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Abstract

We present a very simple and powerful framework for indeterminate, asyn-
chronous, higher-order computation based on the formula-as-agent and proof-as-
computation interpretation of (higher-order) linear logic [Gir87]. The framework
significantly refines and extends the scope of the concurrent constraint program-
ming paradigm [Sar89] in two fundamental ways: (1) by allowing for the consump-
tion of information by agentsit permits a direct modelling of (indeterminate) state
changein alogical framework, and (2) by admitting simply-typed A-terms asdata-
objects, it permits the construction, transmission and application of (abstractions
of) programs at run-time.

Much more dramatically, however, the framework can be seen as presenting
higher-order (and if desired, constraint-enriched) versions of a variety of other
asynchronous concurrent systems, including the asynchronous (* ‘input guarded”)
fragment of the (first-order) w-calculus, Hewitt's actorsformalism, (abstract forms
of) Gelernter's Linda, asynchronous assignment-based languages, and Petri nets.
It can also be seen as smoothly layering around the functional programming style
provided by the A-calculusaminimal amount of extralogical machinery needed to
obtain concurrency, synchronization and indeterminism declaratively. Addition-
ally, there are remarkably simple and direct tranglations of the untyped A-calculus
into the higher-order linear cc (HLcc) programming paradigm.

We give (1) a simple operational semantics for HLcc, (2) establish several
connections between proof-theory and operational semantics, (3) develop the no-
tion of bisimulation for HLcc, along the lines of [Tho89], (4) establish that logical
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equivalence implies bisimilarity, (5) show how to obtain the effect of recursion
for parametrized processes, (6) demonstrate embeddings of the (asynchronous)
w-calculus and untyped A-calculusinto HLcc.

In summary, this paper draws on ideas from logic and proof theory to present
aframework for the design and analysisof concurrent programming languages.

1 Introduction and overview

Our objective is to develop a logica foundation for concurrent programming that
transparently integrates constraint programming, functi onal programming and process
algebras.

Our starting point isthe concurrent constraint (cc) programming paradigm (see, e.9.,
[Sar89,SR90,SRP91,JSS91]; we summarize here briefly. Imperative languages may
be thought of as based on the store-as-valuation principle: a state of the computation
is described by a valuation which assigns a unique value to each variable of interest.
In constraint-based computation, thisnotionisreplaced by that of store-as-constraint—
-the store is seen to contain pieces of partial information (e.g., first-order formulas
such as X > Y + Z) which specify a set of (possibly infinite) admissible values
for the variables of interest. The notions of Write and Read underlying imperative
programming languages no longer make sense, and are replaced here by the notions of
Tell and Ask. Computation progresses via a monotonic accumulation of information,
i.e, via Tell operations that add more constraints to the store; and its progress is
monitored by A sk operationswhich check whether enoughinformation hasaccumul ated
to entail a given constraint. Concurrency is accommodated naturally by conceiving
of multiple agents interacting with a shared store via such ask and tell transactions.
Synchronization is achieved by having an ask request block until there is enough
information (if ever) to entail the given constraint, thereby alowing other processes
an opportunity to unblock the computation by adding more information to the store.
Search non-deter minismisintroduced by allowing computationto fork into two distinct
branches, preserving only the (possibly digunctive) information obtained on both.
Whilesimple, theseideas are being used for the design of both programming languages
for distributed systems [SKL90] and very powerful languages for symbolic reasoning
[HS91,HJ90].

From a computational perspective, the cc paradigm may be seen to generaize (and
arose out of) the areas of concurrent logic programming and constraint logic program-
ming. But where are the logical foundations of the (very operationally motivated) cc
paradigm? In [LS91], we have shown that alogica semantics may be given using a
formula-as-agent and proof-as-computation interpretation of intuitionisticlogic.! The
main underlying idea is to regard the steps of computation as expanding the frontier
of a partial proof tree, whose leaves may be regarded as nonlogical axioms describ-
ing the residual computation, and whose root describes the initia state of the system.

1Thisis to be contrasted with the usual logic programming notion of formula-as-goal and computation-
as-proof-search. Both of these notions can be combined fruitfully through the notion of testing [LS91].



Each step of the computation unfolds a (leaf) nonlogical axiom into perhaps several
other nonlogica axioms and some concrete proof structure. A completed computation
correspondsto a completed proof.

More generally, these ideas lead to the formula-as-agent interpretation of a larger
class of logics. A subset of the formulas of the logic are viewed as computational
agents. The left-rulesin a sequent-style presentation of the logic are taken to specify
the operationd ‘‘heating” rules (in the style of [BB90]) which describe how complex
agents may be decomposed into simpler agents, and the basi ¢ interactions betwen these
agents. Thus, the operational derivability relation between configurations qua agents
is related to the entailment relation between configurations qua logical formulas. In
general, the logical counterpart of parallel composition is (seen to be) conjunction,
of (ask-)prefixing is (a quantified version of) implication, and of hiding is existential
quantification. Communication occurs (essentially) via constraint-imposition on first-
order variables.

In this paper, we show that a very large area of concurrency is opened up to
this perspective by moving to the setting of a higher-order version of Girard’s linear
logic [Gir87]. Linear logic may be seen as arising from classical logic by dropping
certain structurd rules that alow formulas to be arbitrarily duplicated and eliminated
during the course of aderivation. This causes the familiar conjunction and digunction
operations to split into two: the so-called additive versions that copy formulas, and
the multiplicative versions which do not. This gives formulas the nature of resources
that must be accounted for carefully during proof (computation). The lost power of
the structural rules can be recovered locally by means of the *‘modalities’ ! and ?. In
particular, the formula! A is allowed to be duplicated any number of times, derelicted
to obtain A, and dropped altogether.?

Informal review of HLcc. The linear logic formulas-as-resources viewpoint may
be reinterpreted as formulas-as-communications. Multiplicative conjunction (®) is
viewed as parale composition. An (unbanged) atomic formula is regarded as an
indivisible piece of information, a message placed in a pool of messages and agents.
(Since A ® A isnot linearly equivaent to A, multiplicities of messages matter.) A
banged atomic formulais regarded as a permanant (hon-consumable), globally valid
piece of information, that is, a constraint (multiplicities of constraints do not matter,
logically !e is linearly equivaent to !e®!e). Linear implication ( —o ) is viewed as
amethod for transforming a communication into a collection of agents. Intuitionistic
implication providesa more restricted form of method which can only be invoked with
congtraints. AdditiveConjunction( & ) providesexternal choice— theenvironment can
cause the combination (p —o A & ¢ — B) toreduceto A or to B by supplying either
p or q respectively. Universal quantification provides a parameterization mechanism:
themethod VX .(p X) —o (e X') canreduceto a (Y 3) in the presence of the message
p (Y 3). Existential quantification provides hiding — the ability to generate a new
communication channel distinct from al others in the configuration. (Though it is

2See [Sce90,Ling2] for more motivation and tutorial introductionsto linear logic.



outside the scope of this paper, aform of paralel search can be obtained through the
additivedigunction &.)

Linear communication. The presence of unbanged atomic formulas (*‘linear
tells’) and linear implication (*‘linear asks’) now allows for a direct representation
of indeterminacy and state change: the configuration p @ (p — r) @ (p —o ¢) can
evolveto (entall) either a = r ® (p — ¢) or b = ¢ ® (p —o r), but not to their tensor
product a ® b. In Hewitt's terminology, this kind of indeterminism is caled arrival
indeterminism, since it depends on the order in which messages (here, p) are delivered
to methods (here, p —o r, and p —o ¢).

Indeed linear asks and tells allow for a direct, powerful form of communication.
An example should suffice to convey the flavor. A natural way to model Actor-style
languageswithinthe cc framework (see [SKL90,K S90]) isto represent actor mailboxes
as logical variables equated to bags of values. Sending a message, say 5, to an actor
with associated channel X, then, corresponds to posting the constraint 5 € X. The
actor suspends, asking whether there is a message on X'; when activated, it pops a
message off the bag and recurs with the tail of the bag.

However, such atrand ation does not work: two different actors may wish to com-
muni cate the same message to an actor — hence they woul d both post, say, the constraint
5 € X. Operationaly we would like both messages to be delivered to (the actor) X; in
(intuitionistic/classical) logic, however, thissituation cannot be distinguished from that
inwhich only one message was sent, sincein these logicsa A « islogically equivalent
toa.

The problem does not arisein linear logic since multiplicitiesmatter, and the above
trand ation works correctly. Sinceaconfigurationisitself amultiset of agents, we need
not use constraints such as 5 € X. Rather, just atomic formulas of theform X : 5
suffice— here*‘:” isahbinary predicate that has no specia properties(built-ininference
mechanism). Anatom (b =) X : 5is, by convention, read as ‘' 5isamessage on channel
X"”. Anagent can read amessage on the channel, and forward it on another channel Y
by means of themethod: (a =)YM.X : M — Y : M. Asweshall see, theagent a ® b
can evolveintotheagent Y : 5, asexpected. Notethat simultaneously many agents can
send to the same channel, and many can read from the same channel (aswith p—oq and
p—or above): the underlying notion of communication is many-to-many as in Linda
like languages, rather than many-to-one, asin Actor languages. Summarizing: Agents
have access to a communication channel. On this channel, an agent can either post a
message or a method. A method has the ability to suspend until a message matching
a specified pattern arrives on the channel. Once activated, a method may, recursively,
create new channels, and post messages and methods on new or old channels.

Note that state and state change is just the flip side of this ability to receive
messages and consume them. The following example will demonstrate a number of
programming techniques simultaneously. One may set up a counter creator agent
asfollows:



A= Vcounter.(counter_creator : counter—o
Elvalue(value 0 ®
Vm(counter :m—o
(Vval (m : (inc val)—on (value : v—ovalue : (v =+ val)))
&Vval (m : (value val)—on (value :v—ovalue:v @ val : v))
&Vval (m: (dec val)—on (value :v—ovalue: (v - val)))))).

Informally, such an agent respondsto amessagecounter sentonthecounter creator
channel asfollows: it sets up anew local communication channel, value, initiaizesit
withthemessage 0, and installsamethod on theinput message channel, which suspends
until a message m arises, and then suspends until m (which isitself a channdl), contains
aparametrized inc or dec or val message. Intheinc case, it readsthevalueM onits
private channel (thereby deleting the value), and sendsthe message M + val onvalue.
Similarly, inthe other cases.® Note: an assignable memory locationismerely achannel
with a single outstanding message; incoming channels are just like any other channels
...it is possible to both read and write (post messages and methods on) them; the
effect of lexically scoped, shared, encapsul ated, concurrently updatable state variables
iscreated through the alternation of universal and existentia quantifiers; theusua logic
programming ideas of ‘‘incomplete’” messages are still available; and in the spirit of
Hewitt's dogan, control-structures emerge from patterns of communications.

Essentially the system we have presened hitherto (without any built-in constraint
system) isthebasi sof the programming language Linear Janus [ Tse92]. Linear Janus
isacleaned up and considerably simplified versionof Lucy, the*‘missinglink” between
concurrent logic programming and actor languages described in [KS90]. Assuchitis
in along tradition of languages arising from the connection between concurrent logic
programming languages and Actor languages. From a computational perspective, the
systemisvery closeto the asynchronousfragment of the =-cal culus[MPW89], and one
can also show that it is possible to embed the untyped A-calculus into it through a very
simpletrandation. (The trand ation effectively shows how to interprete the A-calculus
inavery simplefragment of first-order linear or intuitionisticlogic.)

The higher-order system. For dl its power, however, it is not possible in the
first-order Lcc to pass processes as parameters. At best one can pass names of (channels
to) processes. One cannot obtain unknown processes from communication channels,
destructure them, combine them, run them, apply them to other unknown processes
or otherwise treat them as first-class citizens. This motivates our final move, then, to
higher-order linear logic.

The higher-order version of linear |ogic we consider isastrai ghtforward adaption of
apresentation of higher-order intuitionisticlogic using Church’ssimpletheory of types
(see Section 2.1 for details). Intuitively, one may understand such alogic as obtained
from first-order linear logic by replacing first-order terms with simply typed A-terms.

3As described here, all these actions will happen exactly once. We will describe below how recursion
and repetition are programmablein the higher-order language.



One assumes that the set of types comes equipped with a type o for propositions, and
atype . for individuas; the linear connectives can then al be introduced as logical
congtants (functions) over o. (Similarly, for each type «, the existentia quantifier
> and theuniversal quantifier M are aso provided. Thisalows, then,

a—0)—0 (a—0)—o0

the expression of terms such as
(t =)Aa,Ab,Ae, Mhyo(a iy o NAz,(b:z —oc:(y®2)))

which can be viewed as an abstraction which when applied to three communication
channelsa, b and ¢ yieldsaprocess that will accept an arbitrary process y ona and =z on
b, and send their parallel composition y ® z onto ¢. Of courset isitself just aterm and
can be passed around in messages from agent to agent; in that case the receiving agent
would need to use a universal quantifier at a functional (higher-order) type to receive
the message.

In general, higher-order quantificationis an exceedingly powerful mechanism, and
developing practica programming languages with such featuresisadeicate task. The
mai n restriction placed on these quantifiersin HLcc involveslimitationson theuse of M,
restricting occurrences of I to immediately precede —o, with further restrictionswhich
effectively ensure that it is not possible to universaly quantify on the first argument
(the “*channel”) in a message « : ¢, and no universaly quantified unguarded agents
will ever appear during execution. (An agent of theform N : A z.x is an agent which
can perform any task, provide any information to other agents, etc.; such an agent is
computationally disastrous.)

For pragmatic reasons, it may be desirable to impose syntactic restrictions which
disallow existentia quantificationat functional typesand/or to disallowinthehead logi-
cal constantsor A-abstractionsor multipleoccurrences of variables(see, e.g., [Wad91]).
This can obviate the need for higher-order unification or matching at run-time; how-
ever, the higher-order structure left in the programming language is still adequate to
construct, assemble, communicate and use higher-order expressions.

Related work. The desire for a clean, higher-order, indeterminate language frame-
work is along-standing one, both within theoretical and applied areas in concurrency.

Perhaps the most well-developed body of work related to this paper is that on
the w-calculus [MPW89,Mil90,Mil91]. A primary reason for the interestingness of
congtraint languagesisthe notion of constraint-based communi cation, which subsumes
the notion of mobility of communication channels. It seemed clear to us, therefore,
that there should be ' simpl€” variants of cc languageswhich exhibit the computational
characterigtics of the w-caculus. Just so. If certain aspects of the w-calculus (eg.,
unrestricted sums, ‘‘tell”-prefixing) are ignored, the w-calculus is amost identical to
Linear Janus. However, the logica perspective underlying the cc languages has
a lot to offer to work on process algebras: it has provided a ready guide to the
introduction into concurrent programming languages of complex data-structures and
systemsof partial information, search non-determinismand first-order and higher-order
guantifiers. Additionaly, logical equivalence emerges as even a finer congruence on
processes than bisimulation (see Section 2.5).



Other related work includes that of [HT92], who presents an asynchronous, first-
order fragment of the w-calculus closely related to Linear Janus, and studies its se-
mantics. No logical interpretation of the calculusis given however. [Tho89] presents
a higher-order version of CCS, including a notion of higher-order bisimulation. In
contrast to the system of this paper, CHOCS uses dynamic binding, does not allow
the transmission of abstractions of programs (indeed, it has no notion of application
— it is really second-order rather than higher, i.e, w-order). [Bou89] presents the
(asynchronous) ~-calculus, which abdandons CCS' paralld composition in favor of
two operators — interleaving and cooperation. The proof-theoretic anal ogue of coop-
erationisunclear to us. We do not know whether either of HLcc and the y-cal culus can
be embedded in the other. [Nie89] presents a system extending the typed A-caculus
with CCS-like processes; the focus of the work is in using types to record the possi-
ble communications of a process. [dBKPR91] present a general class of (first-order)
asynchronous programming languages; these languages should be describable within
first-order Lcc.

There has been considerable work on the integration of logic programming and
functional programming languages[JP91,Lin85,DL86]. However, before the advent of
linear logic, it has not been possibleto build such languages centrally on indeterministic
concurrency. The paradigm proposed here — build alittlelayer of sub-structural logic
and constraints around the simply-typed lambda-cal culus — seems to be very simple
and rich. Indeed, it should be possible to design powerful asynchronous extensions of
languages like ML based on these idess.

A number of proposals have been made for programming on top of linear logic.
[AP90] have explored very novel concurrent constructs that communicate by instan-
tiating the endsequent, which is left unspecified in the original goal. The expression
of concurrency in HLcc is more direct. [HP91] adapt the idea of *‘ uniform proofs’,
underlying a view of logic programming, to the setting of linear logic. [HM91] extend
A-Prologto includearestricted class of linear features. The main computational mech-
anism in both cases is backward-chaining on Horn clauses; it is not clear to us how
‘*ask synchronization” can be represented in this setting, and how indeterminate com-
putations can be reflected into the logic. The relationship between the two approaches
should be examined further.

[Mil92] independently discusses connections between the 7-calculus and linear
logic; paralel composition is mapped to multiplicative digunction (p), and hiding to
universal quantification. Non-logica constants are used to represent prefixing, non-
deterministic choice, and ‘‘match” guards. A *‘dual” translationis mentioned, and this
isvery close to the trandation we give in Section 3. Indeed, despite some technical
differencesit seems clear that this work shares a common perspective with [Mil92].

[Mes90,Mes92] have recently introduced a general theory of concurrent objects
based on concurrent rewriting, and a specific language, Maude. Although semantically
based on completely different |ogics (rewritinglogic versuslinear logic), thereisaclose
connection between first-order, constraint-less HLcc and Maude's system modules.
HLcc generalizes this nearly-common sublanguage by adding a constraint system and
moving to higher-order. Maude generalizes this sublanguage by adding certain kinds



of parametricity and object-oriented features such as inheritance.

Rest of this paper. The next section sketches out the forma system — the logic
underlying HLcc, the language HLcc (with its syntactic restrictions) and a transition
system underlying its operationa semantics. The close connection between the opera
tional semantics and provability in linear logicisdiscussed. The operationa semantics
can be viewed as specifying an incomplete theorem-prover for a fragment of linear
logic, and the theorems in that section show precisely how to extend the operational
semantics to recover completeness. We also discuss a coarser notion of equivalence
motivated from the formula-as-agent viewpoint. Roughly, two formulas are regarded
as indistinguishableif they can engage in the same (potentidly infinite) tree of basic
interactions (the asking and telling linear atoms and constraints) with their environ-
ments. Some care is necessary, however, to define the notion of bisimulation (~) in
this asynchronous, logica setting in a simple and smooth manner, and to ensure that
two agents are not distingui shed because they are communicating programsthat, while
inequivalent logically, are bisimilar. Because of the power of the language, it is not
possible to provide a complete axiomitization; we show however, that bisimulation
respects logical equivalence.

Next wediscusshow to obtaintheeffect of recursion viaconcurrency and communication?;
in particular, we show that it is possibleto specify afixed-point combinator fix at every
type o — o which satisfies the property that fix f ~ f(fix f). Thiscan be used to get
the effect of recursion, and the *‘ replication” operator of [Mil90].

Section 3briefly comparesthe HLcc framework with other asynchronouscomputing
frameworks, emphasi zing the embeddings of the #-calculus and A-calculusin HLcc.

2 Thebasic paradigm

21 Thebasclogic, HLL.

The set of types, ranged over by « istaken to consist of at least the base types o and i,
and is closed under function-space construction:

al=o|t|a—a« (1)

In a concrete language, other basic types (eg., real, int) may be given; for the
present paper we take : as representative.

Assume given denumerably many variables and constants at each type, and the
logicd constants1,,!,—.,,&,®, — ,—,—,,andfor each type «, theconstants><, M«
of type (&« — o) — o. (Constants other than these will also be called parameters.)
We shall adopt the usual syntactic convention of writing! prefix, &, ®, —o infix, and
>Ny M asdw, M and M* Az, M asVa,. M. Asusua, theterms are given by:

ti=vq [ ko | (AZa-lp)a—p | (ta—pta)p 2

4Notethat HLcc hasno explicit recursion, and the underlying X-cal culusistyped, so strongly terminating.




We define two terms s, and ¢, to be A-equivalent, and write s, =, t, if they
can be shown equivalent using («, 3, ) rules. For background on such atreatment of
terms, the reader may refer to [NM90]. As shown there, under such conversion rulesa
A-term M has aunique normal form; we shall denoteit by p(M).

A sequent isof theform ' = A where ", A are multisets of formulas (terms of type
0). The inference figuresfor HLL are the expected ones for a higher-order logicin the
style of Church; they are givenin full in Appendix A.

A theorem fundamental to the study of logic is the cut-elimination theorem, which
states that whatever can be proven in a system, such as HLL, can be proven without
the use of the cut rule. This theorem is used to prove consistency and in first order
and propositional system yields a very useful subformulaproperty. Cut-eliminationis
often demonstrated by providing a terminating cut-elimination procedure which slowly
eliminates cuts from a given proof.

Theorem 2.1 (Cut-elimination) All instances of the (Cut) rule can be eliminated from
aproof of asequent I' -+ A in HLL.

This theorem may be proven by providing equivalent systems with extra rules,
and showing that the extrarules and cut can be eliminated simultaneoudly. The extra
rules stand for severa applications of other rules, and serve to simplify the proof of
termination of cut-elimination.

In what follows, we will assume that the underlying logic has been augmented by
a user-specified constraint system C. For our present purposes, it suffices to consider
that the user has provided certain ‘*built-in” functions, and non-logical axioms of the
form:

leg, .oy te, Hle

where ¢ is an atom using the given built-in functions. Henceforth, when we talk of
linear derivability, -, we shall assume that some such constraint system C is aready
built into the system.®

22 HLcc

A certain sub-class of HLL formulas are isolated as HLcc processes. In order to
more crisply state the syntactic restrictions on HLcc, we make a few modifications.
First, we introduce thetypes ¢ (for constraints) and m (for methods, i.e., implications).
Second, we eliminate the constants !, 1 and — from our vocabulary, and instead
introduce two new ‘‘ constants’, A and BA.® The combinator A._.,_.,, isasimple
abbreviation: if the constants!,._., and — ,_.,_.,, are available, it can be understood

50f course, a particular HLcc language may have a vacuous constraint system — Linear Janus is an
example. This need not cripple the language— linear ask and tell operationsare extremely powerful in their
ownright.

6In concrete syntax, we allow the user to use !, M and —o ; we merely require that the program be
A-equivalent to a program in the restricted syntax. Also, we will sometimes write m instead of &1m, ina
context where an o-term is expected.



S A = Ad;.Aa,.ld —o a. FOr hyy—. —qa,—,, aterm of certain shape (see below) we
introduceaterm (BA)(a;,—...—a,—o)—m- INtUitively, Bha stands for

Valy, . . .x", (hat. . 2™) —o (axt ... 2™)

Werequire that (1) ~ bein A-norma form, say Azy....x,. k1 ... t,m, (2) that k be
a parameter, and (3) that each x; have at least one strict occurrence in k ¢t ... t,
(i.e., occurrences which ‘* cannot disappear” from h by 5 reduction). Thisis ensured
by requiring that at least one occurrence of each variable z; ink ¢; ... t,, isnotinthe
application-scope of avariable other than the «;; also specific rules are given for each
congtant that can appear in & (e.g., cons, if-then-else).

We note another important restriction on 4. In order to operationally regard 3.X A
astreating X asa‘‘private’ channel in A, itisnecessary tocurtail the power of universal
quantification. The simplest way to achieve thisisto require: (4) if k£ isthe constant
‘" then ¢ty isavariable distinct from 4, ..., z,. This ensures that no method can
universally quantify on all communication channels: agent suchas B(Az Ay (z : y))a,
which logically can accept any message y on any communication channel = (even one
newly created using existential quantification) are banned. While this solutionis not
generd, it isvery adequate in practice.

HLcc processes are now merely terms of type o. For simplicity we assume given
afamily of k-ary &-operations, one for each k& > 0, rather than a single binary &-
operation. Also, we assume that existential quantification is provided only at type ..
Thebuilt-in‘*logical” constantsin HLcc then are: 7

1, —Nil
Ro—o0—o0 — Parallel composition
2010 —Local channels

k : ©)
& . —m—o — Guarded choice
(Bhal—»...—»ozn—>o)(oz1—>...—>ozn_>o)_>m —Linear Ask method
A om — Ask method

The set of HLcc terms H is then the set of lambda-terms generated from these
logical constantswith the use of variables, parameters, and abstraction and application.

2.3 Operational semantics.

As configurations we take multisets of processes, ranged over by ', A. For I such a
multiset, we let o(I") stand for the submultiset of formulasin I of theform!d, for d a
constraint. Also, for V' aset of variables, and ¢ a constraint, we use the notation 6V.c¢
to mean the existential closure of ¢ on dl variables other than V.

We take the transition relation — to be the smallest binary relation on config-
urations closed under the following five simple and intuitive inference rules. Firgt,

“Strictly speaking, existential quantification and tensor are also provided for constraints, that is, we have
another constant ¢ : (v — ¢) — ¢, and ®¢ However, we shall not be pedantic, and shall usually

c—c—c*

avoid distinguishing between Z* and (Z)*, and between @ and ®°.

10



we assume that A-equivalence for typed terms is transparently built into the reduction
mechanism:

F=\F ([, F)— (B,G') G' = AG

4
Second, 1 disappearssilently:
r—»A
D —s ®
The top-level multiset of agents represents their parallel composition:
(rF,G)y— A
6
(F, F® G) — A ( )

The execution of a X term requires the creation of a new communication channel:

(M Fy) — A y, €var(l, D) .
(M ZF)—A 7

A Linear Ask can consume a message A provided that it is possibleto find values
for its universally quantified variables such that A matches itstemplate:
oM, A ht1.. .1,
(F,A,&Jml(BhF)m]) — (r,Ft]_...tn)

(8)
An (Intuitionistic) Ask operation checks to see if the current storeis strong enough
to entail the given constraint:

(M) Hle
(M, & my...(AcF)...mj) — ([, F)

()

This completes the definition of the operational semantics of HLcc. Below we
point out interesting restricted sublanguages of HLcc, and then we discuss connections
between HLcc and thelogicHLL. Thelogica connectionsdiscussed for full HLcc also
apply to the more restricted cases.

Restricted HLcc languages. Propositional Lcc is obtained by admitting, in addition
to the logica constants, only constants at base types. First-order Lcc is obtained by
allowing existential and universal quantification only at base types.

For pragmatic reasons, it may be desirable to not alow existentia quantification at
functional types. In such cases, there can be no possibility of expressing constraint-
solving at higher-types (higher-order unification is not needed). In addition, the user
may not be allowed to have A-abstractionsin the heads of clauses. Thiswould rule out
the need for higher-order matching as well: however, the higher-order structureleft in
theprogramming languageisstill adequateto construct, assemble, communi cateand use
higher-order expressions. (One cannot, however, decompose higher-order expressions,
or incrementally construct them using constraints, as can be donein A-Prolog.)

11



2.4 Connection between operational and logical interpretations.

There is a tight connection between the operational and logical properties of HLcc.
Essentially, both soundness and aform of completeness can be established. (Details of
the following section may be found in the Appendix.)

This operational semantics given above is sound with respect to HLL, as may be
seen by induction on the operational derivation. Soundness effectively means that one
will never get awrong answer from the operational semantics.

Theorem 2.2 (Soundness) I - Awhenever T — " and I’ - A.

Cut-diminationin HLL is not sufficient to guarantee the subformula property: any
formula appearing in a cut-free proof must also appear in the conclusion of the proof.
(This property is violated by the 3 reductions allowed in HLL.) If it held, the sub-
formula property could be used to show that if the formulasin the conclusion satisfied
some property closed under subformulas, then so would formulasin any cut-free proof.
Neverthel ess, we can show the following preservation property:

Theorem 2.3 (Well-Formed Formulas) If 7, G arewell-formed HLcc processes, then
so isany formula appearing in a proof of /' - G.

Though the above operational semantics is incomplete in general, a very useful
form of completeness can be shown to hold. We define a forward proof to be a proof
where there are no applications of right rules below any applications of |eft rules. For
the purposes of this definition, we consider identity to be aright rule. In other words,
aforward proof is onewhereall the*‘action” happens on the | eft of a sequent until the
very end, where the right hand side is unwound to the axioms. In thefollowing, let ¢
be a meta-variable ranging over goals, that is, possibly existentially quantified tensor
conjunctionsof atomic formulas or constraints.

Lemma 2.4 (Forward Proofs) Ifthereisaproof of [ - G'@ T inHLL, wherel isan
HLcc configuration, and G agoal, then thereisa forward cut-free proof of this sequent.

We define a sequentialized proof to be a proof where there are no applications of
left rulesin the left hand proof branch of an (— Left) inference. For the purposes of
thisdefinition, we consider identity to be aright rule. This property will be of interest
mainly for proofsalready heavily normalized.

Lemma 2.5 (Sequential Proofs) If thereisa proof of ' H G @ T in HLL, for I' an
HLcc configuration, and (G agoal, then thereisa sequentialized, forward cut-free proof
of this sequent.

Given the existence of sequentialized, forward, cut-free proofs for any provable
sequent, we can show:

Theorem 2.6 (Completeness) ' - G T impliesthat for someA, T —* (A, A1, ..., Ay),
and 4y,..., A, F G.

12



Finally, we show how — can beextended in avery simpleway to obtainacomplete
proof procedure for the HLcc fragment. We definetherelation - astheleast relation
containing theright hand sideinference rulesand axioms of -, and satisfying the** cut”
inferencerule;

r—A ARO
0

Theorem 2.7 (F= k) If I and A satisfy the syntactic restrictions on HLcc programs,
thenl F Aisprovablein HLL iff [ (A,

(10)

2.5 Bismulation semantics

In the previous section we presented logical equivalence of processes. Thisisquite a
powerful notion— indeed it already gives us anumber of equational |awsto work with
(see Table 1), laws that are established in the setting of proces algebras via operationa
arguments.

However, logica equivalence is not able to capture many essential aspects of
HLcc qua concurrent programming language. For instance, we are unable to use the
underlying logic to talk about liveness properties, or to reason about non-terminating
computations. Moreover, if some of thelogica features are used inalimited way (e.g.,
universal quantified variables are prevented from occurring in certain placesin certain
atoms), then operational equivaence may not imply logical equivalence. For, fewer
contextsare availableto operationally di stinguish between processes, hence operational
equivalenceis coarser.®

Therefore, it seems appropriateto view HLcc as aformalism for concurrent compu-
tation, and analyze it using the well-devel oped set of techniques from process agebra.
A number of equivalences have by now been studied for concurrent systems— herewe
focus on one of the finest such equivalences, bisimulation.

We move away from the traditional SOS-style of giving semantics to concurrent
languages. In particular that styleistoo tied to the individual steps made by a process,
and to labels carrying information at each step. Inlogical asynchronous computation
of the kind described here, it is much more natural to allow pieces of information to
accumulate in the store and then be used as appropriate. This breaks a fundamental
conflict in the granularity of transitions and the granularity of constraint imposition.
In order to define higher-order bisimulation, we need to extend a binary relation on
processes to abinary relation defined at all types.

Definition 2.1 Let R be a binary relation on . Then [R] is the |east relation on H
extending RU =, and closed under the inference rules:

L 4 (/\xa M@) [R] (/\l‘a N@) if M@ [R] N@,

8Indeed, this can aready be seen in the (intuitionistic) determinate cc case. The closure operator
semanticsgivenin[SRPI1] doesnot giveusall I.L. connectives: certainfirst-order formulasare operationally
indistinguishablewhile being logically distinct.

13



o (Ma—pNo) [R] (M, sN.)if Ma_p [R] M,_ 5 and N, [R] Ng,.

a—fa

O

Definition 2.2 Let —> betheleast reflexiveand transitiverel ation containing — and
closed under therules:

o (MFoG)=(I'FG),
o (I 2Z,F)= (I',FY,), providedthat Y, isnot freeinl, F,
o (MM = (IG),ifF=,0G.

Corresponding to the notion of weak bisimulationin CCS, we have:

Definition 2.3 (Reactive equivalence) Resctive equivalence onthevariables V' (writ-
ten ~y) is the largest binary, symmetric relationship over configurations such that
I~y Aimplies

1. Whenever I = I’ and (') !¢, wherevar(c) C V, thereisa A’ such that
A= N,o(N)Fle,and [ ~y A,

2. Whenever ' = (I, kt1...t,), and either k #: or var(t,) C V, thereisa
A, B suchthat A — (A, B), and, " ~p A and A [~w] B, where W =
V Uvar(p(A4)) Uvar(p(B))

3. Fordl Awithfvar(4) CV, (I, 4) >~y (A A4).
4. For dl cwithfvar(c) C V, (I, le) ~v (A le).

5. I — iff A — (whereby ' — we mean that thereis a configuration I’ such
thalm — ).

We will write P ~ @ (for processes P, Q) tomean P ~var(pyuvar(qQ) @-

Theorem 2.8 Reactive equivalenceisa congruence for HLcc. That is.
PL@ P~ Q1® Q2
Hl‘.P]_ ~ Hl‘.Ql,

o &'AcP ~ &AdQy,

&Bh(Azy.. . Az,.Py) ~ &Bh(Ax1.. Az,.Q1),

o &Fmq...my :&km’l...m;C

14



(L) &Fmp..mm' . omp =& my. m m. . my,

(2) &*mp..mm...mp~& " Imy.. .m.. my

3) Nen~FReokh
(4) (F1®F)@ 3~ F1® (2@ F3)
(5 FolxF

(6) FJedyF ~ JyFalF

(7)  Fede F ~JzF

(8) (FeF)@ Fo~Je(F1® F2) = ¢ folg)
(9 FeF~F z¢ fo(F)

(10) F]_ZFZ (F =X G)

Table 1: Laws for reactive congruence

whenever P; ~ Q;, fori = 1,...k, Fle o—o !d, and &*m; ~ &*m!, for i =

1 k.

goee ey

Thus, synchronization trees giveriseto amodel for (thisfragment of) linear logic.
Theorem 2.9 F' ~ G whenever - F' o—o (.

The proof is pretty direct, using the cut-elimination theorem. The theorem imme-
diately leads to the various lawsin Table 1

2.6 Generatingrecursivebehaviors

Parametrized processes can be defined recursively in HLcc — for any type «, afixed-
point operator can be defined at type f = « — o:

fix £ Aps_ s A (3b, (Mpbx) @ (b : (Mp))

d (11)
M = App_gAbAea Va,_p.b iz —o p(Az,3b, (2bz @b 2))x

Proposition 2.10 Let 3 bethetypea — o. Then fix s_ )5 pt ~ p(fix p)t for any
termSp@_,@,ta.

Example2.1 It isnow clear how to program a counter that can accept more than one
message:

c= /\counterflvalue(value ;0
& repmethod counter
Am (Vval (m : (inc val)—on (value : v—ovalue: (v =+ val)))
&Vval (m : (value val)—on (value :v—ovalue:v® val : v)
&Vval (m : (dec val)—on (value : v—ovalue : (v - val)))).
repmethod = (ﬁx (/\p/\channelx\bodyVm (channel : m) —0 (p channel body) ® (body m)))
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3 Connection with other paradigms

Petri nets. HLL provides smple encodings of Petri net reachability. Consider the
following formula: = : ({a,c}JS)—ox : (S|Jb). Thismay be seen as an encoding
of a Petri net transition which takes a token from place a and another from place ¢ and
replaces them with onetoken on place b. Thisencoding enforces akind of interleaving
model of concurrency for the Petri net. This and other connections between linear
logic and Petri nets have been well-studied [Asp87,GG89,MOM89,AFG90,GGA(],
and extended in various ways to cover other models of concurrency [Laf90,Pra92]. In
fact, the Lcc languages can be seen as a* ‘first-order” version of Petri nets augmented
with congtraints, and HLcc as a ‘' Higher-order” version.

In the above encoding, theatoms a, b, and ¢ contain no internal structure. However,
one may consider ‘‘colored tokens’ which contain some fixed amount of internal
information, or even more expressive ‘‘first order tokens’ which may carry arbitrary
amounts of information. Such tokens may be encoded easily in HLcc.

Actors and Linda. As discussed in the introduction, the basic actor model corre-
spondsto the first-order, constraint-less version of HLcc, with **:” as the only atomic
formula. Indeed, the system ismore powerful in that it allowsfor the dynamicinstalla
tion of methods on pre-existing mailboxes — hence some restriction in expressiveness
is needed to get actors exactly. Since the basic communication mechanism in Lcc
can be seen as ‘* many-to-many” rather than ‘* many-to-one,” HLcc also immediately
provides a constrai nt-based, ‘‘ higher-order” version of the Linda computation model.
Indeed, each channd can be thought of as a Linda tuple-space — the **in” operation
corresponds to posting a message, and the ‘‘out” operation corresponds to reading a

message.

m-calculus. Table 2 demonstrates, how the ** asynchronous’ subset of the r-calculus
[MPW89] may be embedded into (first-order) Lcc. Channels are treated as first-order
variables, and the rest of the trandation follows naturaly. The seemingly mysterious
notions of ‘‘extrusion” and ‘‘intrusion” of scope are seen as well-known operationa
manifestations of the logical properties of the first-order quantifiers. It is possible to
trand ate the entire language (i .e., tell-prefixing as well) — at the cost of implementing
asynchronous 7 -cal culus transmission with a few-step transmit/acknowledge protocol.

Lambdacalculus. Perhapsthemost remarkabl e connectioniswiththelambdacal cu-
lus: thereare at least two direct and simpletrang ation of the (untyped) |ambda-cal culus
intoLcc languages. (Wefocushereonthelazy version of thelambda-cal culus[AO89].)
The first is an analog of the trandation to the w-calculus in [Mil90]; indeed it can be

16



0 =1
(WP = T lP
[¢y.0] = x:y
[2(y).P] = Vy.x@y—o[P]
|Q] = [Plo[q]
[z =y]P] = Na=y)—o[P]
[A(Xl,...,Xn)] = A:Xl...Xn
[A(X1,...,Xn) =P] = fix(Ar, (VX1 ... VX, A1 X1... Xy—or@[P])

Choicenon-determinism (*‘ +") isnot handled; aguarded version can betrand ated into
methods, as for the cc languages below.

Note that the structural rules of [Mil90] are immediately verified. That is, P = @
implies[P] o—o [@Q].

Table 2: Trand ation of the input-guarded =-calculusto Lcc

seen as providing a direct embedding of the A-calculus in a very simple fragment of
first-order intuitionisticlogic.

Direct trandation. The first trandation can be seen as the Lcc analogue of the
trandation in [Mil9Q]. Intuitively, an application is treated as a parallel composition,
and the operand and the argument are treated as separate processes communicating on
achannel hidden from the outside world. A A-abstraction is seen as a server waiting
for a message to come down its specific communication channel (such messages are
generated by application). s-reduction is reflected by the universa instantiation and
(linear) modus ponens underlying the operational semantics of the Lcc languages. For
M alambdaterm we define (M), ., by:®

(2 =Xz, 1xz
(Ae MYy =Xz, Ve Vy, izay—o {(M)y (12)
(MN)Y =Xz, Jx, 3y, (M) 2@z yz® (fix Ap,Vs, (i y s—op @ (N) s))

Thetranslation can beread thus: thevalue of A isz iff (M )z, where (M )z isread
asalinear formula with (: = y z) being read as*‘the vaue of = appliedto y is 2", and
(i x z) as'‘thevaueof z isz". For instance, the clause for (M N} isread as: ‘‘the
value of (M N} is z iff there exists an # and y such that the value of M isz and the
value of = applied to y is z, and for any s, thevalue of y is s implies that the value of
Niss".

Concretely, theagent (Az «)z isjust:

Va¥b (i zxb) —o (Cxb)

9Note that we use two constants for message transmission: :, ., .o and:, ., ., —o.
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That is, Az « isviewed as a server that waits for an argument «, and then asserts that
theresult b isjust . Logically, one readsit as saying that thevalue of Az « isz iff for
al » and b, the value of applying = to «z isb impliesthat thevalue of = isb.

Continuation-based translation. We concentrate here on a second tranglation
which is cleaner (does not leave behind residua ‘*argument”-servers) and tighter (it
mimicks one A-reduction step by one process reduction step). The basic ideaisto use
continuations of type £ = d — d, where d = (¢« — o). We define an auxiliary map
that trandates a A-term M to an HLcc term [M](4—.4)—.4, and define the trandation
[M] of a A-term M to HLcc to be [M]I;. We useaconstant :,_ 4—,—., for message
transmission.

[u] = Apr.pu
Ae.M] = App.Ae, NegvVr((Ccaxr)—o(p [M] 7))
[MN] = Mpp.Ae,3z, ([Mlpz)@ (i z[N]e)

The term [u] takes a continuation, and invokes it on u. The term [Az M] takes
a continuation p, a channel ¢ waits for a message pair «, r (the argument, and return
channel), and theninvokesp on [M] and . Theterm [M N takes acontinuation p and
areturn channel ¢, creates anew locd channd z, invokes[A{] on p and z, and feeds it
the argument and the return channel on z.

Example 3.1 Some example trandations:

Ae.x] = ApANaVr((icx r)—o(p x 1))
Araaxx] = ApANaVr((cx pr)—op(Azde((z ¢) @ (Ccx 2)))r)

5 reduction occurs as follows:

[(Az 2)( Az 2)]Ju =x FzVaVr(GCzar)—Tzr)®( z[Az 2] u)
— I[Azz]u
= [rzz]u
O

Thetrand ation representsavery tight connection between thelazy lambda-cal culus
and HLcc. We state the main theorem: 1°

Lemma3.l [(Az M)NJu — [M[z := N]Ju
Proof 3.1 Expand LHS. 0

Lemma3.2 [MN]|Pu — [M’'N]Puwhenever [M]Pu — [M’']Pu

10The final version of the paper will have a much more detailed discussion, including connections with
Sangiorgi’s characterization of the equivalenceinduced by the r-calculus translation [San92].
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Proof 3.2 By structural inductionon M. O
Corollary 3.3 [M N]u — [M’'N]u whenever [M]u — [N]u.
Corollary 34 [M]u — [N]uwhenever M — N.

Lemma35 If [M N]Pu— S,then M N — @ and S =, [Q]Pu, for somelambda-
term ().

Lemma3.6 If [M]u— S, thenthere exist lambda-terms A, B such that M = AB.

Putting these together, we get:

Theorem 3.7 (Encoding theorem) If M — N, then [M]u — [N]u;if [M]u — P,
then there exists a lambda-term V such that P =5 [N]uand M/ — N.

First-order indeterminatecc languages. Thefirst-order indeterminate cc languages
discussed in[ SRP91] (and hence the concurrent | ogi c programming | anguages) are spe-
cia cases of HLcc. Essentialy, each goal in cc is treated as an (unbanged) atomic
formula, each constraint as a banged formula, and each guarded command is trans-
lated into the corresponding method. Recursion is obtained using fix. Assuming the
same underlying constraint system, programs and agents in the syntax of [SRP91] are
trand ated into first-order HLcc by:

[p(X) Al = fix(Ar, (VX, p: X—or @ [A]))
[D1.D2] = [Di®[D2]
[c(] = le
[DZEICZ' —>AZ] = &”(!cl—o [A]_])('Cn —0 [An])
[A1n A7) = [A] ©[A]]
[3X.A] = 3X,.[4]
pP(X)] = p:X

4 Futurework

This paper opens up work in avariety of areas. Many aspects of sub-structura logics
(e.g., non-commutativity and non-associativity, modalitiesfor * mobility” in a sequent)
promise to be very interesting to explore computationally. Also, one may move to a
richer logic, e.g., using alambda-cal culus with dependent types, asin [HHP,Pfe9d1], or
using impredicative features, asin the calculus of constructions[CH88].

Much work needs to be done in developing a coherent semantic framework for
HLcc, exploiting, for example, the now well-established ideas of testing equival ences,
and developing proof procedures for reasoning about programs. Indeed, it seems
feasible that avariety of different operationa notions can be captured by adopting the
simpleideaof taking the denotation of aprocessto be a subset of theformulaslogically
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entailed by it. More generally, the connection between the model -theoretic semantics
of linear logic and appropriate denotational semantics of HLcc will need to be explored.
(The connection between the ' game-theoretic” semantics for linear logic dueto Blass,
and the bisimulation semantics discussed here should be explored.)

Concrete programming languages are already being designed and implemented in
this framework; as a specific task it would be interesting to devel op an asynchronous,
concurrent version of ML based on these idess.
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A Higher-order linear logic
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Thel Right and X L eft rulesonly apply if y isnot freein ", 2, and any nonlogical
theory axioms.

B Proofs sketches of sometheorems

Theorem B.1 (Well-Formed Formulas) If the conclusion sequent I' - X isa syntac-
tically well formed HLcc program, then so is every formula which appearsin a normal
proof.

Proof B.1 Rough Sketch. Thistheorem depends on several permutability of inference
arguments which will not be formally stated or repeated here.

The main argument in the proof of this theorem is that at applications of —o Left,
M Left, and A Left, if thereisaproof, then there exists aproof with the above property.
This norma proof is obtained by permuting inferences found in the left hypothesis of
—o Left until that proof branchistrivial. In such anormal form proof, theinstantiations
of N Left quantifiers always appear immediately below an application of —o Left with
trivid left hand branch. Such afragment of aproof may betrivialy modified to satisfy
the well-formedness condition above. The remaining problematic rule of inferenceis
the A Left rule, which by the restrictions on the quantifiers over left hand sides of —o
enforced by the B and A macros, may never lead to ill-formed formulas. O

LemmaB.2 (Forward Proofs) Ifthereisaproofofl" H G® T inHLL, wherel and ¢
satisfy the syntactic restrictions given above for HLcc, then there is a forward cut-free
proof of this sequent.

Proof B.2 It sufficesto consider acut-freeproof of ' - G @ T. If the proof isaready
forward, then we are done. If thereis an application of aleft rule above an application
of aright rule, we find an application of aright ruleimmediately below an application
of aleft rule, and perform case analysison thesetwo rules. I n effect, we are performing
induction on the depth of cut-free proofs.

By studying the polarities of formulas, one can see that only syntactic entities
correspondingto G or G @ T can appear on theright hand side of a proof. Further, the
only right ruleswhich apply to sequents I - (& are axioms, constraint axioms, T or @
Right. In thefirst three cases, there is no hypothesisto the application of axioms, thus
thereisno left rule applied above theright rule. Thus theright rulein question must be
® Right:

Mk Gy [t Go, g
M, MaFGi1®Go

And now we perform case analysis on the left rule which is applied above this
applicationof @ Right. If that |eft ruleis® Left, we may simply permutetheinferences
in the obvious manner: first perform the @ Left rule, then the @ Right, making sure
that both subformulas broken by the @ Left rule appear in the same branch of the proof.
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This same permutability reasoning applies the cases of: Exchange Left, A Left, 1 Left,
and & Left. For the cases of: p Left, — Left, and @ Left, the —o Left caseistypical:

MEF M, B Gy

M, To FoBF Gy Mk Ge
M, F—oFE T3k GL® Gs
J
: rz,El—Gl r3|_G2 ®R
MEF rz,rg,El_G]_@Gz

M, F—oFE T3k GL® Gs

This same sort of transformation is possible also for ¢ Left and & Left.

The X Left and N Left rules are handled in the same way, that is, by permutation,
although the > Left rule may require that the new variable (y in the proof rule display
in the Appendix) be renamed throughout that proof branch to avoid name clashes.
Formally, the soundness of this technique is stated in the following proposition: if
2P I Aisprovable by application of > Left with variable y, then this sequent is
provable by application of > Left with variable z, for some variable > not appearing
below that application of X Left in the proof tree.

Theremainingleft rulesof HL cc are excluded by the syntacti c conventionsof HL cc,
and thusthis completes the case analysis. 0

LemmaB.3 (Sequential Proofs) Ifthereisaproof of I - G @ T inHLL, wherel” and
( satisfy the syntactic restrictions given abovefor HLcc, then thereisa sequentialized,
forward cut-free proof of this sequent.

Proof B.3 By the previous lemma, it suffices to consider a forward, cut-free proof
of [ = G ® T. If the proof is aready sequentialized, then we are done. If thereis
an application of a — Left rule with applications of other left rules in its left-hand
branch, then we find such an application with the smallest (in terms of depth) left hand
branch. In effect, we are performing induction on the size of the left hand branch of
unsequentialized — Left rulesin forward, cut-free proofs.

Since the proof isforward, al right hand rules appear above all applications of |eft
rules, so we need only consider the case when the rule applied immediately in the | eft
proof branch is a left rule. We perform case analysis on thisrule. In each case, we
permute the application of the left rule to below the application of —o Left in question,
thus reducing the unsequentializedness of that proof branch. For each case, simple
permutability arguments apply. 0

Theorem B.4 (Completeness) ' - ('@ T impliesthat for some A, T —* (A, G).
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Proof B.4 This theorem may be proven by induction on the sequentialized, forward,
cut-free proof of ' = G @ T. Essentially, the work has been done by the previoudly
stated normalization theorems. All that remainsisthe case analysison each ruleapplied
in the normalized proof to see that a corresponding operational rule applies. O

Theorem B.5 (= () IfI" and A satisfy the syntactic restrictionson HLcc programs,
thenl F Aisprovablein HLL, if and only if I f+A.

Proof B.5 Inthe only-if direction, we perform induction on the size of sequentialized
cut-freet- proof. Formally, we first need to show that any + proof can be transformed
into a sequentialized cut-free proof. First perform cut-el imination, then make each | eft
hand branch of —o left inferences forward. This transformation will succeed because
the class of formulas alowed to appear in the antecedent of —o is restricted in HLcc.
Finally, apply the same procedure used above to generate a sequentialized cut-free
proof.

We then perform induction on the size of that normalized proof. If the last proof
step was aright hand rule or an axiom, there is a corresponding proof step in - by
definition. The hypotheses of this - inference may be constructed by induction. If
the last proof stepinthe - proof was aleft hand rule, then we perform case analysison
the rules. Exactly asin the proof of completeness, every left hand rule appliedto al”
satisfying the HL cc restrictions corresponds to an operational step of execution. Thus
one may read the final proof step as a step of execution, I — I’, and by induction
I kA, so by definition of -, we havethat I (A,

In the other direction, we perform induction on the derivation that I ~+A. In the
case that the derivation ends in a right hand side rule, the same rule may be applied
in the construction of the F proof, and the remaining proof may be constructed by
induction. If the - derivation comes from ' — I’ and I'" k+A, then by induction
one may construct a proof of I’ - A, and the proof of this may be extended to a proof
of I F A, by the same argument as the soundness result above, that is, by induction on
thederivation T — I/, and in each case of single operationa step, constructing the
corresponding - proof step. It happensthat thet- proof constructed in thisway will be
sequentialized and cut free. 0
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