
Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3094

Formal Analysis of Arrival Procedure of Air Traffic Control System

Shahid Yousaf1, Sher Afzal Khan2, Nazir Ahmad Zafar3, Farooq Ahmad1, and Muazzam Ali Khan2

1Faculty of Information Technology, University of Central Punjab, Lahore, Pakistan
2Department of Computer sciences, Abdul Wali Khan University, Mardan, Pakistan

3
Department of Computer Science, King Faisal University, Al Hassa, Saudi Arabia

Email: shahid.yousaf@ucp.edu.pk; muazzam@awkum.edu.pk; drfarooq@ucp.edu.pk; nazafar@kfu.edu.sa

Abstract: The air traffic control (ATC) is safety, monetary and environmental critical system. Its failure may cause
the loss of human life, severe injuries, loss of money and environmental issues. The complexity of such systems
requires formal modeling and step by step design processes. In this paper we investigate the use of formal method
VDM++ to specify and verify the arrival procedure of aircrafts. The control along arrival procedure changes from the
ramp to the gate controller to make possible the safe arrival. For the specification the bottom up approach is used to
model the system. Initially, aircraft, ramp and gate controller are specified, then all are combine for their synchronize
approach. The specification and syntactical verification are performed by VDM++ which is an object oriented model
based formal approach.
[Yousaf S, Khan SA, Zafar NA and Farooq A and Khan MA. Formal Analysis of Arrival Procedure of Air
Traffic Control System. Life Sci J 2012;9(4):3094-3098] (ISSN:1097-8135). http://www.lifesciencesite.com. 454
.
Keywords: VDM++; air traffic control system; formal specification; formal method.

1. Introduction
 The major concern of air traffic control
system is to ensure the safe operation of private and
commercial aircrafts [5]. ATC is heavily dependent
upon the capabilities of human operator; some
accidents in ATC were documented by “human error”
with the causal factor involving the perception,
memory, decision making, communication and
resource management [4]. Therefore formal analysis
is very essential for proving safety properties of ATC
system. Formal methods are used to remove the
ambiguities in specification of system and have been
applied to specify and verify the complex systems.
The above mentioned reason motivated us to use
formal methods to design ATC system. The work of
S. Ahmad and V. Saxena [1] used the Sami formal
notation UML which cannot be verified
systematically to ensure a specification’s accuracy
[9]. VDM++ has the following advantages to design
air traffic control system.

1). This specification technique is more
comprehensive form than other methods. 2) It gives a
precise definition of what is going to build. 3) In our
research, VDM++ helped to clarify the key ideas of
ATC system. 4) It provided a precise way of defining
the data and underlying functions of the ATC system.
5) It also provided us a way to specify the interface
between components of the entire system under
development in a precise manner.

For the safe arrival process aircrafts
communicate with the air traffic controllers. In this
arrival procedure initially, the aircraft is under the
control of ramp controller all the activities during
arrival process of aircraft are controlled by this

controller. Initially the aircraft will send request to
the ramp controller for the entrance of ramp area and
on this request the ramp controller grant the
permission to aircraft then after this aircraft enter into
ramp area. The gate controller arranged all the
aircraft in sequence at ramp and then control is
transfer to gate controller. Just likewise the ramp
controller, gate controller controls the activities of
aircraft. In this paper, we have used the extend
version of Vienna Development Method (VDM) that
is VDM++ to formalize the arrival procedure of
aircraft. The organization of this paper is as fallow. In
section 2, an introduction to formal methods is
presented. Formal modeling of the arrival procedure
is given using VDM++ in section 3. Finally,
conclusion and future works is discussed in section 4.
2. Formal Methods

Formal methods [13-15] consist of the set of
techniques and tools based on mathematical
modeling and formal logic that are used to specify
and verify requirements and designs for computer
systems and software as presented in various
application [16-26]
2.1 Classification of Formal Methods

Formal methods are used for both software
and hardware designing or software- hardware co-
designing [6, 10]. Classification of formal methods
with respect to the use of it, is given below as
discussed in [10].
Writing Formal Specification:
 Formal methods are used to reason about
mathematical objects. However, hardware circuits are
not mathematical objects, they are real world
physical objects. Therefore, it is necessary to develop

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3095

mathematical model of system and also describe the
properties of that system [7]. The formal
specification of a system is written in term of
mathematical notation which is precise and
unambiguous.
Proving Properties about the Specification: The
requirement specification normally given in informal
languages when we write it in formal specification
language then this is an error-prone. This formal
specification is used for proving the properties of the
system.
Deriving Implementation from a given
Specification:
 Once the specification is written then it is
helpful to design models which automatically derives
the implementation of system with the full
requirements. This idea actually belongs to the fifth
generation of the programming language, i.e.,
PROLOG [8], where the implementation phase and
system specification is very closely related to each
other.
However, specifications are often given in a
declarative manner and not in constructive manner.
This means that these specifications only describe
what the system should do but not how this function
can be achieved. It is certainly impossible to derive
correct program from declarative specification since
these problems are inherently undecidable thus the
machine can never solve them. Therefore, the
construction of appropriate implementation always
remains a creative task for human being [7].
Verifying a specification w.r.t. a given
implementation:
 It is possible that the description of the
system which is automatically derived may be less
detailed. However, the design steps that are used to
refine the description of the system must not effect
the validity of the system specification. However, it
must be checked that the abstract implementations
satisfy the original specification. This is a formal
verification process. The formal verification can be
applied in two different ways. One method is based
on the automated theorem proving for the certain
formal language. In 1980 another technique was
developed which is called model checking. In model
checking the description of the system is not given in
the logic. The procedure of model checking is task to
evaluate the specification in interpretation.
2.2 Application of Formal Methods

Formal specification techniques are
applicable in many real time systems but are most
applicable in the development of critical systems and
standards [9].
2.2.1 Security Critical Systems

Security critical system involves authorize
use of system. For the verification of network

protocol, formal methods are used [9]. The network
security is essential for every organization either it is
private or government sector because intruder effect
the networks which can cause for loss of precious
information and resource, therefore the use of formal
methods for writing specification of protocol are
helpful to achieve security goals of protocols. Some
security models are formalized and the verified by
using formal automated tools [11].
2.2.2 Complex Systems

Formal approach is used to develop the
complex systems [2]. This is the only technique,
which gives us precisely specifying models of system
for the complex software systems [3].
2.2.3 Safety Critical Systems

Safety critical systems are also called life critical
systems because in the safety critical systems failure
of the system or software might be dangerous for life.
Criticality is often expressed in terms of:

 Reliability
 Availability
 Maintainability
 Safety
 Security
Critical systems make expensive methods

worthwhile and needs experience. The most common
Examples of safety-critical systems are given below.
 Medicine: The medicine is critical area where we
cannot afford the failure of the system because the
failure of the system means failure of the life or some
bad effect on the life. Following are the some
machine and system used in medicine.

 Heart-lung machines
 Mechanical ventilation systems
 Infusion pumps and Insulin pumps
 Radiation therapy machines
 Robotic surgery machines
 Defibrillator machines

Nuclear Engineering: Nuclear reactor control
system has a close relationship with safety critical
systems. Even the miner mistake can cause the
inerrable lose of life.
Transport: The transportation system is
implemented almost in every country of the world.
The railway signaling and control system belongs to
safety critical systems. If the problem occurs in this
system, the lives would be in danger zone.
Aviation: Aviation includes all those activities that
are manmade flying devices like aircraft and fighter
jet. Following are the some systems related to it.

 Air traffic control systems
 Avionics, particularly fly-by-wire systems
 Radio navigation RAIM
 Aircrew life support systems

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3096

 Flight planning to determine fuel
requirements for a flight

3. Formal Modeling Using VDM++
 Formal modeling is being increasing
mentioned in some safety-related standards as a
possible method of improving dependability. The
formal specification of the air traffic control system
is defined as: Three main entities, aircraft, gate
controller and ramp controller are defined.
3.1 Aircraft

Types and definition are same as for the
departure procedure the class is defined with name
AirCraft.
class AirCraft
types
public string = seq of char;
public Aircraft: ACid:string
callsign:string
3.2 Instance Variables

The instance variables used in the
specification are given below. RC, and GC are
respectively objects of ramp and gate controller,
which allow accessing all the instance variables of
these controllers in the class.
instance variables
public Aircrafts:set of Aircraft;
Public NIL:string;
public RTTaxiWayQ:seq of string;
TaxiWayQ:seq of string;
public RTRampQ:seq of string;
public RTTaxiclcQ:seq of string;
public Assignedgate:map string to string;
public RequestGate:seq of string;
RTPgateQ: seq of string;
Reached: seq of string;
pGateQ: seq of string;
RC:Rampcontroller;
GC:GateController;
3.3 Possible Operations

The following operations are modeled to
perform certain task for the arrival procedure.
Request to Enter Ramp:

The operation denoted by Request To
EnterRamp (craftin:string) is defined, where aircraft
sends request to enter in the ramp area. The pre-
condition of this operation ensures that the aircraft
must be a registered aircraft, it does not belong to
those aircrafts which have sent request to enter ramp.
It must reside on taxiway. The post-condition
includes it to those aircraft which have sends request
for enter ramp area.
RequestToEnterRamp(craftin:string)
ext wr RTRampQ:seq of string
 rd Aircrafts:set of Aircraft
 wr TaxiWayQ:seq of string
pre exists a in set Aircrafts & a.ACid = craftin

 and craftin not in set elems RTRampQ
 and craftin in set elems TaxiWayQ
post RTRampQ =RTRampQ~ ^ [craftin]
 and TaxiWayQ=tl TaxiWayQ~;
Enter in Ramp Area:

The operation denoted by Enter Ramp
(craftin:string) is defined where aircraft can enter
into the ramp area. The pre-condition ensures that
only that aircraft can enter into ramp area which is
registered and have clearance to enter ramp area. In
the post condition aircraft enter into ramp area and its
permission to enter ramp is discarded.
EnterRamp(craftin:string)
ext wr Ramp:string
 wr RC:Rampcontroller
 rd NIL:string
pre exists a in set Aircrafts & a.ACid = craftin
 and craftin in set elems RC.GClcrampQ
 and Ramp=NIL
post Ramp=craftin
 and RC.GClcrampQ=tl RC.GClcrampQ~;
Request to Assign Gate:

The operation denoted by Request
Assigngate (craftin:string) is defined in the
specification where aircraft sends requests to gate
controller for the assigning of gate. The pre-condition
shows that there are three invariants on this operation
first one is that the aircraft which sent a request to
assign the gate should not be part of those aircrafts
which have already requested to assign gate and
second is that it does not have already assigned gate,
third is that this aircraft also be a valid aircraft, i.e., it
belongs to those aircrafts which are registered and
last is that aircraft belong to those aircrafts which are
in ramp queue. In the post-condition request of
aircraft is confirmed.
RequestAssigngate(craftin:string)
ext wr RequestGate:seq of string
 --rd Assignedgate:map string to string
 wr RC:Rampcontroller
 -- wr GC:GateController
 rd Aircrafts:set of Aircraft
pre craftin not in set elems RequestGate
 -- and craftin not in set dom GC.Assignedgate
 and exists a in set Aircrafts & a.ACid = craftin
 and craftin in set elems RC.RampQ
post RequestGate=RequestGate~ ^ [craftin];
Request to Pass from Gate:

The operation denoted by
RequesttoPassGate (craftin:string) is defined where
aircraft send request to pass from the gate.
RequesttoPassGate (craftin:string)
ext wr RTPgateQ: seq of string
 wr GC:GateController
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.ACid = craftin

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3097

 and craftin not in set elems RTPgateQ
 and craftin in set dom GC.Assignedgate
post RTPgateQ= RTPgateQ~ ^ [craftin];
Pass from Gate:

To pass from the gate the aircraft must have
permission to pass from the gate, it is also registered
aircraft then the aircraft can pass from the gate.
PassFromGate(craftin:string)
ext wr pGateQ:seq of string
 wr GC:GateController
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.ACid = craftin
 and craftin not in set elems pGateQ
 and craftin in set elems GC.PFclearence
post pGateQ=pGateQ~ ^ [craftin]
 and GC.PFclearence= tl GC.PFclearence~;
Final Arrived:

This operation keep the record of those
aircrafts which are arrived.
arrived(craftin:string)
ext wr Reached:set of string
 wr pGateQ:seq of string
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.ACid = craftin
 and craftin in set elems pGateQ
 and craftin not in set Reached
post Reached= Reached~ union {craftin}
 and pGateQ=tl pGateQ~;
end AirCraft
3.4 Ramp Controller
The ramp controller defined as class RampController
and the type used in this class is string.
class Rampcontroller
types
public string = seq of char;
The instance variable used in this specification given
below. “AC” is the object of the Aircraft which
allow accessing all the instance variables of the
Aircraft and “GC” is the object of the ground
controller for accessing the all variables of the
ground controller.
instance variables
AC:AirCraft;
public RampQ:seq of string;
GClcrampQ: seq of string;
Grant Clearance to Enter Ramp: The operation
denoted by GrantClearanceTo EnterRamp
(craftin:string) is defined so that permission for enter
ramp is granted to aircraft. The pre-condition of this
operation ensures that the aircraft must be registered
before enter in the ramp area, it does not belong to
those aircraft which already have clearance to enter
ramp and this aircraft have sent request for entering
ramp. In the post-condition clearance is granted to
aircraft and its request is discarded which it has send
for enter ramp.

operations
GrantClearanceToEnterRamp(craftin:string)
ext wr AC:AirCraft
 wr GClcrampQ: seq of string
pre exists a in set AC.Aircrafts & a.ACid = craftin
 and craftin in set elems AC.RTRampQ
 and craftin not in set elems GClcrampQ
post GClcrampQ = GClcrampQ~ ^ [craftin]
 and AC.RTRampQ= tl AC.RTRampQ~;
Sequencing at Ramp: For the arrangement of
aircraft at ramp, the operation denoted by
SequenceATRamp (craftin:string) is defined. Pre-
condition ensures that there must be an aircraft in the
ramp variable, this aircraft must not be in the ramp
queue and it also be a registered aircraft. Post-
condition promoted it to the ramp queue and variable
ramp become free.
SequenceATRamp(craftin:string)
ext wr RampQ:seq of string
 wr GClcrampQ: seq of string
 wr AC:AirCraft
pre exists a in set AC.Aircrafts & a.ACid = craftin
 and craftin not in set elems RampQ
post RampQ= RampQ~ ^ [craftin]
 and AC.Ramp=AC.NIL;
end Rampcontroller

3.5 Gate Controller
The gate controller is responsible to assign the gate to
aircraft without assigning the gate the craft cannot
proceed for the departure. It is defined as class
‘GateController’.
The types which are used are “string” and “Gate” the
Gate is a composite type which has gate id “Gid” and
status of gate “status ‘’.
class GateController
types
public string = seq of char;
Gstatus = <FREE>|<BUSY>;
Gate:: Gid:string
 status:Gstatus;
The instance variables used in the specification are
given below. “AC” is the object of the Aircraft,
which allows accessing all the instance variables of
the Aircraft.
 instance variables
AC:AirCraft;
Gates:seq of Gate;
public Assignedgate:map string to string;
public PFclearence:seq of string;
Functions: Isavailable function is modeled formally,
which returns the position of that gate whose status is
free.
functions
isavailable(gateidin:seq of Gate)pos:nat
pre true

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 3098

post gateidin(pos).status = <FREE> and forall i in set
{1,...,pos-1} & gateidin(i).status <> <FREE>;
Assign Gate: The gate assigning process is catered in
the following operation. Here first it is checked that
the aircraft which has sent request for gate
assignment that should not be assigned the gate, then
the gate will assign to aircraft if the gate status is
free otherwise the gate will not be assigned to the
aircraft.
operations
AssignGate()
ext wr AC:AirCraft
 wr Assignedgate:map string to string
 wr Gates:seq of Gate
pre let pos = isavailable(Gates)
 in pos <> 0
post let pos = isavailable(Gates)
 in Assignedgate = Assignedgate~ munion {hd
(AC.RequestGate) |-> Gates(pos).Gid};
Clearance to pass from the Gate: This operation is
defined in which aircraft is allowed to pass from the
gate.
ClearancetoPasFromGate(craftin:string)
ext wr PFclearence:seq of string
 wr AC:AirCraft
pre craftin not in set elems PFclearence
 and craftin in set dom Assignedgate
 and exists a in set AC.Aircrafts & a.ACid = craftin
post PFclearence=PFclearence~ ^ [craftin]
 and AC.RTPushBack= tl AC.RTPushBack~
end GateController.

4. Conclusion
 From the model of aircraft control system
along the arrival, we revealed that the use of formal
method for such system is necessary. The formalized
structure gave the primary and fundamental basis for
safety critical systems. It also provided necessary and
excellent basis for fault tolerance and reliable
structure of the system. The method ensured the
consistency, reliability and safety of the model. All
the above properties can reduce the failure ratio of air
traffic control system. In the development the bottom
up approach is used i.e., initially the basic
components like aircraft; ramp and ground controller
are specified. Further, for synchronized affect they all
are composed.

References
[1]. Ahmad, S. and Saxena, V. 2008. Design of formal air traffic

control system through UML. Ubiquitous computing and
communication journal. Vol. 3, No. 2, pp. 1-10

[2]. Andres, C., Rafael, G. and Nunez, M. 2008. Using formal
methods to develop complex information system: a
practical/theoretical experience. Proceedings of ACM
symposium on applied computing, pp. 848-849, USA.

[3]. Gabbar, A. 2006. Modern formal methods and application.
Springer.

[4]. Hanh, T.T.B. and Hung, D. V. 2007. Verification of an air
traffic control system with probabilistic real time model-
checking. UNU-IIST report.

[5]. Kacem, A. H. and Kacem, N. H. 2007. From formal
specification to model checking of MAS using CSP and SPIN.
Internation journal of computing and information sciences, Vol.
5, No. 1, pp. 35-44.

[6]. McDermid, J., Galloway, A., Burton, S., Clark, J., Toyn, I.,
Tracey, N. and Valentine, S. 1998. Towards industrially
applicable formal methods: three small steps, and one giant leap.
Second international conference on formal engineering methods,
pp. 76-88, Australia.

[7]. NASA. 1998. Formal Methods specification and verification
guidebook for software and computer System. Vol. 1.

[8]. Reagan, G.O. 2008. A brief history of computing. Springer.
[9]. Razali, R., Snook, C. F., Poppleton, M. R., Garratt, P. W. and

Walters, R. J. 2007. Experimental comparison of the
comprehensibility of a UML-based formal specification versus a
textual one. 11th international conference on evaluation and
assessment in software engineering, pp. 1-11.

[10]. Schneider, K. 2004. Verification of reactive systems: formal
methods and algorithms. Texts in theoretical computer science
series, Springer.

[11]. Sidhu, D., Chung, A. and Blumer, T. 1998. Experience with
formal methods in protocol development, Proceedings of the
IFIP TC/WG6.1 second international conference on formal
description techniques for distributed systems and
communication protocols, pp. 437-453.

[12]. Sterling, L., Shapiro, E. and Warren, D. H. D. 1986. The art of
prolog advanced programming techniques. Second edition, The
MIT press cambridge, massachusetts london, England.

[13]. Ahmad, F. and S. A. Khan (2012). "Module-based architecture
for a periodic job-shop scheduling problem." Computers &
Mathematics with Applications.

[14]. Ali, G., S. A. Khan, et al. (2012). "Formal modeling towards a
dynamic organization of multi-agent systems using
communicating X-machine and Z-notation." Indian Journal of
Science and Technology 5(7).

[15]. Gul Afzal Khan, S. A. K., Nazir Ahmad Zafar, F.A.S.I. (2012).
"A Review of different Approaches of Land Cover Mapping."
Life Sci J 9(4).

[16]. Khan, S. A., A. A. Hashmi, et al. (2012). "Semantic Web
Specification using Z-Notation." Life Science Journal 9(4).

[17]. Khan, S. A. and N. A. Zafar (2007). "Promotion of local to
global operation in train control system." Journal of Digital
Information Management 5(4): 231.

[18]. Khan, S. A. and N. A. Zafar (2009). Towards the formalization
of railway interlocking system using Z-notations, IEEE.

[19]. Khan, S. A. and N. A. Zafar (2011). "Improving moving block
railway system using fuzzy multi-agent specification language."
Int. J. Innov. Computing, Inform. Control 7(7).

[20]. Khan, S. A., N. A. Zafar, et al. (2011). "Extending promotion to
operate controller based on train’s operation." International J.
Phy. Sci 6(31): 7262 - 7270.

[21]. Khan, S. A., N. A. Zafar, et al. (2011). "Petri net modeling of
railway crossing system using fuzzy brakes." International J.
Phy. Sci 6(14): 3389-3397.

[22]. M, F. and S. A. Khan (2012). "Specification and Verification of
Safety Properties along a Crossing Region in a Railway
Network Control." Applied Mathematical Modelling,
10.1016/j.apm.2012.10.047.

[23]. Raza, M. I., Q. J. Zaib, et al. (2012). "Meticulous analysis of
Semantic Data Model -An optimal approach for ERD." J. Basic.
Appl. Sci. Res. 8(2): 8344-8354.

[24]. Yousaf, S., N. A. Zafar, et al. (2010). Formal analysis of
departure procedure of air traffic control system, IEEE.

[25]. Zafar, N. A., S. A. Khan, et al. (2012). "Formal Modeling
towards the Context Free Grammar." Life Science Journal 9(4).

[26]. Zafar, N. A., S. A. Khan, et al. (2012). "Towards the safety
properties of moving block railway interlocking system." Int. J.
Innovative Comput., Info & Control.

11/9/2012

