
ECC, an Extended Calculus of ConstructionsZhaohui Luo�Department of Computer ScienceUniversity of EdinburghKing's BuildingsEdinburgh EH9 3JZ, U.K.AbstractWe present a higher-order calculus ECC which canbe seen as an extension of the calculus of construc-tions [CH88] by adding strong sum types and a fullycumulative type hierarchy. ECC turns out to berather expressive so that mathematical theories can beabstractly described and abstract mathematics maybe adequately formalized. It is shown that ECCis strongly normalizing and has other nice proof-theoretic properties. An !�Set (realizability) modelis described to show how the essential properties ofthe calculus can be captured set-theoretically.1 IntroductionThe calculus of constructions [CH88][Coq85] is a typedhigher-order functional calculus which provides a niceformalism for constructive proofs in natural deductionstyle and can also be seen as a high-level functionalprogramming language.In this paper, we present an Extended Calculus ofConstructions, ECC, which can be seen as an exten-sion of the calculus of constructions with� �-types (or, strong sum types), and� a fully cumulative type hierarchy.�-types in ECC, together with the type hierarchy,provides a powerful abstraction mechanism so thatmathematical theories can be abstractly described andstructured, leading to a comprehensive structuring ofmathematical texts in interactive proof developmentand program speci�cations. The cumulative type hi-erarchy also increases the expressiveness in another as-pect so that, for example, abstract mathematics (e.g.,�Supported by a studentship of the University of Edinburghand the ORS award.

abstract algebras, categories) may be adequately for-malized. Furthermore, as the type hierarchy providesa rather strong and exible form of polymorphism,ECC provides a potential higher-order module mech-anism which supports structure sharing by parameter-ization in the style of programming language Pebble[BLam84][LB88][Bur84] where the type of all types ex-ists and plays an important role.The in�nite type hierarchy in ECC is similar tothat of Martin-L�of's type theory but is fully cumula-tive in the following sense. First, the lowest level Propis impredicative, and the propositions at this level arelifted as higher-level types. This lifting is essential for�-types in ECC to play their role as an abstractionmechanism, and it solves the technical di�culty thatadding (type-indexed) strong sum to the impredicativeproposition level of Constructions results in an incon-sistent system in which Girard's paradox can be de-rived [Coq86a]. Secondly, type inclusions between thetype universes are coherently expanded to the othertypes so that a strong form of type unicity is achieved;this yields a simple notion of principal type and a sim-ple algorithm for type inference.ECC has good proof-theoretic properties. Particu-larly, it is strongly normalizing, which shows the proof-theoretic consistency of ECC (and in general, Con-structions with an in�nite type hierarchy) and estab-lishes the theoretical basis of an implementation (e.g.,decidability of convertibility and type checking).We give an (intuitionistic) set-theoretic semanticsof ECC in the framework of !-sets [Mog85][LM88][Hyl87], which captures the intuitive meanings of theconstructs in the calculus and reects its essentialproperties. In addition to its importance in gettingbetter understanding of the calculus, such a model-theoretic semantics seems also useful when consider-ing pragmatics of the calculus, e.g., how to formalizemathematical problems adequately in Constructions.We discuss how to structure mathematical texts



and express abstract theories in ECC. Sharing byparametrization is explained by an example. Weakexistential types are also discussed.2 ECCECC consists of an underlying term calculus and aset of inference rules of judgements. The basic expres-sions of the term calculus, called terms, are inductivelyde�ned by the following clauses:� The constants Prop and Typei (i 2 !), calledkinds, are terms;� Variables (x,y,...) are terms;� If A, B, M and N are terms, so are �x:A:B,�x:A:M , MN , �x:A:B, pair�x:A:B(M;N ),�1(M ) and �2(M ).Free and bound occurrences of variables and substitu-tion [N=x]M are de�ned as usual. Terms which arethe same up to changes of bound variables are identi-�ed (we will use � for identity). Reduction (>) andconversion (') are de�ned as usual with respect to thefollowing one-step �� contraction schemes:(�x:A:M )N >1 [N=x]M�j(pair�x:A:B(M1;M2)) >1 Mj (j = 1; 2)Remark Church-Rosser property holds for this termcalculus, i.e., M1 ' M2 ) 9M: M1 > M ^M2 >M . For the term calculus, the inclusion of either �-reduction or the rule for surjective pairing will makeChurch-Rosser fail [vD80][Klo80]. It is worth remark-ing that, with either of them, Church-Rosser for well-typed terms of ECC also fails because of the existenceof type inclusions induced by universes. 2The kinds, also called type universes, and the typeinclusions between them induce the type cumulativ-ity that is syntactically characterized by the followingpartial order.De�nition 2.1 (type cumulativity) De�ne � asthe smallest partial order over terms w.r.t. conversion' 1 such that1. Prop � Type0 � Type1 � :::;2. if A ' A0 and B � B0, then �x:A:B � �x:A0:B0;3. if A � A0 and B � B0, then �x:A:B � �x:A0:B0.1That is, ' is the identity referred to in reexivity and anti-symmetry of �.

A � B if, and only if, A � B and A 6' B. 2Contexts are �nite sequences of expressions of theform x:M , where x is a variable and M is a term. Theempty context is denoted by hi. Judgements are ofthe form � is valid or � ` M :A, where � is a con-text and M and A are terms. The sets of free vari-ables in a context x1:A1; :::; xn:An and a judgement� ` M :A are de�ned as S1�i�nfxig [ FV (Ai) andFV (�) [ FV (M ) [ FV (A), respectively.The following are the inference rules of ECC, wherei 2 !:(C1) hi is valid(C2) � ` A:Typei�; x:A is valid (x 62 FV (�))(var) �; x:A;�0 is valid�; x:A;�0 ` x:A(K1) � is valid� ` Prop:Type0(K2) � is valid� ` Typei:Typei+1(�1) �; x:A ` P :Prop� ` �x:A:P :Prop(�2) � ` A:Typei �; x:A ` B:Typei� ` �x:A:B:Typei(�) �; x:A `M :B� ` �x:A:M :�x:A:B(app) � `M :�x:A:B � ` N :A� `MN :[N=x]B(�) � ` A:Typei �; x:A ` B:Typei� ` �x:A:B:Typei(pair) � `M :A � ` N :[M=x]B �; x:A ` B:Typei� ` pair�x:A:B(M;N ):�x:A:B(�1) � `M :�x:A:B� ` �1(M ):A(�2) � `M :�x:A:B� ` �2(M ):[�1(M )=x]B(conv) � `M :A � ` A0:Typei� `M :A0 (A ' A0)(cum) � `M :A � ` A0:Typei� `M :A0 (A � A0)



A derivation of a judgement J is a �nite sequenceof judgements J1; :::; Jn with Jn � J such that, for all1 � i � n, Ji is the conclusion of some instance ofan inference rule whose premises are in f Jj j j < i g.A judgement J is derivable if there is a derivation ofJ . A term M is well-typed (under �) if � ` M :A isderivable for some A. We shall write � ` M :A for`� `M :A is derivable', and � `M ' N (� `M � N )for `M and N are well-typed under � and M ' N(M � N )', respectively.This completes our formal presentation of ECC.ECC extends the calculus of constructions [CH88][Coq85] by adding �-types and a cumulative type hi-erarchy. It can also be seen as an extension of the coreof Martin-L�of's type theory (with in�nite type uni-verses) [ML84] by adding a lowest impredicative levelof propositions (the types of type Prop).The propositions, which stand for the logical formu-las by Curry-Howard correspondence, constitute theimpredicative level Prop of the type hierarchy. View-ing intuitively types as sets, we haveProp 2 Type0 2 Type1 2 :::P rop � Type0 � Type1 � :::Particularly, every proposition is lifted as a higher-level type. In appearance, it seems that this wouldpropagate the impredicativity at the level of proposi-tions to the higher levels. For instance, we can derive` �x:Typei�B:Typei ! Prop:Bx:Type0However, the type hierarchy except the lowest levelProp is still strati�ed (predicative) in the sense thatthe types can be ranked in such a way that the exis-tence of a proper type (a type that is not convertibleto any proposition) is only dependent on those withlower ranks (see section 3). This strati�cation of typehierarchy is essential for the logical consistency of thecalculus.The idea of lifting propositions as types is essentialfor �-types in ECC to be useful as an abstraction toolto express abstract mathematical theories (section 5).The reason is that adding (type-indexed) �-types tothe impredicative level of constructions would get aninconsistent system in which Girard's paradox can bederived [Coq86a]. Note that, in ECC, �x:A:P is not aproposition even when P is. However, as propositionsare lifted as types, we can derive(*) � ` A:Typei �; x:A ` P :Prop� ` �x:A:P :TypeiThis �x:A:P intuitively represents the set of pairs ofan element a of A and a proof of the proposition P (a),

i.e., the intuitionistic subset type (c.f.[ML84]). It isthis property that enables propositions to be used toexpress abstract axioms of a mathematical theory ex-pressed as a �-type.2The type hierarchy is fully cumulative. The infer-ence rule (cum) is a design decision which achievesa strong form of type unicity so that there is a sim-ple notion of principal type (theorem 3.2) and a verystraightforward algorithm for type inference (theo-rem 3.4). The type hierarchy presented in [Coq86a]does not have this property; and therefore, althoughevery well-typed term has a minimum type, it is notthe most general one [Luo88b].The pairs are heavily typed to avoid the undesirabletype ambiguity which would make type inference andtype-checking di�cult (perhaps impossible) [Luo88a].But note that, thanks to the full cumulativity of types,we still have as expected, say,` pairType0�Type0(Prop; Prop):Type3 � Type3Finally, it seems necessary to remark that the par-tial order � de�ned in de�nition 2.1 is not com-pletely contravariant: in the second clause of the def-inition, A is required to be convertible to A0 insteadof A0 � A. One might take the later decision and theproof-theoretic properties in the next section wouldstill hold. Even the algorithm for type inference wouldremain the same. The only di�erence from the proof-theoretic point of view is that some terms get moretypes. For example, �x:Type1:x will not only havetypes Type1 ! Typej , but have Prop ! Typej andType0 ! Typej (j � 1) as its types as well. However,semantically, the type inclusions thus de�ned wouldbe reected by coercions instead of by set inclusionsas we explain in section 4.3 Proof-theoretic PropertiesIn this section, we show that ECC has nice proof-theoretic properties. Particularly, we prove that ECCis strongly normalizing and that there is a straightfor-ward algorithmwhich computes the principal type of awell-typed term. As a consequence, ECC is decidable.First, some basic properties are stated as the follow-ing theorem.Theorem 3.1 In ECC, we have1. Any derivation of �; x:A;�0 ` M :B has a sub-derivation of � ` A:K for some kind K.2We remark that, rather than including propositions as typesas we do in this paper, one may instead directly use rules like(�) above to gain similar e�ects.



2. Any derivation of �;�0 ` M :A has a sub-derivation of `� is valid'.3. If � ` M :A and �0 is a valid context which con-tains every component of �, then �0 `M :A.4. If �; x:A;�0 ` N :B and � ` M :A, then�; [M=x]�0 ` [M=x]N :[M=x]B.5. If � `M :A, then � ` A:K for some kind K.6. (subject reduction) If � `M :A and M >N , then� ` N :A.7. (strengthening) If �; y:Y;�0 ` M :A and y 62FV (M :A) [ FV (�0), then �;�0 `M :A;8. (characterizing �) If A and B are both well-typedunder �, then, A � B if, and only if, �; x:A `x:B, where x 62 FV (�). 2Because of the type inclusions induced by type uni-verses, type uniqueness (upto conversion) fails. How-ever, we have a simple characterization of the set oftypes of a well-typed term.De�nition 3.1 (principal type) A is called a prin-cipal type of M (under �) if � `M :A and, for all A0such that � `M :A0, A � A0. 2In other words, a principal type of a well-typed term isits minimum type with respect to the partial order �;and, if exists, it is obviously unique (upto conversion).We haveTheorem 3.2 (existence of principal types)Every well-typed term M (under a context �) has aprincipal type.Proof Sketch The theorem follows the following dia-mond property of �:� `M :A;� `M :B ) 9C � A;B:� `M :Cwhich is proved by induction on derivations. 2The existence of the principal type is not only agood proof-theoretic property but very important toimplementation of an interactive proof developmentsystem. We denote as TM the principal type of M(under �). TM is indeed the most general type of Min the following sense.Fact 3.1 � ` M :A if, and only if, TM � A and � `A:K for some kind K. 2Now, we come to the most important result in thissection.

Theorem 3.3 (strong normalization)ECC is strongly normalizing, i.e., if � ` M :A, thenM is strongly normalizable. 2The proof of this theorem is rather di�cult. The keydi�culty is that, unlike Constructions without type hi-erarchy, in ECC not only propositions but also propertypes can be of the form MN or �j(M ). This makesit very di�cult to de�ne a rank assignment for typeslike the complexity measure � in [Coq86b] which isessential for proving (strong) normalization theoremsof constructions-like calculi according to the insight ofCoquand.To solve this problem, we �rst prove a quasi-normalization result which says that every well-typedterm can be reduced to a term which does not containany �-redex or �-redex R1R2 such that R1 has a typewhich is a proper type.3 This further implies that ev-ery well-typed proper type can be reduced to one ofthe following (head normal) forms:K;�i1:::�ij(xA1:::Am)B1:::Bm0 ;�x:A:B;�x:A:Bwhere K is a kind, x is a variable, j;m;m0 � 0 andik 2 f1; 2g. With this result, we can then de�ne atwo-dimensional complexity measure of types whichenables us to prove the above theorem following a sim-ilar pattern of the proof of SN theorem for construc-tions in [Coq86b].Remark The above result shows the proof-theoreticconsistency of Constructions with an in�nite type hi-erarchy; it also applies to the Generalized Calculus ofConstructions presented in [Coq86a] (See [Luo88b]).2Corollary 3.1 (consistency) ECC is logically con-sistent. Particularly, we have, for any term M , 6`M :�x:Prop:x. 2Corollary 3.2 (decidability of convertibility) Itis decidable whether M ' N for arbitrary well-typedterms M and N . 2As convertibility for well-typed terms is decidable,so is �. Hence, we haveTheorem 3.4 (type inference) There is a simplealgorithm T such that, when given a context � and3We succeed in proving this by extending the way of us-ing a measure adopted by G.Pottinger and J.Seldin in their at-tempt to prove the SN theorem for the calculus of constructions[Pot87][PS86]; it is essentially in the same spirit as that used in[Pra65] for higher-order logic, but more complex.



a term M , T checks whether M is well-types under �,and if so, T (�;M ) = TM , where TM is the principaltype of M under �.Proof Sketch The algorithm is just a straightforwardextension of that for the calculus of constructions de-scribed in [Coq86b] which follows [ML71]. We onlyconsider several cases here.� M �M1M2: check whether T (�;M1) > �x:A:Band T (�;M2) � A; and, if so, T (�;M1M2) =[M2=x]B.� M � �x:M1:M2: check whether T (�;M1) >K 2 fProp; Typeig and T (�; x:M1;M2) > K 0 2fProp; Typeig; and, if so, T (�; �x:M1:M2) =max�fK;K 0; T ype0g.� M � pair�x:A:B(M1;M2): check whetherT (�; �x:A:B) >K 2 fProp; Typeig, T (�;M1) �A and T (�;M2) � [M1=x]B; and, if so,T (�;pair�x:A:B(M1;M2)) = �x:A:B.The soundness and completeness of the algorithm canbe proved as usual. 2Remark Note that convertible terms may haveun-convertible principal types. For example,(�x:Type3:x)Prop and Prop have Type3 and Prop astheir principal types, respectively. 2By fact 3.1, the existence of the type inference algo-rithm implies the decidability of type-checking.Corollary 3.3 (decidability of type-checking)ECC is decidable, i.e., it is decidable whether � `M :A for arbitrary �, M and A. 24 An !�Set Model of ECCIn this section, we sketch a realizability model of ECCwhich gives an (intuitionistic) set-theoretic semanticsof the calculus.4 Such a model captures the intuitivemeanings of the constructs in the calculus and reectsits essential properties such as logical consistency andtype cumulativity.The main question in interpreting ECC is how tointerpret the type universes and the type formationoperators � and � so that, intuitively, we have4We do not mean that what we describe is the model of thecalculus. There are other reasonable models. For example, wecan give a truth-value model of ECC where propositions areinterpreted as 0 or 1. However, it seems that some basic pointscan not be missed to interpret the constructs properly; we hopeto make them explicit here.

1. Prop 2 Type0 2 Type1 2 :::;2. Prop � Type0 � Type1 � :::;3. Typei is closed under � and �;4. Prop is closed under �.These requirements prevent us from giving a naivenon-trivial classical set-theoretic model of ECC. (See[Rey84][RP88][LM88][Pit87] for more discussions forthe second-order �-calculus [Gir86][Rey74].)Fortunately, the idea of interpreting types as par-tial equivalence relations [Gir72][Tro73][Mog85] pro-vides us a nice framework of !-sets and modest sets[Mog85][LM88][Hyl87] in which there is an interpreta-tion of ECC satisfying the above requirements.Let !�Set be the category of !-sets andM the cat-egory of modest sets. (See [LM88] for these notions.We use jAj and k�A to denote the carrier set and therealizability relation of an !-set A.) The interpreta-tion of ECC, de�ned by induction on derivations ofjudgements, gives every derivable judgement a uniquedenotation such that� If � is a valid context, then [[�]] 2 Obj(!�Set);� If � `M :A, then [[� `M :A]] : [[�]]!FPP [[�; x:A]],that is, intuitively, M is interpreted as a �-indexed element of A; (see below)� If � ` A � A0, then there is an inclusion mor-phism incA;A0 : [[�; x:A]] ,! [[�; x:A0]], and further-more, if � ` M :A, then [[� `M :A0]] = incA;A0 �[[� `M :A]];� If � ` M :A and � ` N :A0, M ' N and A ' A0,then [[� `M :A]] = [[� ` N :A0]].In fact, we only have to indicate how to interpret� ` M :TM , where TM is the principal type of M un-der �. Di�erent from traditional simpler cases, typesand objects in constructions-like calculi are mixed up.So, a type in fact has a `double identity' in the model.In this paper, we do not give the details of the inter-pretation (see [Luo88a] for how details can be �lledin), but only emphasize on how to interpret �, � andthe type universes.Before explaining the model, we �rst introduce three!-set constructors �, �� and ��.Suppose � 2 Obj(!�Set) and A:j�j ! !�Set.Then, de�ne �(�; A) to be the following !-set:j�(�; A)j =df f (; a) j  2 j�j; a 2 jA()j ghm;nik��(�;A)(; a) df, mk�� ^ nk�A()a



� is used to interpret valid contexts. The empty con-text is interpreted as the terminal object of !�Setand [[�; x:A]] =df �([[�]]; [[� ` A:TA]]). The notationf : [[�]] !FPP [[�; x:A]] used above means f satis�esthe following �rst projection property:8 2 [[�]] :�rst(f()) = Now, suppose B:j�(�; A)j ! !�Set. Then,��(A;B) and ��(A;B) are functions from j�j to !�Setde�ned as, for all  2 j�j,j��(A;B)()j =df f (a; b) j a 2 jA()j; b 2 jB(; a)j ghm;nik���(A;B)()(a; b) df, mk�A()a ^ nk�B(;a)band, j��(A;B)()j is de�ned asf f 2 �a 2 jA()j:jB(; a)j j 9n 2 !:nk���(A;B)()f gwhere � denotes set product, and nk���(A;B)()f if,and only if,8a 2 jA()j8p 2 !:(pk�A()a) npk�B(;a)f(a))1. Interpretation of Typei and �/�-types. To inter-pret Typei, we consider large set universes. A basicinsight is that the notions of !-sets and modest setshave nothing to do with sizes of the sets under con-sideration. Consider ZFC set theory with in�nite in-accessible cardinals5 (�0 < �1 < :::) and let V� be thecumulative hierarchy of sets. We de�ne !�Set(i) to bethe full subcategory of !�Set whose objects are those!-sets whose carriers are in V�i . Then, roughly speak-ing, Typei is interpreted as !�Set(i). There are twopoints here. First, as V�i is a `model' of ZFC, we haveLemma 4.1 Both �� and �� are closed for !�Set(i),i.e., if A:j�j ! !�Set(i) and B:�(�; A) ! !�Set(i),then ��(A;B); ��(A;B):j�j ! !�Set(i). 2The interpretations of a �-type and a �-type whoseprincipal type is Typei, [[� ` �x:A:B:Typei]] and[[� ` �x:A:B:Typei]], are de�ned as�[[�]]([[� ` A:Typei]]; [[�; x:A ` B:Typei]])�[[�]]([[� ` A:Typei]]; [[�; x:A ` B:Typei]])respectively. The closedness requirement 3 is satis�edby the above lemma.Secondly, as V�i � V�i+1 , !�Set(i) is a full subcate-gory of !�Set(i + 1). This justi�es the requirement 25A cardinal � is (strongly) inaccessible if it is uncountableand regular, and, for all � < �, 2� < �.

for Typei. But, how about the requirement 1? Notethat !�Set(i)'s are all small categories. Therefore,they can be naturally made as !-sets in the followingspecial way:�i =df (Obj(!�Set(i)); ! � Obj(!�Set(i)))As V�i 2 V�i+1 , we have �i 2 Obj(!�Set(i + 1)).62. Interpretation of Prop and propositions. The cat-egory of !-sets has a small full subcategory PROPwhose objects are those of the form (Q(R);2),where Q(R) is the quotient set of a partial equiv-alence relation R (over !).7 Prop, roughly speak-ing, is interpreted as PROP. Similarly, PROP is afull subcategory of !�Set(0) and (Obj(PROP); ! �Obj(PROP)) 2 Obj(!�Set(0)).We have the following lemmas.Lemma 4.2 ([LM88]) �� is closed for the modestsets, that is, for all A:j�j ! !�Set, B:j�(�; A)j !M,we have ��(A;B):j�j !M. 2Lemma 4.3 There is an equivalence of categoriesback:M ! PROP such that, for P 2 Obj(PROP),back(P ) = P . (The inverse of back is the inclusionfunctor.) 2[[� ` �x:A:B:Prop]], the interpretation of a �-proposition, is de�ned asback � �[[�]]([[� ` A:TA]]; [[�; x:A ` B:Prop]])The closedness requirement 4 is satis�ed by the abovetwo lemmas.Remark The existence of the category equivalenceback is important to interpret Prop and propositionsproperly, as � is closed for M but not for PROP.Note that it is not correct to interpret Prop in theconstructions-like calculi asM (as in [Ehr88]), becauseM is not a small category. 2This completes our sketch of the realizability modelof ECC. It is necessary to remark that the logical con-sistency stated in corollary 3.1 also follows the abovemodel construction. In fact, �x:Prop:x is interpretedas the empty !-set (;; ;).6This explains what we mean by `double identity' before.Note that Set(jAj; jBj) = !�Set(A;B) when B is of the form(jBj; ! � jBj).7PROP is isomorphic to the category of partial equivalencerelations. It is easy to verify that PROP is also a full subcate-gory ofM.



The above model gives more information than justthe consistency. First, it captures the intuitive mean-ings of the constructs in the calculus. For example,M :A means `M 2 A' and the syntactic type inclusions(A � A0) are reected semantically by set inclusions(incA;A0). As pointed out at the end of section 2, if thetype inclusion were completely contravariant, it couldthen only be possibly reected by a sort of coercioninstead of the set inclusion.Secondly, maybe more important, it seems that sucha semantics also shows how one can adequately formal-ize mathematical problems. For example, it seems tobe not adequate to formalize a theory of groups by as-suming the carrier of a group as X:Prop as we knowthat X, as a proposition, can not be viewed as an ar-bitrary set. But, it seems that assuming X:Type0 isthen more adequate as, in the model above, we canview Type0 as containing almost all sets. More re-search is needed in this aspect.5 Theory Abstraction in ECCWe briey discuss in this section one of the pragmaticaspects of ECC | expressing and structuring math-ematical theories.5.1 �-types and theory abstraction�-types in ECC, together with the type hierarchy,can be used to express abstract mathematical theoriesto gain a comprehensive structuring of mathematicaltexts. For example, instead of postulating a theory forrings as a context of the formX:Type0;+:X ! X ! X; 0:X; :::; ass:PASS+; id:P0; :::where the P 's are the propositions for ring axioms,we may express the abstract theory for rings as thefollowing �-type:Ring � �s:SigRing:AxRing(s)whereSigRing � �X:Type0:(X ! X ! X) �X � :::AxRing � �s:SigRing :PASS+ ^ P0 ^ :::In general, (an abstract presentation of) a mathe-matical theory T (say, Ring) consists of� a signature presentation SigT , which is in generala �-type, and

� the abstract axioms over the signature, which canbe expressed as a predicate function AxT of typeSigA ! Prop.Then a theory T is the following �-type:T � �s:SigT :AxT (s)The proved (abstract) theorems of T can then beexpressed as a function ThmT of type SigT !Prop; their proofs constitute a function PrfT of type�t:T:ThmT (�1(t)). These theorems and their proofscan be `instantiated' as the corresponding theoremsand proofs for particular algebraic structure by �-application. For example, one may instantiate the ab-stract theorems and their proofs of the abstract theoryfor rings to those concrete ones for integers.Functions between abstract theories can also be de-�ned which may capture the idea of lifting proofs froman abstract theory to an extended theory [TL88]. Thetype hierarchy even allows the above approach of the-ory abstraction to be internally expressed (an idea dueto Coquand and Pollack); for this the fourth level ofthe type hierarchy (Type2) is used.5.2 Sharing by parameterizationThe type hierarchy of ECC provides a reasonablystrong form of polymorphism and hence a potential fa-cility of de�ning higher-order modules. With this, onecan de�ne functions between abstracted modules andexpress sharing by parameterization [Bur84][LB88].We show this by a simple example.ExampleWe de�ne a function ringGen which resultsin a ring structure when given as arguments a monoidand an abelian group with the same carrier and a proofof the extra axiom for the distributed laws. Supposethe theories of monoids and abelian groups are de�nedas follows:Mon � �m:�X:Type0:Mwrt(X):AxMon(m)AGrp � �g:�X:Type0:AGwrt(X):AxAGrp(g)where Mwrt; AGwrt : Type0 ! Type0 and, whengiven X:Type0 as carrier, they give as results the�-types for the operations for monoids and abeliangroups with respect to X, respectively, and AxMon(m)and AxAGrp(g) are the propositions expressing the ax-ioms of theories for monoids and abelian groups.ringGen can then be de�ned as follows (we omit theassociated typings for pairs for readability):ringGen � �X:Type0



�(�; 1):Mwrt(X)�pM :AxMon(X; �; 1)�(+; 0;�1):AGwrt(X)�pAG:AxAGrp(X;+; 0;�1)�d:PDISTR((X;+; 0;�1; �; 1); and(pM; pAG; d))which is of type�X:Type0�m:Mwrt(X)�g:AGwrt(X)�d:PDISTR: RingThis example shows how the sharing style of Pebbledescribed by Lampson and Burstall in [Bur84][LB88] issupported in ECC and used in particular to guaranteethat the carriers of the two arguments are required tobe the same. Note that Mwrt and AGwrt are a sortof `parameterized modules'. This sort of facility ofsupporting higher-order modules is very useful. 25.3 Existential typesExistential types, also called weak sums, which areused to describe abstract data types [MP85] can be de-�ned in ECC. Besides the existential quanti�er at theproposition level [MP85][Rey83][Pra65], we can alsode�ne existential types at the type levels. For example,we can de�ne the ith level existential-type constructoras follows:9i � �A:Typei�B:A! Typei:�R:Typei(�x:A:(B(x)! R))! Rwhich is of type �A:Typei((A ! Typei) !Typei+1). Then, introduction and elimination opera-tors rep9ix:A:B and abstypei similar to those describedin [MP85][Rey83] can be de�ned for each level whichsatisfy the desired properties such asabstypei x with y:B is rep9ix:A:B(a; b) in N>� [b=y][a=x]NNote that, di�erent from the existential quanti�er atthe proposition level, these `weak sums' are de�ned atthe predicative levels. This seems to show that, forexpressing abstract data types, the impredicativity isnot important. Of course, we do not have these datatypes as values in the strong sense of [MP85]; e.g.,90x:A:B is of type Type1 but not of type Type0.However, the weak sums are not satisfactory toolsto express mathematical theories in proof developmentas its elimination operator is too weak. Particularly,

there is no way to prove that the �rst component of a`weak pair' of type 9ix:A:B satis�es the property B.A comparison of strong and weak sums in the contextof modular programming can be found in [Mac86].6 Related workThe calculus of constructions (CC for short) was stud-ied in [Coq85][CH88][CH85] etc., whose meta theorywas studied in [Coq85][Coq86b] and [Pot87]. The ideaof extending constructions by an in�nite type hierar-chy appeared in [Coq86a], where the Generalized Cal-culus of Constructions (GCC for short) is presented.The strong normalization result in this paper is the�rst attempt to prove SN of a system which extendsCC by an in�nite type hierarchy, which also applies toGCC [Luo88b].The type-checking problem for GCC is consideredin [HaP88]; because GCC does not have the propertyof type unicity, the resulted algorithm is rather com-plicated.In [HyP87] a general approach to categorical seman-tics of constructions-like calculi is described, where anextension of constructions with �-types and unit typeis presented with a motivation for discussing seman-tics. [Ehr88] also gives a rather general framework ofcategorical semantics for dependent types, in which asketch of how to interpret the calculus of constructionsin the !�Set framework is given. A full description ofan !�Set model for constructions (with �-types) canbe found in [Luo88a,c].�-types are well-known in Martin-L�of's type theory[ML73,84]. A similar idea of using �-types to expressmodular structures occurs in researches of program-ming languages (e.g., [BLam84] and [Mac86]). Forprogramming language research, one does not need toconsider logical consistency problem as we do.7 Conclusion and Further Re-searchThe Extended Calculus of Constructions ECC ispresented and studied, which we believe is a verystrong and promising calculus to formalize mathemat-ical problems and to be a basis of structured proofdevelopment. We discuss briey several related topicsfor further researches besides those already mentionedabove.By Curry-Howard principle of formulas-as-types,there is an embedded logic in ECC. We conjecture



that this logic is a conservative extension of the intu-itionistic higher-order logic HOL (c.f., [Chu40][Tak75])with respect to some reasonable interpretation. This isalso relevant to the problem of adequate formalizationof abstract mathematics discussed at the end of sec-tion 4. The connection is concerned with the followingquestion: what is a proper way of interpreting the ob-ject set Obj in HOL? Our guess is that it should bea proper type instead of a proposition; otherwise, weconjecture, the interpretation would not be conserva-tive (even unsound?) with the intuition that too muchcomputational power is provided at the impredicativelevel.The proof-theoretic power of the calculus is un-known. The model construction given in this paperuses large set universes to interpret the type hierar-chy. But it seems that it may be possible to give asmall model of ECC.The approach to theory abstraction adopted in thispaper (section 5) may be called `theories as types',particularly, as �-types. Another approach to theorystructuring in proof development [SB83][BLuo88] bor-rows the idea from researches in algebraic speci�cationlanguages like Clear [BG80]. This later approach maybe called `theories as values', as there are theory oper-ations to `put theories together' in structured theorydevelopment. Although the type hierarchy in ECCenables us to view �-types (hence, theories) as a sortof values, it seems not exible enough to have internalpowerful theory operations to structure large theoriesfrom smaller ones. This seems to be a general unavoid-able weakness of type systems which are necessary tobe restrictive to be logically consistent. However, itmight be interesting to combine the ideas of the abovetwo approaches in such a way that the idea of `theoriesas values' can be implemented at the meta level of aproof development system based on type theories.R.Pollack in Edinburgh has developed an interac-tive proof development system LEGO for Construc-tions and extended it to incorporate �-types and typehierarchy. Further experience with the system shouldlead to a powerful proof development environment.Acknowledgements I am grateful to S.Hayashiwho kindly helped me check a draft of the SN proofand pointed out that the notion of inaccessible car-dinal can be used to interpret type hierarchy in ourjoint e�ort to consider models of hierarchy. Thanks toE.Moggi and Th.Coquand for their insights and sug-gesting that I consider set universes to interpret the hi-erarchy. Thanks to R.Harper, G.Huet, R.Pollack andP.Taylor for many helpful discussions. Finally, special
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