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Abstract

We examine the effect of false-name bids on combinatorial auction protocols. False-name bids
are bids submitted by a single bidder using multiple identifiers such as multiple e-mail addresses.
The obtained results are summarized as follows: (1) the Vickrey—Clarke—Groves (VCG) mechanism,
which is strategy-proof and Pareto efficient when there exists no false-name bid, is not false-
name-proof; (2) there exists no false-name-proof combinatorial auction protocol that satisfies Pareto
efficiency; (3) one sufficient condition where the VCG mechanism is false-name-proof is identified,
i.e., the concavity of a surplus function over bidders.
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1. Introduction

Internet auctions have become an especially popular part of Electronic Commerce (EC).
Various theoretical and practical studies on Internet auctions have already been conducted
(Monderer and Tenenholtz, 2000a, 2000b; Sandholm, 1996; Wurman et al., 1998). Among
these studies, those on combinatorial auctions have lately attracted considerable attention
(Fujishima et al., 1999; Klemperer, 1999; Rothkopf et al., 1998; Sandholm, 1999).
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Although conventional auctions sell a single good at a time, combinatorial auctions
sell multiple goods with interdependent values simultaneously and allow the bidders
to bid on any combination of goods. In a combinatorial auction, a bidder can express
complementary/substitutable preferences over multiple goods. By taking into account such
preferences, economic efficiency can be enhanced.

Although the Internet provides an excellent infrastructure for executing combinatorial
auctions, we must consider the possibility of new types of cheating. For example, a bidder
may try to profit from submitting false bids under fictitious names such as multiple e-mail
addresses. Such an action is very difficult to detect since identifying each participant on the
Internet is virtually impossible. We call a bid made under a fictitious narfiaésa-name
bid. Also, we call a protocol igalse-name-proof if truth-telling without using false-name
bids is a dominant strategy for each bidder.

The problems resulting from collusion have been discussed by many researchers
(McAfee and McMillan, 1987, 1992; Milgrom and Weber, 1982; Milgrom, 2000). Com-
pared with collusion, a false-name bid is easier to execute on the Internet since getting
another identifier such as an e-mail address is cheap. We can consider false-name bids as a
very restricted subclass of collusion.

A concept calledyroup-strategy-proof is proposed to study another restricted subclass
of general collusion (Muller and Satterthwaite, 1985; Moulin and Shenker, 1996).
As discussed in Section 5, group-strategy-proof and false-name-proof are independent
concepts, i.e., a group-strategy-proof protocol is not necessarily false-name-proof, and vice
versa.

In this paper, we analyze the effects of false-name bids on combinatorial auction
protocols. The obtained results can be summarized as follows:

e The Vickrey—Clarke—Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves,
1973), which is strategy-proof and Pareto efficient if there exists no false-name bid, is
not false-name-proof.

e There exists no false-name-proof combinatorial auction protocol that satisfies Pareto
efficiency.

o We identify one sufficient condition where the VCG mechanism is false-name-proof,
i.e., a surplus function isoncave over bidders.

In the rest of this paper, we first develop the model of a combinatorial auction in which
false-name bids are possible (Section 2). Next, we examine the effect of false-name bids in
combinatorial auctions (Section 3). Then, we show a sufficient condition where the VCG
mechanism is false-name-proof (Section 4). Finally, we discuss the difference between
false-name-proof protocols and group-strategy-proof protocols (Section 5).

2. Formalization
In this section, we formalize a combinatorial auction protocol in which false-name bids

are possible. Our model is based on that presented in (Monderer and Tenenholtz, 2000a),
but our model is modified to handle false-name bids.
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Assume there is a set of biddevs= {1, 2, ..., n}. We assume agent 0 is an auctioneer,
who is willing to sell a set of good#\ = {a1, a,...,a;}. Each bidderi has his/her
preferences over the subsets Af Formally, we model this by supposing that bidder
privately observes a typ€, which is drawn from a se®. We assume guasi-linear,
private value model withno allocative externality, defined as follows.

Definition 1. The utility of bidderi, wheni obtains a subset of good® € A and a
monetary transfer;, is represented ag B, 6;) + 1;.

We assume evaluation valueis normalized byv(¥, 6;) = 0. Also, we assuméree
disposal, i.e.,v(B’, 6;) > v(B, ;) for all B € B’. Furthermore, for auctioneer 0, for any
subset of good®, we assume (B, 6p) = 0 holds.

To formalize false-name bids, we introduce a set of identifiers that bidders can use.

Definition 2. There exists a set of identifier&f = {id4,ido,...,id,,}. Furthermore,
there exists a mapping functigh, where¢: N — 2\ {#}. 2¥ is a power set of\/.
¢ (i) represents a set of identifiers a biddexan use. We assume for allj¢ (/)| > 1 and
U; ¢ (i) = M hold. Also, we assume for alk j, ¢ (i) N (j) = @ holds, i.e., the identifiers
of different bidders are mutually exclusive.

We assume (i) is also the private information of bidderTherefore, the set of signals
are represented &= @ x (2" \ @), where the signal of bidderis (6;, ¢ (i)) € T.

In other words, a bidder can submit multiple bids pretending to be multiple bidders, but
a bidder cannot impersonate another real, existing bidder. Also, the auctioneer 0 has no
knowledge ofp and each bidderonly knows¢ (i) and does not know () for j £1i.

Next, we define a combinatorial auction protocol. For simplicity, we restrict our
attention toalmost anonymous mechanisms, in which obtained results are invariant under
permutation of identifiers except for the cases of ties. We describe the condition that an
almost anonymous mechanism must satisfy for the cases of ties later. Also, we restrict our
attention to auction protocols, in which the set of messages for each identifiev i},
where 0 is a special symbol used for “non-participation.” The fact that this restriction does
not harm the generality of our results does not follow directly form the revelation principle,
because the signal of a bidder is a géjt ¢ (i)), and not just;. We comment on this usage
of the revelation principle at the end of this section.

Definition 3. A combinatorial auction protocol is defined By= (k(-), ¢(-)). We callk(-)
allocation function and(-) transfer function. Let us represent a profile of types, each of
which is declared under each identifieras: (6ig,, fid,» - - - » 6id,, ), wheredig. € ® U {0}.

0 is a special type declaration used when a bidder is not willing to participate in the auction:

k() = (ko(0), kidy (0), . . ., kig,, (6)),  wherekig, (6) C A,
1(0) = (10(0), tidy 0), - ... tid,, (0)), whererg(6), fig; (0) € R.

R denotes the set of real numbers. Heg&?) represents the revenue of the auctioneer and
—tig, (8) represents the payment of id
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We assume the following constraints are satisfied.

Allocation feasibility constraints: For alli # j, kig, (6) N kid; (0) =¥, kig, (6) Nko(0) =0,
andkig; (9) Nko(6) = . Also, /L1 kid; (9) Uko(6) = A.

Budget constraint: 19(0) = — Zlgigm tig; ().

Non-participation constraint: For all 9, if 6ig; = 0, thenkig, (6) = ¢ andtg, (8) = 0.

Also, in an almost anonymous mechanism, we assume for the cases of ties, the following
condition is satisfied:

For a declared type profile 8 = (6, bid,. - - - » 6id,, ). if bid;, = Oid; » then v(kig; (9), Oig;) +
fig; (0) = v(kid,; (0), id; ) + tid, (6) holds.

We define the fact that an allocation function is Pareto (or ex post) efficient as follows.

Definition 4. An allocation functiork(-) is Pareto efficient if for alk = (ko, kid, . - - -, kid,, ),
which satisfies the allocation feasibility constraints,

> v(kio©).60) > Y vkid;. bid,)

1<i<m 1<i<m

holds. Let us denote a Pareto efficient allocation functiokr&s.
A strategy of a bidder is defined as follows.

Definition 5. A strategys of bidderi is a functions: 7T — (® U {O)M such that
s(6:, ¢ (i) € (O U{OY?D! for every(9;, ¢ (i) € T. Thatis,s (0, ¢ (i) = (0.1 - - -, bim,),
whered; ; € ©® U {0} and|¢ (i)| = m;.

We denote a profile of types for identified$ \ ¢ (i) as6~;. Also, we denote a profile of
types for¢ (i) declared by biddei as(é; 1, . .., 6;,m;). Also, we denote a combination of
these two type profiles &$6; 1, . . .., 0im;), 6~i).

When a declared type profile &= ((6; 1, ..., 0im;), 6~:), the utility of bidderi is
represented as

v(ski(0),6) +i(0), whereski(©) = | kia,;®), @)= )Y 1ia;®).
idjeg (i) idjeg (i)
We define a (weakly) dominant strategy of biddeis follows.

Definition 6. For bidderi, a strategys*(9;, ¢ (i)) = (sjfl,...,sjfmi) is a dominant
strategy if for all type profile9~;, #i1,...,6im;), Whered = ((S;’jl,...,s;jmi),GN,'),
0" = (03,1, 0i,m;)s O~i), v(SK; (0), 0;) + st; (8) = v(sk; (), 0;) + t; (8") holds.

In a traditional setting where there exists no false-name bid, we say a direct revelation
mechanism is truthfully implementable (in dominant strategies) or strategy-proof, when
truthfully declaring his/her type is a dominant strategy for each bidder (Mas-Colell et al.,
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1995). On the other hand, in the problem setting in this paper, each bidder can submit
multiple types in a mechanism. We define a mechanism/protocol is false-name-proof (or
truthfully implementable in dominant strategies with the possibility of false-name bids) as
follows.

Definition 7. We say a mechanism is false-name-proof when for all bidd&ro;, ¢ (i)) =
6;,0,...,0) is a dominant strategy.

Since we assume a protocol/mechanism is almost anonymous, we can assume each
bidder uses only the first identifier without loss of generality.

Bidderi can declar€0, ..., 0), i.e., not participating in the auction. In this case, the
utility of i becomes 0. Therefore, our definition that a mechanism is false-name-proof
includesindividual rationality (or participation constraint), which requires that the utility
of each bidder must be non-negative.

In a traditional setting where there exists no false-name bid, the revelation principle
guarantees that we can restrict our attention only to strategy-proof mechanisms without
loss of generality. In the rest of this section, we discuss the meaning of the revelation
principle when false-name declarations are possible.

When false-name bids are possible, the private information of each bidder is not only
his/her type that determines the evaluation values of goods, but also a set of his/her
identifierse (i). Therefore, in general, a direct revelation mechanism needs to ask not only
a type, but also a set of identifiers a participant can use.

Formally, in a general mechanism, a social choiceés chosen from a set of
alternativesX. We can assume a social choice function takes a set of pairs, where each
pair consists of a type of each participant and a set of identifiers he/she can use and return
a selected social choice, i.€.({(01, ¢ (1)), ..., 0n, p(n)}) = x.

It is rather straightforward to show that the revelation principle holds for such a social
choice function. The revelation principle holds in a general mechanism, which is not
necessarily almost anonymous.

Also, if we assume a mechanism is almost anonymous, there is no difference among
identifiers, thus only the number of identifiers; = |¢(i)| affects the social choice.
Furthermore, if we assume the social choice functfois invariant for the number of
identifiers a participant can use, we can omit the declarations of identifiers. In this case,
the revelation principle holds for a mechanism introduced in this section, which asks only
a type of each participant and does not ask a set of identifiers.

3. The effect of false-name bidsin the Vickrey—Clar ke-Groves mechanism

In this section, we first examine the effect of false-name bids in the Vickrey—Clarke—
Groves (VCG) mechanism.

The Vickrey—Clarke—Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves,
1973), which is also called the generalized Vickrey auction protocol (Varian, 1995), is
defined as follows:
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Definition 8. In the VCG mechanisni*(-) is used for determining the allocation, and the
transfer function is determined as follows.

fig, (0) = [Zv(k*(e), 9id,~):| — [Zv(kiidi ), 9id_,)i|,

J# JF#

Wherekjidi () is an allocatiork that maximizesz#i v(kid;, Oid; )-

In short, in the VCG mechanism, each bidder is required to pay the decreased amount
of the surplus, i.e., the sum of the gross utilities, of other bidders caused by his/her
participation.

We describe how the VCG mechanism works in the following example.

Example 1. Three bidders (bidder 1, bidder 2, and bidder 3) are bidding for two gaads,
andaz. The evaluation values of a bidder are represented as a triplet (the evaluation value
for goodaj only, the evaluation value for goag only, the evaluation value for boty
anday):

bidder 1: (7,0, 7);
bidder 2: (0,0, 12);
bidder 3: (0,7, 7).

We assume there are four identifiers. Bidder 1 can use two identifiers, while bidders 2
and 3 can use only one identifier. If each bidder declares his/her true type using a single
identifier, bidder 1 and bidder 3 will get goed and gooduy, respectively. The payment
of bidder 1 is calculated as 127 =5, since the sum of the gross utilities of other bidders
when bidder 1 participates is 7, while the sum of the gross utilities of other bidders when
bidder 1 does not participate would be 12. Bidder 3's paymentis also equal to 5.

If there are no false-name bids, the VCG mechanism is strategy-proof, i.e., for each
bidder, truthfully revealing his/her type is a dominant strategy. Now, we show an example
where the VCG mechanism is not false-name-proof.

Example 2. Assume the same setting as the previous example, but the evaluation values of
bidder 1 are different and bidder 3 is not interested in the auction:

bidder 1: (7,7, 14);
bidder 2: (0,0, 12);
bidder 3: (0, 0, 0).

In this case, if bidder 1 uses a single identifier, he/she can obtain both goods, and the
payment is equal to 12. However, bidder 1 can create the situation basically identical to
Example 1 by using another identifier and splitting his/her bid. In this case, the payment
becomes 5 5= 10. Therefore, for bidder 1, using a false-name bid is profitable.

Furthermore, the following non-existence theorem holds.
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Proposition 1. In combinatorial auctions, there exists no false-name-proof auction
protocol that satisfies Pareto efficiency.

Proof. We are going to prove the proposition by presenting a generic counter example
assuming there exists a false-name-proof, Pareto efficient protocol.

Let us assume that there are two goedsinday, and three bidders denoted by bidder 1,
bidder 2, and bidder 3. The evaluation values of a bidder are represented as a triplet: (the
evaluation value for goodi only, the evaluation value for goag only, the evaluation
value for botha; andaz). We assume there are four identifiers. Bidder 1 can use two
identifiers, while bidders 2 and 3 can use only one identifier:

bidder 1: (4, 0, b);
bidder 2: (0,0, b + ¢);
bidder 3: (0, b, b).

Let us assumé > c¢. According to Pareto efficiency, bidder 1 gets geadand bidder 3
gets goodiy. Let p;, denote the payment of bidder 1.

If bidder 1 declares his/her evaluation value for gagdsh’ = c +¢, the allocation does
not change. Lep, denote bidder 1's payment in this situation. The inequalfy< b’
should hold, otherwise, if bidder 1's true evaluation value for gag@dvere »’, truth-
telling would not be a dominant strategy since bidder 1 is not willing to participate if
py > b'. Furthermore, since truth-telling is a dominant strategy< p;s should hold.
These assumptions lead pg < ¢ + €. The condition for bidder 3's payment is identical to
that for bidder 1's payment.

Next, we assume another situation where bidder 3 is not interested in the auction:

bidder 1: (b, b, 2b);
bidder 2: (0,0,b + ¢);
bidder 3: (0, 0, 0).

According to Pareto efficiency, both goods go to bidder 1. Let us denote the payment of
bidder 1, py. If bidder 1 uses a false-name bid and splits his/her bid, the same result as
in the previous case can be obtained. Since the protocol is false-name-proof, the following
inequality must hold, otherwise, bidder 1 can profit by using another identifier and splitting
his/her bid:p2, <2 x pp < 2¢ + 2¢.

On the other hand, let us consider the following case:

bidder 1: (d, d, 2d);
bidder 2: (0,0, b + ¢);
bidder 3: (0, 0, 0)

Let us assume + € < d < b, andb + ¢ > 2d. According to Pareto efficiency, both goods
go to bidder 2. Consequently, the utility of bidder 1 is 0. However, if bidder 1 declares
his/her evaluation values &5, b, 2b) instead of(d, d, 2d), both goods go to bidder 1 and
the payment i, < 2¢ + 2¢, which is smaller than 2, i.e., bidder 1's true evaluation
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value of these two goods. Therefore, bidder 1 can increase the utility by overstating his/her
true evaluation values.

Thus, in combinatorial auctions, there exists no false-name-proof auction protocol that
satisfies Pareto efficiency.c

Please note that Proposition 1 holds in more general settings. The proof relies on the
model defined in Definition 2.1, but it does not require the assumption of free disposal.
Also, the proof does not rely on the fact that the mechanism is almost anonymous.

4. Sufficient condition wherethe VCG mechanism is false-name-proof

To derive a sufficient condition where the VCG mechanism is false-name-proof, we
introduce the following function.

Definition 9. For a set of bidders and their typ&s= {(y1, 6y,), (y2,6,,), ...} and a set
of goodsB € A, we define surplus functiodi as follows. Let us denot& s y as a set of
feasible allocations oB to Y:

U(B,Y)= max v(ky., 6y,).
(B.Y)= max > viky,0y)
(i by, )€Y

In particular, for a set of all goods, we abbreviaté/ (A, Y) asU4(Y).

Definition 10. We sayU 4 (-) is concave over bidders if for all possible sets of bidd&ig,
andW, whereY C Z, the following condition holds:

Ua(ZUW) —Uas(Z2) SUA(Y UW) = Us(Y).

Proposition 2. The VCG mechanism is false-name-proof if the following conditions are
satisfied:

e O satisfiesthat U, (+) is concave for every subset of bidderswith typesin ©.
e Each declared typeisin ® U {0}.

The proof of this proposition is relegated to Appendix A.

The second condition, i.e., the declared (not necessarily true) type also must be in
® U {0}, is required by the following reason. Even if bidders’ true types satisfy the
concavity condition, if biddei declares a false type so that the concavity condition is
violated (although doing so is not rational for biddzrit is possible that using false-name
bids is profitable for another biddegr

First, we show one sufficient condition where the concavitygf is satisfied, i.e.,
the gross substitutes condition. The definition of this condition is as follows (Gul and
Stacchetti, 1999; Kelso and Crawford, 1982).
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Definition 11. Given a price vectop = (pq;, - - ., pg;), We denote

Di(p) = {BcA: v(B.6) = Y pa; Zv(C.0) = Y pa;. VCCA}.

a]'EB ajEC

D; (p) represents the collection of bundles that maximize the net utility of biddeder
price vectorp. Then, we say that the gross substitutes condition is satisfied, if for any two
price vectorsp andp’ such thatp’ > p, P;, = pa;, anda; € B € D;(p), then there exists

B’ € D;(p') suchthau; € B'.

In short, the gross substitutes condition states that if ggoid demanded with price
vector p, it is still demanded if the price of; remains the same, while the prices of
some other goods increase. The key property that makes the gross substitutes condition
so convenient is that, in an auction that satisfies the gross substitutes condition, Walrasian
equilibria exist (Kelso and Crawford, 1982).

One special case where the gross substitutes condition holds is a multi-unit auction, in
which multiple units of an identical good are auctioned and the marginal utility of each
unit is constant or diminishes.

Instead of showing directly the fact that the gross substitutes condition implies the
concavity, we introduce another sufficient condition calieldmodularity.

We defineU is submodular for a set of bidders as follows.

Definition 12. We sayU is submodular for a set of biddeks if the following condition is
satisfied for all set® € A andC C A:

UB,X)+UC,X)>2UBUC,X)+UBNC,X).
The following proposition holds.
Proposition 3. If U issubmodular for all set of bidders X € N, then U4 is concave.

Proof. Let us choose three mutually exclusive subsets of biddeis, W. Also, let

us assume in an allocation that maximizé¢A,Y U Z' U W), By, By, and By are
allocated toY, Z’, and W, respectively. Since we assume free disposal, we can assume
A = By U Bz U By, i.e., each good is allocated to some bidder. The following formula
holds:

UA,YUZUW)=U(By,Y)+U(Bz,Z')+U(Bw,W).
Also, the following formula holds:
U(A,YUW)>U(ByUBgz,Y)+U(Bw, W).

The right side represents the surplus when allocaipg) B, to biddersY and By to
biddersW. This inequality holds since the left side is the surplus of the best allocation
including this particular allocation.
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Similarly, the following formula holds:
UA,YUZ)Y>UByUBy,Y)+U(Bz,Z).
By adding these two formulae, we obtain the following formula:
UA,YUW)4+U(A,YUZ)>U(ByUBz,Y)+U(By UBy,Y)
+U(Bz,Z')+ U(Bw,W).
From the factU is submodular, the following formula holds:
UByUBz,Y)+UByUBw,Y)>2U(A,Y)+U(By,Y).

From these formulae, we obtain the following formula:

UA,YUW)4+U(A,YUZ)>U(A,Y)+U(By,Y)+U(Bz,Z)+ U(Bw, W)

UA,Y)+UA,YUZ UW).

VoWV

By settingZ = Y U Z', we getU(Z U W) — Ua(Z) < Us(Y UW) — UA(Y). O

The condition that/ is submodular can be considered as a kind of a “necessary”
condition forU,4 to be concave, i.e., the following proposition holds.

Proposition 4. If U is not submodular for a set of bidders X and a set of goods B and C,
i.e,U(B,X)+U(C,X)<U(BUC,X)+U(BNC,X), then we can create a situation
wherefor a set of bidders Y, although U is submodular for Y, U4 isnot concavefor X UY,
where A= BUC.

Proof. The proof of this proposition is relegated to Appendix Bl

Please note that the faét is not submodular for some set of biddersdoes not
necessarily mean that the concavity condition will be violated for all situations that involve
a set of bidderst. For example, if all bidders have all-or-nothing evaluation values for
goodsa; andagy, i.e., for all i, v({a1}, 6;) = v({a2}, 6;) = 0, while v({a1, a2}, 6;) > 0O,
clearly,U is not submodular, but we can create a situation wlkyés concave.

In (Gul and Stacchetti, 1999), it is shown that if evaluation valu®r each bidder
satisfies gross substitutes condition and monotonicity, then the surplus furictisn
submodulat Therefore, if evaluation valuefor each bidder satisfies the gross substitutes
condition and monotonicity, which is satisfied if we assume free disposal, theis
concave.

Please note that as shown in (Gul and Stacchetti, 1999), even if evaluation\alue
each bidder is submodular, it is not sufficient to guaranteelfhiatsubmodular.

1 This can be derived from Theorem 6 and Lemma 1 in (Gul and Stacchetti, 1999).
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5. Discussions

A concept calledyroup-strategy-proof is proposed to study another restricted subclass
of general collusion (Muller and Satterthwaite, 1985; Moulin and Shenker, 1996). An
auction protocol is group-strategy proof if there exists no group of bidders that satisfies
the following condition.

e By deviating from truth-telling, each member in the group obtains at least the same
utility compared with the case of truth-telling, while at least one member of the group
obtains a better utility compared with the case of truth-telling.

Group-strategy-proof and false-name-proof are independent concepts. Let us show an
example where a protocol is false-name-proof, but not group-strategy-proof.

Let us assume there are two goadsanday, and two bidders 1 and 2. We assume
©® = {61, 62, 03, 04}, where the evaluation values for these types are represented as follows:

e 61:(10,9,18);
e 62:(9,10,18);
e 03: (10,0, 10);
e 04: (0,10, 10).
Each of these types satisfies the gross substitutes condition, since when the number
of goods are two, the fact that the evaluation value is subadditive,viigui}, 6;) +
v({az}, 6;) > v({a1, a2}, 6;), implies the gross substitutes condition (Kelso and Crawford,
1982). Thus, as shown in the previous section, the VCG mechanism is false-name-proofin
this example.

However, the VCG mechanism is not group-strategy-proof. Let us assume the type of
bidder 1 isf1 and the type of bidder 2 ig. By truth-telling, bidders 1 and 2 obtain
anday, respectively, and each pays 8, thus the utility of each bidder is86- 2. On the
other hand, let us assume bidder 1 declares its type and bidder 2 declares its type as
04, i.e., both bidders understate their evaluation values of one good.

Then, the payment becomes 0, and the utility of each bidder become®18 10.
Thus, the utility of each bidder increases by deviating from truth-telling, i.e., the VCG
mechanism is not group-strategy-proofin this case.

Next, let us show an example where a protocol is group-strategy-proof, but not false-
name-proof. Let us assume an auction of a single-item, single-unit. Clearly, the following
protocol is group-strategy-proof.

e The auctioneer sets a reservation priceThe winner is chosen randomly from the
bidders whose declared evaluation value is larger tharhe winner pay$.

However, this protocol is not false-name-proof. A bidder can increase his/her chance
of winning by submitting multiple bids. Please note that this protocol does not fit the
definitions used in this paper, since this is a randomized mechanism.
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6. Conclusions

We studied the effect of false-name bids on combinatorial auction protocols. We showed
a formal model of combinatorial auction protocols in which false-name bids are possible.
Then, we showed that the VCG mechanism is not false-name-proof. Furthermore, we
showed a generalized counter-example that illustrates there exists no false-name-proof
combinatorial auction protocol that satisfies Pareto efficiency. Furthermore, we identified
one sufficient condition where the VCG mechanism is false-name-proof, i.e., the concavity
of the surplus function over bidders.
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Appendix A. Concavity implies false-name-pr oof
To prove Proposition 2, we first prove the following proposition.

Proposition 5. Assume U4 (+) is concave and the declared types also satisfy the concavity
condition. Then, if a bidder uses two identifiers, the bidder can obtain more (or the same)
utility by using a single identifier.

Proof. Assume bidder 1 can use two identities @hd ich. Also, let us assume bidder 1
declares typéq, for id1 and typediq, for ids.

Letusrepresent a type proféle= (0iq,, bid,, fids. - - - » Oid,, ), Wheredid,, Oid,, bids, - - - , fid
are declared types. The monetary transfer bidder 1 gets is the sum of:

nm@):[}ju@wm¢m0}—[E:v@ﬁmwxﬂwﬂ

Jj#1 Jj#1

m

and
fid, () = [Z v(k* (), 9id_,)j| - [Z v(k*i4,(0), 9id,)]-
J#2 j#2
Now, let us assume that bidder 1 uses only a single identifigraidd declares his/her
type a39i’dl, so that the following condition is satisfied for all bundie
v(B, ei,dl) =v(B, bid,) + v(B, bid,).

Now, the declared type profile i§' = (9i’dl,0, Bids. - - - 6id,, ). Obviously, ;’(‘11(9) U
;’(‘12(9) =k (6") holds, i.e., the goods bidder 1 obtains do not change. The monetary
transfer bidéer 1 gets is as follows:
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fig, (8") = [Z v(k*(0"), Gidj)i| - [Z v(kZig, @), Gidj)]
j#1 j#1
We are going to prove thag, (6) > fig, (0) + fid,(0), i.€., the monetary transfer becomes
larger when bidder 1 uses one identifier.
Let us denot& = {(id3, 6id;), . - ., (idy, ig,, ) }:

fidy (0") — fidy (6) — fid, ()

- I:Zv(k*(e/),eidj)} - Zv(k*idl(g/)’gidj)}
j#1 - Jj#l
(geom] [prewns)
Jj#1 - Jj#1
<[ v(k*(0), 6ig;) | — [Z *1d,(0), bid; D
Jj#2 - J#2
= Ua(Y U{(id1. biay). (id2. ) }) — v(K*©). Bia,) — v(K* (). big,) — Ua(Y)

(
— (Ua(Y U{(idy, 6id,). (id2, 6id,) }) — v(k*(0). 6id,)) + Ua(Y U {(id2, 6id,) })
— (Ua(Y U{(idy, 6igy), (id2, 6ia,) }) — v(k*(0), 6id,)) + Ua (Y U {(id1, 6ia,)})
= Ua(Y U {(id1, 6id) }) + Ua(Y U {(id2, 6ig,) }) — Ua(Y)
— Ua(Y U{(id1, 6iqy), (id2, 6id,) }).
By the concavity condition, the following formula is satisfied:
Ua(Y U {(id1, 6ia,), (id2, 6id,) }) — Ua(Y U {(id1, 6id,) })
< UA(Y U{(id2, 6id,) }) — Ua(Y).
By transposition, we get,
0< Ua(Y U{(idy1, 6ig))}) + Ua(Y U {(id2, 6id,) }) — Ua(Y)
— Ua(Y U{(id1, 6igy), (id2, bid,) })-
Therefore, we obtain
fid, (0") = i, (0) + 1ig,(6). O

By repeatedly applying Proposition 5, we can show that if a bidder is using more than
two identities, he/she can obtain more (or the same) utility by using a single identifier.

Appendix B. Proof of Proposition 4

We assume for a set of biddeks and a set of good8 andC, whereB U C = A,
UB,X)+U(C,X)<UBUC,X)+U(BNC,X) holds.

Let us assume for each goade A \ B, there exists bidder ¢ X, who is interested
in only a;, and his/her evaluation value fay is larger thanl/ (A, X). Let us denote a set
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of these bidders a®. Similarly, let us assume for each goage A \ C, there exists
bidder j ¢ X, who is interested in only;, and his/her evaluation value far; is larger
thanU (A, X). Let us denote a set of these bidderga#t is clear that/ is submodular for
W U Z, since these bidders aveit demand consumers, and satisfies the gross substitutes
condition (Gul and Stacchetti, 1999).

Itis clear that in the allocation that maximiz&s (X U W U Z), A\ B are allocated to
bidders inW, A\ C are allocated to bidders i, andB N C are allocated to bidders iK.

Also, for X U W, itis clear that in the allocation that maximiz€g (X U W), A\ B are
allocated to bidders ifiv, and B are allocated to bidders iK. Similarly, in the allocation
that maximized/4 (X U Z), A\ C are allocated to bidders i, andC are allocated to
bidders inX.

Thus, the following formulae hold:

Us(XUW)=UA\B,W)+U(B, X),
Us(XUZ)=UA\C,Z2)+U(C, X),
Us(XUWUZ)=UMA\B,W)4+UA\C,Z2)+U(BNC,X).

From these formulae and the assumptigoB, X) + U(C,X) < U(BU C,X) +
U(BNC, X), the following formula holds:

Up(XUW)4+Up(XUZ)
=UA\B,W)+UB,X)+UA\C,Z2)+U(C, X)
=Us(XUWUZ)-UBNC,X)+UB,X)+U(C,X)
<Us(XUWUZ)+UBUC,X)=Us(XUWU2Z)+Un(X).

Thus, concavity is violated sindés (X UW) —Ua(X) < Us(XUZUW) —Ux(XUZ).
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