
Increasing TLB Reach Using Superpages
Backed by Shadow Memory

Mark Swanson, Leigh Stoller, and John Carter
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

Abstract

The amount of memory that can be accessed without
causing a TLB fault, the reach of a TLB, is failing to keep
pace with the increasingly large working sets of applica-
tions. We propose to extend TLB reach via a novel Mem-
ory Controller TLB (MTLB) that lets us aggressively cre-
ate superpages from non-contiguous, unaligned regions of
physical memory. This flexibility increases the OS’s ability
to use superpages on arbitrary application data. The MTLB
supports shadow pages, regions of physical address space
for which the MTLB remaps accesses to “real” physical
pages. The MTLB preserves per-base-page referenced and
dirty bits, which enables the OS to swap shadow-backed su-
perpages a page at a time, unlike conventional superpages.
Simulation of five applications, including two SPECint95
benchmarks, demonstrated that a modest-sized MTLB im-
proves performance of applications with moderate-to-high
TLB miss rates by 5-20%. Simulation also showed that this
mechanism can more than double the effective reach of a
processor TLB with no modification to the processor MMU.

1. Introduction

The size of application program virtual address spaces
has increased dramatically over the years, driven by the
availability of large inexpensive DRAMs and the increasing
complexity of applications. On most modern machines, vir-
tual memory is implemented by memory management units

Mark Swanson is now at Intel Corporation. Current email addresses:
Mark R Swanson@ccm.dp.intel.com, fstoller,retracg@cs.utah.edu
This effort was sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory, Air Force
Material Command, USAF, under agreement number F30602-98-1-0101;
and under SPAWAR contract#N00039-94-C-0018and ARPA order #B990.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessariy representing the official policies or
endorsements, either expressed or implied, of DARPA, the Air Force Re-
search Laboratory, or the US Government.

(MMU) that map virtual to physical addresses, usually on
a page granularity. Typical page sizes are fixed at 4-8 kilo-
bytes, which is quite small compared to the total amount of
physical memory in most machines. This organization eases
management of the physical space and limits the amount of
physical storage wasted due to internal fragmentation.

To complete a load or store operation, a processor must
first convert the requested virtual address to a physical ad-
dress. Given the size of typical process virtual address
spaces, the total number of translations is huge, and thus is
stored in main memory. To reduce the overhead of perform-
ing these translations, processors maintain a cache of recent
virtual-to-physical address translations called a translation
lookaside buffer or TLB. TLB accesses are commonly on
the critical timing path for load and store instructions, and
thus single-cycle TLB access is a requirement in most pro-
cessors.

The amount of physical memory that modern processes
can access without suffering an expensive TLB miss is de-
termined by its TLB’s reach, which is a product of the num-
ber of entries contained in the TLB and the size of mem-
ory mapped by each such entry. Unfortunately, the size
of TLBs has grown at a much slower rate than the size of
process virtual address spaces, limited by the chip area re-
quired to implement large fast associative caches and the
need to multi-port or replicate TLB data to support multi-
ple load/store units. This factor combined with the small
size of typical pages severely limits the reach of typical sys-
tems. For example, the HP PA8000[12] supports a 96-entry
unified instruction/data TLB. When used with a fixed page
size of 4 kilobytes, the resulting TLB reach is only 384 kilo-
bytes. Considering that the PA8000’s first level data cache
is one megabyte, there is a clear disparity between the ex-
pected working set sizes and the ability of the TLB to sup-
port immediate access to that data. This disparity leads to
high TLB miss rates for many programs, which limits per-
formance by perturbing the pipeline, interrupting the issue
of application instructions while a new translation is found
and inserted into the TLB. The small reach of the PA8000

1

TLB was a sufficiently serious performance bottleneck for
many commercial applications that HP increased the TLB
size to 120 entries for its next generation PA 8200[6]. Even
so, the PA8200 TLB reach is still only 480 kilobytes when
4-kilobyte pages are used, less than half the size of the L1
cache.

Starting in the early 1990’s, processor architectures be-
gan to support TLBs that allow each entry to be indepen-
dently configured to map variable-sized superpages[14, 12,
5]. Superpages are constrained to be a power of 2 multiple of
some base page size aligned on a multiple of the superpage
size. In the SGI R10000[14] and HP PA-RISC 2.0[12], the
base page size is 4 kilobytes, and superpages sizes can be
power of 4 kilobytes from 16KB to a maximum of 16MB
or 64MB. Unfortunately, a number of complexities related
to using superpages has resulted in their use being restricted
primarily to mapping a small number of large non-paged
segments, such as the frame buffer and the non-pageable
portions of the OS kernel. To date, these problems have pre-
cluded general exploitationof superpages within production
operating systems1.

Three of the most serious problems associated with gen-
eral utilization of superpages are (i) the requirement that
they be used only to map regions of physical memory that
are appropriately sized, aligned, and contiguous[15]; (ii)
the difficulty associated with determining for which regions
they are suitable and economical[18], and (iii) the need for
the OS to swap entire superpages on and off disk if paging
is required.

In this paper, we present a mechanism that addresses
problems (i) and (iii) directly, and by changing the eco-
nomics of using superpages, reduces the importance of prob-
lem (ii). The proposed mechanism eliminates much of the
complexity associated with using superpages by allowing
them to be created from discontiguous base physical pages.
We observe that the range of physical addresses addressable
by many modern processors greatly exceeds the amount of
actual DRAM typically present. Many modern processors
export 32 to 40 physical address bits, which can address four
gigabytes to one terabyte of actual memory. In the common
situation where the amount of addressable physical mem-
ory exceeds the installed physical memory, we propose to
use a portion of this unused physical address range to virtu-
alize physical memory a second time in the main memory
controller (MMC). This extra level of indirection between
application virtual addresses and physical DRAM addresses
makes it possible to create arbitrary-sized contiguous super-
pages from discontiguous fixed-sized real pages.

We introduce the notion of shadow pages. Shadow pages1SGI’s IRIX6.4 appears to be the first commercially available OS with
such support. Even on the SGI machines, support for superpages for user
memory appears to be limited to their NUMA systems. These machines are
primarily used as batch-like compute servers where applications are care-
fully sized to fit in memory and paging is an infrequent event.

are “shadows” of real physical pages accessed at otherwise
unused physical addresses that are remapped by the MMC
to real physical addresses. For example, consider a system
in which 32 bits of physical address are exported from the
processor to the memory system and in which only one gi-
gabyte of DRAM is installed. In such a system, only one-
fourth of the physical addresses that can be generated by the
processor are legal. Accesses to other addresses will usu-
ally cause serious system faults – for ease of explanation,
we are ignoring memory-mapped I/O addresses in this dis-
cussion. In our proposed system, portions of the physical
address space that do not correspond to real memory, but
which are properly sized and aligned, can be used as super-
pages. The MMC translates shadow physical addresses into
real physical addresses whenever a memory operation for
such a region is performed by the processor. With this mech-
anism in place, superpages can be created from discontigu-
ous physical pages through the use of contiguous shadow
pages, accesses to which are retranslated to the correspond-
ing discontiguous physical pages.

From the point of view of the processor and OS mem-
ory management system, shadow addresses are used in place
of real physical addresses when needed. Shadow addresses
will be inserted into the TLB as mappings for virtual ad-
dresses, they will appear as physical tags on cache lines, and
they will appear on the memory bus when cache misses oc-
cur. The existence of shadow memory can be made com-
pletely transparent to user programs, and can be isolated to
small portions of the OS. The management difficulties asso-
ciated with previous superpage approaches are avoided, and
only modest changes to the VM software are required. Fi-
nally, the proposed mechanism is widely applicable because
it exploits the existing superpage capabilities of processor-
resident TLBs without requiring modification of the CPU or
MMU/TLB.

When we compared the simulated performance of five
TLB-constrained programs on a system with a conventional
TLB and on one that exploited the mechanism described
above, we found that our proposed system improved appli-
cation performance by from 5-20%. In effect, we found
that a system with a 64-entry TLB combined with an MMC
that supported shadow superpages achieved the same perfor-
mance as a system with a 128-entry TLB and a conventional
MMC. These results demonstrate the potential of the pro-
posed mechanism. It is likely to be even more effective on
applications with significantly larger workingsets and worse
spatial locality, such as is often found in large databases and
other commercially important applications[17].

The rest of the paper is organized as follows. In Sec-
tion 2 we present in more detail the proposed functionality,
includingdetailed descriptionsof the extra MMC translation
hardware and the modest support required from the operat-
ing system’s VM software. Section 3 reports the simulated

performance of our proposed system. In Section 4 we dis-
cuss some of the limitationsof our proposed solution on cur-
rent systems, and possible ways to overcome these limita-
tions. Related work is discussed in Section 5. Finally, in
Section 6 we summarize the work, draw conclusions, and
describe possible future uses of shadow memory.

2. Implementing Superpages Based on Discon-
tiguous Physical Pages

This section describes in detail the mechanism we have
developed for using shadow memory to allow superpages
to be created from discontiguous physical pages, thereby in-
creasing the TLB’s effective reach. This mechanism is im-
plemented through a combination of a secondary TLB im-
plemented on the MMC and straightforward changes to OS
memory management routines.2.1. Overview

Figure 1 illustrates in detail our proposed mechanism in
action. The OS has mapped a contiguous 16-kilobytevirtual
address range to a single shadow superpage at “physical”
page frame 0x80240. When an address in the shadow phys-
ical range is placed on the system memory bus, the MMC
detects that this “physical” address needs to be retranslated
using its local shadow-to-physical translation tables. For
sake of discussion, assume that the processor exports 32
bits of physical address and that physical addresses above
0x8000000 are not backed by real physical memory. In this
case, the MMC can easily determine which addresses are
shadow addresses and which are real physical addresses, and
proceed accordingly. In the example in Figure 1, an access
to virtual address 0x00004080 is translated by the processor
MMU/TLB to shadow physical address 0x80240080, which
in turn is translated by the MMC’s MMU/TLB to real physi-
cal address 0x40138080. Memory-mapped I/O devices add
a small amount of complexity, since these devices are of-
ten mapped in special “high” address regions. In this case,
the operating system and memory controller would need to
avoid treating such addresses as shadow addresses.

Figure 1 illustrates a number of important issues in our
design. First, the pages backing a superpage need not be
contiguous in physical memory, only in shadow addresses.
This lets the OS create superpages from pages that have been
dispersed throughoutmain memory, such as occurs naturally
when paging is done at the 4-kilobyte page granularity. Sec-
ond, the processor MMU/TLB design is unaffected by the
presence of an extra level of address translation performed
at the MMC. Full support is given for protection (e.g., read-
only and supervisor-only pages) and for the fine-grained ac-
counting used by the paging mechanism to select good can-
didate pages for swapping (accessed) and determine when

they need to be written back (dirty). Third, the physical
pages backing a superpage need not even be present in phys-
ical memory as long as the MMC can generate a precise fault
to the CPU whenever an access to such a page occurs. The
availability of such precise exceptions is discussed in Sec-
tion 4.

The protection bits (read-only and supervisor-only) are
maintained only by the processor MMU/TLB, and as such
must be identical for all base pages mapped by a superpage.
Programs often have large segments of densely populated
virtual address space that have similar access protection,
which renders this restriction moot. Good examples of such
regions include the text segment, data segment, and heap of
a program. Such regions, or pieces of such regions, can be
mapped from large contiguousvirtual segments to large con-
tiguous shadow segments, and thus are amenable to the use
of superpages. In this way, virtual regions of up to 16MB or
64MB in size can be mapped with a single CPU TLB en-
try, which would extend the reach of a typical processor-
resident TLB from well under one megabyte to several tens
of megabytes.2.2. Design of the Memory-Controller TLB

Obviously, real physical addresses are eventually re-
quired to satisfy load and store operations. We propose plac-
ing a simple secondary MMU and TLB in the main memory
controller (MMC). This memory-controller TLB (MTLB)
translates from shadow physical addresses to real physical
addresses in one cycle, if the appropriate mapping is present
in the MTLB. We believe it is possible to make this sec-
ondary TLB significantly larger than the one found in the
processor, and thus increase the effective reach of the pro-
cessor TLB, for four reasons:

1. The speed requirements within the MMC are much
less aggressive than those within the CPU, so the
slowdown that comes with increased size is easier to
tolerate.

2. Unlike TLBs on modern processors with multiple
load/store units, the MTLB need only be single
ported, as long as the interconnect between proces-
sor(s) and the MMC is only capable of delivering one
memory request to the MMC on each cycle.

3. The MTLB is simple: it supports only a single base
page size

4. A larger size allows the MTLB to adopt a less aggres-
sive structure than the full associativity that is stan-
dard in many processor TLBs[12, 14, 5].

A typical MTLB-enabled system might provide on the
order of 512 megabytes of shadow virtual address space,

0x00004000

0x00005000

0x00007000

0x00006000

0x80240000

0x80243000

0x80242000

0x80241000

0x40138000

0x06155000

0x04012000

Vir tual Addresses Shadow Addresses Physical Addresses

0615580243 YY Y

disk80242 -N -

0401280241 YY N

80240 YY Y

shadow physical va
lid

ac
ce

ss

di
rt

y

MMC page tab le /TLB

40138

va
lid

di
rt

y

ac
ce

ss

size"physical"virtual

8024000004 YY001 Y

Processor page table/TLB

Y N
re

ad
-o

nl
y

su
pe

rv
is

or

Figure 1. Detailed Example of Using Shadow Physical Regions

enough to map three orders of magnitude more memory than
a typical processor TLB. In a system with 4-kilobyte base
pages, the shadow-to-physical translation table would con-
sist of 128K 4-byte entries, for a total cost of 512 kilobytes
of memory. A 4 byte entry could hold a 24 bit page frame
number (sufficient to map 64 GB of real memory), as well
as validity, page fault, reference, and modification bits, with
room left over for future expansion. For this base page size,
the translation table represents an added space overhead of
only 0.1% for a shadow address space equal in size to the
real physical memory. Given the relatively small size of
such a maximal MMC page table, we propose to use a dense,
flat array indexed by shadow page offsets to store shadow-
to-physical translations. We further propose to use a hard-
ware TLB fill mechanism, which would simply need to ex-
tract the appropriate bits from the shadow physical address
and use them as an offset into the main memory translation
table.

The following example is designed to illustrate the nor-
mal operation of the MTLB – loading and unloading trans-
lations and managing the shadow physical address space
is discussed in the following subsection. Consider an ac-
cess to virtual address 0x00050040 in the example illus-
trated in Figure 1. If this access misses in the processor
cache, a cache fill request containing the shadow address
0x80241040 is sent to the MMC. The MTLB examines the
address of every cache fill request and write back, to deter-
mine if the address is real or shadow. To simplify this dis-
cussion, assume that the MTLB can determine whether an
address is real or shadow using a simple comparison such as
“physical address greater than installed memory,” or, to han-
dle I/O addresses, AND’ing the address with a mask of legal

shadow region addresses initializedby the OS. This determi-
nation must be made as fast as possible, since it occurs on
every cache fill request. In our simulations, we assume that,
together with a possible MTLB lookup, this operation adds
one 120 MHz MMC cycle to every MMC operation. This is
likely an overly conservative estimate - our most recent de-
sign work indicates that we can perform this extra compar-
ison in parallel with other bus interface related operations.
Thus, there should be no impact on the performance of ap-
plications that do not employ shadow memory.

In this example, the address presented (0x00050040) is
a shadow address, so the MTLB attempts to translate it to
a physical address. If this lookup hits in the MTLB cache,
the entry’s valid bit is examined to determine if this physical
page is present in main memory. If it is not, the MTLB is-
sues an exception - this operation is described in more detail
in Section 4. If the entry is valid, as it is in this case, the real
page frame number from the TLB entry (0x04012) is merged
with page offset portion of the shadow address (0x040) to
form a real address (0x04012040) and the access can pro-
ceed as normal. As with a processor TLB, the accessed and
dirty bits are updated appropriately.

If the shadow-to-physical translation lookup fails in the
MTLB, an MTLB fill sequence is initiated, and proceeds
as follows. Assume that shadow memory is mapped in the
512 megabytes between physical address 0x80000000 and
physical address 0xa0000000. Further assume that the base
of the MMC page table has been configured by the OS to
be at physical address 0x00000000. The MMC fill hard-
ware would left shift the shadow page index two bits, be-
cause the entries are 4 bytes, and add the resulting value
to the base physical address of the MMC page table. In

this case, the fill hardware would perform a 4-byte load
to address 0x0x00009000 (0x0240 left shifted two bits and
added to 0x00000000). Once the entry has been loaded in
to the MTLB, the original memory access can continue as
described above.2.3. Setting Up Shadow Superpages

We envision that the normal mode of superpage creation
will entail having the programmer tell the operating system
to use superpages for specific portions of the address space,
e.g., the data segment, at program initialization time. In our
simulation experiments, however, we have used an explicit
request from the user application via a remap() system
call to cause the OS to map regions using superpages. In our
experiments, we also modified the sbrk() library routine
to map dynamically allocated data to superpages. Most of
the programs that we studied performed many small alloca-
tions, so our modified sbrk() pre-allocates a large region,
from which it satisfies subsequent small requests. Static data
and text can be allocated to superpages via simple modifica-
tions to the OS loader, an operation we simulated via explicit
remap() operations added to the benchmark code.

For superpages created after process startup, including
those created as a side effect of our modified sbrk(), the
VM system must take care to ensure that consistency is
maintained in the cache hierarchy when a page’s mappings
change from real to shadow addresses (or back). The safest
approach is simply to flush the entire (virtual) region from
the cache before the mapping is changed and purge existing
TLB mappings for any page being remapped. Some TLB
designs automatically discard pre-existing mappings for the
same virtual range and would not require explicit flushing.
These costs must be considered when deciding, on a dy-
namic basis, whether to create shadow-backed superpages.2.4. Allocating Shadow Address Ranges

Given the large physical address spaces of current pro-
cessors, the shadow space can be quite large relative to phys-
ical memory. Thus, a good deal of fragmentation of the
shadow region can be tolerated, allowing the use of sim-
ple, computationally inexpensive algorithms for its manage-
ment.

For simplicity, we preallocate regions of shadow physi-
cal address into buckets of regions of legal superpage sizes,
in much the same way that malloc() manages regions
of heap memory. At runtime, we pick any available region
from the appropriate sized bucket for each superpage that we
desire to create. Figure 2 illustrates one possible static dis-
tributionof shadow superpages when the machine is config-
ured to have 512 megabytes of shadow memory. Obviously,
it is possible to run out of a particular sized region, which

Superpage Count Address Space
Size Extent

16KB 1024 16MB
64KB 256 16MB

256KB 128 32MB
1024KB 64 64MB
4096KB 32 128MB

16384KB 16 256MB

Figure 2. Example Partitioning of a 512 MB
Pseudo-Physical Address Space

could limit the OS’s ability to create an optimally-sized su-
perpage. For the sake of our experiments, this scheme was
adequate, but experience may suggest that more complex
schemes, such as a buddy-system that splits and recombines
superpages, as is used in most efficient malloc() imple-
mentations, should also be used. Such approaches wouldbe-
come more appealing if the mapped ranges are allowed to be
sparsely populated or paged, which might require splitting
regions.

Given this partitioning scheme, creating one or more su-
perpages for a given region of virtual addresses is trivial.
The mapping algorithm starts by determining the smallest
superpage-aligned address larger than the specified start ad-
dress of the region in question. Any small (sub-16KB) re-
gion skipped over is not remapped. The mapping algo-
rithm then walks through the rest of the specified virtual
region, creating maximally sized superpages by (i) allocat-
ing a shadow region from the the shadow region pool, (ii)
initializing the MMC’s shadow-to-physical page mappings
for this shadow region, and (iii) setting up a real TLB su-
perpage mapping from the relevant virtual address range to
the allocated shadow region (e.g., a 16-kilobyte superpage
mapping from virtual address 0x00004000 to shadow ad-
dress 0x8024000). MMC shadow-to-physical mappings are
initialized via uncached writes by the kernel to a special
MMC control register, specifying the shadow physical ad-
dress, the real physical address, and the various state bits de-
scribed above. Initial configuration information, such as the
range of legal shadow memory addresses and the base phys-
ical address of the MMC’s page table, and purges of MTLB
mappings can be handled via similar uncached writes to an
MMC control register.2.5 Maintaining Access Information

Paging activities in most operating systems require the
maintenance of reference and dirty bits for each page of
memory. Reference bits are usually maintained by setting

a bit in the page table entry (PTE) on the first TLB miss for
a given page. Accesses that should set the dirty bit can be
ascertained at TLB miss time by detecting the kind of refer-
ence (read or write); or by inserting a mapping that allows
only read access. In the latter case, if a write occurs, the re-
sulting exception can then be caught, the dirty bit can be set
in the PTE, and the TLB entry can be upgraded to allow fur-
ther writes without faults.

With conventional implementations of superpages, the
large granularity of the pages causes a significant loss of in-
formation, as only a single TLB miss and a single protec-
tion failure are generated for a whole range of base pages.
The OS is forced to swap entire, potentially very large, su-
perpages on and off disk if paging is required, which in-
creases the effective workingset size of applications by up to
60%[16]. This increases memory fragmentation and leads
to less efficient use of main memory.

Our proposed MTLB alleviates this problem by main-
taining reference and dirty bits on a per-base-page basis in
the MMC’s page table. For the MTLB, read and write ac-
cesses are cache-fill requests, the former for a shared cache
line, the latter, an exclusive one. Unfortunately, the per-
base-page reference information (accessed) is only approxi-
mate, because the MMC only sees cache fill requests – if all
of a given base page’s referenced lines remain in the cache
after its reference bit is reset by the OS, the page will appear
to be unreferenced even though it might be quite active. This
could reduce the effectiveness of CLOCK and similar page
replacement strategies. Evaluation of the efficacy of this de-
tailed reference information is beyond the scope of this pa-
per.

Unlike the reference information, the MTLB can main-
tain completely accurate per-base-page dirty bits, as the OS
only resets this information after it has cleaned a page by
deallocating it or paging it out, just as in standard systems.
The cleaning process necessarily results in all the lines be-
longing to the page being flushed from the cache. Any sub-
sequent writes to locations within a cleaned page will re-
sult in exclusive cache line fill requests to the MMC, which
the MTLB will note. Thus, when the OS chooses to swap
a shadow-based superpage on to disk, it only needs to flush
back the specific base pages within the superpage that have
been written, and not the entire superpage - a potentially
large performance benefit for very large applications.

3. Performance Results

This section begins with an examination of some of the
overhead introduced when using an MTLB, followed by a
comparison of systems with and without an MTLB. It closes
with an exploration of the sensitivity of the results to the
MTLB size and organization.

3.1. Benchmarks
Obviously, only programs with working sets that are

large relative to the CPU TLB’s reach and which display
poor locality will benefit from use of an MTLB. Based
on preliminary measurements of the SPECint95 benchmark
suite and two other applications, we selected 5 programs
as likely beneficiaries of our approach: compress95, vortex,
radix, em3d, and cc1.

Compress95 is from the Spec95 benchmark suite. The
working set is dominated by the hash table and code ta-
ble, which have a combined size of approximately 440KB
and which are accessed in a relatively random manner. We
changed compress95 to map four regions to pseudo-physical
addresses: one region containing the hash table, the code ta-
ble, and the intervening data structures (557056 bytes, 10
superpages), and the initial portion of the 3 buffers con-
taining the original, the compressed and the uncompressed
versions of the “file” (each was the same length, 999424
bytes, but due to differing alignments, they result in 13, 7,
and 13 superpages, respectively). Compress95 is run with
an initial 1,000,000 characters and is run through 2 com-
press/decompress cycles.

Vortex, another Spec95 benchmark, is an object-oriented
database that builds several in-core databases and performs
transactions against them. As the databases and transac-
tion results are continually being allocated from the heap,
the modified sbrk() described earlier performed all super-
page creation. The region size preallocated by sbrk() is
initially set quite large (8MB) so that the basic datasets are
all mapped in one group (approximately 9MB). The incre-
ment is then reduced to 2 MB after the basic datasets are
created. Another 10 MB is later mapped in five separate
mappings as the result of dynamic allocation during transac-
tion processing. We measure vortex with a slightly modified
Spec95 training run, which dynamically allocates approxi-
mately 18 MB over the course of the run.

Radix is a Splash2 benchmark[19] sorting program. Its
primary data structures are all dynamically allocated at the
beginning of the program. We map the entire dynamically
allocated space after the allocations are complete and before
the larger structures are initialized. Radix is run with the
default arguments, except that the number of keys is set to
1048576. The amount of space mapped is 8437760 bytes in
length, and requires 14 superpages.

Em3d performs three dimensional modeling of electro-
magnetic wave propagation. The particular version used
here[3] is a message passing version run on a single pro-
cessor. The runs reported here model 6000 nodes and use
4.5MB of dynamically allocated space, which is remapped
using 16 superpages.

Gcc is actually the cc1 pass of the version 2.5.3 gcc com-
piler for the Sparc architecture, also from Spec95. Reported

here is the compilation of the file “1insn-recog.c”. Again,
all superpage creation was performed by sbrk().3.2 Simulation Environment

The simulation results were all obtained using an execu-
-tion-driven simulator that models a single-issue 240 MHZ
processor with cycle-accurate models of the cache, bus, and
memory controller. Given that the cache is non-blocking
and the processor does implement stall-on-use, we believe
the results of our experiments will not change dramatically
for multi-issue processors. The bus modeled is HP’s Run-
way bus[2] clocked at 120 MHZ. The main memory con-
troller (MMC) is similar to HP’s memory controller[7] used
in its HP 9000 J high end workstations. The instruction
cache is assumed to be perfect. The data cache model em-
ploys a single level, direct mapped, 512-kilobyte, virtually
indexed, physically tagged cache, similar to that used with
the HP PA8000[12]. Cache lines are 32 bytes, hits are han-
dled in a single cycle, and the cache is non-blocking and
writeback. The CPU TLBs modeled are all unified I/D,
single-cycle, fully associative, and employ a not-recently-
used replacement policy. Misses are handled by a trap rou-
tine that employs a 16K entry virtual-to-physical hash ta-
ble. Each entry is 16 bytes in length. The table structure
used is the hashed page table model commonly used on HP
PA-RISC architectures[10]. In addition to the main TLB, a
single-entry micro-ITLB holding the most recent instruction
translation is also modeled. Kernel code and data structures
are mapped using a single block TLB entry that is not subject
to replacement.

The times reported are complete simulation times from
initialization of the BSD-based (micro)kernel, starting an
init process, and then running the program of interest
through completion of process exit() code in the kernel.
The kernel supports the required process control (fork()
and exec()), scheduling, virtual memory management,
timer interrupts, and TLB miss handling. The execution
time and memory accesses of these kernel operations are in-
cluded in the simulation results.3.3 Initialization Costs

All of the results reported in this section were obtained
with programs instrumented to remap some or all of their
static and dynamic data structures from using base pages to
using superpages (and the MTLB). Generally this remap-
ping occurred before any explicit initializationof the data by
the user program, but the pages had already been zero-filled
in the program’s virtual address context. This transition
has associated costs: finding appropriate pseudo-physical
address ranges, establishing the mappings, shooting down
TLB entries, and flushing the affected lines from the cache.

The implementation does not try to optimize by determining
which pages are dirty, nor does it rely on conflict resolution
within the cache/MMC to maintain consistency implicitly.
All lines of all remapped pages are explicitly flushed. Still,
the cost of cache flushing is quite modest, averaging 1400
CPU cycles per 4KB page. All of these costs are included in
our simulation. A comparable cost for copying a 4KB page,
when the source page is warm in the cache, is 11,400 CPU
cycles. The avoidance of copies in forming superpages is an
obvious and significant advantage.

As an example, em3d explicitlyremaps 1120 pages of ini-
tialized dynamic memory before initiating its time step iter-
ations. The total cost of the system call is 1,659,154 cycles.
Cache flushing accounts for 1,497,067 cycles, while all of
the remaining overhead amounts to just 162,087 cycles.3.4 Basic Results

In this section, we compare the performance of systems
with and without MTLBs for a range of reasonable CPU
TLB sizes, selected because they correspond to TLBs in
very recent high-end processors[9, 6]. The cache size is
fixed at 512KB for all of these runs. The MTLB, when
present, is configured with 128 entries, is 2-way set asso-
ciative, and employs a not-recently-used replacement algo-
rithm. The simulated MTLB does not write back updated
reference/modification information into its mapping table.
Adding this functionality should have a negligible effect on
performance. A base system for normalization purposes is
defined as one with a 96 entry CPU TLB and no MTLB.

To reduce simulation time, both the database sizes and
the number of transactions in vortex were decreased from
the Spec training run; this serves to dampen the effective-
ness of any improvements resulting from the MTLB. Like-
wise, compress95 is run for only 2 compress/decompress cy-
cles, rather than the 25 cycles used for reporting Spec re-
sults. This, too, will tend to dampen the advantages of the
MTLB both by exaggerating the initial system startup time,
when no superpages are in use, and by only amortizing the
costs of the remapping over a very short run.

Figure 3 presents the runtimes of the programs, normal-
ized to the time for the base system. It also separates out the
fraction of total runtime spent in TLB miss handling. We
examine this TLB time first. For four of these programs, a
CPU TLB size of 64 results in over 20% of runtime being
spent in TLB misses. For three of these programs, em3d,
radix and vortex, miss time is still significant when the TLB
size reaches 128 entries, without an MTLB. Radix has par-
ticularly poor TLB locality; even at 256 TLB entries, it still
spends 13.5% of total runtime in TLB miss handling. In the
cases where an MTLB is present, TLB miss times are below
5% in all configurations, and are essentially insignificant in
all but em3d. These results are not fundamentally different

64
/N

A
96

/N
A

12
8/

N
A

64
/1

28
96

/1
28

12
8/

12
8

64
/N

A
96

/N
A

12
8/

N
A

64
/1

28
96

/1
28

12
8/

12
8

64
/N

A
96

/N
A

12
8/

N
A

64
/1

28
96

/1
28

12
8/

12
8

64
/N

A
96

/N
A

12
8/

N
A

64
/1

28
96

/1
28

12
8/

12
8

64
/N

A
96

/N
A

12
8/

N
A

64
/1

28
96

/1
28

12
8/

12
8

R
un

tim
e

(n
or

m
al

iz
ed

)

0.0

0.8

1.0

1.2

Runtime (less TLBtime)
TLBtime

Radix VortexCompress Em3d CC1

Figure 3. Normalized Runtimes for Three TLB
Sizes with and without a 128 Entry MTLB

from those obtained with other superpage approaches. Of
course, in the MTLB approach it is possible that CPU TLB
miss time may just have been traded for increased memory
time resulting from misses at the MTLB. Looking at total
runtimes will at least partially address this possibility.

Examining those total runtimes, we see that, in the no-
MTLB cases, all programs display monotonic improvement
as the TLB size increases, dramatically for compress, em3d,
vortex, and cc1 and more modestly for radix. Also, we see
that the improvements are more marked between 64 and 96
entries than between 96 and 128, with the exception of radix.
This indicates that, for the small problem sizes measured,
128 entry TLBs are adequate, or nearly so. On the MTLB
side, the decreases in TLB miss times do translate into pro-
portional decreases in total runtime. More interestingly, the
results for the cases with the MTLB change very little as
the CPU TLB size increases, indicating that even with the
very simple mapping approach used here and modest MTLB
configuration, 64 CPU TLB entries are sufficient to map the
working sets of all the programs. Because of the small foot-
print of the test programs compared to real commercial ap-
plications, these results are likely to underestimate the im-
pact of this work on more realistically-sized applications.3.5 Sensitivity Tests

Only em3d showed measurably better performance with-
out an MTLB, approximately 2%, and then only with the
largest CPU TLB size. It is also the program with the worst
cache behavior, averaging only an 84% hit rate. Conse-
quently, it performs proportionately many more accesses
to main memory compared to the other programs, a factor
compounded by its 91% hit rate in the default configura-

MTLB Associativity
(A)

1 2 4 8

R
un

tim
e

(M
 c

yc
le

s)

410

420

430

440

450

460

No MTLB
128 MTLB
256 MTLB
512 MTLB

MTLB Associativity
(B)

1 2 4 8

A
ve

ra
ge

 C
ac

he
 M

is
s

(c
yc

le
s)

60

62

64

66

68

70

72

Figure 4. Em3d sensitivity To Various MTLB
Sizes and Associativities

tion MTLB. Therefore, we use em3d to examine the effect
of MTLB configuration. Figure 4(A) compares the runtime
of the 128 entry CPU TLB without a MTLB to that of var-
ious configurations of MTLBs. From the figure, it can be
seen that the total runtime advantage of not using the MTLB
can be erased by either doubling the size of the MTLB or
increasing its associativity. Not surprisingly, the benefits of
increasing both size and associativity is greater than either
alone, and a point of diminishing returns is reached quite
quickly.

Figure 4(B) reports the average time per cache fill across
the same system configurations. The added delay for the
MTLB cases compared to the standard system ranges from
10 cycles down to 1.5 cycles. Note that with no MTLB
misses whatsoever, our conservative assumptions about the
MMC’s basic timing dictate a 1-cycle penalty. The addi-
tional penalties are all due to the required DRAM accesses to
perform MTLB fills. This is one way in which CPU-resident
TLBs can sometimes do better, since the page tables needed
to service TLB fills can be cached just like other data. On the
other hand, the page tables must compete with program data
for cache space, which can negatively affect performance
when the CPU TLB is thrashing.

4 Limitations

Availability of Free Physical Addresses. To support
shadow regions, the proposed mechanism relies on the avail-
ability of physical addresses not backed by real physical
memory. While this limitation is not a significant problem
in typical systems, it will keep us from employing this tech-
nique unmodified on extremely high end machines in which
all addressable physical memory is installed. This is unfor-

tunate, because such systems will tend most need support
for superpages given the tremendous disparity between their
TLB’s reach and the amount of user data that can be stored
in memory. One possible approach is to make all virtual ac-
cesses use shadow physical memory, allowing the kernel to
disable the MTLB whenever it needed to use real physical
addresses. Because of the heavier load placed on an MTLB
in such a configuration, it might be necessary to expand its
size and/or associativity as indicated in Section 3.5 to main-
tain performance for programs not using superpages.

Imprecise Exceptions. Figure 1 illustrates the possibil-
ity that base pages that back superpages can be temporar-
ily swapped out to disk. If these regions are accessed, the
MMC must generate a precise exception to the processor so
that the offending load or store instruction will be aborted,
the appropriate base page loaded, and the instruction reis-
sued. Since existing processors do not anticipate memory
faults once the CPU TLB checks have succeeded, generat-
ing this kind of precise exception may require the MMC to
signal the processor of the fault indirectly. For example, the
memory controller could return data with bad parity as a re-
sponse to the request, causing the faulting instruction to suf-
fer a memory parity error fault. To allow the OS to distin-
guish between real parity errors and shadow page faults, this
MTLB could mark the invalid entry as having generated a
fault and write it back to memory. The OS would determine
the physical address that the faulting instruction was refer-
encing and, if it lay in the pseudo-physical range, read its
mapping entry to examine the page fault bit. The OS’s re-
sponse to an MTLB mapping failure exception would be to
treat it as a page fault. We have not yet tested this opera-
tion, as it requires a level of exception precision not avail-
able on current processors with superpage capability. We
are exploring ways to work around this problem, as the abil-
ity to independently swap individual base pages within a su-
perpage would dramatically increase the OS’s flexibility to
manage superpages.

Note that failures on write backs, which would be more
difficult to handle since the processor is not awaiting a re-
sponse, cannot happen – the OS is required to flush the dirty
data back to memory before swapping a page to disk and re-
moving the corresponding mapping.

5. Related Work

Chen et al.[4] report the performance effects of various
TLB organizations and sizes. Their results agree with our
premise that the most important factor for minimizing the
overhead induced by TLB misses is TLB reach. They stud-
ied several SPECmarks programs, which have much smaller
memory requirements than our benchmark programs, and
found that TLB misses increased the effective CPI (cycles
per instruction) by anywhere from 1 to 5 for programs with

large data sets. They suggested the possibility of using vari-
able page sizes to improve TLB reach, but did not explore
the implications of their use

Talluri et al.[16] describe a method to use two page sizes
simultaneously, using 32-kilobyte pages on some regions
of memory to increase TLB reach, while minimizing frag-
mentation by using 4-kilobyte pages on sections of mem-
ory without the locality to use large pages effectively. Like
Chen et al., they found that judicious use of large pages
could reduce the contribution of TLB miss overheads to
overall CPI by as much as a factor of 8. Exclusive use
of 32-kilobyte pages increased application working sets by
as much as 60%, which can lead to inefficient use of main
memory. Mixing both 4- and 32-kilobyte pages kept the in-
crease in working set size around 10%. The ability to map
superpages in the process TLB without requiring the under-
lying “small” (4-kilobyte) pages to all be present eliminates
the problem of increasing working set sizes altogether. Tal-
luri et al. did not report application running times, so it is
not clear how closely our performance results compare with
theirs.

Talluri et al.[15] report many of the difficulties attendant
upon general utilization of superpages, most of which re-
sult from the requirement that superpages must map regions
of physical memory that are contiguous and aligned. They
propose subblock TLBs as a way to mitigate some of the
cost of solving these problems in the OS’ virtual memory
system. Again, by using shadow memory and not requiring
that an entire superpage be present in main memory, our de-
sign eliminates most of the problems that they attempted to
address with subblock TLBs without requiring any changes
to processor TLB designs. Like our system, their proposed
complete-subblock TLB can create superpages from discon-
tiguous physical pages. However, to accomplish this func-
tionality, complete-subblock TLBs must contain a complete
set of physical page mappings for each superpage, which
will severely limit the maximum superpage size for an on-
processor TLB. We move these mappings to the memory
controller, where large tables can be stored easily.

Romer et al[18] address the problem of selecting regions
that can effectively benefit from mapping via superpages.
They propose a mechanism for dynamically promoting re-
gions for mapping with superpages given the costs, espe-
cially copying, and potential benefits of the promotion. A
similar mechanism would be useful in the kernel of a ma-
chine exploiting shadow memory, although the specific pa-
rameters would need to be tweaked to reflect the reduced
cost of exploiting superpages in our design.

6 Conclusions

We propose to support shadow memory via an additional
level of address translation performed by the main memory

controller. By supporting shadow memory, superpages can
be composed of discontiguous, unaligned pages of physical
memory. Unlike conventional uses of superpages, the mem-
ory controller TLB (MTLB) mechanism avoids the need for
superpage management of real memory by the OS, with its
severe physical memory alignment and contiguity require-
ments. In addition, it largely avoids the loss of page-grained
access information, such as reference and dirty bits, caused
by the use of conventional superpages. This mechanism can
be applied effectively to existing programs without restruc-
turing them in any way, and does not require modifications
to conventional CPU or MMU designs. All of these factors
combine to result in system whereby superpages can be used
aggressively and efficiently for user text/data, thereby sig-
nificantly increasing the effective reach of CPU TLBs. This,
in turn, improves the performance of programs with large
working sets, such as those commonly used in commercial
settings.

Simulations show that a combination of modest-sized
CPU TLBs and MTLBs allows system builders to extend
a CPU with a modest TLB reach to perform comparably
to a high-performance CPU by adding TLB capacity in
the memory controller. They further demonstrated that for
fixed-sized CPU TLBs, the addition of an MTLB improves
the performance of applications with non-trivial working
sets by from 5-20%.

This work has been done in the context of the Impulse
project [8], in which we are investigating ways to improve
memory system performance without modifying conven-
tional cache, memory bus, or DRAM organizations. In
the future, we intend to investigate several ways to further
exploit the existence of shadow memory and an MTLB.
We are currently exploring ways to use shadow memory to
implement no-copy page recoloring[1] and MMC-provided
stream buffers[11, 13]. In addition, we continuing to inves-
tigate whether swapping of base pages within a superpage
can be supported in the context of current CPU/memory in-
terface limitations. We also are investigating the space of
practical MTLB implementations to determine what orga-
nizations and latencies are feasible. Finally, many possible
TLB extensions have been proposed but not found their way
into general purpose processors - modifying an MTLB may
be the way to finally realize some of these ideas.

References

[1] B. Bershad, D. Lee, T. Romer, and J. Chen. Avoiding con-
flict misses dynamically in large direct-mapped caches. In
Proceedings of the 6th Symposium on Architectural Support
for Programming Languages and Operating Systems, pages
158–170, Oct. 1994.

[2] W. Bryg, K. Chan, and N. Fiduccia. A high-performance,
low-cost multiprocessor bus for workstations and midrange

servers. Hewlett-Packard Journal, 47(1):18–24, February
1996.

[3] S. Chandra, J. Larus, and A. Rogers. Where is time spent
in message-passing and shared-memory programs? In Pro-
ceedings of the 6th Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 61–
73, Oct. 1994.

[4] J. B. Chen, A. Borg, and N. P. Jouppi. A simulation based
study of tlb performance. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages
114–123, May 1992.

[5] J. Edmondson, et al. Internal organization of the Alpha
21164, a 300-mhz 64-bit quad-issue CMOS RISC micropro-
cessor. Digital Technical Journal, 7(1), 1995.

[6] L. Gwennap. Hp pumps up pa-8x00 family. Microprocessor
Report, 10(14), October 1994.

[7] T. Hotchkiss, N. Marschke, and R. McClosky. A new mem-
ory system design for commercial and technical computing
products. Hewlett-Packard Journal, 47(1):44–51, February
1996.

[8] http://www.cs.utah.edu/projects/impulse.
[9] Intel Corporation. Pentium Pro Family Developer’s Manual,

January 1996.
[10] J.Huck and J. Hays. Architectural support for translation ta-

ble management in large address space machines. In Pro-
ceedings of the 20th Annual International Symposium on
Computer Architecture, pages 39–50, June 1993.

[11] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully associative cache and prefetch
buffers. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 364–373, May
1990.

[12] G. Kane. PA-RISC 2.0 Architecture, 1996.
[13] S. McKee and W. Wulf. Access ordering and memory-

conscious cache utilization. In Proceedings of the First An-
nual Symposium on High Performance Computer Architec-
ture, pages 253–262, Jan. 1995.

[14] MIPS Technologies Inc. MIPS R10000 Microprocessor
User’s Manual, Version 2.0, December 1996.

[15] M.Talluri and M. Hill. Surpassing the TLB performance of
superpages with less operating system support. In Proceed-
ings of the 6th Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 171–
182, Oct. 1994.

[16] M.Talluri, S. Kong, M. Hill, and D. Patterson. Tradeoffs in
supporting two page sizes. In Proceedingsof the 19th Annual
International Symposium on Computer Architecture, pages
415–424, May 1992.

[17] S. E. Perl and R. Sites. Studies of Windows NT performance
using dynamic execution traces. In Proceedings of the Sec-
ond Symposium on Operating System Design and Implemen-
tation, pages 169–184, October 1996.

[18] T. H. Romer, W. H. Ohrlich, A. R. Karlin, and B. Bershad.
Reducing tlb and memory overhead using online superpage
promotion. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 176–187, June
1995.

[19] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 24–36,
June 1995.

