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Abstract

GTOBAS is a program for fitting Gaussian-type orbitals (GTOs) to Bessel and Coulomb functions over a finite range. The
exponents of the GTOs are optimized using the method of Nestmann and Peyerimhoff [J. Phys. B 23 (1990) L773]. The
appended module NUMCBAS provides the numerical Bessel and Coulomb functions required as input for the program. The
use of GTO continuum basis sets is particularly important in electron—-molecule scattering calculations when polyatomic targets
are involved. Sample results for such calculations are also discus282 Elsevier Science B.V. All rights reserved.
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Distribution format: tar gzip file

Keywords: Gaussian basis sets, Bessel and Coulomb functions, R-

matrix calculations

Nature of physical problem
Optimizing GTO basis sets to represent continuum functions.

Method of solution
Numerical continuum functions are read from an external file and

the GTOs set is optimized using the method proposed by Nestmann

and Peyerimhoff [1].

Restrictions on the complexity of the problem

The limitation for obtaining satisfactory fits is linked to the intrin-
sic difficulty of representing a large number of nodes with nodeless
Gaussian functions expanded about a single centre.

Typical running time

1to 10 minutes (depending on the number of needed GTOSs) plus the

225

Operating systems or monitors under which the program has been
tested: Digital UNIX V5.0, IBM AIX 4.3.2.0

Programming language used: Fortran 90

Memory required to execute with typical data: less than 0.1 Mwords
No. of bitsin aword: 32

No. of processors used: 1

Has the code been vectorized?: no

No. of bytes in distributed program, including test data, etc.: 7463
Distribution format: tar gzip file

Keywords: Bessel and Coulomb functions

time taken by the subroutine used to generate the numerical func- Nature of physical problem

tions.

Unusual features of the program

The program makes use of subroutines from Numerical Recipes [2].
We also append a module, NUMCBAS, for generating Bessel and
Coulomb functions (see below).

2.NUMCBAS

Title of program: NUMCBAS
Catalogue identifier: ADPW

Program Summary URL:
ADPW

http://cpc.cs.qub.ac.uk/summaries/
Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computer for which the program is designed and others on which it
has been tested: Compaq Alpha-DEC, IBM RS/6000

LONG WRITE-UP

1. Introduction

Evaluation/calculation of Bessel and Coulomb functions. Provides
input for GTOBAS.

Method of solution
Numerical integration of the Schrédinger equation from both
boundaries and matching using de Vogelaere’s algorithm.

Restrictions on the complexity of the problem

The program could in principle solve a model scattering prob-
lem with any kind of potential, although in its present form, only
Coulomb potentials can be input.

Typical running time
Typically, 0.03 s.
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Standard quantum chemistry packages routinely use Gaussian-type orbitals (GTOs) to describe the electronic
structure of nonlinear molecules. Although Slater-type orbitals (STOs) have the proper “cusp” near nuclei and
the correct asymptotic behaviour, their use is almost totally confined to atomic and linear molecule calculations
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because the multicenter integrals that arise in nonlinear calculations cannot be performed efficiently (see, e.g., [1]).
In contrast, such integrals can routinely be evaluated (in closed form) when GTOs are used. This fundamental
advantage has lead to the dominance of GTOs in molecular electronic structure calculations.

A huge number of GTO basis sets have been made available for bound-state calculations [2]. On the other hand,
few basis set generation procedures exist for the representation of Rydberg and continuum orbitals [3]. These
functions cover a large spatial domain and their radial part is characterised by a great number of nodes. In the
context of electron—molecule scattering calculations, the use of numerical functions to represent the continuum
has proved very successful for both atomic and linear targets [4]. For nonlinear molecules, however, there are at
present no adequate numerical procedures available. An alternative approach, explored originally in the context of
R-matrix calculations, involves the use of GTOs to represent both the continuum and target electrons. Nestmann
and Peyerimhoff [5] developed a method to fit GTO basis sets to Bessel functions within the finite region of an R-
matrix sphere. In spite of the intrinsic difficulty of representing a large number of nodes with (nodeless) Gaussian
functions expanded about a single centre, this method was found to give excellent results for Bessel functions with
eigenenergies up to 16 eV. The method has been used to obtain a number of GTO continuum basis sets, all for
neutral targets and to be used in calculations with an R-matrix radiRgaf= 10ao [5—7]. A general discussion
on approximating functions with non-orthogonal basis sets can be found in [8].

The aim of this work is to provide a program which is able to construct adequate GTO continuum basis sets for
representing both Bessel and Coulomb functions using the procedure described by Nestmann and Peyerimhoff and
to briefly discuss the behaviour of these basis sets in actual calculations. We also append the module NUMCBAS,
based on a program by Salvini [9] and which is a cut-down version of the module NUMBAS used in the UK
molecular R-matrix codes [10] to generate the numerical continuum orbitals. The paper is organised as follows:
Section 2 summarises the method used to optimise the Gaussian exponents while Section 3 reports and discusses
sample results. The program organisation and input data description are given in Section 4. Test data is given in
Section 5.

2. Method

We summarise here the procedure used in GTOBAS to optimise the Gaussian exponents. A brief description
of the module NUMCBAS, used to generate numerical Bessel and Coulomb functions, is also given. It should be
noted that any other user-supplied program can be used to produce these functions, or indeed other functions that
one may wish to fit.

2.1. Generation of numerical continuumorbitals

The module NUMCBAS defines an adaptive grid of radial coordingte® generate numerical continuum
orbitalsu,; (r) by solving the model, single channel scattering equation:

1l +1
[p— ( 5 )+2V0+k;21j|'4hl(”k)=0’ 1)
Tk Tk

wherel is the angular momentum quantum numbkérare the eigenenergies amd is a model potential, both in
Rydbergs. This equation is solved subject to the fixed boundary conditions:

up(ri) [ dry

whereRjim is the boundary radius in Bohrg,(< Rjim). For the special cade= 0 the value of¢;;(0) is obtained
by a two point Lagrange interpolation. Only those eigenfunctions whose eia%nig;smaller than the parameter
Eyp (typically a few Rydbergs) are evaluated. NUMCBAS finds solutions to Eq. (1) by integrating functions from

um(0)=0 forl £0, = [duhl(”‘)} =0, )
7%t=Riim
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both boundaries and matching them using de Vogelaere’s algorithm [11,12]. It has been found that, in piactice,
in Eq. (1) can be replaced /r, whereZ is the effective charge of the target. In this case, the eigensolutions
become numerical representations of spherical Begse! Q) or Coulomb functions over a finite range.

2.2. Optimisation procedure
The procedure used to obtain the Gaussian exponents was originally proposed by Nestmann and Peyer-

imhoff [5]. The main idea of this scheme is to fit the continuum functiopnsr;) by a set of Gaussian functions
with exponents;. This is performed by minimising the function:

P XN: [ iy cnirt exp(—air?) — uhz(rk)]2
e P D ilun (ro)1?

where N is the number of continuum functions ands the number of Gaussian exponents. The minimum of
F; n is obtained by Powell's method [13] (prototype of multidimensional direction-set methods) usiny &s
variational parameters. The coefficienis are determined by a least-squares fit.
ThetermD(ay, ..., a,):
) @

is added to avoid the convergence of two differgniowards the same value and hence problems with linear depen-
dence. In Eqg. (4) the real numbghas been set t®)i, the boundary radius defined in NUMCBAS (see Eq. (2)).

It is important to note that the logarithmic boundary condition defined in Eq. (2) leads to an artificial constraint
on the numerical continuum functions gt = Rjj,. Employing the R-matrix technique, the continuum basis
set must be able to describe both maxima and nodes at the boundary radius of the R-matrixisphebes
a consequenceim must be chosen larger thamat. In practice, we found foRmgat in the range 10-1&, (the
only values thoroughly tested) th&fim = Rmat+ 2ag is the best choice for both Bessel and Coulomb functions
(see details in Section 3).

+ D(a1,...,ap), 3)

n i-1

D(ay,...,ay) = ZZexp(—g X

i=2 j=1

o C(j

aj

2.3. Initial selection of exponents

The minimisation problem is highly non-linear and characterised by having many local minima. This makes the
final fit sensitive to the starting point. In our procedure, the initial Gaussian expanecas be read directly as
input data. Alternatively, we implemented two different methods of selection. In the first one, the initial exponents
are selected randomly within an appropriate range ([0.01, 0.5] is the default). In the second, recommended method,
a geometric series is used to generate the initial, even-tempered [14], set of exponents:

w=pxy i=123.. . n )

In the present work, the default values @re- 0.016 andy = 1.39 for both Bessel and Coulomb functions. These
values were obtained by fitting and averaging (over the diffdre@atues) typical final sets of exponents. The use
of Eq. (5) as an initial guess was found to minimise the required CPU time.

3. Sampleresultsand discussion
In this section we present GTO basis sets optimised with GTOBAS for the representation of Bessel and Coulomb

functions. These continuum basis sets have been employed in electron—molecule scattering calculations [15-18]
using the UK R-matrix polyatomic codes [10]. Bessel and Coulomb functions with value® 1, ..., 4 were
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Fig. 1. Sample Bessel functions witk= 0 (crosses) and their fit by a linear combination of 9 Gaussian functions (full curveB)fpe 124
and Eyp = 4 Ryd. & indicates the specific function being plotted; the total number of nodes for each function 1s The exponents of the
GTOs are those in the first column in Table 1.

generated with NUMCBAS. The main input parameters, namgly, Eyp and the numbet of GTOs, have been
determined by the needs of the molecular systems studied and by the limitations of the computer resources. The
radial mesh was chosen to be finer at the shorter ranges. Sensible changes in the mesh have little influence on
the final value of the Gaussian exponents (typically less than 5%). The valRig,a6 fixed by the value of the
R-matrix radius (see below). The upper eneifgy,, then determines the number of numerical functions to be fitted
and therefore, the number of GTOs which must be bigger than or equal to the number of numerical functions. Note
that there are no restrictions on the upper valueBjgf and Eyp other than the required computational time (e.g.,
up to 70 minutes foRjim = 20ag, Eyp="7 Ryd and 17 GTOs).

Figs. 1 and 2 show, respectively= 0 Bessel and Coulomb functions and their corresponding fits. The region
of best fit, 0< ry < 3, is omitted from the figures for clarity. Although functions witk= O are the hardest to fit,
it can be seen that, in general, the agreement is very good. As expected, when the number of nodes increases, the
quality of the fit decreases. Besides,rasncreases, the quality of the fit decreases too. A number of weighting
procedures were tested to improve the fits at lagg@ithout success. However, in R-matrix calculations, only the
regionry < Rmatis considered; therefore, the quality of the fit fgr> R4t is not relevant. The accuracy of the fit
can be assessed by checking the final value of the minimisation fungtipr(see Eg. (3)): for the fits presented
in Figs. 1, 2,F; y was found to be smaller thanx410~3.

When using the R-matrix method, the set of continum functions has to be complete within the finite region of
the R-matrix sphere (& ry < Rmat). A basic difficulty is that this can cause problems of linear dependence with
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Fig. 2. Sample Coulomb functions with= 0 (crosses) and their fit by a linear combination of 12 Gaussian functions (full curves) for
Rijjm = 12ag and Eyp =5 Ryd. and number of nodes as in Fig. 1. The exponents of the GTOs are those in the first column in Table 3.

the functions representing the target [4]. If the boundary radliys defined in NUMCBAS is much larger than

the R-matrix sphere radiugnat, the continuum basis set can become overcomplete in the inner region defined by
this sphere, leading to strong linear dependence problems. After several tesinith the range 10-1&,, we
concluded that the best choice for the boundary radius (in terms of linear dependeRgg)=HSRmat + 2ao, for

both neutral and singly charged targets. Using a sm&jjgrwould produce a poor fit far, >~ Rjim. In their paper,
Nestmann and Peyerimhoff suggest®g, = 20ag for Rmat = 10ag but we found that using this value lead to
severe linear dependence.

GTO basis sets for the representation of Bessel and Coulomb functions are given in Tables 1-3. Using a much
larger number of GTOs than numerical functions can lead to some exponents being zero and/or more than one
converged set. If the latter is the case, the quality of the different converged sets is very similar, at least in terms
of its adequacy for scattering calculations. Finally, it should be noted that the fitting procedure given here also
provides contraction coefficients for the GTO continuum basis. However, to maximise the flexibility of the basis
in the R-matrix calculations, our practice, and that of Nestmann and co-workers [5-7], has been to leave these
functions uncontracted.

3.1. Neutral targets

Table 1 compares our basis set for a neutral targetRang= 10ao with that obtained by Sarpal et al. [6] who
also used the method of Nestmann and Peyerimhoff [5]. The differences between the two sets may arise from the



230 A. Faureet al. / Computer Physics Communications 144 (2002) 224-241

Table 1
Optimised GTO exponents for Bessel functions wWify, = 12ag and Eyp =4 Ryd. N is the total number of
Bessel functions for eadh Numbers in parentheses correspond to the basis set obtained by Sarpal et al. [6]

s(1=0) pi=1 d(l=2 fa=3 gl=4
i\N 8 7 7 6 6
1 0.285726 0122916 0125926 0172844 0109047
(0.108108 (0.130267 (0.111253 (0.170320 (0.111363
2 0.192361 0090430 0094783 0125071 0083773
(0.095095 (0.102083 (0.089413 (0.130520 (0.089503
3 0133124 0067262 0072171 0092858 0064982
(0.078078 (0.080605 (0.072363 (0.111586 (0.072433
4 0.092965 0049879 0054821 0069374 0050149
(0.063430 (0.063430 (0.058498 (0.089593 (0.058555
5 0.064850 0036582 0041223 0051579 0038123
(0.049698 (0.049698 (0.047005 (0.072505 (0.047053
6 0.044862 0026327 0030441 0037788 0028129
(0.038336 (0.038336 (0.037397 (0.058614 (0.035035
7 0.030582 0018347 0021766 0026876
(0.029180 (0.029180 (0.029225 (0.047099
8 0.020403
(0.021923
9 0.013159
(0.013013

Table 2
Optimised GTO exponents for Bessel functions Whify, = 15ag, Eup =5 Ryd fori =0, 1,2, Eyp=4 Ryd
for I =3 andEyp = 2.4 Ryd fortl = 4. N is the total number of Bessel functions for edch

s(1=0 p(=1 (=2 fa=3 gl=4

i\N 11 10 10 8 6
1 0.396150 0200280 0127610 0092326 0065228
2 0.282361 0151623 0101449 0073837 0051981
3 0.206334 0117236 0081731 0059756 0041790
4 0.152887 0091465 0066052 0048426 0033499
5 0.114144 0071562 0053288 0039083 0026564
6 0.085455 0055913 0042273 0031270 0020594
7 0.063902 0043480 0034058 0024670
8 0.047570 0033545 0026815 0018994
9 0.035148 0025590 0020778

10 0025705 0019210 0015690

11 0018550 0014051

12 0013150

13 0009071

use of a different boundary condition. Besides, Sarpal et al. use the&gbat do not specify their value @jim.

The most significant differences between the two sets are: (), our basis set has 3 exponents that are bigger
than their biggest one; (ii) for the othéwvalues, the smallest exponents in our basis set are smaller than in their
basis set.

In order to assess the validity of our basis set and how it compares with that of Sarpal et al., we used both
sets to study the electron-impact electronic excitation gD HiL6] and CFk [17]. Our basis set was found to give
better eigenphases for both systems, as seen for the electi©rediision in Fig. 3, where we have plotted the
eigenphase sum of symmetti; (in a variational calculation, a higher eigenphase indicates better results). The
three plotted eigenphases are very similar in the energy regioik 0< 5 eV but differences increase at energies
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Table 3
Optimised GTO exponents for Coulomb functions Witfiy, = 12ag, Eup =5 Ryd for/ =0, 1,2,3 and
Eup =3 Ryd forl =4. N is the total number of Coulomb functions for edch

s (=0 p(=1 d(l=2 fa=3 gl=4
i\N 9 9 8 8 5
1 409539 473096 0186838 0176575 0096767
2 319022 0559667 0136427 0133689 071821
3 0.460592 (381904 0101837 0102897 0053743
4 0292295 0268948 0076389 0079368 0039814
5 0.194782 0193043 0057060 0060885 0028686
6 0132316 0140037 0042150 0046164
7 0.090364 0101932 0030561 0034350
8 0.061483 0073983 0021460 0024755
9 0.041395 0053241
10 0027417 0037780
11 0017749 0026258
12 0011096 0017649

Eigenphase sum

1 1 1 1

5 7 9 11 13 15
E(eV)

Fig. 3. Eigenphase sum of symmetii; for electron-HO collisions. Full line: calculation foRmat= 10aq using basis set from Table 1;
long-dashed lineRmat = 10aq, using Sarpal et al.’s basis set; dotted line: calculationKggat = 13ag using basis set from Table 2. For
a detailed description of these calculations, see [16].
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above the first excitation threshold. Additionally, after performing several tests with different basis sets for both
targets, we found that Sarpal et al.’s is more prone to linear dependence with the target basis set. This behaviour is,
of course, target dependent.

Table 2 gives Gaussian exponents for the representation of Bessel functions genera®gwiti5aqg. To
adapt the size of the basis set to the computational limits imposed by the R-matrix code, we chose different
E\p for different/ values. In this way, we reduced the number of GTOs required for fitting the functions with
higher!. The exponents, with exception of the first onesifer0 and/ = 1, are smaller than those obtained with
Riim = 12a0, as expected. This basis set has been usedJOrdalculations with an R-matrix radius of 4g[16].
The resulting eigenphase sum and cross sections were found to be in very good agreement with those obtained
for Rmat = 10ag using the basis set from Table 1 (see Fig. 3), thus proving the adequacy of this basis set. The
increasing discrepancies at higher energies are probably due to the incompleteness of the basis set of Table 2 for
Rmat= 13ao.

3.2. lonictargets

Gaussian exponents for singly charged targets are listed in Table 3. It can be noticed thaOfand/ = 1
some exponents are larger than unity. Such large values are consistent with the high amplitaed@slo€oulomb
functions at short-range. Note that in this case, an even-tempered initial selection is not the most appropriate.

Eigenphase sum

_2 1 1 L 1 1

Fig. 4. Eigenphase sum of symme?r&l for electron—l—g collisions. Full line: calculation foRmat = 10ag using basis set from Table 3;
dashed lineRmat= 10aq, using Sarpal et al.’s basis set. For a detailed description of these calculations, see [18].
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The basis set presented in Table 3 has been used to study the electron-impact excitatiorfcMEI]C@ and
H30" [18]. In contrast to Bessel functions, there are no previous studies on the representation of Coulomb functions
by GTOs. There is, however, a study on the dissociative recombinatiog“ dfyrOrel and Kulander [19], where
the scattering calculations are based on the complex Kohn variational method. In this approach, analytic Coulomb
functions can be used. At the equilibrium geometry of the ion3for symmetry), Orel and Kulander found that
the two first resonance energies (widths) are 9.1 (0.64) and 10.3 (0.18) eV. We computed these resonances using the
R-matrix method and we obtained, respectively, 9.12 (0.64) and 10.14 (0.19) eV. This very good agreement with
the results of Orel and Kulander indicates the reliability of our representation of the continuum. In order to further
illustrate the influence of the continuum basis set on a scattering calculation, we have computed the eigenphase sum
for the e—I—g collision in 2A; symmetry using our basis set (Table 3) and that of Sarpal et al. (1996), which was
optimised to represent Bessel functions. The results, plotted in Fig. 4, show that our basis set gives better (higher)
eigenphases, as expected. They also show that Sarpal et al’s basis set gives somewhat oscillatory behaviour at
lower energies (not plotted).

4. Programsorganisation and data input
4.1. Organisation of GTOBAS

The subroutines in GTOBAS are mainly taken from Numerical Recipes [20]. Further comments are given within
the code.

READNUM reads the numerical continuum functions produced by NUMCBAS. It can be user-adapted to read any
other input continuum functions.

FUNCS computes a Gaussian-type function.

FUNCP computes the functio#; y (Eg. (3)) to minimise.

SVDFI T performs a least-square fit by use of a singular value decomposition technique to obtain the coefficients
cp;i Of the Gaussian expansion (see Section 2.2). It is taken from Numerical Recipes [20].

SVBKSB andSVDCMP are used bysVDFI T to perform the singular value decomposition [20].

POWNELL performs the minimisation of the functian x (Eqg. (3)). It is taken from Numerical Recipes [20].

LI NM N implements the one-dimensional line minimisation used byPtFLL subroutine [20].

M\BRAK is used byL1 NM Nto bracket a one-dimensional minimum [20].

4.2. Organisation of NUMCBAS

BASI S performs the calculation of the numerical basis.

SEARCH is used byBASI S to search for the eigensolutions to the differential equations (see Eq. (1)).
BASFUN controls the numerical integration and normalises the resulting wavefunctions.

DEVGL is a de Vogelaere integration routine [11] usedBASFUN.

FI NDER locates the eigenvalue with a given number of hodes.

WRHEAD writes the header of filinumb which will contain the numerical basis in a form suitable for GTOBAS.

4.3. Input data for GTOBAS

Input data [with defaults in brackets] is read from standard input via a namelist /FIT/. The data type is indicated
in the following way: variables starting with (a—h,0—z) are double precision and those starting with (i-n) are
integers.
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beta [1.6D-02]
Even-tempereg@ coefficient, see Eq. (5) (usediguess=2).
expo Vector containing initial exponents. Only neededbifiess=0. Maximum size is 20.
ftol [1.D-09]
Convergence parameter usedP@\ELL subroutine.
gamma [1.39D0Q]
Even-tempereg coefficient, see Eq. (5) (usediguess=2).
iguess [2]
Determines whether initial exponents will be read as input data (0), generated randomly (1), or
generated using an appropriate function (2) (see Section 2.3).

iprint [0]
Print flag for additional output. 1: All iteration data; 2: iteration data plus mesh.
isvmol3 [18]

Logical unit for the output of final exponents. The format is that of the Sweden-Molecule program [21,
22] used by the UK molecular R-matrix polyatomic code.

lunumb  [13]
Logical unit for the input of numerical functions to be fitted.
luplot [17]

Logical unit for the output fitted functions. Numerical functions are also written to this file. The format
allows plotting with xmgr.
noexp [0]
Number of exponents to be used. Must be bigger or equal to the number of numerical functions to be
fitted. Only needed ifguess=1 or 2.
nplot [0]
Print flag: no functions (0) / all functions (1) (numerical and fitted) are saved to unit luplot.
rdlow [1.D-02]
Lower limit of the random selection (used guess=1).
rdup [0.49D0]
Upper limit of the random selection (usedgiess=1).

4.4. Input data for NUMCBAS

Input data is read from standard input via a namelist /INPUT/. The size of the array parameters is indicated by

the number of default values in brackets. The data type is indicated in the same way as for GTOBAS.

charge [0.DO]
Effective charge of the target (see Section 2.1).

ecmax [10.D0]
Eup, upper bound for eigenvalues in Rydberg.

hrx [0.01,0.02,0.02605, 7*0.D0]
Vector of sizenix containing the step length to be used in each subrange.

ibug [3*0]
Vector containing switches for extra printed output: ibugfl)potential as a function of radial
coordinatery; ibug(2)=1 final eigensolutions as function of; ibug(3)=1 brief summary of data
written tolunumb.

irx [30, 120, 500, 7*0]
Vector of sizenix defining the number of mesh points to end of each subrange (must be divisible by 2).
The program checks that the last point in the last subrangerigm. If it is not, a newirx(nix) is
calculated.
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Table 4
Tests data input for the numerical functions and corresponding fits represented in Figs. 1 and 2
BESSEL functions COULOMB functions
NUMCBAS &INPUT &INPUT
title = ‘Neutral target’, title = ‘lonic target’,
Ival =0, Ival = 0,
ecmax = 4.00D0, ecmax = 5.00D0,
rlim =12.0, rlim = 12.0D0,
charge = 0.0DO, / charge =1.0D0, /
GTOBAS &FIT &FIT
expo =6.0,3.0,0.7,0.3,0.1,0.07,0.05,0.02,0.01, noexp =12,
iguess =0, iguess = 2,
nplot =1, nplot =1,
iprint=0,/ iprint=0, /
lunumb  [13]
Logical unit for output of numerical functions.
lval [0]
Angular momentum of the numerical functions to be calculated.
nix [3]

Number of subranges with different step. Maximum value is 10.
rlim [10.D0O]
Rjim, radius where the boundary condition is applied.

tiny [1.D-11]

Convergence threshold for eigenvalues calculation.
title Character*80 variable containing title for output.
5. Test data

Table 4 gives sample test data. Use of these data should give the exponért®fpresented in Tables 1 and 3.
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Pr ogr am NUMCBAS

R O I S O O O kO O I O O O

* *
* ANY NEUTRAL MOLECULE (L=0) RMAT =12.0 *
* *

R S I S O O O S O O Ok O I O o O O O O O

LUNUMB = 13 Qutput file for the basis

| NTEGRATI ON MESH | NPUT DATA

NX = 3 No. of integration regions with different step-sizes
| I RX HRX
1 30 0. 1000000000D- 01
2 120 0. 2000000000D- 01
3 500 0. 2605000000D- 01

NUMERI CAL BASI S CALCULATI ON | NPUT DATA

LVAL = 0 Angul ar Monent um
CHARCGE = 0.0 Ef f ecti ve charge
RVAT = 12.0 R-matri x boundary radi us
SEARCHI NG PROCEDURE PARAMETERS
ECVMAX = 4.00 Maxi mum energy for the eigensol utions
BTOL =0. 20D+00 Iteration starting tol erance
TINY =0.10D 10 Ei gensol uti on convergence paraneter
SUMVARY TABLE
Partial wave L = 0 No. of eigensolutions = 8

Nodes Ei genenergy (Ryd.)

1 0 0.17137586D-01
2 1 0. 15423828D+00
3 2 0. 42843966D+00
4 3 0. 83974176D+00
5 4 0. 13881446D+01
6 5 0. 20736482D+01
7 6 0. 28962526D+01
8 7 0. 38559578D+01
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Pr ogr am GTOBAS

Nuneri cal basis read by READNUM

Angul ar nmonentum LVAL = 0

Sel ect ed pol es

O~NO U, WN P

Seqno Lval Energy

1 0 .0171
. 1542
. 4284
. 8397
. 3881
. 0736
. 8963
. 8560

oO~NO O WN
[eNeoNoNeoNoNoNe]
WMNNEFE OOOO

Boundary radi us = 12.0

Nunmber of radial nesh points
Nunmber of exponents to be optim zed

Initial exponents

1

O©CoOoO~NOOThWN

0.

Tot a

Fi

o

O©CoOoO~NOOUOThWNEPE

nal

222400001
.309136D- 01
.429699D- 01
.597282D- 01
.830222D- 01
115401D+00
. 160407D+00
. 222966D+00
. 309923D+00

Nunber of iterations = 14
m nimsation function = 0.380402D 02

exponent s

. 285726D+00
.192361D+00
.133124D+00
. 929651D- 01
648495D- 01
.448617D- 01
.305822D- 01
.204030D-01
.131594D- 01

Witing 8 functions to unit 17 for plotting

Savi ng exponents in SWMOL3 fornmat to unit 18
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Pr ogr am NUMCBAS

Rk I S O R R O R R kO R R S R R

* *
* lonic target (L=0) RMAT =12.0 *
* *

R O I S O O O S O O O I kO O O O I O

LUNUMB = 13 Qutput file for the basis

| NTEGRATI ON MESH | NPUT DATA

NNX = 3 No. of integration regions with different step-sizes
| I RX HRX
1 30 . 1000000000D- 01
2 120 .2000000000D- 01
3 500 . 2605000000D- 01

NUMERI CAL BASI S CALCULATI ON | NPUT DATA

LVAL = 0 Angul ar Monment um
CHARGE = 1.0 Ef fective charge
RVAT = 12.0 R-matri x boundary radi us
SEARCHI NG PROCEDURE PARAMETERS
ECVAX = 5. 00 Maxi mum energy for the eigensol utions
BTOL = . 20D+00 Iteration starting tol erance
TINY = .10D 10 Ei gensol uti on convergence paraneter
NODMVAX = 8 Last eigensolution within the energy range
SUMVARY TABLE
Partial wave L = 0 No. of eigensolutions = 9

Nodes Ei genenergy (Ryd.)

1 0 -.10000044D+01
2 1 -.25686944D+00
3 2 -.96844407D- 01
4 3 . 23281734D+00
5 4 . 73260852D+00
6 5 . 13822880D+01
7 6 .21762751D+01
8 7 .31120134D+01
9 8 .41881205D+01
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Nurreri cal
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Pr ogr am GTOBAS

basi s read by READNUM

Angul ar nmonentum LVAL = 0
Sel ect ed pol es
Seqno Lval Energy
1 1 0 -1. 0000
2 2 0 -. 2569
3 3 0 -. 0968
4 4 0 . 2328
5 5 0 . 7326
6 6 0 1.3823
7 7 0 2.1763
8 8 0 3.1120
9 9 0 4.1881
Boundary radi us = 12.0
Nunmber of radial mesh points = 500
Nunber of exponents to be optimzed = 12
Initial exponents
1 .222400D- 01
2 . 309136D- 01
3 . 429699D- 01
4 .597282D- 01
5 . 830222D-01
6 . 115401D+00
7 . 160407D+00
8 . 222966D+00
9 . 309923D+00
10 . 430792D+00
11 . 598801D+00
12 . 832334D+00
Total Nunber of iterations = 20
Final mnimsation function = .301797D- 02
Fi nal exponents
1 . 409539D+02
2 . 319022D+01
3 . 460592D+00
4 . 292295D+00
5 . 194782D+00
6 . 132316D+00
7 . 903639D- 01
8 .614834D-01
9 .413946D- 01
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10 . 2741710 01
11 . 1774890 01
12 .110964D- 01
Witing 9 functions to unit 17 for plotting

Savi ng exponents in SWMOL3 format to unit 18



