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Abstract

We examine the effect of false-name bids on combinatorial auction protocols. False-nam
are bids submitted by a single bidder using multiple identifiers such as multiple e-mail add
The obtained results are summarized as follows: (1) the Vickrey–Clarke–Groves (VCG) mech
which is strategy-proof and Pareto efficient when there exists no false-name bid, is not
name-proof; (2) there exists no false-name-proof combinatorial auction protocol that satisfies
efficiency; (3) one sufficient condition where the VCG mechanism is false-name-proof is iden
i.e., the concavity of a surplus function over bidders.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Internet auctions have become an especially popular part of Electronic Commerce
Various theoretical and practical studies on Internet auctions have already been con
(Monderer and Tenenholtz, 2000a, 2000b; Sandholm, 1996; Wurman et al., 1998). A
these studies, those on combinatorial auctions have lately attracted considerable a
(Fujishima et al., 1999; Klemperer, 1999; Rothkopf et al., 1998; Sandholm, 1
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Although conventional auctions sell a single good at a time, combinatorial auc
sell multiple goods with interdependent values simultaneously and allow the bi
to bid on any combination of goods. In a combinatorial auction, a bidder can ex
complementary/substitutable preferences over multiple goods. By taking into accoun
preferences, economic efficiency can be enhanced.

Although the Internet provides an excellent infrastructure for executing combina
auctions, we must consider the possibility of new types of cheating. For example, a
may try to profit from submitting false bids under fictitious names such as multiple e
addresses. Such an action is very difficult to detect since identifying each participant
Internet is virtually impossible. We call a bid made under a fictitious name afalse-name
bid. Also, we call a protocol isfalse-name-proof if truth-telling without using false-nam
bids is a dominant strategy for each bidder.

The problems resulting from collusion have been discussed by many resea
(McAfee and McMillan, 1987, 1992; Milgrom and Weber, 1982; Milgrom, 2000). Co
pared with collusion, a false-name bid is easier to execute on the Internet since
another identifier such as an e-mail address is cheap. We can consider false-name b
very restricted subclass of collusion.

A concept calledgroup-strategy-proof is proposed to study another restricted subc
of general collusion (Muller and Satterthwaite, 1985; Moulin and Shenker, 1
As discussed in Section 5, group-strategy-proof and false-name-proof are indep
concepts, i.e., a group-strategy-proofprotocol is not necessarily false-name-proof, a
versa.

In this paper, we analyze the effects of false-name bids on combinatorial au
protocols. The obtained results can be summarized as follows:

• The Vickrey–Clarke–Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Gr
1973), which is strategy-proof and Pareto efficient if there exists no false-name
not false-name-proof.

• There exists no false-name-proof combinatorial auction protocol that satisfies
efficiency.

• We identify one sufficient condition where the VCG mechanism is false-name-p
i.e., a surplus function isconcave over bidders.

In the rest of this paper, we first develop the model of a combinatorial auction in w
false-name bids are possible (Section 2). Next, we examine the effect of false-name
combinatorial auctions (Section 3). Then, we show a sufficient condition where the
mechanism is false-name-proof (Section 4). Finally, we discuss the difference be
false-name-proof protocols and group-strategy-proof protocols (Section 5).

2. Formalization

In this section, we formalize a combinatorial auction protocol in which false-name
are possible. Our model is based on that presented in (Monderer and Tenenholtz,
but our model is modified to handle false-name bids.
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Assume there is a set of biddersN = {1,2, . . . , n}. We assume agent 0 is an auctione
who is willing to sell a set of goodsA = {a1, a2, . . . , al}. Each bidderi has his/her
preferences over the subsets ofA. Formally, we model this by supposing that biddei
privately observes a typeθi , which is drawn from a setΘ. We assume aquasi-linear,
private value model withno allocative externality, defined as follows.

Definition 1. The utility of bidder i, when i obtains a subset of goodsB ⊆ A and a
monetary transferti , is represented asv(B, θi)+ ti .

We assume evaluation valuev is normalized byv(∅, θi ) = 0. Also, we assumefree
disposal, i.e., v(B ′, θi) � v(B, θi) for all B ⊆ B ′. Furthermore, for auctioneer 0, for an
subset of goodsB, we assumev(B, θ0) = 0 holds.

To formalize false-name bids, we introduce a set of identifiers that bidders can us

Definition 2. There exists a set of identifiersM = {id1, id2, . . . , idm}. Furthermore
there exists a mapping functionφ, whereφ :N → 2M \ {∅}. 2M is a power set ofM.
φ(i) represents a set of identifiers a bidderi can use. We assume for alli, |φ(i)| � 1 and⋃

i φ(i)=M hold. Also, we assume for alli 
= j , φ(i)∩φ(j)= ∅ holds, i.e., the identifier
of different bidders are mutually exclusive.

We assumeφ(i) is also the private information of bidderi. Therefore, the set of signa
are represented asT =Θ × (2M \ ∅), where the signal of bidderi is (θi, φ(i)) ∈ T .

In other words, a bidder can submit multiple bids pretending to be multiple bidder
a bidder cannot impersonate another real, existing bidder. Also, the auctioneer 0
knowledge ofφ and each bidderi only knowsφ(i) and does not knowφ(j) for j 
= i.

Next, we define a combinatorial auction protocol. For simplicity, we restrict
attention toalmost anonymous mechanisms, in which obtained results are invariant und
permutation of identifiers except for the cases of ties. We describe the condition t
almost anonymous mechanism must satisfy for the cases of ties later. Also, we rest
attention to auction protocols, in which the set of messages for each identifier isΘ ∪ {0},
where 0 is a special symbol used for “non-participation.” The fact that this restriction
not harm the generality of our results does not follow directly form the revelation princ
because the signal of a bidder is a pair(θi, φ(i)), and not justθi . We comment on this usag
of the revelation principle at the end of this section.

Definition 3. A combinatorial auction protocol is defined byΓ = (k(·), t (·)). We callk(·)
allocation function andt (·) transfer function. Let us represent a profile of types, eac
which is declared under each identifier asθ = (θid1, θid2, . . . , θidm), whereθidi ∈ Θ ∪ {0}.
0 is a special type declaration used when a bidder is not willing to participate in the au

k(θ)= (
k0(θ), kid1(θ), . . . , kidm(θ)

)
, wherekidi (θ)⊆A,

t (θ)= (
t0(θ), tid1(θ), . . . , tidm(θ)

)
, wheret0(θ), tidi (θ) ∈ R.

R denotes the set of real numbers. Here,t0(θ) represents the revenue of the auctioneer
−tidi (θ) represents the payment of idi .
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We assume the following constraints are satisfied.

Allocation feasibility constraints: For all i 
= j , kidi (θ)∩ kidj (θ)= ∅, kidi (θ)∩ k0(θ)= ∅,
andkidj (θ)∩ k0(θ)= ∅. Also,

⋃m
i=1 kidi (θ)∪ k0(θ)=A.

Budget constraint: t0(θ)= −∑
1�i�m tidi (θ).

Non-participation constraint: For all θ , if θidi = 0, thenkidi (θ)= ∅ andtidi (θ)= 0.

Also, in an almost anonymous mechanism, we assume for the cases of ties, the fo
condition is satisfied:

For a declared type profile θ = (θid1, θid2, . . . , θidm), if θidi = θidj , then v(kidi (θ), θidi )+
tidi (θ)= v(kidj

(θ), θidj )+ tidj (θ) holds.

We define the fact that an allocation function is Pareto (or ex post) efficient as foll

Definition 4. An allocation functionk(·) is Pareto efficient if for allk = (k0, kid1, . . . , kidm),
which satisfies the allocation feasibility constraints,∑

1�i�m

v
(
kidi (θ), θidi

)
�

∑
1�i�m

v(kidi , θidi )

holds. Let us denote a Pareto efficient allocation function ask∗(·).

A strategy of a bidder is defined as follows.

Definition 5. A strategy s of bidder i is a function s :T → (Θ ∪ {0})M such that
s(θi, φ(i)) ∈ (Θ ∪{0})|φ(i)| for every(θi, φ(i)) ∈ T . That is,s(θi, φ(i))= (θi,1, . . . , θi,mi ),
whereθi,j ∈ Θ ∪ {0} and|φ(i)| =mi .

We denote a profile of types for identifiersM \φ(i) asθ∼i . Also, we denote a profile o
types forφ(i) declared by bidderi as(θi,1, . . . , θi,mi ). Also, we denote a combination o
these two type profiles as((θi,1, . . . , θi,mi ), θ∼i ).

When a declared type profile isθ = ((θi,1, . . . , θi,mi ), θ∼i ), the utility of bidderi is
represented as

v
(
ski (θ), θi

) + sti (θ), whereski (θ)=
⋃

idj∈φ(i)
kidj (θ), sti (θ) =

∑
idj∈φ(i)

tidj (θ).

We define a (weakly) dominant strategy of bidderi as follows.

Definition 6. For bidder i, a strategys∗(θi, φ(i)) = (s∗
i,1, . . . , s

∗
i,mi

) is a dominant
strategy if for all type profilesθ∼i , (θi,1, . . . , θi,mi ), where θ = ((s∗

i,1, . . . , s
∗
i,mi

), θ∼i ),
θ ′ = ((θi,1, . . . , θi,mi ), θ∼i ), v(ski (θ), θi)+ sti (θ)� v(ski (θ ′), θi)+ sti (θ ′) holds.

In a traditional setting where there exists no false-name bid, we say a direct reve
mechanism is truthfully implementable (in dominant strategies) or strategy-proof,
truthfully declaring his/her type is a dominant strategy for each bidder (Mas-Colell e
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1995). On the other hand, in the problem setting in this paper, each bidder can
multiple types in a mechanism. We define a mechanism/protocol is false-name-pro
truthfully implementable in dominant strategies with the possibility of false-name bid
follows.

Definition 7. We say a mechanism is false-name-proof when for all bidderi, s∗(θi, φ(i))=
(θi,0, . . . ,0) is a dominant strategy.

Since we assume a protocol/mechanism is almost anonymous, we can assum
bidder uses only the first identifier without loss of generality.

Bidder i can declare(0, . . . ,0), i.e., not participating in the auction. In this case,
utility of i becomes 0. Therefore, our definition that a mechanism is false-name
includesindividual rationality (or participation constraint), which requires that the utility
of each bidder must be non-negative.

In a traditional setting where there exists no false-name bid, the revelation prin
guarantees that we can restrict our attention only to strategy-proof mechanisms w
loss of generality. In the rest of this section, we discuss the meaning of the reve
principle when false-name declarations are possible.

When false-name bids are possible, the private information of each bidder is no
his/her type that determines the evaluation values of goods, but also a set of
identifiersφ(i). Therefore, in general, a direct revelation mechanism needs to ask no
a type, but also a set of identifiers a participant can use.

Formally, in a general mechanism, a social choicex is chosen from a set o
alternativesX. We can assume a social choice function takes a set of pairs, where
pair consists of a type of each participant and a set of identifiers he/she can use an
a selected social choice, i.e.,f ({(θ1, φ(1)), . . . , (θn,φ(n))})= x.

It is rather straightforward to show that the revelation principle holds for such a s
choice function. The revelation principle holds in a general mechanism, which i
necessarily almost anonymous.

Also, if we assume a mechanism is almost anonymous, there is no difference
identifiers, thus only the number of identifiersmi = |φ(i)| affects the social choice
Furthermore, if we assume the social choice functionf is invariant for the number o
identifiers a participant can use, we can omit the declarations of identifiers. In this
the revelation principle holds for a mechanism introduced in this section, which ask
a type of each participant and does not ask a set of identifiers.

3. The effect of false-name bids in the Vickrey–Clarke–Groves mechanism

In this section, we first examine the effect of false-name bids in the Vickrey–Cla
Groves (VCG) mechanism.

The Vickrey–Clarke–Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Gr
1973), which is also called the generalized Vickrey auction protocol (Varian, 199
defined as follows:
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Definition 8. In the VCG mechanism,k∗(·) is used for determining the allocation, and t
transfer function is determined as follows.

tidi (θ)=
[∑
j 
=i

v
(
k∗(θ), θidj

)] −
[∑
j 
=i

v
(
k∗−idi (θ), θidj

)]
,

wherek∗−idi
(θ) is an allocationk that maximizes

∑
j 
=i v(kidj

, θidj ).

In short, in the VCG mechanism, each bidder is required to pay the decreased a
of the surplus, i.e., the sum of the gross utilities, of other bidders caused by h
participation.

We describe how the VCG mechanism works in the following example.

Example 1. Three bidders (bidder 1, bidder 2, and bidder 3) are bidding for two gooda1

anda2. The evaluation values of a bidder are represented as a triplet (the evaluation
for gooda1 only, the evaluation value for gooda2 only, the evaluation value for botha1

anda2):

bidder 1: (7,0,7);
bidder 2: (0,0,12);
bidder 3: (0,7,7).

We assume there are four identifiers. Bidder 1 can use two identifiers, while bid
and 3 can use only one identifier. If each bidder declares his/her true type using a
identifier, bidder 1 and bidder 3 will get gooda1 and gooda2, respectively. The paymen
of bidder 1 is calculated as 12− 7 = 5, since the sum of the gross utilities of other bidd
when bidder 1 participates is 7, while the sum of the gross utilities of other bidders
bidder 1 does not participate would be 12. Bidder 3’s payment is also equal to 5.

If there are no false-name bids, the VCG mechanism is strategy-proof, i.e., for
bidder, truthfully revealing his/her type is a dominant strategy. Now, we show an exa
where the VCG mechanism is not false-name-proof.

Example 2. Assume the same setting as the previous example, but the evaluation va
bidder 1 are different and bidder 3 is not interested in the auction:

bidder 1: (7,7,14);
bidder 2: (0,0,12);
bidder 3: (0,0,0).

In this case, if bidder 1 uses a single identifier, he/she can obtain both goods, a
payment is equal to 12. However, bidder 1 can create the situation basically ident
Example 1 by using another identifier and splitting his/her bid. In this case, the pa
becomes 5+ 5= 10. Therefore, for bidder 1, using a false-name bid is profitable.

Furthermore, the following non-existence theorem holds.
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Proposition 1. In combinatorial auctions, there exists no false-name-proof auction
protocol that satisfies Pareto efficiency.

Proof. We are going to prove the proposition by presenting a generic counter ex
assuming there exists a false-name-proof, Pareto efficient protocol.

Let us assume that there are two goods,a1 anda2, and three bidders denoted by bidde
bidder 2, and bidder 3. The evaluation values of a bidder are represented as a tripl
evaluation value for gooda1 only, the evaluation value for gooda2 only, the evaluation
value for botha1 and a2). We assume there are four identifiers. Bidder 1 can use
identifiers, while bidders 2 and 3 can use only one identifier:

bidder 1: (b,0, b);
bidder 2: (0,0, b+ c);
bidder 3: (0, b, b).

Let us assumeb > c. According to Pareto efficiency, bidder 1 gets gooda1 and bidder 3
gets gooda2. Letpb denote the payment of bidder 1.

If bidder 1 declares his/her evaluation value for gooda1 asb′ = c+ε, the allocation doe
not change. Letpb′ denote bidder 1’s payment in this situation. The inequalitypb′ � b′
should hold, otherwise, if bidder 1’s true evaluation value for gooda1 were b′, truth-
telling would not be a dominant strategy since bidder 1 is not willing to participa
pb′ > b′. Furthermore, since truth-telling is a dominant strategy,pb � pb′ should hold.
These assumptions lead topb � c+ ε. The condition for bidder 3’s payment is identical
that for bidder 1’s payment.

Next, we assume another situation where bidder 3 is not interested in the auction

bidder 1: (b, b,2b);
bidder 2: (0,0, b+ c);
bidder 3: (0,0,0).

According to Pareto efficiency, both goods go to bidder 1. Let us denote the paym
bidder 1,p2b. If bidder 1 uses a false-name bid and splits his/her bid, the same res
in the previous case can be obtained. Since the protocol is false-name-proof, the fol
inequality must hold, otherwise, bidder 1 can profit by using another identifier and sp
his/her bid:p2b � 2× pb � 2c + 2ε.

On the other hand, let us consider the following case:

bidder 1: (d, d,2d);
bidder 2: (0,0, b+ c);
bidder 3: (0,0,0)

Let us assumec + ε < d < b, andb + c > 2d . According to Pareto efficiency, both goo
go to bidder 2. Consequently, the utility of bidder 1 is 0. However, if bidder 1 dec
his/her evaluation values as(b, b,2b) instead of(d, d,2d), both goods go to bidder 1 an
the payment isp2b � 2c + 2ε, which is smaller than 2d , i.e., bidder 1’s true evaluatio
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value of these two goods. Therefore, bidder 1 can increase the utility by overstating h
true evaluation values.

Thus, in combinatorial auctions, there exists no false-name-proof auction protoc
satisfies Pareto efficiency.✷

Please note that Proposition 1 holds in more general settings. The proof relies
model defined in Definition 2.1, but it does not require the assumption of free disp
Also, the proof does not rely on the fact that the mechanism is almost anonymous.

4. Sufficient condition where the VCG mechanism is false-name-proof

To derive a sufficient condition where the VCG mechanism is false-name-proo
introduce the following function.

Definition 9. For a set of bidders and their typesY = {(y1, θy1), (y2, θy2), . . .} and a set
of goodsB ⊆ A, we define surplus functionU as follows. Let us denoteKB,Y as a set of
feasible allocations ofB to Y :

U(B,Y ) = max
k∈KB,Y

∑
(yi ,θyi )∈Y

v(kyi , θyi ).

In particular, for a set of all goodsA, we abbreviateU(A,Y ) asUA(Y ).

Definition 10. We sayUA(·) is concave over bidders if for all possible sets of biddersY,Z,
andW , whereY ⊆Z, the following condition holds:

UA(Z ∪W)−UA(Z)� UA(Y ∪W)−UA(Y ).

Proposition 2. The VCG mechanism is false-name-proof if the following conditions are
satisfied:

• Θ satisfies that UA(·) is concave for every subset of bidders with types in Θ .
• Each declared type is in Θ ∪ {0}.

The proof of this proposition is relegated to Appendix A.
The second condition, i.e., the declared (not necessarily true) type also must

Θ ∪ {0}, is required by the following reason. Even if bidders’ true types satisfy
concavity condition, if bidderi declares a false type so that the concavity conditio
violated (although doing so is not rational for bidderi), it is possible that using false-nam
bids is profitable for another bidderj .

First, we show one sufficient condition where the concavity ofUA is satisfied, i.e.
the gross substitutes condition. The definition of this condition is as follows (Gu
Stacchetti, 1999; Kelso and Crawford, 1982).
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Definition 11. Given a price vectorp = (pa1, . . . , pal ), we denote

Di(p) =
{
B ⊂A: v(B, θi)−

∑
aj∈B

paj � v(C, θi)−
∑
aj∈C

paj , ∀C ⊂A

}
.

Di(p) represents the collection of bundles that maximize the net utility of bidderi under
price vectorp. Then, we say that the gross substitutes condition is satisfied, if for an
price vectorsp andp′ such thatp′ ≥ p, p′

aj
= paj , andaj ∈ B ∈ Di(p), then there exist

B ′ ∈Di(p
′) such thataj ∈ B ′.

In short, the gross substitutes condition states that if goodaj is demanded with price
vectorp, it is still demanded if the price ofaj remains the same, while the prices
some other goods increase. The key property that makes the gross substitutes c
so convenient is that, in an auction that satisfies the gross substitutes condition, Wa
equilibria exist (Kelso and Crawford, 1982).

One special case where the gross substitutes condition holds is a multi-unit auc
which multiple units of an identical good are auctioned and the marginal utility of
unit is constant or diminishes.

Instead of showing directly the fact that the gross substitutes condition implie
concavity, we introduce another sufficient condition calledsubmodularity.

We defineU is submodular for a set of bidders as follows.

Definition 12. We sayU is submodular for a set of biddersX, if the following condition is
satisfied for all setsB ⊆A andC ⊆A:

U(B,X)+U(C,X) � U(B ∪C,X)+U(B ∩C,X).

The following proposition holds.

Proposition 3. If U is submodular for all set of bidders X ⊆N , then UA is concave.

Proof. Let us choose three mutually exclusive subsets of biddersY,Z′,W . Also, let
us assume in an allocation that maximizesU(A,Y ∪ Z′ ∪ W), BY , BZ′ , andBW are
allocated toY , Z′, andW , respectively. Since we assume free disposal, we can as
A = BY ∪ BZ′ ∪ BW , i.e., each good is allocated to some bidder. The following form
holds:

U(A,Y ∪Z′ ∪W) =U(BY ,Y )+U(BZ′ ,Z′)+U(BW ,W).

Also, the following formula holds:

U(A,Y ∪W) � U(BY ∪BZ′ , Y )+U(BW ,W).

The right side represents the surplus when allocatingBY ∪ BZ′ to biddersY andBW to
biddersW . This inequality holds since the left side is the surplus of the best alloc
including this particular allocation.
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Similarly, the following formula holds:

U(A,Y ∪Z′)� U(BY ∪BW ,Y )+U(BZ′ ,Z′).

By adding these two formulae, we obtain the following formula:

U(A,Y ∪W)+U(A,Y ∪Z′)� U(BY ∪BZ′, Y )+U(BY ∪BW ,Y )

+U(BZ′ ,Z′)+U(BW ,W).

From the factU is submodular, the following formula holds:

U(BY ∪BZ′, Y )+U(BY ∪BW ,Y )� U(A,Y )+U(BY ,Y ).

From these formulae, we obtain the following formula:

U(A,Y ∪W)+U(A,Y ∪Z′)� U(A,Y )+U(BY ,Y )+U(BZ′,Z′)+U(BW ,W)

� U(A,Y )+U(A,Y ∪Z′ ∪W).

By settingZ = Y ∪Z′, we getUA(Z ∪W)−UA(Z) �UA(Y ∪W)−UA(Y ). ✷
The condition thatU is submodular can be considered as a kind of a “necess

condition forUA to be concave, i.e., the following proposition holds.

Proposition 4. If U is not submodular for a set of bidders X and a set of goods B and C,
i.e., U(B,X) +U(C,X) < U(B ∪ C,X) +U(B ∩ C,X), then we can create a situation
where for a set of bidders Y , althoughU is submodular for Y , UA is not concave for X∪Y ,
where A = B ∪C.

Proof. The proof of this proposition is relegated to Appendix B.✷
Please note that the factU is not submodular for some set of biddersX does not

necessarily mean that the concavity condition will be violated for all situations that in
a set of biddersX. For example, if all bidders have all-or-nothing evaluation values
goodsa1 and a2, i.e., for all i, v({a1}, θi) = v({a2}, θi) = 0, while v({a1, a2}, θi) > 0,
clearly,U is not submodular, but we can create a situation whereUA is concave.

In (Gul and Stacchetti, 1999), it is shown that if evaluation valuev for each bidder
satisfies gross substitutes condition and monotonicity, then the surplus functionU is
submodular.1 Therefore, if evaluation valuev for each bidder satisfies the gross substitu
condition and monotonicity, which is satisfied if we assume free disposal, thenUA is
concave.

Please note that as shown in (Gul and Stacchetti, 1999), even if evaluation valuv for
each bidder is submodular, it is not sufficient to guarantee thatU is submodular.

1 This can be derived from Theorem 6 and Lemma 1 in (Gul and Stacchetti, 1999).



184 M. Yokoo et al. / Games and Economic Behavior 46 (2004) 174–188

lass
). An
tisfies

same
roup

how an

e
llows:

number

ord,
roof in

ype of

as

CG

false-
wing

e

hance
t the
5. Discussions

A concept calledgroup-strategy-proof is proposed to study another restricted subc
of general collusion (Muller and Satterthwaite, 1985; Moulin and Shenker, 1996
auction protocol is group-strategy proof if there exists no group of bidders that sa
the following condition.

• By deviating from truth-telling, each member in the group obtains at least the
utility compared with the case of truth-telling, while at least one member of the g
obtains a better utility compared with the case of truth-telling.

Group-strategy-proof and false-name-proof are independent concepts. Let us s
example where a protocol is false-name-proof, but not group-strategy-proof.

Let us assume there are two goodsa1 anda2, and two bidders 1 and 2. We assum
Θ = {θ1, θ2, θ3, θ4}, where the evaluation values for these types are represented as fo

• θ1: (10,9,18);
• θ2: (9,10,18);
• θ3: (10,0,10);
• θ4: (0,10,10).

Each of these types satisfies the gross substitutes condition, since when the
of goods are two, the fact that the evaluation value is subadditive, i.e.,v({a1}, θi) +
v({a2}, θi) � v({a1, a2}, θi), implies the gross substitutes condition (Kelso and Crawf
1982). Thus, as shown in the previous section, the VCG mechanism is false-name-p
this example.

However, the VCG mechanism is not group-strategy-proof. Let us assume the t
bidder 1 isθ1 and the type of bidder 2 isθ2. By truth-telling, bidders 1 and 2 obtaina1

anda2, respectively, and each pays 8, thus the utility of each bidder is 10− 8 = 2. On the
other hand, let us assume bidder 1 declares its type asθ3 and bidder 2 declares its type
θ4, i.e., both bidders understate their evaluation values of one good.

Then, the payment becomes 0, and the utility of each bidder becomes 10− 0 = 10.
Thus, the utility of each bidder increases by deviating from truth-telling, i.e., the V
mechanism is not group-strategy-proof in this case.

Next, let us show an example where a protocol is group-strategy-proof, but not
name-proof. Let us assume an auction of a single-item, single-unit. Clearly, the follo
protocol is group-strategy-proof.

• The auctioneer sets a reservation pricep. The winner is chosen randomly from th
bidders whose declared evaluation value is larger thanp. The winner paysp.

However, this protocol is not false-name-proof. A bidder can increase his/her c
of winning by submitting multiple bids. Please note that this protocol does not fi
definitions used in this paper, since this is a randomized mechanism.
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6. Conclusions

We studied the effect of false-name bids on combinatorial auction protocols. We sh
a formal model of combinatorial auction protocols in which false-name bids are pos
Then, we showed that the VCG mechanism is not false-name-proof. Furthermo
showed a generalized counter-example that illustrates there exists no false-nam
combinatorial auction protocol that satisfies Pareto efficiency. Furthermore, we ide
one sufficient condition where the VCG mechanism is false-name-proof, i.e., the con
of the surplus function over bidders.
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Appendix A. Concavity implies false-name-proof

To prove Proposition 2, we first prove the following proposition.

Proposition 5. Assume UA(·) is concave and the declared types also satisfy the concavity
condition. Then, if a bidder uses two identifiers, the bidder can obtain more (or the same)
utility by using a single identifier.

Proof. Assume bidder 1 can use two identities id1 and id2. Also, let us assume bidder
declares typeθid1 for id1 and typeθid2 for id2.

Let us represent a type profileθ = (θid1, θid2, θid3, . . . , θidm), whereθid1, θid2, θid3, . . . , θidm
are declared types. The monetary transfer bidder 1 gets is the sum of:

tid1(θ)=
[∑
j 
=1

v
(
k∗(θ), θidj

)] −
[∑
j 
=1

v
(
k∗−id1

(θ), θidj

)]

and

tid2(θ)=
[∑
j 
=2

v
(
k∗(θ), θidj

)] −
[∑
j 
=2

v
(
k∗−id2

(θ), θidj

)]
.

Now, let us assume that bidder 1 uses only a single identifier id1, and declares his/he
type asθ ′

id1
, so that the following condition is satisfied for all bundleB:

v
(
B,θ ′

id1

) = v(B, θid1)+ v(B, θid2).

Now, the declared type profile isθ ′ = (θ ′
id1
,0, θid3, . . . , θidm). Obviously, k∗

id1
(θ) ∪

k∗
id2
(θ) = k∗

id1
(θ ′) holds, i.e., the goods bidder 1 obtains do not change. The mon

transfer bidder 1 gets is as follows:
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tid1(θ
′)=

[∑
j 
=1

v
(
k∗(θ ′), θidj

)] −
[∑
j 
=1

v
(
k∗−id1

(θ ′), θidj

)]
.

We are going to prove thattid1(θ
′) � tid1(θ)+ tid2(θ), i.e., the monetary transfer becom

larger when bidder 1 uses one identifier.
Let us denoteY = {(id3, θid3), . . . , (idm, θidm)}:

tid1(θ
′)− tid1(θ)− tid2(θ)

=
[∑
j 
=1

v
(
k∗(θ ′), θidj

)] −
[∑
j 
=1

v
(
k∗−id1

(θ ′), θidj

)]

−
([∑

j 
=1

v
(
k∗(θ), θidj

)] −
[∑
j 
=1

v
(
k∗−id1

(θ), θidj

)])

−
([∑

j 
=2

v
(
k∗(θ), θidj

)] −
[∑
j 
=2

v
(
k∗−id2

(θ), θidj

)])

= UA

(
Y ∪ {

(id1, θid1), (id2, θid2)
}) − v

(
k∗(θ), θid1

) − v
(
k∗(θ), θid2

) −UA(Y )

− (
UA

(
Y ∪ {

(id1, θid1), (id2, θid2)
}) − v

(
k∗(θ), θid1

)) +UA

(
Y ∪ {

(id2, θid2)
})

− (
UA

(
Y ∪ {

(id1, θid1), (id2, θid2)
}) − v

(
k∗(θ), θid2

)) +UA

(
Y ∪ {

(id1, θid1)
})

= UA

(
Y ∪ {

(id1, θid1)
}) +UA

(
Y ∪ {

(id2, θid2)
}) −UA(Y )

−UA

(
Y ∪ {

(id1, θid1), (id2, θid2)
})
.

By the concavity condition, the following formula is satisfied:

UA

(
Y ∪ {

(id1, θid1), (id2, θid2)
}) −UA

(
Y ∪ {

(id1, θid1)
})

� UA

(
Y ∪ {

(id2, θid2)
}) −UA(Y ).

By transposition, we get,

0 � UA

(
Y ∪ {

(id1, θid1)
}) +UA

(
Y ∪ {

(id2, θid2)
}) −UA(Y )

−UA

(
Y ∪ {

(id1, θid1), (id2, θid2)
})
.

Therefore, we obtain

tid1(θ
′)� tid1(θ)+ tid2(θ). ✷

By repeatedly applying Proposition 5, we can show that if a bidder is using more
two identities, he/she can obtain more (or the same) utility by using a single identifie

Appendix B. Proof of Proposition 4

We assume for a set of biddersX and a set of goodsB andC, whereB ∪ C = A,
U(B,X)+U(C,X) < U(B ∪C,X)+U(B ∩C,X) holds.

Let us assume for each goodai ∈ A \ B, there exists bidderi /∈ X, who is interested
in only ai , and his/her evaluation value forai is larger thanU(A,X). Let us denote a se
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of these bidders asW . Similarly, let us assume for each goodaj ∈ A \ C, there exists
bidderj 
∈ X, who is interested in onlyaj , and his/her evaluation value foraj is larger
thanU(A,X). Let us denote a set of these bidders asZ. It is clear thatU is submodular for
W ∪ Z, since these bidders areunit demand consumers, and satisfies the gross substitu
condition (Gul and Stacchetti, 1999).

It is clear that in the allocation that maximizesUA(X ∪W ∪Z), A \B are allocated to
bidders inW , A \C are allocated to bidders inZ, andB ∩C are allocated to bidders inX.

Also, forX ∪W , it is clear that in the allocation that maximizesUA(X∪W), A \B are
allocated to bidders inW , andB are allocated to bidders inX. Similarly, in the allocation
that maximizesUA(X ∪ Z), A \ C are allocated to bidders inZ, andC are allocated to
bidders inX.

Thus, the following formulae hold:

UA(X ∪W) =U(A \B,W)+U(B,X),

UA(X ∪Z)=U(A \C,Z)+U(C,X),

UA(X ∪W ∪Z)=U(A \B,W)+U(A \C,Z)+U(B ∩C,X).

From these formulae and the assumptionU(B,X) + U(C,X) < U(B ∪ C,X) +
U(B ∩C,X), the following formula holds:

UA(X ∪W)+UA(X ∪Z)

=U(A \B,W) +U(B,X)+U(A \C,Z)+U(C,X)

=UA(X ∪W ∪Z)−U(B ∩C,X)+U(B,X)+U(C,X)

< UA(X ∪W ∪Z)+U(B ∪C,X) =UA(X ∪W ∪Z)+UA(X).

Thus, concavity is violated sinceUA(X∪W)−UA(X) < UA(X ∪Z ∪W)−UA(X ∪Z).
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