
Power Domains andSecond Order PredicatesReinhold HeckmannFB 14 { InformatikUniversit�at des Saarlandes6600 Saarbr�uckenBundesrepublik Deutschlandemail: heckmann@cs.uni-sb.deSeptember 10, 1998AbstractLower, upper, sandwich, mixed, and convex power domains are isomorphic to domainsof second order predicates mapping predicates on the ground domain to logical values ina semiring. The various power domains di�er in the nature of the underlying semiringlogic and in logical constraints on the second order predicates.1 IntroductionA power domain construction maps every domainX of some distinguished class of domainsinto a so-called power domain over X whose points represent sets of points of the grounddomain. Power domain constructions were originally proposed to model the semantics ofnon-deterministic programming languages [15, 16, 8, 14]. Other motivations are the semanticrepresentation of a set data type [6], or of relational data bases [2, 3].In 1976, Plotkin [15] proposed the convex power domain construction. A short time later,Smyth [16] introduced a simpler construction, the upper power construction. In [17], a thirdpower domain construction occurs, the lower construction, that completes the trio of classicalpower domain constructions.Starting from problems in data base theory, Buneman et al. [2] proposed to combine lowerand upper power domain to a so-called sandwich power domain. By extending Plotkin'sdomain in a natural way, Gunter developed the mixed power domain [3, 4].Given at least �ve di�erent power domain constructions, the question arises what is theessence of these constructions. In [7], we de�ned power domain constructions algebraically byaxioms concerning existence and properties of the basic operations of empty set, singleton,binary union, and function extension.The resulting algebraic theory of power constructions, which is summarized in section 3,shows that every construction has a characteristic semiring re
ecting the inherent logic of the- 1 -



construction. 0 stands for `false', 1 for `true', addition means disjunction, and multiplicationrepresents conjunction.The general algebraic theory provides a �nal power domain construction for every semiringR. It is explicitly given by mapping ground domains X to the space of linear second orderR-predicates over X (see Th. 3.5). A (�rst order) R-predicate over X maps members of Xto logical values in R, whereas a second order R-predicate maps �rst order predicates to R.All these results were published in [7]. They are repeated in section 3 of the paper at handfor convenience of the reader.The present paper handles the �ve known power domain constructions mentioned at thebeginning in the framework of the algebraic theory. Section 5 contains an overview of the�ve constructions. To investigate the relations among them, we consider products of powerconstructions and sub-constructions in section 4. In section 6, we show the lower powerconstruction L to be �nal for the semiring L = f0 < 1g. An analogous result is shown forthe upper construction U in terms of compact upper sets in section 7. In section 8, thesandwich construction S is shown to be �nal for semiring B = f?; 0; 1g. Thus, these threeconstructions are isomorphic to spaces of linear second order predicates.Although the mixed power construction M and Plotkin's construction C are not �nal,they may also be described in terms of second order predicates because their power domainsare subsets of the sandwich power domains. In section 9, we present the logical conditionsthat characterize the predicates corresponding to mixed or Plotkin domain members amongall members of SX.Both [7] and the paper in hand are extracts of the comprehensive thesis [5] containingmore details and background information.2 Theoretical backgroundIn this section, we introduce some notions and notations from domain theory, algebra,and topology. A �f B means A is a �nite subset of B. For f : X ! Y and A � X andB � Y , f [A] is the image of A and f�1[B] the inverse image of B. fx means application off to x, and accordingly, g � f means �x: g (fx). Gfx parses as (Gf) x.2.1 Posets and domainsA poset (partially ordered set) is a set P together with a re
exive, antisymmetric, andtransitive relation `�'. We often identify the poset P = (P; �) with its carrier P .For A � P, let #A be the set of all points below some point of A, and correspondingly"A the set of all points above some point of A. We use the abbreviations #x = #fxg and"x = "fxg. A set A � P is a lower set i� #A = A, and an upper set i� "A = A.We refer to the standard notions of upper bound, least upper bound (lub) denoted by `F',directed set, monotonic and continuous function. A domain is a poset where every directedset has a lub, also called limit. A domain need neither have a least element, nor be algebraic.Continuous functions between domains are sometimes called morphisms. For domains X andY, X�Y denotes the domain of all pairs of points of X and Y, and [X! Y] is the domain- 2 -



of all morphisms from X to Y ordered pointwise. The notation f : [X ! Y] includes thecontinuity of f .A point a in a domain X is way below a point b i� for all directed sets D � X withb � FD, there is an element d in D such that a � d. A point a is isolated i� it is way-belowitself. A domain X is algebraic i� every point of X is the lub of a directed set of isolatedpoints. The set X0 of all isolated points of X is called the base. X is continuous i� everypoint x of X is the lub of a directed set of points that all are way-below x.An M-domain is an algebraic domain whose base has property M [12, 15], i.e. for any�nite subset E of the base there is a �nite set F of upper bounds of E with the property thatthere is a point in F below every upper bound of E.2.2 Monoids, semirings, and modulesMonoids, semirings, and modules are well-known algebraic concepts. Here, we de�nevariants of these notions where the carrier is a domain, and all operations are continuous.De�nition 2.1 (Monoid domains and additive maps)A monoid domain (or simply monoid) (M; +; 0) is a domain M together with an asso-ciative operation + : [M �M !M ] and an element 0 of (the carrier of) M which is theneutral element of `+'. The monoid is commutative i� `+' is.A map f : [X ! Y ] between two monoids is additive i� it is a monoid homomorphism,i.e. f (0X) = 0Y and f(a+ b) = fa+ fb hold.De�nition 2.2 (Semirings)A semiring (domain) (R; +; 0; �; 1) is a domain R with continuous operations such that(R; +; 0) is a commutative monoid, (R; �; 1) is a monoid, and multiplication `�' is additivein both arguments.Semiring homomorphisms are continuous mappings that preserve the semiring operations.Semirings are generalizations of both rings and distributive lattices. These in turn aregeneralizations of �elds and Boolean algebras. Hence, both the notations (R; +; 0; �; 1) ofthe de�nition above and a logical notation (R; _; F; ^; T) seem to be adequate.Assuming the logical interpretation, morphisms from a domain X to a semiring R arecalled (R-)predicates. Second order predicates are then morphisms in [[X! R]! R].De�nition 2.3 (Modules)Let R = (R; +; 0; �; 1) be a semiring domain. M = (M; +; 0; �) is a (left) R-module i�(M; +; 0) is a commutative monoid domain, and � : [R �M ! M ] is additive in botharguments and satis�es 1R �A = A and a � (b �C) = (a � b) � C.Let M1 and M2 be two R-modules. A morphism f : [M1 !M2] is (left) (R-)linear i�f (A+B) = fA + fB and f (r �A) = r � fAWe speak of right modules and right linear morphisms if the semiring factor occurs to theright, i.e. � : [M �R!M ]. The axioms are analogous to the ones above.- 3 -



2.3 Scott topologyA subset of a domain X is called (Scott) closed i� it is a lower set closed w.r.t. lubs ofdirected subsets. Lower cones #x are obviously closed. Arbitrary intersections and �niteunions of closed sets are closed. Hence, every set A has a least closed superset, the closureclA. The complements of the closed sets are called open. The set of all open supersets ofa set A is denoted by O(A). We abbreviate O(fxg) by O(x). 
X denotes the domain ofopen sets of X ordered by inclusion. A subset K of a domain X is called (Scott) compact i�whenever K is covered by a family (Oi)i2I of open sets, i.e. K � Si2I Oi, there is a �nitesubset F of I such that K � Si2F Oi.In the remainder of this paper, we use some properties of the notions introduced above.These properties are collected now. We assume to be in a �xed domain X always. The proofsof particularly well-known properties are omitted.Proposition 2.4 a is isolated i� "a is open.Proposition 2.5 If X is algebraic, and a; b � x holds for a; b 2 X0 and x 2 X, thenthere is c 2 X0 such that a; b � c � x.Proposition 2.6 If an open set O meets clA, then it meets A itself.Proposition 2.7 x is in clA i� every O in O(x) meets A.Proposition 2.8 Let E � X0. Then E � clA implies E � #A.Proof: Let e be in E. Since e is isolated, "e is open by Prop. 2.4. Since e is in clA, "emeets A by Prop. 2.7. Hence, there is x � e with x 2 A, i.e. e 2 #A. 2Proposition 2.9 K is compact i� O(K) is open in 
X.Proposition 2.10 For two subsets A, B of X, O(A) � O(B) holds i� "A � "B.Proof: Let "A � "B. If A � O then B � "A � O since open sets are upper sets.Let O(A) � O(B), and let b be a point of B and assume b 62 "A. Then there is no pointof A below b, i.e. A does not meet the closed set #b. Hence, its complement X n #b is inO(A) � O(B). Because of b 2 B, b 2 X n #b follows contradicting re
exivity of `�'. 23 Power domain constructionsIn this section, we present a short summary of the algebraic theory of power constructionsas contained in [7, 5]. - 4 -



3.1 Speci�cation of power constructionsA power (domain) construction P maps ground domains X into power domains over X.The power domains have to satisfy the following axioms:Empty set: There is a distinguished element -0 in every power domain PX.Binary union: There is a continuous operation �[ : [PX � PX ! PX] in every powerdomain. `�[ ' is commutative and associative, and -0 is its neutral element.Singleton sets: There is a continuous mapping � : [X ! PX], x 7! fjxjg for every grounddomain X.Extension of functions: For every two domains X and Y, there is a higher order functionext : [[X ! PY] ! [PX ! PY]] mapping set-valued functions on ground domainelements into set-valued functions on sets. The intuitive meaning of ext f A is Sa2A fa.Extension has to satisfy the following axioms:� ext f A is additive in both A and f .� ext f � � = f and ext � = id .� For every two morphisms f : [X! PY] and g : [Y! PZ],ext g (ext f A) = ext (�a: ext g (fa)) Aholds for all A in PX, or: ext g � ext f = ext (ext g � f).ext fPX -� 6�������fX ext gPY - PZ� 6�������gY3.2 The algebraic properties of power domainsThe operations as speci�ed above allow to derive many other operations with useful alge-braic properties. Among these, there are map and big union turning the power constructioninto a monad. We here include the most important ones only; for the other ones, we refer to[7, 5].Extension depends on two ground domains, X and Y. Particularly interesting instancesof extension are obtained if one of X and Y is the one-point domain 1 = f�g. In case X = 1,extension has functionality ext : [[1! PY]! [P1! PY]]. Dropping the obsolete argumentin 1, uncurrying, and twisting arguments leads to a morphism � : [P1 � PY ! PY]. Thede�nition is b �S = ext (��: S) b. If we additionally choose Y = 1, then `�' becomes an inneroperation of P1.The axioms of power constructions su�ce to prove the following theorem:- 5 -



Theorem 3.1 Let P be a power construction. Then (P1; �[ ; -0; �; fj�jg) is a semiringdomain, the characteristic semiring of P. (PX; �[ ; -0; �) is a left P1-module for alldomains X. For f : [X! PY], the extension ext : [PX! PY] is linear.This result connects our work with that of Main [14] where power domains are introducedas free semiring modules. There are however some di�erences: our constructions may createnon-free modules, and our singleton function � need not be strict.Notice that power domains contain much more algebraic structure than just modules. Inderiving the module product, we only used instances of extension where X is the one-pointdomain 1. Thus, we did not use the full power of extension for arbitrary domains X and Y.3.3 Power homomorphisms and the category PCHomomorphisms between algebraic structures are mappings preserving all operations ofthese structures. Power constructions may be considered algebraic structures on a higherlevel. Thus, it is also possible and useful to de�ne corresponding homomorphisms.A power homomorphismH : P _!Q between two power constructions P and Q is a `family'of morphisms H = (HX)X : [PX! QX] commuting over all power operations, i.e.� The empty set in PX is mapped to the empty set in QX: H -0 = -0.� The image of a union is the union of the images: H(A �[ B) = (HA) �[ (HB).� Singletons in PX are mapped to singletons in QX: HfjxjgP = fjxjgQ.� Let f : [X ! PY]. Then H � f : [X ! QY], and H(extP f A) = extQ (H � f) (HA)has to hold for all A in PX.The above axioms allow to prove the following laws:� H(a �B) = Ha �HB for a in P1 and B in PX.� H1 : [P1! Q1] is a semiring homomorphism.It is easily seen that power homomorphisms may be composed, and there are also identitypower homomorphisms. Thus, we get the category PC of power constructions as objects andpower homomorphisms as arrows.A power isomorphism between two constructions P and Q is a family of isomorphismsH = HX : [PX! QX] such that both (HX)X and (H�1X )X are power homomorphisms.Proposition 3.2 If H : P _!Q is a power homomorphism such that the individual mapsHX : [PX ! QX] are all bijective, and their inverses are monotonic, then H is a powerisomorphism. - 6 -



3.4 Linear power homomorphisms and the categories PC(R)If the two constructions P and Q share the same characteristic semiring, then one cande�ne: A power homomorphism is linear i� all the functions HX are linear. To be more
exible, we do not require P1 = Q1, but only an isomorphism P1 �= Q1.De�nition 3.3 Let R be a semiring. An R-construction is a pair (P; ') of a powerconstruction P and a semiring isomorphism ' : [R! P1].We shall often omit the isomorphism ' if it is obvious from the context, and speak of theR-construction P . The power domains of an R-construction become R-modules by de�ningr �A = 'r �A for r in R and A in PX.De�nition 3.4Let (P; ') and (Q; '0) be two R-constructions. H : (P; ') _!(Q; '0) is an R-linear powerhomomorphism i� H : P _!Q is a power homomorphism and H1 � ' = '0 holds.The name R-linear is appropriate since H1 �' = '0 is equivalent to the R-linearity of all HX.The category ofR-constructions andR-linear power homomorphisms is denoted by PC(R).Notice that linear power homomorphisms are considerably more special than just families oflinear mappings because they have to respect extension in its full generality.3.5 Final power constructionsFor every semiring R, the category PC(R) has an initial object PRi as well as a �nal objectPRf . An R-construction P is �nal i� for every R-construction Q there is exactly one R-linearpower homomorphism Q _!P . Initiality is de�ned dually.Initial and �nal R-constructions are shown to exist and investigated to some extent in [7,5]. In the present paper, we do not consider initial constructions except brie
y in section 10.Final R-constructions on the other hand allow to understand power domains in terms ofsecond order predicates. They were never proposed in the literature, probably because thenotion of a power homomorphism was missing.The explicit representation of the �nal R-construction was found by considering the mor-phism E : [QX! [[X! R]! R]] de�ned by EA = �p:��1 (extQ (��p)A) for R-constructions(Q; �). By E , members of QX are mapped into second order predicates. Intuitively, E de-notes existential quanti�cation: given a set A and an R-predicate p, EAp tells whether somemember of A satis�es p.Some of the axioms of extension easily translate into the following properties of E :� E -0 = �p: -0� E (A �[ B) = �p: (E A p) + (E B p)� E fjxjg = �p: p x� E (ext f A) = �p: EA (�a: E (fa) p) - 7 -



Additionally, one can show that EA is right linear, i.e. E maps from QX to [[X! R] rlin! R].These properties suggest the following explicit representation of PRf :Theorem 3.5 Let R be a given semiring. The �nal R-construction PRf = (P; ') isexplicitly given by PX = [[X! R] rlin! R] and the isomorphism ' (r) = �p: r � p�. Itsoperations are de�ned by� -0 = �p: 0� A �[ B = �p: Ap+Bp� fjxjg = �p: p x for x 2 X.� ext f A = �p: A (�a2X : fap) for f : [X! PY] and A 2 PX.The inverse of ' is given by  (A) = A (��:1). The unique R-linear power homomorphismfrom another R-construction Q to PRf is given by E as de�ned above.4 Creating new power constructionsWhereas the previous section summarized the relevant results of [7], the contents of thissection and the subsequent ones are not yet published except as part of the thesis [5].In this section, we present two methods to create new power constructions from existingones. Given a family of power constructions, there is a product power construction, i.e. thecategory PC has arbitrary products. Product formation preserves �nality: the product of �nalRi-constructions is a �nal (Qi2I Ri)-construction. We further consider sub-constructions ofpower constructions. Given an R-construction P and a sub-semiring R0 of R, the greatestR0-construction P 0 that is a sub-construction of P may be explicitly characterized in termsof second order predicates.This general theory is useful when considering the known power constructions. Convexand mixed construction are sub-constructions of the sandwich construction, which in turn isa sub-construction of the product of the lower and the upper power construction.4.1 Products of power constructionsGiven a family (Pi)i2I of power constructions, we may build a product constructionP = Qi2I P i:� PX = Qi2I P iX for all ground domains X� -0 = ( -0i)i2I� (Ai)i2I �[ (Bi)i2I = (Ai �[ Bi)i2I� fjxjg = (fjxjgi)i2I for all x in X� For f : [X! PY] let fi = �i�f . Then ext f (Ai)i2I = (ext i fiAi)i2I where ext i denotesthe extension functional of P i. Here, �i denotes projection to component i.- 8 -



The veri�cation of the power axioms for P is straightforward since the power operationswork independently in all dimensions. The characteristic semiring of P is the product of thecharacteristic semirings of the P i. It is also immediate that the projections induce powerhomomorphisms �k : Qi2I P i _!Pk, and that Qi2I P i forms a categorical product in thecategory PC.In this paper, we are particularly interested in �nal power constructions described bysecond order predicates. The notion of �nality nicely coexists with the notion of product:Theorem 4.1 If Pi are �nal Ri-constructions for all i 2 I , then the product P = Qi2I P iis a �nal R-construction where R = Qi2I Ri.Yi2I[[X! Ri] rlin! Ri] �= [[X!Yi2IRi] rlin! Yi2IRi]Proof: Let P = Qi2I P i and let Q be the �nal R-construction where R = Qi2I Ri, i.e.QX = [[X ! R] rlin! R]. We have to show that P and Q are isomorphic. For k 2 I , let�k : [Rk ! R] be the mapping where all components of �kx are 0 except the component kwhich is x.Since Q is �nal, there is a (unique) linear power homomorphism E : P _!Q. Abbreviating �i�pby pi, we obtain EA = �p: (E iAi pi)i2I where E i is the unique linear power homomorphismfrom Pi to itself, i.e. is the identity. Thus, EA = �p: (Ai pi)i2I . We have to show that E is apower isomorphism. By Prop. 3.2, it su�ces to show that E is a surjective embedding.Assume EA � EB holds for A;B 2 PX. For all k 2 I and all q : [X ! Rk], let p = �k � q :[X ! R]. EA � EB implies (Ai pi)i2I = EAp � EB p = (Bi pi)i2I . This in particular holdsfor dimension k. Thus, Ak q � Bk q holds for all k in I and q : [X ! Rk], whence Ak � Bkfor all k, whence A � B.For surjectivity, let Q : [[X ! R] rlin! R]. Then let Qi : [[X ! Ri] ! Ri] be de�nedby Qi = �q: �i (Q (�i � q)). The proof of right linearity of Qi is straight forward. Thus,P = (Qi)i2I is a member of PX. We claim EP = Q.EP p = (Qipi)i2I = (�i (Q (�i � pi)))i2I holds where pi = �i � p. Note that �i(�ir) = r � �i 1iholds for all r in R. Thus,�i (Q (�i � �i � p)) = �i (Q (p � �i 1i)) = �i (Qp � �i 1i)= �i (Qp) � �i (�i 1i) = �i (Qp) � 1i = �i (Qp)whence (�i (Q (�i � pi)))i2I = Qp. 24.2 Sub-constructionsLet P be a given power construction. Q is called a sub-construction of P i� Q maps grounddomains X into subsets of PX such that� -0 2 QX,� If A and B are in QX, then A �[ B is in QX,� fjxjg is in QX for all x in X, - 9 -



� If f : [X! QY] and A in QX, then ext f A is in QY,� QX is closed w.r.t. lubs of directed sets.In shorter terms, QX is closed w.r.t. all power operations of P. Q is obviously a powerconstruction since the validity of the power axioms for Q is inherited from P.One easily veri�es that the intersection of a family of sub-constructions of a power con-struction P is again a sub-construction of P, if we de�ne (Ti2I Qi)X = Ti2I(QiX). Hence,the sub-constructions of P form a complete lattice.Let R be a semiring domain. R0 is a sub-semiring of R i� R0 is a subset of R containing 0and 1, and being closed w.r.t. addition, multiplication, and lubs of directed sets. Because theoperations in the characteristic semiring are derived from the power operations, the semiringof a sub-construction Q of P is a sub-semiring of the semiring of P.The following theorem presents a method to obtain the greatest sub-construction for agiven sub-semiring.Theorem 4.2 Let P be an R-construction, and let R0 be a sub-semiring of R. Then theexistential restriction of P to R0 de�ned byQX = PjR0X = fA 2 PX j 8p : [X! R0] : EAp 2 R0gis the greatest sub-construction of P with semiring R0.Proof: We �rst show Q is a sub-construction of P.� E -0 p = 0 2 R0 implies -0 2 QX.� If A and B are in QX, then for all p : [X ! R0], EAp and EB p are in R0, whenceE (A �[ B) p = EAp+ EB p is in R0.� For x in X and p : [X! R0], Efjxjg p = p x is in R0. Hence, fjxjg is in R0 for all x in X.� Let f : [X! QY] and A 2 QX. We have to show ext f A in QY.For all p : [X ! R0], E (ext f A) = EA(�a: E(fa) p) holds as indicated in section 3.2.fa 2 QY implies E(fa) p 2 R0. Thus, (�a: E(fa) p) : [X! R0], whence the value of thewhole term is in R0.� Let (Ai)i2I be a directed family of members of QX with limit A. Then for all p :[X! R0], E(Fi2I Ai) p = Fi2I(EAi p) 2 R0 holds by continuity of E .Next, we show Q1 = R0. For p : [1 ! R] and a 2 R = P1, we may simplify E a p =ext (��:p �) a = a �p �. Hence, Q1 = fa 2 P1 j 8p : [1! R0] : Ea p 2 R0g = fa 2 R j 8r 2 R0 :a � r 2 R0g. This set is a subset of R0, since a 2 Q1 and 1 2 R0 implies a = a � 1 2 R0.Conversely, if r0 is in R0, then for all r in R0, r0 � r is in R0, whence r0 is in Q1.If Q0 is an arbitrary sub-construction of P with Q01 = R0, then Q0X � QX holds for allground domains X since existential quanti�cation in Q0 maps Q01-predicates to Q01. 2Because of its de�nition in terms of existential quanti�cation, one might believe that theexistential restriction of a �nal construction for R is a �nal construction for R0. Howeverthis is not true as pointed out in section 9.6. There are two reasons for this. First, two- 10 -



distinct second order predicates in [[X! R] rlin! R] may produce equal results for predicatesin [X! R0]. They are then still di�erent in the restriction of the �nal construction for R, butequal in [[X ! R0] rlin! R0]. Second, there may be additional members in [[X ! R0] rlin! R0]that cannot be obtained by restricting predicates in [[X! R] rlin! R].Despite of this general result, we also meet examples for semirings R and R0 where theexistential restriction of the �nal construction for R is �nal for R0 | see Th. 8.1.5 The known power constructions and their semiringsThe algebraic theory of power constructions covers the �ve known constructions men-tioned in the introduction if the empty set is not arti�cially excluded. We shall see this inthe remainder of the paper. The characteristic semiring of the lower power construction isthe `lower semiring' L = f0 < 1g. In its logic, only positive answers 1 are durable whereasnegative answers 0 may become positive if the computation proceeds. The logic of the `uppersemiring' U = f1 < 0g belonging to the upper power construction behaves conversely. Thesemiring of the convex power construction is C = f0; 1g where 0 and 1 are incomparable.Sandwich and mixed power construction share the same characteristic semiring B =f?; 0; 1g where ? is below the incomparable values 0 and 1. Addition and multiplication inthis semiring correspond to parallel disjunction and conjunction. The logic of this semiringwas investigated in [13]. The value ? denotes a state of ignorance which may turn to `true'or `false' when the computation proceeds.To obtain a better connection among these semirings, we additionally introduce the `dou-ble semiring' D = L�U. It has four elements ordered as follows:(1; 0)��� @@I(0; 0) (1; 1)@@I ���(0; 1) >��� @@I0 1@@I ���?The picture to the left shows a representation of D in terms of pairs of members of thelower and upper semiring. The picture to the right shows a logical interpretation of D.Again, the least element ? denotes a state of ignorance. In contrast, > denotes a state ofinconsistency: a computation returning > subsumes both 0 and 1. The logic of the doublesemiring was investigated in [1].The �ve semirings L, U, D, B, and C are related as follows: C is a sub-semiring of B,which in turn is a sub-semiring of D, which is the product of L and U. In [7, 5], it is shownthat we need not worry about linearity when considering these semirings.Proposition 5.1 Let R be any of the semirings L, U, C, B, and D. All additive mapsbetween left (right) R-modules are left (right) R-linear.Since L = f0 < 1g and U = f1 < 0g, there is an order isomorphism between them thatinterchanges 0 and 1. This order isomorphism is interpreted as negation and denoted by- 11 -



overlining. By pointwise extension to functions, any L-predicate p : [X! L] can be negatedto a U-predicate p : [X! U] and vice versa.Negation becomes an inner operation of D = L � U by de�ning (a; b) = (b; a). Thisoperation maps 0 = (0; 0) to 1 = (1; 1) and vice versa, and maps ? = (0; 1) and > = (1; 0)to themselves. Hence, the sub-semirings B and C of D are also closed w.r.t. negation. Forall instances of negation, i.e. [L ! U], [U ! L], and [D ! D], the equations a+ b = a � band a � b = a + b are easily veri�ed.6 The lower power constructionThe lower power construction has characteristic semiring L = f0 < 1g where 1 + 1 = 1,whereas the upper power construction has the dual semiring U = f1 < 0g. In this section andthe next one, we investigate the �nal constructions with these semirings. Their representationin terms of second order predicates may be translated �rst into terms of open sets, then intotopological terms of Scott closed sets and Scott compact upper sets. This shows our �nalconstructions to be equivalent with the well known classical constructions.6.1 From predicates to open setsAccording to Th. 3.5, the �nal construction for semiring L is given in predicative formby LpX = [[X! L] rlin! L], and the �nal U-construction by UpX = [[X! U] rlin! U]. ByProp. 5.1, we obtain the simpler descriptionsLpX = [[X! L] add! L] and UpX = [[X! U] add! U]It is well known that the domain 
X of open sets of X ordered by inclusion is isomorphicto the function space [X! 2]. The isomorphism is given by the following table:
X x 2 O x 62 O � [ \ ; X[X! 2] p x = > p x = ? � t u �x:? �x:>Thus, 
(
X) is isomorphic to [[X! 2]! 2] by means of 'P = fO j PpO = >g wherepO = �x: ( > if x 2 O? otherwise and its inverse EO = �p: ( > if p�1[>] 2 O? otherwiseHence, both LpX and UpX correspond to subsets of 
(
X). For LpX, P (�x: ?) = ?has to hold which translates into ; 62 G where G is the open set of open sets corresponding toP . In addition, P (p t q) = P p t P q has to hold, or equivalently P (p t q) = > i� P p = >or P q = >. This translates into O [ O0 2 G i� O 2 G or O0 2 G. The implication from rightto left always holds since G is an upper set because it is open. Hence, only the implicationfrom left to right matters. In analogy to a topological notion, we call open sets with theseproperties grills.The translation for UpX is just dual. P (�x: >) = > in [[X ! U] ! U] correspondsto X 2 F in 
(
X) where F is the set of open sets corresponding to P . In addition,P (p u q) = P p u P q has to hold, or equivalently P (p u q) = > i� P p = > and P q = >.This translates into O \O0 2 F i� O 2 F and O0 2 F . Here, only the implication from rightto left matters. Sets with these properties are called open �lters in [17].- 12 -



In the remainder of this section, we proceed by the investigation of L. U is considered insection 7.6.2 The lower power construction in terms of grillsAn open grill of X is an open set G in 
X satisfying the two grill properties:(1) ; is not in G,(2) Let O and O0 be open sets in X. If O [O0 is in G, then at least one of O and O0 is in G.Let L�X be the poset of open grills of X ordered by inclusion.Theorem 6.1 LpX and L�X are isomorphic for all ground domains X. The power op-erations for L�X are given by the following table:LX [[X! L] add! L] L�XA � B 8p : Ap � B p A � BFD �p: FD2DDp SD-0 �p: 0 ;A �[ B �p: Ap+Bp A [ Bfjxjg �p: p x O(x) = fO j x 2 Ogext f A �p: A (�x: fxp) fO j fx j O 2 fxg 2 AgProof: Isomorphism and order are already known. One easily veri�es that arbitraryunions of open grills are open grills again. Hence, SD is the lub of the directed set D.-0 = ' (�p: 0) = fO j (�p:?) pO = >g = ;A �[ B = ' (�p:EAp+ EB p) = fO j EApO t EB pO = >g = fO j O 2 A or O 2 Bg = A[Bfjxjg = ' (�p: px) = fO j pOx = >g = fO j x 2 Og = O(x)ext f A = ' (�p: EA (�x: E(fx)p))= fO j EA (�x: E(fx)pO) = >g= fO j (�x: E(fx)pO)�1[>] 2 Ag= fO j fx j E(fx)pO = >g 2 Ag= fO j fx j O 2 fxg 2 Ag 2Summarizing, we see that the lower power domain in terms of open grills is quite unhandy,and the realization of the power operations, in particular of extension, is quite complex.Fortunately, we need neither show the continuity of ext f nor the validity of the power axiomsfor L� since the isomorphism gives this for free.6.3 The lower power construction in terms of closed setsIn this section, we show that the common lower power construction in terms of closedsets is isomorphic to L�X. - 13 -



Proposition 6.2L�X is isomorphic to the poset LCX of closed sets of X ordered by inclusion.Proof: Given a closed set C, let G(C) be the set of all open sets ofX that meet C. G(C)is easily shown to be an open grill. Obviously, C � C 0 implies G(C) � G(C 0). Conversely,assume G(C) � G(C 0) holds, and let c be a point in C. Then every open environment of c isin G(C 0), i.e. meets C 0. Thus, c is in clC 0 = C 0 by Prop. 2.7. Summarizing, C � C 0 holds i�G(C) � G(C 0).Finally, we have to show that the mapping G(:) is surjective. Let G be an open grill. Let Ube the union of all open sets of X that are not in G, and let C be its complement. U is openas union of open sets, whence C is closed. We claim G = G(C).The set S = fO open j O 62 Gg is directed: It is not empty since ; is in it, and O;O0 62 Gimplies O[O0 62 G. If U , the union of the directed set S, were in G, then one of the membersof S would be in G as G is open. Thus, U is not in G.If an open set O meets C, then O is not a subset of U . Thus, O [ U is a proper superset ofU . Hence, it is in G since U is the union of all open sets not in G. O [ U 2 G and U 62 Gimply O 2 G.If O does not meet C, then O is a subset of U . If O were in G, then U were in G, too, as Gis an upper set. The last two paragraphs together show G(C) = G. 2After establishing this isomorphism, we translate the power operations into terms of closedsets.Theorem 6.3 The �nal L-construction [[X! L] rlin! L] is isomorphic to(1) fC � X j C is Scott closedg ordered by inclusion `�',(2) Fi2I Ai = cl Si2I Ai where `cl ' denotes Scott closure,(3) -0 = ;,(4) A �[ B = A [B,(5) fjxjg = #x,(6) ext f A = F f [A] = cl S f [A] = cl Sa2A fa.Proof:(1) The isomorphism is already known (Prop. 6.2).(2) Because cl Si2I Ai is the least closed superset of Si2I Ai.(3) G(;) = fO j O \ ; 6= ;g = ; = -0�.(4) An open set meets A [B i� it meets A or meets B. Hence, G (A[B) = G(A)[ G(B) =G(A) �[ � G(B).(5) An open set meets #x i� it contains x. Hence, G(#x) = fO j x 2 Og = fjxjg�.- 14 -



(6) By Prop. 2.6, an open set meets clS i� it meets S. Hence,G(cl S f [A]) = fO j O \ S f [A] 6= ;g= fO j 9a 2 A : O \ fa 6= ;g= fO j 9a 2 A : O 2 G(fa)g= fO j A \ fa j O 2 G(fa)g 6= ;g= fO j fa j O 2 G(fa)g 2 G(A)g= ext� (G(:) � f) (G(A))Here, we have to make sure that fa j O 2 G(fa)g is open. It is the inverse image by f ofthe open set fC 0 2 LCY j O 2 G(C 0)g = fC 0 j O \ C 0 6= ;g.These equations show that G(:) becomes a power isomorphism if the operations for closedsets are chosen as in the theorem. 27 Upper power constructionsThe upper power construction as introduced by [16] has characteristic semiring U = f1 <0g with 1+1 = 1. Although this semiring looks as simple as the lower semiring L = f0 < 1g,the situation here is much more complex. The theory is considerably harder than in the lowercase, and nevertheless produces weaker results.7.1 The upper construction in terms of open �ltersIn section 6.1, we already saw that the �nal construction UpX = [[X! U] add! U] isisomorphic to the set of open �lters of X.De�nition 7.1 An open �lter in a domain X is an open set F of open sets of X with(1) X 2 F(2) If O1 and O2 are in F , then so is their intersection O1 \O2.The poset of all open �lters of X ordered by inclusion `�' is denoted by U�X.Theorem 7.2 UpX and U�X are isomorphic for all ground domains X. The power op-erations for U�X are given by the following table:UX [[X! U] add! U] U�XA � B 8p : Ap � B p A � BFD �p: FD2DDp SD-0 �p: 0 
XA �[ B �p: Ap+Bp A \Bfjxjg �p: p x O(x) = fO j x 2 Ogext f A �p: A (�x: fxp) fO j fx j O 2 fxg 2 AgProof: Isomorphism and order are already known. One easily veri�es that arbitraryunions of open �lters are open �lters again. Hence, SD is the lub of the directed set D.-0 = ' (�p: 0) = fO j (�p:>) pO = >g = 
X.A�[ B = ' (�p:EAp+EB p) = fO j EApOuEB pO = >g = fO j O 2 A and O 2 Bg = A\BThe formulae for the operations fj:jg and ext and their proofs look exactly as those in Th. 6.1.2- 15 -



7.2 The upper power construction in terms of compact upper setsAs the upper power domain in terms of open �lters is quite unhandy, we look for anrepresentation in terms of subsets of X. Following [17], we use compact upper sets to thisend. Unfortunately, this approach does not work out for all domains. The class of alloweddomains however is quite large.For an arbitrary domain X, let UKX be the set of all compact upper sets of X. For everycompact set K, the set of open environments of K is an open �lter: it obviously containsintersections and certainly X, and it is open because K is compact (see Prop. 2.9).Thus, there is a mapping O(:) : UKX ! U�X. By Prop. 2.10, for every two compactupper sets K and K 0, K � K 0 is equivalent to O(K) � O(K 0). Since we ordered U�X by `�',we have to order UKX by `�'. Then we obtain that O(:) : UKX ! U�X has the propertyK � K 0 i� O(K) � O(K 0).Hence, all what is needed further is the surjectivity of O(:). In contrast to the corre-sponding mapping G(:) of the lower power construction, there are domains where O(:) is notsurjective. In [17], Smyth points out that surjectivity of O(:) is equivalent to the topologicalproperty of sobriety. He cites [9] for a proof of this fact. The class of sober domains is how-ever large; it contains for instance all continuous domains (see [5] for a proof). An examplefor a non-sober domain is given in [11].Sobriety allows to prove a topological property that is useful to analyze UKX.Lemma 7.3 Let X be a sober domain. Then for every open set O in X, the set K(O) ofcompact upper subsets of O is open.Proof: Since X is sober, UKX and U�X are isomorphic. Hence, UKX is a domain, andthe isomorphism is continuous as all order isomorphisms are.Let D be a directed set in UKX. Then D has a limit K, and TD � K holds because `�' isthe order in UKX. By continuity of O(:), O(K) = SA2KO(A) follows. Let O be an open setin X with TD 2 K(O). Then K � TD � O whence O 2 O(K). Thus, there is A in D withO 2 O(A) i.e. A 2 K(O). 2We now are able to translate the power operations from U� to UK .Theorem 7.4 If X is sober, the upper power domain U�X is isomorphic to UKX. Thepower domains and operations are given by(1) UKX is the set of all compact upper sets of X.(2) K � K 0 i� K � K 0(3) FD = TD for directed sets D in UKX.(4) -0 = ;(5) A �[ B = A [B(6) fjxjg = "x for all x 2 X.(7) If both X and Y are sober, and f : [X! UKY] is continuous and A is in UKX, thenext f A = Sa2A fa = S f [A]. - 16 -



All these operations are well de�ned and continuous.Proof: (1) and (2) are the de�nition of UKX.To prove the statement about FD, we have to show that TD is a compact upper set. By settheory, it is then the least upper bound (w.r.t. `�') of D.Let O be an open cover of TD, i.e. TD � SO. By Lemma 7.3, there is some A in D withA � SO. As A is compact, there is a �nite subset F of O with TD � A � SF .To prove (4) through (7), we show that O(:) operates as a power isomorphism. By Prop. 2.9,the results of the operations in UK are compact upper sets again.(4) O(;) = 
X = -0�(5) If O is an open set in O(A[B), then O � A[B � A;B holds, whence O is in O(A)\O(B).Conversely, if O is in the intersection, then O � A and O � B implies O � A [B.(6) Since open sets are upper, O("x) = O(x) = fjxjg� holds.(7) Let f : [X! UKY] be continuous and A in UKX.O(S f [A]) = fO 2 
Y j Sa2A fa � Og= fO 2 
Y j 8a 2 A : fa � Og= fO 2 
Y j A � fx 2 X j fx � Ogg= fO 2 
Y j fx 2 X j O 2 O(fx)g 2 O(A)g= ext� (O(:) � f) (O(A))Here, the set fx 2 X j fx � Og is open as the inverse image of the open set K(O) by thecontinuous function f (see Lemma 7.3). 2A direct topological proof of the compactness of S f [A] is also possible, but would be moretedious. The same remark is valid for a direct proof of the continuity of ext f : UKX! UKY.Both proofs are unnecessary because one may use that ext f : U�X ! U�Y is well-de�nedand continuous. These facts are in turn inherited from the well-de�nedness and continuity ofthe operations in the �nal power construction de�ned in terms of functions of higher order.8 The sandwich power constructionThe sandwich power construction S was de�ned in [2, 3, 4] for algebraic ground domainsonly. In this section, we show that S may be extended to all domains as the �nal B-construction, or equivalently the existential restriction of the �nal D-construction to thesub-semiring B of D.8.1 S | the existential restriction of D to BBy Th. 4.1, we know that the �nal construction for semiring D = L �U is the productof the �nal constructions for semirings L and U.[[X! D] add! D] = [[X! L] add! L]� [[X! U] add! U]- 17 -



Although the equality is only an isomorphism, we do not write down the isomorphismsexplicitly for simpli�cation. Instead, we directly apply pairs of functions to pairs of predicatessubsuming an equality (PL; PU ) (pL; pU) = (PLpL; PUpU).We denote the �nal D-construction by D. Since B is a sub-semiring ofD, Th. 4.2 deliversus the sub-construction S = DjB with SX = fP 2 DX j 8p 2 [X! B] : Pp 2 Bg.In Th. 8.7 below, we shall see that S is a generalization of the sandwich power constructionde�ned in [2] for algebraic ground domains and investigated further in [3, 4]. In anticipationof the theorem, we chose the abbreviation S and call the domain SX sandwich power domainand its elements sandwiches. Consequently, the condition restricting DX to SX is calledsandwich condition or shorter condition S.If R0 is a sub-semiring of some semiring R, then generally, the existential restriction ofthe �nal R-construction to R0 is completely di�erent from the �nal R0-construction. In thecase of B and D however, these two constructions happen to coincide.Theorem 8.1 The �nal B-construction is isomorphic to the existential restriction of Dto B: SX �= [[X! B] add! B].Proof: We have to establish an isomorphism between [[X ! B] add! B] and SX =fP 2 [[X! D] add! D] j 8p : [X! B] : Pp 2 Bg. An obvious choice is the restriction and co-restriction R of functions in SX to arguments in [X ! B] and results in B. Since thepower operations of S are inherited from those of D, restriction R coincides with existentialquanti�cation in S, whence it is a power homomorphism as indicated in section 3.5. We onlyhave to show that all its instances are domain isomorphisms, then it is a power isomorphism.Instead of SX �= [[X ! B] add! B], we show the more general domain isomorphism [[X !D] add! D] �= [[X ! B] add! D]. Using D = L � U, we may also show [[X ! D] add! L] �=[[X! B] add! L] and the corresponding isomorphism involving U instead of L.(1) For every P : [[X! D] add! L], P (fL; fU) = P (fL; 1) for all (fL; fU) : [X! D], where1 = �x: 1.Proof: In U, 1 is least, whence P (fL; fU ) � P (fL; 1) by monotonicity. By additivityof P , P (fL; 1) = P (fL; fU ) + P (fL; 1) � P (fL; fU ) since 1 = x + 1 in U and x � 0in L.There is an obvious continuous mapping from [[X ! D] add! L] to [[X ! B] add! L], namelyrestriction R to arguments in [X ! B]. RP � RP 0 implies P � P 0 by statement (1) since(fL; 1) creates results (0; 1) = ? and (1; 1) = 1 only, i.e. maps from X to B.To show the surjectivity ofR, let Q be in [[X! B] add! L]. Then we de�ne P : [[X! D]! L]by P (fL; fU ) = Q (fL; 1). If we show the additivity of P , then statement (1) impliesRP = Q.P (f + g) = Pf + Pg holds by additivity of Q because (fL + gL; 1) = (fL; 1) + (gL; 1).P0 = Q (0; 1) � Q (0; 0) = 0 holds because 1 � 0 in U. Since 0 is least in L, P0 = 0 follows.Now, [[X ! D] add! L] �= [[X ! B] add! L] has been proved. The analogous statementinvolving U is proved following the same lines using(2) For every P : [[X! D] add! U], P (fL; fU) = P (0; fU) for all (fL; fU) : [X! D]. 2- 18 -



8.2 The sandwich power construction in topological termsFor lower and upper semiring, we know | at least for sober ground domains | an explicitrepresentation of the �nal power construction in topological terms. These representationsmay be used to derive a topological representation for S.The de�nition states SX = fA 2 DX j 8p 2 [X! B] : Ap 2 Bg. DXmay be representedas LpX� UpX. For A = (AL; AU ), the sandwich condition may be transformed as follows:8 p 2 [X! B] : Ap 2 B i� 8 p 2 [X! D] : ((8 x 2 X : p x 2 B)) Ap 2 B)i� 8 p 2 [X! D] : (Ap = > ) 9x 2 X : p x = >)This formula may be interpreted such that SX consists of all consistent second order pred-icates of D. A consistent second order predicate does not create inconsistencies by itself. Ifit results in an inconsistency (Ap = >), then its argument already was inconsistent (p x = >for some x).By splitting the pairs into components, we obtain further:i� 8 pL 2 [X! L]; pU 2 [X! U] :(AL pL = >L and AU pU = >U ) 9x 2 X : pL x = >L and pU x = >U)By the next translation step, we want to represent the �nal lower power construction interms of open grills and the �nal upper power construction in terms of open �lters. Let Gbe the open grill belonging to AL and O the open �lter belonging to AU . To complete thetranslation to set notation, we represent the predicates pL and pU by open sets OL and OU .Then pL x = > means x 2 OL, and same for OU . Similarly, ALpL = > means OL 2 G, andAUpU = > becomes OU 2 O.Hence, the chain of equivalences above continues by(G; O) 2 SX i� 8OL; OU 2 
X :(OL 2 G and OU 2 O ) 9x 2X : x 2 OL and x 2 OU )i� 8OL 2 G; OU 2 O : OL \OU 6= ;For sober ground domain X, one can go one step further and translate the open �lters intocompact upper sets K. The translation of open grills into closed sets C is always possible.OL 2 G becomes C \ OL 6= ;, and OU 2 O becomes K � OU .Hence, the restriction translates into: for all open sets OL and OU , if C meets OL andK � OU then OL meets OU . For �xed C and OU , the following holds:Every open set meeting C meets OUi� every open environment of every point of C meets OUi� every point of C is in the closure of OU by Prop. 2.7i� C � clOU .Hence, one obtainsTheorem 8.2 The sandwich power domain SX over a sober ground domain X is iso-morphic to the set of all pairs (C; K) of a closed set C and a compact upper set K suchthat for all open sets O with K � O the inclusion C � clO holds.- 19 -



Two remarks seem to be appropriate. First, the condition `K � O implies C � clO'looks quite strange, and it is not obvious how it could have been found without consideringthe second order predicates. Second, if we had de�ned a power domain construction directlyas in the theorem above, we would have been forced to verify that each power operationrespects the topological criterion. This would have been a non-trivial task, in particular forthe extension functional.For a special class of ground domains, the restriction `K � O open implies C � clO' maybe drastically simpli�ed:Theorem 8.3 If X is an M-domain, then a pair (C; K) of a closed set and a compactupper set is a sandwich i� C � #K.We do not prove the theorem here. A proof is contained in[5]. Instead, we provide an example that shows that the theo-rem cannot be generalized to all algebraic ground domains. LetX = fa1; a2; a3; : : : ; a1; b1; b2; b3; : : : ; cg. There is no point b1.The a-points form an ascending sequence: a1 < a2 < � � � < a1,whereas the b-points are incomparable. Every a-point is below thecorresponding b-point: an < bn. The remaining point c is belowall b-points, but not below any a-point, not even below a1. b1 b2 b3 a16��������






�c a16a26a3...@@@@@@@I @@@@I @@IThis domain is algebraic, but not an M-domain. Let C = #c = fcg and let K = "a1 =fa1g. C and K satisfy the sandwich condition although C � #K does not hold.8.3 S for algebraic ground domainNext, we turn to the algebraic case. IfX is algebraic, then both LX and UX are algebraic.Their bases are given by the sets of all #F and "F respectively for �nite subsets F of X0.Thus, DX is algebraic, and its base is f(#E; "F ) j E; F �f X0g. These pairs are alsoisolated in SX provided they satisfy the sandwich condition because SX is a sub-domain ofDX. Every point in DX is a directed limit of such pairs. Since all pairs below a sandwichare sandwiches again, every point of SX is the limit of a directed set of isolated sandwiches.Thus, we obtainProposition 8.4The sandwich power domain over an algebraic ground domain is algebraic. Its base is theset of all sandwiches (#E; "F ) where E and F are �nite subsets of X0.The sandwich criterion simpli�es drastically for such isolated pairs:Lemma 8.5 Let X be a domain. If E and F are �nite sets of isolated points of X, then(#E; "F ) satis�es the sandwich condition i� E � #"F .Proof: E � #"F obviously implies condition S. For the opposite, note that "F is opensince F consists of isolated points. Thus, the sandwich condition implies E � #E � cl"F .Since E consists of isolated points, Prop. 2.8 yields E � #"F . 2- 20 -



The representation of the base of SX may even be further simpli�ed choosing suitable setsE and F .Lemma 8.6 Let X be algebraic, and let E and F be �nite subsets of X0 with E � #"F .Then there is a �nite subset F 0 of X0 with "F = "F 0 and E � #F 0.Proof: Since E � #"F , for every e 2 E there is some point xe 2 X and some pointfe 2 F such that e � xe � fe. By Prop. 2.5, the points xe may be assumed to be in thebase X0. With E 0 = fxe j e 2 Eg, we de�ne F 0 = E 0 [ F . E 0 is a �nite subset of X0,whence F 0 also is. All points e in E are below xe in F 0, whence E � #F 0 follows. "F � "F 0immediately follows from F � F 0. For the opposite inclusion, xe is above fe for all e in E,whence E 0 � "F whence F 0 � "F . 2Summarizing, we obtain the following theorem:Theorem 8.7 For algebraic ground domain X, our sandwich power domain over X isalgebraic and coincides with the sandwich power domain of [2, 3, 4]. Its base is the setof all pairs (#E; "F ) with E � #"F , or equivalently the set of all pairs (#E; "F ) withE � #F , where in both cases E and F are �nite subsets of X0.Proof: For the comparison with the sandwich power domain in [2, 3, 4] notice that theauthors of these papers write the sandwiches the other way round, i.e. the lower set to theright. Correcting this and translating notation, the paper [3] de�nes the sandwich powerdomain to be the ideal completion of all pairs (E; F ) of �nite subsets of X0 such that thereis a �nite subset G of X0 with E � #G and G � "F . This directly implies E � #"F , andconversely, G may be chosen as the set E 0 in the proof of Lemma 8.6. These pairs are pre-ordered by (E; F ) � (E 0; F 0) i� #E � #E 0 and "F � "F 0. Hence, the poset of equivalenceclasses of this pre-ordered set is just our base as presented in the theorem. 29 Mixed and convex power domainUp to now, we were able to describe lower, upper, and sandwich power domains in termsof second order predicates. We now look for predicative descriptions of mixed and convexpower domains. Indeed, such descriptions exist. In case of algebraic ground domain, boththe mixed and the convex power construction are sub-constructions of D. The mixed powerdomain is characterized by the mix condition M . There is also a dual mix condition M , andthe Plotkin power domain consists of all members of DX that satisfy both M and M .9.1 Lower and upper implication for D-predicatesThe de�nition of condition M and its dual, condition M , is prepared by investigating thelogic of D more closely. Because of D = L �U, all D-predicates a may be written as pairs(aL; aU).In addition to the logical operations of disjunction `+', conjunction `�', and negation `�'(see section 5), we introduce a kind of di�erence for D-predicates: a� b = a � b. It is mainlyused as an notational abbreviation.The following relations are easily veri�ed: - 21 -



Proposition 9.1 For all D-predicates a and b:(1) (a+ b)L = aL + bL and (a+ b)U = aU + bU(2) (a � b)L = aL � bL and (a � b)U = aU � bU(3) aL = aU and aU = aL(4) (a� b)L = aL � bU and (a� b)U = aU � bLThe next proposition claims the equivalence of various conditions. They are coined aslower and upper implication.Proposition 9.2 For D-predicates, the following equivalences hold:(1) aL � bL i� a + b � b. In this case, we say that a and b are in the relation of lowerimplication ` L7!'.(2) aU � bU i� a + b � b. In this case, a and b are in the relation of upper implication` U7!'.Proof:(1) By part (1) of Prop. 9.1, a + b � b holds i� aL + bL � bL and aU + bU � bU . Since theinequality involving `U ' is a tautology, it can be dropped. Hence, a+b � b i� aL+bL � bL.This inequality is equivalent to aL � bL.(2) Similarly. 2Lower and upper implication enjoy some properties that are needed in the next section.Proposition 9.3 Let X = L or U in the following.(1) The relation `X7!' is re
exive and transitive.(2) If a X7! a0 and b X7! b0, then a+ b X7! a0 + b0.(3) (a+ b)� (a0 + b0) X7! (a� a0) + (b� b0).(4) If P is an additive second order predicate, then a X7! b implies Pa X7! Pb.(5) If (ai)i2I and (bi)i2I are directed families of D-predicates with ai X7! bi for all i 2 I ,then Fi2I ai X7! Fi2I bi.Proof: We show the statements for `L'; the proofs for `U ' are similar.(1) Immediate by de�nition.(2) aL � a0L and bL � b0L implies (a+ b)L = aL t bL � a0L t b0L = (a0 + b0)L.(3) ((a+ b)� (a0 + b0))L = (aL + bL) � a0U + b0U = (aL � a0U � b0U) + (bL � a0U � b0U) �(aL � a0U) + (bL � b0U) = ((a� a0) + (b� b0))L.Here, `�' holds since p � q � p holds for L-predicates p and q.(4) a L7! b implies a+ b � b, whence Pa+ Pb = P (a+ b) � Pb, i.e. Pa L7! Pb.(5) We use the equivalence a L7! b i� aL � bL. If (ai)i2I is directed, then (aLi )i2I is directed,too. aLi � bLi implies (Fi2I ai)L = Fi2I aLi � Fi2I bLi = (Fi2I bi)L. 2- 22 -



9.2 The conditions M and MAfter the preliminaries of the previous section, we are now able to de�ne the conditionsM and M in terms of second order predicates:De�nition 9.4 Let P be in [[X! D] add! D].P satis�es condition M i� Pp� Pq L7! P (p� q) for all predicates p; q : [X! D].P satis�es condition M i� Pp� Pq U7! P (p� q) for all predicates p; q : [X! D].We now show that the power operations preserve the conditions. Thus, we get two sub-constructions M and M of D. Using the generic Prop. 9.3, the proofs for M and M arecompletely analogous. We formulate them for M .� -0 = �p: 0, whence -0p� -0q = 0� 0 = 0 = -0(p� q). By re
exivity of lower implication(Prop. 9.3 (1)), -0 satis�es M .� fjxjg = �p: p x, whence fjxjg p� fjxjg q = p x� q x = (p� q) x = fjxjg (p� q).p x�q x = (p�q) x holds since all logical operations are de�ned pointwise on predicates.� For A, B in MX,(A �[ B) p� (A �[ B) q = (Ap+ B p)� (Aq +B q)L7! (Ap� Aq) + (B p�B q) by Prop. 9.3 (3)L7! A (p� q) + B (p� q)since A, B in MX by Prop. 9.3 (2)= (A �[ B) (p� q)� For f : [X!MY] and A in MX,ext f A p� ext f A q = A (�x: fxp)� A (�x: fxq)L7! A (�x: fxp� fxq) since A in MXL7! A (�x: fx(p� q))since fx in MX by Prop. 9.3 (4); A is additive� If (Ai)i2I is a directed family in MX, then both (Aip � Aiq)i2I and (Ai (p � q))i2Iare directed families with Aip � Aiq L7! Ai (p � q) for all i 2 I . By Prop. 9.3 (5)Ap� Aq L7! A (p� q) follows where A = Fi2I Ai.9.3 M | the mixed power domain constructionIn the sequel, we want to translate the mix condition into topological terms. This is donein analogy to the sandwich power construction. The �rst step leads to pairs of open grillsand open �lters, and the second step to pairs of closed sets and compact upper sets. In thecourse of this translation, we also prove that condition M implies condition S, i.e. the mixedpower domains are subsets of the sandwich power domains.- 23 -



Let p = (pL; pU) and q = (qL; qU) be two predicates. For A = (AL; AU), the mixcondition may then be transformed using the facts collected in Prop. 9.1.Ap� Aq L7! A (p� q) i� (Ap� Aq)L � (A (p� q))Li� (Ap� Aq)L = 1) (A (p� q))L = 1i� ALpL �AUqU = 1) AL(pL � qU) = 1i� ALpL = 1 and AUqU = 0) AL(pL � qU) = 1i� ALpL = > and AUqU = > ) AL(pL u qU) = >In the very last line, we replaced L and U by their common carrier domain 2.We now translate the predicates to open sets. pL becomes OL and qU becomes OU . ThenpL u qU corresponds to OL \OU . The lower second order predicate AL is translated into anopen grill G, and the upper one into an open �lter O. We remember ALpL = > i� OL 2 G,and AUpU = > i� OU 2 O.Thus, we obtain (G; O) 2 MX i� 8OL 2 G; OU 2 O : OL \ OU 2 GAn open grill does not contain ;. Hence, OL\OU 2 G implies OL\OU 6= ;| the conclusionof the sandwich condition. Thus, MX � SX holds.For sober ground domain X, one can translate the open �lters into compact upper sets.O 2 G then becomes C \ O 6= ;, and O0 2 O becomes K � O0. Hence, the mix conditionbecomes: for all open sets O and O0, if C meets O and K � O0 then C\O\O0 6= ;. For �xedC and O0, every open set meeting C meets C \O0 i� C � cl (C \O0) (cf. the transformationof condition S). Hence, one obtainsTheorem 9.5 The mixed power domain MX over a sober ground domain X is isomor-phic to the set of all pairs (C; K) of a closed set C and a compact upper set K such thatfor all open sets O with K � O the inclusion C � cl (C \O) holds.Similar to the sandwich condition, the mix condition may be simpli�ed in case of M-domains. The result is C � #(C \K). A proof may be found in [5].9.4 C | the convex power domain constructionAs indicated above, we claim CX = MX \MX. To derive a topological description ofCX, we have to transform condition M .Ap� Aq U7! A (p� q) i� (Ap� Aq)U = 1) (A (p� q))U = 1i� AUpU �ALqL = 1) AU (pU � qL) = 1i� AUpU = ? and ALqL = ? ) AU (pU t qL) = ?The transformation of condition M proceeds by translating the predicates to open sets:(G; O) 2 MX i� OL 62 G and OU 62 O ) OL [ OU 62 Oi� OL [ OU 2 O ) OL 2 G or OU 2 OFor sober ground domain X, we translate the open �lters into compact upper sets.(C; K) 2 MX i� K � OL [OU ) C \ OL 6= ; or K � OU- 24 -



Let C 0 be the complement ofC. Then the condition above is equivalent to `K � C 0 [O ) K � O'.To simplify further, note that K � C 0 [ O is equivalent to C \ K � O. Thus, we obtain(C; K) 2 MX i� C \ K � O implies K � O for all open sets O. By Lemma 2.10, this isequivalent to K � "(C \K).Theorem 9.6 Our convex power domain CX over a sober ground domainX is isomorphicto the set of all pairs (C; K) of a closed set C and a compact upper setK such that (C; K)is in MX and K � "(C \K) holds.9.5 The case of an algebraic ground domainSo far, we have only claimed, but not proven, that our mixed construction M generalizesthe one of [3, 4], which is de�ned for algebraic ground domains only. Thus, we consider nowthe case of an algebraic ground domain X.Lemma 9.7 Let R be any sub-construction of D. Then every pair in (DX)0 \ RX isisolated in RX.Proof: Because RX is closed w.r.t. directed limits of DX. 2Lemma 9.8 Let R be one of M or C. Let P be a member of RX, and let A be anisolated point of DX below P . Then there is an isolated point B in DX that lies withinRX and is between A and P .A 2 (DX)0; P 2 RX; A � P ) 9B 2 (DX)0 \RX : A � B � P:Before we are going to prove this lemma, we show that the two lemmata imply algebraicity.Let P be in RX. Then let A = fA 2 (DX)0 j A � Pg and B = fB 2 (DX)0\RX j B � Pg.Since DX is algebraic, A is directed with lub P . Obviously, B � A holds, and Lemma 9.8implies A � #B. From these facts one can show that B is directed because A is, and bothsets have the same lub. Lemma 9.7 states that B is a set of isolated points in RX.Proof of the Lemma:We have to show the claim for each R separately. Generally, A = (#E; "F ) holds where Eand F are �nite subsets of X0, and P = (C; K) where C is closed, K is a compact upperset, and E � C and K � "F hold because of A � P . Two �nite subsets E 0 and F 0 of X0 areto be found that satisfy the conditions of R and lie between A and P , i.e. E � #E 0, E 0 � C,and K � "F 0 � "F have to hold.M: "F is open by Prop. 2.4, whence we obtain E � C � cl (C\"F ) by the mix property of(C; K). Thus, E � #(C \ "F ) follows by Prop. 2.8. Hence, for all e in E, there is ge inC and fe in F such that e � ge � fe. By Prop. 2.5, ge may be assumed to be isolated.Let E 0 = fge j e 2 Eg �f X0. e � ge 2 E 0 for all e in E implies E � #E 0 � C. ge � fefor all e in E implies E 0 � "F , whence (#E 0; "F ) is a mix because "F � O impliesE 0 = E 0 \ "F � cl (#E 0 \ O). - 25 -



C: K � "F and condition M imply K � "(C \ K) � "(C \ "F ) = "(C \ F ). The lastequality holds since C is lower. Let F 0 = C\F . Then K � "F 0 � "F holds as required.By de�ning E 0 as in `M', E � #E 0 � C holds. E 0 � "F 0 holds since ge � fe, i.e.fe 2 F 0.Now let G = E 0 [ F 0. We claim that (#G; "G) is the desired pair. E � #E 0 � #Gholds, and G � C since F 0 � C. E 0 � "F 0 implies "G = "F 0, whence K � "G � "F .(#G; "G) is in CX since G � #G\ "G whence conditions M and M follow. 2The proof above not only shows the algebraicity of MX and CX in case of algebraic X, butalso provides nice representations for the bases of these power domains. For M, Lemma 9.8characterizes the basic mixes by E � "F . This is E �] F in Gunter's notation, whence wesee that our mixed power construction generalizes Gunter's [3, 4].The base of CX is the set of all pairs (#F; "F ) where F is a �nite subset of X0. Theintersection of #F and "F is the convex hull lF of F . It su�ces to recover #F and "Fsince #F = #lF and "F = "lF . The ordering of these convex sets is given by lF � lF 0 i�lF � #lF 0 and lF 0 � "lF . This is the Egli-Milner ordering. Hence, CX equals Plotkin'spower domain for algebraic ground domains.9.6 Other C-constructionsThe power construction C that we derived as a sub-construction of M and ultimately ofD = L � U has characteristic semiring C = f0; 1g. It does not coincide with the existentialrestriction of D to C; this is a much larger sub-construction of D than C.The �nal C-construction is not among the sub-constructions of D. In both L and U ,fjxjg � fjyjg implies x � y. This property carries over to their product D, and is inheritedby all sub-constructions of D. On the other hand, a domain with least element only admitstwo predicates [X ! C] because the two elements of C are unrelated. The two predicatesare �x: 0 and �x: 1. Every additive second order predicate must map �x: 0 to 0; it only hasthe choice to map �x: 1. Thus, [[X! C] add! C] has at most two elements, and fjxjg = fjx0jgusually holds in it even for di�erent points x and x0.10 A note on initialityIn [7] and [5], the existence of an initial R-construction is shown for every semiring R.The initial R-construction maps every ground domain X to the free R-module domain overX. Initial power constructions were proposed and investigated in [8, 10, 14].Initial and �nal L-constructions coincide (for all ground domains). The coincidence of ourconstructions U , M, and C de�ned predicatively with the initial constructions for U, B, andC respectively could however be shown for the case of continuous ground domains only. In allthree cases, the coincidence does not hold for arbitrary domains. Thus, the predicative andthe initial power constructions have to be carefully distinguished if non-continuous domainsare considered. - 26 -



11 ConclusionThe method to de�ne power domains by second order predicates provides explicit repre-sentations for power domains over all ground domains. Using these representations in termsof second order predicates, it is possible to implement power domain constructions as poly-morphic abstract data types in a functional language if only the semiring operations areprovided. To realize power constructions with semiring B for instance, parallel disjunctionis needed.All �ve power domain constructions mentioned in the introduction may be characterizedin terms of second order predicates:Lower construction: LX = [[X! L] add! L]Upper construction: UX = [[X! U] add! U]Sandwich construction: SX = fP : [[X! D] add! D] j p : [X! B]) Pp 2 Bg= [[X! B] add! B]Mixed construction: MX = fP : [[X! D] add! D] j Pp ^ :Pq � T) P (p ^ :q) � Tg= fP : [[X! B] add! B] j Pp ^ :Pq = T) P (p ^ :q) = TgConvex construction: CX = fP : [[X! B] add! B] j(Pp ^ :Pq = T) P (p ^ :q) = T) and(Pp ^ :Pq 6= F) P (p ^ :q) 6= F)gFor all these constructions P, the power domains PX are isomorphic to function spaces[[X ! R] res! R] where R is a semiring and `res ' a logical restriction on the second orderpredicates. The respective operations of empty set, singleton, binary union, and functionalextension may be uniformly described by �-expressions (see Th. 3.5).AcknowledgementI am most grateful to Fritz M�uller for his hints to the literature, many fruitful discussions, andcareful draft reading. Helmut Seidl, Andreas Hense, and Reinhard Wilhelm also were always readyfor discussions. Carl Gunter made the proposal to join the workshop on Mathematical Foundationsafter reading a preliminary version of this paper.References[1] N.D. Belnap, Jr. A useful four-valued logic. In J.M.Dann and G.Epstein, editors, Modern Usesof Multiple-Valued Logic, pages 8{37. Reidel, 1977.[2] P. Buneman, S.B. Davidson, and A. Watters. A semantics for complex objects and approximatequeries. Internal Report MS-CIS-87-99, University of Pennsylvania, October 1988. Also in: 7thACM Principles of Database Systems.[3] C.A. Gunter. The mixed powerdomain. Internal Report MS-CIS-89-77, Logic & Computation18, University of Pennsylvania, December 1989.[4] C.A. Gunter. Relating total and partial correctness interpretations of non-deterministic programs.In P. Hudak, editor, Principles of Programming Languages (POPL '90), pages 306{319. ACM,1990.[5] R. Heckmann. Power Domain Constructions. PhD thesis, Universit�at des Saarlandes, 1990.- 27 -
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