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Abstract

We present a very simple and powerful framework for indeterminate, asyn-
chronous, higher-order computation based on the formula-as-agent and proof-as-
computation interpretation of (higher-order) linear logic [Gir87]. The framework
significantly refines and extends the scope of the concurrent constraint program-
ming paradigm [Sar89] in two fundamental ways: (1) by allowing for the consump-
tion of information by agents it permits a direct modelling of (indeterminate) state
change in a logical framework, and (2) by admitting simply-typed �-terms as data-
objects, it permits the construction, transmission and application of (abstractions
of) programs at run-time.

Much more dramatically, however, the framework can be seen as presenting
higher-order (and if desired, constraint-enriched) versions of a variety of other
asynchronous concurrent systems, including the asynchronous (‘‘input guarded”)
fragment of the (first-order) �-calculus, Hewitt’s actors formalism, (abstract forms
of) Gelernter’s Linda, asynchronous assignment-based languages, and Petri nets.
It can also be seen as smoothly layering around the functional programming style
provided by the �-calculus a minimal amount of extra logical machinery needed to
obtain concurrency, synchronization and indeterminism declaratively. Addition-
ally, there are remarkably simple and direct translations of the untyped �-calculus
into the higher-order linear cc (HLcc) programming paradigm.

We give (1) a simple operational semantics for HLcc, (2) establish several
connections between proof-theory and operational semantics, (3) develop the no-
tion of bisimulation for HLcc, along the lines of [Tho89], (4) establish that logical�An abstract of this paper has been submitted for publication. Please send comments to the authors.
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equivalence implies bisimilarity, (5) show how to obtain the effect of recursion
for parametrized processes, (6) demonstrate embeddings of the (asynchronous)�-calculus and untyped �-calculus into HLcc.

In summary, this paper draws on ideas from logic and proof theory to present
a framework for the design and analysis of concurrent programming languages.

1 Introduction and overview

Our objective is to develop a logical foundation for concurrent programming that
transparently integrates constraint programming, functional programming and process
algebras.

Our starting point is the concurrent constraint (cc) programming paradigm (see, e.g.,
[Sar89,SR90,SRP91,JSS91]; we summarize here briefly. Imperative languages may
be thought of as based on the store-as-valuation principle: a state of the computation
is described by a valuation which assigns a unique value to each variable of interest.
In constraint-based computation, this notion is replaced by that of store-as-constraint–
-the store is seen to contain pieces of partial information (e.g., first-order formulas
such as X � Y + Z) which specify a set of (possibly infinite) admissible values
for the variables of interest. The notions of Write and Read underlying imperative
programming languages no longer make sense, and are replaced here by the notions of
Tell and Ask. Computation progresses via a monotonic accumulation of information,
i.e., via Tell operations that add more constraints to the store; and its progress is
monitored by Ask operations which check whether enough information has accumulated
to entail a given constraint. Concurrency is accommodated naturally by conceiving
of multiple agents interacting with a shared store via such ask and tell transactions.
Synchronization is achieved by having an ask request block until there is enough
information (if ever) to entail the given constraint, thereby allowing other processes
an opportunity to unblock the computation by adding more information to the store.
Search non-determinism is introduced by allowing computation to fork into two distinct
branches, preserving only the (possibly disjunctive) information obtained on both.
While simple, these ideas are being used for the design of both programming languages
for distributed systems [SKL90] and very powerful languages for symbolic reasoning
[HS91,HJ90].

From a computational perspective, the cc paradigm may be seen to generalize (and
arose out of) the areas of concurrent logic programming and constraint logic program-
ming. But where are the logical foundations of the (very operationally motivated) cc
paradigm? In [LS91], we have shown that a logical semantics may be given using a
formula-as-agent and proof-as-computation interpretation of intuitionistic logic.1 The
main underlying idea is to regard the steps of computation as expanding the frontier
of a partial proof tree, whose leaves may be regarded as nonlogical axioms describ-
ing the residual computation, and whose root describes the initial state of the system.

1This is to be contrasted with the usual logic programming notion of formula-as-goal and computation-
as-proof-search. Both of these notions can be combined fruitfully through the notion of testing [LS91].
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Each step of the computation unfolds a (leaf) nonlogical axiom into perhaps several
other nonlogical axioms and some concrete proof structure. A completed computation
corresponds to a completed proof.

More generally, these ideas lead to the formula-as-agent interpretation of a larger
class of logics. A subset of the formulas of the logic are viewed as computational
agents. The left-rules in a sequent-style presentation of the logic are taken to specify
the operational ‘‘heating” rules (in the style of [BB90]) which describe how complex
agents may be decomposed into simpler agents, and the basic interactions betwen these
agents. Thus, the operational derivability relation between configurations qua agents
is related to the entailment relation between configurations qua logical formulas. In
general, the logical counterpart of parallel composition is (seen to be) conjunction,
of (ask-)prefixing is (a quantified version of) implication, and of hiding is existential
quantification. Communication occurs (essentially) via constraint-imposition on first-
order variables.

In this paper, we show that a very large area of concurrency is opened up to
this perspective by moving to the setting of a higher-order version of Girard’s linear
logic [Gir87]. Linear logic may be seen as arising from classical logic by dropping
certain structural rules that allow formulas to be arbitrarily duplicated and eliminated
during the course of a derivation. This causes the familiar conjunction and disjunction
operations to split into two: the so-called additive versions that copy formulas, and
the multiplicative versions which do not. This gives formulas the nature of resources
that must be accounted for carefully during proof (computation). The lost power of
the structural rules can be recovered locally by means of the ‘‘modalities” ! and ?. In
particular, the formula !A is allowed to be duplicated any number of times, derelicted
to obtain A, and dropped altogether.2

Informal review of HLcc. The linear logic formulas-as-resources viewpoint may
be reinterpreted as formulas-as-communications. Multiplicative conjunction (
) is
viewed as parallel composition. An (unbanged) atomic formula is regarded as an
indivisible piece of information, a message placed in a pool of messages and agents.
(Since A 
 A is not linearly equivalent to A, multiplicities of messages matter.) A
banged atomic formula is regarded as a permanant (non-consumable), globally valid
piece of information, that is, a constraint (multiplicities of constraints do not matter,
logically !c is linearly equivalent to !c
!c). Linear implication ( �� ) is viewed as
a method for transforming a communication into a collection of agents. Intuitionistic
implication provides a more restricted form of method which can only be invoked with
constraints. AdditiveConjunction ( & ) provides external choice –- the environment can
cause the combination (p �� A& q �� B) to reduce to A or to B by supplying eitherp or q respectively. Universal quantification provides a parameterization mechanism:
the method 8X:(p X) �� (a X) can reduce to a (Y 3) in the presence of the messagep (Y 3). Existential quantification provides hiding –- the ability to generate a new
communication channel distinct from all others in the configuration. (Though it is

2See [Sce90,Lin92] for more motivation and tutorial introductions to linear logic.
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outside the scope of this paper, a form of parallel search can be obtained through the
additive disjunction�.)

Linear communication. The presence of unbanged atomic formulas (‘‘linear
tells”) and linear implication (‘‘linear asks”) now allows for a direct representation
of indeterminacy and state change: the configuration p 
 (p �� r) 
 (p �� q) can
evolve to (entail) either a � r 
 (p �� q) or b � q 
 (p �� r), but not to their tensor
product a 
 b. In Hewitt’s terminology, this kind of indeterminism is called arrival
indeterminism, since it depends on the order in which messages (here, p) are delivered
to methods (here, p �� r, and p �� q).

Indeed linear asks and tells allow for a direct, powerful form of communication.
An example should suffice to convey the flavor. A natural way to model Actor-style
languages within the cc framework (see [SKL90,KS90]) is to represent actor mailboxes
as logical variables equated to bags of values. Sending a message, say 5, to an actor
with associated channel X, then, corresponds to posting the constraint 5 2 X. The
actor suspends, asking whether there is a message on X; when activated, it pops a
message off the bag and recurs with the tail of the bag.

However, such a translation does not work: two different actors may wish to com-
municate the same message to an actor –- hence they would both post, say, the constraint
5 2 X. Operationally we would like both messages to be delivered to (the actor) X; in
(intuitionistic/classical) logic, however, this situation cannot be distinguished from that
in which only one message was sent, since in these logics a ^ a is logically equivalent
to a.

The problem does not arise in linear logic since multiplicities matter, and the above
translation works correctly. Since a configuration is itself a multiset of agents, we need
not use constraints such as 5 2 X. Rather, just atomic formulas of the form X : 5
suffice –- here ‘‘:” is a binary predicate that has no special properties (built-in inference
mechanism). An atom (b �)X : 5 is, by convention, read as ‘‘5 is a message on channelX”. An agent can read a message on the channel, and forward it on another channel Y
by means of the method: (a �)8M:X : M �� Y : M . As we shall see, the agent a
 b
can evolve into the agent Y : 5, as expected. Note that simultaneously many agents can
send to the same channel, and many can read from the same channel (as with p��q andp��r above): the underlying notion of communication is many-to-many as in Linda-
like languages, rather than many-to-one, as in Actor languages. Summarizing: Agents
have access to a communication channel. On this channel, an agent can either post a
message or a method. A method has the ability to suspend until a message matching
a specified pattern arrives on the channel. Once activated, a method may, recursively,
create new channels, and post messages and methods on new or old channels.

Note that state and state change is just the flip side of this ability to receive
messages and consume them. The following example will demonstrate a number of
programming techniques simultaneously. One may set up a counter creator agent
as follows: 4



A � 8counter:(counter creator : counter��9value(value : 0 
8m(counter : m��(8val (m : (inc val)��8v (value : v��value : (v + val)))&8val (m : (value val)��8v (value : v��value : v
 val : v))&8val (m : (dec val)��8v (value : v��value : (v � val)))))):
Informally, such an agent responds to a messagecounter sent on thecounter creator

channel as follows: it sets up a new local communication channel, value, initializes it
with the message 0, and installs a method on the input message channel, which suspends
until a message m arises, and then suspends until m (which is itself a channel), contains
a parametrized inc or dec or val message. In the inc case, it reads the value M on its
private channel (thereby deleting the value), and sends the message M+ val on value.
Similarly, in the other cases.3 Note: an assignable memory location is merely a channel
with a single outstanding message; incoming channels are just like any other channels: : : it is possible to both read and write (post messages and methods on) them; the
effect of lexically scoped, shared, encapsulated, concurrently updatable state variables
is created through the alternation of universal and existential quantifiers; the usual logic
programming ideas of ‘‘incomplete” messages are still available; and in the spirit of
Hewitt’s slogan, control-structures emerge from patterns of communications.

Essentially the system we have presened hitherto (without any built-in constraint
system) is the basis of the programming language Linear Janus [Tse92]. Linear Janus
is a cleaned up and considerably simplified version of Lucy, the ‘‘missing link” between
concurrent logic programming and actor languages described in [KS90]. As such it is
in a long tradition of languages arising from the connection between concurrent logic
programming languages and Actor languages. From a computational perspective, the
system is very close to the asynchronous fragment of the �-calculus [MPW89], and one
can also show that it is possible to embed the untyped �-calculus into it through a very
simple translation. (The translation effectively shows how to interprete the �-calculus
in a very simple fragment of first-order linear or intuitionistic logic.)

The higher-order system. For all its power, however, it is not possible in the
first-order Lcc to pass processes as parameters. At best one can pass names of (channels
to) processes. One cannot obtain unknown processes from communication channels,
destructure them, combine them, run them, apply them to other unknown processes
or otherwise treat them as first-class citizens. This motivates our final move, then, to
higher-order linear logic.

The higher-order version of linear logic we consider is a straightforward adaption of
a presentation of higher-order intuitionistic logic using Church’s simple theory of types
(see Section 2.1 for details). Intuitively, one may understand such a logic as obtained
from first-order linear logic by replacing first-order terms with simply typed �-terms.

3As described here, all these actions will happen exactly once. We will describe below how recursion
and repetition are programmable in the higher-order language.
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One assumes that the set of types comes equipped with a type o for propositions, and
a type � for individuals; the linear connectives can then all be introduced as logical
constants (functions) over o. (Similarly, for each type �, the existential quantifier
Σ�(�!o)!o and the universal quantifier Π�(�!o)!o are also provided. This allows, then,
the expression of terms such as(t �)�a��b��c�:Π�yo(a : y �� Π�zo(b : z �� c : (y 
 z)))
which can be viewed as an abstraction which when applied to three communication
channels a; b and c yields a process that will accept an arbitrary process y on a and z onb, and send their parallel composition y
 z on to c. Of course t is itself just a term and
can be passed around in messages from agent to agent; in that case the receiving agent
would need to use a universal quantifier at a functional (higher-order) type to receive
the message.

In general, higher-order quantification is an exceedingly powerful mechanism, and
developing practical programming languages with such features is a delicate task. The
main restrictionplaced on these quantifiers in HLcc involves limitationson the use of Π,
restricting occurrences of Π to immediately precede ��, with further restrictions which
effectively ensure that it is not possible to universally quantify on the first argument
(the ‘‘channel”) in a message x : t, and no universally quantified unguarded agents
will ever appear during execution. (An agent of the form Π : �x:x is an agent which
can perform any task, provide any information to other agents, etc.; such an agent is
computationally disastrous.)

For pragmatic reasons, it may be desirable to impose syntactic restrictions which
disallowexistential quantificationat functional types and/or to disallowin the head logi-
cal constants or�-abstractions or multiple occurrences of variables (see, e.g., [Wad91]).
This can obviate the need for higher-order unification or matching at run-time; how-
ever, the higher-order structure left in the programming language is still adequate to
construct, assemble, communicate and use higher-order expressions.

Related work. The desire for a clean, higher-order, indeterminate language frame-
work is a long-standing one, both within theoretical and applied areas in concurrency.

Perhaps the most well-developed body of work related to this paper is that on
the �-calculus [MPW89,Mil90,Mil91]. A primary reason for the interestingness of
constraint languages is the notion of constraint-based communication, which subsumes
the notion of mobility of communication channels. It seemed clear to us, therefore,
that there should be ‘‘simple” variants of cc languages which exhibit the computational
characteristics of the �-calculus. Just so. If certain aspects of the �-calculus (e.g.,
unrestricted sums, ‘‘tell”-prefixing) are ignored, the �-calculus is almost identical to
Linear Janus. However, the logical perspective underlying the cc languages has
a lot to offer to work on process algebras: it has provided a ready guide to the
introduction into concurrent programming languages of complex data-structures and
systems of partial information, search non-determinism and first-order and higher-order
quantifiers. Additionally, logical equivalence emerges as even a finer congruence on
processes than bisimulation (see Section 2.5).
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Other related work includes that of [HT92], who presents an asynchronous, first-
order fragment of the �-calculus closely related to Linear Janus, and studies its se-
mantics. No logical interpretation of the calculus is given however. [Tho89] presents
a higher-order version of CCS, including a notion of higher-order bisimulation. In
contrast to the system of this paper, CHOCS uses dynamic binding, does not allow
the transmission of abstractions of programs (indeed, it has no notion of application
–- it is really second-order rather than higher, i.e., !-order). [Bou89] presents the
(asynchronous) -calculus, which abdandons CCS’ parallel composition in favor of
two operators –- interleaving and cooperation. The proof-theoretic analogue of coop-
eration is unclear to us. We do not know whether either of HLcc and the -calculus can
be embedded in the other. [Nie89] presents a system extending the typed �-calculus
with CCS-like processes; the focus of the work is in using types to record the possi-
ble communications of a process. [dBKPR91] present a general class of (first-order)
asynchronous programming languages; these languages should be describable within
first-order Lcc.

There has been considerable work on the integration of logic programming and
functional programming languages [JP91,Lin85,DL86]. However, before the advent of
linear logic, it has not been possible to build such languages centrally on indeterministic
concurrency. The paradigm proposed here –- build a little layer of sub-structural logic
and constraints around the simply-typed lambda-calculus –- seems to be very simple
and rich. Indeed, it should be possible to design powerful asynchronous extensions of
languages like ML based on these ideas.

A number of proposals have been made for programming on top of linear logic.
[AP90] have explored very novel concurrent constructs that communicate by instan-
tiating the endsequent, which is left unspecified in the original goal. The expression
of concurrency in HLcc is more direct. [HP91] adapt the idea of ‘‘uniform proofs”,
underlying a view of logic programming, to the setting of linear logic. [HM91] extend�-Prolog to include a restricted class of linear features. The main computational mech-
anism in both cases is backward-chaining on Horn clauses; it is not clear to us how
‘‘ask synchronization” can be represented in this setting, and how indeterminate com-
putations can be reflected into the logic. The relationship between the two approaches
should be examined further.

[Mil92] independently discusses connections between the �-calculus and linear
logic; parallel composition is mapped to multiplicative disjunction (}), and hiding to
universal quantification. Non-logical constants are used to represent prefixing, non-
deterministic choice, and ‘‘match” guards. A ‘‘dual” translation is mentioned, and this
is very close to the translation we give in Section 3. Indeed, despite some technical
differences it seems clear that this work shares a common perspective with [Mil92].

[Mes90,Mes92] have recently introduced a general theory of concurrent objects
based on concurrent rewriting, and a specific language, Maude. Although semantically
based on completely different logics (rewriting logic versus linear logic), there is a close
connection between first-order, constraint-less HLcc and Maude’s system modules.
HLcc generalizes this nearly-common sublanguage by adding a constraint system and
moving to higher-order. Maude generalizes this sublanguage by adding certain kinds
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of parametricity and object-oriented features such as inheritance.

Rest of this paper. The next section sketches out the formal system –- the logic
underlying HLcc, the language HLcc (with its syntactic restrictions) and a transition
system underlying its operational semantics. The close connection between the opera-
tional semantics and provability in linear logic is discussed. The operational semantics
can be viewed as specifying an incomplete theorem-prover for a fragment of linear
logic, and the theorems in that section show precisely how to extend the operational
semantics to recover completeness. We also discuss a coarser notion of equivalence
motivated from the formula-as-agent viewpoint. Roughly, two formulas are regarded
as indistinguishable if they can engage in the same (potentially infinite) tree of basic
interactions (the asking and telling linear atoms and constraints) with their environ-
ments. Some care is necessary, however, to define the notion of bisimulation (') in
this asynchronous, logical setting in a simple and smooth manner, and to ensure that
two agents are not distinguished because they are communicating programs that, while
inequivalent logically, are bisimilar. Because of the power of the language, it is not
possible to provide a complete axiomitization; we show however, that bisimulation
respects logical equivalence.

Next we discuss how to obtain the effect of recursion via concurrency and communication4;
in particular, we show that it is possible to specify a fixed-point combinator �x at every
type �! o which satisfies the property that �x f ' f(�x f). This can be used to get
the effect of recursion, and the ‘‘replication” operator of [Mil90].

Section 3 briefly compares the HLcc framework with other asynchronous computing
frameworks, emphasizing the embeddings of the �-calculus and �-calculus in HLcc.

2 The basic paradigm

2.1 The basic logic, HLL.

The set of types, ranged over by � is taken to consist of at least the base types o and i,
and is closed under function-space construction:�::=o j � j �! � (1)

In a concrete language, other basic types (e.g., real, int) may be given; for the
present paper we take � as representative.

Assume given denumerably many variables and constants at each type, and the
logical constants 1o, !o!o, &;
; �� o!o!o , and for each type�, the constants Σ�;Π�
of type (� ! o) ! o. (Constants other than these will also be called parameters.)
We shall adopt the usual syntactic convention of writing ! prefix, &;
; �� infix, and
Σ��x�:M as 9x�:M and Π��x�:M as 8x�:M . As usual, the terms are given by:t::=v� j k� j (�x�:t�)�!� j (t�!�t�)� (2)

4Note that HLcc has no explicit recursion, and the underlying�-calculus is typed, so strongly terminating.
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We define two terms s� and t� to be �-equivalent, and write s� =� t� if they
can be shown equivalent using (�; �; �) rules. For background on such a treatment of
terms, the reader may refer to [NM90]. As shown there, under such conversion rules a�-term M has a unique normal form; we shall denote it by �(M ).

A sequent is of the form Γ ` ∆ where Γ;∆ are multisets of formulas (terms of typeo). The inference figures for HLL are the expected ones for a higher-order logic in the
style of Church; they are given in full in Appendix A.

A theorem fundamental to the study of logic is the cut-elimination theorem, which
states that whatever can be proven in a system, such as HLL, can be proven without
the use of the cut rule. This theorem is used to prove consistency and in first order
and propositional system yields a very useful subformula property. Cut-elimination is
often demonstrated by providing a terminating cut-elimination procedure which slowly
eliminates cuts from a given proof.

Theorem 2.1 (Cut-elimination) All instances of the (Cut) rule can be eliminated from
a proof of a sequent Γ ` ∆ in HLL.

This theorem may be proven by providing equivalent systems with extra rules,
and showing that the extra rules and cut can be eliminated simultaneously. The extra
rules stand for several applications of other rules, and serve to simplify the proof of
termination of cut-elimination.

In what follows, we will assume that the underlying logic has been augmented by
a user-specified constraint system C. For our present purposes, it suffices to consider
that the user has provided certain ‘‘built-in” functions, and non-logical axioms of the
form:

!c1; : : : ; !cn `!c
where c is an atom using the given built-in functions. Henceforth, when we talk of
linear derivability, `, we shall assume that some such constraint system C is already
built into the system.5

2.2 HLcc

A certain sub-class of HLL formulas are isolated as HLcc processes. In order to
more crisply state the syntactic restrictions on HLcc, we make a few modifications.
First, we introduce the types c (for constraints) and m (for methods, i.e., implications).
Second, we eliminate the constants !;Π and �� from our vocabulary, and instead
introduce two new ‘‘constants”, A and Bh.6 The combinator Ac!o!m is a simple
abbreviation: if the constants !c!o and �� o!o!m are available, it can be understood

5Of course, a particular HLcc language may have a vacuous constraint system –- Linear Janus is an
example. This need not cripple the language –- linear ask and tell operations are extremely powerful in their
own right.

6In concrete syntax, we allow the user to use !;Π and �� ; we merely require that the program be�-equivalent to a program in the restricted syntax. Also, we will sometimes write m instead of &1m, in a
context where an o-term is expected.
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as A = �dc:�ao:!d �� a. For h�1!:::!�n!o, a term of certain shape (see below) we
introduce a term (Bh)(�1!:::!�n!o)!m. Intuitively,Bha stands for8x1�1 : : :xn�n :(hx1 : : : xn) �� (a x1 : : : xn)
We require that (1) h be in �-normal form, say �x1: : : :xn:k t1 : : : tm, (2) that k be
a parameter, and (3) that each xi have at least one strict occurrence in k t1 : : : tn
(i.e., occurrences which ‘‘cannot disappear” from h by � reduction). This is ensured
by requiring that at least one occurrence of each variable xi in k t1 : : : tn is not in the
application-scope of a variable other than the xi; also specific rules are given for each
constant that can appear in h (e.g., cons, if-then-else).

We note another important restriction on h. In order to operationally regard 9X A
as treatingX as a ‘‘private” channel inA, it is necessary to curtail the power of universal
quantification. The simplest way to achieve this is to require: (4) if k is the constant
‘‘:”, then t1 is a variable distinct from x1; : : : ; xn. This ensures that no method can
universally quantify on all communication channels: agent such as B(�x�y (x : y))a,
which logically can accept any message y on any communication channel x (even one
newly created using existential quantification) are banned. While this solution is not
general, it is very adequate in practice.

HLcc processes are now merely terms of type o. For simplicity we assume given
a family of k-ary &-operations, one for each k > 0, rather than a single binary &-
operation. Also, we assume that existential quantification is provided only at type �.
The built-in ‘‘logical” constants in HLcc then are: 71o – Nil
o!o!o – Parallel composition

Σ�(�!o)!o – Local channels
&km!:::!m!o – Guarded choice(Bh�1!:::!�n!o)(�1!:::!�n!o)!m – Linear Ask methodAc!o!m – Ask method

(3)

The set of HLcc terms H is then the set of lambda-terms generated from these
logical constants with the use of variables, parameters, and abstraction and application.

2.3 Operational semantics.

As configurations we take multisets of processes, ranged over by Γ;∆. For Γ such a
multiset, we let �(Γ) stand for the submultiset of formulas in Γ of the form !d, for d a
constraint. Also, for V a set of variables, and c a constraint, we use the notation �V:c
to mean the existential closure of c on all variables other than V .

We take the transition relation �! to be the smallest binary relation on config-
urations closed under the following five simple and intuitive inference rules. First,

7Strictly speaking, existential quantification and tensor are also provided for constraints, that is, we have
another constant Σc� : (� ! c) ! c, and 
cc!c!c . However, we shall not be pedantic, and shall usually
avoid distinguishing between Σ� and (Σc)�, and between
 and 
c.
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we assume that �-equivalence for typed terms is transparently built into the reduction
mechanism:F =� F 0 (Γ; F 0) �! (∆; G0) G0 = �G(Γ; F ) �! (∆; G) (4)

Second, 1 disappears silently:

Γ �! ∆(Γ; 1) �! ∆
(5)

The top-level multiset of agents represents their parallel composition:(Γ; F;G) �! ∆(Γ; F 
G) �! ∆
(6)

The execution of a Σ term requires the creation of a new communication channel:(Γ; F y) �! ∆ y� 62 var(Γ;∆)(Γ;Σ�F ) �! ∆
(7)

A Linear Ask can consume a message A provided that it is possible to find values
for its universally quantified variables such that A matches its template:�(Γ); A ` ht1 : : : tn(Γ; A;&jm1 : : : (BhF ) : : :mj) �! (Γ; F t1 : : : tn) (8)

An (Intuitionistic) Ask operation checks to see if the current store is strong enough
to entail the given constraint:�(Γ) `!c(Γ;&jm1 : : : (AcF ) : : :mj) �! (Γ; F ) (9)

This completes the definition of the operational semantics of HLcc. Below we
point out interesting restricted sublanguages of HLcc, and then we discuss connections
between HLcc and the logic HLL. The logical connections discussed for full HLcc also
apply to the more restricted cases.

Restricted HLcc languages. Propositional Lcc is obtained by admitting, in addition
to the logical constants, only constants at base types. First-order Lcc is obtained by
allowing existential and universal quantification only at base types.

For pragmatic reasons, it may be desirable to not allow existential quantification at
functional types. In such cases, there can be no possibility of expressing constraint-
solving at higher-types (higher-order unification is not needed). In addition, the user
may not be allowed to have �-abstractions in the heads of clauses. This would rule out
the need for higher-order matching as well: however, the higher-order structure left in
the programming language is still adequate to construct,assemble, communicate and use
higher-order expressions. (One cannot, however, decompose higher-order expressions,
or incrementally construct them using constraints, as can be done in �-Prolog.)
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2.4 Connection between operational and logical interpretations.

There is a tight connection between the operational and logical properties of HLcc.
Essentially, both soundness and a form of completeness can be established. (Details of
the following section may be found in the Appendix.)

This operational semantics given above is sound with respect to HLL, as may be
seen by induction on the operational derivation. Soundness effectively means that one
will never get a wrong answer from the operational semantics.

Theorem 2.2 (Soundness) Γ ` ∆ whenever Γ �! Γ0 and Γ0 ` ∆.

Cut-elimination in HLL is not sufficient to guarantee the subformula property: any
formula appearing in a cut-free proof must also appear in the conclusion of the proof.
(This property is violated by the � reductions allowed in HLL.) If it held, the sub-
formula property could be used to show that if the formulas in the conclusion satisfied
some property closed under subformulas, then so would formulas in any cut-free proof.
Nevertheless, we can show the following preservation property:

Theorem 2.3 (Well-Formed Formulas) IfF;G are well-formed HLcc processes, then
so is any formula appearing in a proof of F ` G.

Though the above operational semantics is incomplete in general, a very useful
form of completeness can be shown to hold. We define a forward proof to be a proof
where there are no applications of right rules below any applications of left rules. For
the purposes of this definition, we consider identity to be a right rule. In other words,
a forward proof is one where all the ‘‘action” happens on the left of a sequent until the
very end, where the right hand side is unwound to the axioms. In the following, let G
be a meta-variable ranging over goals, that is, possibly existentially quantified tensor
conjunctions of atomic formulas or constraints.

Lemma 2.4 (Forward Proofs) If there is a proof of Γ ` G
> in HLL, where Γ is an
HLcc configuration, andG a goal, then there is a forward cut-free proof of this sequent.

We define a sequentialized proof to be a proof where there are no applications of
left rules in the left hand proof branch of an (�� Left) inference. For the purposes of
this definition, we consider identity to be a right rule. This property will be of interest
mainly for proofs already heavily normalized.

Lemma 2.5 (Sequential Proofs) If there is a proof of Γ ` G 
 > in HLL, for Γ an
HLcc configuration, andG a goal, then there is a sequentialized, forward cut-free proof
of this sequent.

Given the existence of sequentialized, forward, cut-free proofs for any provable
sequent, we can show:

Theorem 2.6 (Completeness) Γ ` G
> implies that for some ∆, Γ �!? (∆; A1; : : : ; An),
and A1; : : : ; An ` G.
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Finally, we show how�! can be extended in a very simple way to obtain a complete
proof procedure for the HLcc fragment. We define the relation j; as the least relation
containing the right hand side inference rules and axioms of `, and satisfying the ‘‘cut”
inference rule:

Γ �! ∆ ∆ j;Θ
Γ j;Θ

(10)

Theorem 2.7 (`= j;) If Γ and ∆ satisfy the syntactic restrictions on HLcc programs,
then Γ ` ∆ is provable in HLL iff Γ j;∆.

2.5 Bisimulation semantics

In the previous section we presented logical equivalence of processes. This is quite a
powerful notion –- indeed it already gives us a number of equational laws to work with
(see Table 1), laws that are established in the setting of proces algebras via operational
arguments.

However, logical equivalence is not able to capture many essential aspects of
HLcc qua concurrent programming language. For instance, we are unable to use the
underlying logic to talk about liveness properties, or to reason about non-terminating
computations. Moreover, if some of the logical features are used in a limited way (e.g.,
universal quantified variables are prevented from occurring in certain places in certain
atoms), then operational equivalence may not imply logical equivalence. For, fewer
contexts are available to operationallydistinguishbetween processes, hence operational
equivalence is coarser.8

Therefore, it seems appropriate to view HLcc as a formalism for concurrent compu-
tation, and analyze it using the well-developed set of techniques from process algebra.
A number of equivalences have by now been studied for concurrent systems –- here we
focus on one of the finest such equivalences, bisimulation.

We move away from the traditional SOS-style of giving semantics to concurrent
languages. In particular that style is too tied to the individual steps made by a process,
and to labels carrying information at each step. In logical asynchronous computation
of the kind described here, it is much more natural to allow pieces of information to
accumulate in the store and then be used as appropriate. This breaks a fundamental
conflict in the granularity of transitions and the granularity of constraint imposition.
In order to define higher-order bisimulation, we need to extend a binary relation on
processes to a binary relation defined at all types.

Definition 2.1 Let R be a binary relation on H. Then [R] is the least relation on H
extending R[ =� and closed under the inference rules:� (�x� M�) [R] (�x� N�) if M� [R]N� ,

8Indeed, this can already be seen in the (intuitionistic) determinate cc case. The closure operator
semanticsgiven in [SRP91] does not give us all I.L. connectives: certain first-order formulas are operationally
indistinguishable while being logically distinct.
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� (M�!�N�) [R] (M 0�!�N 0�) if M�!� [R]M 0�!� and N� [R]N 0�.

Definition 2.2 Let =) be the least reflexive and transitive relation containing�! and
closed under the rules:� (Γ; F 
G) =) (Γ; F;G),� (Γ;Σ�F ) =) (Γ; FY�), provided that Y� is not free in Γ; F ,� (Γ; F ) =) (Γ; G), if F =� G.

Corresponding to the notion of weak bisimulation in CCS, we have:

Definition 2.3 (Reactive equivalence) Reactive equivalence on the variables V (writ-
ten 'V ) is the largest binary, symmetric relationship over configurations such that
Γ 'V ∆ implies

1. Whenever Γ =) Γ0 and �(Γ0) `!c, where var(c) � V , there is a ∆0 such that
∆ =) ∆0, �(∆0) `!c, and Γ0 'V ∆0.

2. Whenever Γ =) (Γ0; kt1 : : : tn), and either k 6=: or var(t1) � V , there is a
∆0; B such that ∆ =) (∆0; B), and, Γ0 'W ∆0 and A ['W ] B, where W =V [ var(�(A)) [ var(�(B))

3. For all A with fvar(A) � V , (Γ; A) 'V (∆; A).
4. For all c with fvar(c) � V , (Γ; !c) 'V (∆; !c).
5. Γ �! iff ∆ �! (where by Γ �! we mean that there is a configuration Γ0 such

that Γ �! Γ0).
We will write P ' Q (for processes P;Q) to mean P 'var(P )[var(Q) Q.

Theorem 2.8 Reactive equivalence is a congruence for HLcc. That is.� P1 
 P2 ' Q1 
Q2,� 9x:P1 ' 9x:Q1,� &1AcP1 ' &AdQ1,� &1Bh(�x1 : : : �xn:P1) ' &Bh(�x1 : : :�xn:Q1),� &km1 : : :mk ' &km0
1 : : :m0k
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(1) &km1 : : :m m0 : : :mk ' &km1 : : :m0 m: : :mk(2) &km1 : : :m m : : :mk ' &k�1m1 : : :m : : :mk(3) F1 
 F2 ' F2 
 F1(4) (F1 
 F2)
 F3 ' F1 
 (F2 
 F3)(5) F 
 1 ' F(6) 9x9yF ' 9y9xF(7) 9x9x:F ' 9x:F(8) (9xF1)
 F2 ' 9x(F1 
 F2) x 62 fv(q)(9) 9x:F ' F x =2 fv(F )(10) F1 ' F2 (F =� G)
Table 1: Laws for reactive congruence

whenever Pi ' Qi, for i = 1; : : :k, `!c ��� !d, and &1mi ' &1m0i, for i =
1; : : : ; k.

Thus, synchronization trees give rise to a model for (this fragment of) linear logic.

Theorem 2.9 F ' G whenever ` F ��� G.

The proof is pretty direct, using the cut-elimination theorem. The theorem imme-
diately leads to the various laws in Table 1

2.6 Generating recursive behaviors

Parametrized processes can be defined recursively in HLcc –- for any type �, a fixed-
point operator can be defined at type � = �! o:�x d= �p�!��x�(9b�:(Mpbx)
 (b : (Mp))M d= �p�!��b��x�:8z�!�:b : z �� p(�x�9b� (zbx
 b : z))x (11)

Proposition 2.10 Let � be the type �! o. Then fix(�!�)!�) p t ' p(fix p)t for any
terms p�!� ; t�.

Example 2.1 It is now clear how to program a counter that can accept more than one
message:c � �counter9value(value : 0
 rep method counter�m (8val (m : (inc val)��8v (value : v��value : (v + val)))&8val (m : (value val)��8v (value : v��value : v
 val : v))&8val (m : (dec val)��8v (value : v��value : (v � val)))):rep method� (�x (�p�channel�body8m (channel : m) �� (p channel body)
 (body m))):
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3 Connection with other paradigms

Petri nets. HLL provides simple encodings of Petri net reachability. Consider the
following formula: x : (fa; cgSS)��x : (SS b). This may be seen as an encoding
of a Petri net transition which takes a token from place a and another from place c and
replaces them with one token on place b. This encoding enforces a kind of interleaving
model of concurrency for the Petri net. This and other connections between linear
logic and Petri nets have been well-studied [Asp87,GG89,MOM89,AFG90,GG90],
and extended in various ways to cover other models of concurrency [Laf90,Pra92]. In
fact, the Lcc languages can be seen as a ‘‘first-order” version of Petri nets augmented
with constraints, and HLcc as a ‘‘Higher-order” version.

In the above encoding, the atoms a, b, and c contain no internal structure. However,
one may consider ‘‘colored tokens” which contain some fixed amount of internal
information, or even more expressive ‘‘first order tokens” which may carry arbitrary
amounts of information. Such tokens may be encoded easily in HLcc.

Actors and Linda. As discussed in the introduction, the basic actor model corre-
sponds to the first-order, constraint-less version of HLcc, with ‘‘:” as the only atomic
formula. Indeed, the system is more powerful in that it allows for the dynamic installa-
tion of methods on pre-existing mailboxes –- hence some restriction in expressiveness
is needed to get actors exactly. Since the basic communication mechanism in Lcc
can be seen as ‘‘many-to-many” rather than ‘‘many-to-one,” HLcc also immediately
provides a constraint-based, ‘‘higher-order” version of the Linda computation model.
Indeed, each channel can be thought of as a Linda tuple-space –- the ‘‘in” operation
corresponds to posting a message, and the ‘‘out” operation corresponds to reading a
message.�-calculus. Table 2 demonstrates, how the ‘‘asynchronous” subset of the �-calculus
[MPW89] may be embedded into (first-order) Lcc. Channels are treated as first-order
variables, and the rest of the translation follows naturally. The seemingly mysterious
notions of ‘‘extrusion” and ‘‘intrusion” of scope are seen as well-known operational
manifestations of the logical properties of the first-order quantifiers. It is possible to
translate the entire language (i.e., tell-prefixing as well) –- at the cost of implementing
a synchronous �-calculus transmission with a few-step transmit/acknowledge protocol.

Lambda calculus. Perhaps the most remarkable connection is with the lambda calcu-
lus: there are at least two direct and simple translation of the (untyped) lambda-calculus
intoLcc languages. (We focus here on the lazy version of the lambda-calculus [AO89].)
The first is an analog of the translation to the �-calculus in [Mil90]; indeed it can be
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[0] = 1[(y)P ] = 9y�:[P ][x̄y:0] = x : y[x(y):P ] = 8y�:x : y �� [P ][P j Q] = [P ]
 [Q][[x = y]P ] = !(x = y)��[P ][A(X1; : : : ; Xn)] = A : X1 : : :Xn[A(X1; : : : ; Xn) = P ] = �x(�ro (8X1� : : :8Xn�A : X1 : : :Xn��r 
 [P ]))
Choice non-determinism (‘‘+”) is not handled; a guarded version can be translated into
methods, as for the cc languages below.
Note that the structural rules of [Mil90] are immediately verified. That is, P � Q
implies [P ] ��� [Q].

Table 2: Translation of the input-guarded �-calculus to Lcc

seen as providing a direct embedding of the �-calculus in a very simple fragment of
first-order intuitionistic logic.

Direct translation. The first translation can be seen as the Lcc analogue of the
translation in [Mil90]. Intuitively, an application is treated as a parallel composition,
and the operand and the argument are treated as separate processes communicating on
a channel hidden from the outside world. A �-abstraction is seen as a server waiting
for a message to come down its specific communication channel (such messages are
generated by application). �-reduction is reflected by the universal instantiation and
(linear) modus ponens underlying the operational semantics of the Lcc languages. ForM a lambda-term we define hM i�!o by:9hxi = �z� : x zh�x M i = �z� 8x�8y� : z x y �� hM i yhMN i = �z� 9x�9y� (hM i x
 : x y z 
 (�x �po8s� (: y s��p 
 hN i s)) (12)

The translation can be read thus: the value of M is z iff hM iz, where hM iz is read
as a linear formula, with (: x y z) being read as ‘‘the value of x applied to y is z”, and(: x z) as ‘‘the value of x is z”. For instance, the clause for hMN i is read as: ‘‘the
value of hMN i is z iff there exists an x and y such that the value of M is x and the
value of x applied to y is z, and for any s, the value of y is s implies that the value ofN is s”.

Concretely, the agent h�x xiz is just:8x8b (: z x b) �� (: x b)
9Note that we use two constants for message transmission: :�!�!o and :�!�!�!o .
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That is, �x x is viewed as a server that waits for an argument x, and then asserts that
the result b is just x. Logically, one reads it as saying that the value of �x x is z iff for
all x and b, the value of applying z to x is b implies that the value of x is b.

Continuation-based translation. We concentrate here on a second translation
which is cleaner (does not leave behind residual ‘‘argument”-servers) and tighter (it
mimicks one �-reduction step by one process reduction step). The basic idea is to use
continuations of type k � d ! d, where d � (� ! o). We define an auxiliary map
that translates a �-term M to an HLcc term [M ](d!d)!d, and define the translation[[M ]] of a �-term M to HLcc to be [M ]Ik. We use a constant :�!d!�!o for message
transmission.[u] = �pk:pu[�x:M ] = �pk:�c�:8xd8r�((: c x r)��(p [[M ]] r))[MN ] = �pk:�c�9z� (([M ] p z) 
 (: z [[N ]] c))

The term [u] takes a continuation, and invokes it on u. The term [�x M ] takes
a continuation p, a channel c waits for a message pair x; r (the argument, and return
channel), and then invokes p on [[M ]] and r. The term [MN ] takes a continuation p and
a return channel c, creates a new local channel z, invokes [M ] on p and z, and feeds it
the argument and the return channel on z.

Example 3.1 Some example translations:[�x:x] = �p�c8x8r((: c x r)��(p x r))[�x:xx] = �p�c8x8r((: c x p r)��p(�z9c((x c) 
 (: c x z)))r)� reduction occurs as follows:[[(�x x)(�x x)]]u =� 9z (8x8r((: z x r)��(I x r)) 
 (: z [[�x x]] u)�! I[[�x x]] u=� [[�x x]]u
The translation represents a very tight connection between the lazy lambda-calculus

and HLcc. We state the main theorem:10

Lemma 3.1 [[(�xM )N ]]u �! [[M [x := N ]]]u
Proof 3.1 Expand LHS.

Lemma 3.2 [MN ]Pu�! [M 0N ]Pu whenever [M ]Pu �! [M 0]Pu
10The final version of the paper will have a much more detailed discussion, including connections with

Sangiorgi’s characterization of the equivalence induced by the �-calculus translation [San92].
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Proof 3.2 By structural induction on M .

Corollary 3.3 [[MN ]]u�! [[M 0N ]]u whenever [[M ]]u�! [[N ]]u.

Corollary 3.4 [[M ]]u�! [[N ]]uwhenever M �! N .

Lemma 3.5 If [MN ]Pu �! S, then MN ! Q and S =� [Q]Pu, for some lambda-
term Q.

Lemma 3.6 If [[M ]]u! S, then there exist lambda-terms A;B such that M � AB.

Putting these together, we get:

Theorem 3.7 (Encoding theorem) If M ! N , then [[M ]]u! [[N ]]u; if [[M ]]u! P ,
then there exists a lambda-term N such that P =� [[N ]]u and M �! N .

First-order indeterminate cc languages. The first-order indeterminate cc languages
discussed in [SRP91] (and hence the concurrent logic programming languages) are spe-
cial cases of HLcc. Essentially, each goal in cc is treated as an (unbanged) atomic
formula, each constraint as a banged formula, and each guarded command is trans-
lated into the corresponding method. Recursion is obtained using fix. Assuming the
same underlying constraint system, programs and agents in the syntax of [SRP91] are
translated into first-order HLcc by:[p(X) :: A] = �x(�ro (8X� p : X��r 
 [A]))[D1:D2] = [D1]
 [D2][c] = !c[ i2Ici ! Ai] = &n(!c1 �� [A1]) : : : (!cn �� [An])[A1 ^A2] = [A1]
 [A2][9X:A] = 9X�:[A][p(X)] = p : X
4 Future work

This paper opens up work in a variety of areas. Many aspects of sub-structural logics
(e.g., non-commutativity and non-associativity, modalities for ‘‘mobility” in a sequent)
promise to be very interesting to explore computationally. Also, one may move to a
richer logic, e.g., using a lambda-calculus with dependent types, as in [HHP,Pfe91], or
using impredicative features, as in the calculus of constructions [CH88].

Much work needs to be done in developing a coherent semantic framework for
HLcc, exploiting, for example, the now well-established ideas of testing equivalences,
and developing proof procedures for reasoning about programs. Indeed, it seems
feasible that a variety of different operational notions can be captured by adopting the
simple idea of taking the denotation of a process to be a subset of the formulas logically
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entailed by it. More generally, the connection between the model-theoretic semantics
of linear logic and appropriate denotational semantics of HLcc will need to be explored.
(The connection between the ‘‘game-theoretic” semantics for linear logic due to Blass,
and the bisimulation semantics discussed here should be explored.)

Concrete programming languages are already being designed and implemented in
this framework; as a specific task it would be interesting to develop an asynchronous,
concurrent version of ML based on these ideas.
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A Higher-order linear logicIdentity F ` F �1 ` F;�1 �2; F ` �2�1;�2 ` �1;�2 CutExch. Left �1; F;G;�2 ` ��1; G; F;�2 ` � � ` �1; F;G;�2� ` �1;G; F;�2 Exch. Right� Left �; F 0 ` � F !� F 0�; F ` � � ` �; F 0 F !� F 0� ` �; F 0 � Right
 Left �; F;G ` ��; (F 
 G) ` � �1 ` F;�1 �2 ` G;�2�1;�2 ` (F 
G);�1;�2 
 Right�� Left �1 ` F;�1 �2; G ` �2�1;�2; (F��G) ` �1;�2 �; F ` G;�� ` (F��G);� �� Right} Left �1; F ` �1 �2; G ` �2�1;�2; (F } G) ` �1;�2 � ` F;G;�� ` (F } G);� } Right& Left �; F ` � �; G ` ��; (F&G) ` � �; (F&G) ` � � ` F;� � ` G;�� ` (F&G);� & Right� Left �; F ` � �;G ` ��; (F � G) ` � � ` F;� � ` G;�� ` (F �G);� � ` (F �G);� � Right! W � ` ��; !F ` � �; !F; !F ` ��; !F ` � ! C! D �; F ` ��; !F ` � !� ` F; ?�!� `!F;?� ! S? W � ` �� `?F;� � `?F;?F;�� `?F;� ? C? D � ` F;�� `?F;� !�; F `?�!�;?F `?� ? S? Left � ` F;��; F? ` � �; F ` �� ` F? ;� ? Right0 Left �;0 ` � � ` >;� > Right? Left ? ` � ` �� ` ?;� ? Right1 Left � ` ��;1 ` � ` 1 1 Right� Left �; P t ` ��;�P ` � � ` Py;�� ` �P;� 8 Right� Left �; P y ` ��;�P ` � � ` Pt;�� ` �P;� � Right
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The Π Right and Σ Left rules only apply if y is not free in Γ;Σ, and any nonlogical
theory axioms.

B Proofs sketches of some theorems

Theorem B.1 (Well-Formed Formulas) If the conclusion sequent Γ ` Σ is a syntac-
tically well formed HLcc program, then so is every formula which appears in a normal
proof.

Proof B.1 Rough Sketch. This theorem depends on several permutability of inference
arguments which will not be formally stated or repeated here.

The main argument in the proof of this theorem is that at applications of �� Left,
Π Left, and � Left, if there is a proof, then there exists a proof with the above property.
This normal proof is obtained by permuting inferences found in the left hypothesis of�� Left until that proof branch is trivial. In such a normal form proof, the instantiations
of Π Left quantifiers always appear immediately below an application of �� Left with
trivial left hand branch. Such a fragment of a proof may be trivially modified to satisfy
the well-formedness condition above. The remaining problematic rule of inference is
the � Left rule, which by the restrictions on the quantifiers over left hand sides of ��
enforced by the B and A macros, may never lead to ill-formed formulas.

Lemma B.2 (Forward Proofs) If there is a proof of Γ ` G
> in HLL, where Γ andG
satisfy the syntactic restrictions given above for HLcc, then there is a forward cut-free
proof of this sequent.

Proof B.2 It suffices to consider a cut-free proof of Γ ` G
>. If the proof is already
forward, then we are done. If there is an application of a left rule above an application
of a right rule, we find an application of a right rule immediately below an application
of a left rule, and perform case analysis on these two rules. In effect, we are performing
induction on the depth of cut-free proofs.

By studying the polarities of formulas, one can see that only syntactic entities
corresponding to G or G
> can appear on the right hand side of a proof. Further, the
only right rules which apply to sequents Γ ` G are axioms, constraint axioms, > or 

Right. In the first three cases, there is no hypothesis to the application of axioms, thus
there is no left rule applied above the right rule. Thus the right rule in question must be
 Right:

Γ1 ` G1 Γ2 ` G2 
 R
Γ1;Γ2 ` G1 
 G2

And now we perform case analysis on the left rule which is applied above this
application of
 Right. If that left rule is
 Left, we may simply permute the inferences
in the obvious manner: first perform the 
 Left rule, then the 
 Right, making sure
that both subformulas broken by the 
 Left rule appear in the same branch of the proof.
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This same permutability reasoning applies the cases of: Exchange Left, � Left, 1 Left,
and & Left. For the cases of: } Left, �� Left, and � Left, the �� Left case is typical:

...
Γ1 ` F ...

Γ2; E ` G1 ��L
Γ1;Γ2; F��E ` G1

...
Γ3 ` G2 
R

Γ1;Γ2; F��E;Γ3 ` G1 
 G2+
...

Γ1 ` F ...
Γ2; E ` G1

...
Γ3 ` G2 
R

Γ2;Γ3; E ` G1 
 G2 ��L
Γ1;Γ2; F��E;Γ3 ` G1 
 G2

This same sort of transformation is possible also for } Left and � Left.
The Σ Left and Π Left rules are handled in the same way, that is, by permutation,

although the Σ Left rule may require that the new variable (y in the proof rule display
in the Appendix) be renamed throughout that proof branch to avoid name clashes.
Formally, the soundness of this technique is stated in the following proposition: if
Γ;ΣP ` ∆ is provable by application of Σ Left with variable y, then this sequent is
provable by application of Σ Left with variable z, for some variable z not appearing
below that application of Σ Left in the proof tree.

The remaining left rules of HLcc are excluded by the syntactic conventions of HLcc,
and thus this completes the case analysis.

Lemma B.3 (Sequential Proofs) If there is a proof of Γ ` G
> in HLL, where Γ andG satisfy the syntactic restrictions given above for HLcc, then there is a sequentialized,
forward cut-free proof of this sequent.

Proof B.3 By the previous lemma, it suffices to consider a forward, cut-free proof
of Γ ` G 
 >. If the proof is already sequentialized, then we are done. If there is
an application of a �� Left rule with applications of other left rules in its left-hand
branch, then we find such an application with the smallest (in terms of depth) left hand
branch. In effect, we are performing induction on the size of the left hand branch of
unsequentialized�� Left rules in forward, cut-free proofs.

Since the proof is forward, all right hand rules appear above all applications of left
rules, so we need only consider the case when the rule applied immediately in the left
proof branch is a left rule. We perform case analysis on this rule. In each case, we
permute the application of the left rule to below the application of �� Left in question,
thus reducing the unsequentializedness of that proof branch. For each case, simple
permutability arguments apply.

Theorem B.4 (Completeness) Γ ` G
 > implies that for some ∆, Γ �!? (∆; G).
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Proof B.4 This theorem may be proven by induction on the sequentialized, forward,
cut-free proof of Γ ` G 
 >. Essentially, the work has been done by the previously
stated normalization theorems. All that remains is the case analysis on each rule applied
in the normalized proof to see that a corresponding operational rule applies.

Theorem B.5 (`� j;) If Γ and ∆ satisfy the syntactic restrictions on HLcc programs,
then Γ ` ∆ is provable in HLL, if and only if Γ j;∆.

Proof B.5 In the only-if direction, we perform induction on the size of sequentialized
cut-free ` proof. Formally, we first need to show that any ` proof can be transformed
into a sequentialized cut-free proof. First perform cut-elimination, then make each left
hand branch of �� left inferences forward. This transformation will succeed because
the class of formulas allowed to appear in the antecedent of �� is restricted in HLcc.
Finally, apply the same procedure used above to generate a sequentialized cut-free
proof.

We then perform induction on the size of that normalized proof. If the last proof
step was a right hand rule or an axiom, there is a corresponding proof step in j; by
definition. The hypotheses of this j; inference may be constructed by induction. If
the last proof step in the ` proof was a left hand rule, then we perform case analysis on
the rules. Exactly as in the proof of completeness, every left hand rule applied to a Γ
satisfying the HLcc restrictions corresponds to an operational step of execution. Thus
one may read the final proof step as a step of execution, Γ �! Γ0, and by induction
Γ0 j;∆, so by definition of j;, we have that Γ j;∆.

In the other direction, we perform induction on the derivation that Γ j;∆. In the
case that the derivation ends in a right hand side rule, the same rule may be applied
in the construction of the ` proof, and the remaining proof may be constructed by
induction. If the j; derivation comes from Γ �! Γ0 and Γ0 j;∆, then by induction
one may construct a proof of Γ0 ` ∆, and the proof of this may be extended to a proof
of Γ ` ∆, by the same argument as the soundness result above, that is, by induction on
the derivation Γ �! Γ0, and in each case of single operational step, constructing the
corresponding ` proof step. It happens that the ` proof constructed in this way will be
sequentialized and cut free.
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