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Abstract

Lower, upper, sandwich, mixed, and convex power domains are isomorphic to domains
of second order predicates mapping predicates on the ground domain to logical values in
a semiring. The various power domains differ in the nature of the underlying semiring
logic and in logical constraints on the second order predicates.

1 Introduction

A power domain construction maps every domain X of some distinguished class of domains
into a so-called power domain over X whose points represent sets of points of the ground
domain. Power domain constructions were originally proposed to model the semantics of
non-deterministic programming languages [15, 16, 8, 14]. Other motivations are the semantic
representation of a set data type [6], or of relational data bases [2, 3].

In 1976, Plotkin [15] proposed the convex power domain construction. A short time later,
Smyth [16] introduced a simpler construction, the upper power construction. In [17], a third
power domain construction occurs, the lower construction, that completes the trio of classical
power domain constructions.

Starting from problems in data base theory, Buneman et al. [2] proposed to combine lower
and upper power domain to a so-called sandwich power domain. By extending Plotkin’s
domain in a natural way, Gunter developed the mized power domain [3, 4].

Given at least five different power domain constructions, the question arises what is the
essence of these constructions. In [7], we defined power domain constructions algebraically by

axioms concerning existence and properties of the basic operations of empty set, singleton,
binary union, and function extension.

The resulting algebraic theory of power constructions, which is summarized in section 3,
shows that every construction has a characteristic semiring reflecting the inherent logic of the



construction. 0 stands for ‘false’, 1 for ‘true’, addition means disjunction, and multiplication
represents conjunction.

The general algebraic theory provides a final power domain construction for every semiring
R. Tt is explicitly given by mapping ground domains X to the space of linear second order
R-predicates over X (see Th. 3.5). A (first order) R-predicate over X maps members of X
to logical values in R, whereas a second order R-predicate maps first order predicates to K.
All these results were published in [7]. They are repeated in section 3 of the paper at hand
for convenience of the reader.

The present paper handles the five known power domain constructions mentioned at the
beginning in the framework of the algebraic theory. Section 5 contains an overview of the
five constructions. To investigate the relations among them, we consider products of power
constructions and sub-constructions in section 4. In section 6, we show the lower power
construction £ to be final for the semiring L = {0 < 1}. An analogous result is shown for
the upper construction I/ in terms of compact upper sets in section 7. In section 8, the
sandwich construction § is shown to be final for semiring B = {L, 0, 1}. Thus, these three

constructions are isomorphic to spaces of linear second order predicates.

Although the mixed power construction M and Plotkin’s construction C are not final,
they may also be described in terms of second order predicates because their power domains
are subsets of the sandwich power domains. In section 9, we present the logical conditions

that characterize the predicates corresponding to mixed or Plotkin domain members among
all members of $X.

Both [7] and the paper in hand are extracts of the comprehensive thesis [5] containing
more details and background information.

2 Theoretical background

In this section, we introduce some notions and notations from domain theory, algebra,
and topology. A C; B means A is a finite subset of B. For f : X — Y and A C X and
B CY, f[A] is the image of A and f~![B] the inverse image of B. fz means application of
f to z, and accordingly, g o f means Az. ¢ (fz). G fa parses as (G f)x.

2.1 Posets and domains

A poset (partially ordered set) is a set P together with a reflexive, antisymmetric, and
transitive relation ‘<’. We often identify the poset P = (P, <) with its carrier P.

For A C P, let | A be the set of all points below some point of A, and correspondingly
TA the set of all points above some point of A. We use the abbreviations |2 = |{z} and
Te =1{z}. Aset ACPisalowersetiff |[A = A, and an upper set iff TA = A.

We refer to the standard notions of upper bound, least upper bound (lub) denoted by | |’,
directed set, monotonic and continuous function. A domain is a poset where every directed
set has a lub, also called limit. A domain need neither have a least element, nor be algebraic.
Continuous functions between domains are sometimes called morphisms. For domains X and
Y, X XY denotes the domain of all pairs of points of X and Y, and [X — Y] is the domain



of all morphisms from X to Y ordered pointwise. The notation f : [X — Y] includes the
continuity of f.

A point ¢ in a domain X is way below a point b iff for all directed sets D C X with
b <|]|D, thereis an element d in D such that « < d. A point « is isolated iff it is way-below
itself. A domain X is algebraic iff every point of X is the lub of a directed set of isolated
points. The set X of all isolated points of X is called the base. X is continuous iff every
point z of X is the lub of a directed set of points that all are way-below .

An M-domain is an algebraic domain whose base has property M [12, 15], i.e. for any
finite subset F of the base there is a finite set F’ of upper bounds of £ with the property that
there is a point in F below every upper bound of F.

2.2 Monoids, semirings, and modules

Monoids, semirings, and modules are well-known algebraic concepts. Here, we define

variants of these notions where the carrier is a domain, and all operations are continuous.

Definition 2.1 (Monoid domains and additive maps)
A monoid domain (or simply monoid) (M, +, 0) is a domain M together with an asso-
ciative operation 4 : [M x M — M] and an element 0 of (the carrier of) M which is the
neutral element of ‘+’. The monoid is commuiative iff ‘+’ is.
A map f:[X — Y] between two monoids is additive iff it is a monoid homomorphism,

ie. f(0x) =0y and f(a+0b) = fa+ fbhold.

Definition 2.2 (Semirings)
A semiring (domain) (R, +, 0, -, 1) is a domain R with continuous operations such that
(R, 4, 0)is a commutative monoid, (R, -, 1) is a monoid, and multiplication *-”is additive
in both arguments.

Semiring homomorphisms are continuous mappings that preserve the semiring operations.

Semirings are generalizations of both rings and distributive lattices. These in turn are
generalizations of fields and Boolean algebras. Hence, both the notations (R, +, 0, -, 1) of
the definition above and a logical notation (R, V, F, A, T) seem to be adequate.

Assuming the logical interpretation, morphisms from a domain X to a semiring R are
called (R-)predicates. Second order predicates are then morphisms in [[X — R] — R].

Definition 2.3 (Modules)
Let R = (R, 4,0, -, 1) be a semiring domain. M = (M, +, 0, -) is a (left) R-module iff
(M, +, 0) is a commutative monoid domain, and - : [R X M — M] is additive in both
arguments and satisfies 1p-A=A4 and a-(b-C)=(a-b)-C.

Let M; and M, be two R-modules. A morphism f: [M; — Ms] is (left) (R-)linear iff
f(A+B)=fA+fB and f(r-A)=r-fA

We speak of right modules and right linear morphisms if the semiring factor occurs to the
right, i.e. - : [M X R — M]. The axioms are analogous to the ones above.



2.3 Scott topology

A subset of a domain X is called (Scott) closed iff it is a lower set closed w.r.t. lubs of
directed subsets. Lower cones |z are obviously closed. Arbitrary intersections and finite
unions of closed sets are closed. Hence, every set A has a least closed superset, the closure
cl A. The complements of the closed sets are called open. The set of all open supersets of
a set A is denoted by O(A). We abbreviate O({z}) by O(z). QX denotes the domain of
open sets of X ordered by inclusion. A subset K of a domain X is called (Scott) compact iff
whenever K is covered by a family (O;);er of open sets, i.e. K C [J;c;O;, there is a finite
subset I of I such that K C (J;cp O;.

In the remainder of this paper, we use some properties of the notions introduced above.
These properties are collected now. We assume to be in a fixed domain X always. The proofs

of particularly well-known properties are omitted.

Proposition 2.4 a is isolated iff Ta is open.

Proposition 2.5 If X is algebraic, and a,b < z holds for a,b € X° and z € X, then
there is ¢ € X° such that a,b < ¢ < z.

Proposition 2.6 If an open set O meets cl A, then it meets A itself.
Proposition 2.7 z is in cl A iff every O in O(z) meets A.
Proposition 2.8 Let £ C X° Then F C cl A implies £ C | A.

Proof: Let e be in F. Since e is isolated, Te is open by Prop. 2.4. Since e is in cl A4, Te
meets A by Prop. 2.7. Hence, there is > e with z € A, i.e. e € | A. a

Proposition 2.9 K is compact iff O(K') is open in QX.

Proposition 2.10 For two subsets A, B of X, O(A) C O(B) holds iff TA D TB.
Proof: Let TAD TB. If AC O then B C TA C O since open sets are upper sets.

Let O(A) C O(B), and let b be a point of B and assume b ¢ TA. Then there is no point

of A below b, i.e. A does not meet the closed set |b. Hence, its complement X \ |b is in
O(A) C O(B). Because of b € B, b€ X\ |b follows contradicting reflexivity of ‘<’. ]

3 Power domain constructions

In this section, we present a short summary of the algebraic theory of power constructions

as contained in [7, 5].



3.1 Specification of power constructions

A power (domain) construction P maps ground domains X into power domains over X.
The power domains have to satisfy the following axioms:

Empty set: There is a distinguished element 0 in every power domain PX.

Binary union: There is a continuous operation Wl : [PX x PX — PX] in every power

domain. ‘Wll” is commutative and associative, and 0 is its neutral element.

Singleton sets: There is a continuous mapping ¢ : [X — PX], z — {|z[} for every ground
domain X.

Extension of functions: For every two domains X and Y, there is a higher order function
ext : [[X — PY] — [PX — PY]] mapping set-valued functions on ground domain
elements into set-valued functions on sets. The intuitive meaning of ext f Ais J,c4 fa.
Extension has to satisfy the following axioms:

e ext f A is additive in both A and f.
o cxtfor=f  and  exti=id.
e For every two morphisms f: [X — PY] and ¢ :[Y — PZ],
ext g (ext f A) = ext (Aa.extg(fa)) A
holds for all A in PX, or: extgoextf=ext(extgof).

ext f ext g
PY

PZ

3.2 The algebraic properties of power domains

The operations as specified above allow to derive many other operations with useful alge-
braic properties. Among these, there are map and big union turning the power construction
into a monad. We here include the most important ones only; for the other ones, we refer to
[7,5].

Extension depends on two ground domains, X and Y. Particularly interesting instances
of extension are obtained if one of X and Y is the one-point domain 1 = {¢}. In case X =1,
extension has functionality ezt : [[1 — PY] — [P1 — PY]]. Dropping the obsolete argument
in 1, uncurrying, and twisting arguments leads to a morphism * : [P1 x PY — PY]. The
definition is b .S = ext (Ao. 5)b. If we additionally choose Y = 1, then ‘+’” becomes an inner
operation of P1.

The axioms of power constructions suffice to prove the following theorem:



Theorem 3.1 Let P be a power construction. Then (P1, W, 0, *, {fo[}) is a semiring
domain, the characteristic semiring of P. (PX, W, 0, ) is a left Pl-module for all
domains X. For f:[X — PY], the extension ezt : [PX — PY] is linear.

This result connects our work with that of Main [14] where power domains are introduced
as free semiring modules. There are however some differences: our constructions may create

non-free modules, and our singleton function ¢ need not be strict.

Notice that power domains contain much more algebraic structure than just modules. In
deriving the module product, we only used instances of extension where X is the one-point
domain 1. Thus, we did not use the full power of extension for arbitrary domains X and Y.

3.3 Power homomorphisms and the category PC

Homomorphisms between algebraic structures are mappings preserving all operations of
these structures. Power constructions may be considered algebraic structures on a higher
level. Thus, it is also possible and useful to define corresponding homomorphisms.

A power homomorphism H : P Q between two power constructions P and Q is a ‘family’
of morphisms H = (Hx)x : [PX — @X] commuting over all power operations, i.e.

e The empty set in PX is mapped to the empty set in @QX: HO = 0.
o The image of a union is the union of the images: H(A W B)=(HA) W (HB).
e Singletons in PX are mapped to singletons in @X: H{z[}p = {z[}o.

o Let f:[X — PY]. Then Ho f :[X — QY], and H(extp fA) = exto(H o f)(HA)
has to hold for all A in PX.

The above axioms allow to prove the following laws:

e HaxB)=Hax HB for ain P1and B in PX.
e Hq:[P1— Q1]is a semiring homomorphism.

It is easily seen that power homomorphisms may be composed, and there are also identity
power homomorphisms. Thus, we get the category PC of power constructions as objects and

power homomorphisms as arrows.

A power isomorphism between two constructions P and @Q is a family of isomorphisms
H = Hx : [PX — QX] such that both (Hx)x and (Hy')x are power homomorphisms.

Proposition 3.2 If H:P-Q is a power homomorphism such that the individual maps
Hyx : [PX — QX] are all bijective, and their inverses are monotonic, then H is a power

isomorphism.



3.4 Linear power homomorphisms and the categories PC(R)

If the two constructions P and Q share the same characteristic semiring, then one can
define: A power homomorphism is linear iff all the functions Hyx are linear. To be more
flexible, we do not require P1 = Q1, but only an isomorphism P1 = Q1.

Definition 3.3 Let R be a semiring. An R-construction is a pair (P, ¢) of a power
construction P and a semiring isomorphism ¢ : [R — P1].

We shall often omit the isomorphism ¢ if it is obvious from the context, and speak of the
R-construction P. The power domains of an R-construction become R-modules by defining

r-A=@r«Aforrin R and A in PX.

Definition 3.4
Let (P, ¢) and (Q, ¢') be two R-constructions. H : (P, ¢)—=(Q, ¢') is an R-linear power
homomorphism iff H : P--Q is a power homomorphism and Hq o ¢ = ¢’ holds.

The name R-linear is appropriate since Hq o = ¢ is equivalent to the R-linearity of all Hx.
The category of R-constructions and R-linear power homomorphisms is denoted by PC(R).

Notice that linear power homomorphisms are considerably more special than just families of
linear mappings because they have to respect extension in its full generality.

3.5 Final power constructions

For every semiring R, the category PC(R) has an initial object 77? as well as a final object
77?. An R-construction P is final iff for every R-construction Q there is exactly one R-linear
power homomorphism Q—P. Initiality is defined dually.

Initial and final R-constructions are shown to exist and investigated to some extent in [7,
5]. In the present paper, we do not consider initial constructions except briefly in section 10.
Final R-constructions on the other hand allow to understand power domains in terms of
second order predicates. They were never proposed in the literature, probably because the
notion of a power homomorphism was missing.

The explicit representation of the final R-construction was found by considering the mor-
phism £ : [QX — [[X — R] — R]] defined by £A = Ap.p~! (eatg (pop) A) for R-constructions
(Q, p). By &, members of QX are mapped into second order predicates. Intuitively, £ de-
notes existential quantification: given a set A and an R-predicate p, EA p tells whether some

member of A satisfies p.

Some of the axioms of extension easily translate into the following properties of £:
e £0=Ap.0
e S(AUWB)=Ap.(EAP)+(EBp)
o E{z[} = Ap.pa

o &(ext fA)=Ap.EA(Na. & (fa)p)



Additionally, one can show that £A is right linear, i.e. £ maps from 9@X to [[X — R] Ty R].
These properties suggest the following explicit representation of 77?:

Theorem 3.5 Let R be a given semiring. The final R-construction 77? = (P, ) is
explicitly given by PX = [[X — R] rhip R] and the isomorphism ¢ (r) = Ap. 7 - po. Its
operations are defined by

e 0=2Ap.0

e AW B=Ap.Ap+ Bp

o {lz} = Ap.px forz e X.

o ext fA=Ap. A(Xacx . fap) for f:[X — PY]and A € PX.

The inverse of ¢ is given by 1 (A) = A (Ae.1). The unique R-linear power homomorphism
from another R-construction Q to 77? is given by & as defined above.

4 Creating new power constructions

Whereas the previous section summarized the relevant results of [7], the contents of this
section and the subsequent ones are not yet published except as part of the thesis [5].

In this section, we present two methods to create new power constructions from existing
ones. Given a family of power constructions, there is a product power construction, i.e. the
category PC has arbitrary products. Product formation preserves finality: the product of final
R;-constructions is a final ([];c; R;)-construction. We further consider sub-constructions of
power constructions. Given an R-construction P and a sub-semiring R’ of R, the greatest
R'-construction P’ that is a sub-construction of P may be explicitly characterized in terms
of second order predicates.

This general theory is useful when considering the known power constructions. Convex
and mixed construction are sub-constructions of the sandwich construction, which in turn is
a sub-construction of the product of the lower and the upper power construction.

4.1 Products of power constructions

Given a family (P;);er of power constructions, we may build a product construction

P =1Ler P
o PX =[];e; PiX for all ground domains X
o 0=(0)ier

(Ai)ier W (Bi)ier = (A; W Biier

{2} = ({{z|}i)ies for all z in X

For f:[X — PY]let f; = miof. Then ext f(A;)icr = (ext; fi A;)ier where ext; denotes
the extension functional of P;. Here, m; denotes projection to component ¢.



The verification of the power axioms for P is straightforward since the power operations
work independently in all dimensions. The characteristic semiring of P is the product of the
characteristic semirings of the P;. It is also immediate that the projections induce power
homomorphisms 7 : [[;c; Pi—Pg, and that [[,c;P; forms a categorical product in the
category PC.

In this paper, we are particularly interested in final power constructions described by
second order predicates. The notion of finality nicely coexists with the notion of product:

Theorem 4.1 If P; are final R;-constructions for all 7+ € I, then the product P = [, P;
is a final R-construction where R = [[;.; R;.

[TIX — B ™ R = X — [] R] ™ [] &)
el el el
Proof: Let P = [[;c; P: and let Q be the final R-construction where R = [[,c; R;, i.e.

oX = [[X — R] Ty R]. We have to show that P and Q are isomorphic. For k € I, let
N [Rx — R] be the mapping where all components of n;z are 0 except the component k
which is z.

Since @ is final, there is a (unique) linear power homomorphism & : P— Q. Abbreviating m;0p
by pi, we obtain EA = Ap. (&; Ai pi)ier where &; is the unique linear power homomorphism
from P; to itself, i.e. is the identity. Thus, EA = Ap. (A;pi)ier. We have to show that £ is a
power isomorphism. By Prop. 3.2, it suffices to show that £ is a surjective embedding.

Assume EA < EB holds for A, B € PX. For all k € I and all ¢ : [X — Ri], let p=mpoq:
[X — R]. £A < EB implies (A; p;)icr = EAp < EBp = (B; pi)ier- This in particular holds
for dimension k. Thus, Ay ¢ < Bg ¢ holds for all k in [ and ¢ : [X — Ry], whence A < By
for all k, whence A < B.

For surjectivity, let @ : [[X — R] Ty R]. Then let Q; : [[X — R;] — R;] be defined
by Q; = Aq. 1 (Q (n; 0 q)). The proof of right linearity of @); is straight forward. Thus,
P = (Q;)ier is a member of PX. We claim EP = Q.

EPp = (Qipi)ier = (7:(Q (: © p;)))ier holds where p; = 7; 0 p. Note that n(m;r) =7 - 1;
holds for all » in R. Thus,

T (Q(pomop)) = m(Q(p-mly)) = 7 (Qp-mLy)
= m(Qp) -mi(n: 1) = m(Qp)-1i = 7 (Wp)

whence (7; (Q (1; 0 pi)))ier = Qp. H

4.2 Sub-constructions

Let P be a given power construction. Q is called a sub-construction of P iff Q@ maps ground
domains X into subsets of PX such that

e 0 € 9OX,
o If Aand B arein @X, then A W B isin 9X,

o {lzf} is in OX for all z in X,



o If f:[X — QY] and A in QX, then ezt f Aisin QY,

o OX is closed w.r.t. lubs of directed sets.

In shorter terms, QX is closed w.r.t. all power operations of P. @ is obviously a power
construction since the validity of the power axioms for Q is inherited from P.

One easily verifies that the intersection of a family of sub-constructions of a power con-
struction P is again a sub-construction of P, if we define ([V;c; Q)X = N;c/(Q2iX). Hence,
the sub-constructions of P form a complete lattice.

Let R be a semiring domain. R’ is a sub-semiring of R iff R'is a subset of R containing 0
and 1, and being closed w.r.t. addition, multiplication, and lubs of directed sets. Because the
operations in the characteristic semiring are derived from the power operations, the semiring
of a sub-construction @ of P is a sub-semiring of the semiring of P.

The following theorem presents a method to obtain the greatest sub-construction for a
given sub-semiring.

Theorem 4.2 Let P be an R-construction, and let R’ be a sub-semiring of R. Then the
existential restriction of P to R’ defined by

QXIP|R/X:{AEPX|V]):[X%R/]:gApER/}
is the greatest sub-construction of P with semiring R’.

Proof: We first show Q is a sub-construction of P.

e £0p=0¢€ R implies 0 € QX.

o If A and B are in @X, then for all p : [X — R'], EAp and EBp are in R, whence
E(AWB)p=EAp+EBpisin R.

e For zin X and p: [X — R'], E{[} p=pa isin R'. Hence, {z[} is in R’ for all z in X.

o Let f:[X — QY] and A € QX. We have to show ext f A in QY.
For all p : [X — R'], £(ext fA) = EA(Aa. E(fa)p) holds as indicated in section 3.2.
fa € QY implies E(fa)p € R'. Thus, (Aa.E(fa)p): [X — R'], whence the value of the

whole term is in R'.

o Let (A;)ier be a directed family of members of QX with limit A. Then for all p :
X — R, E(Lier A2) p = User(EAi p) € R’ holds by continuity of £.

Next, we show Q1 = R’. For p: [1 — R] and ¢« € R = P1, we may simplify Eap =
ext (Ao.po)a =a-po. Hence, Q1 = {a € P1|Vp:[1 — R']:fape R’} ={a € R|Vre R :
a-r € R'}. This set is a subset of R’, since a € Q1 and 1 € R’ implies ¢ = a-1 € R.
Conversely, if ' is in R, then for all » in R, »'-r is in R’, whence " is in Q1.
If Q' is an arbitrary sub-construction of P with Q'1 = R/, then Q'X C QX holds for all
ground domains X since existential quantification in Q" maps Q’1-predicates to Q1. O

Because of its definition in terms of existential quantification, one might believe that the

existential restriction of a final construction for R is a final construction for R’. However
this is not true as pointed out in section 9.6. There are two reasons for this. First, two

- 10 -



distinct second order predicates in [[X — R] rhip R] may produce equal results for predicates
in [X — R']. They are then still different in the restriction of the final construction for R, but
equal in [[X — R'] Thp R']. Second, there may be additional members in [[X — R/ Ty R
that cannot be obtained by restricting predicates in [[X — R] Ty R].

Despite of this general result, we also meet examples for semirings R and R’ where the
existential restriction of the final construction for R is final for R’ — see Th. 8.1.

5 The known power constructions and their semirings

The algebraic theory of power constructions covers the five known constructions men-
tioned in the introduction if the empty set is not artificially excluded. We shall see this in
the remainder of the paper. The characteristic semiring of the lower power construction is
the ‘lower semiring’ L = {0 < 1}. In its logic, only positive answers 1 are durable whereas
negative answers 0 may become positive if the computation proceeds. The logic of the ‘upper
semiring” U = {1 < 0} belonging to the upper power construction behaves conversely. The
semiring of the convex power construction is C = {0, 1} where 0 and 1 are incomparable.

Sandwich and mixed power construction share the same characteristic semiring B =
{L, 0, 1} where L is below the incomparable values 0 and 1. Addition and multiplication in
this semiring correspond to parallel disjunction and conjunction. The logic of this semiring
was investigated in [13]. The value L denotes a state of ignorance which may turn to ‘true’
or ‘false” when the computation proceeds.

To obtain a better connection among these semirings, we additionally introduce the ‘dou-
ble semiring” D = L x U. It has four elements ordered as follows:

(1, 0) T
/N N
(0,0) (1, 1) 0 1
N S N
(0,1) 1

The picture to the left shows a representation of D in terms of pairs of members of the
lower and upper semiring. The picture to the right shows a logical interpretation of D.
Again, the least element | denotes a state of ignorance. In contrast, T denotes a state of
inconsistency: a computation returning T subsumes both 0 and 1. The logic of the double
semiring was investigated in [1].

The five semirings L, U, D, B, and C are related as follows: C is a sub-semiring of B,
which in turn is a sub-semiring of D, which is the product of L and U. In [7, 5], it is shown
that we need not worry about linearity when considering these semirings.

Proposition 5.1 Let R be any of the semirings L, U, C, B, and D. All additive maps
between left (right) R-modules are left (right) R-linear.

Since L = {0 < 1} and U = {1 < 0}, there is an order isomorphism between them that
interchanges 0 and 1. This order isomorphism is interpreted as negation and denoted by

- 11 -



overlining. By pointwise extension to functions, any L-predicate p : [X — L] can be negated
to a U-predicate p: [X — U] and vice versa.

Negation becomes an inner operation of D = L x U by defining (a, b) = (b, @). This
operation maps 0 = (0, 0) to 1 = (1, 1) and vice versa, and maps L = (0, 1) and T = (1, 0)
to themselves. Hence, the sub-semirings B and C of D are also closed w.r.t. negation. For

all instances of negation, i.e. [L. — U], [U — L], and [D — D], the equations a+b =a-b
and a-b=a+ b are easily verified.

6 The lower power construction

The lower power construction has characteristic semiring L = {0 < 1} where 1 +1 = 1,
whereas the upper power construction has the dual semiring U = {1 < 0}. In this section and
the next one, we investigate the final constructions with these semirings. Their representation
in terms of second order predicates may be translated first into terms of open sets, then into
topological terms of Scott closed sets and Scott compact upper sets. This shows our final
constructions to be equivalent with the well known classical constructions.

6.1 From predicates to open sets

According to Th. 3.5, the final construction for semiring L is given in predicative form
by £,X = [[X — L] Thp L], and the final U-construction by #,X = [[X — U] Ty U]. By

Prop. 5.1, we obtain the simpler descriptions

L,X =[[X — L] add L] and U,X =[[X — U add U]

It is well known that the domain X of open sets of X ordered by inclusion is isomorphic
to the function space [X — 2]. The isomorphism is given by the following table:

Qx ‘ r €0 ‘ &0 ‘
(X — 2] ‘ pr=T ‘ pr=_1 ‘

v ln| o | X
u | n

Thus, Q(22X) is isomorphic to [[X — 2] — 2] by means of P = {0 | Ppo = T} where

IA(IN

T ifp YTl O
1 otherwise

po = Ax. { Toifwe O and its inverse EO = Ap. {
1 otherwise

Hence, both £,X and U,X correspond to subsets of Q(QX). For £, X, P(Az. L) = L
has to hold which translates into ) € G where G is the open set of open sets corresponding to
P. In addition, P(pUg¢)= PpU P q has to hold, or equivalently P(pUgq)=Tiff Pp=T
or Pg = T. This translates into O U O’ € Giff O € G or O’ € G. The implication from right
to left always holds since G is an upper set because it is open. Hence, only the implication
from left to right matters. In analogy to a topological notion, we call open sets with these
properties grills.

The translation for #,X is just dual. P(Az.T) = T in [[X — U] — U] corresponds
to X € F in Q(QX) where F is the set of open sets corresponding to P. In addition,
P(pnq) = Ppn Pq has to hold, or equivalently P(pN¢)=Tiff Pp=T and Pg=T.
This translates into O NO’ € Fiff O € F and O’ € F. Here, only the implication from right
to left matters. Sets with these properties are called open filters in [17].
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In the remainder of this section, we proceed by the investigation of L. U is considered in
section 7.

6.2 The lower power construction in terms of grills
An open grill of X is an open set G in QX satisfying the two grill properties:
(1) @ is not in G,

(2) Let O and O’ be open sets in X. If OU O’ is in G, then at least one of O and O’ is in G.
Let LrX be the poset of open grills of X ordered by inclusion.

Theorem 6.1 L,X and LrX are isomorphic for all ground domains X. The power op-
erations for LrX are given by the following table:

add

LX [X — L] = L] LrX
A<LB Vp:Ap< Bp ACB
LD Ap- Upep Dp up
4 Ap. 0 0
AW B Ap. Ap+ Bp AUB
{l=l} Ap.pa O(z) ={0 [z € 0}
ext f A Ap. A(Xx. fap) {0 {20 € fa} € A}
Proof: Isomorphism and order are already known. One easily verifies that arbitrary

unions of open grills are open grills again. Hence, |JD is the lub of the directed set D.
0=0Ap.0)={0|(Ap.- L)po =T} =10
AWB=pAp.EAp+EBp)={0|EApoUEBpo=T}t={0|0€AorO € B}=AUB
{2l = ¢ (Ap.p2) ={0 | pox = T} ={0 | 2 € O} = O(x)

ext fA = @(Ap.EA(Nz. E(fx)p))
= {0 €A E(fa)po) = T)
= {0](A\e.&(fx)po)~![T] € A}
= {O{z|&(fr)po =T} € A}
= {O|{z|0c¢€fa} e A} o

Summarizing, we see that the lower power domain in terms of open grills is quite unhandy,
and the realization of the power operations, in particular of extension, is quite complex.
Fortunately, we need neither show the continuity of ext f nor the validity of the power axioms
for Lr since the isomorphism gives this for free.

6.3 The lower power construction in terms of closed sets

In this section, we show that the common lower power construction in terms of closed
sets is isomorphic to LrX.
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Proposition 6.2
LrX is isomorphic to the poset Lo X of closed sets of X ordered by inclusion.

Proof: Given a closed set C, let G(C') be the set of all open sets of X that meet C'. G(C)
is easily shown to be an open grill. Obviously, C' C €’ implies G(C') C G(C"). Conversely,
assume G(C') C G(C”) holds, and let ¢ be a point in C'. Then every open environment of ¢ is
in G(C"), i.e. meets C”. Thus, ¢ is in ¢l C" = C’ by Prop. 2.7. Summarizing, ¢’ C €’ holds iff
g(C) < g(c”).

Finally, we have to show that the mapping G(.) is surjective. Let G be an open grill. Let U
be the union of all open sets of X that are not in G, and let C' be its complement. U is open
as union of open sets, whence C' is closed. We claim G = G(C').

The set S = {O open | O ¢ G} is directed: It is not empty since @) is in it, and O,0" ¢ G
implies OUO’ ¢ G. If U, the union of the directed set S, were in G, then one of the members
of § would be in G as G is open. Thus, U is not in G.

If an open set O meets C', then O is not a subset of U/. Thus, O U U is a proper superset of
U. Hence, it is in G since U is the union of all open sets not in G. OUU € Gand U € G
imply O € G.

If O does not meet ', then O is a subset of U. If O were in G, then U were in G, too, as G
is an upper set. The last two paragraphs together show G(C') = G. a

After establishing this isomorphism, we translate the power operations into terms of closed

sets.

Theorem 6.3 The final L-construction [[X — L] rhp L] is isomorphic to
(1) {C C X | C is Scott closed} ordered by inclusion ‘C’,

(2) Lies Ai = ol Ujer A;  where “cl” denotes Scott closure,
(3) 6 =0,

(4) AwB=AUB,

(5) Alz = L=,

(6) ext fA=[]f[A] =clU/f[A] =clUsea fa.

Proof:

(1) The isomorphism is already known (Prop. 6.2).

(2) Because cl [J;cy A; is the least closed superset of [ J;c; As.

3) g ={010ND#0}=0=6r.

(4) An open set meets AU B iff it meets A or meets B. Hence, G(AU B) =G(A)UG(B) =
G(A) Wr G(B).

(5) An open set meets |z iff it contains x. Hence, G(lz) = {0 | 2 € O} = {2[}r.
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(6) By Prop. 2.6, an open set meets cl .S iff it meets S. Hence,
G UsiA) = {o1onU Al # 0}
= {0]JacA:0nN fa#0}
= {0O]3acA:0€G(fa)}
= {0 An{a 0 €G(fa)} £ 0}
= {0 {a]0 €G(fa)} € G(A)}
= exlr (G(.) o f) (G(4))
Here, we have to make sure that {a | O € G(fa)} is open. It is the inverse image by f of
the open set {C" € LcY |0 € G(C)} ={C"| ONnC" £ B}.
These equations show that G(.) becomes a power isomorphism if the operations for closed

sets are chosen as in the theorem. O

7 Upper power constructions

The upper power construction as introduced by [16] has characteristic semiring U = {1 <
0} with 14+ 1 = 1. Although this semiring looks as simple as the lower semiring L = {0 < 1},
the situation here is much more complex. The theory is considerably harder than in the lower

case, and nevertheless produces weaker results.

7.1 The upper construction in terms of open filters

In section 6.1, we already saw that the final construction ¢/,X = [[X — U] add U] is

isomorphic to the set of open filters of X.

Definition 7.1 An open filter in a domain X is an open set F of open sets of X with
(1) XeF
(2) If O and Oy are in F, then so is their intersection O1 N Oj.
The poset of all open filters of X ordered by inclusion ‘C’ is denoted by UgX.

Theorem 7.2 U,X and UeX are isomorphic for all ground domains X. The power op-
erations for Uy X are given by the following table:

add

UXx [X — U] = U] Us X
A<LB Vp:Ap< Bp ACB
UD Ap- Upep Dp up
0 Ap. 0 Qx
AW B Ap. Ap+ Bp ANB
{l=l} Ap.pa O(z)={0 |z €0}
ext f A Ap. A(Xx. fap) {O|{z |0 € fa} € A}
Proof: Isomorphism and order are already known. One easily verifies that arbitrary

unions of open filters are open filters again. Hence, |JD is the lub of the directed set D.
0=¢(Ap.0)={0[(Ap.T)po =T} = OX.

AWB=¢(Ap.EAp+EBp)={0 |EApoNEBpo =T} ={0]0 € Aand O € B} = ANB
The formulae for the operations { .} and ezt and their proofs look exactly as those in Th. 6.1.0
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7.2 The upper power construction in terms of compact upper sets

As the upper power domain in terms of open filters is quite unhandy, we look for an
representation in terms of subsets of X. Following [17], we use compact upper sets to this
end. Unfortunately, this approach does not work out for all domains. The class of allowed
domains however is quite large.

For an arbitrary domain X, let Ux X be the set of all compact upper sets of X. For every
compact set K, the set of open environments of K is an open filter: it obviously contains
intersections and certainly X, and it is open because K is compact (see Prop. 2.9).

Thus, there is a mapping O(.) : UxX — UeX. By Prop. 2.10, for every two compact
upper sets K and K', K D K'is equivalent to O(K) C O(K’). Since we ordered 43X by ‘C’,
we have to order Uk X by ‘D’. Then we obtain that O(.) : UxX — UeX has the property
K <K'iff O(K) < O(K'").

Hence, all what is needed further is the surjectivity of O(.). In contrast to the corre-
sponding mapping G(.) of the lower power construction, there are domains where O(.) is not
surjective. In [17], Smyth points out that surjectivity of O(.) is equivalent to the topological
property of sobriety. He cites [9] for a proof of this fact. The class of sober domains is how-
ever large; it contains for instance all continuous domains (see [5] for a proof). An example
for a non-sober domain is given in [11].

Sobriety allows to prove a topological property that is useful to analyze Uy X.

Lemma 7.3 Let X be a sober domain. Then for every open set O in X, the set K(O) of
compact upper subsets of O is open.

Proof: Since X is sober, Ux X and U3 X are isomorphic. Hence, Ux X is a domain, and
the isomorphism is continuous as all order isomorphisms are.

Let D be a directed set in Ui X. Then D has a limit K, and ()P D K holds because ‘D’ is
the order in UxX. By continuity of O(.), O(K) = Jsex O(A) follows. Let O be an open set
in X with D € K(O). Then K C D C O whence O € O(K ). Thus, there is A in D with
O € 0O(A)ie A€ KO). a

We now are able to translate the power operations from Ug to Ugk.

Theorem 7.4 If X is sober, the upper power domain U4 X is isomorphic to Uy X. The
power domains and operations are given by

(1) Uk X is the set of all compact upper sets of X.

(2) K < K'iff K O K’

(3) UD =ND for directed sets D in UrX.

(4) 6=0

(5) AWB=AUB

(6) {z[} = Ta for all z € X.

(7) If both X and Y are sober, and f: [X — Uk Y] is continuous and A is in Ux X, then

ext fA=Ueq fa=U S[A]
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All these operations are well defined and continuous.

Proof: (1) and (2) are the definition of UxX.

To prove the statement about | | D, we have to show that (D is a compact upper set. By set
theory, it is then the least upper bound (w.r.t. ‘27) of D.

Let O be an open cover of D, i.e. D C UO. By Lemma 7.3, there is some A in D with
A CJO. As A is compact, there is a finite subset F of O with YD C A C |JF.

To prove (4) through (7), we show that O(.) operates as a power isomorphism. By Prop. 2.9,
the results of the operations in U are compact upper sets again.

(4) O0) =0X =8¢
(5) If O is an open set in O(AUB), then O O AUB D A, B holds, whence O is in O(A)NO(B).
Conversely, if O is in the intersection, then O D A and O 2 B implies O D AU B.
(6) Since open sets are upper, O(Tz) = O(z) = {z[}¢ holds.
(7) Let f:[X — UkY] be continuous and A in UrX.
OWUSA]) = {0 € QY [Useafa C O}
= {0€QY |Vac A: fa CO}
= {0cQY |AC{zcX]| fz CO}}
= {0eQY |[{zeX]|0e€O(fr)} € O(A)}

= exlg (O(.)o [)(O(A))
Here, the set {z € X | fa C O} is open as the inverse image of the open set £(O) by the
continuous function f (see Lemma 7.3). o

A direct topological proof of the compactness of | f[A] is also possible, but would be more
tedious. The same remark is valid for a direct proof of the continuity of ext f : Ug X — UKY.
Both proofs are unnecessary because one may use that ext f : UpsX — UsY is well-defined
and continuous. These facts are in turn inherited from the well-definedness and continuity of
the operations in the final power construction defined in terms of functions of higher order.

8 The sandwich power construction

The sandwich power construction § was defined in [2, 3, 4] for algebraic ground domains
only. In this section, we show that & may be extended to all domains as the final B-
construction, or equivalently the existential restriction of the final D-construction to the
sub-semiring B of D.

8.1 S — the existential restriction of D to B

By Th. 4.1, we know that the final construction for semiring D = L x U is the product
of the final constructions for semirings L. and U.

X -D]““D] = [X—L “¥1]x [X - U] ¥ U]
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Although the equality is only an isomorphism, we do not write down the isomorphisms
explicitly for simplification. Instead, we directly apply pairs of functions to pairs of predicates
subsuming an equality (PY, PYV) (p, pV) = (Plpl, PUpY).

We denote the final D-construction by D. Since B is a sub-semiring of D, Th. 4.2 delivers
us the sub-construction § = D|g with SX ={P ¢ DX |Vp € [X — B]: Pp € B}.

In Th. 8.7 below, we shall see that § is a generalization of the sandwich power construction
defined in [2] for algebraic ground domains and investigated further in [3, 4]. In anticipation
of the theorem, we chose the abbreviation & and call the domain §X sandwich power domain
and its elements sandwiches. Consequently, the condition restricting PX to §X is called
sandwich condition or shorter condition 5.

If R’ is a sub-semiring of some semiring R, then generally, the existential restriction of
the final R-construction to R’ is completely different from the final R’-construction. In the
case of B and D however, these two constructions happen to coincide.

Theorem 8.1 The final B-construction is isomorphic to the existential restriction of D

to B: SX = [X — B] “4 B].

Proof: We have to establish an isomorphism between [[X — B] add B] and §X =

{P €[[X — D] add D] |Vp:[X — B]: Pp € B}. An obvious choice is the restriction and co-
restriction R of functions in X to arguments in [X — B] and results in B. Since the
power operations of § are inherited from those of D, restriction R coincides with existential
quantification in §, whence it is a power homomorphism as indicated in section 3.5. We only

have to show that all its instances are domain isomorphisms, then it is a power isomorphism.
add

Instead of SX = [[X — B] — B], we show the more general domain isomorphism [[X —
D] add D] = [[X — B] add D]. Using D = L x U, we may also show [[X — D] add L] =
add

[[X — B] = L] and the corresponding isomorphism involving U instead of L.

(1) For every P :[[X — D] add L], P(fL, fY)y=P(f%, 1) for all (f&, fY):[X — D], where

1= Az.1.

Proof: In U, 1 is least, whence P (f", fV) > P(f¥, 1) by monotonicity. By additivity
of P, P(ff, 1) = P(fX fY+ P(fL 1) > P(fE, fU) since 1 =2+ 1in Uand 2 >0
in L.

There is an obvious continuous mapping from [[X — D] add L] to [[X — B] add L], namely

restriction R to arguments in [X — B]. RP < RP’ implies P < P’ by statement (1) since
(f%, 1) creates results (0, 1) = L and (1, 1) = 1 only, i.e. maps from X to B.

To show the surjectivity of R, let ) be in [[X — B] add L]. Then we define P : [[X — D] — 1]

by P(f% fU) = Q(f" 1). If we show the additivity of P, then statement (1) implies
RP=Q.

P(f+g) = Pf+ Pg holds by additivity of @ because (f* + g%, 1) = (f*, 1) + (¢, 1).
PO=0Q(0,1) <Q(0,0) =0 holds because 1 <0 in U. Since 0 is least in L, PQ = 0 follows.

Now, [[X — D] add L] 2 [[X — B] add L] has been proved. The analogous statement

involving U is proved following the same lines using

(2) For every P :[[X — D] “ U], P(fF, fU) = P(0, V) for all (%, V) :[X = D]. O
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8.2 The sandwich power construction in topological terms

For lower and upper semiring, we know — at least for sober ground domains — an explicit
representation of the final power construction in topological terms. These representations
may be used to derive a topological representation for S.

The definition states SX = {A € DX |Vp € [X — B] : Ap € B}. DX may be represented
as L, X xU,X. For A = (AL, AU), the sandwich condition may be transformed as follows:

Vpe[X—=B]:ApeB if Vpe[X—D]:(VzeX:preB)= Ape B)
iff Vpe[X—=D]:(Ap=T=>FxeX:pz=T)

This formula may be interpreted such that SX consists of all consistent second order pred-
icates of D. A consistent second order predicate does not create inconsistencies by itself. If
it results in an inconsistency (Ap = T), then its argument already was inconsistent (pz = T
for some z).

By splitting the pairs into components, we obtain further:

iff  Vple[X—L],pY €[ X — UJ:
(Alpl = Tp and AYpY = Ty = Jw e X:pla = Ty and pV 2 = Ty)

By the next translation step, we want to represent the final lower power construction in
terms of open grills and the final upper power construction in terms of open filters. Let G
be the open grill belonging to A" and O the open filter belonging to AY. To complete the
translation to set notation, we represent the predicates p” and pU by open sets OF and OY.
Then p*2z = T means 2 € OF, and same for OV. Similarly, A"p” = T means O € G, and
AYpY = T becomes OV € O.

Hence, the chain of equivalences above continues by

(G,0)eSX iff VYOI, 0V eaX:
(OFeGand OV € O = 3Jr € X :2 € OF and 2 € OY)
iff vOoleg,ove0:0"n0Y £10

For sober ground domain X, one can go one step further and translate the open filters into
compact upper sets K. The translation of open grills into closed sets C' is always possible.

OL € G becomes C N OL # 0, and OV € O becomes K C OV.

Hence, the restriction translates into: for all open sets OF and OV, if C' meets O and
K C OV then OF meets OV. For fixed €' and OY, the following holds:

Every open set meeting C' meets OV
iff every open environment of every point of C' meets OV
iff every point of C'is in the closure of OY by Prop. 2.7
iff ¢ CcOv.

Hence, one obtains

Theorem 8.2 The sandwich power domain SX over a sober ground domain X is iso-
morphic to the set of all pairs (C, K) of a closed set €' and a compact upper set K such
that for all open sets O with K C O the inclusion €' C ¢l O holds.
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Two remarks seem to be appropriate. First, the condition ‘K C O implies €' C cl O’
looks quite strange, and it is not obvious how it could have been found without considering
the second order predicates. Second, if we had defined a power domain construction directly
as in the theorem above, we would have been forced to verify that each power operation
respects the topological criterion. This would have been a non-trivial task, in particular for
the extension functional.

For a special class of ground domains, the restriction ‘K C O open implies C' C ¢l O’ may
be drastically simplified:

Theorem 8.3 If X is an M-domain, then a pair (C, K) of a closed set and a compact
upper set is a sandwich iff C' C | K.

We do not prove the theorem here. A proof is contained in
[5]. Instead, we provide an example that shows that the theo- b1 by b3 @

rem cannot be generalized to all algebraic ground domains. Let N
X =Aay, ag, as, ..., s, by, by, b3, ..., ¢}. There is no point b.. as
The a-points form an ascending sequence: a; < ag < ++- < Ggo, f
whereas the b-points are incomparable. Every a-point is below the @2
corresponding b-point: a, < b,. The remaining point ¢ is below aT

1

all b-points, but not below any a-point, not even below a,.

This domain is algebraic, but not an M-domain. Let C' = |¢ = {¢} and let K = Tay =
{aoo}. C and K satisfy the sandwich condition although C' C | K does not hold.

8.3 S for algebraic ground domain

Next, we turn to the algebraic case. If X is algebraic, then both £X and /X are algebraic.
Their bases are given by the sets of all | F> and TF respectively for finite subsets F of X°.
Thus, DX is algebraic, and its base is {(|F, TF) | E,F C; X"}. These pairs are also
isolated in X provided they satisfy the sandwich condition because §X is a sub-domain of
DX. Every point in DX is a directed limit of such pairs. Since all pairs below a sandwich
are sandwiches again, every point of §X is the limit of a directed set of isolated sandwiches.
Thus, we obtain

Proposition 8.4
The sandwich power domain over an algebraic ground domain is algebraic. Its base is the
set of all sandwiches (| E, TF) where £ and F are finite subsets of X°.

The sandwich criterion simplifies drastically for such isolated pairs:

Lemma 8.5 Let X be a domain. If £ and F' are finite sets of isolated points of X, then
(LE, TF) satisfies the sandwich condition iff £ C |[TF".

Proof: E C |TF obviously implies condition 5. For the opposite, note that TF is open

since I’ consists of isolated points. Thus, the sandwich condition implies £ C |F C clTF.
Since F consists of isolated points, Prop. 2.8 yields F2 C |[TF. a
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The representation of the base of SX may even be further simplified choosing suitable sets
FE and F.

Lemma 8.6 Let X be algebraic, and let £ and F' be finite subsets of X" with £ C |[TF.
Then there is a finite subset F’ of X° with T/ = 1F’ and F C | }".

Proof: Since E C |TF, for every e € F there is some point z. € X and some point
fe € F such that e < z, > f.. By Prop. 2.5, the points z. may be assumed to be in the
base X°. With E' = {2, | e € E}, we define I’ = E'U F. E'is a finite subset of X",
whence I’ also is. All points ¢ in F are below z. in F’, whence £ C | F’ follows. TF C TF’
immediately follows from ¥ C F’. For the opposite inclusion, z,. is above f. for all e in F,
whence E' C TF whence I C F. O

Summarizing, we obtain the following theorem:

Theorem 8.7 For algebraic ground domain X, our sandwich power domain over X is
algebraic and coincides with the sandwich power domain of [2, 3, 4]. Its base is the set
of all pairs ([ F, TF) with £ C |[TF, or equivalently the set of all pairs (| F, TF) with
E C | F, where in both cases F/ and F are finite subsets of X°.

Proof: For the comparison with the sandwich power domain in [2, 3, 4] notice that the
authors of these papers write the sandwiches the other way round, i.e. the lower set to the
right. Correcting this and translating notation, the paper [3] defines the sandwich power
domain to be the ideal completion of all pairs (E, F) of finite subsets of X° such that there
is a finite subset G of X% with £ C |G and G C TF. This directly implies £ C |TF, and
conversely, G may be chosen as the set £’ in the proof of Lemma 8.6. These pairs are pre-
ordered by (E, F) < (F', F')iff |[E C |E" and TF 2 TF'. Hence, the poset of equivalence
classes of this pre-ordered set is just our base as presented in the theorem. a

9 Mixed and convex power domain

Up to now, we were able to describe lower, upper, and sandwich power domains in terms
of second order predicates. We now look for predicative descriptions of mixed and convex
power domains. Indeed, such descriptions exist. In case of algebraic ground domain, both
the mixed and the convex power construction are sub-constructions of D. The mixed power
domain is characterized by the miz condition M. There is also a dual miz condition M, and
the Plotkin power domain consists of all members of DX that satisfy both M and M.

9.1 Lower and upper implication for D-predicates

The definition of condition M and its dual, condition M, is prepared by investigating the
logic of D more closely. Because of D = L x U, all D-predicates a may be written as pairs
(a®, av).

In addition to the logical operations of disjunction ‘+’, conjunction L

> and negation

(see section 5), we introduce a kind of difference for D-predicates: @ L b= a-b. It is mainly

used as an notational abbreviation.

The following relations are easily verified:
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Proposition 9.1 For all D-predicates a and b:

(1) (a—l—bL:aL—l—bL and (a—l—bU:aU—l—bU
(2) (a-b)l = al-b" and (a-0)V = aV.pY
(3) a* = al and a’ = al

(4) (aLb)r = o 07 and (a Lb)Y = oV - 0L

The next proposition claims the equivalence of various conditions. They are coined as
lower and upper implication.

Proposition 9.2 For D-predicates, the following equivalences hold:
(1) a® < b iff a 4+ b < b. In this case, we say that a and b are in the relation of lower
implication (Lo,

(2) aV > bV iff @ + b > b. In this case, a and b are in the relation of upper implication
3 U ?
.

Proof:

(1) By part (1) of Prop. 9.1, @ + b < b holds iff a® + 6% < b and a¥ + 6V < bY. Since the
inequality involving ‘U’ is a tautology, it can be dropped. Hence, a+b < biff a®4+b" < b,
This inequality is equivalent to a® < b%.

(2) Similarly. ]
Lower and upper implication enjoy some properties that are needed in the next section.

Proposition 9.3 Let X = L or U in the following.
(1) The relation ‘X" is reflexive and transitive.
(2) If a & o’ and b2 ¥, then a + b~ a’ + V.
(3) (a+b)L(d+b)> (aLla)+(bLd)
(
(

4) If P is an additive second order predicate, then a b implies Pa X pe.

)
)
)
5) If (a;)ier and (b;)ier are directed families of D-predicates with a; X b; for all 7 € I,

X
then I_l’iEI a; — I_l’iEI bZ

Proof: We show the statements for ‘L’; the proofs for ‘U’ are similar.
(1) Immediate by definition.

(2) & < a’" and bF < 0" implies (a + b)Y = aF UL < o' LB = (a + V).
(3) ((a+b) L (a'+b)E = (ab +bL) - aV + 07 = (al -V - 6Ty + (0L - o’V - 07 <

(- aVy+ (0" - 0'Y) = ((a La')+ (b L)
Here, ‘<’ holds since p- ¢ < p holds for L-predicates p and g¢.

(4) a £ b implies @ + b < b, whence Pa+ Pb= P (a+0b) < Pb,ie. Pa L Pb.

(5) We use the equivalence a b iff ol < bl If (a;)ieq is directed, then (aF);cs is directed,
too. af < b implies (Lic; ar)” = Lieral < Uies b7 = (Uies 0:)" .

- 929 -



9.2 The conditions M and M

After the preliminaries of the previous section, we are now able to define the conditions
M and M in terms of second order predicates:

Definition 9.4 Let P be in [[X — D] add D].

P satisfies condition M iff Pp L Pq Lop (p L q) for all predicates p, ¢ : [X — D].
P satisfies condition M iff Pp L Pq Zop (p L q) for all predicates p, ¢ : [X — D].

We now show that the power operations preserve the conditions. Thus, we get two sub-
constructions M and M of D. Using the generic Prop. 9.3, the proofs for M and M are
completely analogous. We formulate them for M.

e 0 =Ap.0, whence p L 8¢ =0L0=0=0(p L q). By reflexivity of lower implication
(Prop. 9.3 (1)), 0 satisfies M.

o {zft = Ap.pa, whence {aft p L{lzltg=pz Lgz=(pLg)z =z} (pLq).
pxLgx = (pLlq)a holds since all logical operations are defined pointwise on predicates.

e For A, B in MX,

(AWB)pL(AUB)q (Ap+ Bp) L(Aq+ Bq)
(ApLAq)+ (BpLBgq) by Prop. 9.3 (3)
AlpLg+BpLg)
since A, B in MX by Prop. 9.3 (2)
(AW B)(pLg)

SIS

o Ior f:[X — MY]and 4 in MX,

ext fAp Lext fAgq A(Xz. fap) L A(Xx. faq)
ANz, fap L fzq) since A in MX
A(Az. fz(p L q))

since fz in MX by Prop. 9.3 (4); A is additive

SIS

o If (A;)ier is a directed family in MX, then both (A;p L A;q)icr and (A;(p L q))ier
are directed families with A;p L A;q LA, (p L gq) for all i € I. By Prop. 9.3 (5)
Apl Ag & A(p L q) follows where A = | |;c; A;.

9.3 M — the mixed power domain construction

In the sequel, we want to translate the mix condition into topological terms. This is done
in analogy to the sandwich power construction. The first step leads to pairs of open grills
and open filters, and the second step to pairs of closed sets and compact upper sets. In the
course of this translation, we also prove that condition M implies condition 5, i.e. the mixed
power domains are subsets of the sandwich power domains.
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Let p = (p¥, p¥) and ¢ = (¢%, ¢V) be two predicates. For A = (A", AY), the mix
condition may then be transformed using the facts collected in Prop. 9.1.

L .
AplL Agq=A(pLyq) iff (ApJ_Aq) §(A(pJ_q))L

iff  (ApL Ag)F 1:>(A(pJ_q))L:1

it ALpl . AUGU = 1 = AL(pL q_U):1

iff  Alpl =1and AV¢V = 0= ALpE - ¢U) =1
iff  Afpl =Tand AY¢V =T = AX(pPn¢Y) =T

In the very last line, we replaced L and U by their common carrier domain 2.

We now translate the predicates to open sets. p” becomes O and ¢V becomes OV. Then
pP M qY corresponds to OF N OY. The lower second order predicate A" is translated into an
open grill G, and the upper one into an open filter ©. We remember Alpl = T iff OF € G,
and AYpY = T iff OV € O.

Thus, we obtain (G, 0)e MX if VOF€G, 0V c0:0'n0Y eg
An open grill does not contain (). Hence, O NOY € G implies O NOY # () — the conclusion
of the sandwich condition. Thus, MX C §X holds.

For sober ground domain X, one can translate the open filters into compact upper sets.
O € G then becomes C N O # (), and O’ € O becomes K C O'. Hence, the mix condition
becomes: for all open sets O and O, if C' meets O and K C O’ then CNONO’ # (. For fixed
C and O’ every open set meeting C' meets C' N O iff C' C cl (C'NO’") (cf. the transformation
of condition 5). Hence, one obtains

Theorem 9.5 The mixed power domain MX over a sober ground domain X is isomor-
phic to the set of all pairs (C, K') of a closed set C' and a compact upper set K such that
for all open sets O with K C O the inclusion C' C <l (C'N O) holds.

Similar to the sandwich condition, the mix condition may be simplified in case of M-
domains. The result is C C [(C'N K). A proof may be found in [5].

9.4 (C — the convex power domain construction

As indicated above, we claim CX = MX N MX. To derive a topological description of
CX, we have to transform condition M.

ApLAqE A(pLq) iff (ApLAgV _1:>(A(qu)) =1

iff  AVpY ALl =12 AV(pY gDy =1
ifft  AYpY = L and Al¢t = J_:>AU Pugk)=1

The transformation of condition M proceeds by translating the predicates to open sets:

(G, 0)e MX iff OF¢gGand OV ¢ O = 0LUOV ¢ O
iff OLuoVeO=0LeGorOV e

For sober ground domain X, we translate the open filters into compact upper sets.

(C,K)ye MX if KCO'uoU=CnoOl#0or K COY
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Let C' be the complement of C'. Then the condition above is equivalent to ‘K C C'UO = K C O’.
To simplify further, note that K C C’ U O is equivalent to C' N K C O. Thus, we obtain

(C, K)e MXiff Cn K C O implies K C O for all open sets O. By Lemma 2.10, this is
equivalent to K C T(C'nN K).

Theorem 9.6 Our convex power domain CX over a sober ground domain X is isomorphic
to the set of all pairs (C, K') of a closed set C' and a compact upper set K such that (C, k)
is in MX and K C T(C N K) holds.

9.5 The case of an algebraic ground domain

So far, we have only claimed, but not proven, that our mixed construction M generalizes
the one of [3, 4], which is defined for algebraic ground domains only. Thus, we consider now

the case of an algebraic ground domain X.

Lemma 9.7 Let R be any sub-construction of D. Then every pair in (PX)? N RX is
isolated in RX.

Proof: Because RX is closed w.r.t. directed limits of DX. O

Lemma 9.8 Let R be one of M or C. Let P be a member of RX, and let A be an
isolated point of DX below P. Then there is an isolated point B in DX that lies within
RX and is between A and P.

Ac (DX, PERX, A<P=3IBc(PX)’NRX:A<B<P

Before we are going to prove this lemma, we show that the two lemmata imply algebraicity.
Let P be in RX. Then let A ={A e (PX)°| A< P}and B={B e (DX)’NnRX | B < P}.
Since DX is algebraic, A is directed with lub P. Obviously, B C A holds, and Lemma 9.8
implies A C |B. From these facts one can show that B is directed because A is, and both
sets have the same lub. Lemma 9.7 states that B is a set of isolated points in RX.

Proof of the Lemma:

We have to show the claim for each R separately. Generally, A = (| £, TF) holds where F
and F are finite subsets of X% and P = (C, K) where C is closed, K is a compact upper
set, and ¥/ C C and K C TF hold because of A < P. Two finite subsets £’ and I’ of X? are
to be found that satisfy the conditions of R and lie between A and P,i.e. ¥ C |F', E' C C,
and K C TF" C TF have to hold.

M: TF is open by Prop. 2.4, whence we obtain ¥ C C' C cl(C'NTF) by the mix property of
(C, K). Thus, £ C [(CNTF) follows by Prop. 2.8. Hence, for all e in E, there is g, in
C and f. in F such that e < g. > f.. By Prop. 2.5, g. may be assumed to be isolated.

Let B'={g.|e€ E} C; X% e <yg. € E'for all e in E implies EC |[E'CC. g. > f.
for all e in £ implies £/ C TF, whence ([ E’, TF') is a mix because TF C O implies
E'=FE'NTFCd(lENO).
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C: K C TF and condition M imply K C 1(CNK) C T(CNTF)=1(CNF). The last
equality holds since C'is lower. Let F' = CNF. Then K C TF’ C TF holds as required.

By defining E’ as in ‘M’, E C |FE’ C C holds. E’ C TF’ holds since g. > f., i.e.
fee .

Now let G = E'U F'. We claim that (|G, 1G) is the desired pair. £ C |[EF' C |G
holds, and G C C since F' C C'. E' C TF’ implies TG = 1F’, whence K C TG C 1F.

(1G, 1G) is in CX since G C |G N TG whence conditions M and M follow. o

The proof above not only shows the algebraicity of MX and CX in case of algebraic X, but
also provides nice representations for the bases of these power domains. For M, Lemma 9.8
characterizes the basic mixes by 2 C TF. This is I >! F'in Gunter’s notation, whence we
see that our mixed power construction generalizes Gunter’s [3, 4].

The base of CX is the set of all pairs (| F, TF) where F is a finite subset of X°. The
intersection of | F' and TF is the convex hull TF of F. It suffices to recover |F and TF
since | F'= |JF and TF = 7] F. The ordering of these convex sets is given by [F < JF' iff
TF C |TF and [F' C 7]F. This is the Egli-Milner ordering. Hence, CX equals Plotkin’s
power domain for algebraic ground domains.

9.6 Other C-constructions

The power construction C that we derived as a sub-construction of M and ultimately of
D = £ X U has characteristic semiring C = {0, 1}. It does not coincide with the existential
restriction of D to C; this is a much larger sub-construction of D than C.

The final C-construction is not among the sub-constructions of D. In both £ and U,
{lz[} < {ly[} implies < y. This property carries over to their product D, and is inherited
by all sub-constructions of D. On the other hand, a domain with least element only admits
two predicates [X — C] because the two elements of C are unrelated. The two predicates
are Az.0 and Az. 1. Every additive second order predicate must map Az.0 to 0; it only has
the choice to map Az. 1. Thus, [[X — C] add C] has at most two elements, and {|z[} = {|2[}

usually holds in it even for different points z and z’.

10 A note on initiality

In [7] and [5], the existence of an initial R-construction is shown for every semiring R.
The initial R-construction maps every ground domain X to the free R-module domain over
X. Initial power constructions were proposed and investigated in [8, 10, 14].

Initial and final L-constructions coincide (for all ground domains). The coincidence of our
constructions U, M, and C defined predicatively with the initial constructions for U, B, and
C respectively could however be shown for the case of continuous ground domains only. In all
three cases, the coincidence does not hold for arbitrary domains. Thus, the predicative and
the initial power constructions have to be carefully distinguished if non-continuous domains
are considered.
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11 Conclusion

The method to define power domains by second order predicates provides explicit repre-
sentations for power domains over all ground domains. Using these representations in terms
of second order predicates, it is possible to implement power domain constructions as poly-
morphic abstract data types in a functional language if only the semiring operations are
provided. To realize power constructions with semiring B for instance, parallel disjunction

is needed.

All five power domain constructions mentioned in the introduction may be characterized

in terms of second order predicates:

add

Lower construction: LX = [[X—=L] = L]

Upper construction:  UX = [[X — U] add U]

Sandwich construction: X = {P:[[X — D] add D]|p:[X —B]= PpeB}
X — B] ““ B]

Mixed construction: MX = {P:[[X — D] add D] | PpAN-Pq>T= PlpAr-q)>T}
{P:[[X ~ B B]| PpA-Pg=T= P(pAag)=T)

Convex construction: CX = {P:[[X — B] 2df B] |

(PpAN=Pg=T= P(pA—-q)=T) and
(PpA-Pqg#F = P(pA-q)#F)}

For all these constructions P, the power domains PX are isomorphic to function spaces
[X — R] ™ R] where R is a semiring and ‘res’ a logical restriction on the second order
predicates. The respective operations of empty set, singleton, binary union, and functional

extension may be uniformly described by A-expressions (see Th. 3.5).
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