
Towards Polytypic Parallel Programming

Zhenjiang Hu � Masato Takeichi Hideya Iwasaki

Summary.

Data parallelism is currently one of the most successful models for
programming massively parallel computers. The central idea is to eval-
uate a uniform collection of data in parallel by simultaneously manipu-
lating each data element in the collection. Despite many of its promis-
ing features, the current approach su�ers from two problems. First, the
main parallel data structures that most data parallel languages cur-
rently support are restricted to simple collection data types like lists,
arrays or similar structures. But other useful data structures like trees
have not been well addressed. Second, parallel programming relies on
a set of parallel primitives that capture parallel skeletons of interest.
However, these primitives are not well structured, and e�cient parallel
programming with these primitives is di�cult.

In this paper, we propose a polytypic framework for developing e�-
cient parallel programs on most data structures. We show how a set of
polytypic parallel primitives can be formally de�ned for manipulating
most data structures, how these primitives can be successfully struc-
tured into a uniform recursive de�nition, and how an e�cient combi-
nation of primitives can be derived from a naive speci�cation program.
Our framework should be signi�cant not only in development of new
parallel algorithms, but also in construction of parallelizing compilers.

Keywords: Bird-Meertens Formalism, Data Parallelism, Generic
(Polytypic) Programming, NESL, Parallelization, Parallel Skele-
ton, Program Calculation.

1 Introduction

Data parallelism is currently one of the most successful models for programming
massively parallel computers, compared to control parallelism that is explored
from the control structures [Pra92]. The central idea underlying the data par-
allel paradigm is to evaluate a uniform collection of data, like lists, in parallel
by simultaneously manipulating each data element in the collection. To support
parallel programming, this model should at least attain

� Correspondence Address: Zhenjiang Hu, Takeichi Lab., Dept. of Information Engineering,

Univ. of Tokyo, Tokyo 113 Japan. Tel. 81-3-3812-2111�7411 Email: hu@ipl.t.u-tokyo.ac.jp

1 October 1998, METR 98-09

Towards Polytypic Parallel Programming 2

� A parallel data structure to model a uniform collection of data which can be
organized in a way that each of its elements can be manipulated in parallel.

� A set of parallel primitives on the parallel data type capturing parallel skele-
tons of interest, which can be e�ectively used as building blocks to write
parallel programs.

This model not only provides the programmer an easily understandable view of a
single execution stream of a parallel program, but also makes the parallelization or
vectorization process easier [HS86, Kar87, HL93].

Despite these promising features, the application of current data parallel pro-
gramming su�ers from two problems (see Section 3 for the examples). Firstly, the
main parallel data structures that most languages support are restricted to simple

collection data types like arrays or similar structures. Examples includes imper-
ative data parallel languages like C* [RS87], Dataparallel C [HQ91], and High
Performance Fortran [For93], and functional data parallel languages like Connec-
tion Machine Lisp [WS94] and NESL [Ble92]. Therefore, some important parallel
algorithms based on other data structures like trees would become rather awk-
ward. For example, trees are indirectly represented using several vectors in NESL,
and the parallel algorithms on trees become di�cult to understand. Secondly, the
parallel primitives are usually introduced in a rather pragmatic and ad-hoc way
to capture control skeletons of interest [Col89, DFH+93, Ble92]. As a result, the
increasing number of the parallel primitives that are not well structured compli-
cates the data parallel languages, and the programmers take new burdens to choose
proper combination of parallel primitives to write e�cient parallel programs.

Several attempts have been made to solve these problems [Ski94, NO94, KC98].
Particularly, Skillicorn [Ski94] pioneered the work of making use of the construc-
tive algorithmics [Mal89, MFP91, Fok92], an extension of Bird-Meertens Formalism
[Bir87] from the theory of lists to the theory of any data types, which has proved to
be useful in developing e�cient sequential programs [Gib92, dM92, Jeu93, BdM96].
In constructive algorithmics, data types are formalized as initial algebras and op-
erations on the data are formalized in a uniform way as homomorphisms between
algebras. Skillicorn [Ski90, Ski94] proposed an architecture independent parallel
cost model for some speci�c homomorphic primitives such as map and reduct.
However, to enable extraction of parallelism, programs are forced to be written in
terms of these small �xed set of primitives, which is usually di�cult, whereas few
studies clarify how to derive an e�cient combination of these primitives to solve a
problem. This shortcoming indeed prevents the idea from being widely accepted.
We think that one major problem lies in lack of knowledge of the structure among
these primitives and the relationship between programs in natural recursive form
and programs in these primitives.

In this paper, we shall propose a polytypic framework for developing e�cient
parallel programs on any data structures, clarifying how a set of polytypic parallel
primitives can be formally de�ned for any data structures, how these primitives
can be structured into a recursive de�nition, and how an e�cient combination of
parallel primitives can be derived from a naive recursive speci�cation program. Our
main contributions are as follows.

Towards Polytypic Parallel Programming 3

� We de�ne a set of parallel primitives to capture common parallel structures
for manipulating collection of data, with three properties. They are polytypic
[JJ97] (or generic) in the sense that they behave uniformly over a large class
of data types like lists, trees and etc. They are e�cient in the sense that all
of our primitives guarantee e�cient parallel implementations. And they are
powerful to describe most interesting parallel algorithms. Even specializing
them to those on lists, we are able to describe as much parallelism as NESL
[Ble92] can whose parallelism is essentially speci�ed by apply-to-each and
scan constructs. Comparing with the polytypic parallel primitives in [Ski94],
we pay particular attention to and give a natural de�nition for the polytypic
scan, a useful parallel primitive generalizing the list scans [Ble89, Ble92] and
the binary tree scans [GCS94, Gib96]. In contrast to the formal categorical
formalization in [Gib96, Gib98] with complicated check conditions, our def-
inition of polytypic scans makes a natural use of accumulating parameters
in recursive de�nitions, simplifying the check conditions while retaining their
descriptive power.

� We propose a decomposition theorem to structure all our polytypic parallel
primitives in a uniform recursion, and to bridge the gap between natural def-
initions using recursions and de�nitions using parallel primitives. It includes
as its special case the well-known homomorphism lemma [Bir87] which has
served as the basis for deriving parallel programs on lists [Col95, GDH96,
Gor96b, HIT97, HTC98]. The key idea to establish our theorem is an essen-
tial use of scans to memoize intermediate results in parallel computation.

� Our polytypic framework can provide both explicit and implicit way to de-
scribe parallelism, supporting both mechanical implementation and
exible
programming. In particular, we present a systematic approach to derive an
e�cient combination of parallel primitives from a naive speci�cation in a nat-
ural recursive form without concerning parallelism. Our approach can deal
with a wide class of functions which may use auxiliary functions or accumu-
lating parameters. In addition, our derivation is given in a calculational way
like those in [OHIT97, HITT97]. Therefore, it preserves the advantages of
transformation in calculational form; being correct and guaranteed to ter-
minate. To show the power of our approach, we demonstrate a successful
derivation of two novel parallel algorithms for bracket matching and for tree
numbering.

The organization of this paper is as follows. In Section 2, we review the nota-
tional conventions and some basic concepts used in this paper. After clarifying the
problems in current parallel programming with two concrete programming exam-
ples in Section 3, we give our polytypic parallel model including a set of polytypic
parallel primitives as well as our decomposition theorem for structuring these prim-
itives in Section 4. We then show how to systematically develop polytypic parallel
programs based on our polytypic parallel model, using two concrete derivation
examples in Section 5. Related work and discussions are given in Section 6.

Towards Polytypic Parallel Programming 4

2 Preliminary

In this section, we �rst brie
y review the notational conventions and some basic
concepts of the extended Bird-Meertens Formalism (BMF for short in this paper,
or known as constructive algorithmics) [Bir87, Mal89, Fok92, BdM96], a program
calculus, based on which we will construct our polytypic parallel framework. And
then we outline some existing results on parallel programming in BMF. We shall
do the best we can to avoid categorical terminologies to target more audience.

2.1 Bird-Meertens Formalisms

BMF is a concise functional program calculus suitable for program derivation/calculation.
Those who are familiar with functional programming should have no di�culty in
understanding BMF programs. It is worth noting that although BMF is functional,
this does not limit our proposing approach to the functional world. Rather one can
use functional description to capture control structures in imperative programs
[FG94].

In BMF, Function application is denoted by a space and the argument which
may be written without brackets. Thus f a means f (a). Functions are curried, and
application associates to the left. Thus f a b means (f a) b. Function application
binds stronger than any other operator, so f a�b means (f a)�b, but not f (a � b).
Function composition is denoted by a centralized circle �. By de�nition, we have
(f �g) a = f (g a). Function composition is an associative operator, and the identity
function is denoted by id. In�x binary operators will often be denoted by �;
 and
can be sectioned ; an in�x binary operator like � can be turned into unary functions
by (�) a b = (a�) b = a� b = (� b) a.

Data Types

Data types play a signi�cant role in BMF, which are formalized as the initial
algebras. In this paper, rather than being involved in theoretical study as can be
found in [Mal89, MFP91, Fok92, BdM96], we shall show how the theoretical results
are re
ected in our concrete programs.

De�nition 1 (Data Type) The data types considered in this paper are the simple
sum-of-product types de�ned by using recursive equations of the form:

T � = C1 � t11 : : : t1m1

j C2 � t21 : : : t2m2

j � � �
j Cn � tn1 : : : tnmn

where � is a type variable denoting the element type, Ci's are data constructors,
and all tij 's are T �. 2

In this paper, we do not allow mutually recursive types or function types, which
can be lifted to some extent as studied in [MH95]. To simplify our presentation,
we assume that each branch Ci � ti1 : : : timi

contains an element of type � and
zero or more recursive components ti1 : : : timi

. If a branch does not need to have
an element, we may consider the element has a \don't care" value (which will be

Towards Polytypic Parallel Programming 5

denoted by). As a concrete example, consider the data type of cons lists with
elements of type a. It can be de�ned by

List � = [] j (:) � (List �)

which has two data constructors: [] for constructing the empty list without caring
about its element , and (:) for adding an element to a list. To enhance readability,
we may express constructors in an in�x way like

List � = [] j � : List �:

Here are some other examples. The type of join (or called append) lists is
de�ned by

JList � = [] j Ele � j JList � ++ JList �

where we write (++ (JList �) (JList �)) to be JList � ++ JList �, and ++
is associative. It reads that a join list is either the empty, or constructed from an
element (usually denoted by [a] where a is its element), or concatenated by two
join lists. The type of trees with nodes of type �, can be de�ned by

Tree � = Leaf � j Node � (Tree �) (Tree �):

Note that when no ambiguity arises, we sometime omit the \don't care" symbol
\ " in both our type de�nitions and our programs. Also, by default we assume that
for a binary operator �, we have � x = x � = x, which means to ignore the
\don't care". We also assume that the incomplete term of � to be equal to �'s
identity ��.

Catamorphisms

Catamorphisms [MFP91, SF93], one of the most important concepts in BMF, form
a class of important recursive functions over a given data type. They are the
functions that promote through the data constructors. For example, for the cons
list, given e and �, there exists a unique catamorphism, say h, satisfying:

h [] = e
h (x : xs) = x� h xs

In essence, this solution is a relabeling: it replaces every occurrence of [] with e
and every occurrence of : with � in the cons list. We denote this catamorphism as
h = cataList e (�).

De�nition 2 (Catamorphism) Given the data type T in De�nition 1 on which a
function h is de�ned. The h is a catamorphism, denoted by (cataT �1 : : : �n) or
simply by (cata �1 : : : �n) when T is clear from the context, if it is de�ned by

h (Ci a xi1 � � � ximi
) = �i a (h xi1) : : : (h ximi

) (i = 1; : : : ; n) 2

Instantiating the de�nition of catamorphisms for join lists and trees yields:

cata �1 �2 (�) [] = �1
cata �1 �2 (�) [a] = �2 a
cata �1 �2 (�) (x++ y) = cata �1 �2 (�) x � cata �1 �2 (�) y

Towards Polytypic Parallel Programming 6

cata �1 �2 (Leaf a) = �1 a
cata �1 �2 (Node a l r) = �2 a (cata �1 �2 l) (cata �1 �2 r)

Catamorphisms enjoy many useful transformation properties [MFP91, BdM96]
for program derivation, among them fusion and tupling are of particular interest. In
fact, our later parallel primitives in Section 4 are all special cases of catamorphisms.

2.2 Parallel Programming in BMF

Besides the work [Ski90, Ski94] on looking for architecture-independent parallel
implementation of some speci�c catamorphisms, studies on parallel programming
in BMF are actually quite recently, focusing mainly on list functions as in [Col95,
GDH96, Gor96b, HIT97, HTC98]. The main idea is to derive the so-called List

homomorphisms [Bir87], which are nothing more than catamorphisms on join lists
as de�ned above. The relevance of homomorphisms to parallel programming is
basically from the homomorphism lemma [Bir87]:

cataJList �� k (�) = (�=) � (k�)

where �� stands for the identity element of �. This lemma reads that every list
homomorphism can be written as the composition of a reduct and a map. Map is
the operator which applies a function to every element in a list. It is written as an
in�x �. Informally, we have

k � [x1; x2; : : : ; xn] = [k x1; k x2; : : : ; k xn]:

Reduct is the operator which collapses a list into a single value by repeated ap-
plication of some binary operator. It is written as an in�x =. Informally, for an
associative binary operator �, we have

�= [x1; x2; : : : ; xn] = x1 � x2 � � � � � xn:

Clearly, both � and = have simple massively parallel implementations on many
architectures [Ski90]. It follows that if we can derive list homomorphisms, then
we can get corresponding parallel programs. Following this thought, some [HIT97]
derive list homomorphisms from a naive speci�cation by using algebraic transfor-
mation laws of list homomorphisms like fusion and tupling calculation, and some
synthesize list homomorphisms from sequential speci�cation [Gor96b, HTC98].

The importance of using a recursion of list homomorphism instead of map and
reduct in parallel programming motivated us to �nd a similar polytypic uniform
recursion as in our decomposition theorem later.

3 The Problems and our Running Examples

As argued in the introduction, two problems exist in current data parallel pro-
gramming, namely simple parallel data types and lack of well structured parallel
primitives. To appreciate them, we explain with two concrete programming exer-
cises which will be served as our running examples.

Towards Polytypic Parallel Programming 7

3.1 Simple Parallel Data Types

The main parallel data structures that most parallel languages currently supported
are restricted to simple collection data types like arrays or similar structures. In
BMF, most studies devoted to developing parallel programs manipulating lists
[Col95, GDH96, Gor96b, HIT97, HTC98]. By this restriction, parallel algorithms
on other data structures like trees would become awkward, and derivation of e�-
cient parallel programs would be more di�cult.

To be concrete, consider the problem to develop an e�cient parallel program
for numbering each node of a binary tree in an in�x-traversing order. Precisely,
the problem can be speci�ed by the following naive program on trees:

nt (Leaf a) c = Leaf c
nt (Node a l r) c = Node (c+ size l) (nt l c) (nt r (c+ size l + 1)):

We number a tree by using a counter. If the tree is a leaf node, we associate the
current counter to it. Otherwise the tree has an internal node with value a, left tree
l, and right tree r, we number the internal node with sum of the current counter
and the size (number of nodes) of the left tree, and recursively number the left tree
and the right tree respectively with suitable new counters. Here size is de�ned by

size (Leaf a) = 1
size (Node a l r) = 1 + size l + size r:

It is actually not easy to write an O(logN) (N denotes the size of the tree)
parallel program, because of two seemingly sequential factors in the above naive
speci�cation: a counter c sequentializing the visit of each node and a probably very
unbalanced tree.

3.2 Lack of Structured Parallel Model

Parallel programming relies on a set of parallel primitives to specify parallelism. A
good parallel model should not only provide a set of powerful and e�cient parallel
primitives but also structure them well to let programmer easily choose proper ones
to solve his problems. Although BMF provides a set of powerful parallel primitives
such as map and reduct, it remains much di�cult to choose proper ones to develop
e�cient parallel programs.

Consider, as an example, that we want to develop an e�cient parallel program
for the bracket matching problem, which was informally studied by Cole in [Col95].
It is a kind of language recognition problem, determining whether the brackets of
many types in a given string are correctly matched. the string \g + f[o + o] �
dg()" is accepted, whereas \bf[a)d]" is not. This problem is of interest in parallel
programming in that the problem itself is so simple but �nding an e�cient parallel
algorithm is far from being trivial. But a simple straightforward algorithm still
exists by using a stack. Opening brackets are pushed, and a closing brackets are
matched with the current stack top. Failure is indicated by a mismatch, or by a
nonempty stack when a match is required or at the end of the scan of the input.

Towards Polytypic Parallel Programming 8

Thus we come to the following straightforward speci�cation.

bm [] s = isEmpty s
bm (a : x) s = if isOpen a then bm x (push a s)

else if isClose a then noEmpty s ^ match a (top s) ^ bm x (pop s)
else bm x s

To appreciate our novel parallel algorithm systematically derived later, the
readers are encouraged to solve this problem in one of their familiar data par-
allel languages such as Higher Performance Fortran [For93], NESL [Ble92]. The
di�culty lies in the sequentiality of the stack data structure.

4 Polytypic Parallel Model

We shall propose our polytypic parallel model to solve the two problems in the
previous section. Our model consists of a set of polytypic parallel primitives which
can be applied to most of our data types, and the decomposition theorem together
with some corollaries to structure our primitives in a uniform recursion.

4.1 Polytypic Parallel Primitives

Based on the constructive algorithmics, we de�ne a set of polytypic parallel primi-
tives by a natural generalization of those primitives on lists [Bir87, Ski93a]. In the
rest of this section, we assume that the data type over which our parallel primitives
are de�ned is T as given in De�nition 1, and we omit the subscription T in our
parallel primitives when no ambiguity arises as we do for catamorphism.

Map

Map is the operator which applies a set of functions to elements while each function
is applied simultaneously to the elements wrapped in the same data constructor.
Precisely, given fi : �! � for i = 1; : : : ; n, we have for i = 1; : : : ; n:

map f1 : : : fn (Ci a xi1 : : : ximi
)

= Ci (fi a) (map f1 : : : fn xi1) : : : (map f1 : : : fn ximi
)

For instance, the map functions on cons lists is given by

map f1 f2 ([]) = [] (f1)
map f1 f2 (a : x) = f2 a : map f1 f2 x:

Since we do not care element after [], we can consider [] (f1) as [], and hence we
come to our usual map on lists; applying a function f2 to each element of a list.
Our map on our binary trees applies two functions simultaneously to each leave
element and each internal-node element respectively.

map f1 f2 (Leaf a) = Leaf (f1 a)
map f1 f2 (Node a l r) = Node (f2 a) (map f1 f2 l) (map f1 f2 r)

The parallelism in map is obvious. For example, using linear number of proces-
sors, we can easily implement it using O(T (f1) + � � �+ T (fn)) parallel time, where
T (fi) denotes the time for computing fi.

Towards Polytypic Parallel Programming 9

Scan

In contrast to map that has no communication among elements, scan (or called
accumulation) provides a mechanism to describe data communication in a struc-
ture. Scans on lists are considered as one of the two important parallel constructs
in NESL [Ble92]. Formal study of binary tree scans (downwards and upwards accu-
mulations) can be found in [Gib92, BdM96], but to ensure the existence of e�cient
parallel implementation the complicated \cooperation condition" must be checked.
This condition would become much more complicated when applied to more gen-
eral data types. Di�erent from the compositional formulation of polytypic scan
in [Gib98], we give a more natural de�nition by using an explicit accumulating
parameter in a recursive de�nition, and simplify the condition to guarantee the
existence of e�cient parallel implementation.

We have two kinds of scan: scanning a data structure upwards or downwards,
which will be called upward scan, denoted by scanu, and downward scan, denoted
by scand, respectively. Upward scan computes sum of all elements with a binary
operator �, while keeping all running sums during upwards computation. Given
an associative operator � : �! �! �, for i = 1; : : : ; n:

scanu (�) (Ci a xi1 : : : ximi
) = let sij = scanu (�) xij

in Ci (a � root si1 � � � � � root simi
)

si1 : : : simi

where root, returning the root element, is de�ned by

root (Ci a xi1 : : : ximi
) = a (i = 1; : : : ; n):

Examples are as follows (Here we use the abbreviations for in Section 2.1).

scanu (�) ([]) = []
scanu (�) (a : x) = let x0 = scanu (�) x in (a� root x0) : x0

scanu (�) (Leaf a) = Leaf a
scanu (�) (Node a l r) = let l0 = scanu (�) l; r0 = scanu (�) r

in Node (a� root l0 � root r0) l0 r0

For instance, we have scanu (+) (x1 : (x2 : (: : : (xn : [])))) = (x1 + x2 + � � �+ xn) :
((x2 + � � �+ xn) : (: : : (xn : []))).

Downward scan scand is de�ned using an accumulating parameter. For i =
1; : : : ; n, we have

scand (�) gij (Ci a xi1 : : : ximi
) c = let siq = scand (�) gij xiq (c� giq a)

in Ci c si1 : : : simi

where gij denotes a sequence of functions g11 : : : g1m1
g21 : : : g2m2

: : : gn1; : : : gnmn ,
and � : �! �! � is an associative operator. Instantiating the de�nition to cons
lists and binary trees yields

scand (�) g21 ([]) c = [] c
scand (�) g21 (a : x) c = c : (scand (�) g21 x (c� g21 a))

Towards Polytypic Parallel Programming 10

scand (�) g21 g22 (Leaf a) c = Leaf c
scand (�) g21 g22 (Node a l r) c = Node c (scand (�) g21 g22 l (c� g21 a)))

(scand (�) g21 g22 r (c� g22 a))

For instance scand (+) id (x1 : (x2 : (: : : (xn : ([]))))) c = c : ((c � x1) :
(: : : ((c� x1 � x2 � � � � � xn�1) : ([] c

0)))), where c0 = c� x1 � x2 � � � � � xn. If we
do not care about the element c0 behind [], we actually come to our familiar scan
on lists [Ble89].

E�cient implementation of the scans is not so obvious. Fortunately, many
studies have been devoted to show that the tree contraction technique [LF80, TV84,
MR85, GMT87, ADKP87, Ble89] can be applied to e�cient implement our scans,
and some more concrete studies can be found [GCS94, Gib96, Ski96]. We do not
recap them, rather we summarize the result. For the upward scan, the parallel
time is O(T (�) � logN) with linear number of processors, where N denotes the
size of the data of type T . For the downward scan, the parallel time is O((T (�) +
max(T (gij)))� logN).

Reduct

Generalizing reduct from that on lists is straightforward.

reduct (�) (Ci a xi1 : : : ximi
) = a � reduct (�) xi1 � � � � � reduct (�) ximi

Obviously, reduct can be de�ned by upward scan as reduct (�) = root �
(scanu (�)), and it can be implemented in parallel by using the tree contraction
technique similarly to upward scan.

Zip

Zip merges two data of the same form into one by pairwisely gluing elements.
Precisely, for i = 1; : : : ; n:

zip (Ci a xi1 : : : ximi
) (Ci b yi1 : : : yimi

)
= Ci (a; b) (zip xi1 yi1) : : : (zip ximi

yimi
)

This de�nition can be extended from two data to any number of data. The
parallelism in zip is also obvious; gluing corresponding elements in parallel.

4.2 Decomposition Theorem

Parallel primitives provide an explicit way to describe parallelism. They enjoy
many transformation laws. Among them, fusion rules [TM95, OHIT97] are of
great importance in merging program derivation. An example of the most simple
fusion laws is:

map f1 : : : fn � map g1 � � � gn = map (f1 � g1) : : : (fn � gn):

The fusion rules are to fuse smaller primitives to bigger one so that unnecessary
communication between smaller ones can be eliminated. They are much useful
for optimizing programs in terms of primitives, which will not be addressed in the
paper. Instead, we are interested in how to derive a combination of primitives from
a general recursive de�nitions.

Towards Polytypic Parallel Programming 11

Recall the problems for bracket matching and tree-walk numbering in Section
3, it is di�cult to solve them using these primitives directly. Rather we describe
the problems in a natural recursive. To make e�cient use of these primitives in our
parallel programming, we need to make it clear the relationship among them and
�nd a way to structure them. To this end, we propose a decomposition theorem to
structure all primitives in a uniform recursive form.

Before giving our theorem formally, take a look at a function recursively de�ned
on lists:

h ([]) c = g1 c
h (a : x) c = g2 (a; c) � h x (c
 g3 a)

where � and
 are associative. We can equivalently de�ne it using parallel primi-
tives too as

h x c = reduct (�) (map g1 g2 (zip x (scand (
) g3 x c)))

Comparing the above two versions indicates that the former is readable but its
parallelism is hidden, whereas the latter clarifes parallelism but is di�cult to write
to solve problems. The following decomposition theorem structure primitives in a
uniform recursion, allowing programs in a recursive form whose version in primitives
can be automatically calculated.

Theorem 1 (Decomposition) Let h : T � ! A ! O be de�ned in the following
recursive way:

h (Ci a xi1 : : : ximi
) c = gi(a; c) � h xi1 (c
 gi1 a) � : : : � h ximi

(c
 gimi
a)

for i = 1; : : : ; n, where � : O ! O ! O and
 : A ! A ! A are two associative
operators, and gi and gij are given functions. Then, h can be equivalently de�ned
by

h x c = let cs = scand (
) gij x c; gis = map g1 : : : gn (zip x cs)
in reduct (�) gis

Proof Sketch: We prove it by induction on the x's structure.

� Base case: x = Ci a, i.e., x has no recursive component. This is true because
we can easily see that

h x c = gi(a; c) = h (Ci a) c:

� Inductive case: x = Ci a xi1 : : : ximi
. We prove it by the following calcula-

Towards Polytypic Parallel Programming 12

tion.

h (Ci a xi1 : : : ximi
) c

= f New de�nition for h g

let cs = scand (
) gij (Ci a xi1 : : : ximi
) c

gis = map g1 : : : gn (zip (Ci a xi1 : : : ximi
) cs)

in reduct (�) gis
= f De�nition of scand g

let siq = scand (
) gij xiq (c
 giq a) (for q = 1; : : : ;mi)
cs = Ci c si1 : : : simi

gis = map g1 : : : gn (zip (Ci a xi1 : : : ximi
) cs)

in reduct (�) gis
= f De�nition of zip and map g

let siq = scand (
) gij xiq (c
 giq a) (for q = 1; : : : ;mi)
mziq = map g1 : : : gn (zip xiq siq) (for q = 1; : : : ;mi)
gis = Ci (gi(a; c)) mzi1 : : : mzimi

in reduct (�) gis
= f De�nition of reduct g

let siq = scand (
) gij xiq (c
 giq a) (for q = 1; : : : ;mi)
mziq = map g1 : : : gn (zip xiq siq) (for q = 1; : : : ;mi)
rsiq = reduct (�) mziq (for q = 1; : : : ;mi)

in gi(a; c)� rsi1 � � � � � rsimi

= f Inductive hypothesis g

gi(a; c) � h xi1 (c
 gi1 a) � : : : � h ximi
(c
 gimi

a) 2

The decomposition theorem can be degenerated to the case where h does not
use accumulating parameter. As shown in the following corollary, it is quite similar
to the homomorphism lemma in Section 2.2.

Corollary 2 Let h : T � ! O be de�ned in the following recursive way: for
i = 1; : : : ; n,

h (Ci a xi1 : : : ximi
) = gi a � h xi1 � : : : � h ximi

where � : O ! O ! O is an associative operators. Then,

h x = reduct (�) (map g1 : : : gn x) 2

Another corollary, focusing on the accumulating parameter, is obtained by elim-
inating the last reduct step in the new de�nition of h in the decomposition theorem.

Corollary 3 If for i = 1; : : : ; n, we have

h (Ci a xi1 : : : ximi
) c = Ci (gi(a; c)) (h xi1 (c
 gi1 a)) : : : (h ximi

(c
 gimi
a))

where
 is associative, then,

h x c = let cs = scand (
) gij x c in map g1 : : : gn (zip x cs) 2

To see a simple use the decomposition theorem, consider the following func-
tion sbp to solve a simpli�ed bracket matching problem: determining whether the

Towards Polytypic Parallel Programming 13

brackets '(' and ')' are matched in a given string. It uses a counter to increase upon
meeting '(' and to decrease upon meeting ')':

sbp [] c = c == 0
sbp (a : x) c = if a == '(' then sbp x (c+ 1)

else if a == ')' then c > 0 ^ sbpx (c� 1)
else sbp x c:

This can be transformed, based on the property of conditionals, into

sbp [] c = g1 c
sbp (a : x) c = g2(a; c) ^ sbp x (c+ g21 a)

where
g1 c = c == 0
g2(a; c) = if a == '(' then True

else if a == ')' then c > 0 else True
g21 a = if a == '(' then 1

else if a == ')' then (�1) else 0

Now applying the decomposition theorem will yield the following explicit parallel
program:

sbp x c = let cs = scand (+) g21 x c
gis = map g1 g2 (zip x cs)

in reduct (^) gis

Note that this problem was considered as a kind of di�cult parallelization problem
in [Col95]. By using the decomposition theorem, its e�cient parallel program turns
out to be a straightforward program calculation.

5 Polytypic Parallel Programming

As it is di�cult and impossible to automatically derive e�cient parallel programs
from all naive speci�cations, our polytypic parallel programming model is intended
to provide both explicit and implicit way to describe parallelism, supporting both
mechanical implementation and
exible programming.

� Explicit parallel programming in compositional style with fusion transforma-

tion. We can describe parallelism in an explicit way with our parallel primi-
tives, and make use of the well-known fusion transformation [Wad88, Chi92,
OHIT97] for optimizations. Development of parallelism in parallel primitives
and fusion transformation can be automated.

� Implicit parallel programming in recursions with parallelization transforma-

tion. We are free from writing programs in terms of parallel primitives, and
use a systematic calculational way based on the decomposition to derive a
good combination of parallel primitives from the description of the problem in
a natural recursive form. If we cannot derive a form that the decomposition
theorem, we will leave it as it remains and never do parallelization.

In this paper, we concentrate ourselves on implicit parallel programming, show-
ing a systematic way to translate a naive recursive de�nition of a problem into the

Towards Polytypic Parallel Programming 14

form that our decomposition theorem can be applied to. It consists of the �ve
steps, as will be discussed in this section. To show the power of our approach,
we demonstrate successful derivation of two novel parallel algorithms for bracket
matching and tree numbering. The initial naive programs of bm and nt to solve
the two problems have been given in Section 3.

Step 1: Linearizing Recursive Calls

Given a recursive de�nition in the form of

h (Ci a xi1 � � � ximi
) c = ei (i = 1; : : : ; n)

where ei denote the de�nition body, we aim to turn it into the form that our decom-
position theorem or corollaries can be applied. It is required that the occurrences of
each recursive call on xij in ei appear once. If some appear many times, we should
try to merge them into a single one. Recall the de�nition of bm in Section 3. In
the de�nition for the branch of (a : x), there are three occurrences of the recursive
call to bm on x. We can merge them based on the property of if construct.

bm [] s = isEmpty s
bm (a : x) s = gbm1

(a; s) ^ bm x (gbm2
a s)

where

gbm1
(a; s) = if isOpen a then True

else if isClose a then noEmpty s ^ match a (top s) else True
gbm2

a s = if isOpen a then push a s
else if isClose a then pop s else s:

Step 2: Identifying Associative Operators

Central to our decomposition theorem is the use of associativity of the binary
operators � and
. Clearly, � should be an associative operator over the resulting
domain of function h, while
 is an associative operator over the resulting domain
of the accumulating parameter c.

There are several ways to identify these associative operators in our programs:
limiting application scope by requiring all associative operators to be made explicit,
e.g. in [FG94], or adopting AI techniques like anti-uni�cation [Hei94] to synthesize
them, or more interestingly, deriving them from the resulting domain types. For
the last, it is known [SF93] that every linear type R that has a zero constructor CZ

(a constructor with only only a \don't care" value like [] for lists) has a function
�, which is associative and has the zero CZ for both a left and right identity. Such
a function
 is called zero replacement function, since x � y means to replace all
CZ in y with x.

Consider the following stack we would like to use in bm:

Stack � = Empty j Push � Stack j Pop Stack

satisfying Pop (Push a s) = s. From this de�nition, we can derive the following
associative operator
bm for combining two stacks.

s
bm Empty = s
s
bm (Push a s0) = Push a (s
bm s0)
s
bm (Pop s0) = Pop (s
bm s0)

Towards Polytypic Parallel Programming 15

Similarly, we can derive + for natural numbers, ++ for lists, and ^ for booleans.
Return to our two examples. For bm, from the decomposition theorem we can

identity that � = ^, and we can expect
 =
bm because

gbm2
a s = s
bm gbm21

a
gbm21

a = if isOpen a then push a Empty
else if isClose a then pop Empty else Empty:

And for nt (as given in Section 3):

nt (Leaf a) c = Leaf c
nt (Node a l r) c = Node (c+ size l) (nt l c) (nt r (c+ size l + 1))

we can expect
 = (+) to use Corollary 3.

Step 3: Memoizing Auxiliary Functions by Scans

Since we often use some auxiliary functions that manipulate the same data in
our recursive de�nition, we must �nd a way to remove them in order to apply our
decomposition theorem or corollaries. As in the de�nition of nt, we use an auxiliary
function size that traverses over the same tree. In sequential world, we often use
tupling transformation [Chi93, HITT97] to make it e�cient. Here, we propose the
following lemma for eliminating auxiliary functions.

Lemma 4 (Memoizing) Let �,
, and � be associative. If for i = 1; : : : ; n, we
have

h (Ci a xi1 : : : ximi
) c

= Ci (gi(a; c;H)) (h xi1 (c
 gi1(a;H))) : : : (h ximi
(c
 gimi

(a;H)))

where H denotes a join list Ele(reduct � xi1)++ : : :++Ele(reduct � ximi
), then,

h x c = let x0 = zip x (map (++) (map Ele : : : Ele (scanu � x)))
h0 (Ci (a;H

0) xi1 : : : ximi
) c =

Ci (gi(a; c;H
0)) (h0 xi1 (c
 gi1(a;H

0))) : : : (h0 ximi
(c
 gimi

(a;H 0)))
in h0 x0 c 2

In this lemma, we turn our de�ned function h to h0 with fewer auxiliary func-
tions by memoizing the intermediate result of the auxiliary function using scanu
and change the input data x to x0. Note that Ele and ++ are two data constructors
of the join lists. With the memoizing lemma, we can eliminate auxiliary functions
traversing over the same data structure as h one by one. Returning to nt that uses
size where size = reduct (+) which can be easily derived by applying the decompo-
sition theorem. Now applying the lemma to nt an abbreviating Ele(sl) ++Ele(sr)
to [sl; sr] yields

nt tree c = let tree0 = zip tree (scanu (++) (map Ele Ele (scanu (+) tree)))
nt0 (Leaf(a; [sl; sr])) c = Leaf (gnt0

1
(a; c; [sl; sr]))

nt0 (Node(a; [sl; sr]) l r) c = Node (gnt0
1

(a; c; [sl; sr]))

(nt0 xi1 (c+ gnt0
21

(a; (sl; rl)))) : : : (nt0 ximi
(c+ g22(a; [sl; sr])))

in nt0 tree0 c

Towards Polytypic Parallel Programming 16

where
gnt0

1

(a; c; [sl; sr]) = c

gnt0
2

(a; c; [sl; sr]) = c+ sl
gnt0

21

(a; [sl; sr]) = 0

gnt0
22

(a; [sl; sr]) = sl + 1

Step 4: Applying the Decomposition Theorem

After merging recursive call occurrences, identifying associative operators, and
eliminating auxiliary functions, we turn to apply the decomposition theorem or
the related corollaries.

For bm, it follows from the decomposition theorem that

bm x c = let cs = scand
bm gbm2
x c

g0(; c) = isEmpty c
gis = map g0 gbm1

(zip x cs)
in reduct ^ gis

And for nt, based on the result we have got in the previous step, we are left to
derive a parallel implementation for nt0. This follows directly from Corollary 3.

nt0 x c = let cs = scand (+) gnt0
21

gnt0
22

x c in map gnt0
1

gnt0
2

(zip x cs)

Step 5: Finding E�cient Implementation for Operators

Now that we have derived parallel programs that are described in terms of our
parallel primitives. According to our cost model for parallel primitives, we should
continue to �nd e�cient implementation for the operations like gij, � and
 that
are used in each parallel primitive in order to obtain more e�cient parallel pro-
grams.

In our derived parallel program for nt, it is not di�cult to see that each op-
eration used in the parallel primitives have O(1) parallel time, so we have got an
O(logN) parallel program for numbering trees. But for bm, it remains to show that

bm can be implemented in O(1) parallel time if we want to an O(logN) parallel
program for bracket matching. In fact we have the following fact.

Fact. Let T be a linear data type (each data constructor contains at
most one recursive component), and � be the zero replacement associa-
tive operator derived from T . Then � can be implemented using O(1)
parallel time.

The concrete discussion on this can be found in [HT98]. The intuitive idea is
that x� y can be implemented by a simple parallel copy of two x and y to a new
memory area while linking them. For the example of the linear data type of cons
lists, it is known that concatenation of two cons lists (by ++) can be implemented
in parallel using O(1) time with this simple copy technique. As a matter of fact,
any linear data type can be represented (implemented) using cons lists.

Take a look at our stack. With the property of Pop (Push a s) = s, it should,
as discussed in [HT98], keep the form of

Push a1 (Push a2 : : : (push an (Pop (: : : (Pop Empty)))));

Towards Polytypic Parallel Programming 17

and thus we can represent the stack by

([a1; � � � ; an]; n;m);

where [a1; � � � ; an] abbreviates (a1 : (: : : (an : []))). With this new representation,
we can implement all operations on stack using O(1) parallel time as follows.

Empty = ([]; 0; 0)
Push c (cs; n;m) = ([c] ++ cs; n+ 1;m)
Pop (c : cs; n+ 1; m) = (cs; n;m)
Pop ([]; 0;m) = ([]; 0;m+ 1)

And

(cs1; n1;m1)
bm (cs2; n2;m2) = if m1 � n2 then (cs1; n1;m1 � n2 +m2)
else (cs1 ++drop m1 cs2; n1 + n2 �m1;m2)

Here drop n x drops the �rst n elements from list x. Since the operators of

gm, gbmi

, and gbmij
can be implemented using O(1) parallel time, we thus got

an (O(logN)) parallel program for bracket matching.
It has been shown that the bracket matching problem can be solved in O(logN)

parallel time [GR88] where N denotes the length of the input string, but the algo-
rithm involved are rather complicated and its correctness is di�cult to prove. To
resolve this problem, Cole [Col95] proposed an informal development of an subop-

timal O(log2 n) parallel algorithm. In contrast, we propose a formal development
of a novel optimal parallel one to solve this problem.

6 Related Work and Discussions

It is known to be very hard to give a general study of parallel programming because
it requires a framework well integrating three general things: a general parallel
programming language, a general parallelization algorithm, and a general parallel
model. In this paper, we show that (extended) BMF can provide us with such
a framework. Our proposed polytypic parallel programming should be signi�cant
not only in development of new parallel algorithms, but also in construction of
parallelizing compilers.

Besides the related work in the introduction, our work is much closely related
to three kinds of active researches, namely parallel programming in BMF, parallel
programming with scans, and polytypic programming.

Parallel Programming in BMF has been attracting many researchers. The ini-
tial BMF [Bir87] was designed as a calculus for deriving (sequential) e�cient pro-
grams on lists. Skillicorn [Ski90] showed that BMF indeed provides an architecture-
independent parallel model for parallel programming because a small �xed set of
higher order functions in BMF such as map, reduct, and �lter can be mapped
e�ciently to a wide range of parallel architectures. Along with the extension of
BMF from the theory of lists to the uniform theory of most data types, Skillicorn
[Ski93b, Ski94, Ski96] coincided these data types as categorical data types, and es-
tablished an architecture-independent cost model for generic catamorphisms. This
in
uence our de�nitions of polytypic parallel primitives. However, the importance

Towards Polytypic Parallel Programming 18

of polytypic scans as parallel primitives and the method for systematically pro-
gramming polytypic scans have not been well addressed.

Quite a lot of recent studies have been devoted to the development of power-
ful parallelization methods with BMF [Ski93a, Col95, Gor96b, Gor96a, GDH96,
HIT97, HTC98]. As explained in Section 2.2, the main idea is based on derivation
of list homomorphisms, a special recursions, from a naive speci�cation, because a
list homomorphism can be e�ciently implemented by a composition of two par-
allel primitives, namely reduct and map. Our uniform recursions for structuring
all our parallel primitives as in the decomposition theorem can be considered as
a polytypic version of list homomorphisms, and our decomposition theorem as an
extension of the homomorphism lemma. Our explicit use of accumulating parame-
ters in recursive de�nitions (rather than using function value as returning results)
and our use of scan for memoization are quite di�erent.

Parallel programming with scans (either on lists or trees) is not new. For
example, scan on lists is argued to be an important parallel skeleton [Ble89], and is
used as one of the two important parallel constructs in NESL [Ble92]. However, if
we look at those programs in NESL, they only contain use of very simple scan (with
simple operations like +). It lacks of systematic way to develop parallel program
with scans. In fact, it would be di�cult, even for an NESL expert, to write an
e�cient program to solve our running example of bracket matching, because a scan
with a complicated operation needs to be carefully designed.

Formal study of binary tree scans (downwards and upwards accumulations)
can be found in [Gib92, BdM96], but to ensure the existence of e�cient parallel
implementation the complicated \cooperation condition" must be checked. This
condition would become much more complicated if we would generalize it from
binary trees to other data types. Di�erent from the categorical formulation of
polytypic scan in [Gib98], we give a more natural de�nition using an explicit ac-
cumulating parameter, and simplify the condition to guarantee the existence of
e�cient parallel implementation.

Polytypic programming [JJ96, JJ97] are widely used in the Squigol community
[Mal89, Fok92, MFP91], but its importance in parallel programming has not been
well recognized. Starting with [BdM96], more and more algorithmic problems
have been considered in a polytypic setting [dM95, Jeu95, Mee96, JJ96]. In this
paper, we made an attempt to apply polytypic idea to the development of parallel
algorithms.

Finally, we should compare to our previous work. In fact, this work is a con-
tinuation of our e�ort to apply the so-called program calculation technique to the
development of e�cient parallel programs [HIT97, HTC98]. Our previous work was
focused on the list data structure, and aimed to derive list homomorphisms from
a naive speci�cation of programs either in a compositional style [HIT97], or in a
sequential form [HTC98]. Our polytypic parallel programming framework made a
big progress compared with our previous results.

References

[ADKP87] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simple
parallel tree contraction algorithm. In Proceedings of the Twenty-Fifth Aller-

Towards Polytypic Parallel Programming 19

ton Conference on Communication, Control and Computing, pages 624{633,
September 1987.

[BdM96] R.S. Bird and O. de Moor. Algebras of Programming. Prentice Hall, 1996.

[Bir87] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design, pages 5{42. Springer-Verlag,
1987.

[Ble89] Guy E. Blelloch. Scans as primitive operations. IEEE Trans. on Computers,
38(11):1526{1538, November 1989.

[Ble92] G.E. Blelloch. NESL: a nested data parallel language. Technical Report CMU-
CS-92-103, School of Computer Science, Carnegie-Mellon University, January
1992.

[Chi92] W. Chin. Safe fusion of functional expressions. In Proc. Conference on Lisp and
Functional Programming, pages 11{20, San Francisco, California, June 1992.

[Chi93] W. Chin. Towards an automated tupling strategy. In Proc. Conference on
Partial Evaluation and Program Manipulation, pages 119{132, Copenhagen,
June 1993. ACM Press.

[Col89] M. Cole. Algorithmic skeletons : a structured approach to the management of
parallel computation. Research Monographs in Parallel and Distributed Com-
puting, Pitman, London, 1989.

[Col95] M. Cole. Parallel programming with list homomorphisms. Parallel Processing
Letters, 5(2), 1995.

[DFH+93] J. Darlington, A.J. Field, P.G. Harrison, P.H.J. Kelly, D.W.N. Sharp, Q. Wu,
and R.L. While. Parallel programming using skeleton functions. In Parallel
Architectures & Languages Europe. Springer-Verlag, June 93.

[dM92] O. de Moor. Categories, relations and dynamic programming. Ph.D thesis,
Programming research group, Oxford Univ., 1992. Technical Monograph PRG-
98.

[dM95] O. de Moor. A generic program for sequential decision processes. In
M. Hermenegildo and D. S. Swierstra, editors, Programming Languages: Imple-
mentations, Logics, and Programs, volume 982 of Lecture Notes in Computer
Science, pages 1{23. Springer-Verlag, 1995.

[FG94] A. Fischer and A. Ghuloum. Parallelizing complex scans and reductions. In
ACM PLDI, pages 135{146, Orlando, Florida, 1994. ACM Press.

[Fok92] M. Fokkinga. Law and Order in Algorithmics. Ph.D thesis, Dept. INF, Uni-
versity of Twente, The Netherlands, 1992.

[For93] High performance Fortran language speci�cation. In High Performance Fortran
Forum, May 1993.

[GCS94] J. Gibbons, W. Cai, and D. Skillicorn. E�cient parallel algorithms for tree
accumulations. Science of Computer Programming, (23):1{18, August 1994.

[GDH96] Z.N. Grant-Du� and P. Harrison. Parallelism via homomorphism. Parallel
Processing Letters, 6(2):279{295, 1996.

[Gib92] J. Gibbons. Upwards and downwards accumulations on trees. In Mathematics
of Program Construction (LNCS 669), pages 122{138. Springer-Verlag, 1992.

[Gib96] J. Gibbons. Computing downwards accumulations on trees quickly. Theoretical
Computer Science, 169(1):67{80, 1996.

[Gib98] J. Gibbons. Polytypic downwards accumulations. In Proc. Mathematics of
Program Construction. Springer Verlag, June 1998.

[GMT87] H. Gazit, G.L. Miller, and S.-H. Teng. Optimal tree contraction in the EREW
model. In S.K. Tewksbury, B.W. Dickinson, and S.C. Schwartz, editors, Con-
current Computations: Algorithms, Architecture and Technology, pages 139{
156. Plenum Press, 1987.

Towards Polytypic Parallel Programming 20

[Gor96a] S. Gorlatch. Systematic e�cient parallelization of scan and other list homomor-
phisms. In Annual European Conference on Parallel Processing, LNCS 1124,
pages 401{408, LIP, ENS Lyon, France, August 1996. Springer-Verlag.

[Gor96b] S. Gorlatch. Systematic extraction and implementation of divide-and-conquer
parallelism. In Proc. Conference on Programming Languages: Implementation,
Logics and Programs, LNCS 1140, pages 274{288. Springer-Verlag, 1996.

[GR88] A. Gibbons and W. Rytter. E�cient Parallel Algorithms. Cambridge Univer-
sity Press, 1988.

[Hei94] B. Heinz. Lemma discovery by anti-uni�cation of regular sorts. Technical
report no. 94-21, FM Informatik, Technische Universitat Berlin, May 1994.

[HIT97] Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of e�cient parallel
programs by construction of list homomorphisms. ACM Transactions on Pro-
gramming Languages and Systems, 19(3):444{461, 1997.

[HITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates
multiple data traversals. InACM SIGPLAN International Conference on Func-
tional Programming, pages 164{175, Amsterdam, The Netherlands, June 1997.
ACM Press.

[HL93] P. Hammarlund and B. Lisper. Data parallel programming, a survey and a
proposal for a new model. Technical Report 93/8-SE, Department of Telein-
formatics, Royal Institute of Technology, September 1993.

[HQ91] P.J. Hatcher and M.J. Quinn. Data Parallel Programming on MIMD Comput-
ers. The MIT Press, 1991.

[HS86] W.D. Hills and Jr. G. L. Steele. Data parallel algorithms. Communications of
the ACM, 29(12):1170{1183, 1986.

[HT98] Z. Hu and M. Takeichi. Calculating an optimal homomorphic algorithm for
bracket matching. Parallel Processing Letters, 1998. To appear. Available
from http://www.ipl.t.u-tokyo.ac.jp/ ~ hu/pub/ppl98.ps.gz.

[HTC98] Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms. In
25th ACM Symposium on Principles of Programming Languages, pages 316{
328, San Diego, California, USA, January 1998.

[Jeu93] J. Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science,
Utrecht University, 1993.

[Jeu95] J. Jeuring. Polytypic pattern matching. In Proc. Conference on Functional
Programming Languages and Computer Architecture, pages 238{248, La Jolla,
California, June 1995.

[JJ96] J. Jeuring and P. Jansson. Polytypic programming. In 2nd International Sum-
mer School on Advanced Functional Programming Techniques, LNCS. Springer
Verlag, July 1996.

[JJ97] P. Jansson and J. Jeuring. Polyp - a polytypic programming language exten-
sion. In 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Language, pages 470{482. ACM Press, January 1997.

[Kar87] A. Karp. Programming for parallelism. IEEE Computer, pages 43{57, May
1987.

[KC98] G. Keller and M. T. Chakravarty. Flatten trees. In EuroPar'98, LNCS.
Springer-Verlag, September 1998.

[LF80] R.E. Ladner and M.J. Fisher. Parallel pre�x computation. Journal of the
ACM, 27(4):831{838, 1980.

[Mal89] G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut,
editor, Mathematics of Program Construction, pages 335{347. Springer-Verlag,
1989.

[Mee96] L. Meertens. Calculate polytypically. In Proc. Conference on PLILP, LNCS
1140, pages 1{16. Springer Verlag, 1996.

Towards Polytypic Parallel Programming 21

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In Proc. Conference on Functional
Programming Languages and Computer Architecture (LNCS 523), pages 124{
144, Cambridge, Massachuetts, August 1991.

[MH95] E. Meijer and G. Hutton. Bananas in space: Exteding fold and unfold to
exponential types. In Proc. Conference on Functional Programming Languages
and Computer Architecture, pages 324{333, La Jolla, California, June 1995.

[MR85] G.L. Miller and J. Reif. Parallel tree contraction and its application. In 26th
IEEE Symposium on Foundations of Computer Science, pages 478{489, 1985.

[NO94] S. Nishimura and A. Ohori. A calculus for exploiting data parallelism on recur-
sively de�ned data (preliminary report). In International Workshop on Theory
and Practice on Parallel Programming. LNCS 907, 1994.

[OHIT97] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system
HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and
Calculi, pages 76{106, Le Bischenberg, France, February 1997. Chapman&Hall.

[Pra92] T.W. Pratt. Kernel-control parallel versus data parallel: A technical compar-
ison. In Proceeding of a Workshop on Languages, Compilers and Run-Time
Enviroments for Distributed Memory Multiprocessors, appeared as SIGPLAN
Notices, Vol 28, No. 1, January 1993, pages 5{8, September 1992.

[RS87] J. Rose and Jr. G. L. Steele. C�: An extended C language for data parallel
programming. Technical report PL87-5, Thinking Machine Corporation, 1987.

[SF93] T. Sheard and L. Fegaras. A fold for all seasons. In Proc. Conference on
Functional Programming Languages and Computer Architecture, pages 233{
242, Copenhagen, June 1993.

[Ski90] D.B. Skillicorn. Architecture-independent parallel computation. IEEE Com-
puter, 23(12):38{51, December 1990.

[Ski93a] D.B. Skillicorn. The Bird-Meertens Formalism as a parallel model. In J.S.
Kowalik and L. Grandinetti, editors, Software for Parallel Computation, volume
106 of NATO ASI Series F, pages 120{133. Springer-Verlag, 1993.

[Ski93b] D.B. Skillicorn. Categorical data types. In Second Workshop on Abstract Mod-
els for Parallel Computation, Oxford University Press, 1993.

[Ski94] David B. Skillicorn. Foundations of Parallel Programming. Cambridge Univer-
sity Press, 1994.

[Ski96] D.B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel
and Distributied Computing, 39(0160):115{125, 1996.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In
Proc. Conference on Functional Programming Languages and Computer Archi-
tecture, pages 306{313, La Jolla, California, June 1995.

[TV84] R.E. Tarjan and U. Vishkin. Finding biconnected components and comput-
ing tree functions in logarithmic parallel time. In 25th IEEE Symposium on
Foundations of Computer Science, pages 12{22, 1984.

[Wad88] P. Wadler. Deforestation: Transforming programs to eliminate trees. In
Proc. ESOP (LNCS 300), pages 344{358, 1988.

[WS94] S. Wholey and Jr. G. L. Steele. Connection machine Lisp: A dialect of com-
mon Lisp for data parallel programming. In ACM Symposium on Parallel
Algorithms and Architectures, June 1994.

