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Abstract. Higher dimensional automata can model concurrent computa-
tions. The topological structure of the higher dimensional automata deter-
mines certain properties of the concurrent computation. We introduce bi-
complexes as an algebraic tool for describing these automata and develop a
simple homology theory for higher dimensional automata. We then show how
the homology of automata has applications in the study of branching-time
equivalences of processes such as bisimulation.

1 Introduction

Geometry has been suggested as a tool for modeling concurrency using higher di-
mensional objects to describe the concurrent execution of processes. This contrasts
with earlier models based on the interleaving of computation steps to capture all
possible behaviours of a concurrent system. Interleaving models must necessarily
commit themselves to a specific choice of atomic action which makes them unable to
distinguish between the execution of two truly concurrent actions and two mutually
exclusive actions as these are both modeled by their interleaving. In [9] and [1] Pratt
and Glabbeek advocate a model of concurrency based on geometry and in partic-
ular on the notion of a higher-dimensional automaton (HDA). Higher—dimensional
automata are generalisations of the usual non—deterministic finite automata as de-
scribed in e.g. [2]. The basic idea is to use the higher dimensions to represent the
concurrent execution of processes. Thus for two processes, a and b, we model the
mutually exclusive execution of ¢ and & by the automaton

53
RN
51 S9
:l\ /I:
S0

whereas their concurrent execution is modeled by including the two-dimensional
surface delineated by the (one-dimensional) a— and b-transitions as a transition in
the automaton. This is pictured as
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A computation is modeled by a path in this higher—dimensional automaton. Now
several properties of computational relevance are determined by the topology of
the HDA. E.g. a HDA is deterministic if for any two paths in the automaton one
can be transformed into the other in a continuous fashion, i.e. non—determinism
arises from holes in the automaton that prevent the transformation of one path into
another. Furthermore certain differences in the topologies of two HDA imply that a
computation is possible in one HDA but not the other, i.e. information about the
topology of HDA can be used to answer questions about bisimulation between the

HDA.

The field of algebraic topology offers several techniques for giving an algebraic de-
scription of topological properties of geometric objects. In this paper we develop a
theory of homology of HDA. To each HDA we associate a sequence of groups that
characterises the essential branchings and mergings in the HDA. These homology
groups seem to be more amenable to automated computation than the fundamental
groups associated with homotopy theory.

We introduce HDA in section 2. Section 3 defines the notion of bicomplex and show
how HDA can be described by bicomplexes. In section 4 we give a translation of
a CCS-like process language into bicomplexes. Section b develops the theory of
homology of bicomplexes and show how our process language can be translated into
homology groups. Finally section 6 shows how differences in the homology groups of
two bicomplexes imply that the associated bicomplexes are not bisimular. Section 7
concludes.

Notation. We denote by Zs the group (Z/2Z,+) (which is also a field with mul-
tiplication being multiplication modulo 2). For Q a set, we write @ for the free
Zs-vector space generated by Q (or Vect(Q)). For f a function from a set A to a set
B, we define f from A to B as being the linear extension of f. We write @ for the
tensor product between two Zs-vector spaces, @ for the direct sum of two Zs-vector
spaces. The vector space generated by the cartesian product of two sets is the tensor
product® of the vector spaces generated by each of these sets. We write {*} for the
trivial structure (e.g. group, or vector space), (x) for the Zs-vector space generated
by x, Ker f for the kernel of the function f, and Im f, for the image of the function f.
Id is the identity function. Given V a Zs-vector space, whose basis is {e; / i=1...a},
we define the scalar product of two vectors x and y as being {(z,y) = Xi=1. %4
(with value in Z), where = Y=y qi.¢; and y = Xi=1 o y;.€;.

? for a full definition see [4]



2 Higher—dimensional automata

We have already given one example of a higher—-dimensional automaton, viz. the
automaton in the introduction with the interior filled. In this section we define the
concept of a higher—dimensional automaton (HDA) precisely and explain how this
definition extends the usual definition of a finite automaton. Furthermore we define
the notion of a path through a HDA | used to describe a concurrent computation.

The description of a finite automaton over an alphabet X' consists of a set of states
S together with a transition function ¢ : S x & — S such that ¢(s,m) is the state
reached when reading symbol m in state s. In addition, there is an initial state
sgp € S and a set of final states F' C S. In this framework there 1s a clear distinction
between states, where the automaton “rests” and transitions where the automaton
i1s “in action”. We call such an automaton a one-dimensional automaton, for reasons
to become clear shortly.

This way of viewing an automaton is inadequate when the automaton is capable of
performing several actions simultaneously. Such an automaton can be more or less
active according to how many actions are being performed. We can picture such
an automaton as a network of one-dimensional automata in which some automata
rest and some are in action. A state of such a network is then a mixture of resting
states and transitions/actions and the automaton changes from one state to another
by initiating or terminating one or more actions. The number of actions is called
the dimension of the state. We shall call such an automaton a higher—dimensional
automaton.

The classical finite automaton can be described in this fashion. The new set of states
consists of the old set of states, all elements of which have dimension zero, together
with the states (s,m,t(s,m)) of dimension one, which represent the transitions.
Note that the dimension of a state agrees with the standard way of drawing finite
automata: A state is represented by a point, ¢.e. a zero—dimensional object, and a
transition by a line, 7.e. an object of dimension one.

The following is Glabbeek’s definition of a HDA from [1]:
Definition1. A higher—dimensional automaton is a tuple (S, d, o, 7, so, F, £) where

— S is a set of states
— d: S — N is the dimension of a state
— 0,7 : 5 x N—S are partial functions. For s € S and k < d(s), o(s, k) and 7(s, k)

are the start state and the end state of the action in the k’th dimension. The
functions o, 7 must satisfy the cubical laws (cf. [1]): For i < j

i) d(o(s, k) =d(r(s, k) =d(s) -1
: s,j+1),4) i) o(r(s,i),j) = 7(o(s,j +1),4)
iv) T1(o(s,i),j) =o(r(s,j+1),9) v) 7(r(s,0),4) =7(r(s,5+ 1),4)

— sp € S 1s the initial state and F' C S is the set of final states. They must satisfy
d(so) = d(f;) = 0 for all f; € F



— £ : S—2X is the labeling function, that assigns a label to every state of dimension
one, i.e. {(s) is defined if and only if d(s) = 1. Furthermore we require that

Uo(s, 1)) = Ur(s,1)) fori=0,1

Note Instead of specifying the dimension function d : S — N we shall sometimes
present S as a family of sets {5}, .y where S; is the set of states of dimension .

The first cubical law states that the dimension of state increases by one when an
action is initiated and decreases by one when an action is terminated. Representing
a state as a list of the actions that is being performed we can explain the other
cubical laws. Let us as example take the law év) and assume that ¢ < j. The j+ 1’th
element of the list representing s will be the j’th element in the list representing
the state just before s where the ¢’th action has not been initiated, 7.e. the state
o(s,i). Hence the adjustment in the index. The rules i), ii7), v) can be explained in
a similar way.

FErample As an example we have the automaton from the introduction that performs
the two actions a and b concurrently. It can be drawn as follows:
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We name one-dimensional states (i.e. transitions) by their label and distinguish
between different transitions with the same label using primes. In our example there
are two transitions with the label a which are denoted by a’ and a respectively?.
Furthermore we shall write o(s,¢) and 7(s,4) as o;(s) and 7;(s).

The labeling function £ extends to a function ¢* on higher—dimensional states by
stipulating that £*(s) is the string of labels of the one-dimensional states constituting
s (. is the string concatenation). Finally, £ of a sum of states is the set of £* of each
of the summands.

Definition2. A path in a higher-dimensional automaton (S, d, o, 7, s, I, £) is a se-
quence p=(p;)o<i<n such that:

- Vi, p; €U;S;

— Po = S0

=~ Vi:0<i<n—1:0;(pit1) = pi or Te(pi) = pit1 for some j, k < d(p;)
n+1 is the length of the path p. A word is w=(¢*(p;))o<i<n. An acceptable path is
a path such that p, € F'. An acceptable word is a word whose associated path is

acceptable. The language accepted by (S, d, o, 7, sq, F, £) is the set of all acceptable
words.

* Thus the primes should not appear in the drawing. We have added them only for the
sake of clarity



3 Complexes

In this section we introduce some concepts from algebraic topology that are useful
for studying higher-dimensional automata. One of the fundamental problems studied
in algebraic topology is how to characterise geometric objects that are equal modulo
a continuous deformation. That is, two objects are considered equal if one can be
deformed into the other by stretching, bending ete but not tearing nor piercing it.
For connected objects, the essential problem here is to define rigorously the notion of
a hole in an object and algebraic topology offers several possibilities. It was first done
via the notion of fundamental group (a group of paths on a manifold®) in [8], and
more generally (and later) by the homotopy groups. This notion is very close to the
geometric intuition: A hole is something that prevents a path on a manifold passing
on one side of the hole to be continuously deformed into another path passing on
the other side of the hole. But it is difficult to compute these homotopy groups in
general. To overcome this problem Poincaré introduced the notion of homology ©.
It defines holes in an even more algebraic and constructive way. First of all, a given
manifold is represented in a discrete way by triangulating it. Thus the manifold is
represented as a union of points, edges, triangles, tetrahedrons etc. These discrete
sets are called simplicial sets. Then these objects are oriented geometrically; here
it suffices to give an order on points. Afterwards, the notion of a boundary of an
object of dimension n+1 is defined as a formal sum (keeping in mind the orientation
problems) of objects of dimension n. We can call boundary everything which is
the result of taking the boundary of an (or a sum of) object(s). The boundary of
a line segment is its endpoints and the boundary of a triangle is the edge of the
triangle. A cycle is a formal sum of objects whose boundary is null. All boundaries
are cycles, but the converse is not true. It is false when there is a hole inside a cycle.
A characterization of holes is therefore, objects which are cycles but not boundaries.

More precisely an n—dimensional manifold can be represented as a collection of k-
dimensional objects (kK = 0,...,n) and is fully described by listing for each object
of dimension k its (k — 1)-dimensional boundaries. Thus a manifold is given by the
diagram

az’ az’—l 61
Qi Qi1 Qo

where @Q; is the collection of i~dimensional objects and &' is the boundary map.
Since the definition of boundaries and cycles involve formal sums of objects, it is
more convenient to study this diagram where Q; is replaced by Q; and 9" is replaced
by its linear extension. A boundary of an (i+1)-dimensional object can then be
described as an object lying in the image of §'t!. Similarly, as a cycle is an object
with zero boundary, the cycles of dimension 7 are precisely the objects in the kernel

of 0. As all boundaries are cycles we have that Imd'+! C Kerd’, so 700 T =0: this

5 We shall not define an n dimensional manifold precisely, but just use it to denote a
topological space that locally “looks like” a Euclidean space R™
5 Here, we just speak of simplicial homology



equation makes the diagram a complez. As both Im 9 and Ker & are subgroups
of (); we can form the quotient

Ker d'/Im &'t

This is called the i—th homology group of the complex. As a first indication of the
information present in the homology groups we note that non-zero homology in
dimension ¢ indicates an i—cycle that is not the boundary of an ¢ + 1-dimensional
object, i.e. an i—dimensional hole in the manifold.

3.1 Transition systems and bicomplexes

In computer science, transition systems, which can also be seen as discrete formaliza-
tions of continuous processes, are central in the semantic definitions of programming
languages. Paths are traces of execution, and one can imagine that a deformation of
a path into another one 1s not possible because of branchings or mergings, equiva-
lent of holes in the preceding case. In the sequential case, what we have just said is
trivial. But if we generalize transition systems to represent concurrent processes, it
is no more the case. A very nice geometrical way of doing it can be found in [1] and
[9]. Then, a semantic equivalence on these objects (in the manner of bisimulation)
can be expressed in terms of deformation of paths, that is homotopy. It is then natu-
ral to consider an algebraic equivalent, much more computable, in the form of some
kind of homology. A difficulty is to be able to take into account the (irreversible)
flow of time i.e. to talk about the beginning and the end of a path. One can think
of several ways to do it. One is to consider homology of monoids as in [3]. Another,
as proposed in [9] is to use the formalism of n-categories. We suggest bicomplexes
because they capture the difference between start—and end—states and fit well with
the cubical laws while still being easy to understand and compute.

Definition3. A bicomplex (4;,8%,6!) is a sequence of groups, A;, together with
two sequences of group homomorphisms &3, 63:
87 8¢ 8y
Ag As Aq Ap

such that ' ' ' '
8 0 66"’1 =40 61"’1 =0

8o 6i+1 =60 6é+1

Let S; denote the states of dimension i. For each S; we can construct the free Zo—
vector space generated by 5;, denoted by S;. The elements of S; are formal sums

s14+ ...+ s, SZ'ESZ',REN

where each s; € S; appears at most once. Addition of two elements 1s defined as
usual by



Z n;s+ Z nps = Z(n] +ng)s

SES; SES; SES;

where all coefficients are in Z,, i.e. an s appearing in both sums disappears. It
is straightforward that each S; forms an abelian group with the empty sum (all
coefficients = 0) as neutral element.

The mappings o, 7:.5 x N—S from a HDA induce a sequence of mappings

o' 7Tt S — S

where o? and 7¢ are the restrictions of ¢ and 7 to states of dimension i+ 1. By linear
extension we obtain two group homomorphisms 6%, 0% : S;4+1 — S; by:

63(51—1—...—1—5”) = 63(51)—1—...—1—62(5”) and 6i(51—|—...—|—5n) = 6i(51)—|—...—|—6i(5n).

The cubical laws can then be used to show the following theorem
Theorem4. Let (S,d, 0,7, s0, F,{) be a higher-dimensional automaton. Then

5 8 5
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15 a bicomplex.

Proof: Show §,6, = 0. Cubical law i) implies that

S Y rlota. i)+ 3 alola.in i) = 3 alola. 1)+ Y Y olala, i) =

i=1 :j_zll jn:i . i=1 ]:nl i i:lj:ni-l—il_l
ZZO’(O’((],i),j) + Z Z U(U(q’i)’j) = ZZO’(O’((],i),j) + ZZO’(O’((],i),j) =0.
i=2 j=1 j=li=j+1 i=2 j=1 i=2 j=1

The rest of the proof is similar. From now on, all HDA will be presented by bicom-
plexes (Q,0y,01) and an initial state i, a set of final states F, and a labeling operator
£, written as a tuple (Q,dy,01,1,F,¢).

4 Translation of process algebra into bicomplexes

We now develop a truly concurrent semantics of a process algebra by translating the
terms of the algebra into bicomplexes. First a quick review of the CCS-like syntax:
We assume given a set of actions X' U {7} such that when X contain an action w it
also contains its complementary action w. The action 7 is called the internal action.



Furthermore we have the idle process nil. Terms are then formed according to the
following grammar:

ti=w |Il11 | (tl —|—t2) | (tl |t2) | (tl ;tz)

where + is choice, | parallel composition and ; is sequential composition. For expos-
itory reasons we have divided the parallel operator in two operators: ¢1]|[t2, which is
parallel composition without communication, and the general one |.

The translation 1s defined by structural induction over the terms. For each construct
we specify the resulting bicomplex ({Ti}z’eN’ Gy, 01,4, G, L). T; are states of dimen-
sion ¢, i.e. generators of the i—th vector space and j and G are the initial state
and the set of final states respectively. We introduce a special 0—dimensional state
1 (neutral for ®) to represent the idle action nil.

(case 1) t =w € X. Then TO:{laB}a T1:{7}, J:{l}a G:{B}a 60(7) =1 61(7) =
3, and L(y)=w, where 3,y are fresh state names.
(case 2) t=nil. Then Tp={1}, J={1}, G={1}.
(case 3) t=q+q’. We assume that the translation of q is (@, o, 01,1, 4, F'), and of
q’is (@', 00,01, ', ¢, F'). Then:
S T=(@uaepiti=iy
— =i
G=FUF’
0,11 = &51) ® 5[’

— and for the labeling function:

/ s
Vl‘ETlL(l‘): (l‘) 1 XlSanl
U(z)if xisin @)
(case 4) t=q ; ¢’. We have the translation of ¢ : (Q,dy,01,{,i, F), and of ¢ :
(@, 0o, 01, ', ¢, F"). Then, if F={f1, ..., fim}

Vi>0,Ti=Qi U fix QU oo fux Q)

We have also,
~ =i
- G=fixF U ..U f,xF
- 6]'[T] = @[Q] @ Id® 6][62/]
— for x in 71, L(x)=I(x) if x is in @1, otherwise x=(f;,y) with y element of @}
and L(x)=0"(y).

(case 5) t=(q || ¢"). By considering the valid transitions for t, we see that we need
that the paths of t be isomorphic to the cartesian product of the paths of g
and q’. Thus it 1s natural to form the product of the cubical sets underlying the
corresponding automata:

Yk Z O,Tk = U Qz X Q;c—z

i=0...k



And for the boundary operators:

I = P @QRled & 1dod~ Q)

i=0...k

Moreover, j=i®1’, G=F xF’. Finally, the labeling operator is given by:

L. q.0q, = “iilig, Y,

(case 6) t=(q | ¢’). There is here a possibility of communication between q and q’,
represented by equations on tensor products between states which can interact.
We define the new bilinear product, quotient of the tensor product by these
equations, as follows:

— X € Q1,y € Q) and I(x)=I(y), then x®.y=s, where s is in 7} such that
L(s) =7, 0o(s) = do(x) @ o(y), O1(s) = O1(x) @ O1(y).
— otherwise x®,y=x®y (no interaction).
The symbol 7 is a distinguished element in X, used (see for instance [7]) to
represent the internal synchronisation action.
Now we define T as being given by almost the same equations as in (case 5).
~To=Q,®Q
~T1=Q,9Q,0Q, ©Qyd Vect({r @ y/x € Q1,y € Q) and I(x) = I(y)
— Ty =Qy® 6/2 T Q, ®§8@ Vect({z @ y/x € Q1,y € Q) and I(z) # I(y)}
Vk>3,Tp = Uizo. 1 @i X Qp—y-
And for the boundary operators, for ¢ € @; and ¢' € Q) _;:

D
)

of Mg q) =3[Rl @ ¢ & ¢ [Qd)
and
0} TN @ ¢') = 81Q1(a) © 8 [QN(), if k= 2,i=1,1(q) = '(¢")
Moreover, j=i®i’, G=FxF’. Finally, the labeling operator is given (on 1-states)

by:
Lwo.y)=r ifeeQ,yeQ)andi(z) =T(y)
otherwise
() ifzeQi,yeq)
I'(y) ifzeQo,ye

For a term t, we denote by [[t] the result of its translation into a higher-dimensional
automaton, as described above. We then have a correctness result about the trans-
lation, which states that the paths of [¢] describe the fully concurrent execution of
t (as can be inferred from a presentation of CCS via rules of transition, in [7]). We
prefer in this article to give a few examples instead of a fully abstract treatment of
that property.



Eramples

(1) We use the inductive construction above to translate the CCS-term (a|b) (which
is equal to (a||b)). We have:
a b
1 — % o 11— =3
to represent [a] and [b] respectively. We now form the tensor product:
a® B
« a®b 8

N

The paths of ([al|6]) are:
Lla,0,a® b, ® B) 4.(1,b,8,a® B,a ® B)
2.(1,a,a@b,a®@b,a®f) 5.(1,b,a@b,a®@b,a® f)

3.L,a,a@ba@ B,a® f)  6.(1,b,a®ba®f,a®f)

Paths 3 and 5 are not considered in [1]. We can nevertheless give an intuitive
meaning to each of them. Associate action a to processor p; and action b to
processor py. Then for path 3 we have:
1: p; and ps are idle
a: pi is computing a while ps 1s idle
a®b: p; continues to compute a while py is computing b
a®fB: pp still computes a while ps is idle (it has finished its computation)
a® B: pp and ps are idle (they have both finished their computations)
(2) We now compute [(a+b)||c].

a@c
O —>a®y

a
a®c /
/ a®@y

l—"sy

by
b® \
b\« c

f——>007
foc

5 Homology of bicomplexes

Let (Q,00,01) be a bicomplex arising from a HDA. Then if two transitions of dimen-
sion one a, b have a common start point, i.e. dy(a) = Jy(b), then the sum a+b will
belong to the kernel of 0y since we work modulo 2:

80(a + b) = 60(&) + 60(19) =0



i.e. a+b € Kerdy. So a+b is a potential branching. However it is not a non-
deterministic choice if a and b are boundaries of a higher-dimensional transition, ¢.e.
if there exists a 2-dimensional transition A such that 9y(A) = a+b. These branchings
could have been defined in a more standard way, but this is particularly amenable
to generalisation for higher-dimensional transitions. Intuitively, a non-deterministic
choice of dimension i is an element of the kernel of 93 modulo the boundaries of
i+1-dimensional objects, i.e. is an element of the 1-th homology group:

Kerd} | Imayt!
This is for branching. A similar relationship holds for mergings and the maps &% .

Definition 5. For (Q,0y,01) a Zao-bicomplex, we define two sequences of homology
(see for instance [5]) groups (or homology vector spaces):

Hi(Q,00) = Kerdy/ImoyT! Hi(Q,01) = Kerd} /ImoiT!

An element of Kerd! is an i-cycle, and an element of Imd:*! is an i-boundary. An
element of H;(Q, p) is called a branching of dimension i. An element of H;(Q, d;) is
called a merging of dimension i. An element x satisfying (z, H;(Q, do)) #0 is called
a branching choice of dimension i. We write H, (T, 0;) for @, ., Hi(T, ;).

We begin by giving some intuition about these homology groups. We consider first
of all the homology groups of dimension 0.

Lemma 6. Consider a finite automaton given by (Q,00,01,1,F L), with no cycle

— 1=Hy(Q, 01) implies that all states of Q are reachable
— F=Hy(Q, 0o) implies that all states of Q are co-reachable

Now we give a few examples of the groups H;(Q, 9;).

(1) We consider the first examples of the last section. Then, Hy([a||t], do) = (¢ ®S)
(it is the end state), Ho([a|[b],d1) = (1) (it is the initial state), and the other
H; are null (there is no branching nor merging, it is deterministic).

(2) We study now Q=[a | @]. We now have, Hy(Q, ) = (e« @ ), Ho(®@, 1) = (1),
H1(Q,8y) = (a+7) B (7 +7a) (we have two branchings of dimension one, that is
a choice between a, 7, and @), H1(Q,01) = (a @ f+ 7)® (r + a ® @) (we have
two mergings of dimension 1), and the other H; are null.

5.1 Some results from homology theory

We now list some results concerning the calculation of homology groups of direct
sums and tensor products of complexes. These results are needed when we later are
to interpret operators of our process algebra as operators on homology groups.



We first look at the sum of two manifolds. If (Q,,d[Q]) and (@;,6[6)’]) are the
complexes corresponding to two manifolds, then the one arising from their disjoint
union (7T, 9[T]), is given by:

and,

vi,0'(1] = 9'Q) & 0'[Q']
Now for bicomplexes, the analogous is fairly obvious: let (Q,,d[@Q],d1[Q]) and
(@', [Q"],01[Q"]) be two bicomplexes. Then we form (T, [T, d1[T]) with

Vi, Ti = Q; & Q';, (1] = 9[Q) © 9[Q'], d1[T] = 91[Q] © 94[Q']
We can compute the homology groups of T given those of Q and Q’ as follows:

Lemma 7. The homology groups of T, disjoint union of Q and Q’ are:

More generally, we have a relation between the homologies of bicomplexes Q, Q’
and Q N @', using the so-called Mayer-Vietoris sequence (see for instance [6]). In
particular, it permits us to adapt the preceding lemma to a case where we sum two
bicomplexes, and identify their initial states (used in next section).

Now for products: One can compute the homology of the cartesian product of two
manifolds, given the homology of both of them. If the cartesian product of two
(concrete) manifolds My and M is based on the set of pairs of points of M; and
M respectively, we have to describe the discrete equivalent of such an operation on
the simplicial sets and complexes arising from a triangulation of them. Let ); and
Q! be the simplicial sets of objects of dimension i associated with the manifolds M;
and M,. Then the simplicial sets T; associated with the product of M; and M, are:

Yk Z O,Tk = U Qz X Q;c—z
1=0...k
Therefore, the generated simplicial complex is:
¥E> 0T = P Qoqh
1=0...k
And the boundary operator is :
o [T] = (@'QleId @ Id® 0" ' [Q]).

i=0...k

This construction is the tensor product of the two complexes associated with M
and My (see [6]). Now the homology groups are given by the Kiinneth formula:

Lemma 8.

Hy(T,0) = B (He-i(Q,0) @ Hi(Q',9))

i=0...k

The reader can verify that the definition of tensor product we have given is also
correct for bicomplexes.



5.2 Translation of process algebra into homology groups

In this section we demonstrate that the operators of our process algebra can be
interpreted as operators on homology groups such that the interpretation of a term
gives the homology groups of the bicomplex corresponding to the term.

(case 1) t = w € Y. We have H; = {«} for all i>1. Ho([t],00) = («), and
Hy([1],01) = (1)
(case 2) t=nil. Here we also have H; = {} for all i>1. Ho([t], ;) = (1).
(case 3) t=q+q’. We interpret choice as a connected sum of the complexes of q and
q’. The homology groups are:
- Hy(T,0;) = Hi(Q,0;) ® Hi(Q',0;) © N where,
N=({0,X4+X"},4) with i=0¢(X), '=0,(X"), X € @, X' € Q'
- Vi#£1, HZ'(T, 6]) = HZ(Q, 6]) ©® HZ'(Q/, 6])
(case 4) t=q ; q’. The homology groups are then:

Ho(T,00) = F @ Ho(Q',00) Ho(T,01) = (1)

Vi> 1, Hy(T,8;)®F @ Hy(Q', ;).

case =(q || 4’). The parallel composition without communication is interprete

5) t ). Th llel it ithout ication is int ted
as the tensor product of complexes. For the homology groups, we then have
(Kiinneth formula):

HO(T’ 6]) = HO(Q’ 6]) @ HO(Q/’ 6])

H(T,0;) = €D (Hi-i(Q,0) © Hi(Q', 9;))

i=0...k

(case 6) t=(q | @"). There is here a possibility of communication between p and q,
represented by equations on tensor products between states which can interact.
For the homology groups, we have:

H\(T,0;) = Hi(Q, ;) © Ho(Q', 0;) & Ho(T,0;) © Hi(Q', 0) & 1(Q, Q'),

where 1(Q,Q’) is the interaction term:

[(Q,Q") = Vect{z @, (y+0;(), (x +0;(x) @e y / x € Q1,y € Q1 U(x) = 1(y)}

and for k > 1, Hx(T, ;) is given by the Kiinneth formula from above.

Remark In what we have presented here, we have always F' = Ho(T, dp). One can
show (using the Mayer-Vietoris sequence) that as soon as we have the restriction
operator \, we can have elements of Ho(T,dy) not in F. They are called deadlocks.
One can use such a definition, and tools from homological algebra, to study deadlocks
of processes, or also failure pairs if one wishes to study failure equivalence. In the
next section we concentrate on bisimulation.



6 Bisimulation equivalence

Glabbeek defined the notion of bisimulation of HDA. In this section we demonstrate
how the homology groups of HDA can be used to show that two HDA are not
bisimulation equivalent.

Definition9. S is a bisimulation between (Q,8, 91,1,1,F) and (Q’,0q, 01,1, T’ F’) if:

— S is a relation between U;(); and U; Q;

— all s € I are related to an s’ € I’ and vice-versa

— (8,8")€S = (s€F & ¢'el)

— (s,8")€S = (V¥ q a path for Q such that Ji, ¢;=s, 3¢’ a path for Q’ such that 3j,
¢;=s"and (gi+1,¢j41) €S, "(¢i+1) = (g 41))

— (,8")€S = (V q” a path for Q" such that Jj, ¢j=s’, 3q a path for Q such that 3i,
gi=s and (gi41, ¢j41) €S, "(¢ir1) = (g 41))

(Q,00, 01, L,ILF) and (Q’,00, 01,1, I’ F’) are bisimulation equivalent if and only if there
exists a bisimulation between them.

This notion of bisimulation equivalence “naturally” generalizes the usual notion
(as found in [7]) of observational equivalence, or bisimulation equivalence on one
dimensional automata. In our setting, the description of bisimulation equivalence
1s more complex than in the sequential case. Nevertheless, we can show that it is
still a branching (in our sense) time equivalence, that is, it locally preserves some
geometric shapes.

We introduce now local invariants of bisimulation equivalence. Let = be the smallest
congruence on /A containing the relation G, defined by: uGv < u = *(z), v = I*(y)
and 3z € Imdy such that {z, z)=1, (y, z)=1 Then I* induces a map [I*] : H;(Q, dy) —
A/ =. Let S(x), for « € ®; H;(Q, 0p) be [I*](x) if card I*(x) > 2, 0 otherwise. Under
the hypothesis that the number of states at a finite distance (equal to the length
of the minimal path to reach them) of a given state is finite, we have the following
result,

Proposition10. If (Q,00,01,L 1 F) and (Q’,00,01,U,I’,F’) are bisimulation equiva-
lent then (Vi, S(H;(Q,00)) = S(H;(Q', o)) (as a subset of Aj == AJ =') provided
that all (i-1)-states (for i>2) of elements of H; are in the Jy- boundary of i-states
which have all different labels in A/ =).

This states that the branchings whose branches have distinct labels are preserved
(and possibly duplicated) by bisimulation equivalence.

Examples:

(1) Let g=a.(b+c) and g’=a.b+a.c. We compute their homology groups: H1([¢], o) =
Hy([a], do) @ H1([b+c], o) = Ho([a], do) @ (H1([b], do) b Hi([c], Do) (b+c)) =
(a®@b+ a®c), and, Hi([¢'], Jo) = (a + a’) (where a’ is a distinct copy of a).
Thus S(H1([q], 80))={b+c}, and S(H1([¢'], 80))={0}. Thus, by proposition 10

[¢] and [¢'] are not bisimulation equivalent.



(2) Let g=(a+b)|/(c+d) and q’=al|c+b||ct+a||[d+b||d. We compute their homology
groups: H1([q], 00) = H1([a+b], 00) ® Ho([e+d], do)® Ho([a+b], Jo) @ Hi([e+
d],00) =(@a@7+b27) P (a@6+b26)D(a@c+a@d) B (B c+ D d).
And Hs([q],00) = Hi([a + 8],80) @ Hi([e + d], ) = (a@c+b@c+a®
d+ b5 d). Now, Hy([¢], 8) = Hy([alle], 0) & Hy(Dbllel, ) & M ([alld], 6o) &
Hy([b]|d], 00) @ (a+b) B (b+¢) D (c+d). And H3([¢'], Do) = {*}. In particular,
S(Hz2([4], 0o))={a.c+b.c+a.d+b.d}, and S(H2([¢'], 9o)={0}. Thus q and ¢’ are

not bisimulation equivalent.

7 Conclusion

In this paper we have presented a technique for modeling concurrency centered
around the description of higher dimensional automata by bicomplexes. From this
we derived a notion of homology of HDA and demonstrated the pertinence of ho-
mology to concepts like non—determinism and bisimulation. The notion of HDA is
taken directly from [1] and although the original definition is intuitively clear we
find that the bicomplexes provide a more streamlined presentation of HDA for some
purposes. The idea of applying algebraic topology to the study of concurrency was
largely inspired by Pratt’s article [9] where he introduced the notion of monoidal ho-
motopy in HDA to model “true non—determinism”. With this paper we hope to have
provided some initial evidence of the usefulness of the related notion of homology.
Further work on the subject will consider the restriction and recursion operators of
CCS. Restriction is modeled by projection on vector spaces and recursion by limits
in a suitable category of bicomplexes. Finally invariance under refinement of ac-
tion should be related to the independence of choice of triangulation for calculating
homology groups.
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