On the Deterministic Complexity of Factoring Polynomials over Finite Fields

Victor Shoup
Computer Sciences Department

University of Wisconsin-Madison

Madison, WI 53706

February 21, 1989

Abstract. We present a new deterministic algorithm for factoring polynomials over Z, of degree n. We show
that the worst-case running time of our algorithm is O(p'/?(log p)?n>*¢), which is faster than the running
times of previous deterministic algorithms with respect to both n and p. We also show that our algorithm
runs in polynomial time for all but at most an exponentially small fraction of the polynomials of degree n
over Z,. Specifically, we prove that the fraction of polynomials of degree n over Z, for which our algorithm
fails to halt in time O((logp)?n?*<) is O((nlogp)?/p). Consequently, the average-case running time of our

algorithm is polynomial in n and log p.

Keywords: factorization, finite fields, irreducible polynomials.

This research was supported by NSF grants DCR-8504485 and DCR-8552596.
Appeared in Information Processing Letters 33, pp. 261-267, 1990.

An preliminary version of this paper appeared as University of Wisconsin—-Madison, Computer Sciences

Department Technical Report #782, July 1988.



1. Introduction

Consider the problem of factoring a polynomial of degree n in Z,[X] where p is prime. There are several
deterministic algorithms for this problem whose running time is polynomial for small p, i.e. polynomial in n
and p. One of the asymptotically fastest deterministic algorithms is that of Berlekamp [5] as refined by von
zur Gathen [12]. The Berlekamp-von zur Gathen algorithm uses O(M (n) + pn?*¢) arithmetic operations in
Z,, where M(n) is the number of operations required to multiply two n by n matrices. Currently, the best
known upper-bound on M (n) is approximately O(n?*) [11]. In this paper, the expression n¢ denotes a fixed,
but unspecified, polynomial in logn.

There are also many probabilistic algorithms for this problem whose expected running time is poly-
nomial, i.e. polynomial in n and logp. One of the asymptotically fastest probabilistic algorithms is due
to Ben-Or [4]. Ben-Or’s algorithm uses O((logp)n®*¢) expected operations in Z,. The running time of a
different probabilistic algorithm due to Cantor and Zassenhaus [9] is also O((logp)n?*¢).

This state of affairs suggests that there may be a significant gap between the deterministic and proba-
bilistic complexity of this problem. Indeed, the running time of Ben-Or’s probabilistic algorithm improves
upon the running time of the Berlekamp-von zur Gathen deterministic algorithm with respect to both p and
n. With respect to p, this improvement is exponential (logp vs. p), and it gives us an algorithm that runs
in polynomial time for large p. With respect to n, this improvement is only polynomial (n?*¢ vs. %), but
it could be substantial in cases where p is very small (e.g. p = 2) and n is very large.

In this paper, we show that this gap is not quite so large. We present a new deterministic algorithm for
factoring polynomials of degree n in Z,[X], and prove the following results about its running time (expressed

in terms of operations in Zj):

(1) The worst-case running time is O(p'/*(log p)?n**¢).
(2) The fraction of polynomials of degree n over Z, for which our algorithm fails to halt in time

O((logp)*n?*¢) is O((nlogp)*/p).

Result (1) is significant for a couple of reasons. First, if p is very small, the dependence on n in
the running time becomes the dominant factor. The Berlekamp-von zur Gathen algorithm requires the
triangularization of an n by n matrix, and hence the M(n) term in the running time. Ben-Or’s algorithm
avoids the need to do this linear algebra by using randomization. Our algorithm also avoids the need to do
any linear algebra, but without resorting to randomization.

Second, if p is very large, the dependence on p in the running time becomes the dominant factor. The
Berlekamp-von zur Gathen algorithm requires a deterministic search through potentially all of Z,. Ben-Or’s
algorithm replaces this brute-force search with a fast random search. Our algorithm performs a deterministic
search, but we prove that the length of this search is bounded by pl/z(logp). The dependence on p in our
algorithm, though exponentially worse than that of Ben-Or’s, is still significantly better than that of the

Berlekamp-von zur Gathen algorithm.



Result (2) is of interest for a couple of reasons. First, it shows that our algorithm runs in polynomial
time for all but at most an exponentially small fraction of polynomials of degree n over Z,. One could
conjecture that our algorithm in fact runs in polynomial time for all inputs, but proving this appears to be
very hard; our result at least gives some quantitative evidence in support of such a conjecture.

Second, this result, in conjunction with result (1), implies that the average-case running time of our
algorithm is polynomial in n and logp, assuming the input is chosen from a uniform distribution on all
polynomials over Z, of degree n. There are very few problems in computational number theory whose
average-case complexity have been analyzed. For example, Knuth and Trabb Pardo [14] and Hafner and
McCurley [13] have analyzed the average-case complexity of factoring over the integers; Collins [10] has
analyzed the average-case complexity of an algorithm for factoring polynomials over the rationals. We are
unaware of any previous work analyzing the average-case complexity of factoring polynomials over finite
fields.

Our algorithm 1s fairly simple, and the space requirement of our algorithm is polynomial. The analysis of
the dependence on n in the running time of our algorithm relies on fast algorithms for multiplying polynomials
over a ring. The worst-case and average-case analysis of the dependence on p in the running time of our
algorithm makes use of estimates of the number of solutions to equations over finite fields; similar techniques
have been previously used in the analysis of various probabilistic algorithms [2, 3, 4].

The rest of this paper is organized as follows: Section 2 describes our new factoring algorithm, Section
3 analyzes its worst-case complexity, and Section 4 analyzes its average-case complexity. One last matter of

notation: throughout this paper, log & denotes the logarithm of x to the base 2.

2. A New Factoring Method

In this section, we describe a new algorithm for factoring polynomials over Z,,.

Let f € Z,[X] be a polynomial of degree n that we wish to factor. As in Ben-Or [4] and Cantor and
Zassenhaus [9], we first perform distinct degree factorization. That is, we construct polynomials FO e
where f() (1 < d < n)is the product of all the distinct monic irreducible polynomials of degree d that divide
f

Let 1 < d < n be fixed and let ¢ = f(9. We want to factor g. Suppose g = g1 - - - g, where the g;’s are
distinct monic irreducible polynomials of degree d. We can assume that & > 1. Let m = degg = kd. Also,
let R = Z,[X]/(9) and © = X mod g € R. Finally, let §; be the natural homomorphism from the ring R
onto the field Z,[X]/(g;).

The well-known Berlekamp subalgebra B of R is defined by B = {& € R : of = «a}. Equivalently, we
have B = {a € R : 6;(«) € Z, foreach i = 1,... k}. Following Camion [7], we call a subset S C B a
separating set if for any 1 < i < j < k there exists s € S such that 6;(s) # 6;(s).

Many factoring algorithms, including those of Berlekamp [5] and Camion [7], involve the computation of

a separating set. Berlekamp’s algorithm uses as a separating set a Z,-basis for the Berlekamp subalgebra B.

3



Camion’s algorithm uses as a separating set {7'(z), T(x?), ..., T(2??1)}, where T is the so-called “McEliece
operator” defined by T(a) = o+ o +--- + aP*™". In terms of the dependence on n, the computation of a
separating set is the bottleneck in these algorithms.

Our algorithm constructs a separating set in the following way. We compute the coefficients of h(Y) €

1

R[Y] where h(Y) = (Y — 2)(Y —aP)-- - (VY — 2P ). Suppose h(Y) = hg + -+ hg1 Y41+ Y4 Then
{ho,...,ha_1} is a separating set. This follows from the fact that h?i(Y) = (Y — (2%))(Y — (2%)P) - - (Y —

(a2

d—1

)=g;(Y) fori=1,...,k and the g;’s are distinct.

Now that we have a separating set .S = {hg, ..., h4—1}, we can proceed to factor g as follows. We con-
struct finer and finer partial factorizations U C Z,[X] consisting of monic polynomials with HuEU u=g. Ini-
tially, we put U = {¢}. We make use of the operation Refine(U,v), which, when given a partial factorization
U and a polynomial v € Z,[X], produces the refinement of U given by | J, ¢ {ged(u, v), u/ ged(u,v)} — {1}.
To obtain a complete factorization of g, we proceed as follows. For z = 0,1,..., until |U| = k, we execute

the following refinement step:

For each s in the separating set S, replace U with Refine(U, s + z), and then, if p is odd, replace
U with Refine(U, (s + z)®P=1/2 — 1),

We omit a rigorous proof of the correctness of our algorithm, which follows easily from the fact the S is

a separating set.

3. Worst-Case Analysis
In this section, we analyze the worst-case complexity of our algorithm. We shall prove

Theorem 1. Let f be a polynomial of degree n in Z,[X]. Then our algorithm will completely factor f
using O(p'/*(log p)>n?*¢) operations in z,.

We will make use of the following results concerning the complexity of performing polynomial arithmetic.
Lemma 3.1. Let R be a commutative ring with unity, and let I be a field. Let L(n) = lognloglogn.

(1) Multiplication of two polynomials in R[X] of degree < n can be performed using O(nL(n)) operations
(+,—, % only) in R.

(2) Let ay,...,ap € R. Then the coefficients of (X — ay)---(X — o) € R[X] can be computed using
O(nL(n)(logn)) operations (+,—, x only) in R.

(3) Let f and g be polynomials in F[X] of degree < n, ¢ # 0. Then f mod g can be computed using
O(nL(n)) operations in F.

(4) Let f,g1,...,9x be polynomials in F[X] such that deg f < n and degg; + --- 4+ deggr < n. Then
fmodgi,...,fmod g, can be computed using O(nL(n)(log k)) operations in F.

(5) Let f and g be polynomials in F[X] of degree < n. Then the greatest common divisor of f and g can
be computed using O(nL(n)(logn)) operations in F.

4



(1) is proved in Cantor and Kaltofen [8]. We note that the results of Schénhage [17] would actually be
sufficient for our purposes. (2) follows from (1) by a divide and conquer method (see Borodin and Munro [6,
p. 100]). (3) follows from (1) by a Newton iteration scheme (see Borodin and Munro [6, p. 95]). (4) follows
from (3) by a divide and conquer method (see Borodin and Munro [6, p. 100]). (5) follows from (1) by an
algorithm described in Aho, Hopcroft and Ullman [1, pp. 303-308].

Let f be the polynomial of degree n in Z,[X] to be factored. The distinct degree factorization of f can
be performed using O((logp)n?T¢) operations in Z, (see, for example, Ben-Or [4] for more details).

Consider factoring ¢ = f for a fixed 1 < d < n. Our algorithm can construct the separating
set S = {ho,...,hg—1} using O((logp)d) multiplications in R to compute the powers of z, and O(d***)
additions, multiplications and subtractions in R to compute the coefficients of 2(Y"). This gives a total of
O((log p)(md)**+¢) operations in Z, to compute 5.

Now, for any partial factorization U and any polynomial v of degree < m, we can compute Re fine(U, v)
with O(m!*¢) operations in Z, by first computing v mod u for each u € U, and then computing ged(u, v mod
u) for each u € U. Therefore, each execution of the refinement step can be performed using O((log p)(md)'*¢)
operations in Z,. So to determine the complexity of our algorithm, we must get a bound on the number of
times the refinement step is executed. If p = 2, the refinement step will be executed only once. Therefore,
we can assume that p is odd.

Suppose that for some 1 < i < j < k the refinement step has been executed for z = 0,..., M and that
gig;|u for some u € U. Since S is a separating set, there is an s € .S such that 6;(s) = a and 6;(s) = b, where
a and b are distinct elements of Z,. Then it follows that y((a + #)(b+ z)) = 1 for z =0, ..., M, where y is

the quadratic character on Z,. This allows us to obtain the following nontrivial bound on M.

Lemma 3.2. Let p be an odd prime, and let a,b € Z,,, such that a # b and
x(ab) = x((a+1)(b+1)) = -+ =x((a+ M)(b+ M)) = 1,

where x Is the quadratic character on Z,. Then M < P2 logp.

Proof. Let ¢ = f%logp]. Let N be the number of solutions (x,yo,...,4%:-1) € Z;,‘H to the system of

equations
(x+at+i)z+b+i)=y? (i=0,...,t—1).
We will first show that

N <p+p 7@t —1)+1). (1)

Now, for fixed ¢ € Z, the number of y € Z, satisfying the equation y?> = ¢ is precisely 1 + x(c).

5



Therefore,
t—1

N=> T[O+x((x+a+i)z+b+1i))

TEZ, i=0

= Z Z X (ﬁ(l‘—l—a—l—i)e’(x—l—b—l—i)e’) .

0<eq,..,e1—1<1 TEZ, 3=0

In this last expression, the term corresponding to eg = --- =€;,_7 = 018 p.
Now let eg, ..., e1—1 be fixed with { > 0 of the e;’s are nonzero, and let A(X) = H:;S(X +a+)4(X +
b+ )% We claim that A(X) is not a perfect square in Z,[X]. Suppose that it were. Then for distinct

t1,--.,2 between 0 and ¢ — 1, we would have
a+i1:b+i2, Cl—|—i2:b—|—i3, ceey Cl—|—il_1:b—|—il, Cl—|—ll:b—|—ll

Summing, we have la + >~ 4, = b+ >, i,. But this implies that la = b, and since 0 < [ < p, we can
cancel, obtaining @ = b, a contradiction. Therefore, A(X) is not a perfect square.
From Weil’s Theorem (see Schmidt [16, p. 43]), for any monic polynomial A in Z,[X] that is not a

perfect square, we have

T X<A<x>>\ < (r—1p'”,

TEZ,

where r is the number of distinct roots of A in its splitting field. It follows that

t

N§p+p1/22<§)(21—1)

=1

=p+p 22t — 1)+ 1).

This proves (1).
Now, the number of z € Z, such that

NE+at+iz+b+i)=1 (i=0,...t—1)

is at most N/2'. The worst possible case is when all such x are bunched together near zero. So we
have M < N/2' +t. By (1), we have M < p/2! + p'/?(t — 1 4+ 27%) 4+ ¢. Since t = f%logp], we have
M < ptl? 4+ %pl/z logp + %logp—i— 2. The right hand side of this inequality is asymptotic to %pl/z log p, and
is less than p/2logp for p > 16. For p < 16, p'/?logp > p, and so the lemma is trivially true in this case. m

We see then that ¢ can be factored with O(pl/z(logp)z(md)l‘l'e) operations in Z,. Since this holds for

each 1 < d < n, it follows that f can be factored using O(p'/*(log p)>n*¢) operations in Z,, which proves

Theorem 1.



Remark 1. The idea of factoring a polynomial by examining the elements of the form (s + z)(p_l)/z where
s is in the Berlekamp subalgebra and z = 0,1,2, etc., originates with Berlekamp [5, p. 732]. However,
prior to this research, apparently no analysis has been done on the worst-case or average-case complexity of

algorithms based on this idea.

Remark 2. Actually, there is a slightly more complicated version of our algorithm that runs in time
O((log p)n*t< 4 p*/2(log p)*n3/2+€). We'll briefly sketch this algorithm here, but we won’t discuss it in detail
because its running time is still essentially quadratic in n, and its average case running time does not appear
to be as good as that of the algorithm in Section 2. To factor g = f(9| this algorithm computes a separating
set S just as in Section 2, initializes U to {g}, and then does the following for each s € S:

Initialize # to 0. While s mod u ¢ Z, for some u € U, replace U with Refine(U, s + z), and then,
if p is odd, replace U with Refine(U, (s + z)?=1/2 — 1) and then increment z.

It is straightforward to show that the time required by this method to completely factor g is O((logp)dm! ¢+
p'/*(log p)? min(d, k)m'*¢).

Remark 3. In some applications, one only requires a single irreducible factor of f. A slight variation
of the algorithm in Remark 2 extracts a single irreducible factor of f and runs in time O((logp)n?*¢ +
pl/z(logp)2n1+5). In particular, an irreducible factor of a polynomial ¢ that is the product of k distinct
monic irreducible polynomials each of degree d can be extracted deterministically in time O((log p)dm!*¢ +

p/?(log p)?m'*), where m = kd.

4. Average-Case Analysis

In this section, we study the average case complexity of the our algorithm, assuming that the polynomial to
be factored is chosen from a uniform distribution on all monic polynomials in Z,[X] of degree n. Recall that
to factor f, our algorithm first obtains a distinct degree factorization f(1), ... f(*). To factor f(? it executes
the refinement step some number of times, say K times. In section 3, we proved that Ky < pl/z(log p). We
might expect that on average, K4 is much less than than this. In this section, we will study the probability

B that f is “bad” in the sense that K4 >t for some 1 < d < n, where t = [log p]. We shall prove

Theorem 2. Let f be a polynomial chosen from a uniform distribution on all monic polynomials of degree

n in Z,[X]. Let B be defined as in the previous paragraph. Then B = O((nlogp)*/p).

This theorem shows that our algorithm runs in polynomial time on all but at most an exponentially small

fraction of the polynomials of degree n over Z,. The following is an immediate consequence of Theorems 1

and 2.

Corollary. Let f be a polynomial chosen from a uniform distribution on all monic polynomials of degree n

in Z,[X]. Then the expected running time of our algorithm is polynomial in n and logp.

7



We now prove Theorem 2. We can partition the polynomials of degree n in Z,[X] according to their
“factorization pattern.” The factorization pattern m of a polynomial f is an n-tuple (k1, ..., k) where kg is
the number of irreducible factors (counting multiplicities) of degree d that divide f. Let B, be the conditional
probability that f is “bad” given that its factorization pattern is 7. We will show that B, = O((nlogp)?/p),
from which Theorem 2 follows immediately.

We can write By < By 1+ 4Bz, where By 4 is the probability that K > ¢ given that the factorization
pattern 1s m. Let’s fix 1 < d < n for the moment, and let k& = k4. We shall prove that

Br.a = O((klogp)*/p). (2)

To prove this, we will need the following lemma.

Lemma 4.1. Let p be an odd prime, x be the quadratic character on Z,, and t = [logp|. Then the number
of pairs (a,b) € Zg such that x(a+1) = x(b+1i) fori = 0,...,t — 1 is no more than p(log p)*.

Proof. The number J of such pairs is no more than ¢ plus the number J' of pairs (a,b) such that y((a +
i)(b+i)) =1fori=0,...,t—1. Now, J' is the number of pairs (a, b) for which there exist nonzero ¢y, ..., ¢

in Z, such that

_ 2
ab = ¢}

(a+1)(b+1)=¢c3

(a4+t—1)b+t—1)=cl.

Let N be the number of solutions (a,b,¢1,...,¢) € Z;,"’Z to (3). We want to get a good upper bound
on N. We have

N= > (I+x(ab) - (I+x((a+t—1)b+t-1))

> ST x(@ b (at—1) b+t — 1))

0<ey,...,e: <1 a,b€Z,

S (T (S o= ).

0<ey,...,e: <1 a€Zy, beEZ,

In this last expression, the term corresponding to e; = --- = ¢; = 0 is p%. We can again use Weil’s Theorem

to bound the magnitude of each of the other terms, obtaining

N§p2+pi (1;)(1—1)2

=1

=p+p(tt—1)277 =207t 4 20 —1).

8



We divide this quantity by 2' to obtain a bound on the number of (a,b) for which there exist nonzero

1, ..., ¢ satisfying (3). Using the fact that J <t 4 J’, we have

t p 1) t 1
J<p(i+ 2 SRS P
—p<p+2fJr 4 TR

The right hand side of this inequality is asymptotic to %p(logp)2 as p — oo, and some calculations show

that it is less than p(logp)® for all p > 3. m

Now to prove (2). It will be convenient to let f(d) denote the product of all monic irreducible factors of
f of degree d (including multiplicities). We can regard f as being chosen from a uniform distribution on all
monic polynomials with factorization pattern #, and f(d) as being chosen chosen from a uniform distribution
on all monic polynomials with k irreducible factors of degree d. Note that k£ is an upper bound on the
number of irreducible factors of f(%) since we’re assuming that the distinct degree factorization procedure
removes multiplicities.

Let’s say that two elements a,b € Z, are indistinguishable if y(a + 1) = x(b+ 1) for i = 0,...,t — 1.
Let’s say that two polynomials in Z,[X] of equal degree are indistinguishable if each pair of corresponding
coefficients are indistinguishable.

Now, Br g is no greater than the probability that f(d) is divisible by two indistinguishable monic
irreducible polynomials. This latter probability is no greater than &2 times the probability that a randomly
chosen pair of irreducible polynomials of degree d are indistinguishable. Let B’ be this latter probability.

Let I(d) be the number of indistinguishable pairs of monic irreducible polynomials of degree d. From
Lemma 4.1, we see that I(d) < (p(logp)*)?. Let N(d) be the number of monic irreducible polynomials of
degree d. As is well known (see, e.g., Rabin [15, Lemma 2]), N(d) = ©(p?/d). Then B’ = I(d)/(N(d))? =
O(((log p)?/p)¢d?) = O((log p)?/p). (2) now follows immediately, and so Theorem 2 is proved.

References

1. A. Aho, J. Hopcroft and J. Ullman. The Design and Analysis of Computer Algorithms, Addison-Wesley
(1974).
2. E. Bach. “Realistic analysis of some randomized algorithms,” in Proc. 19th Annual ACM Symp. on

Theory of Computing, pp. 453-461 (1987).

3. E. Bach and V. Shoup. “Factoring polynomials using fewer random bits,” Computer Sciences Technical
Report No. 757, University of Wisconsin-Madison; Journal of Symbolic Computation, to appear (1988).

4. M. Ben-Or. “Probabilistic algorithms in finite fields,” in Proc. 22nd Annual Symp. on Foundations of
Computer Science, pp. 394-398 (1981).

5. E. Berlekamp. “Factoring polynomials over large finite fields,” Mathematics of Computation, Vol. 24,
No. 111, pp. 713-735 (1970).



10.

11.

12.

13.

14.

15.
16.

17.

. A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems, Amer-
ican Elsevier (1975).

P. Camion. “Improving an algorithm for factoring polynomials over a finite field and constructing large

irreducible polynomials,” IEEE Transactions on Information Theory, Vol. 29, No. 3, pp. 378-385 (1983).

D. Cantor and E. Kaltofen. “Fast multiplication of polynomials over arbitrary rings,” Department of

Computer Science Technical Report No. 87-35, Rensselaer Polytechnic Institute (1987).

D. Cantor and H. Zassenhaus. “A new algorithm for factoring polynomials over finite fields,” Mathe-

matics of Computation, Vol. 36, No. 154, pp. 587-592 (1981).

”

G. Collins. “Factoring univariate integral polynomials in polynomial average time.” Furosam ’79:

Springer-Verlag Lecture Notes in Computer Science #72, pp. 317-329 (1979).

D. Coppersmith and S. Winograd. “Matrix multiplication via Behrend’s method,” Proc. 19th Ann.
ACM Symp. on Theory of Computing, pp. 1-6 (1987).

J. von zur Gathen. “Factoring polynomials and primitive elements for special primes,” Theoretical

Computer Science, Vol. 52, pp. 77-89 (1987).

J. Hafner and K. McCurley. “On the distribution of running times of certain integer factoring algo-

rithms,” preprint (1987).

D. Knuth and L. Trabb Pardo. “Analysis of a simple factorization algorithm,” Theoretical Computer
Science, Vol. 3, pp. 321-348 (1976).

M. Rabin. “Probabilistic algorithms in finite fields,” STAM J. Comput., Vol. 9, No. 2, pp. 273-280 (1980).
W. Schmidt. Equations over Finite Fields, Springer-Verlag Lecture Notes in Mathematics No. 536 (1976).

A. Schonhage. “Schnelle Multiplikation von Polynomen uber Korpern der Charakteristik 2,7 Acta In-
formatica, Vol. 7, pp. 395-398 (1977).

10



