
The Capacity of Convergence-ZoneEpisodic MemoryMark Moll, Risto Miikkulainen, Jonathan AbbeyTechnical Report AI93-210, December 1993Department of Computer Sciences, The University of Texas at AustinAbstract| Human episodic memory pro-vides a seemingly unlimited storage for ev-eryday experiences, and a retrieval systemthat allows us to access the experiences withpartial activation of their components. Thispaper presents a computational model of epi-sodic memory inspired by Damasio's idea ofConvergence Zones. The model consists of alayer of perceptual feature maps and a bind-ing layer. A perceptual feature pattern iscoarse coded in the binding layer, and storedon the weights between layers. A partial ac-tivation of the stored features activates thebinding pattern which in turn reactivates theentire stored pattern. A worst-case analy-sis shows that with realistic-size layers, thememory capacity of themodel is several timeslarger than the number of units in the model,and could account for the large capacity ofhuman episodic memory.I. IntroductionHuman episodic memory is characterized by an ex-tremely high capacity. New memories are formedevery few seconds, and many of those persist in thememory for years, even decades (Squire 1987). An-other signi�cant characteristic of human memory iscontent-addressability. Most of the memories canbe retrieved simply by activating a partial represen-tation of the experience, such as a sound, a smell,or a visual image.Although several arti�cial neural network mod-els of episodic memory have been proposed (Hop-�eld 1982; Kanerva 1988; Kortge 1990; Miikkulai-nen 1992), they fall short of explaining the simul-taneous huge capacity and content-addressability ofhuman memory. For example in the Hop�eld modelof N units, N=4 logN patterns can be stored with aMark Moll is with the Department of Computer Science, Uni-versity of Twente, P.O. Box 217, 7500 AE Enschede, The Nether-lands.Risto Miikkulainen is with the Department of Computer Sci-ences, The University of Texas at Austin, Austin, TX 78712,USA.Jonathan Abbey is with Applied Research Laboratories, P.O.Box 8029, Austin, TX 78713, USA

99% probability of correct retrieval when N is large(Hertz et al.1991; Keeler 1988; McEliece et al.1986)This means that storing and retrieving, for exam-ple, 108 memories would require in the order of 1010nodes and 1020 connections. Given that the humanbrain is estimated to have about 1011 neurons and1015 synapses (Jessell 1991), this is clearly unrealis-tic.Despite vast amount of research in human mem-ory, no clear understanding has yet emerged on ex-actly where and how the memory traces are repre-sented in the brain. There is evidence for both local-ized encoding and for distributed encoding (Squire1987). Damasio (1989b, 1989a) proposed a generalframework, based on observations of typical pat-terns of injury-related memory de�cits, that can po-tentially account for much of the data. The mainidea is that the memory system is organized in ahierarchy of associational regions, or convergencezones, with each region serving as a basis for higher-level associations. The hierarchy is grounded in thesensory modality regions, and becomes more ab-stract and general as one moves from the sensorycortical regions to the forebrain. The low-level andintermediate regions contain object representations,and the high-level regions contain representationsfor complete episodes, in terms of the lower-levelentities.This paper presents a new episodic memorymodelloosely based on the convergence zone idea. Themodel consists of a number of perceptual maps anda binding layer (a convergence zone). An episodicexperience appears as a pattern of local activationsacross the perceptual maps, and is encoded as acoarse-coded (Rosenfeld and Touretzky 1989; Touret-zky and Hinton 1988) pattern in the binding layer.The connections between the maps and the bind-ing layer store the encoding so that the completeperceptual pattern can later be regenerated frompartial activation. The details of the low-level neu-ral implementation are left open in this paper. Thegoal is to analyze the behavior of the model at thefunctional level, and derive general results about itscapacity and physical size.



A worst-case analysis of the model shows that: (1)with realistic-size maps and binding layer, the ca-pacity of the convergence-zone memory is extremelyhigh, exceeding the number of units in the modelby a factor of 5; and (2) the majority of the neuralhardware is required in the perceptual processing;the binding layer needs to be only a fraction of thesize of the perceptual maps. Such results suggesthow an extremely high capacity could be achievedin the human episodic memory with very little extrahardware beyond the perceptual maps.II. Storage and RetrievalThe model consists of two layers of real-valued units(the feature map layer and the binding layer), andbidirectional binary connections between the layers(�gure 1). Perceptual experiences are represented asvectors of feature values, such as color=red, shape=round, size=small. The values are encoded as unitson the feature maps. There is a separate map foreach feature domain, and each unit on the map rep-resents a particular value for that feature. For in-stance, on the map for the color feature, the valuered could be speci�ed by turning on the unit inthe lower-right quarter (�gure 1). The feature mapunits are connected to the binding layer with bidi-rectional binary connections (i.e. the weight is either0 or 1). An activation of units in the feature maplayer causes a number of units to become active inthe binding layer, and vice versa. In e�ect, the bind-ing layer activation is a compressed, distributed en-coding of the value-unit perceptual representation.Initially, all connections are inactive at 0. A per-ceptual experience is stored in the memory throughthe feature map layer in three steps. First, thoseunits that represent the appropriate feature valuesare activated at 1. Second, a subset of m bindingunits are randomly selected in the binding layer asthe compressed encoding for the pattern, and acti-vated at 1. Third, the weights of all the connectionsbetween the active units in the feature maps andthe active units in the binding layer are set to 1(�gure 1). Note that only one presentation is neces-sary to store a pattern.To retrieve a pattern, �rst all binding units areset to 0. The pattern to be retrieved is partiallyspeci�ed in the feature maps by activating a subsetof its feature units. For example, in �gure 2a thememory is cued with the two leftmost features. Theactivation propagates to the binding layer throughall connections that have been turned on so far.The set of binding units that a particular featureunit turns on is called the binding constellation ofthat unit. All binding units in the binding encod-ing of the pattern to be retrieved are active at 2
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Feature Map 1    Feature Map 2    Feature Map 3     Feature Map 4Figure 1: Storage. The weights on the connections be-tween the appropriate feature units and the binding repre-sentation of the pattern are set to 1.because they belong to the binding constellation ofboth retrieval cue units. A number of other unitsare also activated at 1, because each cue unit takespart in representing multiple patterns, and thereforehas several other active connections as well. Onlythose units active at 2 are retained; units with lessactivation are turned o� (�gure 2b).The activation of the remaining binding units isthen propagated back to the feature maps (�gure 2c).A number of units are activated at various levels ineach feature map, depending on how well their bind-ing constellation matches the current pattern in thebinding layer. Chances are that the unit that be-longs to the same pattern than the cues has thelargest overlap and becomes most highly activated.Only the most active unit in each feature map isretained, and as a result, a complete, unambiguousperceptual pattern is retrieved from the system (�g-ure 2d). III. Retrieval ErrorsIf there are n units in the binding layer and m unitsare chosen as a representation for a pattern, thenumber of possible di�erent binding representationsis equal to �nm�. If n is su�ciently large and mis relatively small compared to n, this number isextremely large, suggesting that the convergence-zone memory could have a very large capacity.However, due to the probabilistic nature of thestorage and retrieval processes, there is always achance that the retrieval will fail. The binding con-stellations of the retrieval cue units may overlap sig-ni�cantly, and several spurious units may be turnedon at the binding layer. When the activation ispropagated back to the feature maps, some randomunit in a feature map may have a binding constella-tion that matches the spurious units very well. The\rogue" unit may receive more activation than thecorrect unit, and a wrong feature value may be re-trieved. As more patterns are stored, the bindingconstellations of feature units become larger, and
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Feature Map 1    Feature Map 2    Feature Map 3     Feature Map 4(a) Retrieval cues activate a binding pattern. Binding Layer

Feature Map 1    Feature Map 2    Feature Map 3     Feature Map 4(b) The less active binding units are turned o�.
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Feature Map 1    Feature Map 2    Feature Map 3     Feature Map 4(c) Binding pattern activates feature units. Binding Layer

Feature Map 1    Feature Map 2    Feature Map 3     Feature Map 4(d) The less active feature units are turned o�.Figure 2: Retrieval. A stored pattern is retrieved by presenting a partial representation as a cue. The size of the squareindicates activation level of the unit.erroneous retrieval becomes more likely.To determine the capacity of the convergence-zone memory, the chance of retrieval error must becomputed. Below, a probabilistic formulation of themodel is �rst given, and bounds for retrieval errorare then computed.IV. Probabilistic FormulationLet Zi be the size of the binding constellation of afeature unit after i patterns have been stored on itand let Yi be its increase after storing the ith patternon it. Obviously, Y1 = m. To obtain the distribu-tion of Yi when i > 1, note that the new active con-nections belong to the intersection of a randomlychosen subset of m connections among all n con-nections of the unit, and its all remaining inactiveconnections (a set with n�z elements, where z is thebinding constellation at the previous step). There-fore, Yi; i > 1 is hypergeometrically distributed withparameters m;n� z, and n:P(Yi = yjZi�1 = z) =�n� zy �� zm � y�� �nm�: (1)The constellation size Zi is then given byZi = iXk=1Yk: (2)Let I be the number of patterns stored on a par-ticular feature unit after p patterns have been stored

in the entire memory. I is binomially distributedwith parameters p and 1f , where f is the number ofunits in a feature map:I � B(p; 1f ): (3)Let Z be the binding constellation of a particularfeature unit after p patterns have been stored in thememory. It can be shown that E(Z) = n(1 � (1 �mnf )p). The binding constellation of a feature unit,given that at least one pattern has been stored onit, is denoted by Z 0; obviously E(Z 0) > E(Z). Thevariable Z 0 can be used to denote the binding con-stellation of a retrieval cue, which necessarily musthave been used once, assuming that the retrievalcues are valid. Let Z 0j be the binding constellationof the jth retrieval cue and let Xj be the numberof units in the intersection of the �rst j retrievalcues. Then X1 = Z 01. To get Xj for j > 1, weremove from consideration the m units all retrievalcues necessarily have in common (because they be-long to the same stored pattern), and randomly se-lect z�m units from the total set of n�m units andsee how many of them belong to the current inter-section of xj�1�m units. This is a hypergeometricdistribution with parameters z �m;xj�1 �m, andn �m:P(Xj = xj +mjZ 0j = z;Xj�1 = xj�1) =�xj�1 �mxj �m ��n� xj�1z � xj �� �n�mz �m�: (4)



The intersection is taken over the binding constella-tions of all j retrieval cues.The number of units in common between a po-tential rogue unit and the j retrieval cues is denotedby Rj+1 and is also hypergeometrically distributed,however with parameters z; x, and n because wecannot assume that the rogue unit has at least munits in common with the cues:P(Rj+1 = rjZ = z;Xj = x) =�xr��n� xz � r�� �nz�: (5)The correct unit in a feature map where a retrievalcue was not presented will receive an activationXj+1.The correct unit will be retrieved if Xj+1 > Rj+1,which is usually the case because E(Xj+1) > E(Rj+1).In each feature map there are (f�1) potential rogueunits, so the conditional probability of successful re-trieval is (1 � P(Rj+1 > Xj+1jXj+1; Z;Xj))(f�1),not addressing tie-breaking. Unfortunately, it isvery di�cult to compute psuccess, the unconditionalprobability of successful retrieval, because the dis-tribution functions of Z;Xj, Xj+1 and Rj+1 arenot known. But it is possible to derive bounds forpsuccess and show that with reasonable values forn;m; f , and p, the memory is reliable.V. Lower bound for memory capacityMemory capacity can be de�ned as the maximumnumber of patterns that can be stored in the mem-ory so that the probability of correct retrieval witha given number of retrieval cues is greater than �(a constant close to 1). In this section, worst-casebounds for the chance of successful retrieval will bederived. The analysis consists of three steps: (1)bounds for the number of patterns stored on a fea-ture unit; (2) bounds for the binding constellationsize; and (3) bounds for the intersections of bindingconstellations. Given particular values for the sys-tem parameters, it is then possible to give a lowerbound for the capacity of the model.1. Number of patterns stored on a featureunit. Since I has a binomial distribution (with pa-rameters p and 1f ), Cherno� bounds can be applied:P(I � (1� �) pf ) � � e��(1� �)1�� � pf ; 0 < � < 1; (6)P(I � (1 + �) pf ) � � e�(1 + �)1+� � pf ; � > 0: (7)The formal parameter � determines the tradeo� be-tween the tightness of the bounds and the probabil-ity of satisfying them.

2. Size of the binding constellation. Insteadof choosing exactly m di�erent units for the bind-ing representation of each pattern, let us select knot-necessarily-distinct units in such a way that theexpected number of di�erent units is m. This willmake the analysis easier at the cost of larger vari-ance, so that the bounds derived will also be validfor the actual process.Let us assume i patterns are stored on a unit,which is equivalent of selecting ki units from thebinding constellation at random. Let Zv be the ex-pected size of the binding constellation after v unitshave been selected. ThenZv = ~Z + (n � ~Z)(1 � (1� 1n )ki�v); (8)where ~Z is the size of the binding constellation formedby the �rst v selected units. Now, E(Zv jZv�1) =Zv�1, and the sequence of variables Z0; : : : ; Zki is amartingale. Moreover, it can be shown that jZv �Zv�1j � 1, and bounds for Z can be obtained fromAzuma's inequality (see e.g. Alon and Spencer 1992):P(Z < n(1� (1� 1n )kil) � �pkil) < e��2 ; (9)P(Z > n(1� (1� 1n )kiu) + �pkiu) < e��2 ; (10)where il is the lower bound for I obtained from equa-tion 6, and iu the upper bound from equation 7.Similar bounds can be derived for Z 0.3. Intersection of binding constellations. Theprocess of forming the intersection of j binding con-stellations incrementally one cue at a time can alsobe formulated as a martingale process. Let Xj de-note the expected number of elements in the inter-section of two sets, after the �rst j elements of the�rst set have been checked (the elements of the sec-ond set are assumed to be known at all times). ThenXj = ~X + (n1 � j)(n2 � ~X)n� j ; (11)where ~X is the number of elements in the intersec-tion of the second set and the set formed by the �rstj elements of the �rst set, and n1; n2 and n are thesizes of the �rst, second, and the superset. If n1and n2 are both smaller than 12n, Azuma's inequal-ity can be applied. Taking the intersection of theprevious step as the �rst set, the binding constella-tion of the jth cue as the second set, and the bindinglayer as the common superset, this approach givesus the following upper bound for Xj :P(Xj > (xj�1;u�m)(z0u �m)(n�m) +m+�pxj�1;u�m) < e��2=2; � > 0; (12)



where z0u and xj�1;u are upper bounds for Z 0 andXj�1 and are assumed to be less than 12n. Then Xjis at its upper bound, a potential rogue unit has thelargest chance of taking over. In this case, Rj+1 hasthe upper boundP(Rj+1 > xj;uzun +�pxj;u) < e��2=2; � > 0; (13)where zu and xj;u are upper bounds for Z and Xj .A lower bound for Xj+1 while using an upperboundfor Xj is then given byP(Xj+1 < (xj;u �m)(zl �m)(n �m) +m��pxj;u �m) < e��2=2; � > 0: (14)If the resulting lower bound is smaller than m, mcan be used instead.The above analysis ignores correlations betweenbinding constellations. The correlations originatefrom storing the same partial pattern multiple timesand tend to increase the size of the intersections.The chance that two random patterns have morethan one feature in common in j features is equalto (1 � (1 + jf�1 )(1 � 1f )j), which is negligible forsu�ciently large values of f .We can now use equations 6{14 to derive a lowerbound for the probability of successful retrieval withgiven system parameters n;m; F; j; f , and p. Theretrieval is successful if rj+1;u, the upper boundfor Rj+1, is lower than xj+1;u, the lower boundfor Xj+1. Under this constraint, the probabilitythat none of the variables in the analysis exceedsits bounds is a lower bound for successful retrieval.Obtaining the upper bound forXj involves bound-ing 3j � 1 variables: I and Z 0 for the j cues andXj for the j � 1 intersections. Computing xj+1;land rj+1;u each involve bounding 3 variables (I, Z,and Xj+1; I, Z 0, and Rj+1). There are F � j maps,each with one xj+1;l bound and f�1 di�erent rj+1;ubounds (one for each rogue unit). The total numberof bounds is therefore 3j � 1 + 3f(F � j). Settingthe righthand sides of the inequalities 6{14 equalto a small constant �, a lower bound for successfulretrieval is obtained:psuccess > 1� (3j � 1 + 3f(F � j))�: (15)For example, assuming each unit in the model cor-responds to a vertical column in the cortex, it isreasonable to assume feature maps with 106 com-putational units (Sejnowski and Churchland 1989).We can further assume that the system has 15 fea-ture maps, 10 of which is used to cue the memory,and the binding layer consists of 105 units, with 150used for each binding pattern. Assuming full con-nectivity between the feature units and the bindingunits, there are 1:5�1012 connections in the system.

If we store 0:85� 108 patterns in the memory, z0uand xj�1;u are less than 12n, the chance of partialoverlap of more than 1 feature is less than 0:45 �10�10, and the analysis above is valid. Setting � =0:5�10�9 yields bounds rj+1;u < xj+1;l with psuccess> 99%. In other words, 0:85� 108 memories can bestored in the memory with 99% probability of suc-cessful retrieval. Such a capacity is approximatelyequivalent of storing one new memory every 17 sec-onds for 70 years, 16 hours a day.VI. ConclusionMathematical analysis shows that an extremely highnumber of episodes can be stored in the convergence-zone memory with reliable content-addressable re-trieval. Moreover, the convergence zone itself re-quires only a tiny fraction of the hardware requiredfor perceptual representation. These results providea possible explanation for why human memory ap-pears almost unlimited, and why memory areas ap-pear small compared to the areas devoted to low-level perceptual processing.The model makes use of the combinatorics andthe clean-up properties of coarse coding in a neurally-inspired architecture. The storage capacity of themodel appears to be at least two orders of magni-tude higher than that of the Hop�eld model withthe same number of units, while using two orders ofmagnitude fewer connections. However, direct com-parison is di�cult because the stored patterns inthe Hop�eld model are much larger (contain moreinformation), and its N=4 logN capacity result onlyindicates how many patterns are stable instead ofestimating the probability of correct retrieval witha partial pattern as a cue.The convergence-zone episodic memory modelcould be extended to make it more accurate as amodel of actual neural processes. For instance, lat-eral inhibitory connections between units within afeature map could be added to select the unit withthe highest activity. A similar extension could beapplied to the binding layer; instead of only oneunit multiple units should stay active. A variation ofthe Hebbian learning mechanism (Hebb 1949; Millerand MacKay 1992) could be used to implement thestorage mechanism. Such research could lead to apractical implementation of the convergence zonememory, and perhaps even to a hardware implemen-tation. Another important research direction is toanalyze the behavior of the model as a psycholog-ical model, that is, to observe and characterize itsmemory interference e�ects and compare them withexperimental results on human episodic memory.
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