
On the Deterministic Complexity of Factoring Polynomials over Finite FieldsVictor ShoupComputer Sciences DepartmentUniversity of Wisconsin{MadisonMadison, WI 53706February 21, 1989Abstract. We present a new deterministic algorithm for factoring polynomials over Zp of degree n. We showthat the worst-case running time of our algorithm is O(p1=2(log p)2n2+�), which is faster than the runningtimes of previous deterministic algorithms with respect to both n and p. We also show that our algorithmruns in polynomial time for all but at most an exponentially small fraction of the polynomials of degree nover Zp. Speci�cally, we prove that the fraction of polynomials of degree n over Zp for which our algorithmfails to halt in time O((log p)2n2+�) is O((n log p)2=p). Consequently, the average-case running time of ouralgorithm is polynomial in n and log p.Keywords: factorization, �nite �elds, irreducible polynomials.This research was supported by NSF grants DCR-8504485 and DCR-8552596.Appeared in Information Processing Letters 33, pp. 261{267, 1990.An preliminary version of this paper appeared as University of Wisconsin{Madison, Computer SciencesDepartment Technical Report #782, July 1988.
1



1. IntroductionConsider the problem of factoring a polynomial of degree n in Zp[X] where p is prime. There are severaldeterministic algorithms for this problem whose running time is polynomial for small p, i.e. polynomial in nand p. One of the asymptotically fastest deterministic algorithms is that of Berlekamp [5] as re�ned by vonzur Gathen [12]. The Berlekamp-von zur Gathen algorithm uses O(M (n) + pn2+�) arithmetic operations inZp, where M (n) is the number of operations required to multiply two n by n matrices. Currently, the bestknown upper-bound on M (n) is approximatelyO(n2:4) [11]. In this paper, the expression n� denotes a �xed,but unspeci�ed, polynomial in logn.There are also many probabilistic algorithms for this problem whose expected running time is poly-nomial, i.e. polynomial in n and log p. One of the asymptotically fastest probabilistic algorithms is dueto Ben-Or [4]. Ben-Or's algorithm uses O((log p)n2+�) expected operations in Zp. The running time of adi�erent probabilistic algorithm due to Cantor and Zassenhaus [9] is also O((logp)n2+�).This state of a�airs suggests that there may be a signi�cant gap between the deterministic and proba-bilistic complexity of this problem. Indeed, the running time of Ben-Or's probabilistic algorithm improvesupon the running time of the Berlekamp-von zur Gathen deterministic algorithm with respect to both p andn. With respect to p, this improvement is exponential (log p vs. p), and it gives us an algorithm that runsin polynomial time for large p. With respect to n, this improvement is only polynomial (n2+� vs. n2:4), butit could be substantial in cases where p is very small (e.g. p = 2) and n is very large.In this paper, we show that this gap is not quite so large. We present a new deterministic algorithm forfactoring polynomials of degree n in Zp[X], and prove the following results about its running time (expressedin terms of operations in Zp):(1) The worst-case running time is O(p1=2(log p)2n2+�).(2) The fraction of polynomials of degree n over Zp for which our algorithm fails to halt in timeO((log p)2n2+�) is O((n logp)2=p).Result (1) is signi�cant for a couple of reasons. First, if p is very small, the dependence on n inthe running time becomes the dominant factor. The Berlekamp-von zur Gathen algorithm requires thetriangularization of an n by n matrix, and hence the M (n) term in the running time. Ben-Or's algorithmavoids the need to do this linear algebra by using randomization. Our algorithm also avoids the need to doany linear algebra, but without resorting to randomization.Second, if p is very large, the dependence on p in the running time becomes the dominant factor. TheBerlekamp-von zur Gathen algorithm requires a deterministic search through potentially all of Zp. Ben-Or'salgorithm replaces this brute-force search with a fast random search. Our algorithm performs a deterministicsearch, but we prove that the length of this search is bounded by p1=2(logp). The dependence on p in ouralgorithm, though exponentially worse than that of Ben-Or's, is still signi�cantly better than that of theBerlekamp-von zur Gathen algorithm. 2



Result (2) is of interest for a couple of reasons. First, it shows that our algorithm runs in polynomialtime for all but at most an exponentially small fraction of polynomials of degree n over Zp. One couldconjecture that our algorithm in fact runs in polynomial time for all inputs, but proving this appears to bevery hard; our result at least gives some quantitative evidence in support of such a conjecture.Second, this result, in conjunction with result (1), implies that the average-case running time of ouralgorithm is polynomial in n and logp, assuming the input is chosen from a uniform distribution on allpolynomials over Zp of degree n. There are very few problems in computational number theory whoseaverage-case complexity have been analyzed. For example, Knuth and Trabb Pardo [14] and Hafner andMcCurley [13] have analyzed the average-case complexity of factoring over the integers; Collins [10] hasanalyzed the average-case complexity of an algorithm for factoring polynomials over the rationals. We areunaware of any previous work analyzing the average-case complexity of factoring polynomials over �nite�elds.Our algorithm is fairly simple, and the space requirement of our algorithm is polynomial. The analysis ofthe dependence on n in the running time of our algorithm relies on fast algorithms for multiplyingpolynomialsover a ring. The worst-case and average-case analysis of the dependence on p in the running time of ouralgorithmmakes use of estimates of the number of solutions to equations over �nite �elds; similar techniqueshave been previously used in the analysis of various probabilistic algorithms [2, 3, 4].The rest of this paper is organized as follows: Section 2 describes our new factoring algorithm, Section3 analyzes its worst-case complexity, and Section 4 analyzes its average-case complexity. One last matter ofnotation: throughout this paper, logx denotes the logarithm of x to the base 2.2. A New Factoring MethodIn this section, we describe a new algorithm for factoring polynomials over Zp.Let f 2 Zp[X] be a polynomial of degree n that we wish to factor. As in Ben-Or [4] and Cantor andZassenhaus [9], we �rst perform distinct degree factorization. That is, we construct polynomials f (1); : : : ; f (n)where f (d) (1 � d � n) is the product of all the distinct monic irreducible polynomials of degree d that dividef . Let 1 � d � n be �xed and let g = f (d) . We want to factor g. Suppose g = g1 � � �gk, where the gi's aredistinct monic irreducible polynomials of degree d. We can assume that k > 1. Let m = deg g = kd. Also,let R = Zp[X]=(g) and x = X mod g 2 R. Finally, let �i be the natural homomorphism from the ring Ronto the �eld Zp[X]=(gi).The well-known Berlekamp subalgebra B of R is de�ned by B = f� 2 R : �p = �g. Equivalently, wehave B = f� 2 R : �i(�) 2 Zp for each i = 1; : : : ; kg. Following Camion [7], we call a subset S � B aseparating set if for any 1 � i < j � k there exists s 2 S such that �i(s) 6= �j(s).Many factoring algorithms, including those of Berlekamp [5] and Camion [7], involve the computation ofa separating set. Berlekamp's algorithm uses as a separating set a Zp-basis for the Berlekamp subalgebra B.3



Camion's algorithm uses as a separating set fT (x); T (x2); : : : ; T (x2d�1)g, where T is the so-called \McElieceoperator" de�ned by T (�) = � + �p + � � �+ �pd�1 . In terms of the dependence on n, the computation of aseparating set is the bottleneck in these algorithms.Our algorithm constructs a separating set in the following way. We compute the coe�cients of h(Y ) 2R[Y ] where h(Y ) = (Y � x)(Y � xp) � � � (Y � xpd�1 ). Suppose h(Y ) = h0 + � � � + hd�1Y d�1 + Y d. Thenfh0; : : : ; hd�1g is a separating set. This follows from the fact that h�i(Y ) = (Y � (x�i))(Y � (x�i)p) � � � (Y �(x�i)pd�1 ) = gi(Y ) for i = 1; : : : ; k and the gi's are distinct.Now that we have a separating set S = fh0; : : : ; hd�1g, we can proceed to factor g as follows. We con-struct �ner and �ner partial factorizations U � Zp[X] consisting of monic polynomials withQu2U u = g. Ini-tially, we put U = fgg. We make use of the operation Refine(U; v), which, when given a partial factorizationU and a polynomial v 2 Zp[X], produces the re�nement of U given by Su2Ufgcd(u; v); u= gcd(u; v)g � f1g.To obtain a complete factorization of g, we proceed as follows. For z = 0; 1; : : : ; until jU j = k, we executethe following re�nement step:For each s in the separating set S, replace U with Refine(U; s + z), and then, if p is odd, replaceU with Refine(U; (s + z)(p�1)=2 � 1).We omit a rigorous proof of the correctness of our algorithm, which follows easily from the fact the S isa separating set.3. Worst-Case AnalysisIn this section, we analyze the worst-case complexity of our algorithm. We shall proveTheorem 1. Let f be a polynomial of degree n in Zp[X]. Then our algorithm will completely factor fusing O(p1=2(logp)2n2+�) operations in Zp.We will make use of the following results concerning the complexity of performing polynomial arithmetic.Lemma 3.1. Let R be a commutative ring with unity, and let F be a �eld. Let L(n) = logn log logn.(1) Multiplication of two polynomials in R[X] of degree � n can be performed using O(nL(n)) operations(+;�;� only) in R.(2) Let �1; : : : ; �n 2 R. Then the coe�cients of (X � �1) � � � (X � �n) 2 R[X] can be computed usingO(nL(n)(logn)) operations (+;�;� only) in R.(3) Let f and g be polynomials in F [X] of degree � n, g 6= 0. Then f mod g can be computed usingO(nL(n)) operations in F .(4) Let f; g1; : : : ; gk be polynomials in F [X] such that deg f � n and deg g1 + � � � + deg gk � n. Thenf mod g1; : : : ; f mod gk can be computed using O(nL(n)(log k)) operations in F .(5) Let f and g be polynomials in F [X] of degree � n. Then the greatest common divisor of f and g canbe computed using O(nL(n)(logn)) operations in F .4



(1) is proved in Cantor and Kaltofen [8]. We note that the results of Sch�onhage [17] would actually besu�cient for our purposes. (2) follows from (1) by a divide and conquer method (see Borodin and Munro [6,p. 100]). (3) follows from (1) by a Newton iteration scheme (see Borodin and Munro [6, p. 95]). (4) followsfrom (3) by a divide and conquer method (see Borodin and Munro [6, p. 100]). (5) follows from (1) by analgorithm described in Aho, Hopcroft and Ullman [1, pp. 303-308].Let f be the polynomial of degree n in Zp[X] to be factored. The distinct degree factorization of f canbe performed using O((logp)n2+�) operations in Zp (see, for example, Ben-Or [4] for more details).Consider factoring g = f (d) for a �xed 1 � d � n. Our algorithm can construct the separatingset S = fh0; : : : ; hd�1g using O((log p)d) multiplications in R to compute the powers of x, and O(d1+�)additions, multiplications and subtractions in R to compute the coe�cients of h(Y ). This gives a total ofO((log p)(md)1+�) operations in Zp to compute S.Now, for any partial factorization U and any polynomial v of degree < m, we can compute Refine(U; v)with O(m1+�) operations in Zp by �rst computing v mod u for each u 2 U , and then computing gcd(u; v modu) for each u 2 U . Therefore, each execution of the re�nement step can be performed using O((log p)(md)1+�)operations in Zp. So to determine the complexity of our algorithm, we must get a bound on the number oftimes the re�nement step is executed. If p = 2, the re�nement step will be executed only once. Therefore,we can assume that p is odd.Suppose that for some 1 � i < j � k the re�nement step has been executed for z = 0; : : : ;M and thatgigjju for some u 2 U . Since S is a separating set, there is an s 2 S such that �i(s) = a and �j(s) = b, wherea and b are distinct elements of Zp. Then it follows that �((a+ z)(b + z)) = 1 for z = 0; : : : ;M , where � isthe quadratic character on Zp. This allows us to obtain the following nontrivial bound on M .Lemma 3.2. Let p be an odd prime, and let a; b 2 Zp, such that a 6= b and�(ab) = �((a+ 1)(b+ 1)) = � � � = �((a +M )(b+M )) = 1;where � is the quadratic character on Zp. Then M < p1=2 logp.Proof. Let t = d12 logpe. Let N be the number of solutions (x; y0; : : : ; yt�1) 2 Zt+1p to the system ofequations (x + a+ i)(x+ b+ i) = y2i (i = 0; : : : ; t� 1):We will �rst show that N � p+ p1=2(2t(t� 1) + 1): (1)Now, for �xed c 2 Zp the number of y 2 Zp satisfying the equation y2 = c is precisely 1 + �(c).5



Therefore, N = Xx2Zp t�1Yi=0(1 + �((x + a+ i)(x+ b+ i)))= X0�e0;:::;et�1�1 Xx2Zp � t�1Yi=0(x+ a+ i)ei(x+ b+ i)ei! :In this last expression, the term corresponding to e0 = � � � = et�1 = 0 is p.Now let e0; : : : ; et�1 be �xed with l > 0 of the ei's are nonzero, and let �(X) = Qt�1i=0(X + a+ i)ei (X +b + i)ei : We claim that �(X) is not a perfect square in Zp[X]. Suppose that it were. Then for distincti1; : : : ; il between 0 and t� 1, we would havea + i1 = b+ i2; a+ i2 = b+ i3; : : : ; a + il�1 = b+ il; a+ il = b+ i1:Summing, we have la +P� i� = lb +P� i� . But this implies that la = lb, and since 0 < l < p, we cancancel, obtaining a = b, a contradiction. Therefore, �(X) is not a perfect square.From Weil's Theorem (see Schmidt [16, p. 43]), for any monic polynomial � in Zp[X] that is not aperfect square, we have ����Xx2Zp �(�(x))���� � (r � 1)p1=2;where r is the number of distinct roots of � in its splitting �eld. It follows thatN � p + p1=2 tXl=1 �tl�(2l � 1)= p + p1=2(2t(t� 1) + 1):This proves (1).Now, the number of x 2 Zp such that�((x+ a+ i)(x + b+ i)) = 1 (i = 0; : : : ; t� 1)is at most N=2t. The worst possible case is when all such x are bunched together near zero. So wehave M < N=2t + t. By (1), we have M < p=2t + p1=2(t � 1 + 2�t) + t: Since t = d12 logpe, we haveM < p1=2 + 12p1=2 logp+ 12 log p+ 2. The right hand side of this inequality is asymptotic to 12p1=2 logp, andis less than p1=2 log p for p > 16. For p < 16, p1=2 log p > p, and so the lemma is trivially true in this case.We see then that g can be factored with O(p1=2(log p)2(md)1+�) operations in Zp. Since this holds foreach 1 � d � n, it follows that f can be factored using O(p1=2(log p)2n2+�) operations in Zp, which provesTheorem 1. 6



Remark 1. The idea of factoring a polynomial by examining the elements of the form (s+ z)(p�1)=2 wheres is in the Berlekamp subalgebra and z = 0; 1; 2, etc., originates with Berlekamp [5, p. 732]. However,prior to this research, apparently no analysis has been done on the worst-case or average-case complexity ofalgorithms based on this idea.Remark 2. Actually, there is a slightly more complicated version of our algorithm that runs in timeO((log p)n2+�+p1=2(log p)2n3=2+�). We'll brie
y sketch this algorithm here, but we won't discuss it in detailbecause its running time is still essentially quadratic in n, and its average case running time does not appearto be as good as that of the algorithm in Section 2. To factor g = f (d), this algorithm computes a separatingset S just as in Section 2, initializes U to fgg, and then does the following for each s 2 S:Initialize z to 0. While s mod u =2 Zp for some u 2 U , replace U with Refine(U; s + z), and then,if p is odd, replace U with Refine(U; (s + z)(p�1)=2 � 1), and then increment z.It is straightforward to show that the time required by this method to completely factor g is O((logp)dm1+�+p1=2(log p)2min(d; k)m1+�).Remark 3. In some applications, one only requires a single irreducible factor of f . A slight variationof the algorithm in Remark 2 extracts a single irreducible factor of f and runs in time O((log p)n2+� +p1=2(log p)2n1+�). In particular, an irreducible factor of a polynomial g that is the product of k distinctmonic irreducible polynomials each of degree d can be extracted deterministically in time O((log p)dm1+� +p1=2(log p)2m1+�), where m = kd.4. Average-Case AnalysisIn this section, we study the average case complexity of the our algorithm, assuming that the polynomial tobe factored is chosen from a uniform distribution on all monic polynomials in Zp[X] of degree n. Recall thatto factor f , our algorithm �rst obtains a distinct degree factorization f (1); : : : ; f (n). To factor f (d), it executesthe re�nement step some number of times, say Kd times. In section 3, we proved that Kd � p1=2(log p). Wemight expect that on average, Kd is much less than than this. In this section, we will study the probabilityB that f is \bad" in the sense that Kd > t for some 1 � d � n, where t = dlog pe. We shall proveTheorem 2. Let f be a polynomial chosen from a uniform distribution on all monic polynomials of degreen in Zp[X]. Let B be de�ned as in the previous paragraph. Then B = O((n logp)2=p).This theorem shows that our algorithm runs in polynomial time on all but at most an exponentially smallfraction of the polynomials of degree n over Zp. The following is an immediate consequence of Theorems 1and 2.Corollary. Let f be a polynomial chosen from a uniform distribution on all monic polynomials of degree nin Zp[X]. Then the expected running time of our algorithm is polynomial in n and log p.7



We now prove Theorem 2. We can partition the polynomials of degree n in Zp[X] according to their\factorization pattern." The factorization pattern � of a polynomial f is an n-tuple (k1; : : : ; kn) where kd isthe number of irreducible factors (counting multiplicities) of degree d that divide f . Let B� be the conditionalprobability that f is \bad" given that its factorization pattern is �. We will show that B� = O((n logp)2=p),from which Theorem 2 follows immediately.We can write B� � B�;1+� � �+B�;n where B�;d is the probability thatKd > t given that the factorizationpattern is �. Let's �x 1 � d � n for the moment, and let k = kd. We shall prove thatB�;d = O((k log p)2=p): (2)To prove this, we will need the following lemma.Lemma 4.1. Let p be an odd prime, � be the quadratic character on Zp, and t = dlog pe. Then the numberof pairs (a; b) 2 Z2p such that �(a+ i) = �(b+ i) for i = 0; : : : ; t� 1 is no more than p(log p)2.Proof. The number J of such pairs is no more than t plus the number J 0 of pairs (a; b) such that �((a +i)(b+ i)) = 1 for i = 0; : : : ; t�1. Now, J 0 is the number of pairs (a; b) for which there exist nonzero c1; : : : ; ctin Zp such that ab = c21(a + 1)(b+ 1) = c22...(a+ t� 1)(b + t� 1) = c2t : (3)Let N be the number of solutions (a; b; c1; : : : ; ct) 2 Zt+2p to (3). We want to get a good upper boundon N . We haveN = Xa;b2Zp (1 + �(ab)) � � � (1 + �((a + t� 1)(b+ t � 1)))= X0�e1;:::;et�1 Xa;b2Zp �(ae1be1 � � � (a+ t� 1)et(b+ t � 1)et)= X0�e1;:::;et�1 �Xa2Zp �(ae1 � � � (a+ t � 1)et)��Xb2Zp �(be1 � � � (b + t� 1)et)�:In this last expression, the term corresponding to e1 = � � � = et = 0 is p2. We can again use Weil's Theoremto bound the magnitude of each of the other terms, obtainingN � p2 + p tXl=1 �tl�(l � 1)2= p2 + p �t(t� 1)2t�2 � t2t�1 + 2t � 1� :8



We divide this quantity by 2t to obtain a bound on the number of (a; b) for which there exist nonzeroc1; : : : ; ct satisfying (3). Using the fact that J � t+ J 0, we haveJ � p� tp + p2t + t(t � 1)4 � t2 + 1� 12t� :The right hand side of this inequality is asymptotic to 14p(log p)2 as p ! 1, and some calculations showthat it is less than p(logp)2 for all p � 3.Now to prove (2). It will be convenient to let ~f (d) denote the product of all monic irreducible factors off of degree d (including multiplicities). We can regard f as being chosen from a uniform distribution on allmonic polynomials with factorization pattern �, and ~f (d) as being chosen chosen from a uniform distributionon all monic polynomials with k irreducible factors of degree d. Note that k is an upper bound on thenumber of irreducible factors of f (d), since we're assuming that the distinct degree factorization procedureremoves multiplicities.Let's say that two elements a; b 2 Zp are indistinguishable if �(a + i) = �(b + i) for i = 0; : : : ; t � 1.Let's say that two polynomials in Zp[X] of equal degree are indistinguishable if each pair of correspondingcoe�cients are indistinguishable.Now, B�;d is no greater than the probability that ~f (d) is divisible by two indistinguishable monicirreducible polynomials. This latter probability is no greater than k2 times the probability that a randomlychosen pair of irreducible polynomials of degree d are indistinguishable. Let B0 be this latter probability.Let I(d) be the number of indistinguishable pairs of monic irreducible polynomials of degree d. FromLemma 4.1, we see that I(d) � (p(logp)2)d. Let N (d) be the number of monic irreducible polynomials ofdegree d. As is well known (see, e.g., Rabin [15, Lemma 2]), N (d) = �(pd=d). Then B0 = I(d)=(N (d))2 =O(((log p)2=p)dd2) = O((log p)2=p). (2) now follows immediately, and so Theorem 2 is proved.References1. A. Aho, J. Hopcroft and J. Ullman.The Design and Analysis of Computer Algorithms, Addison-Wesley(1974).2. E. Bach. \Realistic analysis of some randomized algorithms," in Proc. 19th Annual ACM Symp. onTheory of Computing, pp. 453-461 (1987).3. E. Bach and V. Shoup. \Factoring polynomials using fewer random bits," Computer Sciences TechnicalReport No. 757, University of Wisconsin{Madison; Journal of Symbolic Computation, to appear (1988).4. M. Ben-Or. \Probabilistic algorithms in �nite �elds," in Proc. 22nd Annual Symp. on Foundations ofComputer Science, pp. 394-398 (1981).5. E. Berlekamp. \Factoring polynomials over large �nite �elds," Mathematics of Computation, Vol. 24,No. 111, pp. 713-735 (1970). 9



6. A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems, Amer-ican Elsevier (1975).7. P. Camion. \Improving an algorithm for factoring polynomials over a �nite �eld and constructing largeirreducible polynomials," IEEE Transactions on Information Theory, Vol. 29, No. 3, pp. 378-385 (1983).8. D. Cantor and E. Kaltofen. \Fast multiplication of polynomials over arbitrary rings," Department ofComputer Science Technical Report No. 87-35, Rensselaer Polytechnic Institute (1987).9. D. Cantor and H. Zassenhaus. \A new algorithm for factoring polynomials over �nite �elds," Mathe-matics of Computation, Vol. 36, No. 154, pp. 587-592 (1981).10. G. Collins. \Factoring univariate integral polynomials in polynomial average time." Eurosam '79:Springer-Verlag Lecture Notes in Computer Science #72, pp. 317-329 (1979).11. D. Coppersmith and S. Winograd. \Matrix multiplication via Behrend's method," Proc. 19th Ann.ACM Symp. on Theory of Computing, pp. 1-6 (1987).12. J. von zur Gathen. \Factoring polynomials and primitive elements for special primes," TheoreticalComputer Science, Vol. 52, pp. 77-89 (1987).13. J. Hafner and K. McCurley. \On the distribution of running times of certain integer factoring algo-rithms," preprint (1987).14. D. Knuth and L. Trabb Pardo. \Analysis of a simple factorization algorithm," Theoretical ComputerScience, Vol. 3, pp. 321-348 (1976).15. M. Rabin. \Probabilistic algorithms in �nite �elds," SIAM J. Comput., Vol. 9, No. 2, pp. 273-280 (1980).16. W. Schmidt.Equations over Finite Fields, Springer-Verlag Lecture Notes in Mathematics No. 536 (1976).17. A. Sch�onhage. \Schnelle Multiplikation von Polynomen �uber K�orpern der Charakteristik 2," Acta In-formatica, Vol. 7, pp. 395-398 (1977).
10


