl e_op opcode; /* the opcode */

sinpl e_type *type; /* type of the result */

struct sinple_instr *next; /* ptr to next instruction */
struct sinple_instr *prev; /* ptr to previous instruction */

uni on u; /* the variant part of the union is determ ned
by the result of sinple_op_fornat(opcode) */

/* BASE_FORM */

struct base {
sinple_reg *dst; /* destination */
sinple_reg *srcl; /* source 1 */
sinple_reg *src2; /* source 2 */

}

/* BJ_FORM */

struct bj {
sinpl e_sym *target; /* branch target |abel */
sinple_reg *src; /* source register */

}

/* LDC_FORM */
struct ldc {
sinple_reg *dst; /* destination */
sinpl e_i med val ue; /* inmmediate constant */

}

/* CALL_FORM */
struct call {

sinple_reg *dst; /* return value destination */
sinple_reg *proc; /* address of the callee */
unsi gned nargs; /* nunber of arguments. */
sinple_reg **argsl /* array of argunments */

}

/* MBR_FORM */

struct MBR {
sinple_reg *src; /* branch selector */
int offset; /* branch selector offset */
si npl e_sym *def | ab; /* label of default target */
unsi gned ntargets; /* nunber of possible targets */
sinple_sym **targets; /* array of |abels */

}

/* LABEL_FORM */
struct |abel {
sinple_sym*lab; /* the synbol for this |abel */

}

Figure 2.3: simple_instr structure used to represent a Simple-SUIF instruction

As you can see from Figure 2.3, the simple_instr structure contains a member,
u, which is a union of many other structures®. Each of the structures in the union
represents a different instruction format in which all the Simple-SUIF instruction
opcodes map to. The Simple-SUIF library contains support routines to help the
programmer deal with this data structure. Appendix A provides more information

on how to use and interact with Simple-SUIF.

3A union is used to save memory since an instruction can only be one type of instruction
format.



2.5 Summary

In this chapter, three retargetable compiler systems were examined for use as the
compiler base for the VSSC framework. The stengths and weaknesses of each were
presented. At one end of the spectrum is GCC, a large, slow, monolithic compiler
with very good optimization routines. At the other end of the spectrum is lcc,
a small, fast, non-optimizing compiler whose compact design makes it difficult to
expand. The design and organization of these compilers would not fit well in the
VSSC framework.

The features of the SUIF compiler framework fulfill the design goals of the VSSC
framework far better than those of GCC or 1cc. The modular design of the SUIF
compiler framework allows it to be integrated easily into the VSSC framework.
Using the SUIF intermediate format, VSSC has ability to perform optimizations
in any order. Finally, incorporating the Simple-SUIF package allows VSSC to be

used by both researchers and students.



Chapter 3

Compiler Visualization Tools

Due to recent advances in GUI technology, graphical user interfaces are now becom-
ing easier to create. This allows a program that was previously text-based to have
a graphical front end to improve user interaction. A graphical user interface allows
compilicated information to be presented more understandable manner. A com-
piler is a good example of a text-based program that can benefit from a graphical
user interface. Such an interface would allow the compiler to display information
of interest to those debugging a component of the compiler or learning about the
compilation process.

Perhaps an important piece of information that should be displayed in the
graphical user interface of a compiler while the back end is executing is the various
data structures used in code transformations. These structures can be displayed
to illustrate both the analysis and transformation algorithms required to perform
a particular optimization. In order to display various types of graphs, a tool
to handle the graph drawing capabilities is needed. This chapter first discusses

various graph drawing tools, which are an important component of most compiler
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visualization tools, since graphs are the primary data structures in compilers. The
second part of this chapter is a discussion of several compiler visualization projects

similar to VSSC.

3.1 Graph Drawing Tools

The graph drawing process is complicated. There is an large amount of research
being done in this field [3] and many algorithms have been designed to draw graphs
that look aesthetically pleasing. As a result of this research, many graph drawing
tools exist to demonstrate the feasibility of these graph drawing algorithms. Such
tools include: ffgraph [15], daVinci [16], Graph®? [19], and DOT [21]. Most
tools are stand-alone programs, while others such as DOT can be integrated into an
existing GUI such as Tcl/Tk [28] [40].

There are several other graph drawing tools that are more specialized in their
functionality in that they are used to draw many of the data structures present
in compilers: flow graphs, syntax trees, call graphs, and data dependence graphs.
Two such tools are dflo [44] and VCG [32]. VCG is used to graphically display
typical data structures found in a compiler, while d1fo can be used to solve data-

flow equations.

3.1.1 VCG

Textual representations of compiler data structures, such as trees or graphs, can
often be confusing or unreadable. VCG shows trees and graphs in a natural way
that allows powerful debugging of the internals of a compiler and the examination

of the effects of transformations on the intermediate representation.



The specification of a graph is supplied to VCG, which then assigns horizontal
and vertical positions to each node and computes splines for the edges in such as
way that the edges do not overlap with nodes. Constructed graphs can be folded
allowing unimportant parts of the graph to be hidden, while important components
can be shown in more detail. The output of the constructed graph can viewed using

a self-contained X-windows tool or saved as a postscript file.

3.1.2 dflo

dflo [44] is a tool that inputs: a description of a flow graph, the variables assigned
and expressions computed in each flow graph node, and a system of data-flow
equations. It then solves the data-flow equations and allows the user to interac-
tively view the results. The flow graphs generated by dflo look very nice and the
data-flow equations are easy to construct. Figure 3.1 shows the dflo data-flow

equations to compute liveness.

{ LIVE edge - [0] = any succs( LIVE ) * TRANSUP + EXPOSEUP;
LIVE.in node - [1] = LIVE.out * TRANS + EXPOSEUP ;
LIVE.out node - [1] = any succs( LIVE.in ) }

Figure 3.1: dflo data-flow equations to compute liveness

Unfortunately, df1lo uses the commercial Motif graphical user interface as its
GUI front end. It therefore can not be incorporated into VSSC, since a design goal

of VSSC is to only use freely available software.



3.1.3 DOT

Neither VCG nor d1fo would integrate well into the VSSC framework. These
tools are designed to be standalone programs, which are difficult to incorporate
into a larger package like VSSC. We chose to integrate the DOT [21] package with
VSSC to implement the graph drawing capabilities VSSC provides.

DOT is a general graph drawing tool which draws directed graphs using a four-

step algorithm [17]:

—_

. Assigns discrete ranks to nodes. These ranks determine the Y coordinates in

the final drawing.

2. Orders nodes within ranks to avoid crossings.

w

. Assigns X coordinates to nodes while keeping edges short.

4. Routes edge splines between nodes that have edges.

The graphs produced by DOT are well suited to display the graph data structure
information necessary in a compiler. Figure 3.2 shows a sample flow graph for an
implementation of the quicksort algorithm. The drawing and layout algorithms
used in DOT are able to generate the graphs fast enough to support interactive GUIs.
A detailed explanation of DOT and how it is integrated into the VSSC framework

is presented in Section 4.3.2.

3.2 Visual Compiler Tools

Previously there were very few compiler visualization tools or visual compilers.

Compiler systems tended to be text-based and not designed for use with a graphical



Figure 3.2: DOT generated flow graph for quicksort algorithm

user interface (GUI). However, more recent compiler systems such as SUIF have
been designed with modularity in mind, diminishing the amount of work needed
to add a GUI to the system. Several compiler visualization tools that influenced

the design of VSSC are presented in this section.

3.2.1 Visual SUIF Browser

One the many tools that have been written for SUIF include a visual SUIF browser

[24]. Here is the official description [41]:

The Visual Browser is a graphical user interface, which runs under
X, for browsing through SUIF intermediate representation code. It
can open multiple windows for SUIF files, source files, and output C

code, and clicking on an object in any of those windows will highlight



the corresponding piece of code in the other windows. Other features
include the ability to search for objects with given properties, filter out
details which are not currently interesting, and collapse and expand

the representation of internals of given nodes.

While this tool acts more as an information browser and is not relevant to the
purpose of VSSC, it provides a similar functionality in that it displays the current
state of the SUIF intermediate code. Like VSSC, it is also uses Tcl/Tk for its GUI

interface.

3.2.2 UW Illustrated Compiler

The University of Washington developed the UW Illustrated Compiler (icomp)
[2], which lets a user interactively browse through textual and graphical views of
control and data structures during the compilation of a program. Almost every
part of the compilation process can be viewed including: lexical analysis, parsing,
semantic analysis, and code generation. icomp uses a construct called hookpoints,
which are similar to breakpoints, but instead of stopping the execution of the
program at a hookpoint, the icomp display updates windows that have changed
since the last hookpoint was executed. Hookpoints are used to synchronize the
illustration of the program with the state of the compiler.

The main purpose of icomp is to illustrate the compilation process to under-
graduate students. It provides no interface that researchers can use to develop new
components easily and no optimizations can be performed. While icomp may seem
to have limited features, it was one of the first visual compiler tools written and

served its purpose well. Students who used the system provided positive feedback



regarding its use and its presentation of information.

3.2.3 xvpodb

The tool that most closely matches the goals of VSSC is xvpodb, designed by
Micky Boyd and David Whalley of Florida State University. zvpodb is a graphical

optimization viewer for the vpo optimizer [4]. It had the following design goals [5]:

The program should appear in a easily readable display that is automatically

updated each time the data structure is changed.

Indicate the exact portions of the representations that were altered during a

transformation.

Allow data breakpoints to be used.

Provide the capability to examine the effect of transformations by processing

them in forward or in reverse order.

rupodb runs as a separate process and communicates with vpo via sockets. vpo
sends to a zvpodb process messages that describe the changes to make to the RTLs
being displayed. Figure 3.3 shows the main window of zwvpodb. The RTLs are
displayed in their basic blocks with arrows illustrating the flow graph. Buttons at
the bottom of the screen allow the user to step forward or backward in the current
transformation.

The main data structures used by zvpodb are the Optimization List and the
Screen List. The Optimization List is a list of messages received from the optimizer

that describe that changes to make to each RTL as well as information on what to
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Figure 3.3: Main window of zvpodb application

display when stepping in reverse. The screen list contains a list of what information
is currently being displayed on the screen as well as the current state of each RTL.

zvpodb and VSSC are very similar in their functionality and design goals. How-
ever, there are several differences. First of all, zvpodb does not allow the user
to control the optimizations; it can only be used as a viewing tool, while VSSC
was designed to give the user full interactive control of the compilation process.
Secondly, zvpodb does not allow the user to back out of a transformation, a func-

tion that VSSC provides. This ability to undo transformations allows a user to



remove the effects of a transformation that turned out to be inappropriate or in-
effective. The authors of zupodb claim that adding this functionality would not be
difficult for them, but, they have not yet implemented it. One functionality that
xzpodb provides that VSSC does not yet provide is the ability the backstep within
a transformation. Both systems allow the user to step forward through a transfor-
mation, but zvpodb also allows the user to step backwards within a transformation.
VSSC allows backstepping at the granularity of a transformation, but not at each

step of a transformation.

3.3 Summary

An important component of a compiler with a graphical user interface is the ability
to display information about internal data structures used within the compiler.
Various types of graphs are used in the back end of a compiler. Rather than
implement complicated graph drawing algorithms to draw these graphs, VSSC
uses an existing tool that integrates well in the VSSC framework. This chapter
discussed several graph drawing tools that specialize in drawing the types of graphs
common in compilers. Information was then presented describing previous work in
the area of compiler visualization tools. The compiler visualization tools described
were: the Visual SUIF Browser, the UW Illustrated Compiler, and zvpodb.

The field of compiler visualization tools is relatively young, but with the advent
of powerful, easy-to-use GUI languages such as Tcl/Tk, more tools should become

available.



Chapter 4

VSSC Design and Implementation

The Visual Simple-SUIF Compiler (VSSC) package is designed to provide an inter-
active framework that facilitates the development of compiler optimizations. This
chapter discusses the various design goals of the VSSC framework and how they
were met in the actual implementation. Supporting tools that were used and how
they were integrated with the VSSC framework are also discussed. The chapter
concludes with a description of the VSSC interface and a sample optimization that
demonstrates how an optimization designer would register an optimization using

the VSSC package and the SUIF compiler.

4.1 Design Goals

The overall goal in the design and implementation of the VSSC framework is to
provide an interface to allow the study of optimizations. The following character-

istics are desirable in this interface:

e To be as extendible as possible, the framework should allow new transforma-

tions to be added easily.
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The VSSC library includes an interface in which any number of transforma-

tions are “registered” with the VSSC compiler that is generated.

The ability to specify the order in which transformations are applied gives
the VSSC user the ability to apply transformations in any order and as many
times as desired. In order to implement such a feature, a suitable compiler

is needed that supports these abilities.

The VSSC GUI allows the user to select from a menu which transformation
to perform next. The underlying compiler used by VSSC is SUIF, which
allows transformations to be applied in any order. Section 2.4 describes the

SUIF compiler in more detail.

Support for backing out or wndoing a transformation. This requires the
ability to revert back to a previous version of the intermediate representa-
tion. This action undoes any changes made by the current transformation in
progress or the previously completed transformation. This characteristic can
be extremely helpful in several situations: comparing two different imple-
mentations of the same optimization and evaluating different transformation

orderings.

For example, an optimization can be performed and the results observed.
Then that transformation is undone and another implementation of the same
transformation is performed. The user can then compare the results of the
two transformations and determine whether the two implementations of the

same transformation produced the same resulting intermediate code.

The ability to undo transformations can also help researchers studying the

phase-ordering problem. The researcher would perform an ordering of trans-



formations and see the result. All those transformations would then be un-
done and a different ordering of those transformations would be performed.
The researcher could then determine if the ordering of the transformations
resulted in different intermediate code and which orderings result in more

optimized intermediate code.

An undo feature is also useful whenever, during one of the steps of a trans-
formation, the user notices that the transformation incorrectly modifies part
of the intermediate representation. At that point, the transformation can be
undone before it finishes, reverting the intermediate representation back to
its state before the current transformation. VSSC allows the user to undo a
transformation at any point. The user can even undo multiple transforma-

tions, reverting back as far as the original intermediate code.

The intermediate format used should be simple, easy to read, and identifiable.
VSSC uses the Simple-SUIF interface which provides such an intermediate

format. Simple-SUIF is described in more detail in Section 2.4.3.

VSSC should provide the user a graphical interface capable of displaying
information related to the code transformation (in this case, intermediate
code and graphs) in an aesthetically pleasing manner. Such an interface is

generally easier to use. No typing is necessary; just point and click.

The interaction between the VSSC compiler and its user is completely graph-
ical. The GUI is implemented using Tcl/Tk [28] [40]. Further information

about Tcl/Tk is presented in section 4.3.1 below.

VSSC should facilitate classroom instruction of compiler optimizations. Very

few tools exist today that can be used to teach students compiler optimiza-



tions graphically. To be an effective teaching tool, the users should be able
to follow an optimization at their own pace. VSSC provides a stepping func-

tionality that allows the user to step through an optimization.

e To be widely used as a tool in the academic research arena, VSSC should be
based only on freely available software. Table 4.1 lists the software compo-
nents integrated with VSSC and where they can be obtained. These compo-

nents are discussed in Section 4.3 below.

GNU C/C++ | ftp://prep.ai.mit.edu/pub/gnu/gcc-2.7.2.tar.gz
SUIF http://suif.stanford.edu/
ftp://suif.stanford.edu/pub/suif/basesuif-1.1.2.tar.gz
Simple-SUIF ftp://suif.stanford.edu/pub/suif/simplesuif-1.0.0.beta.l.tar.gz
Tcl/Tk http://www.sunlabs.com/research/tcl/
ftp://ftp.sunlabs.com/pub/tcl/
DOT/tcldot | http://wuw.research.att.com/sw/tools/reuse/

Table 4.1: VSSC components and where to find them

4.2 Organization of VSSC Framework

The VSSC framework is implemented as a library that is linked in with the opti-
mization writer’s code. This library, along with the libraries for SUIF, Simple-SUIF
and tcldot, contains everything that is needed to construct a VSSC compiler. The
VSSC library acts as a manager of the various sub-libraries it uses. It takes the
strengths of each sub-library and works around their implementation weaknesses
to produce a tightly integrated system. Figure 4.1 depicts those components of
the VSSC framework and how these components interact. Information on how to
obtain and install these packages can found in Section A.4.3 of Appendix A.

The next section describes the components of the VSSC framework and how
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Figure 4.1: Internal organization of VSSC framework

they integrate with each other.

4.3 Implementation of VSSC

Each of the components in Figure 4.1 provides a solution of one or more of the
design goals proposed in Section 4.1. The core of the VSSC framework is imple-
mented in C/C++. It would be possible to implement the functionality provided
by VSSC in any high-level programming language that can be linked with the

existing C/C++ libraries'.

4.3.1 Graphical User Interface

A primary component of the VSSC framework is the graphical user interface. This
component implements several of the design goals outlined previously. The GUI
allows the VSSC compiler to be “interactive” as well as providing the ability to

display the intermediate code and various graphs simultaneously. Visual changes

!The SUIF, Simple-SUIF, Tcl/Tk, and tcldot libraries are all C or C++ libraries



to the intermediate code and graphs can be animated. The GUI is also the key
component that allows the user to select which transformations to perform and in
what order to execute them.

Tel/Tk [28] [40], developed by John Ousterhout at the University of California,
Berkeley, is a scripting language. The Tcl/Tk graphical user interface is used to
implement VSSC’s GUI. It is a simple and portable toolkit that can be easily
integrated with C/C++ code. Tcl is the scripting language itself while Tk is an
extension to Tcl that provides X windows GUI development capabilities. Together,

they have become very popular for three reasons:

e Because the language is interpreted, there are no waits for long compilations.

Code can be tested immediately, yielding fast development cycles.

e Tk provides a high-level interface to the complicated X windows system.

Simple user interfaces can be created with just a few lines of code.

e Simplification of the development of the user interface allows the programmer

to concentrate more on the internal core of the application.

The VSSC framework includes an embedded Tcl/Tk interpreter, which pro-
vides the rest of VSSC library direct communication with the display and access
to the display components. Figure 4.2 shows the VSSC window displaying the
intermediate representation and flow graph of quicksort.

The VSSC GUI contains three main areas over which the user has control.
Figure 4.3 shows the first area (Current Status) which resides in the top left corner
of the VSSC interface. This area simply acts as a general information area. Since

VSSC allows the user to step through the optimization (much like a step in a



V3SC
File Cptimirations

Current Status

Intermediate

[ (O x]

Info

Current COptirnizaticn: Teat Routine BasicBlock 0. [
Procedurs: quidkacrt
Bagzic Block: )
; BasicBlock 1.
Undo Transfermation | Step T sle (.32 £T = 12, rl
hfls £7, L1
BasicBlock 2.
ret
BasicBlock 3.
Id:
lde  (s.32) £8 =1 =
sub (s, 32) t3 = rl, 8
cpy  (s.32) r3 = o
cpy  (s.32) rd = 2
ldc  {a. 32) tll = &8 + 0
ldc  (s.32) tll = 4
mul (s 32) t1l2 = 2, t11
add  (a.3%) t13 = t10, t1%
load (s.32) t1d = +t13
cpy (=, 32) rh = t14
BasicBlock 4.
I5:
BasicBlock 5.
I8:
1dc  (s.32) tlh =1
add (5. 32) tle = r3, t15
cpy (5. 32) rd = tlo
I
lde  (z.32) t17 = %3 + O
1de  ({s.32) t18 = 4
nul (5. 32) tld = 3, t18
add (a. 32) t20 = £17, t19
load (s.32) 21 = *t20
51 (s.32) t22 = t21, &
btru 22, L&
BasicBlock €.
=~ .~ s i
Transformation: 1 -

Figure 4.2: Screenshot of VSSC compiler




debugger), this first area contains two buttons that allow the user to be able to
step forward or undo an entire transformation. During each step, any number of
actions (ie adding/deleting instructions/graph nodes) can occur. The optimization

writer decides what happens during each step.

Current Status

Current Optimization: Test Routine
Procedure: guickzscort
Bagic Blodd

Figure 4.3: Current status component

The area below the Current Status area contains a graph widget. In this area
the optimization writer can create graphs. The most common types of graphs that
can be created are flow graphs, directed acyclic graphs (DAGs), and interference
graphs?. Each node in the graph widget can have arbitrary data associated with it.
This data is displayed when the user clicks on the graph node with the left mouse
button. Clicking in the box that contains the data hides it. Figure 4.4 shows a
sample graph component.

The last area, located on the right hand side of the screen, is a text widget
containing the Simple-SUIF intermediate code. The code presented in this widget
is usually contained within basic blocks (as in Figure 4.5).

The VSSC compiler contains several menus. The File menu provides the abil-
ity to quit the compiler, dump a copy of the graph currently being displayed to
a file, and enter Tcl/Tk commands directly. This last feature is a debugging tool

for extending the VSSC GUI component. The Optimizations menu lists the trans-

2Graphs of these types will be demonstrated in Chapter 5.2
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Figure 4.4: Graph component

formation routines registered and available in this VSSC compiler. Selecting an
entry in this menu causes that transformation to occur on the current state of
the intermediate code. During the execution of the transformation, this menu is
unavailable, because a new transformation cannot be started while another one is
in progress. Once the current transformation has completed, however, this menu
is again available. If a transformation is undone, this menu also becomes available,
since this action terminates the current transformation. Section 4.3.6 describes the
undo feature in more detail.

The Display Components component of the VSSC framework manages every-



BasicBlock 0. A%
BasicBlock 1:
sle (=, 32) tT = 2, rl
bfls £7, L1
BasicBlock 2:
ret
BasicBlock 3.
Id:
Lde  (s.32) td =1 ~
sub  (s.32) £0 = 11, t8
cpy  (5.32) rd = to
cpy (5. 32) 4 = 1l
1de (= 32) t10 = &8 + 0
Lde  (s.32) tll =
mul (=, 32) t12 = 2, tll
add (= 32) t13 = £10, t1%2
load (s.32) t14 = #£13
cpy  (5.32) S = t14
BasicBlock 4.
L5:
BasicBlock 5:
18:
lde  (s.32) £1E =
add  (s.32) tle = r3d, 15
cpy (5. 32) rd = tl6
1&:
1de (= 32) t17 = &8 + 0
lde (s 32) tig =
mul (= 32) t19 = r3, tl8
add (2. 32) £20 = t17, t19
load (s.32) 21 = *t20
sl (s.32) £22 = t21, 15
htru 22, L8
BasicBlock 6:
L7 £

Figure 4.5: Intermediate Code component

thing that is displayed on the screen and updates the display depending on com-
mands it receives from each entry in the transformation log. The transformation

log is described in detail in Section 4.3.5.

4.3.2 Incorporating tcldot into VSSC

A graphical user interface for a compiler tool should be able to display the types
of graph data structures that are commonly used in compiler tools. Applications
of graph visualization are discussed in [27], while the issue of graph visualization

from the viewpoint of compilers is discussed in detail in [33].



Rather than implement custom graph drawing algorithms within the VSSC
GUI, we chose to integrate an existing graph drawing package in the VSSC frame-
work. We chose to use tcldot [22], which is part of a larger package, DOT [21],
developed by Eleftherios Koutsofios and Stephen C. North at AT&T Bell Labora-
tories.

tcldot is a version of DOT that can be used to produce graphs in a Tk canvas
widget. VSSC embeds tcldot within its framework and uses it to draw graphs on
a canvas located in the Graph Component of the GUL The DOT/tcldot API [22],
part of which is shown in Table 4.2, includes many commands such as creating
and destroying graph nodes and edges between nodes. The VSSC library provides
a Graph class that acts as a wrapper for tcldot and allows the programmer to
control the information being displayed in the graph using C/C++ code. VSSC’s
graph class also allows the programmer to annotate information with each node.
This information is displayed in a pop-up box whenever the user clicks on the node

in the graph.

4.3.3 SUIF

The SUIF component provides two functions. First, it converts the C input file
into the SUIF intermediate format. This action is performed by calling the SUIF
compiler, which performs all the front end translation. This functionality is im-
portant in meeting the design goal of using a simple intermediate format. After
this first translation process, the Simple-SUIF component of VSSC converts the
the intermediate format generated by the SUIF compiler into Simple-SUIF. This
process will be described in Section 4.3.4.

The other function provided by the SUIF library is the use of data structures



Commands Purpose

Creates a new graph of type graph, digraph,
graph strict, or digraph strict. A graph
handle is return that is used on all future ref-
erences to this graph.

dotread fileHandle Reads a graph from a file handle.

Saves a graph to a file in one of several for-
mats.

dotnew graphtype

graphHandle dotwrite fileHandle

Adds a node to a graph. Returns a handle for
that node.

Adds an edge to a graph. Returns a handle
for that edge.

graphHandle addnode

graphHandle addedge

handle delete Deletes a node, edge, or entire graph.
handle setattributes Set the attributes for a node, edge, or graph.
graphHandle layout Computes layout of nodes and edges.

Returns list of Tk canvas commands which

iphHandle d .
graphiianate render can be evaled to draw the graph in a canvas.

Table 4.2: Some commands in the tcldot API

to help implement the other components of the VSSC framework.

Writing compiler optimizations (or any large project) requires that you manage
complex data structures. Commonly used data structures in compiler optimiza-
tions and compiler tools include lists, trees, arrays, bit sets, and graphs.

There are many popular data structure libraries that work well. One such
library is LEDA [26]. LEDA was considered for use in VSSC during the design
phase, but it was rejected because it would add another package to the list of
packages VSSC already requires.

Fortunately, the SUIF libraries include most of the commonly used data struc-
tures needed in compiler tools. The VSSC framework uses many of the generic data
structures provided by SUIF. These data structures are described in more detail in

section A.5.5 of Appendix A and Chapter 11 of the SUIF Library Documentation



37].

4.3.4 Simple-SUIF

One of the major design goals of the VSSC framework is to use an intermediate
format that is simple, easy to read, and familiar looking. As described in section
2.4.3, Simple-SUIF acts as a wrapper for SUIF by providing a simplified interface
to the intermediate format generated by the SUIF compiler. When using Simple-
SUIF, the SUIF intermediate format remains the same internally, but differs in the
way the programmer interacts with it.

The Simple-SUIF component in the VSSC framework provides several different
important functions. First it converts the SUIF format generated by the SUIF
component into the Simple-SUIF format. This is done by making several calls to
the SUIF program, porky, which performs several types of code transformations.
porky is used to remove all of the high-level construct information from the SUIF
intermediate format (eg. loops). The result of this transformation is a more low-
level intermediate format that can be converted into Simple-SUIF instructions by
the Simple-SUIF component.

The second job of the Simple-SUIF component is to manage how the Simple-
SUIF instructions are used by the programmer writing the optimization. When a
registered optimization is selected to run, this component uses the Simple-SUIF
library to read in the intermediate format from a file, convert it to Simple-SUIF
using porky, and then passes a list of instructions to the registered optimization
routine. This routine can then do whatever it wants with the list. The only require-
ment is that the routine return a doubly-linked list of Simple-SUIF instructions

back to the Simple-SUIF component. The returned linked-list is then written back
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Figure 4.6: Simple-SUIF component passing lists of Simple-SUIF instructions one
at a time for each function to an optimization routine.

Component

out to a file in SUIF format. This file is re-read when a subsequent optimization
is performed. If a structurally correct doubly-linked list is not returned, the entire
framework will exit with an error. It is the programmer’s responsibility to ensure
that a correct list is returned.

If the intermediate code contains more than one function, each function con-
sisting of a list of Simple-SUIF instructions is passed to the selected optimization
routine sequentially as shown in Figure 4.6. Simple-SUIF processes one function
to completion before the next one is processed. This design simplifies the structure
for the compiler writer but severely limits the ability to perform interprocedural
analysis®.

Finally, the Simple-SUIF library includes routines to help with the manage-
ment of Simple-SUIF instructions. It includes routines for creating, removing, and

determining the format of Simple-SUIF instructions.

4.3.5 Transformation Log

Each transformation is decomposed into a set of steps. These steps are defined by
the optimization writer and any number of actions can occur between steps. Typ-
ically though, only one or two major actions (ie adding or deleting an instruction

or graph node) are performed during each step. All the steps for a single transfor-

3Though standard SUIF provides this ability through the use of annotations, Simple-SUIF
does not.



mation are stored in one transformation log which acts as a recording of what to
display in the graphical user interface. This log, implemented as a linked-list, is
shown in Figure 4.7. It is similar in design to the Optimization List used in xvpodb

[5] except that each log entry can have more than one event.

Transformation Log

Display Commands

!
<—¢ D\ Tranformation
= )< Steps

!
e )

{

AN J

Figure 4.7: Internal organization of the transformation log

When the user starts a transformation within a VSSC compiler, the transfor-
mation does not occur in real-time but executes to completion in the background
while all VSSC transformation actions and defined steps are stored in a new trans-
formation log. The VSSC GUI plays this log by executing its display actions for
the user. When the user first selects the step button, the first step in the transfor-
mation log is performed; usually, the first step involves displaying the basic blocks
of intermediate code in the text widget. Future selections of the step button cause
subsequent steps in the transformation log to be processed. When the last step
in the transformation log is executed, the transformation is finished and a pop-up
window appears notifying the user. At this point, the user has to ability to perform
another transformation on the current state of the intermediate code or undo the

effects of this last transformation and revert back to the previous version of the



intermediate code.

4.3.6 Undo Transformation

One of the design goals of VSSC is to provide the ability to undo transformations.
This capability yields benefits in two situations. First, it can be helpful when an-
alyzing two different implementations of the same optimization (e.g.two different
implementations of dead code elimination). One optimization can be performed
and the results observed and then that transformation can be undone and another
implementation of the transformation can be performed. The user can then com-
pare the results of the two transformations. Another situation in which undoing
transformation is extremely valuable is when a researcher is analyzing the phase-
ordering problem. The researcher can perform an ordering of transformations and
see the result. All those transformations can be then undone and a different or-
dering of those transformations can be performed producing a possibly different
result than the first ordering.

This feature is easy to incorporate into the VSSC framework because of the
flexibility on the overall design. Since the SUIF format, and therefore Simple-
SUIF, is always stored in a file, VSSC keeps the results before and after each
transformation in a SUIF file. This organization acts as a stack of transformations.
When the user requests to undo a transformation (which can happen at any time
during the use of a VSSC compiler, even during the middle of a transformation), the
current intermediate code is forgotten and the previous version of the intermediate
code is popped off the stack. When the user selects the next transformation to
execute, the Simple-SUIF component of the VSSC framework uses the previous

version of the intermediate format. A VSSC compiler allows the user to undo



transformations all the way back to the beginning, since the VSSC framework
remembers all versions of the intermediate code during a single execution of a

VSSC compiler.

4.4 Programmer Interface

The VSSC framework is a library that is linked in with the optimization writer’s
code. When this library is linked in, the resulting executable is a new VSSC com-
piler. This compiler gives its users access to those code transformations/optimizations
that were written by the optimization writer and subsequently registered with the
VSSC library. The VSSC compiler only knows about those code transformations
that have been registered with the VSSC library. The process of registering re-
quires the optimization writer to include code that calls a C function that registers
a function to be called whenever the VSSC compiler user wishes to perform that
transformation. This process is similar to a callback function, which is commonly
used in programming with graphical user interfaces. An example of this registra-
tion process can be found in section 4.5.

The typical organization of a VSSC compiler source code consists of a main
function which registers the various optimizations and a set of optimization rou-
tines. The main function concludes with a call to vssc_init_suif. This last
procedure call never returns, so the programmer should not include any code after
it, and performs a number of tasks.

First, it initializes the SUIF and Simple-SUIF subsystems. This includes con-

verting the C source code being compiled into a Simple-SUIF format. Secondly,



vssc_init_suif parses the command-line flags shown in Table 4.3%. A VSSC com-
piler has the ability to run in two different modes. The first mode is the normal
mode that pops up a graphical user interface and allows the user to perform the
transformations available in the VSSC compiler in any order. The other mode
allows the VSSC compiler to run without a graphical user interface. When it is
run without a graphical user interface, the user must specify with command-line
flags which transformations to perform and what order to perform them in. This
text-only mode does not allow the user to undo transformations. Also, since this
mode is non-graphical, very little information is displayed as the transformations
are performed. The results of each transformation are stored in a separate file.
The user can then use the Simple-SUIF command, printsimple, to look at each
transformation result and track the changes made in the source code from it orig-
inal form to its resulting form®. Therefore, when parsing the command-line flags,
the VSSC system needs to determine the mode in which to execute, and if run in
non-graphical mode, it needs to determine which transformations the user wants to
perform and whether or not these transformations exist in the VSSC compiler. If
being run in graphical mode, vssc_init_suif starts up the graphical user interface
and initializes its components.

To access the VSSC API, the programmer needs to include a single header file
for each package: VSSC, SUIF, and Simple-SUIF. The VSSC compiler also needs
to be linked with the libraries for SUTF, Simple-SUIF, Tcl/Tk, tcldot, and VSSC
libraries. Section A.4.6 in Appendix A describes in more detail the sample opti-

mization in the next section as well as instructions on how to download a sample

4Example uses of these command-line flags are shown in Section A.5.3 in Appendix A.
"These files are also generated when the VSSC compiler is run in graphical mode.



-v | Executes the VSSC compiler in graphical mode.

When the VSSC compiler is executed in non-
graphical mode each -0 flag specifies what opti-

0 mization to perform. When this flag is used, the
-v cannot be used.

Executes the VSSC compiler in debug mode. This

4 allows a debugger (e.g. GDB) to be used to debug

code in a transformation. The compiler can be in
either graphical or non-graphical mode.

Table 4.3: Command-line flags accepted by a VSSC Compiler

optimization that includes a SUIF-like Makefile to produce a VSSC compiler with

all the required libraries linked in.

4.5 Sample Optimization

In this section, we present sample code that shows a sample optimization and how
it gets registered. Calls to GUI->step() signify the end of a step. VSSC API
commands executed between calls to GUI->step() are those that are executed
during a single step within a transformation executed in a VSSC compiler. Figure

4.8 below shows this example code.

4.6 Summary

In this chapter, the design goals of the VSSC framework were presented along with
an explanation of how they were implemented. The organization of the VSSC
framework was then described followed by an explanation of the framework’s com-
ponents. The SUIF compiler and Simple-SUIF were used to implemented the

intermediate format and the ability to selectively apply transformations to the in-



#include <stdio.h>
#include <vssc_simple.h>

#include "BasicBlock.h"
#include "FlowGraph.h"

simple_instr *dead_code(simple_instr *inlist, char *procedure_name)

! FlowGraph *FG;
/* Set what the procedure name is and what basicblock we’'re looking at. */
GUI->set_procedure_name (procedure_name) ;
GUI->set_basicblock_number (BLANK) ;
GUI->set_graph_type("Flow Graph");
fprintf (stderr, "Doing deadcode elimination\n");
FG = new FlowGraph(inlist, procedure_name);
/* Optimization code */
GUI->step();
/* Optimization code */
GUI->step();
/* Optimization code */
GUI->step();
/* Etc. */
return FG->instructions_head;
3
int main(int argc, char *argv([])
¢ vssc_register_opt(”Dead Code Elimination", "deadcode", dead_code);
vssc_init_suif(argc, argv);
}

Figure 4.8: The beginnings of a sample optimization




termediate code. Tcl/Tk was used as the language to implement the graphical user
interface. Finally, the DOT drawing package was used to allow the GUI to display
various types of graph data structures. The chapter concluded with a desciption

of the VSSC programmer interface and a sample optimization.



Chapter 5

VSSC Framework Examples

5.1 Introduction

A variety of compiler analysis and transformations as well as a diverse collection
of graphs typically found in compiler transformations have been implemented to
demonstrate the capabilities of the VSSC framework. This chapter will describe
some transformations to show the capabilities provided by the VSSC framework.
Section 5.2 shows the various graphs that have been implemented. These include a
flow graph, directed acyclic graph, and a register-interference graph. An example
in which live-variable analysis is performed followed by dead-code elimination is
shown in Section 5.3. Finally, Section 5.4 shows an example in which available-
expression analysis is performed followed by copy propagation. The algorithms

discussed in this section are described in [1] and [30].

o6



5.2 Example Graphs

Graph data structures are used throughout a compiler. The front end uses a parse
tree (an acyclic graph with a single node recognized as the “root”) when parsing
the source code during syntax analysis. During syntax-directed translation, syntax
trees are used to represent language constructs. The syntax tree is traversed in the
front end to construct the intermediate representation. The back end of a compiler
also uses a variety of graph data structures. This section provides examples that
show how three different graph data structures can be used in the VSSC framework

to convey information related to the intermediate code.

5.2.1 Flow Graph

A flow graph illustrates the flow-of-control information for an individual function.
Each node in the graph represents a basic block!'. There is a directed edge in the
graph from block B, to block B; if B; can immediately follow B, in some execution
sequence. In this scenario, B; is a successor of B; while B; is a predecessor of
Bj. Therefore, the directed edges in a flow graph represent edges to successors. It
should also be noted that a basic block can have multiple predecessors and multiple
SUCCEsSOors.

Before a flow graph can be constructed, the basic blocks of a procedure need

to be determined. Algorithm 9.1 in [1] described a two-step method:

1. First determine the set of leaders, the first statements of basic blocks. The

rules used are the following:

' A basic block is a maximal sequence of consecutive statements in which flow of control enters
only at the beginning of the block and exits only at the end of the block.



(a) The first statement (in the procedure) is a leader.

(b) Any statement that is the target of a conditional or unconditional goto

(essentially a control-successor) is a leader.

(c) Any statement that immediately follows a goto or conditional goto state-

ment is a leader.

2. For each leader, its basic block consists of the leader and all consecutive
statements after it, up to, but not including, the next leader (or the end of

the procedure).

Once the basic blocks have been found, the successors of an individual block
can be determined by looking at the last statement in the block and determining
the possible blocks to which control can flow. In constructing a flow graph, the

following simple algorithm can be used:

1. For each basic block found in the previous algorithm, create a node in the

flow graph to represent that basic block.

2. For each basic block B;, determine the successor blocks by looking at the

last instruction

(a) For each successor block B;, create an edge in the flow graph from B;
to B;. In the data structure representing B;, remember that B; is a
successor and in the data structure representing B;, remember that B;
is a predecessor. This information is used in various data-flow analysis

algorithms, including those discussed in Sections 5.3 and 5.4.



int main()
{
int A[] = {4,8,2,7,1,13,19,11,3,0,
18,12,17,9,16,10,15,14,6,5};
int i, j, temp;
for (i=18; i>=0; i--)
{
for (j=0; j<=i; j++)
{
if (A[31 > ALj+11)
{
temp = A[j];
A[j]1 = ALj+11;
A[j+1] = temp;
¥
¥
¥
¥

Figure 5.1: Example C program of bubblesort

Procedure main: lde (a.32) t32 = &h + 0
BASICBLOCK O: ldec (s.32) t33 = 4
mul (s.32) t34 = r2, t33
BASICBLOCK 1: lde (s.32) 35 = 4
ldc (a.32) t4 = &__tmp_string 0 + 0 add (s.32) t36 = t34, t35
ldc (a.32) t56 = %A + 0 add (a.32) t37 = t32, t36
mcpy *t5 = *t4 mcpy *t31 = *t37
ldc (s.32) t6 = 18 ldc (a.32) t38 = &A + 0
cpy (s.32) rl = t6 ldc (s.32) t39 = 4
mul (s.32) t40 = r2, t39
BASICBLOCK 2: ldc (s.32) t41 = 4
L9: add (s.32) t42 = t40, t41
ldc (s.32) t7 =0 add (a.32) t43 = t38, t42
sle (s.32) t8 = t7, ril str *t43 = r3
bfls t8, L6
BASICBLOCK 6:
BASICBLOCK 3: L5:
lde (s.32) t9 =0 L3:
cpy (s.32) r2 = t9 lde (s.32) t44 = 1
add (s.32) t45 = r2, t44
BASICBLOCK 4: cpy (s.32) r2 = t45
L7: sl (s.32) t46 = r1, r2
ldc (a.32) t10 = &A + 0 bfls t46, L7
ldc (s.32) t11 = 4
mul (s.32) t12 = r2, ti1 BASICBLOCK 7:
ldc (s.32) t13 = 4 L4:
add (s.32) t14 = t12, t13 jmp __done8
add (a.32) t15 = t10, t14
load (s.32) t16 = *t15 BASICBLOCK 8:
ldc (a.32) t17 = &A + 0 L6:
ldc (s.32) t18 = 4 lde (s.32) t47 = 0
mul (s.32) t19 = r2, t18 cpy (s.32) r2 = t47
add (a.32) t20 = t17, t19
load (s.32) t21 = *t20 BASICBLOCK 9:
sl (s.32) t22 = t16, t21 __done8:
bfls t22, L5 L1i:
lde (s.32) t48 = -1
BASICBLOCK 5: add (s.32) t49 = r1, t48
ldc (a.32) t23 = &A + 0 cpy (s.32) rl = t49
ldc (s.32) t24 = 4 lde (s.32) t50 = 0
mul (s.32) t25 = r2, t24 sl (s.32) t51 = r1, t50
add (a.32) t26 = t23, t25 bfls t51, L9
load (s.32) 27 = *t26
cpy (s.32) r3 = t27 BASICBLOCK 10:
ldc (a.32) t28 = &A + 0 L2:
ldc (s.32) t29 = 4 lde (s.32) t62 = 0
mul (s.32) t30 = r2, t29 ret 52
add (a.32) t31 = t28, t30

Figure 5.2: Simple-SUIF version of bubblesort partitioned into basic blocks



Figure 5.1 shows an implementation of the bubblesort algorithm. The Simple-
SUIF version of this code partitioned into basic blocks by the above algorithm
is shown in Figure 5.2. It is not uncommon for a small input source file to be
represented by many times more lines of intermediate code. Finally, the flow graph

representing the flow-of-control between these basic blocks in shown in Figure 5.3.

Figure 5.3: Flow graph of basic blocks for bubblesort example shown in Figure 5.2

5.2.2 Direct Acyclic Graph

Directed acyclic graphs (DAGs) are useful data structures in compiler transfor-
mations. A DAG usually represents a single basic block and contains information
depicting how the value computed by each statement in the basic block is used in
subsequent statements of the same block. This information can be used to find

common subexpressions (those expressions that are computed more than once)



as well as determining which statements in the block could have their value used

outside the block. Nodes within a DAG are labeled using the following rules [1]:

1. Each leaf in the graph is labeled by a unique identifier, which is either a

constant value such as “4” or “56”, a register, or a symbol name.

2. Interior nodes are labeled by an operator symbol. These nodes represent
computations with one or two operands. For such a node, there is a directed
edge from the node to each node which represents the current value of each

operand.

3. Nodes are optionally given a sequence of identifiers for labels. Non-leaf nodes
represent, values that have been computed. This sequence of identifiers rep-
resents those identifiers which have the same computed value. For example,
if there is an interior node labeled “x” and the current basic block contains
several statements each of which computes 2 % 3, each destination register in
these computations will be in the identifier list for the same “x” node because

each of those registers represents the same computed value.

For an example showing the construction of a DAG, consider the following
sequence of Simple-SUTF instructions (basic block #6 in the bubblesort example

in Figure 5.2):

ldc t44 =1

add t45 = r2, t44
cpy r2 = t4b5

sl t46 =r1, r2

The steps taken in constructing the DAG representing this sequence of instruc-

tions (see Figure 5.4) are:



1. 1dc t44 =1

(a) Create a leaf node labeled “1”.
(b) Add “t44” to the identifier list of the newly created node “1”.

2. add t45 = r2, t44

(a) Create a leaf node labeled “r2”.

(b) Create a parent node “+” with edges to the children nodes “r2” and
“1” (“1” is the node which contains the current value of “t44”).

(c) Add “t45” to the identifier list of the newly created node “+7.

3. cpy r2 = t4b

(a) Add “r2” to the identifier list of the node which represents the current
value of “t45” (node “+7).

4. 81 t46 = r1, r2

(a) Create a leaf node labeled “r1”.

reate a parent node “<” with edges to the children nodes “r1” an
b) Creat t node “<” with edges to the child des “r1” and
“+”7 (“+” is the node which contains the current value of “r2”).

(c) Add “t46” to the identifier list of the newly created node “<”.

Figure 5.4: Result of DAG construction for basic block #6 in bubblesort example

Slightly more complex DAGs of basic blocks 4 and 5 from the bubblesort exam-

ple (Figure 5.2) are shown in Figures 5.5 and 5.6. These figures also demonstrate



VSSC’s ability to associate arbitrary text with each individual node in a graph.
In the graphs shown, the identifier list indicating which registers contain the value

computed at this node is displayed when a node is selected?.

id 1ist tED < i@ 2ist t22

ob

id 13st t12, t19 |

e
<

Figure 5.5: Directed acyclic graph for basic block #4 in bubblesort example

@1& 1ist r3 |
id 1ist £36, 42 |

*  id 1ist t25, t£a0,
t34, 40

tﬁ:ia iist t24, 29,
£33, 35, t39, t41

Figure 5.6: Directed acyclic graph for basic block #5 in bubblesort example

In Figure 5.6, the “x” node has the registers t25, t30, t34 and t40 in its iden-

tifier list. This information indicates that the same expression, r2 x4, is computed

2These figures were generated using the VSSC compiler’s ability to dump the current contents
of the graph to a postscript file.



four times within this basic block. Only the first of these computations is really
needed, while the other three are wasteful in computing a value that has already
been computed. Common subexpression elimination could now be performed to
replace these last three “common subexpressions” with a reference to the register
that contains the result of the first occurrence of the expression. This transfor-
mation is useful in reducing execution time when the common subexpressions are

multiplies or divides, which are normally high latency operations.

5.2.3 Register-Interference Graph

A register-interference graph is used to implement register allocation via a graph-
coloring method. The nodes in this graph are symbolic registers and an edge
connects two nodes (registers) if one register is live at a point where the other is
defined. In order to make these edges, live variable analysis needs to be performed
first.

Figure 5.7 shows the register-interference graph for the bubblesort Simple-SUIF

code shown in Figure 5.2.

Figure 5.7: Register-interference graph for bubblesort example



5.3 Example Optimization:

Elimination of Dead Code

5.3.1 Dead Code Elimination

Dead-code elimination is one of the most common optimizations. Simply stated,
dead-code optimization removes code that is dead. Code that cannot be reached
along any path of execution is considered dead. Also, a statement in the interme-
diate code is dead if it calculates a result that will never be used. Since the result
is never used, one can remove this entire statement without changing the meaning
of the program. It can determine whether the destination of a statement is dead
by performing live variable analysis. A variable that is not live is considered dead.

The next section describes how to compute liveness information.

5.3.2 Live Variable Analysis

Performing live variable analysis provides important information about the vari-
ables (registers) in the intermediate code. For any point in the intermediate code,
live variable analysis can determine for any variable, whether or not that variable
is used in any of the possible paths in the flow graph from that point. If there
is a future use of a variable, then that variable is considered live at that point.
Otherwise, it is considered dead there, because its value will not be used again.
The live-variable analysis algorithm uses bitset data structures to hold liveness
information. Each basic block contains the bitsets shown in Table 5.1. The bits in
a bitset map directly to the variable with the same number. For example, bit 4 in

a bitset refers to register 4.



It is important to note that the Simple-SUIF intermediate representation [36]
guarantees that a temporary register is defined only once and it is used only once
within the same basic block in which it was defined. For this reason, live-variable

analysis only keeps track of Simple-SUIF pseudo registers.

Bitset Purpose

The set of variables live at the entrance of
the basic block.

The set of variables live at the exit of the
basic block.

The set of variables assigned values in the
def | basic block prior to any use of that variable
in the basic block.

The set of variables whose values may be
use used in the basic block before any defini-
tion of that variable in the basic block.

m

out

Table 5.1: Bitsets used during live variable analysis

Given the def and use bitsets computed for each basic block, the algorithm][1]
in Figure 5.8 will perform live variable analysis computing the in and out bitsets

for each basic block.

foreach basic block B
B.in = Empty Set

while there are any changes to any B.in’s

{
foreach basic block B
{
B.out = union of all S.in’s for each successor S of B
B.in = union of B.use and (B.out - B.def)
}
}

Figure 5.8: Algorithm for live variable analysis

Essentially, for each basic block B, variables that are live at the end of B are



those that are live at the entrances to some successor block of B. Those variables
that are live at the entrance to B are those which have a use in B plus those that
are live at the exit of B and are not defined (killed) within B. This algorithm
propagates liveness information backwards through the flow graph until no new

information gets propagated, i.e., stability has been achieved.

Figure 5.9: Various results after performing live variable analysis

Figure 5.9 shows the final bitset information for several basic blocks in the

intermediate representation of the bubblesort example.

5.3.3 Eliminating Dead Code in Bubblesort Example

Figure 5.10 shows a simple version of the dead-code elimination algorithm similar
to the algorithm in [30].

More often than not, the source program is not responsible for dead code that
appears in the intermediate code. The dead code may actually appear as a result

of previous code transformations or by the way the front end converts the source



foreach Basic block B
{
Bitset currentlylLive = B.out
foreach instruction I in B from last to first

{
if I.dest is currentlyLive
{
Remove I.dest from currentlyLive
Add TI.srcl to currentlylLive
Add TI.src2 to currentlylLive
}
else
remove instruction I since its destination is dead
}

Figure 5.10: Algorithm for the removable of dead code

language into the intermediate representation. An example of this occurred when
the bubblesort C code was translated into Simple-SUIF intermediate code by the
front end of the SUIF compiler. Basic block #8 of the intermediate representation
contains instructions that simply load the constant 0 into register r2. Performing
dead-code elimination removes these two instructions from the basic block. It is
not important to understand why this code was generated in this example is not
important. What is important is to understand why dead-code elimination decided
to remove these two instructions.

Figure 5.11 shows the initial information determined by live-variable analysis
for basic block #8 in the bubblesort example. This information indicates that
only register rl is live at the beginning and exit of the basic block. Register r2
is defined within the block, possibly making it live, but since the out bitset does
not contain r2, the dead-code elimination algorithm knows that there isn’t of use
of r2 after this block, and therefore it is dead. The statement that defines r2 is

removed, which causes the only use of register t47 to disappear so the preceding



statement which defines t47 can also be removed.
The VSSC API provides the ability to animate the deletion of an instruction.
In this case, the instructions will flash red before they are removed. Other features

provided by he VSSC API are described in Section A.4.2 of Appendix A.

f

Figure 5.11: Live-variable analysis information for basic block #8 in bubblesort
example.

5.4 Example Optimization:

Propagating Available Copy Instructions

5.4.1 Copy Propagation

At a point in the program, in which X is a source operand, if there exists a copy
instruction (register-to-register copy) ®* X = Y that is currently available, then the
operand X at this point in the intermediate code can be replaced with Y since
X =Y is available. Determining the availability of an instruction is discussed
in Section 5.4.2. This valid transformation can cause many copy instructions to
become dead. They can then be removed by dead-code elimination.

A slightly different version of copy propagation is presented in [30]. In this

version, a modified version of available-expression analysis is performed. Instead of

3In Simple-SUIF, this instruction is the CPY_OP instruction, which copies the value in the srci
register into the dest register.



looking for available expressions, available instruction forms are discovered. Given
an instruction, X =Y + Z, its instruction form is that instruction itself. Other
occurrences in the intermediate code of that same instruction are occurrences of
that instruction form.

Figure 5.12 shows the algorithm for replacing operands with the destinations
of available copy instructions. Available-code analysis must be performed first in

order to determine which copy instructions are available.

foreach instruction form i
{
Bitset K[i] = the set of all instruction
forms of which i’s destination is an operand
3
foreach Basic block B
{
Bitset currentlyAvailable = B.out
foreach instruction I in B from last to first
{
if there exists an available copy instruction whose dst=I.srcl
I.srcl = dst
if there exists an available copy instruction whose dst=I.src2
I.src2 = dst
if (!currentlyAvailable[I’s form])
{
currentlyAvailable -= K[I’s form]
if ((I.dst !'= I.srcl) && (I.dst !'= I.src2))
currentlyAvailable += I’s form
3
}
}

Figure 5.12: Copy propagation algorithm



5.4.2 Available Code Analysis

Live-variable analysis dealt with the liveness of individual variables. However, not
all analysis look solely at individual variables. Available-code analysis (similar
to available-expression analysis) looks at statements, which in Simple-SUIF may
contain one or more operands and possibly a destination. This analysis is used to
determine for a particular point in the intermediate code, which statements are
available at that point. A statement is available at a point in the intermediate
representation if on all paths leading up to this point there is an occurrence of
that instruction’s form and the instruction’s operands and destination are not
subsequently defined along the paths from that occurrence to the given point.
This analysis algorithm uses bitset data structures to hold availability informa-
tion. Each basic block contains the bitsets shown in table 5.2. The universal bitset

U is also defined to contain all of the unique instruction forms in the intermediate

code.
Bitset Purpose
in The set of instruction forms in U available
' at the entrance of the basic block.
oul The set of instruction forms in U available

at the exit of the basic block.

The set of instruction forms in U that oc-
gen cur in B and whose operands are not killed
before the exit of B.

The set of instruction forms in U that have
kill | an operand that gets defined (killed) in this
basic block.

Table 5.2: Bitsets used during available code analysis

Given the gen and kill bitsets computed for each basic block, the algorithm



(a minor variant of available-expression analysis)[1] in Figure 5.13 can be used
to compute the in and out bitsets for each basic block, propagating availability

information as far as possible at the same time:

InitialB.in = Empty Set
InitialB.out = InitialB.gen

For B != InitialB
B.out = U - B.kill

change = true

while (change == true)

{
change = false
foreach basic block B != InitialB
{

B.in = intersection of all P.out’s for each predecessor P of B
oldout = B.out
B.out = union of B.gen and (B.in - B.kill)
if (B.out != oldout)
change = true

Figure 5.13: Algorithm for available code analysis

Essentially, for each basic block B, statements that are available at the be-
ginning of B are those that are available at the exits of each of the predecessor
blocks of B. Those statements that are available at the exit of B are those that are
generated in B along with those that are available at the entrance of B and are not
killed within B. The above algorithm propagates availability information forward

through the flow graph until no new information gets propagated.

5.4.3 Example of Copy Propagation

In this section, a different, shorter example is used instead of the bubblesort used

in previous sections. The code in this example, shown in Figure 5.14, is not meant



to perform any useful task other than to serve as example code for the following

discussion. However, it has many copy instructions that are available.

int main() Procedure main:
{ BASICBLOCK 0:
int i, j, k;
BASICBLOCK 1:
i=4; ldc (s.32) t4 = 4
jo=i; cpy (s.32) rl = t4
if (j == 3) goto L1; cpy (s.32) r2 = ri
k = 2; lde (s.32) t5 = 3
seq (s.32) t6 = r2, t5
L1: bfls t6, L2
i= j+7;
BASICBLOCK 2:
while (1) jmp L1
i++;
b BASICBLOCK 3:
L2:
ldc (s.32) t7 = 2
cpy (s.32) 3 = t7
BASICBLOCK 4:
Li:
lde (s.32) t8 =7
add (s.32) t9 = r2, t8
cpy (s.32) rl = t9
BASICBLOCK 5:
L6:
ldc (s.32) t10 = 1
add (s.32) t11 = r1, t10
cpy (s.32) rl = t11
L4:
jmp L6
BASICBLOCK 6:
L5:
L3:
ldc (s.32) t12 = 0
ret t12

Figure 5.14: C and Simple-SUIF versions of copy propagation example

Figure 5.15 shows the bitset information for several basic blocks in the interme-
diate representation of the simple example program after available-code analysis
has been performed. The bits in the bitsets used in this analysis do not refer to
registers as they did in live-variable analysis. Instead they refer to instruction
forms. Each unique instruction form in the intermediate presentation is assigned a
different id, which is the bit used to represent that form in the bitsets. When the
node for basic block 0 is clicked on, a mapping appears in the data window that

shows the id assigned to each unique instruction form.



Form (8): cpy
(s.38) rl = £l11
Form (¥): add

I El, 2, 3
ouT: (1, 2, 3, 4)
- BasicBlock: 4

Figure 5.15: Various results after performing available expression analysis



When the copy-propagation algorithm in Figure 5.12 is performed, two instruc-
tions end up having one of their sources replaced by the destination of an available
copy instruction. Figure 5.16 shows that an instruction in basic block #1 and

an instruction in basic block #4 had a source register changed because the copy

instruction, cpy (s.32) rl = t4 was available.
Lde (5. 32) td = 4
cpy (s, 32) rl = t4
cpy (s, 38) r2 = rl
lde  (s.32) t5 = 3
seq (3.32) #=r11t5
bfls t6, LZ
Il:
ldc (= 32) £ =7
add (5.32) #9=r1, 18
cpy  hs. 32 rl = £9

Figure 5.16: Instructions that changed as a result of copy propagation on example
in Figure 5.14

5.5 Example: Register Allocation

Once the register-interference graph for a procedure has been constructed, register
allocation can be performed using graph coloring. Graph coloring refers to the
process of assigning a color to each node in the graph in such a way that no two
adjacent nodes have the same color. The number of colors available is equal to
the number of physical machine registers and each color maps to an individual
machine register. If the graph can be colored, this means that all interfering

symbolic registers can be assigned different physical machine registers. In other



words, two symbolic registers that have overlapping live ranges will not collide,
because they will be stored in two different physical machine registers.

The problem of graph coloring is NP-complete. However, several heuristic algo-
rithms exist. One such heuristic is Chaitin’s [6] graph coloring heuristic. Assuming
that the register spilling is not being performed and the number of physical ma-
chine registers is k, this heuristic can be implemented by applying the algorithm

shown in Figure 5.17 to an existing register-interference graph.

While there are still nodes left in the graph

{
If there exists a node n with less than k neighbors
{
push n onto a stack
remove n and its edges from the graph
}
else
return (graph cannot be colored using k colors via this heuristic)
}

/* Graph is k-colorable, now assign the colors */

While the stack is not empty

{

Remove node n from the stack

Reinsert node n and its edges into the graph

Assign n a color that is different from those colors of its neighbors
}

Figure 5.17: Graph-coloring heuristic algorithm for register-interference graph

For this example, we use the simple program shown in Figure 5.18. Before per-
forming register allocation, we must first construct the register-interface graph,
which is explained in Section 5.2.3. Figure 5.19 shows the resulting register-

interface graph for this example.



int main(int argc, char xxargv) Procedure main:
{ BASICBLOCK 0:
int i, j, k;
BASICBLOCK 1:
j=1; ldc (s.32) t6 = 1
for (i=0; i<=23; i++) cpy (s.32) r4 = t6
{ ldc (s.32) t7 = 0
o= (k*k)+(i+]); cpy (s.32) r3 = t7
¥
3 BASICBLOCK 2:
L3:
mul (s.32) t8 = r5, b
add (s.32) t9 = r3, r4
add (s.32) t10 = t8, t9
cpy (s.32) r4 = t10
Li:
ldc (s.32) t11 = 1
add (s.32) t12 = r3, til
cpy (s.32) r3 = t12
lde (s.32) t13 = 23
sl (s.32) t14 = t13, r3
bfls t14, L3
BASICBLOCK 3:
L2:
ldc (s.32) t15 = 0
ret t15

Figure 5.18: C and Simple-SUIF versions of register allocation example

Figure 5.19: Register-interference graph for simple example in Figure 5.18



Assuming that our target architecture contains 32 integer registers, Figure 5.20
shows the intermediate code after the register allocation is performed using the

graph-coloring heuristic described in Figure 5.17.

Procedure main:
BASICBLOCK O:
BASICBLOCK 1:
ldc (s.32) mo = 1
cpy (s.32) m0 = m0
ldc (s.32) ml =0
cpy (s.32) ml = ml
BASICBLOCK 2:
L3:
mul (s.32) m2 = m3, m3
add (s.32) m0 = ml, m0
add (s.32) m0 = m2, m0
cpy (s.32) m0 = m0
Li:
ldc (s.32) m2 =1
add (s.32) ml = ml, m2
cpy (s.32) ml = ml
ldc (s.32) m2 = 23
sl (s.32) m2 = m2, ml
bfls m2, L3
BASICBLOCK 3:
L2:
lde (s.32) m0 = 0
ret m0

Figure 5.20: Intermediate code of example in Figure 5.18 after register allocation

5.6 Summary

This chapter demonstrated the various type of graphs and transformations that
have been implemented with the VSSC framework. The graphs implemented in-
clude: a flow graph, which describes the flow-of-control between basic blocks, a
directed acyclic graph, which shows commonly computed subexpression, and a
register-interference graph, which shows those registers whose live ranges over-
lapped and thus interfere. The code transformations implemented were: the re-
moval of dead code, copy propagation, and register allocation.

These examples show many of the capabilities provided by the VSSC framework

and are a representation of the types of transformations that can be implemented.



Chapter 6

Conclusions and Future Direction

The Visual Simple-SUIF Compiler system is a completely interactive framework
that facilitates the study of back-end optimizations. A tightly integrated system
of free software components has been combined to produce a tool that can be used
to visualize a code transformation step-by-step, perform transformations in any
order, and undo a previously executed transformation. The SUIF compiler and
Simple-SUIF were used to implemented the intermediate format and the ability to
selectively apply transformations to the intermediate code. Tcl/Tk was used as
the language to implement the graphical user interface for the VSSC framework.
Finally, the DOT drawing package was used to allow the GUI to display various
types of graph data structures.

A tool such as VSSC contributes greatly to the area of compiler research. The
capabilities provided by VSSC aid two groups of individuals in compiler research.
First of all, researchers in the area of compiler optimizations can use the VSSC
framework to develop and test new code transformations. VSSC allows researchers

to analyze how a new transformation modifies the intermediate code and how
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other transformations can be affected by the changes made by a transformation.
Transformations can be applied in any other and undone multiple times.
Students are the second group of individuals that can benefit from using VSSC.
VSSC facilitates classroom instruction of compiler optimizations. The ability to
step through an optimization allows the student to visualize code optimizations at
his or her own pace. The ability to undo a transformation allows the students to
repeat the same transformation multiple times without having to restart the com-
piler. The viability of VSSC as a teaching aid was demonstrated in the graduate
compiler course at the University of California Riverside. Students implemented
basic block detection, various data-flow analysis, global common-subexpression

elimination, and register allocation using VSSC.

6.1 Future Work

Currently, the VSSC framework is a viable solution as a tool for analyzing back-
end optimizations in a compiler. However, there are several features that should

be implemented to provide greater ease of use and functionality:

e Currently, VSSC allows backstepping at the granularity of transformations
and allows the user to step forward through a transformation. The abil-
ity to step backwards within the granularity of a transformation should be
implemented to provide greater debugging capabilities. Time constraints
prevented this feature from being implemented in the current version of the

VSSC framework.

e When a code transformation is selected by the user, the optimization is

performed and its actions are saved to a log with is then played back to the



user as they step through the transformation. A nice feature would be the
ability to save a transformation log generated by a transformation that has
been applied. This log could then be reloaded at a later time and played back
as though the transformation had just been applied. Instructors in compiler
courses can create such logs to give to their students to strengthen classroom

instruction.

e Currently, live-variable analysis, dead-code elimination, available-code anal-
ysis, copy propagation, and a simple form of register allocation have been
implemented by the author. There are numerous other algorithms and code
transformation techniques that could be implemented to further demonstrate

the capabilities of the VSSC framework.

e The VSSC framework is currently unable to perform analysis above the level
of a procedure due to limitations in the Simple-SUIF library. Perhaps a
workaround could be developed to implement the ability to perform inter-

procedural analysis and the construction of call graphs.

Finally, constructive feedback from those who have used the VSSC framework

can be used to further improve its functionality.
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Appendix A

VSSC User Manual

A.1 Introduction

This document is provided as a user’s manual for using the Visual Simple-SUIF
package (VSSC). A user should be able to effectively use the VSSC package to
develop graphical compiler optimizations by just reading this document and not
reading the thesis describing VSSC. In addition to the more technically oriented
information describing how to get VSSC compiled and installed at your site and
tips to make writing compiler optimizations with VSSC easier, the information
contained within this document is a subset of the information contained within
the thesis that this document is an appendix to.

This document begins by describing the SUIF and Simple-SUIF packages. The
VSSC package is then covered in detail. Examples are provided throughout the

document.
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A.2 SUIF

The SUIF compiler system, developed by a team of researchers at Stanford Uni-
versity, is centered around the design of its intermediate format, SUIF (Stanford
University Intermediate Format). The system has been designed and organized
in such a way that it is easy to modify and extend for your own personal needs.
Because of its flexibility, many researchers around the world use the SUIF compiler
system to evaluate new compiler techniques and perform research in the area of
compilers. While the SUIF compiler may not be the fastest or most robust. Its
flexibility and extensibility outweighs these possible shortcomings for most people.

The SUIF system is organized into two parts. The first part is a core which
manages the intermediate format. The second part is a set of compiler passes
which perform some transformations on the intermediate format. Usually, each
pass reads in the intermediate code, performs some transformation, analysis, or
optimization, and then writes out the intermediate code. Since each pass usually
exists as a separate executable in the SUIF system, passes can be run in any order
in the compilation process. To aid in the creation of SUIF passes, the SUIF system

contains a robust set of libraries and support routines.

A.3 Simple-SUIF

Due to the fact that SUIF compiler is a complete ANSI C compiler, it is very
complete and complex. Because it is a little too complex for use in a college course
in compilers, the SUIF group at Stanford developed a package called Simple-

SUIF which acts as a wrapper for SUIF by providing a simplified interface to



the SUIF compiler and the intermediate format generated by the SUIF compiler.
This simplified interface allows students to write their own optimizations for a
fully-functional ANSI C compiler.

Information about Simple-SUIF can be found in the document, “The Simple-
SUIF Compiler Guide”! for version 1.0 of Simple-SUIF. Most of the information
presented in this section comes from that document. More detailed explanations
and descriptions of the topics mentioned in this section can be found in that
document.

VSSC is built around Simple-SUIF. However, its interaction with Simple-SUIF
is slightly different. Because of this, the interaction with Simple-SUIF described in
chapter 2 of the Simple-SUIF documentation should be ignored. Section A.4 of this
document describes how to use VSSC with Simple-SUIF and how its interaction

is slightly different.

A.3.1 Simple-SUIF Intermediate Format

The instructions in Simple-SUIF’s intermediate format resemble assembly language
instructions (op dst,src1,src2) or three-address C instructions (dst = srcl op src2).
Each instruction has an unique opcode associated with it. The instructions are
grouped into six different categories called instruction formats. Table A.1 shows all
the valid Simple-SUIF instructions. For each instruction, the following information
is also shown: its opcode, its Simple-SUIF name, its instruction format, and a short

explanation of that instruction.

"http:/ /suif.stanford.edu/suif/docs/simple_toc.html



Simple-SUIF Instructions

Opcode | Instr. Name | Instruction Format | Purpose
No operand instructions
NOP_OP | nop | BASE_FORM | No nothing at all
One source operand (srcl) instructions
RET_OP [ ret [ BASE_.FORM [ Return from a procedure
Two source operand (srcl, src2) instructions
STR_OP str BASE_FORM Store the value in the src2
register at the address contained in the
srcl register
MCPY_OP mecpy BASE_FORM Memory-to-memory copy
Unary instructions (dst, srcl)
CPY_OP cpy BASE_FORM Copy the srcl register to the
dst register
CVT_OP cvt BASE_FORM Convert the srcl register to
the result type and put it in the
dst register
NEG_OP neg BASE_FORM Negation
NOT_OP not BASE_FORM Bit-wise inversion
LOAD_OP load BASE_FORM Load the value at the address contained
in the srcl register and put it in
the dst register
Binary instructions (dst, srcl, src2)
ADD_OP add BASE_FORM dst = srcl + src2
SUB_OP sub BASE_FORM dst = srcl — src2
MUL_OP mul BASE_FORM dst = srcl * src2
DIV_OP div BASE_FORM dst = srcl/src2
REM_OP rem BASE_FORM dst = src1%src2
MOD_OP mod BASE_FORM dst = abs(srcl%src2)
AND_OP and BASE_FORM Bit-wise AND
IOR_OP ior BASE_FORM Bit-wise inclusive OR
XOR_OP xor BASE_FORM Bit-wise exclusive OR
ASR_OP asr BASE_FORM Signed shift right
LSL_OP Isr BASE_FORM Unsigned shift right
LSR_OP Isl BASE_FORM Unsigned shift left
ROT_OP rot BASE_FORM Rotate value in srcl register left
(positive value) or right (negative value) by
the amount specified in the src2
register
SEQ_OP seq BASE_FORM dst = (srcl == src2)
SNE_OP sne BASE_FORM dst = (srcl! = src2)
SL_OP sl BASE_FORM dst = (srcl < src2)
SLE_OP sle BASE_FORM dst = (srcl <= src2)
Branch and jump instructions
JMP_OP jmp BJ_FORM Unconditional jump: goto target
BTRUE_OP btru BJ_FORM Branch if true: if (srcl) goto target
BFALSE_OP bfls BJ_FORM Branch if false: if (!src1l) goto target
Miscellaneous
LDC_OP ldc LDC_FORM Load a constant value
CALL_OP call CALL_FORM Call a procedure
MBR_OP mbr MBR_FORM Multi-way branch
LABEL_OP lab LABEL_FORM Label pseudo-instruction

Table A.1: Valid Simple-SUIF instructions




A Simple-SUIF instruction is represented by the simple_instr structure. Fig-
ure A.1 shows the simple_instr structure and its contents. This figure does not
show the format of the structures used within the simple_instr structure. More
information about the contents of the simple_reg, simple_sym, simple_immed,

and simple_type structures can be found in the simple.h header file.

si npl e_op opcode; /* the opcode */

sinpl e_type *type; /* type of the result */

struct sinple_instr *next; /* ptr to next instruction */
struct sinple_instr *prev; /* ptr to previous instruction */

uni on u; /* the variant part of the union is determ ned

by the result of sinple_op_fornat(opcode) */

/* BASE_FORM */
struct base {

sinple_reg *dst;
sinple_reg *srcl;
sinple_reg *src2;

/* destination */
/* source 1 */
/* source 2 */

}

/* BJ_FORM */

struct bj {
sinpl e_sym *target; /* branch target |abel */
sinple_reg *src; /* source register */

}

/* LDC_FORM */

struct ldc {
sinple_reg *dst; /* destination */
sinpl e_i nmed val ue; /* inmmediate constant */

}

/* CALL_FORM */

struct call {
sinple_reg *dst; /* return value destination */
sinple_reg *proc; /* address of the callee */
unsi gned nargs; /* nunber of arguments. */
sinple_reg **argsl /* array of arguments */

}

/* MBR_FORM */

struct MBR {
sinple_reg *src; /* branch selector */
int offset; /* branch selector offset */
si npl e_sym *def | ab; /* label of default target */
unsi gned ntargets; /* nunber of possible targets */
sinple_sym **targets; /* array of |abels */

}

/* LABEL_FORM */
struct |abel {

sinple_sym*lab; /* the synbol for this |abel */

}

Figure A.1: simple_instr structure used to represent a Simple-SUIF instruction

As you can see from the figure, the simple_instr structure contains a member u

which is a union of many other structures. A union is used to save memory since an



instruction can only be of type of instruction format. Each of the structures in the
union represents a different instruction format. Given a Simple-SUIF instruction
it is very easy to access the data contained within the union. For example, say
you wanted to print out all the branch target labels that existed in a linked list of
Simple-SUIF instructions. Those instructions which would have branch targets are
those that belong to the BJ_ FORM and MBR_FORM (branch and multi-way
branch) formats. The code in Figure A.2 demonstrates how to accomplish this

task (the call to simple op_format is described in section A.3.2):

void print_branch_targets(simple_instr *inlist)
{

simple_instr *curr_instr;

curr_instr = inlist;

/* foreach instruction in the linked list of Simple-SUIF instructioms. */
while (curr_instr != NULL)

¢ /% See if this instruction belongs to the BJ_FORM or MBR_FORM

instruction formats. */

switch (simple_op_format(curr_instr->opcode))

{
case BJ_FORM:

/* This instruction format has 1 target. */

printf("Branch target: %s\n", curr_instr->u.bj.target->name);

break;
case MBR_FORM:

/* This instruction format has mulitple targets
including a default target (like a C switch
statement) */

printf ("MBR: default label: %s\n", curr_instr->u.mbr.deflab->name);

for (int i=0; i<(int)curr_instr->u.mbr.ntargets; i++)

{
printf ("MBR: target #Ji: %s\n",

i, curr_instr->u.mbr.targets[i]->name);

3

break;

default:
/% Ignore everyone else. */
break;
};
curr_instr = curr_instr->next;

Figure A.2: Example demonstrating the different instruction formats

A.3.2 Simple-SUIF API

The application program interface (API) of a library is the documented set of

commands that are available to the user of that library. Simple-SUIF provides a



small API which allows you to easily work with the Simple-SUIF library. The API

contains the commands shown in Figure A.3.

simple_instr *new_instr(simple_op op, simple_type *t) Allocate  and
initialize a new Simple-SUIF instruction. It only sets the opcode, format,
and return type fields. You need to setup everything else (dst, srcl,
and src2) as needed.

void free_instr(simple_instr *s) Deallocates a Simple-SUIF instruction.

simple_reg *new _register(simple_type *t, reg_kind k) Allocates a new
Simple-SUIF register.

simple_sym *new_label() Creates a new Simple-SUIF label. This is does
not create a new Simple-SUIF instruction (with a format type of LA-
BEL_FORM) but instead inserts this new symbol into the symbol table.
You must then call the new_instr command above to create the label
instruction.

simple_type *get_ptr_type(simple_type *t) Get a type that is a pointer
to another type.

char *simple_op_name(simple_op o) Returns the name of an opcode as a
text string.

simple_format simple_op_format(simple_op o) Given an opcode, returns
the format of that opcode.

Figure A.3: Simple-SUIF API

Simple-SUIF also defines TRUE and FALSE which can be used in conditional
statements.

The following code segment as well as the previous example demonstrate some
of the commands in the Simple-SUIF API. In the following example, we have the
following linked list of instructions with the variable curr_instr pointing the last

one:

cpy (s.32) r3 = t9
ldc (s.32) t68 =1 <- current_instr



Say we want to add a new instruction, add (s.32) t69 = r3, t68, right after

curr_instr. The code to do this is shown in Figure A.4.

simple_instr *nij;
ni = new_instr(ADD_OP, simple_type_signed);

/* Insert new instruction into current linked list of instructionms
right after curr_instr. */

ni->next curr_instr->next;
ni->prev curr_instr;
curr_instr->next = ni;

ni->next->prev = ni;

/* Fill in the blanks in the new instruction. x/

/* dst. Create a new temporary register of type signed int. */
ni->u.base.dst = new_register(simple_type_signed, TEMP_REG);

/* For srcl and src2, simple use the same pointers the two previous
instructions use. */

ni->u.base.srcl = curr_instr->prev->u.base.dst;

ni->u.base.src2 = curr_instr->u.ldc.dst;

/* NOTE: If you create an instruction in which a src field is empty
(ie src2 is empty in a cpy instruction), you need to set that
empty field equal to NO_REGISTER */

Figure A.4: Example C code to add a new Simple-SUIF instruction

As you can see in the example above, the return type of the newly created
instruction is a signed integer. simple_type_signed is global variable used in
several places in the above code above to represent that return type. It is among

several "base types” Simple-SUIF defines which are shown in Figure A.5.

VOID_TYPE Used to indicate that there is no value present.

SIGNED_TYPE Signed integers.

UNSIGNED_TYPE Unsigned integers.

FLOAT_TYPE Floating-point values.

ADDRESS_TYPE Pointers.

RECORD_TYPE Structures, unions, and arrays.

Figure A.5: Simple-SUIF base types

The above example also makes reference to an enumerated type TEMP_REG.

TEMP _REG is one of three types of registers used in Simple-SUIF. The three



types are TEMP_REG, PSEUDO_REG, and MACHINE_REG. You can find
more information about these three types of registers in the Simple-SUIF docu-

mentation.

A.3.3 Example of Simple-SUIF

We conclude this section on Simple-SUIF with a side-by-side comparison of a
sample C file and it Simple-SUIF equivalent. These are shown in Figure A.6. You
should be able to associate the Simple-SUIF instructions with their corresponding

C instructions.

test () Procedure test:
{ lde (s.32) t8 = 1
int a, b, ¢, d, e, f, g; cpy (s.32) rl = t8
ldc (s.32) t9 = 2
a=1; cpy (s.32) r2 = t9
b =2; add (s.32) t10 = r1, r2
cpy (s.32) r3 = t10
c =a+b; sub (s.32) t11 = r6, r5
g=1f - e; cpy (s.32) r7 = ti1
d=4d- c; sub (s.32) t12 = r4, r3
cpy (s.32) r4 = t12
while (a > 0) { ldc (s.32) t13 = 0
a=c¢c-d; sl (s.32) t14 = t13, r1
if (g ==d * e) bfls t14, L1
b=>b-1; L4:
c =c * f; sub (s.32) t15 = r3, r4
3 cpy (s.32) rl = t15
mul (s.32) t16 = r4, rb
f=g- a; seq (s.32) t17 = r7, t16
c=b+oe; bfls £17, L5
} lde (s.32) t18 = 1
sub (s.32) t19 = r2, t18
cpy (s.32) r2 = t19
L5:
mul (s.32) t20 = r3, r6
cpy (s.32) r3 = t20
L2:
lde (s.32) t21 =0
sl (s.32) t22 = t21, r1
btru t22, L4
L3:
L1
sub (s.32) $23 = r7, r1
cpy (s.32) 6 = t23
add (s.32) t24 = r2, 5
cpy (s.32) r3 = t24
lde (s.32) t25 = 0
ret t25

Figure A.6: Side-by-side comparison of C and Simple-SUIF



A.4 VSSC

A.4.1 Introduction

Most modern compilers today perform the standard code optimizations described
in compiler textbooks. SUIF’s flexibility allows compiler researchers to develop new
optimization routines with it easier than with other more complex compilers such
as GCC. While a new optimization routine may look good on paper, sometimes
its effectiveness and the impact it can make on intermediate code isn’'t apparent
unless the researcher can visualize the transformations made by the optimization.
Being able to step through the transformations also yields benefits. Anyone who
has ever used a debugger such a gdb knows that one of the best features of a
debugger to the ability to step through the code. Stepping through code allows the
user to progress at his/her own pace and view the current state of the program at
any point.

VSSC provides the same benefits as a debugger when dealing with code opti-
mizations. When stepping through the transformations made by an optimization,
a VSSC user can view the current state of the intermediate code, a graph repre-
senting the flow between basic blocks or perhaps a directed acyclic graph showing
dependencies between operands in instructions, and the current bitsets for each
basic block when doing dataflow analysis. A side benefit of the VSSC system is
that it can also be used in compiler courses at academic institutions as a teaching
tool. By stepping through the implementations of the classic optimization tech-
niques such as dead code elimination, copy propagation, register allocation, etc.,
students can gain a better understanding of these technique because they will be

viewing them as they happen graphically.



VSSC is based upon Simple-SUIF, however it does not use Simple-SUIF in
the way it was originally intended. Simple-SUIF was designed so that a program
linked with the Simple-SUIF library could only make one optimization pass for
each procedure in an input file during the execution of a compiler optimization. In
other words, say you wrote a program, linked with the Simple-SUIF library, that
performs dead code elimination. All that program would do is read in the SUIF file,
perform that optimization, and write the new SUIF code back out to a file. Simple-
SUIF provides no mechanism for performing multiple passes (ie optimizations)
during a single execution. While this follows along nicely with the rest of the
design philosophy for SUIF, that all code transformations are performed as a series
of “passes”, it does not allow one to construct a single Simple-SUIF “optimizing
compiler” that can perform multiple optizations during a single execution of the
“compiler”.

A VSSC compiler overcomes this shortcoming of Simple-SUIF. It does so by
managing all the SUIF and Simple-SUIF libraries and SUIF executables into a
single executable that allows the user to be able to perform multiple optimizations
during the execution of the “visual” VSSC compiler.

Figure A.7 shows what the VSSC compiler looks like while it is running. The
screen consists of three main areas of which you have control over.

The first area (Current Status) in the top left simply acts as a general informa-
tion area. Since VSSC allows the user to step through the optimization (much like
a step in a debugger), this first area contains two buttons that allow the user to be
able to step forward and backward. During each step, any number of actions (ie
adding/deleting instructions/graph nodes) can occur. It is up to the optimization

writer to decide what happens.



V3SC
File Cptimirations

Current Status

Intermediate

[ (O x]

Info

Current COptirnizaticn: Teat Routine BasicBlock 0. [
Procedurs: quidkacrt
Bagzic Block: )
; BasicBlock 1.
Undo Transfermation | Step T sle (.32 £T = 12, rl
hfls £7, L1
BasicBlock 2.
ret
BasicBlock 3.
Id:
lde  (s.32) £8 =1 =
sub (s, 32) t3 = rl, 8
cpy  (s.32) r3 = o
cpy  (s.32) rd = 2
ldc  {a. 32) tll = &8 + 0
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Figure A.7: Screenshot of VSSC compiler in action




The area below the first area contains a graph widget. In this area the opti-
mization writer can create graphs. The most common types of graphs that could
be created are flowgraphs and directed acyclic graphs (DAGs). Each node in the
graph widget can have arbitrary data associated with it. This data is displayed
when the user clicks on the graph node with the left mouse button. Clicking in
the box that contains the data hides it. The last area on the right hand side of the
screen is a text widget which contains the Simple-SUIF intermediate code. The
code presented in this widget usually is contained within basic blocks (as they are
in the figure).

The next section describes the API available to you that allows you, the opti-

mization writer, to interact with these areas on the screen.

A.4.2 VSSC API

The VSSC API is grouped into several sections described below. An example is
provided for most of the API routines. More examples can be found in section
A.4.6 and A.5.6. To use the VSSC API, #include <vssc_simple.h> at the top of

your files. The GUI and GRAPH variables used below are global variables. You

do not need to extern them.

Optimization Routines

This section describes those commands for dealing with the optimization routines
that you write. Figure A.8 shows these commands. Section A.4.6 describes how

and when you need to use these routines and shows examples of their use.



void vssc_register_opt(char *name, char *flagname, simple_instr *(*procedure)(simple_instr *, char *))
The first parameter to vssc_register_opt is a full text string giving the
name of the optimization. This is the name which appears as an entry in
a VSSC compiler’s ”optimizations” menu. The second parameter is a text
string which is the flag used to signify this optimization when running a
VSSC compiler in non-graphical mode (see Section A.5.3 for more details
on this mode). The last parameter is the procedure (whose signature must
match that of the parameter above) to call to perform the optimization.

GUI—step() As mentioned earlier in this document, VSSC allows the user to
step through the optimization. The optimization writer decides what should
occur during each step. A step boundary is specified by calling GUI—step().
When this command is executed, the VSSC API commands that were called
since the last call to GUI—step() would be executed when the user presses
the W button.

vssc_init_suif(int, char **) After all optimization routines have been regis-
tered, a call to this sets everything in motion. You shouldn’t have any
code after this call. The first parameter is usually argc and the second
parameter is usually argv. See Section A.4.6 to see an example of its use.
Usually, your main.cc contains only calls to vssc_register_opt to register
the various optimizations routines you have written for your VSSC compiler
followed by a call to vssc_init_suif to get the VSSC system started.

Figure A.8: Optimizations API
Current Status Area

This section describes those commands for modifying what is displayed in the

Current Status area. Figure A.9 shows these commands.

Intermediate Code (Text Widget)

This section describes those commands which control what basicblocks and in-
structions are displayed in the text widget. VSSC defines a BasicBlock class for
you called BasicBlock_base. VSSC expects you to use this class when using Basic

Blocks in VSSC. Figure A.10 shows the header file for the BasicBlock_base class:



void GUI—set_procedure_name(char *string); Sets the string displayed in
the Procedure Name: field.

void GUI—set_basicblock_num(int number); Set the number displayed in
the BasicBlock: field. Use BLANK for the parameter if you don’t want
any value displayed.

GUI->set_basicblock_num(3);

Figure A.9: Current Status Area API

#ifndef BASICBLOCK_BASE_H
#define BASICBLOCK_BASE_H

extern "C"
{
#include <simple.h>

¥
#include <suif.h>

class BasicBlock _base
{
public:

BasicBlock_base(simple_instr *start_instr,
simple_instr *end_instr,
unsigned int new_id);

unsigned int size() {return count;}

unsigned int get_id() {return id;}

simple_instr #*get_start() {return start;}

simple_instr *get_end() {return end;}

void print();

protected:
unsigned int count;
unsigned int id;
simple_instr *start;
simple_instr *end;

};

#endif

Figure A.10: Header file for BasicBlock class

As you can see, this class is very small, simple, and its interface is self-explanatory.
You will most likely need to derive your own BasicBlock class in your own code
using this class as a parent class. For example, when doing dataflow analysis, your
derived BasicBlock class can contain the various bitsets needed in that analysis.
See the supplied example code described in section A.4.6 for more details on how
to make this derived class. One important thing to keep in mind is that if your

derived class overrides any of the above routines in the parent class, those routines



need to call the corresponding routine in the parent class. This is most apparent
when dealing with the constructor for the BasicBlock_base class. For example, if
your derived BasicBlock class overrides the constructor, it also needs to call the
constructor in the parent class. The supplied example code described in section
A.4.6 demonstrates this.

Figure A.11 shows the API for dealing with the text widget on the screen.

Graph Widget

This section covers those commands which control the information displayed in the
graph widget. The graph widget API is shown in Figures A.12 and A.13. VSSC
defines a simple Graph class which is sufficient enough but can be used as a base
class for your own derived Graph class (like the BasicBlock class in the previous
section). You'll probably won’t need to derive your own Graph class but if you do
decide to, make sure that you follow the same precautions mentioned previously
and for any procedure you override, make sure it calls the same procedure in this
base class.

A reminder that the GRAPH variable mentioned below is an instantiation
of the VSSC Graph class and exists as a global variable (no need to extern).
Of course, if you derived your own Graph class, you would need to instantiate
it as a global variable and the calls to the Graph widget API would change to:

<your graph class>->routine(...);.



void GUI—add_basicblock(BasicBlock_base *BB, BasicBlock_base *after, bool animate=FALSE); (31ven
a pointer to an instance of the BasicBlock_base class (or a derived class),
insert that basic block (along with its instructions automatically) into the
text widget. If after is NULL, inserts it at the end of the text widget. If
after is not NULL, it inserts the basic block after the basic block pointed
at by after in the text widget (a runtime error is generated if the after
basic block doesn’t exist in the text widget yet. animate is an optional
boolean parameter that specifies whether to animate the insertion of all the
instructions.

GUI->add_basicblock (BB, NULL, FALSE);

void GUI—add_instruction(simple_instr *simple, BasicBlock_base *BB, bool animate=FALSE); lnserts
the Simple-SUIF instruction simple at the beginning of basic block BB in
the text widget. A runtime error is generated if BB doesn’t exist in the
text widget yet. animate is an optional boolean parameter that specifies
whether the insertion of the instruction should be animated.

GUI->add_instruction(new_instr, BasicBlocks[3], TRUE);

void GUI—add_instruction(simple_instr *simple, simple_instr *after, bool animate=FALSE); Inserts
the Simple-SUIF instruction simple after the instruction after in the text
widget. A runtime error is generated if after doesn’t exist in the text widget
yet. animate is an optional boolean parameter that specifies whether the
insertion of the instruction should be animated.

GUI->add_instruction(new_instr, new_instr->prev, TRUE);
void GUI—-remove_instruction(simple_instr *simple, bool animate=FALSE); R,emOVGS the iIlStI"uC-
tion simple from the text widget. A runtime error is generated if simple

doesn’t exist in the text widget yet. animate is an optional boolean parame-
ter that specifies whether the deletion of the instruction should be animate.

GUI->remove_instruction(dead_instr);

Figure A.11: Intermediate Code API




void GUI—set_graph_type(char *string); Sets the string displayed at the top
of the Graph widget. This value starts out as Graph.

GRAPH->set_graph_type ("Flow Graph");

GraphNode* GRAPH—addNode(char *name, bool animate=FALSE)
Create a new node in the Graph widget with the name name. animate is
an optional argument which indicates whether the addition of this node
should be animated or not. This routines returns a pointer to a GraphNode
structure which is used by VSSC to represent this node. All further
interactions which this node requires the returned GraphNode pointer as a
parameter. To make things easy, your derived BasicBlock_base class could
contain a GraphNode * data item that you can save this pointer in (since
you usually associate a node in a Flow Graph with a basic block). An error
is generated is you try to create a new node with the same name as an
existing one.

GraphNode *GN = GRAPH->addNode("B2", TRUE);

void GRAPH—addEdge(GraphNode *, GraphNode *); Given pointers
to two VSSC graph nodes, create an edge between them in the graph. You
can create a self-edge. An error is generated if either of the graph nodes
don’t exist or an edge already exists between these nodes.

GRAPH->addEdge (GN1, GN2);

int GRAPH—nodeExists(char *name); Returns TRUE if the node with the
same name exists in the graph already and FALSE if it doesn’t.

int GRAPH—nodeExists(GraphNode *); Returns TRUE if this node exists
in the graph already and FALSE if it doesn’t.

int GRAPH—edgeExists(GraphNode *, GraphNode *); Returns TRUE
if an edge exists between the two nodes in the graph already and FALSE if
it doesn’t.

void GRAPH—removeNode(char *name, bool animate=FALSE)
Remove a node from the Graph widget. animate is an optional argument
which indicates whether the deletion of this node should be animated or
not. When a node is removed, all edges between that node and other nodes
are also removed. An error is generated is you try to remove a node that
doesn’t exist in this graph.

GRAPH->removeNode (GN, TRUE);

Figure A.12: Graph widget API




void GRAPH—removeEdge(GraphNode *, GraphNode *); Given point-
ers to two VSSC graph nodes, removes the edge between them in the graph.
An error is generated if the edge doesn’t exist already between these nodes.

GRAPH->removeEdge (GN3, GN7);

void GRAPH—addDataltem(GraphNode *, char *key, char *data);
Associates arbitrary textual data with a graph node. Data is supplied as a
key along with actual data. When displayed (when the user clicks on the
graph node with the left mouse button), key is italicized following by data
as shown in Figure A.14. Data items for a graph node are overwritten by
just calling this routine again with the same key. An error is generated if
the graph node doesn’t exist in this graph.

GRAPH->addDataItem(GN2, "live", "(4) (5) (8)");

void GRAPH—removeDataltem(GraphNode *, char *key); Removes
the key data item for the specified node. An error is generated is the graph
node doesn’t already exist in the graph.

GRAPH->removeDataltem(GN6, "live");

Figure A.13: Graph widget API

BasicBleck: 1
bitses (4) (T)
(3

Figure A.14: Box that pops up when user clicks on graph node with left mouse
button



Miscellaneous Commands

This section describes extra commands provided in the VSSC library. Figure A.15

shows these commands.

void simple_instr_print(FILE *fd, simple_instr *s) Given a Simple-SUIF
instruction, prints a textual representation of it to the supplied file pointer.
The file pointer can be for a file (created by a call to fopen) or it can be std-

out or stderr. Most of this code comes from the Simple-SUIF printsimple
command.

char *vssc_simple_text(simple_instr *s) Given a Simple-SUIF instruction,
returns a string that represents a textual version of the instruction (as it
would appear in printsimple or in the text widget.

Figure A.15: Miscellaneous VSSC commands

A.4.3 Installing VSSC Components

Table A.2 lists packages that are required to be installed before VSSC can be used.

GNU C/C++ | ftp://prep.ai.mit.edu/pub/gnu/gcc-2.7.2.tar.gz
SUIF http://suif.stanford.edu/
ftp://suif.stanford.edu/pub/suif/basesuif-1.1.2.tar.gz
Simple-SUIF ftp://suif.stanford.edu/pub/suif/simplesuif-1.0.0.beta.l.tar.gz
Tcl/Tk http://www.sunlabs.com/research/tcl/
ftp://ftp.sunlabs.com/pub/tcl/
DOT/tcldot | http://wuw.research.att.com/sw/tools/reuse/

Table A.2: VSSC components and where to find them

Information on how to install these packages can be found in the documentation

included with each package.



A.4.4 Environment Variables

In order to use the VSSC package, a VSSC compiler, or compile a VSSC compiler,
the same environment variables that are needed for using SUIF need to be set. The
settings shown in Figure A.16 (for either [t]csh or bash) are for the Linux machines
in the Department of Computer Science at the University of California Riverside.
Insert these commands at the end of your shell’s startup file (. [t]cshrc for [t|csh

or .profile for bash) so you don’t have to type them in each time you log in.

[t]csh

setenv MACHINE i586-linux

setenv SUIFHOME /usr/local/suif

setenv SUIFPATH $SUIFHOME/$MACHINE/bin:/usr/bin:/usr/local/bin
setenv COMPILER NAME gcc

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:$SUIFHOME/$MACHINE/solib
setenv PATH ${PATH}:$SUIFHOME/$MACHINE/bin

bash

export MACHINE=i586-linux

export SUIFHOME=/usr/local/suif

export SUIFPATH=$SUIFHOME/$MACHINE/bin:/usr/bin:/usr/local/bin
export COMPILER_NAME=gcc

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:$SUIFHOME/$MACHINE/solib
export PATH=${PATH}:$SUIFHOME/$MACHINE/bin

Figure A.16: Environment variables that need to be set before using VSSC

The LD_LIBRARY_PATH environment variable is needed if any of the
SUIF, Simple-SUIF, or VSSC systems are compiled as shared libraries on your

system.

A.4.5 Using VSSC

The VSSC system allow an infinite numbers of optimizations to be used with
it. For each optimization, the optimization writer registers a procedure with the

following signature with the VSSC system:



simple_instr *procedure_name(simple_instr *inlist, char *procedure_name)

Registering your procedure is done by calling (defined in vssc_simple.h and

described in Sections A.4.2 and A.4.6):

void vssc_register_opt(char *name, char *flagname,

simple_instr * (*procedure) (simple_instr *, char *));

The code in Figure A.17 (derived from main.cc in the example skeleton files
mentioned in section A.4.6) demonstrates the registration of an optimization rou-

tine for dead code elimination:

#include <stdio.h>
#include <vssc_simple.h>

simple_instr *dead_code(simple_instr *inlist, char *procedure_name)

{

GUI->set_procedure_name (procedure_name) ;
GUI->set_basicblock_number (0);
GUI->set_graph_type("Flow Graph");

FlowGraph *FG = new FlowGraph(inlist, procedure_name);
/* Optimization code */

GUI->step();

/* Optimization code */

GUI->step();

/* Optimization code */

GUI->step();

return inlist;

}

int main(int argc, char *argv[])

{
vssc_register_opt("Dead Code Elimination", "deadcode", dead_code);
vssc_init_suif(argc, argv);

}

Figure A.17: Sample optimization registration

As you can see from the example code above, the optimization writer’s regis-
tered procedure is given by the VSSC system, a NULL terminated (last element’s
next pointer is NULL) linked list of Simple-SUIF instructions and the name of

the procedure these instructions belong to. The user can them modify the linked



list in any valid manner (such as performing useful optimizations!). The procedure
must return a NULL terminated linked list of Simple-SUIF instructions back to
the VSSC system. This linked list is of the same format and organization as the
one passed in. If a non-NULL terminated or malformed linked list of Simple-SUIF
instructions is returned, the VSSC system will get confused and most likely quit

with an error.

A.4.6 Your First VSSC Optimization

To start writing your own optimization routines, download via anonymous ftp,
ftp://ftp.cs.ucr.edu/pub/publications/thesis/brian_harvey/skeleton.tar.gz,
which creates a new subdirectory for you which contains a Makefile, a main.cc,
and several other files to start you off. The Makefile makes use of the SUIF
makefiles to make it less complicated. The sample Makefile is shown in Figure

A18.

#

# Sample Makefile to generate your own VSSC compiler
#

#

# change ’mycompiler’ to whatever you want.

#

TARGET = mycompiler

PACKAGE_NAME = mycompiler

SUPER_PACKAGES_PATH = vssc

# Don’t change this unless you know what you’re doing!
LIBS = -L/usr/X11/1ib -lvssc -lsimple -1lsuif -1X11 \
-1tk4.1 -1tcl7.5 -ltcldot -1dl

# List all .c files here
CSRCS =

# List all .cc files here
SRCS = BasicBlock.cc FlowGraph.cc main.cc

# List all .o files here. (Each .c and .cc file has a .o file)
0BJS = BasicBlock.o FlowGraph.o main.o

EXTRA_CFLAGS = $(INCLDIRFLAG)

all: prog

include $(SUIFHOME)/Makefile.std

Figure A.18: Sample Makefile



Typing make will compile your code (those files listed in the SRCS and
CSRCS sections in the Makefile) and generate your very own VSSC compiler
(called mycompiler in this example Makefile).

In main.cc (similar to the example code shown in the previous section), a
sample optimization procedures are declared and registered with the VSSC system.
All you need to do is write the optimization routines! Figure A.19 shows the

contents of main.cc:

#include <stdio.h>
#include <vssc_simple.h>

#include "BasicBlock.h"
#include "FlowGraph.h"

simple_instr *dead_code(simple_instr *inlist, char *procedure_name)
{

FlowGraph *FG;

/* Set what the procedure name is and what basicblock we’'re looking at. */

GUI->set_procedure_name (procedure_name) ;

GUI->set_basicblock_number (BLANK) ;

GUI->set_graph_type("Flow Graph");

fprintf (stderr, "Doing deadcode elimination\n");

FG = new FlowGraph(inlist, procedure_name);

/* Optimization code */

GUI->step();

/* Optimization code */

GUI->step();

/* Optimization code */

GUI->step();

/* Etc. */

return FG->instructions_head;

}
simple_instr *cse(simple_instr xinlist, char *procedure_name)
{
fprintf (stderr, "Doing common subexpression elmination\n");
return inlist;

}

int main(int argc, char *argv[])

{
vssc_register_opt("Local Common Subexpression Elimination", "cse", cse);
vssc_register_opt("Dead Code Elimination", "deadcode", dead_code);
vssc_init_suif(argc, argv);

}

Figure A.19: Sample main.cc



NOTE: The skeleton code provided is meant to be an example only. It is very
incomplete and will not run correctly as is. It is provided to you as an example
to help to get started and to give you some idea how you might want to organize
your code.

After you’ve taken the skeleton files and written some code, try compiling it,
and run your newly created VSSC compiler (called mycompiler in the example

Makefile but you can change the name if you want to) with a C file:
mycompiler -v testl.c

The -v option indicates that you want to bring up the VSSC GUI. Your VSSC
compiler can also run on a non-graphical mode. See Section A.5.3 for more details.
When you are done using your VSSC compiler, a file will be left in the current
directory with the name <file>.suif. This binary file is in the SUIF intermediate
format and its contents can be printed out by the printsimple command. See

Section A.5.2 for more details.

A.5 VSSC Tips

The following tips are provided to make writing your compiler optimizations using

VSSC easier.

A.5.1 Debugging VSSC Optimizations

At some point while you're writing VSSC optimizations, you may find that you
need to run your optimizations through a debugger like GDB. Because of the way

VSSC is implemented, gdb won’t be able to step through your optimization. If



your optimization happens to cause a segmentation violation (segfault), VSSC will
catch it and gracefully quit notifying you of the problem. To use gdb with your
VSSC compiler, run your VSSC compiler with the -d option. This lets the VSSC
system know that you want to debug your code and gdb will be able to step through
your optimization. The only limitation when using the -d flag is that the VSSC
system can only perform one optimization pass. If you try to perform a second

optimization, an error will be generated and your VSSC compiler will quit.

A.5.2 printsimple

printsimple is a program provided by the Simple-SUIF distribution. It can be
used to print out the contents of the Simple-SUIF files produced by VSSC (those

files ending in .suif). An example of output is shown in Section A.3.3.

A.5.3 Non-GUI VSSC

A VSSC compiler has the capability to be run in a non-graphical mode. Invoking
the compiler without the -v flag causes it to not run in graphical mode. However,
in order to have the compiler perform optimizations, these optimization must be
specified on the command-line. The -O optname flag is used to specify an op-
timization to be run. optname is the same string that the optimization writer
used for the second parameter of vssc_register_opt. An infinite number of -O
flags can appear during the invocation of the VSSC compiler in non-graphical
mode. For example, the following command performs deadcode elimination, fol-
lowed by common sub-expression elimination, followed by deadcode elimination

again (deadcode and cse are the command-line flags specified when the deadcode



elimination and common sub-expression elimination optimizations were registered

with the VSSC system by the optimization writer):
mycompiler -0 deadcode -0 cse -0 deadcode quicksort.c

As was mentioned previously, the VSSC compiler produces a SUIF format file

which contains the results of all the optimizations that were performed.

A.5.4 Making Assertions

It is good programming practice to use assert statements in your code. Assertions,
which act as an error checking mechanism, are tests for things that never should
occur the program was executing correctly. If an assertion fails during program
execution, the program immediately aborts. SUIF provides two extended versions

of the C assert statement which are shown in Figure A.20.

assert(expression) SUIF overrides the assert statement provided in the Standard
C library. This version prints out more detailed information about where
the assertion failed.

assert_msg/(expression, (printf message)) Besides an expression to be tested,
like assert, assert_msg also allows a printf style message for the second
parameter (don’t forget the parenthesis around the second argument!). This
message is printed out if the assertion fails. For example:

assert_msg(curr_instr != NULL,

("curr_instr is NULL in procedure %s", procedure_name));

Figure A.20: Assertions provided by SUIF



A.5.5 Using Data Structures

If you didn’t already know, writing compiler optimizations (or any large project) re-
quires that you manage a lot of data in data structures. Commonly used data struc-
tures in compiler optimizations include lists, arrays, bitsets, and graphs. While it’s
possible for you to write your own data structures and routines to manage them,
this task can be time-wasting and tedious. You would have to design, implement,
and debug everything yourself. Usually, it is easier to use a data structure library
that has been developed and tested by someone else.

Fortunately, the SUIF libraries include most of the commonly used data struc-
tures needed in compiler optimizations so you don’t have to write them yourself.
These data structures and examples of their use are shown below. Most the data
structure classes provided by SUIF are meant to be base classes. They have no
information about what the type of the data they are supposed to contain. In most
cases, you have to create a derived class for a particular data item you with that
data structure to contain. For example, the first class described below, glist, is
useless if used as is. However, you can create a derived class which implements a
generic linked-list list of whatever data item type you wish (eg list of instruction
structures or list of basic blocks). SUIF provides powerful macros which create
these derived classes for you. Simply specify the type of the data item you want
that data structure to store and a macro creates a new class for you automatically.
These macros, which are provided for most of the SUIF data structure classes, per-
form the same functionality as C4++ templates. In each data structure description
below, we show an example using the macro for the data structure (if one exists)

to create a new class and then exercise some of the commands for that class by



adding, searching for, and deleting a data item in a instance of the new class that
was created.

The macros also generate a method for iterating through the items in the data
structure class it generates. Using the iterator, you can easily step through the
data structure if you need to perform the same action on each element in the
data structure. Examples of how to use this iterator is also shown in some of the
examples.

These data structures, shown in Figures A.21, A.22, A.23, A.24, and A.25, are
described in more detail in Chapter 11, Generic Data Structures, of the document
“The SUIF Library Version 1.0” 2. You can also find out more about each data
structure class (including APT calls not listed below because they are not commonly
used) by looking at the actual header file for the class in
$SUIFHOME/include/suif/class.h. To use these data structures and their macros
in your code, you just need to #include <suif.h>.

SUIF also provides other data structure classes such as hash tables and move-
to-front lists. Information about them can be found in their header files and the

SUIF library documentation mentioned above.

2http ://suif.stanford.edu/suif/docs/suif 91.html#SEC91



Data Structure: Generic List

Class Name: glist

Description: Implemented as a singly linked list, this is a generic list class.
Macro: DECLARE_LIST_CLASS

API:
boolean is_empty() const
glist_e *head() const
glist_e *tail() const
glist_e *push(glist_e *e)
glist_e *pop()
glist_e *append(glist_e *e)
glist_e *insert_before(glist_e *e, glist_e *pos)
glist_e *insert_after(glist_e *e, glist_e *pos)
glist_e *remove(glist_e *e)
void erase() /* deletes items from list */
int count()
boolean contains(const glist_e *e)
glist_e operator[](int ndx)

Example:
DECLARE_LIST_CLASS(NodeList, GraphlNode *);
NodeList nodes;
/* Add item x/

GraphNode *tmp;
nodes.append (tmp) ;

/* Search for item */
if (nodes.contains(tmp))
1{

/* Found it! */
¥

/* Remove item */

nodes.remove (tmp) ;

Figure A.21: Generic List class




Data Structure: Association List
Class Name: alist

Description: An element in an association list contains both a key and data pointer. The data associated
with a key can be retrieved with a simple lookup method. There exists no macro for this data structure
but one really isn’t need. The data and key fields in an association list item are of type void * so the
key can be of any type as well as the type of what the data represents.

Macro: No macro

API:
alist_e *head()
alist_e *tail()
alist_e *push(alist_e xe)
alist_e *pop()
alist_e *remove(alist_e *e)
alist_e *enter(void *k, void *i)
alist_e *search(void *k)
void *lookup(void xk)
boolean exists(void *k, void **i = NULL)

Example:
alist nodes;

/* Add item x/

tmpnode = new GraphNode;
tmpnode->title = strdup(name);
nodes.enter (tmpnode, NULL);
/* Search for item */
alist_iter node_iter(&nodes);

alist_e *item;
while (!node_iter.is_empty())

{
item = node_iter.step();
if (!strcmp(((GraphNode *)item->key)->title, name))
/* Found it! */
¥

/* Remove item */
alist_e *item = new alist_e(node, node);
nodes.remove (item) ;

Figure A.22: Associative List class

Data Structure: Doubly-Linked List

Class Name: dlist

Description: Essentialy the same as the generic list except it is implmented as a doubly-linked list.
Macro: DECLARE_DLIST_CLASS

API: Same API as generic list

Figure A.23: Double Linked List class




Data Structure: Bit Vector
Class Name: bitset

Description: Standard bitset class (bit vector representation is implemented as a doubly-linked list for a set
of integers).

Macro: no macro

API:
bit_set() { first = 0; last = 0; bits = NULL; }
bit_set(int £, int 1, boolean no_clear = FALSE);
“bit_set() { delete bits; }

void expand(int f, int 1, boolean no_clear = FALSE);
int 1b() { return first; }
int ub() { return last; }

void clear(); /* clear all the bits to 0 */
void universal(); /* set all bits to 1 %/

void add(int e); /* set bit e to 1 x*/

void remove(int e); /* reset bit e to 0 */

void invert(); /* invert all bits */

boolean contains(int e);

void set_union(bit_set *1, bit_set *r);

void set_intersect(bit_set *1, bit_set *r);

void copy(bit_set *s);

void transfer(bit_set *src, boolean del = TRUE);

void operator=(bit_set &b) { copy(&b); }

void operator+=(bit_set &r); /* bit-wise OR */

bit_set &r); /* bit-wise AND x/
bit_set &r); /* bit-wise subtraction */
bit_set &r); /* bit-wise comparison */
boolean operator!=(bit_set &b) { return !(*this == b); }
boolean operator<=(bit_set &r); /* subset of the bits? */

void operator*=

void operator-=

boolean operator

boolean operator”(bit_set &r); /* test for non-empty is implmented as a doubly-linked list
intersection */

boolean is_empty(); /* all zeros? */

boolean is_universal(); /* all ones? */

int count(); /* count the 1 bits */

void print(FILE *fp = stdout, char *fmt = "Jd,");

Figure A.24: Bit set class




Data Structure: Extensible Arrays
Class Name: x_array

Description: An array class that has no size limit. This class implements the [] operator so that elements
of the array can be accessed just like in regular C arrays (ie A[5]).

Macro: DECLARE_X_ARRAY

API:
x_array(int sz); /* sz is initial size. */
“x_array();
void *& operator[](int i);
int extend(void *e);
int ub(); /* Return number of elements in array. */
Example:

DECLARE_X_ARRAY(NodeArray, GraphNode *);
NodeArray nodes;

/* Add item */

GraphlNode *tmp = GRAPH->addNode ("B2", NULL);
nodes.extend (tmp);

/* Search for item (GraphNode xtmp2) */

for (int i=0; i<nodes.ub(); i++)

{
tmp = (GraphNode *)nodes[il;
if (tmp == tmp2)
{
/* Found it! */
}
}

/* Remove item: You can’t really remove an array index but you can
remove what it points to (after you find it first) leaving
a "hole" in the array. x/

/* Remove Graphllode *tmp3 */

for (int i=0; i<nodes.ub(); i++)

{
tmp = (GraphNode *)nodes[il;
if (tmp == tmp3)
{
/* Found it. */
delete(tmp);
nodes[i] = NULL;
¥
¥

Figure A.25: Extendible array class




A.5.6 Examples using SUIF data structures and VSSC API

This section contains several examples using the SUIF data structures and the
VSSC API commands. The code given in these examples is not meant to work by
itself and some of it may be pseudo-code. It is provided only as an example to

help you get comfortable writing your own optimizations in VSSC.

Example 1

In this example, shown in Figure A.26, we define a simple symbol table class that
uses the generic list data structure as a data structure for all the symbols. The
incomplete class shown exercises some of the operations you can perform on the
generic list. In your optimizations, you probably won’t need a symbol table class.

This is just an example!

Example 2

In this example, shown in Figure A.27, we create an extensible array of pointers
to basic blocks. For each basic block we find we add it into the VSSC text widget
as well as inserting a node representing it into the VSSC graph widget. Then we

go through the array to print out the contents of each basic block.



class SymbolTable

{
private:
DECLARE_LIST_CLASS(SymTab, SymbolTable_Entry *);
SymTab T;
public:
void enter(SymbolTable_Entry xe);
void remove(SymbolTable_ Entry xe);
void print();
+
void SymbolTable::enter(SymbolTable Entry *e)
{
if (T.contains(e))
printf ("Error: symbol table already contains item");
else
T.append(e) ;
¥
void SymbolTable::remove(SymbolTable_Entry xe)
1{
if (!T.contains(e))
printf ("Error: symbol table already contains item");
else
T.remove(e) ;
¥
void SymbolTable::print()
{
SymTab_iter node_iter(&T);
SymTab_e *item;
while (!node_iter.is_empty())
{
item = node_iter.step();
printf ("Symbol: [%s]\n", item->name);
¥
¥

Figure A.26: Example 1 source code




#include <vssc_simple.h>
class BasicBlock
{

public:
int id; /* BasicBlock number (eg BasicBlock 4)

+
DECLARE_X_ARRAY(BasicBlocks, BasicBlock *);

BasicBlocks BBs; /* BBs is an extensible array of pointers to
BasicBlock items */

int main(int argc, char **argv)

{
foreach Basic Block BB that we find
{

BBs.extend(BB) ;

/* Add basic block to end of text widget with no animation */

GUI->add_basicblock (BB, NULL, FALSE);

/* Add node to graph representing basicblock and add a
dataitem for that node which contains the id of the
BasicBlock
"BasicBlock: 4" x/

char node[10];

sprintf(node, "B%i", BB->id);

GraphNode *BBnode = GRAPH->addNode(node, FALSE);

sprintf(node, "Ji", id);

GRAPH->addDataltem(BBnode, "BasicBlock:", node);

}
/* foreach Basic Block */
for (i=0;i<BBs.ub(); i++)
{

BasicBlock *BB = (BasicBlock *)BBs[il];

/* Print out instructions in basicblock. */

simple_instr *instr;

instr = BB->head();

while (instr != BB->tail)

{

simple_instr_print(stdout, instr);
instr = instr->next;
}
simple_instr_print(stdout, instr); /* Tail instruction */
}
}

Figure A.27: Example 2 source code




