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Language, whether spoken or signed, partly defines us as human beings. This thesis
is for the children who by accident, force, or neglect lose or never find their voice

— with a prayer that they reclaim it.

And
for Candice.



Abstract

This thesis describes HABLAR, a computational model of the sensorimotor foundations of early
childhood phonological development. HABLAR (an acronym for “Hierarchical Articulatory Based Lan-
guage Acquisition by Reinforcement learning” and Spanish for “to speak”) is intended to replicate the
major milestones of emerging speech and demonstrate key characteristics of normal development, includ-
ing the phonetic characteristics of babble, systematic and context-sensitive patterns of sound substitutions
and deletions, overgeneralization errors, and the emergence of adult phonemic organization. It should also
mimic abnormal phonological development under certain conditions of damage or degradation.

HABLAR simulates a complete sensorimotor system consisting of an auditory system that detects
and categorizes speech sounds using only acoustic cues drawn from its linguistic environment, an articula-
tory system that generates synthetic speech based on a realistic computer model of the vocal tract, and a
hierarchical cognitive architecture that bridges the two. The environment in which the model resides is also
simulated. The model is an autonomous agent which actively experiments within this environment.

The principal hypothesis guiding the model is that phonological development emerges from the
interaction of auditory perception and hierarchical motor control. The model’s auditory perception is spe-
cialized to segment and categorize acoustic signals into discrete phonetic events which closely correspond
to discrete sets of functionally coordinated gestures learned by the model’s articulatory control apparatus.
HABLAR learns the correspondence between phonetic and articulatory events — between one discrete
sequence of events and another. Thus, to imitate sounds, it need not solve the hard problem of relating con-
tinuous speech and continuous vocal tract motion.

HABLAR’s perceptual and motor organization is initially syllabic. Phonemes are not built into the
model but emerge (along with an adult-like phonological organization) due to the differentiation of early
syllable-sized motor patterns into phoneme-sized patterns while the model learns a large lexicon.

Learning occurs in two phases. In the first phase, HABLAR’s auditory perception employs soft
competitive learning to acquire phonetic features which categorize the spectral properties of utterances in
the linguistic environment. In the second phase, reinforcement based on the phonetic proximity of target
and actual utterances guides learning by the model’s two levels of motor control. The phonological control
level uses Q-learning to learn an optimal policy linking phonetic and articulatory events. The articulatory
control level employs a parallel Q-learning architecture to learn a policy which controls the lung’s and
vocal tract’s twelve degrees-of-freedom.

HABLAR has been fully implemented as a computational model. Simulations of the model’s audi-
tory perception demonstrate that it faithfully preserves and makes explicit phonetic properties of the acous-
tic signal. Auditory simulations also mimic categorical vowel and consonant perception which develops in
human infancy. Other results demonstrate the feasibility of learning multi-dimensional articulatory control
with a parallel reinforcement learning architecture, and the effectiveness of shaping motor control with
reinforcement based on the phonetic proximity of target and actual utterances.

The model also provides plausible qualitative accounts of developmental data. It is predicted to
make pronunciation errors similar to those observed among children because of the relative articulatory
difficulty of its producing different speech sounds, its tendency to eliminate the biggest phonetic errors
first, its generalization of already mastered sounds across phonetic similarities, and contextual effects of
phonetic representations and internal distributed representations which underlie speech production.
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Chapter 1 Introduction

Auntie! Squirrels do not hop-hop!
'&nti: 'skwAwoz du 'na:t hap hap1

The words of children fill their parents, aunties, and uncles with joy, wonder, pride, and often
laughter. Even as they grasp the fundamentals of syntax and master the intricacies of comparative animal
behavior — after all, rabbits hop, not squirrels — they continue to struggle with how to pronounce the
sounds of their language.

1.1   Milestones of normal phonological development

Children’s linguistic journey starts early. Even before they can speak, they learn what speech
sounds are linguistically important. At birth children distinguish acoustically different sounds whether they
differ linguistically or not. But, by their sixth month, infants show a preference for prosodic patterns of
pitch, stress, and duration used in their native language (e.g., Jusczyk 1992). They also tend to ignore
acoustic differences among vowels of the same type in experiments where sound differences are used to
elicit some response such as turning their head to view a toy. They do not group together foreign language
vowel sounds (Kuhl et al. 1992, see also Grieser & Kuhl 1989). By eight months, the tendency to group
together linguistically similar sounds extends to consonant-vowel syllables used in their native language
(e.g., Werker et al. 1981, Werker & Pegg 1992). By the end of their first year, children can recognize about
fifty words (Benedict 1979), and their receptive vocabulary quickly expands.

Milestones of speech production lag behind speech perception. Anatomical constraints prevent
true speech sounds before three months (Kent & Murray 1982), but by the age of six months children’s
babbling starts to show characteristics of adult speech (Oller & Lynch 1992). By the end of the first year,
their babbling approximates many of the sounds in their native tongue (de Boysson-Bardies et al. 1989,
Vihman et al. 1986), and they speak their first real words (Benedict, 1979). In the second year, their vocab-
ulary mushrooms to several hundred words.

Despite this impressive achievement, children do not immediately master accurate pronunciation.
Their speech is filled with errors of commission and omission, only roughly approximating adult speech
(e.g., Ingram 1974, Menn 1983). For example, many children transform adult fricatives like [f] and [s] into
stops like [b] and [t]; others will substitute approximants [w] and [j] for liquids [l] and [r]. Sounds will
often be dropped from consonant clusters like [spr] and [skw]. They might assimilate a sound in one part of
a word with a similar sound in another part such thatdog becomes [gOg]. Even more intriguing, such
errors show a systematic pattern which we may not dismiss as simply a matter of poor performance (Menn
1971, Smith 1973). Instead, error patterns suggest an underlying competence, and changes in error patterns
over time suggest that the underlying competence is modified by experience.

1 Due to typographic limitations, UNIBET (MacWhinney, 1991) instead of IPA phonetic symbols are used
throughout this thesis. UNIBET symbols which differ from IPA’s include: N as in ping, T ether, D either, Sshoe,
Z azure, I bit, E bet, & bat, A but, 6above, U foot, O law.
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1.2   Approaches to investigating phonological development

Children’s evolving mastery of their language’s sounds and the changing patterns of their errors is
traditionally called “phonological development” (Jakobson 1941/1968) despite its substantially phonetic
and articulatory character. Indeed, this is not “phonology” in the usual sense. Adult phonology involves the
study of distinctive classes of sounds (phonemes) and their possible combinations (phonotactics).

In investigating child phonology one may study the origin and evolution of pronunciation patterns
and errors, the articulatory and phonetic foundations of phonological patterns, or how representations pos-
tulated to underlie adult speech patterns come to be. Most research has focussed on error patterns. Several
theories and hypotheses have emerged to explain this phenomenon (e.g., Kiparsky & Menn 1977, Menn
1983, Stampe 1969), and several formalisms have been used to better characterize it (e.g., Smith 1973,
Spencer 1986, Waterson 1971). The principal finding of such work is that there is a more-or-less regular
relationship between children’s and adult word forms, in which children simplify adult targets with substi-
tutions, deletions, or other changes.

Yet, persistent irregularities (Menn & Matthei 1992, Menn et al. 1993) and idiosyncratic develop-
ment strategies (Vihman 1993) frustrate a completely formal account. This is not surprising. Children’s
speech is not organized around phoneme-sized segments (Jusczyk 1993) which form the basis of linguistic
formalisms. Rather, their speech production is organized around articulatory gestures (Goodell & Studdert-
Kennedy 1993, Nittrouer et al. 1989, Piroli 1991), and their speech perception is organized around the syl-
lable (Jusczyk et al. 1995, Segui et al. 1990). Only gradually, after having acquiring a large vocabulary, is
children’s speech reorganized into units the size of phonemes (Nittrouer et al. 1989). Given the degrees of
freedom which govern phonology, diverse environments in which children learn to speak, and the acci-
dents of each child’s history, developmental paths are bound to be diverse.

A process model may be more successful than a formal symbolic model in explaining basic phe-
nomena, irregularities, and individual differences. In traditional linguistic terms (Saussure 1916/1966), this
would roughly correspond to a diachronic account, one which describes how linguistic structure changes
historically or developmentally (McNeill 1987). In contrast, a synchronic account describes linguistic
structure only at an instant in time. A longitudinal account of language development is usually viewed as
diachronic. But at its heart, such a view of change as simply a series of instantaneous snapshots is synchro-
nic. We seek an explanatory theory of phonological development: not merely the description of a sequence
of changes in linguistic structure, but the structure and process of linguistic change. Central to such an
account must be a learning theory which offers a principled explanation of how competence evolves.
Another goal is to see how much we can explain without linguistic assumptions.

1.3   A sensorimotor model of phonological development

This work explores the articulatory and phonetic foundations of children’s phonology and investi-
gates the processes which underlie children’s articulatory achievements and errors. It describes HABLAR,
a computational model of the sensorimotor foundations of early childhood phonological development.
HABLAR (an acronym for “Hierarchical Articulatory Based Language Acquisition by Reinforcement
learning” and Spanish for “to speak”) features (1) an auditory system that detects and categorizes speech
sounds using only acoustic cues drawn from the model’s own synthetic speech or from its linguistic envi-
ronment, (2) an articulatory system that generates synthetic speech based on realistic computer models of
respiratory mechanics, vocal tract anatomy, acoustics, and muscular-skeletal dynamics, and (3) a hierarchi-
cal cognitive and motor control architecture that bridges the two. The environment in which the model
resides is also simulated.
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HABLAR is intended to mimic how infants and young children babble and learn to speak their
first words. We also hope to explain key characteristics of normal phonological development such as (1)
the growing conformity of babbling sounds to the linguistic environment, (2) patterns of sound substitu-
tions and deletions, (3) the systematicity of pronunciation errors, (4) the overgeneralization of pronuncia-
tion patterns, (5) the increasing ability to productively recombine smaller units of sounds, and (6)
developmental irregularities.

1.4   The model’s principal hypothesis

The principal hypothesis guiding the model is that phonological development emerges from the
interaction of auditory perception and hierarchical motor control. The model’s auditory perception is spe-
cialized to segment and categorize acoustic feedback into discrete phonetic events which closely corre-
spond to discrete sets of functionally coordinated articulatory gestures learned by the vocal tract’s motor
control apparatus. The model learns the correspondence between discrete sequences of these phonetic and
articulatory events. Thus, to imitate sounds, it need not solve the hard problem of relating continuous
speech and continuous vocal tract motion. An adult-like phonological organization emerges as a conse-
quence of this interaction while learning a large lexicon, due to the differentiation of early syllable-sized
motor patterns into phoneme-sized motor patterns. The phenomena of phonological development are
emergent properties of the model.

1.5   Related models and the unique contributions of HABLAR

Two related classes of computational models predate HABLAR: models of articulatory skill acqui-
sition (Guenther 1994, Hirayama et al. 1993, Laboissiere et al. 1990, Laboissiere 1992) and models of
abstract phonological competence (e.g., Daugherty & Seidenberg 1992, Gasser 1993, Ling & Marinov
1993, MacWhinney 1978, MacWhinney et al. 1989, MacWhinney & Leinbach 1991, Plunkett & March-
man 1991, Rumelhart & McClelland 1986). Models of articulatory skill acquisition address details of vocal
tract control and the coarticulatory side effects of recombining sounds but not the origins or process of
sound compositionality. Models of abstract phonological competence address compositional issues and the
representational forms which underlie the recombination of sounds without acknowledging articulatory
details or the origins of phonological or phonetic primitives used to represent sounds.

To address both the relative articulatory difficulty of different sounds and the recombination of
already mastered sounds into unique utterances, HABLAR views speech as a hierarchical motor control
problem. An abstract phonological level of motor control composes each utterance out of one or more ele-
mental sounds, choosing which among lower level articulatory controllers is most likely to generate each
sound. With continuous proprioceptive feedback as a guide, the articulatory control level choreographs the
fine-grained timing of vocal tract and pulmonary motions necessary to produce each elemental sound.
HABLAR also addresses computational problems of hierarchical control and how to efficiently control the
vocal tract’s many degrees-of-freedom.

The model’s segmentation and categorization of acoustic feedback into discrete phonetic events is
based on exclusively acoustic cues. Milestones of perceptual development always precede corresponding
milestones of motor development. Thus, HABLAR’s motor learning is preceded by a phase of perceptual
learning in which phonetic primitives used to represent speech are learned from their statistical distribution
in the model’s linguistic environment (see also Doya & Sejnowski 1994).

The model avoids reference to any explicitly linguistic knowledge. If we give the model pho-
nemes, its task may be too easy. Prior knowledge exists in the form of architectural, anatomical, and acous-
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tic constraints, the form of prelinguistic phonetic representations, motor dynamics, learning algorithms,
and reinforcement functions.

The model may not entirely satisfy parents’ and relatives’ questions about their children’s intrigu-
ing chatter. However, the model and computer simulations of its behavior are potentially useful to the stu-
dent of language acquisition in several ways. The precision required of computer simulation requires that
theory and assumptions be explicit (Weizenbaum 1976). Its account of cognitive development is scientifi-
cally verifiable (MacWhinney 1978). It offers a vehicle with which to evaluate and test alternative assump-
tions. Also, simulations may reveal emergent properties which mere thought experiments or verbal
argumentation might never uncover.

1.6   Plan of the thesis

The next chapter considers the psycholinguistic evidence which constrains the design of a model
of phonological development. Chapter 3 considers the models which predate HABLAR in light of these
issues. Chapter 4 introduces HABLAR, summarizing its architecture and basic behavior using a simple
example, and discussing how its design addresses theoretical issues.

Anchoring and constraining the model at one end are its vocal tract, synthetic acoustic output gen-
erated by parent and child, proprioception, and gestural control of articulatory motions. These are
described in Chapter 5. Anchoring the model at the other end is auditory perception. Chapter 6 describes
how audition segments continuous speech using exclusively acoustic cues, how it learns to categorize
these sounds, and how the resulting phonetic representation is organized. Simulations demonstrating the
faithfulness of this representation are described. The methodology for generating synthetic adult conso-
nant-vowel syllables is also described here. These syllables are used to test the faithfulness of auditory per-
ception. They become part of the lexicon or speech tokens which the model learns to imitate.

Motor control is described in Chapter 7, including details of phonological and articulatory control-
lers, the reinforcement learning algorithms which they employ, and the role of the phonological controller
in integrating the full sensorimotor model. HABLAR’s control structure is formalized. Also, a parallel
reinforcement learning architecture necessary for efficient control of the vocal tract is introduced and ana-
lyzed. Chapter 8 reports results of articulatory motor control and results of initial simulations of the inte-
grated sensorimotor system.

At this time it is not possible to draw conclusions about how faithfully the system replicates devel-
opmental phenomena, but it is possible to evaluate how plausible are HABLAR’s qualitative explanations
of such phenomena. Chapter 9 evaluates the model’s plausibility and limitations, considering a wide range
of phenomena and properties of normal childhood phonological development. The final chapter explores
the contributions and future directions of this research.
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Chapter 2 Empirical Constraints on Models of
Phonological Development

The literature on phonological development is vast. Menn (1983) and Ingram (1989: chapters 5, 6,
and 8) review much of the early work in the field. Recent research is covered by Gerken (1994) or by Vih-
man’s (1993) survey of individual differences in language-learning strategies.

It is not our goal to recapitulate these reviews. Rather, the purpose of this chapter is to abstract key
properties of children’s speech production and perception which are crucial to formulate and constrain a
model of human phonological development. We ignore many of the details and several of the lesser issues
of phonological development. Otherwise, the task of building a model will be unmanageable, and its
implementation may be impractical or uninterpretable. Once the model is built and its performance has
been evaluated with respect to the phonological data which motivated it and that which did not, then it may
be refined (or replaced) to account for issues and details initially ignored in its construction. If we formu-
late the right abstractions and choose the right model, we may be fortunate enough to see phenomena
explained or predicted independent of their role in model design.

Thus, in this chapter we review the relevant phenomena of children’s speech and listening — pro-
nunciation errors, generativity, context sensitivity of errors, the nearly systematic relationship between
children’s speech and adult targets, overgeneralization, irregularities, variability, and perceptual capabili-
ties — and determine how they constrain a model of phonological development.

2.1   Pronunciation errors and mastery

Children’s speech only roughly approximates adult speech. Perhaps the most characteristic pro-
nunciation error is children’s substitution of one sound for another: stops for fricatives, glides for liquids,
voiced consonants for word-initial voiceless consonants, and one place-of-articulation for another. Chil-
dren also delete sounds, especially from consonant clusters (Ingram 1974, Menn 1978, 1983, Smith 1973).
Table 2.1 presents examples (Macken 1979, Menn 1971, 1976) of some common pronunciation errors.

Although specific error patterns are unique to each child, the universal occurrence of most types of
errors and the approximate order with which children master various types of sounds suggest that some
sounds are easier to pronounce than others. Most stop consonants and nasals are mastered first, followed by
glides, then liquids, and finally fricatives (Kent 1992, Sander 1972; see also Ingram 1989). The articulatory
difficulty of each sound is certainly a contributing factor (Kent 1992). Stop consonants require primarily a
ballistic motion of one or two articulators which completely closes the vocal tract, but fricatives require
precise control which only partially opens or closes the vocal tract. Shaping of the tongue is much more
involved for liquids than for glides.

The above data suggests that anatomical constraints, articulatory complexity, and motor skill play
a central role in explaining phonological development (e.g., Kent 1992, Oller & MacNeilage 1983).

2.2   Generativity and context-sensitivity

As children master the production of new subsyllabic sounds, they quickly generalize them to new
lexical contexts. For example, Menn’s (1976) subject, Jacob, pronounced /b/ as [d] inbyebye [d&d&,
dEda, dedo ...],bang [d&jN:], beads [di], box [da], andball [dO] through 18 months. Starting withbottle
[bAp?m] andbaby [bajp?i], new /b/-words added to his vocabulary no longer showed this error (e.g.,
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bump, bus, block, brush). Furthermore, most older /b/-words — those which had been pronounced with
onset [d] — were corrected, with one notable exception.

Ball resists the change. This is especially puzzling because the first instance ofball [bo] on 17;13
was fairly accurate. But it did not reappear in Jacob’s corpus until two months later at 19;13, and then only
during a period of intense experimentation withdoor [do, dO, du, Adu]. Between 19;13 and 19;29,ball
was pronounced [da, dO, dA, djA, djo]. It appears thatball was assimilated todoor’s phonetic characteris-
tics, not the phonetic features of the /b/-words.Ball shares a middle-back-rounded vowel withdoor which
it does not share with the /b/-words. This is but one example of a word which does not generalize in ways
typical of adult phonology. Generalization patterns arecontext sensitive, involving the whole syllable, not
merely the consonant segment.

These data suggest a primitivecompositional structure, one which does not correspond exactly to
adult phonotactic structure. Children’s speech is compositional because utterances are not memorized idi-
omatic forms; they are productively composed of component sounds according to specific phonotactic con-
straints, even if not in accord with adult phonotactic rules. The context sensitivity accounts for the ways in
which the child’s phonology differs from the adult’s. The next several sections explore these ideas in
greater detail

2.3   Relationships between adult target words and children’s speech

Children’s context sensitive substitution and deletion of segments which appear in adult target
words is routine. However, it is the relationship between adult target words and children’s realization of
them and the regularity of this relationship which are special. Smith (1973) and Menn (1971) capture these
effects with a set ofrealization rules, a formal device resembling the rewrite rules of adult phonology
(Chomsky & Halle 1968). Realization rules relate distinctive features occurring in the adult target word

Table 2.1   Types of pronunciation errors

Class of Error Type of Error Examples
Substitutions Fricatives→ Stops soon→ [dun]

fly → [baj]
Liquids → Glides /r/→ [j]

/l/ → [w]
Place-of-articulation errors ball → [dO]
Voicing errors cat→ [g&t]

Deletions Simple deletions fish→ [IS]
shoes→ [uz]
soup→ [up]

Cluster Reductions cheese→ [iz]
string → [dIN]
stone→ [don]

Context Sensitive substitutions Consonant harmony duck→ [gAk]
boot→ [bup]

Metathesis snow→ [nos]
Template matching telefóno→ [fa'tino]

Combinations of errors Cluster reduction, consonant
harmony, initial voicing

stuck→ [gAk]
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with those occurring in the child’s realization and show the effect of context. Sometimes they are optional,
thus do not express a perfectly lawful relationship between target and actual utterance.

In the following examples, Smith’s (1973) subject, Amahl, transforms word-initial /s/ into differ-
ent sounds in different contexts. The narrative attached to each example attempts to capture this in terms of
rules operating in a fixed order of precedence. Several examples involve the process of consonant har-
mony, one of the more dramatic cases of the child’s context dependency. Consonant harmony is the assim-
ilation of place, manner, or other features of one consonant to match the same property of another, non-
contiguous consonant in the same word.

♦ stop→ [bOp, dOp] (stage 1)

The /s/ is deleted. The remaining /t/ optionally harmonizes with the final labial consonant’s place
of articulation, but is voiced because it appears in onset position.

♦ sock→ [gOk] (stage 1)

The /s/ insock assimilates the velar feature of the final /k/. The resulting velar fricative is trans-
formed into a stop consonant, thence into a voiced onset consonant.

♦ soap→ [u:p] (stage 1); [do:p] (stage 10)

Early in Amahl’s development, the initial /s/ is deleted by a rule which deletes the onset consonant
in /sVC/ or /SVC/ syllables when it is not otherwise affected by velar or labial consonant harmony.
Later in development, an initial fricative is transformed into the corresponding voiced stop conso-
nant, i.e., /s/→ /d/.

♦ sit → [lit], side→ [lait] (stage 7)

When /s/ is followed by another alveolar consonant, it is transformed into a lateral /l/.

♦ sap→ [w&p], sip → [wip] (stage 4);some→ [wAm] (stage 9)

The /s/ in these forms is first transformed to /f/ by labial harmony, then to [w] by a rule which
transforms a word-initial labio-dental fricative to a sonorant.

2.3.1   Implications of realization rules

Realization rules and especially their successful application by Smith (1973) and Menn (1971) to
describe children’s early speech have several implications which constrain a model of phonological devel-
opment.

♦ The approximately lawful relationship between child and parental utterances implies that some
underlying representation of parental speech governs child speech.

♦ Children’s pronunciation errors are sufficiently regular to be captured using such a formal device.
This suggests either a rule-based or associative mechanism linking an internal representation of
target words with their pronunciation.
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♦ It also implies the compositionality of child’s utterances. Adult words are composed from elemen-
tal sounds; children’s utterances are also composed from elemental sounds. Thus, realization rules
demonstrate that children’s speech is not idiomatic, but that it is productively related to the pho-
netic patterns of target adult words. Compositional structure has further implications which are
explored throughout this thesis.

♦ The rules’ context dependency implies that the child’s compositional structure does not match the
parent’s phonology. Specific patterns of context sensitivity suggest that the underlying representa-
tion of parental speech is suprasegmental and captures contextual features of the target sounds.

2.4   Syllabic and whole-word constraints

The correspondence between target and actual utterance is so indirect in some errors that it resists
a segmental analysis. The order of segments or syllables may even be reversed as in the followingmetathe-
sis examples:

snow→ [nos]
‘gator (alligator)→ [d&ge]
cup→ [bAk]
telefóno→ [fa'tino]

Some such forms may best be described as conforming to a template, canonical form (Ingram
1974, Menn 1976), prosodic structure (Waterson 1971), or output constraint (Menn 1983; see also Fergu-
son & Farwell 1975, Macken 1979). That is, instead of the output being shaped to conform to the target
word, phonetic features in the target word are shaped to fit a relatively stable output form. Nonetheless,
some relationship between target and actual utterance is usually evident. Waterson’s (1971) analysis is
instructive in this regard. Table 2.2 summarizes correspondences between adult and child forms which fall
into Waterson’s “labial prosodic structure”.

Consonant harmony is a relatively dramatic context sensitive error for which there is virtually no
precedent in adult speech. It is the change of place, manner, and/or other properties of one consonant to
match the same property of another, non-contiguous consonant in the same word. Harmony may involve
repetition of a single feature (e.g., place or manner), the entire segment, or even affricates and clusters
(Vihman 1978).

In the following examples ofprogressive harmony, the properties of the onset sound affect subse-
quent consonants.

boot→ [bup]
snap→ [n&t] (Menn 1971)

In regressive harmony, properties of later consonants affect earlier consonants. E.g.:

duck→ [gAk]
tub → [bAb]
stone→ [non] (Menn 1971)
tiger → [gaig6]
driving → [waibin] (Smith 1973)

Harmony’s presence is betrayed by its systematic distribution, not by individual words. For exam-
ple, Daniel’s [gAk] is not simple consonant substitution because he pronounces open /dV/ syllables accu-
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rately (e.g.,tea [di]) but other velar-final forms (e.g.,book [gUk]) with regressive harmony regardless of
the initial consonant (Menn 1971).

Such data, either metathesis or consonant harmony, as well as the prosodic structure analysis
offered by Waterson, suggest once again that the underlying representation of adult speech is at least supra-
segmental and more likely includes the whole word.

2.5   Overgeneralization and inertia

Often errors are introduced when a newly mastered sound is generalized to new lexical contexts in
ways which do not correspond to adult phonetic categories. For example, Jacob (Menn 1976) correctly
used a palatal-/s/ combination [js] at the ends of several new words (e.g.,cheese, ice, noise, nice, toys) but
then overgeneralized [js] inappropriately inbus [bajs],grass [rajs],mess [majs], andhorse [hOjs] (Menn &
Matthei 1992). Daniel’s nasal harmony started innocently enough with the nearly correct pronunciation of
moon [mun, mum], but then inappropriately spread tobroom [mum], mug [NAN], going [NowIN], spoon,
andprune (various forms) (Menn 1971, unpublished data).

Nonetheless, the oldest, longest established forms often resist generalization by new sound pat-
terns. Daniel’s nasal harmony became more and more inclusive until even established forms fordown
[d&wn] andstone [don] were infected (e.g., [n&wn], [non]), but only after all the other words to which the
rule could apply. The oldest forms showinertia in the face of generalization by new articulatory patterns.

Overgeneralization and inertia suggest the use of an associative model rather than a lookup table or
a fixed set of rules. While associative models have the desired generalization properties, they are also sub-
ject to overtraining in which they memorize patterns subsequently resistant to change. The data further

Table 2.2   Labial prosodic structure

Targets and outputs

Features of adult targets and child’s realizations

Word Target Child’s Realization
fly flaI 1;5: w&/bB&, 1;6: B&/v&/bB&
barrow 'b&rw6wu 1;5: w&w&, 1;6: bAwU
flower fla:/'flaw6 1;6: v&/v&w&

Adult Target Features Child Realization Features
labiality at least at onset [f, b, rw, w] labiality at onset of each syllable [w, b, B, v]
continuance of most consonants [fl, rw, w] continuance of most consonants [w, bB, v, B]
openness of most vowels [a, a:, aI, &, 6] openness of most vowels
prominence of 1st syllable prominence of one syllable
syllable structure C(C)V(CV) syllable structure CV(CV)
frontness of 1st syllable [fla, flaI, b&] frontness of all syllables except [bAwU]
sonorant endings of all syllables —
liquid feature [l, rw] —
centrality in 1 or 2 syllables [fla..., w6, rw6w] —
non-rounding of 1st syllable [fl, b] —



10

reinforce the need for an underlying representation of parental speech which will induce the desired over-
generalization, one which has suprasegmental and contextual features.

2.6   Irregularities

Despite the overall regularity of the relationship between child and adult pronunciations, there are
nagging irregularities. One example, a case of phonetic “crosstalk” between /Ej/ and /i/ drawn from Menn
(1976) data, is presented in Table 2.3. These two sounds are often interchanged (as shown in bold). Target
words appear in the top row, actual forms by age (month, day) and target appear below.

This is not a “classic” case of overgeneralization. Two articulatory patterns affect each other, and
neither is stable. Irregularities like these (e.g., Menn & Matthei 1992, Priestly 1977) reinforce the case for
an associative model. Moreover, they suggest a distributed or subsymbolic underlying representation of
target words which captures the phonetic similarity of sounds. In this example, the diphthong [Ej] ends
with a palatal which is nearly identical to the high front vowel [i].

Table 2.3   Crosstalk among several of Jacob’s related words

Age tape tea key cake away gate
16;16 ti
17;16 Ej, t?Ej
17;18 t?Ej, dE di,dEj khi AGE
17;23 te xiE, khi
17;25 ?txi xE
17;27 tIjA, ti, di ti
18;2 gEj
18;18 ti, dZE ki, xi awE gi
18;20 taj, dEj ti, di ki ki , ke we
18;27 ti ki

2.7   Variability

Few of these pronunciation patterns are entirely stable. Realization rules are often optional. Utter-
ances which conform to syllabic or whole-word constraints do so only approximately. Crosstalk and other
irregularities are revealed in part by the competition among different realizations of each sound. Thus,tape
varies between “tay” and “tee”.

Granularity of phonetic variation in children’s speech may be fine (perhaps evident only to the
trained ear or acoustic instrumentation) or coarse (adult-like segments and context sensitive patterns). The
following are fine-grained phonetic variations of 7 different intended consonants or consonant clusters in
Jacob’s speech.

/r/ → [r, r0, l, w, j]
/l/ → [l, L, dZ, z, Z]
/S/ → [s, S, x]
/tr/ → [tS, tl0, tw, k, g]
/k/ → [k, x, kh]
/t/ → [t, d, t?, dZ, g]
/w/ → [G, w, B] (Menn 1976)
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Coarser-grained variation often emerges when error patterns change. When old errors give way to
newer errors or more accurate, adult-like pronunciations, old and new patterns often compete. Table 2.4
shows the alternation of Daniel’s regressive velar harmony with consonant contrast as it gave way to the
latter (Menn, unpublished data). Note the competition between the inaccurate /g/ onset and the correct
forms which have [b], [p], [m], [d], and [t] onsets in words which end with [g], [k], or [N]. Harmonic forms
are bold; correct contrasting forms are italicized.

As apparent in Table 2.3, both fine-grained and coarse-grained variation may occur at the same
time. For example, while the vowel and diphthong compete in Jacob’s pronunciation ofkey, the articula-
tion of /k/ also varies [k, x, kh]. Only the syllabic structure remains the same. Likewise, pronunciation of /t/
in tape and the voicing of /t/ intea are unstable.

Is the source of this variation articulatory, phonetic, or phonological? Surely consonantal variation
often seems articulatory, revealing variations in timing, voicing, aspiration, place-of-articulation, magni-
tude of the vocal tract constriction, or some combination thereof. However, Daniel’s regressive harmony
cannot be articulatory. Word-onset non-velar stops [b, p, m, d, t, n] are mastered in other lexical contexts.
Thus, data on variation suggest not only that output is stochastic, but also that variation may have two
sources — articulatory and compositional.

2.8   Perception of speech and underlying representations

The foregoing analysis suggests that some representation of adult speech underlies children’s
speech (Section 2.3.1). What form does it take? Modern generative phonology sinceThe Sound Pattern of
English(Chomsky & Halle 1968, see also Durand 1990) has assumed that superficial adult speech patterns
are governed by underlying abstract representations and their contextual interactions (e.g., nasal assimila-

Table 2.4   Variation in Daniel’s regressive harmony as it crumbles

32;28 aimEik A h&ws “I make a house”
gAg “bug” (early in the day)
bAg “bug!” (alarmed by it; many repeats)

32;29 bIg “big”
baks “box”
b&g “bag”
tig&g “teabag”

33;0 gaks / baks “box”
gEigw “bagel”
bEigw “bagel” in response to L.’s model.
uw gaks / uwbaks “little box”

33;1 dAndAks “done with the ducks” (elicited with effort)
dAn gAks “done with the ducks” (relapses)
gAk / dAk “duck” (spontaneous, correctable with relapses)
ai pINkIN INz “I pinking things” (looking through pink plastic)
bivi tu gIg “Stevie too big”

33;2 gUk / bUk “book” (self-corrected)
33;3 dOg / gOg “dog” (response to picture)

pIg “pig”
33;4 bIwd AgIg t&wr “build a big tower”

Is nat tubIg “this not too big?” (about spoonful of something)
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tion, vowel harmony). However, children’s speech seems to be governed by a different set of underlying
forms and by different rules (see also Section 2.4 and Section 2.5).

2.8.1   Representation of target utterances

A working hypothesis which guides most phonological research is that by the time children start
talking, they have a more-or-less accurate phonetic or phonemic representation of adult speech. This is
based on the observation that passive vocabulary (recognition of words) precedes active vocabulary (pro-
duction of words) statistically (Benedict 1979) and individually in longitudinal studies (e.g., Menn 1976).
In considering the possible sources of his son’s speech errors, Smith (1973) argues that perceptual errors
are unlikely because Amahl responds appropriately to conversation and verbal instructions. Smith also
informally tests his son’s discrimination of minimal pairs of mispronounced words (e.g.,mouth vs.mouse),
a procedure applied more thoroughly by other investigators (Section 2.8.2).

Consistent errors in pronunciation and the close relationship between child and adult sound cate-
gories revealed by realization rules imply accurate phonetic encoding of adult distinctions. One of Smith’s
(1973) examples is instructive. Amahl transforms coronal stop consonants /d,t,n/ which precede laterals
into velar stop consonants /g,k,N/. Thus,pedal becomes [bEgu] andbottle becomes [bOkl]. Delayed-
release or fricative coronals /s,z,tS,dZ/ which do not occur at the end of a word are transformed into corre-
sponding stops. Thus, /s/ becomes /t/ inwhistle [witl] and is deleted frompistol [pitl]. Paradoxically,
Amahl pronouncedpuddle aspuggle [pAgl], and puzzle aspuddle [pAdl]. Their distinct pronunciation
implies that the sounds are distinguished perceptually. The example also suggests that the key to under-
standing children’s speech errors is not just perceptual and not just articulatory — Amahl’s problem is not
in articulatingpuddle — but the relationship between listening and speaking, including how contextual
information is encoded and expressed.

2.8.2   Phonemic vs. phonetic perception

Phonemic distinctions are the dimensions of sound which encode meaning. Phonetic distinctions
denote differences in articulation of sounds. Several studies ask if children’s representations are phonemic
and whether such phonemic representation is a prerequisite of speech production (Barton 1976, Edwards
1974, Shvachkin 1948/73). This is a stricter test of perception than whether children can distinguish sounds
phonetically. It asks whether children store sounds according to the minimal distinctions between contrast-
ing pairs of words such asmouth vs.mouse (dental vs. alveolar),pat vs.bat (voicing),goat vs.boat (velar
vs. labial).

Children’s vocabularies do not generally contain many contrasting pairs, thus these studies attempt
to teach children to recognize new contrasting words and nonsense words. Despite experimental design
problems and subsequent methodological questions (Barton 1980, Ingram 1989), results generally suggest
that “phonemic” perception of a given sound difference precedes the correct production of the difference.

Do these studies measure true phonemic distinctions or only phonetic distinctions? Phonemic cat-
egories are more inclusive than phonetic categories. Thephoneme /t/ includes severalallophones (catego-
ries which differ phonetically but do not signify semantic distinctions): the plosive, voiceless, aspirated
word-initial stop consonant [th] in tick, the voiceless but unaspirated stop [t] which follows /s/ instick, the
glottal stop which often accompanies word-final closure inhit [hi?t], or an apical flap as inbutter. The
Shvachkin, Edwards, and Barton studies do not detect whether children group allophones, thus test neces-
sary but not sufficient conditions for phonemic perception.

More direct studies of infant perception imply that allophones are grouped together. More pre-
cisely, native and nonnative consonants are assimilated to and perceived as instances of sound categories
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which are phonemic in the child’s language (Best et al. 1988, Werker & Pegg 1992); vowels are also assim-
ilated to the nearest phonemic category (Grieser & Kuhl 1989, Kuhl et al. 1992). Soon after birth, mere
acoustic contrasts are easily distinguished, but before the end of the first year, there is a declining ability to
distinguish sounds in the same phonemic class, (although with training adults can learn to distinguish allo-
phones; Werker & Pegg 1992).

The question still persists whether the sort of perception identified in these studies is truly “phone-
mic.” A true phonological system is built only gradually (Nittrouer et al. 1989). An infant of 10 months,
whose passive vocabulary is still rather tiny and whose active vocabulary is at best only a few words, is
unlikely to have more than a rudimentary system (Werker & Pegg 1992).

Werker and Pegg suggest and review several alternative hypotheses which might overcome this
quandary, including perceptual tuning, articulatory mediation, cognitive recategorization, and self-orga-
nized learning. They argue that a successful account must explain (1) the timing of selective categorical
perception (6 months for vowels, 12 months for consonant-vowel syllables), (2) the conformity of reorga-
nized phonetic categories to phonemic categories, and (3) the ability of adults to switch between phonemic
and phonetic listening under the right conditions.

Part of the problem is confusion about what “phonemic” means in this context. The term implies
(1) the size of a segment of sound, (2) categories of sound which contrast linguistically, and (3) the mini-
mal linguistic unit which encodes semantic information. For an adult, these three characteristics intersect,
but that is not necessarily the case for the child. Perceptual experiments cited above address only percep-
tual assimilation and contrast, not segment size or semantic encoding.

Self-organizing processes that learn to model the statistical distribution of speech sounds in the lin-
guistic environment, and particularly those which model sounds as if they were generated by a mixture of
stochastic processes (e.g., Nowlan 1991a,b), may account for such phoneme-like categorization of sounds.
With such models it may be possible to account for both the phonetic variation (and assimilation) which
occurs within each “phonemic” category and the phonetic contrast which occurs among “phonemic” cate-
gories. This is based on the assumption that phonemically distinct sounds occur as distinct statistical distri-
butions in the linguistic environment, but acoustically distinct sounds which are part of the same phoneme
will fall inside the same statistical distribution (holding syllabic context constant). In natural linguistic set-
tings, different allophones occur in different syllabic and morphemic contexts. Children may classify allo-
phones distinctively, especially if phonetic perception is based in part on dynamic spectral features (see
Section 2.8.3). Although they are grouped together as the same perceptual entity by adults, it is implausible
that children group them together without additional knowledge of semantic encoding. Consonant catego-
rization experiments do not test this aspect of phonemic categorization. Instead, they test the perception of
non-native allophones or the introduction of allophonic segments into unnatural syllabic contexts. Further-
more, there is no evidence that a child must recognize allophone variations as the same perceptual entity in
order to learn how to pronounce them.

2.8.3   Syllabic and dynamic phonetic perception

Analysis of children’s speech (see Section 2.4 and Section 2.5) suggests that underlying represen-
tations are at least suprasegmental and possibly syllabic or morphemic. It is not clear from speech produc-
tion data alone whether this suprasegmental organization is perceptual, motor, or both.

It has long been conjectured that the syllable, not the phoneme, is the critical segment ofadult
speech perception (e.g., Neisser 1967). When speech is presented monaurally but switched between the
ears, it is least intelligible if interrupted at least once per syllable (Huggins 1964). Adults are able to iden-
tify place-of-articulation even for stimuli which lack invariant static spectral properties (Cooper et al.
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1952, Delattre et al. 1955), thus seem to depend on dynamic syllabic cues. Indeed, attempts to find invari-
ant static spectral cues for stop-consonant identification have failed (Blumstein et al. 1982). Rather,
dynamic spectral features seem essential for consonant or vowel identification (Furui 1986, Lahiri et al.
1984, Lindblom & Studdert-Kennedy 1967, Kewley-Port et al. 1983, Nossair & Zahorian 1991, Strange et
al. 1983, Walley & Carrell 1983). Particularly salient are the spectral transition between consonant and
vowel and the dynamic spectral features during and immediately following a stop-consonant’s burst.

Recent evidence increasingly suggests that children’s phonetic perception is organized around the
syllable and its dynamic properties, even at a very early age. In a habituation experiment involving a list of
four syllables, two-month old infants notice the insertion of a new syllable into the list even if it differs
from the others in a single consonant or vowel (Bertoncini et al. 1988, Jusczyk & Derrah 1987). Even four-
day old infants notice the introduction of a syllable which differs from the habituated syllable by at least a
vowel. In habituation experiments involving two-syllable utterances, newly introduced bisyllables which
included an already familiar syllable aroused less interest than bisyllables composed of novel syllables,
even if the novel syllables shared consonants and vowels with familiar syllables (Jusczyk et al. 1995).
Infants apparently perceive and distinguish syllables holistically, without regard to segments they may
have in common.

Infants are able to discriminate very short CV syllable onsets spliced from full syllables (Berton-
cini et al. 1987). Infants able to discriminate [pat] and [tap] show considerable difficulty in distinguishing
[pst] and [tsp] unless a vocalic context is added to form [upstu] and [utspu] and thus introduce syllabic
structure (Bertoncini & Mehler 1981). Young children focus on spectral changes rather than static acoustic
information (Walley & Carrell 1983) until rather late in development (Nittrouer 1992). Indeed, spectral
transitions appear to be more salient for children than for adults (Walley & Carrell 1983).

2.8.4   Model constraints based on speech perception data

In summary, a number of conclusions may be drawn from children’s speech perception which sug-
gest further constraints on a model of phonological development.

♦ Data on adult and infant speech perception confirm the syllabic or suprasegmental representation
of parental speech which is revealed by children’s speech production.

♦ Speech perception is contextual; dynamic spectral features are particularly salient.

♦ Phonetic categories are learned early, suggesting a self-organized learning process.

♦ Categories approximately correspond to phonemic contrasts in the linguistic environment, sug-
gesting a statistical mixture model which accounts for variation and assimilation of sounds within
each category and the distinctiveness of sounds across categories.

♦ Perception is nearly veridical, a faithful though compact, categorical representation of sounds in
the linguistic environment.
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Chapter 3 Computational Models of Phonological and
Articulatory Development

This chapter surveys relevant models of speech perception and production, focusing on phonolog-
ical, articulatory, and related motor control models, their possible contribution to a more complete theory
of phonological development, and what problems remain unaddressed.

3.1   Speech perception models

The apparent syllabic organization of speech perception leads Mehler et al. (1990) to propose a
word recognition model in which a bank of syllable recognizers activate lexical and phonological patterns.
Jusczyk’s (1993) WRAPSA is a more complete conceptual model of word recognition. Acoustic features
sufficient to explain the early discriminability of most sounds are extracted from the speech signal in the
first processing stage. To explain learned categorization of speech sounds and assimilation of unfamiliar
sounds to such categories, the second stage weights features according to their prominence in the linguistic
environment. A third stage attempts a segmentation into word-sized or syllable-sized units which act as
probes into an exemplar-based lexicon.

WRAPSA is not implemented. Several of its details remain somewhat vague, but it provides a
framework which helps explain developmental phenomena. How to fill in some of the missing details is
suggested by Sawusch’s (1986) process model of adult speech perception. It proposes auditory feature
detectors which might be incorporated into a developmental model, including dynamic and contextual fea-
tures.

With his model, Sawusch attempts to resolve the problem of invariant perceptual cues — why the
same static acoustic cue may give rise to different percepts in different contexts, and why different cues
may give rise to the same percept in different contexts. He argues that segmenting speech into static, dis-
crete units is what makes it so difficult to find invariant acoustic cues (Blumstein et al. 1982). Citing psy-
chophysical experiments, he proposes that perceptual constancy results from the interaction of distinct
auditory and phonetic coding processes. His model has four basic components: (1) spectral processing
(with critical band filters and other signal processing components), (2) local auditory coding of static spec-
tral and source (voicing, friction) features, (3) contextual coding of dynamic spectral patterns, and (4) pho-
netic integration, in which local and contextual features are paired with phoneme labels by a generate-and-
test procedure.

Sawusch’s model is not developmental. Jusczyk’s model does not specify an algorithm by which
acoustic features might be weighted and phonetic categories formed. To be complete, a model of phono-
logical development must address these issues. It must also determine how auditory perception and motor
control might be integrated.

3.2   Two classes of speech production models

Two contrasting goals characterize extant models of articulatory and phonological development
and related models of articulatory control. Given a set of atomic sound units (phonemes, distinctive fea-
tures, or other discrete representations), a model of abstract phonological competence attempts to account
for their composition in ways that conform to the language’s regular phonotactic structure or in ways that
predict errors observed among adults and children. Given a continuous stream of sound, a model of articu-
latory skill attempts to determine the sequence of articulatory motions necessary to reproduce it and the
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patterns of coarticulation which result when two sounds are combined. We evaluate each class of models in
the following sections.

To our knowledge, no model that attempts to do both has been implemented. Yet, a complete
model of phonological development must bridge both. Clearly, children learn what vocal tract, glottal, and
pulmonary motions to make in order to pronounce the sounds of their native language. Also, children learn
how to compose smaller sounds into larger ones. Part of a child’s competence is articulatory, part is com-
positional.

3.3   Abstract phonological competence models

Several abstract phonological competence models specifically address development. Most deal
with issues of morphophonology. These include Rumelhart and McClelland’s (1986) model of English past
tense acquisition, the several connectionist refinements which appeared after Pinker and Prince’s (1988)
critique (Daugherty & Seidenberg 1992, MacWhinney & Leinbach 1991, Plunkett & Marchman 1991),
and a recent symbolic competitor (Ling & Marinov 1993). In addition, there are models of German article
declension (MacWhinney et al. 1989), English plural and non-assimilatory suffixation (Lee & Gasser
1992), and receptive morphology (Gasser 1993). Several additional models are not intended as develop-
mental accounts but use connectionist methods to discover underlying abstract representations which
explain strictly adult data (e.g., Gasser 1992, Gasser & Lee 1990, Hare 1990, Touretzky & Wheeler 1990,
1991).

A number of mechanisms are exploited to mimic real phenomena. The morphophonological mod-
els attempt to elicit rule-like and exceptional behavior in the composition of tensed verbs, plurals, and arti-
cles. Connectionist models do so by balancing a network’s generalization and memorization properties.
Feature assimilation in vowel harmony is modeled by Hare (1990) using smoothness constraints and
underspecified training signals in a recurrent neural network (Jordan 1986). Feature assimilation is
involved in affixation as well (e.g., voicing in the regular English past tense and vowel quality in the irreg-
ular English past tense). The past tense models are trained with the correct pattern, but some past tense
model feature representations are designed to encourage assimilation. Gasser’s (1992) abstract representa-
tion discovery procedure elegantly exploits a recurrent network’s discovery and distributed representation
of temporal patterns and the network’s pattern completion capabilities.

Key to the successful implementation of compositional structure in these network models are three
factors. (1) The phoneme’s phonetic properties and contextual relationships are represented by a distrib-
uted feature vector. (2) Compositional structure and phonotactic constraints are implicit either in network
architecture or in contextual feature vectors. (3) An encoding relates discrete phonemic units with the net-
work’s internal representation. Rumelhart and McClelland use Wickelfeatures (after Wickelgren 1969) to
represent the temporal order of phonemes. In MacWhinney and Leinbach’s model, input and output units
represent relative syllable position of phonemes. Gasser (1992) and Hare (1990) use recurrent network
designs which discover and use a distributed representation of the temporal context.

Relevant to the present work is the ability of these abstract phonological models to learn composi-
tional structure and exhibit rule-like behavior. Key mechanisms are the generalization and pattern comple-
tion properties of neural networks.

Also relevant is built-in knowledge of (1) phonemic segmentation, (2) phonotactic constraints
(except for some recurrent networks models), and (3) phonetic and articulatory properties of phonemes.
Knowledge of phonotactic constraints and temporal structure is learned only in the case of recurrent net-
work models. For models of morphophonological and other relatively late developmental phenomena, it is
appropriate to assume this as prior knowledge.
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A model of the articulatory and phonetic foundations of phonology does not have this luxury. It
cannot assume phonemic segmentation, because the context sensitivity of children’s pronunciation errors
and properties of children’s speech perception suggest that children have a syllabic, contextual representa-
tion of speech (see Chapter 2). Such a model cannot use prior knowledge of phonotactic and phonetic
properties of phonemes. Instead, it must explain how they are learned. Likewise, such a developmental
model should presumably explain how correlations between auditory and articulatory events are learned.
Prior knowledge of such correlations is implausible, in part because articulatory patterns are unmastered
and phonetic categories are unlearned, and in part because the motor equivalence of many sounds makes a
well-defined relationship between articulatory and phonetic patterns impossible (see also Lindblom 1991).
Distinctive features (Chomsky & Halle 1968), traditional articulatory features (Ladefoged, 1972), or any
of myriad alternatives (e.g., Shillcock et al., 1992), which are framed largely in articulatory terms, assume
prior knowledge of articulatory-auditory correlations and are inappropriate as a representational basis for a
model of the phonetic foundations of phonology.

A model of phonological development must bootstrap itself upon exclusively acoustic cues and
their statistical distribution in the environment, aided only by architectural, representational, and algorith-
mic constraints, plus knowledge of which broad types of sounds are worthy of attention. Lindblom (1992)
offers evidence that self-organization of phonological units is feasible, based on constraints which mini-
mize articulatory costs, maximize discriminability of acoustic properties, and maximize generalization of
gestural parameters among phonological units.

3.4   Articulatory skill models

Articulatory skill models address one of the most basic problems of speech production — what
sequence of articulatory motor commands is required to generate a continuous stream of speech. This is
often split into kinematic and dynamical subproblems. The kinematics of speech addresses the mapping
between articulatory and acoustic coordinates. The speaker’sproximal task is to generate a trajectory of
vocal tract and respiratory motions. The speaker’sdistal task is to generate a sequence of sounds. That is,
the goal and the success or failure of the immediate articulatory task is not measured in proximal articula-
tory coordinates but with respect to a different, acoustic or phonetic coordinate system. The dynamics of
speech addresses the mapping between a sequence of possibly discrete motor commands or articulatory
gestures and the more-or-less continuous articulatory or acoustic reference trajectory which defines the
proximal or distal task.

3.4.1   Kinematics of articulatory and acoustic trajectories

For the naive agent (e.g., a child learning to speak), the distal task (the target sound to be pro-
duced) is known, but the proximal task (the articulatory motions which generate the sound) and the map-
ping between the proximal and distal tasks is unknown. However, the mapping from articulatory to
acoustic space may be experimentally determined. That is, aforward model may be built which for each
articulatory (and vocal tract) configuration identifies the corresponding acoustic sensation. An inverse of
this mapping is required for kinematic control. Aninverse model maps target acoustic sensations to vocal
tract configurations. Unfortunately, the mapping from articulatory configurations to acoustic sensations is
many-to-one (Atal et al. 1978). For example, the lengthening of the vocal tract to generate the sound [u]
may be accomplished either by protruding the lips or by lowering the glottis (Ladefoged 1982). This is also
called the “motor equivalence” problem. No unique inverse of the forward model exists, and an inverse
model may not be determined directly.
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Jordan and Rumelhart (1992) propose a method by which an inverse model may be learned even if
the environment is characterized by a many-to-one mapping between actions and sensations. This indirect
approach is applicable to speech and more generally to any similarly ill-defined kinematic or dynamic con-
trol problem. In this domain, the relationship between articulatory configurations and acoustic conse-
quences is ill-defined, but the relationship betweenarticulatory errors andacoustic errors is well-defined.
The idea is to incrementally learn a particular inverse by exploiting this relationship. To learn the inverse
model, articulatory errors (which are not known) must be corrected. This is accomplished by using the for-
ward model to transform acoustic errors (which are known) into articulatory errors, which are then used to
correct the inverse model. First, a neural network learns the system’s forward model, i.e., learns to predict
the acoustic consequences of each articulatory configuration. Once the forward model is learned, it may be
used to convert acoustic errors into articulatory errors and indirectly train an inverse model. The inverse
model is implemented with a second neural network whose inputs represent the target acoustic state and
whose outputs represent the articulatory configuration.

Coupled, the two models behave as follows. Given a target acoustic state, the untrained inverse
model computes its best guess of the corresponding articulatory configuration. The acoustic error is the dif-
ference between the target acoustic state and the sound emitted by the inverse model’s chosen articulatory
configuration. The inverse model, whose outputs are in articulatory coordinates, cannot use this distal error
signal (i.e., an error in a different set of coordinates). However, the acoustic error is transformed into artic-
ulatory coordinates by back propagating it (Rumelhart et al. 1986) through the forward model. The articu-
latory error thus obtained is used to train the inverse model, incrementally approximating a particular
inverse.

3.4.2   Forward model error inversion and articulatory skill

Among models of articulatory skill are Hirayama et al.’s (1992, 1993, 1994) physiologically based
speech synthesis model and Laboissiere’s model of vocal tract control (Bailly et al. 1992, Laboissiere et al.
1990, Laboissiere 1992). Each employs an acoustics forward model.

Laboissiere’s model is most relevant to this thesis. It learns jaw, tongue, and lip motions necessary
to pronounce a sequence of vowels. The distal teaching signal is a partial reference trajectory of formant
frequencies corresponding to the target vowel sequence. Errors in formant frequencies are inverted into
articulatory errors by a forward model trained during a period of synthetic babbling. Given additional
smoothness constraints (Jordan 1990) and the manner in which the reference trajectory and errors are
determined, the model learns to interpolate smoothly in the intervals between target vowels. Once trained,
the model simulates skilled human behavior in classic bite-block and coarticulatory experiments.

3.4.3   Dynamics of articulatory skill acquisition

A kinematic inverse model is not sufficient to solve the problem of articulatory skill acquisition.
Dynamical properties of speech articulators (damping and stiffness of jaw, tongue, lip, and other articula-
tors) ensure that the translation from a sequence of motor commands to the articulatory or acoustic refer-
ence trajectory which defines a proximal or distal task is not direct. The acoustic consequences of each
motor command are delayed and distributed over a period of time, overlapping with the acoustic conse-
quences of other motor commands. Control of speech requires that responsibilities for acoustic patterns
which overlap in time be assigned to individual articulatory actions. This is thetemporal credit assignment
problem (Sutton 1984). Speech production and perception involve several additional factors which further
complicate temporal credit assignment. For example, acoustic feedback is delayed relative to motor com-
mands because of the time needed to propagate and realize motor commands and analyze auditory feed-



19

back. The acoustic reference signal may be discontinuous. It may be completely missing, replaced by a
compact, categorical encoding of the utterance.

The acoustic trajectory’s discontinuity is especially acute for voiceless stop consonants, which are
inaudible except after the stop’s release. Acoustical information during a voiced or nasal stop is nearly as
impoverished. One may infer a stop consonant’s place of articulation from context, but only after a delay.
For example, to pronounce the opening sounds inkick, the tongue body first moves up to contact the
velum. Then, with lungs relaxed and velum closed to block passage of air through the nasal cavity, the
tongue body is lowered. A sudden rush of turbulent air flows through the open glottis, then the glottis is
closed until the vocal folds start to vibrate. Acoustic cues for identifying the initial consonant’s place-of-
articulation are the dynamic properties of the first 20-40 msec of aspiration (Kewley-Port et al. 1983).
Actions to fill and relax the lungs, open the glottis, close the velum, raise the tongue body to the velum, and
lower the tongue body all occur before there is any acoustic feedback.

Laboissiere’s (1992) model learns stop consonants by using the locus (Delattre et al. 1955) as a
teaching signal. The locus is the set of formant frequencies which is obtained by extrapolating formant tra-
jectories forward or backward in time to the hypothetical time of articulator closure. This method thus
avoids the difficult dynamical control problem. It is justified only if an inference method exists for estimat-
ing the locus, not a plausible scenario for a naive infant.

Parental feedback is not always present. Furthermore, adult and probably children’s auditory
echoic memory is short-lived (Baddeley 1992). Might long-term memory traces of target utterances
replace direct supervision? The requisite memory storage makes this implausible. Besides, the evidence
(see Chapter 2) suggests that children’s accessible representations of adult speech are compact categorical
forms which capture certain linguistically invariant phonetic features. They lose the richness of the original
stimulus and bear little resemblance to continuous acoustic reference signals of the sort presumed by cus-
tomary control models. Replacing the acoustic reference signal with a compact encoding of the target utter-
ance or classes of target utterances adds a new dimension to the temporal credit assignment problem as
well as a new decoding problem.

3.4.4   Inverse dynamics with temporal credit assignment problems

The solution of inverse dynamics or temporal credit assignment problems may be found using
either supervised or reinforcement learning. Supervised learning is typically applied to tasks in which there
is an explicit teaching signal and a signed error vector. In dynamic system control problems, the teaching
signal typically consists of a reference trajectory (in proximate or distal coordinates), or via points (a peri-
odic sampling of points) along a reference trajectory. Reinforcement learning is typically applied to tasks
in which there is a set of scalar evaluative signals. Solution of the problem in either paradigm involves
optimizing an objective function which measures the cumulative error or payoff incurred during the task.

Supervised learning of dynamic control may be decomposed into forward and inverse models in
the same manner as for kinematic control. The forward dynamic model learns the mapping from a
sequence of motor commands to an articulatory trajectory. The inverse dynamic model learns the inverse
mapping (once the forward model is mastered) by back propagation through time in a recurrent network
which incorporates both forward and inverse models (Jordan 1990). The high computational cost of a
recurrent network might be avoided by a feedforward dynamical model (e.g., Hirayama et al. 1994), but
only at the expense of ignoring articulatory feedback.

With reinforcement learning methods, the controller learns an extended plan of action which max-
imizes the likelihood of future success as measured by cumulative discounted payoff. There is no distinc-
tion between forward and inverse models. However, a reinforcement-based controller does not learn a
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direct inverse and does not stochastically search over all possible trajectories. Rather, it uses an asynchro-
nous version of dynamic programming to incrementally build a model of the value of each state and the
marginal value of each action in each state, caching knowledge won from partial trajectories and building
thereon.

Jordan and Rumelhart (1992) distinguish between the problems and methods of supervised and
reinforcement learning paradigms. While it is possible to use reinforcement learning methods to solve a
supervised learning problem by translating signed error vectors into some corresponding evaluative signal,
one loses the directional information contained in the error vector. It is also possible to use supervised
learning methods to solve a reinforcement learning problem by using a forward model to translate evalua-
tive signals into signed error vectors (Jordan & Jacobs 1990, Markey & Mozer 1992, Munro 1987) but at
the cost of the additional forward model.

Jordan and Rumelhart point out that when a task combines dynamical properties and delayed con-
sequences, building a forward or inverse dynamics model may be infeasible if the environment is too com-
plex or wasteful if the details of the system’s trajectory are not needed for its control. Instead, they suggest
using anintegrated quantity which measures overall task success. Surely, the task may be learned by using
a forward model of the integrated measure (e.g., Jordan & Jacobs 1990), but only with the added expense
of the forward model. This may be avoided with reinforcement learning methods which use the same inte-
grated measure as an evaluative signal.

Similar circumstances apply to control of natural speech. There are two ways in which phonetic
feedback may be used to learn the control of natural speech: (1) as an integrated quantity which encodes
the success of the entire task, or (2) as an explicit but delayed teaching signal from which one might be
able to derive a signed error vector. In the latter case, the controller must solve articulatory dynamics,
inverse acoustics, the additional temporal credit assignment problems due to delayed auditory feedback,
and must also decipher the compact phonetic representation in which the feedback is encoded (see
Section 3.4.3 and Chapter 2). It is not clear whether reinforcement or supervised methods are more appro-
priate. In Section 3.5, we review reinforcement learning methods in greater detail, and we return to this
question again in Chapter 7.

3.4.5   Dynamic components of articulatory skill models

Models of articulatory skill for the most part only minimally incorporate dynamical components.
Laboissiere et al. (1990) implements a model which is purely kinematic save its smoothness constraints
and extrinsic timing signals.

Hirayama et al. (1992, 1993) implement a forward dynamics model of the muscular-skeletal sys-
tem which learns the mapping between electromyographic (EMG) activity and articulatory trajectories.
Recently implemented is also a feedforward inverse model of muscular-skeletal dynamics that generates
EMG signals and a smooth articulatory trajectory matching a sequence of discrete articulatory target con-
figurations (Hirayama et al. 1994). Articulatory targets are not determined from an integrated model of for-
ward acoustics but are chosen independently. Furthermore, the model is strictly feedforward to avoid
sensory feedback delays. This seems justified in a model limited to muscular-skeletal dynamics. However,
it cannot respond to environmental perturbations known to affect natural speech (Abbs & Connor 1991,
Kelso et al. 1984).

The teaching signals for each of these models are reference trajectories — articulatory via points in
Hirayama (1994) and partial acoustic trajectories in Laboissiere et al. (1990). Temporal credit assignment
is thus considerably simpler than if the teaching signal were based on delayed phonetic feedback.
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3.5   Reinforcement learning as an alternative control strategy

An alternative approach for the control of speech relies on reinforcement learning, in which the
controller learns an extended plan of action which maximizes the likelihood of future success.

In a reinforcement learning paradigm, a controller receives only a scalar reinforcement signal from
the environment evaluating its actions, rather than a teaching signal specifying its precise error. The rein-
forcement signal is often delayed, requiring the controller to determine responsibility for its actions not just
structurally but also temporally (Sutton 1984). Algorithms for learning from delayed signals (Barto et al.
1990) are based on principles of dynamic programming (Bellman 1957, Bertsekas 1976). They learn to
incrementally predict future rewards by temporal-difference learning methods (Sutton 1988). Instead of
predicting the final outcome of a sequence of events, such methods learn only how the outcome’s predic-
tion changes from step to step. Working backwards from the goal, reinforcement learning methods deter-
mine the best sequence of actions to get to the goal.

One such method,Q-learning (Watkins 1989), is a reinforcement algorithm for discovering an
extended plan of action which maximizes the cumulative net long-term reward received by an agent as
result of its actions. Q-learning has been shown to converge to an optimal plan for a finite Markov decision
task under a number of specific conditions (Watkins & Dayan 1992). In aMarkov decision task (see
Figure 3.1), an agent seeks to control a finite-state, discrete time, stochastic dynamical system. At each
time step, the agent observes the currentenvironmental statex and executes anaction a. The system thence
makes a probabilistictransition to statey, and the agent receives areinforcement r which is a function of
the previous statex, new statey, and actiona. This transition is a function only of statex and actiona, not
of any previous state (summary due to Singh 1992d). The agent’s goal is to determine a control policy that
maximizes someobjective function, typically a cumulative measure of reinforcement over time.

In Q-learning, the agent incrementally learns a function , which for every statex evalu-
ates the expected utility of performing each possible action . Optimally, the Q-agent chooses the most
highly valued action. As it learns the Q-function, however, the agent experiments with possibly suboptimal
actions. As an optimal plan is learned,  (or theQ-value, as it is sometimes called) comes to equal
the expected value of the cumulative net reward which would be gained by performing actiona in statex
and by following the optimal plan of action thereafter.

Figure 3.1   Components that define a Markov decision task

Environment

Agent

Payoff

Statex, y

Action a

Reinforcementr

Q x a,( )
ai

Q x a,( )



22

3.5.1   Advantages and disadvantages of reinforcement learning

The chief advantage of reinforcement learning is its specialization for solving problems of tempo-
ral credit assignment. The principal disadvantage is that reinforcement learning (and specifically Q-learn-
ing) is untested in the control of speech and in most other large-scale domains. It is not thought to scale up
well, and it is not proven to work with methods of function approximation (Watkins 1989). To extend its
reach to problems which have large domains (such as speech), some form of generalizing function approx-
imation is essential and has been tested in a number of domains (e.g., Lin 1992, 1993; see also Anderson
1987, Tesauro 1992). Under certain conditions, Q-learning provably fails with function approximation
(Thrun & Schwartz 1994), but judicious choice of input representation may have considerable benefits
(Moody & Tresp 1994).

Another disadvantage is the impracticality of using standard Q-learning in high-dimensional
action spaces. For example, even the simplest articulatory model of the vocal tract involves at least a dozen
dimensions of motor control involving jaw, lip, tongue body, tongue tip, velum, hyoid, glottal, and lung
motions. Solutions are proposed by Markey (1994a, see also Chapter 7), Tham & Prager (1993), and Baird
& Klopf (1993).

Despite the mathematical limitations, artificial neural networks and reinforcement learning meth-
ods have been used together with considerable success in game playing (e.g., Boyan 1992, Lin 1992,
Schraudolph et al. 1994, Tesauro 1992), robotics (e.g., Anderson 1987, Gullapalli 1993), and animal learn-
ing (e.g., Doya & Sejnowski 1994, Montague et al. 1993, Sutton & Barto 1990).

3.5.2   Models of hierarchical reinforcement learning and control

One method of extending the reach and power of reinforcement learning systems is to decompose
tasks hierarchically. Without such decomposition, some composite tasks may be intractable (e.g., Mahade-
van & Connell 1991). Three principal approaches to hierarchical reinforcement learning have been
reported. Singh’s (1992a) CQ-L adaptation of Q-learning views a composite task as a single Markov deci-
sion task to be decomposed by subtask using a mixture of experts, each learning the environment of a sub-
task. Dayan and Hinton’s (1993) feudal reinforcement learning distributes a task among a modular
hierarchy of agents and subagents that have been pre-assigned to portions of the state space. A third
approach is more heuristic, drawing on domain-specific knowledge to decompose a complex task (Kael-
bling 1993, Lin 1993a,b, Mahadevan & Connell 1991). An examination of these approaches reveals six
principal dimensions along which hierarchical reinforcement algorithms may vary. Choices along these
dimensions are not entirely independent.

Division of labor. Labor may be divided by state or by task. When labor is divided according to
state, each managing agent’s role is to choose the action to be performed by the subagent preassigned to the
current state, and each subagent learns to do a diversity of jobs in its assigned state. When labor is divided
by task, each subagent learns to do one job well, and each managing agent’s role is to choose the subagent
most likely to behave optimally given the managing agent’s own observed state.

Relationship between agent and subagent.The relationship among agents in one level and sub-
agents which they manage may be supervisory or delegatory (Watkins 1989). The supervising agent retains
complete initiative over its subagents. The delegating agent passes control to a subagent, whose responsi-
bility it is to pass control back to its manager when its subtask has been completed. Delegatory control
seems best suited to a division of labor by state. Otherwise a subagent has no principled method to decide
when to relinquish control except to learn when a subtask is complete, which further complicates its job.

Abstract state discovery.State specialization requires division of the environment into abstract
states, such as maze subregions in Dayan & Hinton’s domain, application subspaces in Lin (1993a,b),
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applicability conditions in Mahadevan & Connell (1991), or regional landmarks in Kaelbling (1993). Even
task specialization requires some advance knowledge of which states represent subgoals (Singh 1992a).
Decomposition into abstract states or abstract tasks may be adaptive or engineered in advance from pre-
existing knowledge. Singh (1992b,c) proposes a method for discovering abstract states. However, he
argues that a completely general method for decomposing problems hierarchically is unlikely to be tracta-
ble and bootstraps his system with elemental tasks.

Distribution of rewards among control levels.The distribution of rewards depend on the spe-
cialization method and the nature of the problem to be solved. In state specialization systems such as feu-
dal learning, the subagent is rewarded when conforming to a managing agent’s request, and the overall
manager is rewarded when achieving the overall goal. For task specialization systems, the managing agent
is rewarded based on the adaptiveness of its choice of a subagent, but reward of subagents is more compli-
cated. Singh (1992a) assumes that no intermediate rewards are received as subtasks are completed. His
system thus faces a difficult temporal credit assignment problem and for this reason views the composite
task as a single Markov decision task.

Relationship of states among control levels.Reinforcement learning is guaranteed only for a
Markov process and when several other conditions are met (Watkins & Dayan 1992). In order to conform
to the Markovian property, the future sequence of states must be exclusively a function of an agent’s cur-
rent state, its own future actions, and the unchanging transition probabilities which characterize the envi-
ronmental dynamics. If agent and subagent share the same state, the actions of one may compromise the
effect of the other’s actions, violating the constraint. In the feudal system, agents observe the environment
only at the granularity which is affected by their own actions; they do not observe the irrelevant changes in
the environment due to finer grained action by their subagents. The CQ-L system’s experts (analogous to
subagents) observe the physical state, but the gating module (analogous to a managing agent) observes
only information about subtask completion. In each system, domain knowledge is used to engineer an arti-
ficial separation of states.

Application of domain-specific knowledge.Domain specific knowledge is required by each
decomposition strategy — to determine division of labor, to choose abstract states or the dimensions along
which states are abstracted by automatic means, to decompose tasks into subtasks, to design subtask-spe-
cific reinforcement functions, and to determine how to distribute rewards.
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Chapter 4 HABLAR’s Architecture and Behavior

Empirical findings about developmental phenomena constrain HABLAR (Chapter 2). Problems of
speech production and perception not comprehensively addressed by existing cognitive models motivate it
(Chapter 3). To start this chapter, we summarize the motivation and constraints. To address them, we intro-
duce HABLAR’s architecture and basic operation, illustrating the model’s operation with how it might
imitate a one-syllable word.

4.1   Empirical constraints and problems of speech production

Two basic problems of human speech production face any theory of phonological development.
First, given a continuous stream of sound, what is the sequence of articulatory motions necessary to repro-
duce it? Second, how is speech structured into elemental units, and how are the units composed into unique
utterances? A solution of the first question will account for the relative articulatory difficulty of different
sounds revealed by children’s speech. An answer to the second question will account for the way in which
children recombine already mastered sounds into unique utterances and why their phonotactic patterns do
not correspond to adult phonology.

The solutions, however, must be integrated into the same model. Although existing models of
articulatory skill and abstract phonological competence address one question or the other, no model seems
to address both. Moreover, no existing model apparently addresses the role of auditory perception in the
control of speech, especially how it shapes the underlying representations which govern the production of
speech. A complete model must address these questions and satisfy the empirical constraints identified in
Chapter 2.

In particular, children’s speech production and perception imply that some veridical underlying
representation of speech governs children’s imitation and pronunciation of target words. It is apparently a
learned representation assimilates acoustically similar sounds into existing categories and which reinforces
the distinctiveness of sounds that cross categories. The experimental data imply that the representation is
suprasegmental, is organized syllabically, and classifies the contextual and dynamical acoustic features of
speech in a way which captures the phonetic similarities among sounds.

The generalization of newly mastered sounds to new lexical contexts and the close relationship
between children’s speech and parental target words suggest that children’s utterances are composed from
elemental units, even if the resulting compositional structure does not match the phonotactic constraints of
adult phonology. Pronunciation errors suggest a contrasting view of children’s speech in which anatomical
constraints, articulatory complexity, and motor skill play a central role in explaining their evolving phono-
logical competence. Patterns of variation, however, imply that articulatory and compositional components
each have an equal role in explaining children’s speech production. The dual character of speech suggests
a motor control structure which is hierarchical. Several other properties of children’s speech production
point to associative, stochastic mechanisms that link children’s internal representation of speech and their
utterances.

4.2   Resolving issues of phonological development

Our resolution of these issues is in two parts — perceptual and motor. We propose a perceptual
system which detects and categorizes local and contextual phonetic features of speech, generating a faith-
ful syllabic representation which governs speech recognition and production. We also propose a hierarchi-
cal motor control system composed of a phonological control level and an articulatory control level. The
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former composes an utterance out of elemental sounds by choosing a sequence of articulatory events most
likely to generate each sound, and the latter generates elemental sounds by choosing a sequence of articu-
latory gestures. The model’s auditory perception is specialized to segment and categorize acoustic feed-
back into discrete phonetic events which closely correspond to discrete sets of gestures learned by the
model’s articulatory controllers. To imitate sounds, the model need not solve the hard problem of relating
continuous speech and continuous vocal tract motion. The phonological control level learns the correspon-
dence between one discrete sequence of phonetic events and a discrete sequence of articulatory events.

A categorical phonetic representation of the sort we propose has additional advantages of commu-
nicational robustness and computational compactness. Its compactness and faithfulness enable a more eco-
nomical memory of utterances and utterance types and the possibility of off-line learning of sounds
without parental supervision. Its encoding of contextual features in a whole-syllable representation forms
the perceptual foundations necessary to support compositional structure. Yet, the auditory system we pro-
pose relies on exclusively acoustic cues and their statistical distribution in the environment.

The two levels of hierarchical motor control operate at very different temporal resolutions. This
might be a problem except that the discrete phonetic events detected by auditory perception regulate the
timing and decisions of the phonological control level, while continuous proprioceptive feedback and the
intrinsic dynamical properties of the vocal tract and respiratory system regulate the timing and decisions of
the articulatory control level.

The model uses reinforcement learning to simultaneously learn the kinematics and dynamics of the
articulatory system and solve other problems of temporal credit assignment in a relatively economical way.
Reinforcement is determined by comparing the phonetic representation of a target utterance with the pho-
netic representation of the actual utterance, a faithful representation of the relative order of sounds in each
syllable, including discontinuities. The model also addresses how to control the vocal tract’s many
degrees-of-freedom, problems of hierarchical reinforcement learning, and other constraints to reduce the
computational complexity of the model’s task.

4.3   Model components

Figure 4.1 portrays HABLAR’s architecture. Each box represents an implemented computational
component of the model. Internal representations and flow of information are indicated by solid lines in the
diagram. Acoustic signals are indicated by dashed lines.

HABLAR’s speech is a synthetic acoustic signal computed on the basis of lung and vocal tract
activity. It is generated by a version of Haskins Laboratories’ ASYarticulatory synthesizer (Rubin et al.
1981), which computes the acoustic properties of the vocal tract, and asource model of our own design,
which computes intensities of voicing, frication, and aspiration based on respiratory mechanics, vocal tract
configuration and aerodynamics. Speech is generated by the model or by a synthetic “parent”. The “parent”
is merely a set of synthetic utterances presented to the model in ways intended to simulate a human child’s
linguistic environment.

The model’s speech generation requires control of twelve articulatory dimensions involving the
position or state of the glottis (the vocal cords), lungs, jaw, tongue body, tongue tip, lips, velum, and
hyoid.1 For each articulatory dimension, there is onegesture controller whose activity emulates a smooth
skeletal-muscular trajectory. There are manyarticulatory controllers; only one is active at any one time. To
generate a component sound, it coordinates multiple articulatory gestures in parallel in all articulatory

1 The velum is a flap which controls the opening between oral and nasal cavities. The hyoid is a bony structure
joining epiglottis, tongue root, and muscles attached to several other structures.
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Figure 4.1   HABLAR’s cognitive architecture

Each box represents an implemented component of the computational model. Modules marked
with an asterisk (*) are adaptive, including at least one significant learning component. Inauditory
perception, only phonetic categorization is learned. Flow of information is indicated by solid lines
and arrows. Acoustic signals are indicated by dashed lines.
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dimensions, observing tactile, kinesthetic, and proprioceptive feedback compiled byproprioceptive per-
ception from vocal tract, respiratory system, and gesture controllers. Thephonological controller coordi-
nates a sequence of articulatory events, activating one articulatory controller after another to compose an
entire utterance.

Auditory perception segments speech into a set of discrete phonetic events by dividing it into peri-
ods of silence, friction, and voicing and by identifying periods of maximal and minimal spectral change. It
sorts static and dynamic spectral patterns during each of these periods into categories determined accord-
ing to the statistical distribution of sounds observed in parental speech. Phonetic representations of past
utterances are stored either inshort-term memory or in (long term)lexical memory.

4.4   Imitating duck: A sample scenario

We illustrate how the model might ideally imitate the wordduck [dAkh]. The episode begins when
the model’s “parent” speaks, generating a synthetic acoustic signal which is processed by auditory percep-
tion to form a phonetic representation. This superimposed activation of all phonetic events detected over
the course of the utterance is stored in short-term memory. Omitting some details for greater clarity, pho-
netic events which are detected and stored correspond to demisyllables [dA] and [Ak], release [kh], and
vowel [A]. These are illustrated in Figure 4.2. The goal selector copies the representation from short-term
memory to the phonological controller to start imitation.

Given the target sound (e.g, [dAkh]), the phonological controller’s overall goal is to activate the
right set of articulatory controllers in the right sequence, thus reproducing the target’s phonetic representa-
tion. Its first step is to determine which articulatory controller is most likely to accurately reproduce the
onset demisyllable [dA]). The chosen articulatory controller is activated. It in turn chooses a sequence of
articulatory gestures which generates the sound. Once the lungs are filled, the first set of gestures is chosen.
In one gesture, the jaw partially closes; in another, the tongue tip rises to touch to alveolar ridge (the roof of
the mouth behind the upper incisors). The active articulatory controller does not choose each point through
which the jaw and tongue will move. Rather, for each articulatory dimension, it chooses a target equilib-
rium point (e.g., jaw angle, tongue tip length and angle at closure). The gesture controller (one for each

Figure 4.2   Acoustic signal and phonetic events

Idealized spectrogram ofduck before (a) and after (b) segmentation. The list of phonetic events (c)
tabulates the type and spectral category (when applicable) of each detected segment. The word’s
phonetic representation is a superpositional vector whose units are incremented each time a feature
is detected — each segment type, each triad type (not shown, which captures the relative order of
segment types), and each spectral category. Further details may be found in Chapter 6.
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articulatory dimension) realizes the motion as a smooth trajectory between the articulator’s current posi-
tion and its new target equilibrium point.

When tongue-alveolar contact is detected, the active articulatory controller chooses one gesture
which relaxes inspiratory muscles (to start exhalation) and another which closes the glottis such that vocal
cords vibrate as soon as air passes over them during exhalation. The tongue still constricts free air flow.
When oral air pressure rises above a threshold, another set of gestures is chosen which opens the jaw,
relaxes the tongue tip, and moves the tongue body to the position necessary to pronounce [A].

At each discrete time step, airflow, lung volume, vocal tract and pulmonary configurations, tactile
and proprioceptive signals, turbulent and periodic sound amplitude, and vocal spectrum are calculated.
Proprioceptive feedback is transmitted to the active articulatory controller. Acoustic feedback is transmit-
ted to the model’s auditory perception. The spectral pattern during the onset demisyllable reveals a rising
first formant and slightly falling second and third formants. Auditory perception recognizes this rapidly
changing spectrum as the onset demisyllable [dA]. However, as the tongue approaches its equilibrium
position, its motion slows, and the rate of change in the voice’s spectrum drops. Now auditory perception
detects and recognizes the spectral pattern corresponding to the vowel [A].

Once [A] is detected, the phonological controller is free to choose a different articulatory specialist
to generate [Ak] and yet another for the final [kh] release until the phonetic representation of the acoustic
feedback matches the phonetic representation of the target utterance or until the imitation attempt ends for
other reasons (e.g., if the model’s lung capacity is exhausted).

This scenario is revisited when motor control is presented in greater detail in Chapter 7 and is illus-
trated in Figure 7.3. Chapter 5 details speech generation, proprioception, and gestural dynamics. Chapter 6
details auditory perception and phonetic representations.

4.5   The model’s operation

The model has two fundamental behaviors: imitation of sounds in the environment or intentional
speech. To initiate a behavior, thegoal selector copies the target sound’s phonetic representation from
short-term memory (for imitation) or from lexical memory (for intentional speech) to the phonological
controller. The model does not “intentionally” babble. Babble is just the result of imitation or intentional
speech whose referent is unclear to the listener because of ill-formed sounds (which may occur because of
the model’s exploratory behavior).

Each articulatory controller is a specialist capable of generating all or part of a recognizable sound.
Given a target sound, the phonological controller determines which articulatory controller is most likely to
accurately reproduce it. The chosen articulatory controller is activated, and it in turn chooses a sequence of
articulatory gestures which generates the sound. Each gesture is a smooth trajectory (resembling the
motion of a damped spring) between the articulator’s current position and its new target equilibrium point
(Browman & Goldstein 1989) as realized by a gesture controller.

At each discrete time step, airflow and lung volume are calculated and vocal tract and pulmonary
configurations are updated. The articulatory synthesizer andsource model convert information on airflow
and vocal tract configuration into a synthetic acoustic signal whose feedback is analyzed by auditory per-
ception. The acoustic signal may also be physically realized as synthetic speech for experimental observa-
tion of the model’s behavior.

The active articulatory controller’s decisions are not governed by auditory feedback. Rather, con-
tinuous tactile and proprioceptive feedback governs its choice of articulatory gesture in each articulatory
dimension. The articulatory controller does not depend on some sort of internal clock for its timing. Rather,
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proprioceptive feedback allows the articulatory controller to take advantage of the intrinsic dynamical
properties of articulatory gestures and respiration for gesture timing.

Simultaneously, the auditory perception module monitors the acoustic consequences of articula-
tory controller and gesture controller activity, interpreting it phonetically, and building a cumulative repre-
sentation of the phonetic events detected over the course of the model’s utterance. The phonological
controller monitors new phonetic events, choosing when to deactivate the previously chosen articulatory
controller and when to activate a different articulatory controller better suited to generate the target utter-
ance’s next phonetic event. This continues until the phonetic representation of the acoustic feedback
matches the phonetic representation of the target utterance or until the system gives up.

The phonological controller attempts to follow a trajectory of phonetic events which achieves the
goal. It does not attempt to control the articulatory configuration directly and under normal circumstances
has no knowledge of the articulatory or proprioceptive state; it selects articulatory controllers which can be
expected (in a statistical sense) to achieve the phonetic state it desires. The active articulatory controller
attempts to traverse a proprioceptive trajectory which optimally generates the sound desired by its phono-
logical client.

4.6   Components that learn

HABLAR’s adaptive modules are the auditory system’s phonetic categorization processes, the
phonological controller, and articulatory controllers.

Auditory perception employs soft competitive learning (Nowlan 1991a,b) to learn categories of
static spectra and dynamic spectra by building a statistical model of the static and contextual sound pat-
terns in the linguistic environment. Categories of static spectra correspond to vowels, sonorants, and static
fricatives. Categories of dynamic spectra correspond to demisyllables and aspirated consonant releases.

The phonological controller employs an implementation of Q-learning (Watkins 1989) adapted
from Lin (1992) to learn an optimal policy that maps target and feedback phonetic representations to a
choice of articulatory controller. Articulatory controllers use using a parallel version of Q-learning (Mar-
key 1994a, Chapter 7) to learn a policy linking proprioceptive feedback and gestural targets.

Veridical representations of words stored in lexical memory or of previous parental utterances
stored in short-term memory guide training. The phonological controller receives a reward proportional to
the proximity of target and feedback phonetic representations. The active articulatory controller receives a
reward proportional to the proximity of the phonetic representations of target utterance and that portion of
the auditory feedback received while it is active.

4.7   Phased learning

HABLAR’s perceptual categories are learned first, before any motor learning. This approximates
true developmental timelines (see Section 1.1). Anatomical constraints prevent true speech sounds before
three months (Kent & Murray 1982), and babbling does not show adult characteristics until at least six
months (Oller & Lynch 1992). By this time children already recognize categories of vowels in their native
tongue. Only two months later, while they are still exploring consonant-vowel syllables in their babble,
children can recognize adult categories of consonant-vowel syllables. It is not until the end of the first year
that consonants in their babble mimic the linguistic environment (Vihman et al. 1986).

Strictly speaking, perceptual and articulatory milestones overlap in children. Strict phasing of per-
ceptual and articulatory training probably simplifies the model’s developmental task. More natural learning
schedules are beyond the present scope of the research.
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The computational difficulty of hierarchical reinforcement learning (Singh 1992b,c) suggests the
introduction of “bootstrapping” strategies which gradually increment phonetic complexity of target utter-
ances and which gradually phase articulatory and phonological controller training. To implement these
strategies, simulations vary the order of stimulus presentation or artificially control the rate and relative
timing of learning in articulatory and phonological controllers (see Chapter 7). Some of these heuristics are
designed to resemble the variety of idiosyncratic developmental strategies which children seem to employ
— avoidance of apparently hard-to-pronounce classes of sounds, preferences for other, less difficult
sounds, and analytic strategies (Menn 1983).

4.8   Built-in knowledge and components

Domain-specific knowledge is incorporated into HABLAR in a number of ways. There are non-
cognitive components. The articulatory synthesizer specifies the anatomy and acoustic properties of the
vocal tract. The source model specifies mechanical, dynamic, and sound-producing aerodynamics (voic-
ing, frication, and aspiration) of the respiratory system and vocal tract. Dynamical properties of the muscu-
lar-skeletal system and gestural organization of articulatory motion are specified by the gesture controllers.

Except for categorization of static and dynamic spectral features, most perceptual facilities are
assumed to be either innate or learned prior to the start of speech-like babbling. This includes tactile, kines-
thetic, and proprioceptive perception, plus categories of discrete tactile events. It also includes auditory
mechanisms of basic signal processing, spectral analysis, cues used for acoustic segmentation, segmental
features, and syllable structure features. Certainly, categories of tactile events, segmental features, and syl-
lable structure features might be learned, but how they are learned is beyond the scope of this research. We
assume them as prior knowledge, remaining agnostic about their origin.

Specific details of several high-level cognitive faculties are beyond the scope of this research.
Short-term memory, lexical memory, and goal selection are specified procedurally. The contents of lexical
memory are a function of experimental manipulations used to test the model’s behavior under different
conditions.
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Chapter 5 Articulatory Anchors and Speech Generation

We begin a detailed description ofHABLAR with its peripherals. They constrain and anchor the
model. Laying the groundwork now will make it easier to explain other parts of the model later.

5.1   Speech generation by the articulatory synthesizer and source model

The synthetic acoustic output of child and parent is generated by an adaptation of Haskins Labora-
tories’ ASY articulatory synthesizer (Rubin et al. 1981, see also Mermelstein 1973). At each discrete artic-
ulatory controller time step (corresponding to 8 msec of real-world time), it converts a static vocal tract
configuration into a synthetic acoustic signal. By animating a trajectory of articulatory configurations, the
model simulates the dynamic acoustics of speech.

Each vocal tract configuration is defined by control parameters for six articulators which vary over
10 degrees of freedom:jaw (joint angle),tongue body (distance and angle relative to the jaw hinge),tongue
tip (length and angle relative to a point on the tongue body),lips (protrusion and separation),hyoid (ante-
rior and superior distance relative to a fixed point),velum (degree of nasal opening). Figure 5.1 displays a
midsagittal profile of ASY’s vocal tract and the location of various articulators and other anatomical fea-
tures. To ASY we have added asource model, a module which computes voicing and friction source inten-
sities and their location in the vocal tract based on pulmonary mechanics (Levitzky 1991, Mines 1993) and
a model of vocal tract aerodynamics (see Stevens 1971). These are a function of vocal tract configuration
and two additional degrees of freedom:glottal opening (distance) andextra-pulmonary pressure (cm H20)
generated by inspiratory muscles. Together, vocal tract and source models have 12 degrees of freedom.

Figure 5.1   Vocal tract articulators

Solid outline is drawn by ASY. Control dimension labels are bold. Other outlines and labels are
added for context.
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From these input parameters, ASY computes the coordinates of each articulator, a midsagittal out-
line of the vocal tract and a frontal outline of the lips, the vocal tract’s area function (its cross-sectional area
from larynx to lips), the vocal tract’s transfer function, and HABLAR’s synthetic acoustic output: a power
spectrum, voice and friction amplitudes. Synthesized sound and graphics of the vocal tract are available for
experimental observation of HABLAR’s behavior. Based on airflow, glottal vibration, articulator coordi-
nates, midsagittal outline, and cross-sectional areas, the model also simulates tactile sensation.

5.2   Gestural organization of articulatory motions

Several investigators have proposed that humans produce speech as a sequence of articulatory ges-
tures as if they were notes in a musical score (Browman & Goldstein 1989; see also Kelso et al. 1986,
Saltzman & Munhall 1989). Some evidence also suggests that gestural control of articulatory motion is
well formed, even among infants as young as 5 months (Piroli 1991). Thus, changes in vocal tract and pul-
monary configurations are specified as a set of articulatory gestures. Eachgesture is the motion of one
articulator in one dimension from its current position to a chosen equilibrium position along a smooth tra-
jectory conforming to the motion of a critically damped spring (Browman & Goldstein 1989, see also Polit
& Bizzi 1978). The speed of this motion is specified by a spring constant such that the motion approxi-
mates a range of speeds of the human vocal tract. Agesture controller realizes the actual trajectory for
each vocal tract and pulmonary articulator.

Gesture trajectories are updated at each discrete time step (8 msec of real world time) in accord
with the equation of motion for a critically damped system:

(5.1)

whereβ is a damping coefficient determined by articulator massm and spring constantk according to
, x is displacement, and  is displacement from equilibrium at time 0. The closed form solu-

tion is

(5.2)

where  is velocity at time 0, andt is time. Once initiated, a gesture with a particular equilibrium position
continues to its asymptotic conclusion unless interrupted by the articulatory controller with a new target
equilibrium position.

HABLAR has no clock with which to time motor control events. Instead, it takes advantage of the
intrinsic dynamics of vocal tract articulators as realized by gesture controllers and as revealed by the tim-
ing of proprioceptive feedback (see Section 5.3).

To augment proprioceptive signals, the gesture controller also tracks each gesture’s progress with a
discrete measure which divides its ballistic trajectory into several parts. Although the trajectory is not peri-
odic, we call this measure “phase”, because it roughly corresponds to the “phase” of a periodic or semi-
periodic dynamical system in state space. When an articulator is at rest, it has aphase of zero; during its
initial acceleration, it has a phase of 1; after initial acceleration but before the articulator starts to deceler-
ate, the articulator has a phase of 2. A phase of 3 signals that acceleration has changed sign and absolute
velocity has reached its maximum. Then, as the articulatory decelerates, its phase increases from 4 to 7
until it comes to rest, and phase is reset to zero. Phase is computed as a simple consequence of gesture exe-
cution.
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Tongue body, tip, and glottis trajectories generated by a parental gesture script forduck are illus-
trated in Figure 5.2a. The tongue tip closes at about 100 msec for the /d/. The tongue body closes at about
350 msec for the /k/. The glottis, initially wide open, is closed only enough for voicing to occur, but is
opened at about 300 msec for the voiceless /k/. The graph in Figure 5.2b indicates position and gestural
phase of the tongue body. Position is identical to tongue body position shown in Figure 5.2a. Phase is
shown as cross-hatches, indicating four separate tongue body gestures. Starting at rest (0 msec), the tongue
body at first moves forward to assist the tongue tip’s contact during the /d/ with the alveolar ridge (shown
here as a relatively “open” position and also shown in the vocal tract profile). After alveolar contact is
established and once oral pressure reaches a threshold (112 msec), the stop is released into the vowel for
the second gesture. The third gesture begins after the tongue body has sufficiently decelerated and phase
exceeds 6 (at 288 msec). The vowel is then complete. Now the tongue body moves to form a velar closure
corresponding to the /k/. Once closure is detected (360 msec), the fourth and final gesture releases the /k/.

5.3   Proprioceptive perception

Proprioceptive perceptionrecognizes tactile stimuli and proprioceptive events, compiling the state
and history of vocal tract and pulmonary activity from a number of sources. The resulting analysis
becomes the proprioceptive state, common input for each articulatory controller. A total of 118 units
encode the proprioceptive state in the model’s current implementation. A summary of the representation
follows.

Figure 5.2   Articulatory gestures

b. Tongue body position (solid curve) and phase (cross-hatches) duringduck

a. Several articulatory gesture trajectories duringduck
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♦ Current vocal tract configuration is a real vector of articulator positions, the outputs of gestural
controllers, each scaled between 0 and 1.

♦ Target vocal tract configuration is a real vector of target articulator equilibrium positions, the
outputs of articulatory controllers, each scaled between 0 and 1. This is not strictly proprioceptive
but together with current vocal tract configuration defines an approximate trajectory.

♦ Gestural phase.Phase is a representation of the current progress of each articulator through its
current gesture, a measure roughly corresponding to phase in state space. Phase has a distributed
cyclic 6-unit representation starting with zero for “at rest” and proceeding from phase 1 through 7
thence again to zero.

♦ Touch. The model detects touch and the recent history of articulatory contact at regions in the
vocal tract roughly corresponding to places of articulation (glottal, pharyngeal, laryngeal, uvular,
velar, palatal, postalveolar, alveolar, dental, labial). For each region, 1 represents current contact
between opposing articulators; 0 represents no recent contact. After contact is released, the value
decays exponentially with a half-life of 52 msec. In addition, a single binary unit represents
whether closure is detected anywhere in the oral tract.

♦ Vibration and Turbulent Flow.  Global sensors for current and recent glottal vibration and turbu-
lent airflow are also included. A single binary unit detects current glottal vibration. Values of two
units which represent current vibration and turbulence are scaled with an inverse exponential func-
tion which ranges between 0 (for no present vibration or turbulence) and 1. Present and recent
vibration and turbulence is represented by five units which encode five different conditions: vibra-
tion, oral turbulence, glottal turbulence, no vibration, and no turbulence. Each is set to 1 when its
condition is true and decays exponentially after the condition becomes false with a half-life of 52
msec. There is little evidence of tactile feedback for specific locations of turbulent flow (except
labial frication). However, a global feedback signal of the sort proposed here is justified if based
on non-glottal airflow resistance.

♦ Respiration. Various pulmonary state measures are represented, including lung volume, airflow
(glottal, oral, and nasal), and air pressure (subglottal, oral). Airflows are scaled between  and 1
using the hyperbolic tangent. Zero represents no airflow. Lung volume is scaled likewise, mea-
sured relative to the respiratory system’s equilibrium (functional residual) volume.

5.4   Source model implementation details

Haskins Laboratories’ ASY articulatory synthesizer does not compute vocalic or turbulent sound
amplitudes from a respiratory or glottal model. Designed as an interactive tool, it depends on the experi-
mentalist to provide sound amplitudes as inputs. Thus, we have implemented a simple model of vocalic
and turbulent sound generation. A complete model is too computationally expensive for the purposes of
the present research (e.g., Flanagan et al. 1975). The model we implemented is grounded in pulmonary
mechanics and simple aerodynamic models of voicing, frication, and aspiration. It calculates voicing and
friction source intensities and their location in the vocal tract as a function of vocal tract configuration (as
computed by the articulatory synthesizer), glottal opening, and extra-pulmonary pressure generated by
inspiratory muscles.

1−
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Respiration proceeds as a cycle of inspiration and expiration. During inspiration, the diaphragm
and chest wall muscles expand the chest cavity and air flows into the lungs. During expiration, these mus-
cles relax, which induces airflow to restore the equilibrium between the pressure of collapsing lungs
and the chest wall . At equilibrium, there is no airflowU and subglottal pressure  is zero. During
inspiration, subglottal pressure is negative; during expiration it is positive. The relationship among sub-
glottal pressure , the effective pressure of the collapsing lung , the opposing expansion of the chest
wall , and the effective pressure of inspiratory muscles  is expressed as

(5.3)

where  and  are functions of lung volumeV and the respective compliances of lung and chest wall
(Levitzky 1991, Mines 1993).

Opposing the subglottal pressure is friction due to airflow through constrictions of the glottis and
vocal tract. The resistive pressure drop  due to turbulent flow is:

, (5.4)

wherek is a constant,ρ is the air density,U is the volume velocity (airflow), andA is the cross-sectional
area of the constriction (Stevens, 1971). Resistive pressure drop is distributed among glottal and vocal tract
constrictions, added directly if constrictions are in series and reciprocally if they are in parallel (Levitzky
1991).

(5.5)

Together, these relationships define a dynamical system for which there is no closed form expres-
sion. Therefore, its behavior is estimated by a simple interpolatory numeric integration method. At each
discrete time step, the configuration of the vocal tract, glottis, and the current extra-pulmonary pressure
due to inspiratory muscles  are computed.

Then  and  are determined based on the current lung volumeV, and  is computed per (5.3).
The next step is to determine volume velocity at the glottis and to update the lung’s volume. But glottal air-
flow is a function of  and the effective cross-sectional area of the entire vocal tract, which can be deter-
mined from (5.4) and (5.5). Thus, we first determine effective cross-sectional area  from glottal, nasal,
and oral cross-sectional areas as follows:
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(5.6)

and then solve (5.4) forU and integrate between the previous and current time step to updateV. A small
correction is made which accounts for the small elasticity of the oral tract during closure. Once the sys-
tem’s volume velocity is determined, pressure drop at each constriction is backed out using (5.4) and (5.5).
Turbulent sound pressures,Fric, are roughly a function of cross-sectional area and pressure drop at each
constriction (Stevens 1971), and vocalic sound pressure,Voice,due to glottal vibration is roughly a func-
tion of glottal pressure drop, as follows:

(5.7)

These relations are approximate. Glottal vibration (voicing), for example, does not occur below
lower and upper limiting cross-sectional areas, each of which depends on glottal pressure drop (Flanagan
et al. 1975). Voice and frictional thresholds (Stevens 1971) are applied, attenuatingFric andVoice at their
respective boundaries.
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Chapter 6 Auditory Perception

This chapter describes HABLAR’s perceptual foundations. The model’s auditory perception mod-
ule is designed to satisfy empirical and modeling constraints identified in previous chapters. It generates a
veridical representation of adult speech or the acoustic feedback of HABLAR’s own speech which governs
the pronunciation of target utterances. The representation simulates the learned categorical phonetic per-
ception of late infancy in which acoustically similar sounds are assimilated into existing categories
(e.g.Kuhl et al. 1992, Werker et al. 1981). The representation is suprasegmental. HABLAR’s auditory per-
ception is sensitive to contextual and dynamical acoustic properties, syllable structure, and organizes
speech sounds syllabically (e.g., Jusczyk et al. 1995). Though categorical perception is learned, HABLAR
does not attempt to simulate the sequence of events which leads from acoustic to categorical phonetic dis-
crimination, nor does it address the larger issues of word recognition and lexical access (but see Jusczyk
1993).

6.1   Motivation and Background

Human speech and human listening presumably evolved together. It is therefore plausible that
speech perception is specialized not only for word and sentence recognition but also for the unique
demands of articulatory motor control and that it plays an important role in articulatory and phonological
development. Perception’s role in motor control is seldom acknowledged except as the source of target
sounds to be imitated or learned. However, milestones of perceptual development always precede corre-
sponding milestones of motor development. We hypothesize that the categorical character of auditory per-
ception which underlies robust word recognition also acts as a grammar which defines the well-formedness
of children’s speech, shaping the distribution of sounds in their productive repertories. The connection is
deeper: we conjecture that without the ability to parse speech into discrete perceptual events, learning to
speak would be difficult, and it would not be possible to account for the compositional structure of speech
which emerges in childhood.

Importantly, the perceptual model relies on exclusively acoustic cues and their statistical distribu-
tion in the child’s linguistic environment; it avoids prior assumptions of articulatory-acoustic correlations
or linguistic contrasts. It is inappropriate to model perceptual development with features which assume
prior knowledge of articulatory-acoustic correlations or semantic contrasts, knowledge the prelinguistic
infant does not possess (see Section 3.3). Segments and categories the model detects are not the mature
phonemes of adulthood; nor do they correspond to distinctive features (Chomsky & Halle 1968), tradi-
tional articulatory features (Ladefoged, 1972), or any of myriad alternatives (e.g., Shillcock et al., 1992).
The model’s acoustic segments are longer in duration than phonemes or phonological features, at least long
enough to capture coarticulation between contiguous consonants and vowels and to detect features of sylla-
ble structure. They correspond to coarse-grained changes in voicing, friction, and spectra. They identify a
syllable’s most salient spectral features.

Although such segments and categories are based on exclusively acoustic measures, they correlate
with linguistic events and delineate articulatory gestures. The model’s auditory perception is specialized to
segment and categorize acoustic feedback into discrete phonetic events which closely correspond to dis-
crete gestures learned by the articulatory apparatus, but to do so based on minimal assumptions.
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6.2   An acoustic-based phonetic representation

Auditory perception’sinput is an unsegmented acoustic representation of parental speech or feed-
back from the model’s own speech. Itsoutput is a phonetic representation of the sequence of acoustic seg-
ments and spectral categories detected in the utterance. We useduck as an example to introduce how the
model segments and categorizes speech parcels. Figure 6.1a illustrates the model’s continuous acoustic
input as a schematic spectrogram ofduck. Its vertical axis is frequency (using the “Bark” scale), the hori-
zontal axis is time, and dark patches represent high acoustic energy. The thick dark bands represent for-
mants, the changing resonant frequencies of the vocal tract; the variously-shaded vertical area near 450
msec is a burst of noise. The horizontal bar near zero frequency represents the underlying vibration of the
vocal cords.

A reasonable first step in parsing the unsegmented acoustic signal is to divide it into broadly clas-
sified periods of sound — continuous periods of silence, voicing, and friction (aspiration or frication). This
approach yields a period of voicing between 40 and 330 msec, friction between 370 and 410 msec, and
three periods of silence. This is plausible, given the broad segmentation of speech patterns by the auditory
nerve’s adaptation properties (Seneff, 1988), but it is clearly not sufficient to identify linguistically relevant
spectral features.

To further divide the utterance, we consider locating temporally stable spectral patterns associated
with the steady-state portion of vowels and other sonorants, fricatives, and aspiration. Consonants are the
result of the vocal tract in motion to or from a vocal tract configuration (e.g., closure) whose acoustic prop-
erties are not entirely discernible or discriminable. Even the spectral pattern which accompanies some
vocal tract closures, such as the nasal undertone which accompanies /m/, /n/, and /N/, does not reveal the
stop consonant’s place-of-articulation. Consequently, stop consonant identity can be determined only indi-
rectly from the consonant’s acoustic trajectory, i.e., fromdynamic spectral patterns. Points of maximum
spectral change are the most salient portion of an utterance for consonant and syllable perception in adults
(Furui, 1986; see also Lindblom & Studdert-Kennedy 1967) and are especially salient for young children
(Nittrouer & Studdert-Kennedy, 1987; Nittrouer, 1992). Likewise, the salient characteristic of a diphthong
is the transition from one vowel to the next. Thus, a reasonable second step in parsing this signal is to iden-
tify periods of maximal and minimal spectral change.

By this method, there are eight acoustic segments induck. Their location in the utterance is por-
trayed in Figure 6.1b, which divides the time axis by segment rather than equal units of time. After an ini-
tial silence(segment 1), a period ofprevoicing(segment 2: 50 msec) is detected during which vocal-cord
vibration is audible, but the spectrum of the vocal tract’s resonant sound structure is obscured by the /d/’s
closure.1 Once a spectrum becomes apparent, it is scanned for the relative degree of spectral change.Tran-
sitions (3, 5 at 100 and 300 msec) are segments corresponding to maximal spectral change; formant slopes
are greatest. Thestatic segment (4: 200 msec) corresponds to a period of minimal spectral change; for-
mants are relatively flat. After a period of silence (6: 350 msec) during the unvoiced /k/’s closure, aburst
(7: 370 msec) of intense but rapidly decaying friction is detected when the contact of tongue body and
velum is released. This is followed by a final period of silence (8).

Once segmented, the next step is to draw a sample static spectrum from each static segment and
match it with prototype categories of steady-state sounds. Likewise, the model samples dynamic spectral
properties during transition or burst segments and matches the sample against prototype categories of

1 Prevoicing is present in other languages, but is not regularly observed in English, except possibly in deliberate
speech, in words emphasized in child-directed speech, or in children’s speech.
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dynamic sounds. The model learns an inventory of prototype categories for static and transition spectra
from its linguistic environment. In the example above, let us assume that the model has already learned an
inventory of prototype spectral categories. Then static spectral properties of segment 4 match the prototype
static spectrum corresponding to the vowel [A]. The dynamic spectral properties of segments 3, 5, and 7
match transition spectrum prototypes corresponding to demisyllables [dA] and [Ak], and aspirated stop
consonant release [kh] respectively.

6.2.1   Form of the phonetic representation

This process generates information about the type, absolute order, and spectral properties of each
acoustic segment. Other requirements of the complete sensorimotor model such as motor control, lexical
access, and short term memory place additional constraints on the optimal form of the model’s phonetic
representation. They demand a representation whose size does not vary with the length of the utterance
(i.e., a representation with a fixed number of features or units), which encodes relative order of acoustic
segments, and which nonetheless faithfully captures important acoustic properties of the entire utterance
and admits an accurate metric and efficient algorithm for determining the phonetic distance among utter-
ances.

The model employs a phonetic feature vector with one unit for each feature. A unit’s activation is
increased each time the property it encodes is detected in an utterance, by a degree inversely related to the
acoustic distance between speech token and feature prototype.

For purposes of discussion below, we distinguish between two classes of features.Spectral fea-
tures, which we have already alluded to, refer to those units which encode spectral properties and their rel-
ative order in the utterance.Segmental features refer to those units which encode a second type of
information: acoustic segment properties, and their relative order in the utterance. Thus, each class is fur-
ther divided among noncontextual and contextual feature types.

Figure 6.1   Idealized spectrogram ofduck before and after segmentation

Segments are numbered as follows: (1, 6, 8) Silence, (2) Prevoicing, (3, 5) Transitions [dA] and
[Ak], (4) Static segment [A], and (7) Burst [kh].
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6.2.2   Spectral features

Prototype categories of static and transition spectra provide the raw material for spectral features.
Activations corresponding to prototypes of [dA], [A], [Ak], and [kh] are increased as each segment is
detected induck.

Transition and static segment categories implicitly encode spectral properties and their relative
order. For example, induck the [dA] segment encodes the spectral change which occurs as the tongue
moves from an alveolar closure for /d/ or /t/ to the opening for the intended vowel /A/. Static segment [A]
must follow transition segment [dA]. Segment [Ak] encodes the spectral change which occurs as the
tongue makes contact with the velum for the /k/. It cannot precede [dA] except in a multisyllabic utterance.

6.2.3   Segmental features

Acoustic segment classifications and a contextual encoding of segmental order are the ingredients
of segmental features. Segment type is distinguished by five acoustic cues — voicing, friction, spectral
change, spectral stability, or moments of relatively intense, quickly changing sounds. Eight segment types
observed in English and their defining acoustic cues are described in Table 6.1. Asduck is perceived, seg-
ment type activations are increased as each segment is encountered.

The model encodes the relative, not absolute, order of segment types. It does so by forming a clus-
ter of the three most recently detected acoustic segment types. This coding scheme is similar to Wickelg-
ren’s (1969) context-dependent allophone sequence encoding. Many segment type clusters encode
important linguistic cues. Contiguous prevoicing and transition segments (PT or TP) indicate a voiced stop
consonant in many contexts (e.g., the initial consonant induck); a transition-silence-burst subsequence
(T0B) signals a word-final unvoiced stop (e.g., the final consonant induck); a transition-static-transition
(TST) cluster usually signals a consonant-vowel-consonant syllable; and a static-transition-static (STS)
cluster signals a diphthong.

Because of the role of the three-“segment” clusters in encoding the temporal patterns of voicing,
friction, silence, and syllable structure, we call themprosodic triads. “Prosodic” is used here in the Firthian
sense to refer to suprasegmental structural features which capture the canonical profile of the syllable.

6.2.4   Superimposed activations and phonetic distance

To summarize, there are four types of phonetic features. Segmental features include acoustic seg-
ment types and prosodic triad types; spectral features include categories of static spectra and transition
spectra. Static and transition categories are learned from the linguistic environment. Segmental features are

Table 6.1   Segment types and defining acoustic cues

Segment type Voice Friction Transient Stable Unstable
Silence (0) 0 0 0 0 0
Prevoicing (P) 1 0 0 0 0
Static (S) 1 0 0 1 0
Transition (T) 1 0 1 0 0
Voiced friction (Z) 1 1 0 1 0
Voiceless friction (F) 0 1 0 1 0
Transition friction (X) 0 1 1 0 0
Burst (B) 0 1 1 0 1
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prior knowledge, either innate or learned at an age earlier than that which HABLAR models (equivalent to
about 5-6 months).

The phonetic representation is an activity pattern over a vector of units, one for each feature. Acti-
vations accumulate until the end of an utterance. This superposition of contextual and global phonetic fea-
tures is a faithful representation (Smolensky 1990) of any one-syllable utterance.

6.2.5   Phonetic categorization and spectral category learning

Spectral features are learned. The model builds an inventory of prototype transition and static
spectra which represent those transition and static spectra recognized as relatively distinctive according to
their statistical distribution in parental speech. Transition spectra and static spectra are classified separately.

Categories are learned and token spectra are classified using soft competitive learning (Nowlan
1991a,b). Soft competitive learning models a set of observations (whether static or transition spectra) as if
it were generated by a set of Gaussian distributions. Figure 6.2 illustrates how clusters of observations (in a
2-dimensional plane) might be modeled as a set of 2-dimensional Gaussians (e.g., vowels in a space
defined by first and second formants).

Each Gaussian is represented by a mean (a vector of the same dimension as the input patterns) and
a covariance matrix. Typically this is simplified by assuming a fixed spherical distribution. Given an obser-
vation, the conditional probability that each Gaussian generated the observation is calculated. Each Gauss-
ian is updated by changing its mean and covariance matrix in proportion to the likelihood that it generated
the observation.

6.2.6   Redundancy between noncontextual and contextual features

Linguistic theory usually prefers minimally redundant representations. However, there is some
redundancy between noncontextual and contextual features, whether spectral or segmental. For example,
the dynamic spectral feature corresponding to [dA] and the static spectral feature corresponding to [A]
each share information about the vowel. Having chosen to base auditory segmentation and categorization
on strictly acoustic data, some redundancy is unavoidable, because there is no possible noncontextual
acoustic representation of consonants or diphthongs (see Section 2.8.3), and because static fricatives and
sonorants exist in isolation.
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Figure 6.2   Modeling clusters of observations as 2-dimensional Gaussians
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In a computational model, information necessary and sufficient to carry out a computation is dis-
tributed between algorithm and representation. The less information encoded in the algorithm, the more
information must be encoded in data or the data structure. In practice, this is not really different from lin-
guistic theory. In a linguistic theory, redundancy of representations is often minimized by adding rules or
introducing default values — the theory’s algorithmic components. For example, in underspecification the-
ory (Archangeli 1984, see also Durand 1990), unspecified values of phonetic features (missing data) are
filled by default values or according to feature spreading rules.

HABLAR’s proposed phonetic representation is minimalist in the sense that it is the most compact
form achievable given the model’s minimalist algorithmic specification. Neither the model’s architecture
nor the form of phonetic representations encodes absolute order of phonetic events. The model does not
include phonotactic rules. Instead, order is encoded in contextual features.

6.3   Auditory perception implementation details

Auditory perception samples synthetic adult or child sound stimuli once every 8 msec for periodic
sound (voicing) amplitude, aperiodic sound (frication or aspiration) amplitude, and 256-frequency power
spectrum. Spectral analysis converts the power spectrum from Hertz to Bark, performs Gaussian smooth-
ing over time, and normalizes for total amplitude by computing a difference spectrum. The momentary
transition spectrum is the first derivative of the difference spectrum with respect to time. The transition
magnitude is theL1 norm of the transition spectrum minus theL1 norm of the difference spectrum. Seg-
ments are located and segment type is determined based on patterns of periodic amplitude, aperiodic
amplitude, and the transition magnitude. Segment types are concatenated to form prosodic triads. Depend-
ing on segment type, either a static or a transition spectrum is sampled. A transition spectrum is sampled as
an average of the momentary transition spectra for a 50 msec period centered at the point when the transi-
tion magnitude is at a local maximum. A static spectrum is sampled as an average of the momentary static
spectra for a 50 msec period centered at the point when the transition magnitude is at a local minimum.
Once sampled, the static or transition spectrum is categorized, and category units are incremented by the
activation of each static or transition category respectively. The information flow of this process is illus-
trated in Figure 6.3.

6.3.1   Computational resources

The phonetic representation is relatively compact, activating at most a few phonetic features for
each identifiable sound segment. Though this substantially reduces the number of parameters which repre-
sent the incoming acoustic signal, it is not as compact as a linguistic representational system of phonemes
or distinctive features. More than 6,000 real numbers are needed to encode the acoustic input for a 200
msec utterance (about one syllable). Only about a dozen phonetic features are activated by the same utter-
ance. But to encode any adult English syllable, an array of more than 400 phonetic categories are neces-
sary. This takes into account nasals, four fricative places of articulation, four approximants, and twelve
vowels (including those which only occur as parts of diphthongs). There are a total of 20 possible static
spectral categories in English, plus 330 dynamic spectral categories given the possible consonant-vowel,
vowel-consonant, and diphthong combinations. This estimate does not account for combinations which
overlap or variations due to coarticulatory effects. In addition, about 50 prosodic triad categories are
needed to describe sounds in English. More phonetic categories than traditional phonemes are necessary
because our feature system encodes dynamic relationships which extend over several segments. A some-
what smaller representation is used in the model’s present implementation, omitting spectral categories
corresponding to nasals and fricatives.
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6.3.2   Spectral analysis

To start spectral analysis, the power spectrum is sampled evenly over the frequency domain. Steps
in spectral analysis are shown in Figure 6.5, including representative static, difference, and transition spec-
tra at 144 and 160 msec, peak of the spectral transition corresponding to the onset demisyllable ofduck.

♦ Static Bark spectrum: To better approximate the frequency response of the human ear and to
reduce the size of the parameter space, the model converts frequencies to bark (Zwicker 1961, see
also Schroeder et al. 1979) and divides the input spectrum among 44 coarsely coded 1.0-bark wide
detectors, bi for , evenly spaced one per 0.5 bark between 0.5 and 22.0 bark.

♦ Smoothed static spectrum: To filter short-term noise, the model applies a Gaussian filter (stan-
dard deviation of 16 msec) in the temporal dimension (Bradshaw & Bell 1991).

Transition CategorizationStatic Spectrum
Categorization

Segment type identification

Prosodic Categorization
(not implemented)

Prosodic triad determination

Spectral analysis Voice & Noise Detection
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Static Spectra

Continuous
Transition Spectra
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(syllable structure and

voicing pattern)

Figure 6.3   Information flow in auditory perception
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♦ Static difference spectrum: To measure detector amplitudes on a relative, not absolute, scale, the
model generates a “difference” spectrumD, as the difference in amplitude between neighboring
bark detectors,  for  (Bradshaw & Bell 1991).

♦ Transition spectrum: To approximate the first time derivative of each difference detector’s ampli-
tude, the model computes the difference between detector amplitudes at timest and t–1. The
resulting transition spectrumT is simply .

Bark
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Bark
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Figure 6.4   Static and transition spectra for onset demisyllable ofduck

Steps in spectral analysis are shown above. The first step is conversion from Hertz to Bark fre-
quency and Gaussian smoothing. The peak between 11 and 12 bark is the 2nd formant, dropping in
frequency between the two sample times of 144 and 160 msec. The difference spectrum effectively
normalizes the spectrum for changes in amplitude. The 2nd formant frequency shift is also evident.
The 2nd formant’s change is captured in the transition spectrum during the period of maximum
spectral change. The positive value at 11 bark reflects the formant’s drop in frequency and the
increased amplitude of the difference spectrum at that frequency. The negative value just below 12
bark occurs behind the formant’s motion, where the difference spectrum has fallen in amplitude.
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c. Transition spectrum 152-160 msec.
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♦ Transition magnitude: To detect and distinguish stable and transient segments, the model com-
putes transition magnitude, a measure of global spectral change which factors out the contribution
of amplitude change. Transition magnitudeτ is the  norm of transition spectrum minus the
norm of the difference spectrum.

(6.1)

The first term captures temporal changes in both total amplitude and spectral shape, the second
captures only changes in amplitude. The result is averaged over three 8-msec frames. Figure6.5
graphs the transition magnitude over the course ofduck, together with periodic and aperiodic
amplitudes (rescaled 50% and 30%, respectively).

♦ Extreme transition detection:A stable segment is a period during which the transition magnitude
is at a local minimum or has remained below some threshold for more than some length of time
since the previous segment. A transient segment is a period during which the transition magnitude
is at a local maximum. These spectral stability and transience cues are combined with other cues to
determine the segment type.

♦ Sampled static and transition spectra:Transition spectra are sampled for purposes of categori-
zation only when a transient segment is detected. To do so, the model averages transition spectra
over the 50 msec period centered at the point of maximum transition. Static spectra are likewise
sampled only when a stable segment is detected, averaging over the 50 msec period centered at the
point of minimal transition.

6.3.3   Learning spectral features

HABLAR uses soft competitive learning (Nowlan 1991a,b) to categorize sampled static and
dynamic spectra. Because they represent different acoustic dimensions, static and dynamic spectra are cat-
egorized separately. We describe the computational details for static spectra; the process is nearly identical
for transition spectra. Soft competitive learning may be done incrementally or as a batch process. Since

L1 L1

τ t( ) Ti t( )
i

∑ Dt t( )
i
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Figure 6.5   Transition magnitude for duration ofduck

The transition magnitudeτ (solid line) and amplitudes of periodic and aperiodic sounds (rescaled)
are shown for the entire utterance in the graph above. Also shown are the approximate locations of
linguistic segments. Spectra pictured in Figure 6.5 were sampled from the first transition peak
between /d/ and /A/.
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perceptual and motor learning are phased in this implementation of HABLAR, we use a batch process to
learn spectral features.

The means ofN Gaussians are randomly initialized, several more than necessary to represent the
static sound categories in the linguistic environment. Gaussians have 44 dimensions (to match the 44 coef-
ficients in each static difference spectra). Synthetic adult stimuli (described in the next section) are then
presented to the model. The difference spectrum  sampled from each static segment detected among
adult stimuli constitutes a separate observationk. For each observation, the probability  that Gaus-
sianj generated the observed spectrum  is

, (6.2)

whereK is a normalization constant,  are the means of Gaussianj, and  is its covariance matrix
(assuming a spherical Gaussian distribution). Then theconditional probability of Gaussianj having gener-
ated the spectrum (given that spectrum  has been observed) is computed.

(6.3)

Finally, mean  of each Gaussianj is updated in proportion to the likelihood that it generated each obser-
vation.

(6.4)

This process is repeated until learning converges. We then compare all resulting prototype pat-
terns, deleting duplicates and prototypes whose activation is always below some threshold. This only
makes the classification easier to interpret; it does not affect the nature of the solution.

6.4   Auditory Perception Simulations

Here we report results showing the properties of the transition and static spectra, the distinctive-
ness and faithfulness of its demisyllabic encoding. The results suggest that the segmentation algorithm is
reliable and robust.

6.4.1   Stimuli

Stimuli are synthetic consonant-vowel (CV) syllables. Each stimulus employs one of three stop
consonants (b, d, g) and one of ten vowels. A script language specifies a queue of gestures and propriocep-
tive triggering conditions necessary to produce each syllable type. Optimal vocal tract configurations nec-
essary to accurately render each target vowel are determined, and gesture script templates are designed and
fine-tuned by the experimenter for bV, dV and gV frames. Selecting target vowel and consonant at random,
we generate 1,350 syllable tokens — about 45 tokens per syllable type.
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To generate each token, Gaussian noise is added to each vowel’s articulatory parameters. There is
no way to determine if each resulting sound actually corresponds to the intended syllable type or even
whether it is a legal sound of English without actually listening to it. A human listener evaluates each
token, rejecting any non-English sound and rejecting any sound whose phonetic transcription does not
agree with the intended type. The 892 remaining tokens are divided into training, validation, and test sets
for supervised classification tasks.

6.4.2   Relative phonetic distance as a measure of distinctiveness

Each stimulus is presented to the auditory perception module, which segments it into prevoiced,
transition, static, and silent segment types, sampling and storing transition and static spectra for later anal-
ysis. Phonetic distanceΦ is measured among all syllable stimuli as a function of the linear correlationρ
between each pair of token transition spectra  (e.g., Pomerleau, 1993). We
use this distance measure here because it factors out irrelevant differences in scale between two spectra.
Other measures give comparable results.

The average phonetic distance between pairs of syllables of the same type is 0.211. The average
distance between pairs of syllables of different types is 0.955. Thus, tokens of the same type appear to be
relatively clustered in the representational space. A tabulation of average cross-distances for all bV sylla-
ble types appears in Table 6.2.

Syllable types with the same vowel type but with different consonants (gE, dE, bE) are less distant
with respect to each other (see Table 6.3) than syllables with the same consonant but different vowels (bE,
bi, bo, b&, etc., below). Several tokens in the simulation corpus (especially Co and CO syllables) are not
phonetically distinct. These tokens are also difficult for the experimenter to transcribe phonetically.

Φ T i T j,( ) 1.0 ρ T i T j,( )−=

Table 6.2   Mean phonetic distance measured between bV syllable tokens

bA ba bo bO bu bU b& bE bi bI
bA 0.18 0.89 0.92 0.95 1.06 0.53 1.19 0.80 1.25 1.09
ba 0.33 0.88 0.72 0.94 0.92 0.81 0.96 1.15 0.93
bo 0.39 0.85 1.05 0.93 0.79 0.75 1.02 0.86
bO 0.13 0.96 1.03 0.86 0.91 1.29 1.12
bu 0.62 1.18 0.99 1.01 0.81 0.77
bU 0.33 1.23 0.79 0.21 1.21
b& 0.08 0.65 0.98 0.85
bE 0.13 1.06 0.63
bi 0.12 0.80
bI 0.09

Hard Discrimination

bo do go
bo 0.39 0.52 0.39
do 0.43 0.39
go 0.27

Same Vowel

bE dE gE
bE 0.13 0.55 0.50
dE 0.08 0.57
gE 0.10

Table 6.3   Additional phonetic distance comparisons
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6.4.3   Supervised classification as a test of faithfulness

As a test of the encoding’s faithfulness, a multi-layer back propagation network is trained to clas-
sify syllables by eight features for vowel quality and consonantal place-of-articulation using transition
spectra as input. The same test is performed with both transition and difference spectra as input, since some
acoustic information is lost by the transition spectrum. As a control, we train a time-delay neural network
(TDNN; Waibel et al., 1989) on the same task, using as input smoothed bark spectra over the entire dura-
tion of the consonant-vowel transition (averaging 168 msec). Each network is trained until a validation
dataset indicates overtraining and then is tested using separate test dataset.

Supervised classification tests, which appear in Table 6.4, suggest that the transition spectrum is a
robust demisyllable representation. Syllable classification error rate by the network which uses only the
transition spectral coefficients as inputs is 5.29%. Error rates are substantially lower when both transition
and difference spectra coefficients are used as inputs, dropping to 0.85% when both transition and differ-
ence spectra coefficients are rescaled to range between 0 and 1 for each pattern.1

The TDNN network’s performance is similar. This is not surprising, as it must discover those static
and dynamic features which are necessary to classify each syllable (Waibel et al., 1989).

Typical errors for all methods include single mistaken features, features just under threshold, or
confusion in deciding the place-of-articulation.

Supervised classification results are encouraging for the use of transition data for segmentation and
syllable classification without needing to learn segmentation strategies first. However, results point out that
both dynamic and static spectral information is essential for accurate classification.

6.4.4   Locality and faithfulness of categorization

The model learns to accurately categorize static and dynamic sounds. To begin training, Gaussians
are randomly initialized. Static spectra stimuli are then presented repeatedly, and each Gaussian is updated
by changing its mean and covariance matrix in proportion to the likelihood that it generated the observa-

1 The range of difference spectra coefficient values is much greater (by a factor of 10 to 20) than the range of tran-
sition spectra coefficients. Rescaling each set of inputs to the same range better conditions the weight space and
leads to better results.

Table 6.4   Supervised training error rates

Representation and Classification Method % Error
HABLAR’s Simple Transition Spectrum Representation

(44 transition spectrum coefficients as inputs, tested with simple back-
propagation classifier)

5.29%

HABLAR’s Augmented Representation
(44 transition and 44 difference spectra coefficients rescaled, tested
with simple backpropagation classifier)

0.85%

Bark Spectrum Whole Syllable Representation
(44 Bark spectrum coefficients for each of 21-8 msec frames, 3-frame
input window, tested with TDNN classifier)

1.59%
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tion (Nowlan 1991a,b, see Section 6.3.3). Because this is an unsupervised learning algorithm, it is not pos-
sible to directly measure categorization error. Instead, we construct a confusion matrix.

Table 6.5 presents the results of static spectra categorization. Each column represents stimulus
vowel types as classified by a human observer. Each row corresponds to a different Gaussian, whose
parameters are initialized randomly but change during training such that each Gaussian tends to become
most active when exposed to a particular class or subclass of sounds. Each is labeled by hand (for interpret-
ability only) according to the vowel for which it is most active. Table entries in each row are the Gaussian’s
average activation when presented with a syllable containing the indicated vowel type. For example,
among all syllabic stimuli containing [A], Gaussian #0 has an average activation of 0.69, Gaussian #6 has
an average activation of 0.19, and Gaussian #7 has an average activation of 0.11.

The confusion matrix shows that the implicit categorization learned by the set of Gaussians is rela-
tively localist — typically one Gaussian responds strongly to one vowel type. It also suggests that the
resulting categorization is a faithful representation of vowel type. Similar results are obtained for the cate-
gorization of transition spectra.

This compilation of average activations confounds distributed activation patterns with outright cat-
egorization errors; hence, the representation’s true faithfulness is not known. For example, Gaussians #6
and #7 seem to accurately classify [U], but on average they are also somewhat active when exposed to [A].
These average results could imply either consistently low activation Gaussian #6 and #7 for [A] tokens, or
high activation and misclassification for a small percentage of [A] tokens. Of course, reality falls between
these extremes. Some activation patterns are clearly unfaithful, but an inspection of activation patterns for
all tokens reveals a generally faithful but distributed pattern of activation. The faithfulness of Gaussian
activation patterns may be more definitively tested by using them as inputs for a supervised classifier. We
have not performed such a test.

6.4.5   Emulating the acquisition of categorical perception

These results demonstrate a self-organizing process which learns a set of vowel and consonant-
vowel categories based exclusively on acoustic cues and their statistical distribution in the linguistic envi-
ronment. They appear to emulate children’s phoneme-like discrimination of vowels (Kuhl et al. 1992) and
consonants (e.g., Werker et al. 1981). Similar sounds are assimilated into existing categories, activating
most that category (Gaussian) which is least distant acoustically. Dissimilar sounds activate distinct cate-
gories (Gaussians). Thus, the mixture of Gaussians simulates the “perceptual magnet” effect observed for
vowel discrimination among all but young infants (Grieser & Kuhl 1989).

Table 6.5   Unsupervised categorization of static spectra

## Vow  [A] [a] [o] [O] [u] [U] [&] [E] [i] [I]
 0 [A] 0.69 ---- 0.01 ---- ---- 0.05 ---- ---- ---- ----
 1 [a] 0.01 0.82 0.05 0.02 ---- 0.02 ---- ---- ---- ----
 2 [o] 0.01 0.07 0.55 0.11 ---- 0.02 ---- ---- ---- ----
 3 [o] ---- 0.05 0.32 0.29 ---- 0.01 ---- ---- ---- ----
 4 [O] ---- 0.02 0.04 0.57 ---- 0.01 ---- ---- ---- ----
 5 [u] ---- ---- ---- ---- 0.95 0.03 ---- ---- ---- ----
 6 [U] 0.19 0.02 0.02 0.01 0.02 0.40 ---- ---- ---- ----
 7 [U] 0.11 0.02 0.02 0.01 0.03 0.47 ---- ---- ---- ----
 8 [&] ---- ---- ---- ---- ---- ---- 0.99 ---- ---- ----
 9 [E] ---- ---- ---- ---- ---- ---- ---- 0.97 ---- ----
10 [i] ---- ---- ---- ---- ---- ---- ---- ---- 1.00 0.01
11 [I] ---- ---- ---- ---- ---- ---- ---- 0.02 ---- 0.99
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The model simulates only the “phonemic” perception of late infancy (see Section 2.8.2). It does
not simulate its development except in the restricted sense of learning to categorize attended acoustic seg-
ments. Jusczyk (1993) has outlined a more complete account. Like ours, his WRAPSA model assumes
low-level feature extraction, avoids traditional phonetic segmentation, and proposes a gestalt syllabic rep-
resentation. To explain the development of selective phonetic listening, it proposes feature weighting or
attention. Functionally similar behavior emerges from HABLAR’s Gaussian mixture model. WRAPSA
also integrates its perceptual machinery with a model of lexical access, something beyond HABLAR’s
scope.
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Chapter 7 Hierarchical Motor Control

Having painted a picture of HABLAR’s peripheral components, we proceed with a description of
the cognitive architecture which links them. First we motivate the control architecture, identifying the
functions it must serve and the empirical constraints it must satisfy. We then present heuristic and more for-
mal pictures of the architecture and training methods, identify and resolve some additional computational
issues, and finally detail the control architecture’s implementation.

7.1   Empirical constraints governing motor control

At one end of the model, we have postulated an auditory perception module which generates a cat-
egorical, syllabic representation of speech sounds. At the other end, we have postulated articulatory control
of the vocal tract and respiratory system which is organized into discrete gestures. The problem remaining
to be solved is the mapping between the internal representation of the target utterance and its realization as
a sequence of articulatory gestures. One line of evidence discussed in Chapter 2 suggests that the mapping
is accomplished using some associative, stochastic mechanism. Other lines of evidence (Chapter 2 and
Chapter 3) suggest a partition into problems of articulatory skill and linguistic composition. To determine
where to partition the mapping, we examine how phonetic and articulatory events are related.

7.1.1   Phonetic vs. articulatory and linguistic events

Auditory perception identifies several types of phonetic events — periods of silence, prevoicing,
maximal spectral change, and minimal spectral change. These events and their properties are encoded as
segmental and spectral features which constitute each utterance’s phonetic representation. Each type of
event has linguistic and articulatory significance. Linguistically, transitions usually signify demisyllables
(consonant-vowel or vowel-consonant sequences), diphthongs, or glides. Static segments signify the stable
portions of vowels, nasals, approximants, and fricatives. With respect to articulation, transitions corre-
spond approximately to the midpoints of articulatory gestures. Static segments (including periods of
silence and prevoicing) correspond to the ends of gestures. Moreover, distinctive nonlinear acoustic
changes usually occur between a gesture’s terminal configurations (Stevens, 1989). These enhance spectral
transitions and ensure their reliability as linguistic codes and articulatory encodings. Figure7.1 illustrates
the relationship between transitions and gestures for a sample of synthetic adult speech. It graphically com-
pares several key gestural components ofduck (Figure 7.1a) with the measured transition magnitude (solid
line in Figure 7.1b). Table 7.1 details the linguistic and articulatory significance of acoustic segments.

7.1.2   Coordinative structures and the partition of motor control

Upon closer examination, it becomes apparent that the crucial relationship between phonetic and
articulatory events does not involve individual gestures but rather a set of functionally coordinated ges-
tures. Even the very simplest of consonants involves a finely tuned coordination of vocalization and a bal-
listic gesture of tongue or lips to close or open the vocal tract. Though many sounds explicitly involve just
a few articulators, they implicitly require the cooperation of several others. For example, /t/ and /d/ involve
the tongue tip, but the lips must also be parted. This resembles what has been called acoordinative struc-
ture, a “temporary marshalling of many degrees of freedom into a task-specific functional unit” (Kelso et
al. 1980, 1984, 1986; Saltzman & Munhall 1989). A coordinative structure achieves its functional end
without regard to vocal tract perturbations, automatically compensating for external influences or articula-
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Figure 7.1   Articulatory gestures vs. spectral transitions

a. Several articulatory gesture trajectories duringduck

b. Transition magnitude (solid), periodic (dashed) and aperiodic (dotted) amplitudes

tongue body displacement

tongue tip

tongue body angle

periodic amplitude aperiodic

transition magnitude

Table 7.1   Acoustic segments vs. articulatory and linguistic events

Type Articulatory basis Linguistic relevance
Transition (T) Zenith or center of gesture. Demi-syllables, diphthongs
Static (S) Beginning or end of gesture, when

vocal tract is nearly stationary.
Static portion of vowels, nasals,
approximants.

Static Friction (F),
Voiced Friction (Z)

End of a gesture, during vocal tract
constriction and air-flow with audible
friction.

Static portion of fricatives.

Transition Friction
(X)

Early in a gesture after the release of a
constriction in the vocal tract but
before voicing starts.

Aspiration after release of voiceless
stop consonant. Some whispered
sounds.

Burst (B) Release of closure at start of gesture
after lung pressure build up.

Burst after release of voiceless stop
consonant.

Prevoicing (P) Beginning or end of gesture as vocal
tract is closed but vocal cord vibration
continues.

Prevoicing of voiced stop consonant.

Silence (0) Beginning or end of gesture as vocal
tract is closed but without vocal cord
vibration.

Silence of voiceless stop consonant
closure (or silence of vocal tract at
rest).
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tory contexts. The goal is to reproduce a minimal sequence of phonetic events which has linguistic signifi-
cance.

This suggests a reasonable partition of motor control into two levels, phonological and articula-
tory, in which the articulatory control level’s responsibility is the mastery of elemental, linguistically sig-
nificant articulatory skills, and the phonological level’s responsibility is mastery of linguistic composition.
Articulatory control coordinates articulatory gestures to generate linguistically significant sounds without
regard to vocal tract perturbations or articulatory contexts. In other words, the articulatory control level
implements a set of coordinative structures, each a specialist in pronouncing some linguistically important
sound. Phonological control composes linguistic events by choosing and activating sequences of articula-
tory specialists. The ability to correct for perturbations suggests a closed-loop control structure, at least for
articulatory control.

7.2   Form and function of hierarchical motor control

HABLAR’s motor control is carried out by a hierarchy of phonological and articulatory control-
lers. Each articulatory controller’s responsibility is articulatory skill: the pronunciation of an elemental,
linguistically significant sound. The phonological controller’s responsibility is sound composition: com-
bining elemental linguistically significant sounds.

Each controller performs what is called aclosed loop policy, a plan which associates an action with
each observation it makes of the system it controls. Each controller employs reinforcement learning to
learn an optimal policy, a plan which maximizes cumulative rewards. Each is implemented as an artificial
neural network whose inputs represent the controller’s environmental state and whose outputs represent
the utility of each possible action given the current environmental state. Each receives rewards related to
the phonetic proximity of target and actual utterances.

This section presents the formal framework in which articulatory and phonological controllers are
described, and presents each controller type heuristically and formally, detailing input, outputs, and com-
putational roles.

7.2.1   Formalizing control problems as Markov decision tasks

Closed loop control problems faced by phonological and articulatory controllers may be formal-
ized as Markov decision tasks. Doing so justifies the use of Q-learning and provides a framework with
which to examine certain computational issues. AMarkov decision task (first introduced in Section 3.5;
see also Figure 3.1) is characterized by anenvironment to be controlled, the environment’sstate, a finite set
of actions from which the controller chooses,environmental dynamics, and scalar feedback orreinforce-
ment, the cost and/or payoff incurred by the agent as a function of its action in the current state. The envi-
ronmental dynamics of a Markov decision task are formally expressed as atransition function, the set of
probabilities of reaching one state from another given each action. A controller’sinput is its observation of
the environmental state. Itsoutput is its choice of an action. A closed-looppolicy is a mapping from states
to actions. Anoptimal policy is a state-action mapping which maximizes the objective function. The con-
troller’s task is often described in terms of a goal state to achieve or a trajectory of states to traverse. How-
ever, optimal policies are formally defined by aschedule of reinforcements and anobjective function which
computes a weighted or discounted sum of reinforcements over the course of each learning trial.

A Markov decision task must conform toMarkovian properties, an additional set of constraints on
environmental dynamics and rewards. One constraint requires that the current state be exclusively a func-
tion of the immediately past state, the immediately past action, and the unchanging set of transition proba-
bilities which comprises the environmental dynamics. Likewise, reinforcement must be exclusively a
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function of the immediately past state and immediately past action. Neither transitions between states nor
rewards may depend on states or actions more than one time step in the past. Environmental dynamics
must bestationary; that is, the set of transition probabilities must be fixed.

Q-learning is guaranteed to find an optimal policy for a finite Markov decision task which meets
these properties and a number of additional formal constraints (Watkins & Dayan 1992).

7.2.2   Articulatory controllers

There are multiple articulatory controllers. Each is a specialist that generates all or some discrete
portion of a familiar sound pattern. Given a target sound, the articulatory controller most likely to accu-
rately reproduce it is chosen and activated by the phonological controller. Each articulatory specialist is a
closed loop controller. It executes a closed-loop policy which associates the correct choice of articulatory
gesture (its output) with each articulatory state it observes via proprioceptive feedback from the vocal tract
and respiratory system (its inputs).

The articulatory controller is all but deaf. It knows only indirectly about sound, receiving positive
reinforcement if the sound it produces is close to the phonetic target or some portion thereof. It is this distal
phonetic reinforcement which ensures the linguistic significance of articulatory controller behavior.
Between HABLAR’s dual tasks of articulatory skill and sound composition, the articulatory controller
addresses the former. It approximates the function of a coordinative structure whose goal is the generation
of elemental linguistically significant sounds.

The time scale at which each articulatory controller operates is fine-grained and precise; it discov-
ers and executes the exquisite gestural coordination necessary to produce each sound. Its job is not to
choose each point through which each articulator moves. It only chooses the target equilibrium points of
gestures in each articulatory dimension. It does not execute the gestures; it only selects and coordinates
them.

Formalized in the context of a Markov decision task, the articulatory controller’s observed envi-
ronmental state is the set of proprioceptive and tactile sensations recognized by proprioceptive perception
(see Chapter 5). These are summarized in Table 7.2. The same environmental state is available to all artic-
ulatory controllers.

The articulatory controller’s actions are its choices of gestural equilibrium positions for each artic-
ulatory dimension. The number and range of gestural targets in each articulatory dimension are summa-
rized in Table 7.3. For example, there are four lung pressure targets ranging from 0 to 10 cm H2O and ten
jaw angle targets between –12.6 and –18.6 degrees from horizontal as measured from the jaw fulcrum.
Gestural details change slightly among simulations as we experiment with various articulatory constraints.

The articulatory controller’s environment consists of gestural controllers, the articulatory synthe-
sizer, and the source model. The environment’s dynamical properties are a function of each gesture’s
damped-spring-like dynamics, the respiratory system’s dynamics, and the interface between articulatory
and gesture controllers.

The active articulatory controller observes a small constant cost for each discrete time step. It
observes a reward only at the end of the period during which it is active, and only to the extent that the pho-
netic representation of the acoustic feedback approximates the phonetic representation of the target sound
during its activation.

At each discrete time step (8 msec of real world time), gesture controllers update positions of all
articulators and the source model computes air flow and changes in the respiratory state. The active articu-
latory controller observes the new environmental state and chooses an action. Affecting this process is a
refractory period during which gestural controllers do not respond to new articulatory actions but continue
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Table 7.2   Proprioceptive state and articulatory controller inputs

Table 7.3   Summary of gestural targets

Class of inputs Units Quantities measured
Vocal tract configuration 13 Current position of jaw, tongue, lips, velum, etc.
Target configuration 13 Target position of vocal tract and lungs
Gestural phase 66 Measures progress of each articulator through

current gesture (6 units per articulatory dimen-
sion)

Global tactile state 5 Closure, intensities or presence of vibration, tur-
bulence

Tactile events 10 Trace history of contact at each place-of-articu-
lation

Airflow events 5 Vibration, frication, aspiration
Respiratory state 6 glottal, oral, nasal airflow; tidal volume; sub-

glottal and oral air pressure

Articulatory dimension
Tar-
gets Range of targets Measurement

Extra-pulmonary lung pres-
sure

4 0 to 10 cm H20 inspiratory pressure

Glottal opening 7 –0.05 to 0.80 cm width of opening
Jaw angle 10 –12.6 to –18.6 deg from jaw fulcrum (from

horizontal)
Tongue body distance 9 7.39 to 8.21 cm from jaw fulcrum
Tongue body angle 13 –2.9 to –19.2 deg relative to jaw angle
Tongue tip length 5 2.68 to 3.13 cm from point on tongue

body
Tongue tip angle 6 0.0 to 25.8 deg relative to tongue body
Lip protrusion 6 0.76 to 1.69 cm from upper incisors
Lip height 4 0.10 to 0.39 cm closure relative to inci-

sors
Hyoid anterior distance 4 7.14 to 7.37 cm from fixed point
Hyoid superior distance 5 6.92 to 7.50 cm from fixed point
Velar opening (na) 4 0.0 to 1.0 degree of opening
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to maintain their old trajectories. The probability  that a new trajectory replaces an older one increases
quadratically with the phaseψ of the old gesture according to the formula

 ={ . (7.1)

Its purpose is to simulate hysteresis of recently activated gestural targets and to constrain gestural dynam-
ics, reducing the random “jitter” of the untrained controller.

7.2.3   Phonological controller

The phonological controller’s job is to choose which articulatory controller is best suited to gener-
ate the target utterance or some portion thereof. Like its articulatory subordinates, it is a closed loop con-
troller; its actions are based on the phonetic feedback it receives. It executes a closed-loop policy which
associates the correct choice of articulatory controller with each phonetic segment it observes in auditory
feedback. Its goal is to generate a sequence of sounds whose phonetic representation comes to exactly
match the target sound’s phonetic representation. Between HABLAR’s dual tasks of articulatory skill and
linguistic composition, the phonological controller addresses the later. The time scale in which it operates
is coarse-grained and event-driven.

The phonological controller’s job may be formalized as a Markov decision task. The environmen-
tal state it observes has two parts, the phonetic representation of the target utterance, and the phonetic rep-
resentation of the current utterance’s acoustic feedback. Its action is the choice of 1-of-n articulatory
controllers to activate. The phonological controller observes a small constant cost for each action it takes.
It observes a reward proportional to the phonetic proximity of actual and target utterances. A trial ends
when the phonetic feedback matches (or nearly matches) the target utterance or after a time-out period.

7.3   Relationships between control levels

The relationship between phonological and articulatory control levels is illustrated in Figure 7.2.
Labor is divided by task. The phonological controller has a supervisory role relative to articulatory control-
lers. Environments of each control level are distinct, and control levels operate at different temporal granu-
larities. The superior phonological controller negotiates a sequence of abstract states, but it need not
decompose its environment or discover a set of abstract states on its own (see Section 3.5.2). Instead,
abstract states are delineated independently by HABLAR’s auditory perception. The phonological control-
ler’s environment encompasses the articulatory controller’s environment. However, the phonological con-
troller is ignorant of any articulatory details. It observes only the discrete phonetic representation of its
auditory feedback.

7.3.1   Role of phonological controller in linguistic composition

The phonological controller plays several roles, some not immediately apparent, but all are neces-
sary to ensure its ability to compose utterances out of elemental sounds. Its most apparent role is to map
sequences of phonetic events (encoded in the representation of a target utterance) into sequences of articu-
latory events (the activation of articulatory controllers). Once the model’s articulatory controllers have
learned to generate a repertoire of elemental sounds which match phonetic events in the linguistic environ-
ment, then the phonological controller may learn to compose complex utterances out of elemental sounds,
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learning the compositional structure of the language’s phonology. Compositional properties implicit in the
phonetic representation and the phonological controller’s generalization properties contribute to accom-
plishing this goal.

What ensures that articulatory controllers generate linguistically significant articulatory events?
Articulatory controllers receive rewards proportional to the phonetic proximity of target sounds and actu-
ally produced sounds. Target utterances — whether imitated or drawn from the child’s lexical memory —
reflect the linguistic environment in which the model is situated. Hence, sounds produced should come to
resemble targets. What ensures that thestatistical distribution of sounds generated by articulatory control-
lers matches the distribution of sounds in the linguistic environment? The phonological controller builds
the equivalent of a statistical mixture model of the distribution of phonetic events in the linguistic environ-
ment. This statistical model is also the basis with which the phonological controller selects articulatory
controllers to generate target sounds. All controllers receive rewards to the extent that this statistical mix-
ture model mimics the distribution of sounds in the linguistic environment. We discuss this in greater detail
in Chapter 9.

7.3.2   Role of the articulatory controller in linguistic composition

The ability to compose complex sounds out of simpler ones depends on the computational proper-
ties of both phonological and articulatory controllers. Compositional properties of the phonetic representa-
tion and other constraints discussed in Section 7.3.1 satisfies some requirements. What makes
compositionality possible at the articulatory level is the seamless integration of control as responsibility for
motor control is transferred from one articulatory controller to the next.

Two conditions are necessary for this to occur. (1) All articulatory controllers must share the same
proprioceptive state, a condition met by HABLAR’s design. (2) Instances of phonetic segment types must
have similar proprioceptive states, even in different contexts, and articulatory controllers must ignore cer-
tain irrelevant proprioceptive events.
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Phonological ControllerAuditory Perception
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Discrete
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Figure 7.2   Nested phonological and articulatory control levels
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For example, consider what is necessary to generatemad [m&d] out of previously learned articula-
tory patterns forbad [b&d] andman [m&n]. The proprioceptive states corresponding to articulation of the
vowel [&] in mad, bad, andman are all similar — the jaw nearly at rest after having opened for the vowel,
tongue body likewise at rest in a position corresponding to the vowel, and vocal cords vibrating. The only
condition which varies is the prior state of the velum (closed for /b/ and open for /m/). The articulatory
controller’s generalization properties must ensure that this difference is ignored.

What seems necessary for such composition to occur are articulatory controllers which evolve dur-
ing training to approximate pure vowels and pure consonants. This may emerge partly out of the generali-
zation properties of the articulatory controllers. It may be encouraged by constraints or rewards which
allow the phonological controller to switch between articulatory controllers only during static acoustic seg-
ments including silence and prevoicing. Limiting the number of articulatory controllers may also encour-
age this.

7.3.3   Ideal operation illustrated

Figure 7.3 demonstrates the intended behavior of HABLAR, again usingduck as an example.
Time flows left to right and top to bottom. Each column summarizes the events associated with the activa-
tion of one articulatory controller. The first row of panels displays how the phonetic representation (shown
as segmental and spectral feature types) changes over the course of the utterance and indicates the phonetic
event which triggers the phonological controller’s choice of articulatory controller. The second row of pan-
els summarizes the articulatory gestures executed by the articulatory controller while it is active. Each
hypothetical articulatory controller is labelled, but for interpretative purposes only. The third row of panels
displays graphically the resulting changes in the vocal tract. The final row displays the cumulative acoustic
consequences of the vocal tract’s activity. Auditory perception in turn phonetically interprets this auditory
feedback and updates its representation, as shown in the top panel of the next column.

Suppose the target sound has been chosen. Subsequent events may be summarized as follows:

♦ Initially there is silence. Given the phonetic target, the phonological controller chooses an articula-
tory controller that, when activated, closes the jaw, raises the tongue body and tip, and approxi-
mates vocal cords. Glottal vibration occurs during the alveolar closure, which results in
prevoicing. This activity corresponds to the onset of the /d/.

♦ Prevoicing is detected by auditory perception, and the phonological controller chooses an articula-
tory controller that, when activated, observes the vocal tract closed at the alveolar ridge and then
lowers the tongue tip and body while voicing continues. This produces the vowel /A/ and the tran-
sition between the onset /d/ and vowel.

♦ Auditory perception detects transition and static segments corresponding to [dA] and [A]. The
phonological controller chooses the next articulatory controller, which raises the tongue body to
the velum, starts to close the glottis, and adjusts lung pressure. This produces the /k/ and the spec-
tral transition between /A/ and /k/.

♦ Transition segment corresponding to [Ag] and silence are detected, and the phonological controller
chooses another articulatory controller. The glottis is opened, the lungs are relaxed, and tongue
contact is released. A segment of dynamic friction corresponding to the aspirated velar release /kh/
is detected, and the target phonetic representation is achieved.
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Figure 7.3   Intended HABLAR behavior

This figure shows the ideal sequence of events for HABLAR to pronounceduck. The top row of pan-
els show how the phonetic representation changes over the utterance (including segment, triad, and
spectral types as they are detected), the second row summarizes actions of the active articulatory con-
troller, the third row portrays changes in the vocal tract, and the bottom panel shows the cumulative
spectrogram of the resulting sound. Time flows from left to right and top to bottom.
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7.3.4   How many articulatory controllers?

As a worst-case estimate, the number of articulatory controllers needed for English is equal to the
number of demisyllables, diphthongs, and stand-alone static sounds in the language. This is some multiple
of the number of spectral categories (to account for consonant voicing variations) estimated in
Section 6.3.1. However, as apparent from the example presented in Figure 7.3 and discussion in
Section 7.3.2, the best-case estimate is closer to the number of phonemes in English, possibly multiplied
by a factor for anticipatory coarticulation. However, a full accounting of coarticulatory linguistic phenom-
ena may require model refinements which could further reduce the required number (see Section9.3.1).

7.4   Computational issues of control

Having formalized each control level as a Markov decision task, we are justified in using Q-learn-
ing to the extent that formal constraints are satisfied or approximated. However, several appear to be vio-
lated. State spaces at each control level are continuous, not finite and discrete. Some states are hidden, and
some rewards depend on past states and actions, violating Markovian properties. The hierarchical relation-
ship of control levels may also violate Markovian properties, may perturb otherwise stationary environ-
ments, and may make search more complex. In the following sections, we explore these issues in greater
detail and propose means to address them to enable effective learning of articulatory and phonological con-
trol. We start, however, by answering an obvious question postponed from earlier chapters.

7.4.1   Why reinforcement learning?

Unlike the articulatory skill models discussed in Chapter 3, HABLAR’s motor control task is not
defined by an acoustic or articulatory reference trajectory. Rather, the task is specified by the target pho-
netic representation, and task success is determined by comparing the target with the phonetic representa-
tion of the actual utterance.

Superficially, this resembles a supervised learning problem. A signed error vector may be com-
puted from target and actual phonetic feature vectors at the end of the utterance. Why not use supervised
learning methods to learn the system’s forward dynamics and acoustics? If we do, then motor controllers
must determine both system dynamics and the additional temporal credit assignment problems posed by
delayed phonetic feedback. Learning the system’s forward dynamics could be a formidable task. Fortu-
nately, hard-wired gestural and pulmonary dynamics simplify the control task, obviating the need for a ges-
tural dynamics forward model. Under these circumstances, Jordan and Rumelhart (1992) suggest using an
integrated quantity which measures overall task success to train a forward model. By introducing a scalar
integrated quantity, we effectively transform the task into a reinforcement learning problem (see
Section 3.4.4).

If supervised methods are used on the reformulated problem instead of reinforcement methods,
unnecessary computational costs may be incurred. This is most likely to occur at the phonological control
level. Phonetic representations are relatively local and nearly discrete. The phonological controller learns
an approximately discrete mapping from phonetic target and feedback representations to the discrete
choice of articulatory controller using an integrated quantity or an evaluative signal as the training signal.
This is analogous to a set of tasks used by Markey and Mozer (1992) to compare the performance of for-
ward model based and stochastic gradient-following reinforcement learning methods. Training time for the
forward model method is one or two orders of magnitude slower than for the fastest stochastic method.
Further analysis shows that this is caused by the forward model’s counterproductive generalizations.
Although forward model performance is improved by introducing additional structure (decomposing it into
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separate forward models for each subtask), the best stochastic reinforcement learning method still outper-
forms the forward model method by two-to-one (unpublished data).

Ultimately, the choice between supervised and reinforcement methods must be empirical, but a
comparison is beyond the present scope of this research.

7.4.2   Continuous-valued state variables

The articulatory controller’s proprioceptive domain and the phonological controller’s phonetic
domain are continuous, multi-dimensional spaces. Q-learning requires a finite, discrete state space. To
overcome this restriction, some form of generalizing function approximation is typically used to accurately
estimate the Q-function, simplifying and abstracting each controller’s huge domain into a set of internal
features which capture functional distinctions among input states. HABLAR employs this strategy.

7.4.3   Function approximation and aliasing

Using function approximation to estimate the Q-function comes at a cost. The environmental state
and the “state” actually observed by the articulatory controller are not the same. Useful abstraction divides
observed environmental states into classes which are as large as possible without introducing irrelevant
distinctions and which are functionally equivalent with respect to the set of actions required for optimal
control.Perceptual aliasing occurs when abstraction confounds environmental states otherwise necessary
for optimal control (Whitehead 1992). Network generalization may also confound or obscure input states.
This is a trade-off HABLAR cannot entirely avoid.

By judicious choice of network architecture, learning parameters, and input representations, gener-
alization-based aliasing might be reduced. HABLAR borrows the architectural strategy employed by Lin
(1992). One typical network Q-function approximator uses a single network with input units for stateand
action, sigmoidal or Gaussian hidden units, and asingle linear output unit which represents the Q-value.
Lin instead uses a separate output unit or an entirely separate network (Lin, personal communication) for
each action’s estimated Q-value; the network’s input units represent only environmental state variables.
This approach reduces or eliminates generalization among actions but does not prevent generalization
among related environmental states. HABLAR adopts this approach.

7.4.4   Ensuring Markovian rewards

Markovian properties require that neither state transitions nor reinforcements depend on states and
actions more than one time step in the past. State transitions satisfy these constraints at both control levels.
However, without augmenting the articulatory controller’s observed state with information about past
states, its rewards do not satisfy Markovian properties. A whole trajectory of past states and actions, not
the final action and state, are rewarded. This is because articulatory controller rewards are a function of
phonetic feedback, which encodes acoustic events spanning an entire acoustic segment and thus an
extended sequence of actions.

Consider the two idealized articulatory policies represented in Table 7.4 and Table 7.5. The goal is
to pronounce /ba/. Reinforcement is determined only after the whole syllable is perceived. One policy suc-
ceeds; the other does not. An agent attempting to learn this task with an unaugmented state cannot learn a
well-defined Q-function or closed-loop policy, since some equivalent state-action pairs accrue a reward,
and some do not. The state labeled “voice ON, oral cavity OPEN, NO lip contact” and action labeled
“OPEN glottis” leads to reward in Table 7.4’s policy but not in Table 7.5’s policy. Prior actions which close
and open the jaw distinguish the successful policy. In the articulatory world which HABLAR simulates,
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many more time steps (each 8 msec) and gestural targets intervene between actions and reward. The conse-
quences of delayed phonetic feedback can be much worse.

Table 7.4   Idealized articulatory sequence which generates /ba/

Table 7.5   Articulatory sequence which does not generate /ba/

Incorporating memory of past states into the current environmental state avoids this problem. Lin
& Mitchell (1992) investigate several possible neural network approaches to accomplish this, including
memories formed by recurrent networks, but such general solutions are computationally expensive. A
more economical solution relies on domain-specific knowledge and HABLAR’s overall sensorimotor
architecture. Articulatory controller memory need only be long enough for simple sounds, since the phono-
logical controller composes longer ones, and its memory need only track categories of past actions which
adequately distinguish categories of speech sounds.

HABLAR’s proprioceptive perception therefore includes exponentially decaying memory traces
of phonetically relevant tactile events (contact and release at locations corresponding to consonantal
places-of-articulation) and recent occurrences of glottal vibration and vocal tract turbulent airflow. These
are adequate for stop-consonant-vowel syllables, but a richer representation is necessary for more complex
morphemes.

Even though its reinforcement is a function of phonetic feedback for the entire utterance, the pho-
nological controller does not face the same problem because of its superpositional phonetic representation
and contextual features. It faithfully captures the phonetic history of the entire utterance.

7.4.5   State isolation and reward hiding

Watkins (1989) explains that a simple-minded hierarchical arrangement of agents which directly
observe and control the same state violates the Markovian constraint that state transitions be exclusively a
function of current state and action. No violation arises as a result of articulatory and phonological control-
lers observing and controlling the same state. They control and observe different environmental states. The
former observes and controls only the proprioceptive state. The latter observes and controls only the pho-
netic state. This conforms to the principle of state isolation proposed by Dayan and Hinton (1992) to avoid

State Action

Voice Oral cavity Lip contact
off open no close jaw
off closed yes exhale, approximate

vocal folds
on closed yes open jaw
on open no open glottis
off open no Reward = 1

State Action

Voice Oral cavity Lip contact
off open no exhale, approximate

vocal folds
on open no open glottis
off open no Reward = 0
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situations like those identified by Watkins. Their principle of reward hiding is also enforced. The articula-
tory controller’s reward is based on a temporally local phonetic representation, not the representation of the
entire utterance.

7.4.6   Nonstationary search and hierarchical search complexity

The phonological controller’s environment includes articulatory controllers whose expected
behaviors change as they learn to pronounce various sounds. Thus, the phonological controller’s environ-
ment is nonstationary, which may introduce Q-learning convergence difficulties. As a practical matter, this
does not appear to be a problem. Articulatory controller behavior changes, but relatively slowly, and in
conformity with the expectations of the phonological controller. This problem does not apparently affect
the performance of other hierarchical reinforcement learning models (Chapter 3). Nonstationary articula-
tory specialist behavior is not unlike nonstationary expert behavior in a mixture-of-experts model (Jacobs
et al. 1991) in the sense that gradient descent occurs on two levels simultaneously and learning on one
level affects optimal behavior of the other level. What possibly sets HABLAR apart is its overall computa-
tional complexity, especially the search complexity represented by phonological and articulatory control-
lers together.

7.4.7   Bootstrapping the hierarchy

Hierarchical reinforcement learning is hard (Singh 1992c), and there do not appear to be any prin-
cipled methods for reducing the difficulties (Singh, personal communication). To help overcome the com-
binatorial complexity faced by HABLAR’s control hierarchy and to alleviate effects of the phonological
controller’s nonstationary environment, bootstrapping strategies are introduced which pace the complexity
of target sounds. Phased complexity has several precedents, including Singh’s (1992a-c) optional practice
of training a hierarchical control system first on elemental tasks (see also Elman 1993, Tham & Prager
1994).

Three bootstrapping strategies are employed in simulations of the model: an engineered hierarchy,
intentionally phased complexity, and emergent complexity.

Engineered hierarchy.The first strategy is intended more as a tool to initially test the feasibility
of training articulatory controllers with phonetic targets and to test the feasibility of composing sounds
with the phonological controller. Articulatory controllers are trained individually on component sounds,
then the phonological controller is trained to compose a longer utterance using the learned capabilities of
articulatory controllers, whose weights have been frozen.

Phased complexity. In the second strategy, HABLAR is presented with a set of parental sounds to
be learned. Their complexity is intentionally staged. Articulatory controller temperature annealing rates are
constant, but phonological controller temperature is a function of HABLAR’s goal (high temperature for
play and low for imitation) and its success (increased temperature after a series of failures). This is
intended to mimic children’s gradual loss of articulatory plasticity from birth until age 5 years but their
continued compositional experimentation and word play.

Emergent complexity. This strategy, involving least direct experimenter intervention, is intended
to replicate the pacing of target sound complexity which might emerge from a complete sensorimotor sys-
tem whose several components pace each other.

♦ The lexicon learns sounds of increasing phonetic complexity (e.g., number and diversity of acous-
tic features) only gradually, pacing the complexity of target words. Due to the correspondence of
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acoustic features, acoustic segments, and articulatory gestures, control of lexical complexity
should also control phonological complexity.

♦ Lexical preferences based on semantic or pragmatic features or phonetic sound preferences are
introduced to bias the earliest target sounds.

♦ Annealing strategies are the same as for phased complexity.

Motor and perceptual learning occur in distinct phases in HABLAR, a simplification of the real
world. For human children, learning of phonetic categories (4-8 months for vowels and stop consonants)
and babbling (6-12 months for canonical babbling) overlap. Phonetic categories learned earliest are likely
to be more distinctive and more prevalent than those learned later. Thus, in a model in which perceptual
and motor control learning overlap, the former could pace the latter. This is beyond the scope of this
research at the present time.

7.5   Controlling HABLAR’s multi-dimensional action space

Of the computational issues faced in the design of the articulatory controller, tractability is most
serious. Consider a neural network approximator for a Q-function. If conforming to Lin’s (1992) architec-
ture (see Section 7.4.3), the network has one output for each possible actiona. It takes as input a represen-
tation of the environmental statex. Its outputs represent the value of the Q-function  for each
possible actiona given the current environmental state. In a multidimensional space, the number of possi-
ble actions can grow quite large, spanning the Cartesian product of the set of actions in each dimension. In
standard Q-learning, there must be a separate output unit for each such action. This is illustrated for a
hypothetical two-dimensional 3x4 action space in Figure 7.4, in which there are output units representing
Q-values of all 12 combinations of actions.

Now consider the number of possible gestural target combinations from which the articulatory
controller must choose. Two billion combinations are possible out of the twelve dimensions of articulatory
gestures listed in Table 7.3. Nearly every configuration is anatomically possible, and it is impractical to
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Figure 7.4   Standard Q-agent architecture
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exhaustively evaluate all combinations. Any architecture which enumerates all possible action combina-
tions faces similar problems.

To overcome this limitation, HABLAR decomposes the control task by degree-of-freedom. It
employs a collection of cooperating, semi-autonomous subagents which operate in parallel, each subagent
controlling a single articulatory dimension. Their collective behavior replaces the actions of a single agent.
All subagents observe the same environmental state and reinforcement schedule, working together to max-
imize their common goal. Choice of action in each dimension is made independently of actions chosen in
other dimensions. Though their actions are independent, subagents share a single network’s hidden units in
an attempt to cooperatively develop internal state representations which help solve the controller’s overall
task. We refer to this parallel Q-learning architecture as quasi-independent. Quasi-independent subagents
make action choices by comparing Q-values within only a single articulatory dimension. The controller’s
action is composed from each component choice.

Figure 7.5 illustrates the network architecture for the same hypothetical two-dimensional 3x4
action space considered above. Instead of twelve output units, there are two groups. One group of four
units represents the Q-values of four actions in one dimension; the other group of three units represents the
Q-values of actions in the other dimension. Actions are chosen in the first dimension independently of the
choice in the second dimension. The joint action is composed of these two choices.

7.6   Controller implementation

We now present details of phonological and articulatory controller implementations, including
reinforcement functions for each.

Statex

Q1 x a1
1,( )

Q2 x a2
1,( )

Q1 x a1
4,( ) Q2 x a2

3,( )

Outputs
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Subagent 1
Action Selection

Figure 7.5   Quasi-independent subgent architecture
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7.6.1   Neural network implementation of controllers

Each controller is implemented with an artificial neural network whoseinputs take a representation
of the environmental statex, and whoseoutputs represent the Q-values  of each possible actiona,
given the current environmental statex. Actions with the highest Q-value are the most probable and are
chosen accordingly. Optimally, an agent chooses the most highly valued action, but it experiments with
possibly suboptimal actions until an optimal plan is learned.  comes to equal the expected value of
the cumulative net reward which would be gained by performing actiona in statex and by following the
optimal plan of action thereafter.

7.6.2   Reinforcement functions

Phonological controller rewardR is zero except at the end of each utterance. At that time, a reward
signal is generated that is related to the distance between phonetic representations of target utterance and
actual feedback. HABLAR uses squared Euclidean distance to measure phonetic distance. If  and  are
activations of each phonetic featurei in target and feedback representations respectively, then the phono-
logical controller’s reward is

(7.2)

where  is a constant. When distance is zero, and the actual utterance exactly matches the target, the
reward is proportional to the length of the target utterance as measured by the number of phonetic features
in the target, i.e., . For distances other than zero, reward is reduced proportional to the square Euclid-
ean distance. Reward is never less than zero, because phonetic distances greater than  do not seem to
provide useful information about the error surface.

The active articulatory controller observes a reward computed in much the same way, but only for
that portion of the utterance which occurs while it is active. This is done by maintaining a phonetic repre-
sentation  of the acoustic feedback which islocal in time to the active articulatory controller. At the
beginning of the utterance or any time at which the active articulatory controller changes, activations of all
features in this local representation are reset to zero. Thereafter, a representation is formed from the super-
position of phonetic features detected while the articulatory controller is active. If  are activations of
each phonetic featurei in thelocal feedback representation, and  is a constant, then the articulatory con-
troller’s rewardr is computed at the end of the period during which it is active as follows:

. (7.3)

Phonological and active articulatory controllers respectively incur small constant costsC andc for
each action they undertake. The cost’s cognitive justification is its representation of the effort expended to
undertake each action. Computationally the cost is needed to build an implicit representation of environ-
mental dynamics into each controller’s Q-function, since there is no explicit representation of the transition
function. Without some cost or discount of future rewards, all states on the trajectory to a goal would have
the same value, and there would be no way to determine which way to move between two states.
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7.6.3   Phonological controller implementation

The neural network implementing the phonological controller has sufficient inputs to accommo-
date the current phonetic feedbackf, target phonetic representationt, and one output unit for each articula-
tory controller. Hidden units are sigmoidal; output units are linear. The target phonetic statet is chosen by
the goal selection module at the start of each trial and remains constant throughout the trial. The controller
considers and chooses its next action once at the start of each new trial and afterwards only when a change
in the phonetic feedbackf is detected, which is a function of auditory perception. Itsi-th output is the esti-
mated utility  of choosing articulatory controller  given the current and target phonetic
states.

Action a is chosen and articulatory controllera is activated according to a Boltzmann distribution
 across all possible actions . TemperatureT determines the randomness of action selec-

tion and is varied during learning according to an annealing schedule, the chosen goal strategy, and a boot-
strapping strategy.

/ (7.4)

If the phonological controller is optimally trained, this may be interpreted as the probability that articulator
 will generate the next phonetic segment in a sequence which culminates with the current and target pho-

netic states equal. If constrained such that the phonological controller may choose one and only one articu-
lator during the course of a trial, then this may be interpreted as the probability that articulator  will
generate a sound represented by the target phonetic state.

The Q-function is next evaluated when auditory perception detects a new phonetic segment and
the phonological controller observes a new phonetic feedback . At this time, the controller will also com-
pute the scalar costC incurred by the previous action and scalar reinforcementR. Before the next action is
chosen, we compute the temporal difference errorE (Sutton 1988) in the network’s prediction of actiona’s
utility and use it to update the controller’s parameters. The new predicted utility is the sum of costC, rein-
forcementR, and the maximum utility among all actions in our new state . The error is the difference of
this sum and , the utility of the chosen action.

(7.5)

The network is adjusted by back propagating the square of the error for that output unit corre-
sponding to actiona. No error is back propagated through other output units. The calculation uses activa-
tions stored at the time the action was taken.

7.6.4   Articulatory controller implementation

The action spaceG from which the articulatory controller chooses action (gesture target)g hasn
degrees-of-freedom, each defining a separate subspace, ,j=1..n, where . Actions in
each subspace represent the range of articulatory gestures in one articulatory dimension. The method for
each subagent is similar to that used by a single Q-agent (Watkins 1989). Instead of learning a complete Q-
function, each subagent explores only actions in its own subspace and learns only the corresponding por-
tion of the Q-function. There is no explicit representation of the entire Q-function; subagents cooperatively
explore the entire action space.
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♦ There is one network whose input is proprioceptive states. It has∑  outputs, organized inton
groups, each group representing a subagent, one for each degree of freedomj. Subagent groupj
has only  outputs. At timet, each computes the estimated value  of some action

.

♦ Each subagent selects an action  in its subspace according to the Boltzmann distribution. The
action seen by the environment is then-tuple  constructed of the actions chosen
independently by each network. Action selection by each subagent is independent of selections by
other subagents. That is, the probability of choosing actiong is

. (7.6)

♦ The Boltzmann distribution is computed only over actions in  and only over outputs in groupj.

/ (7.7)

♦ Execution of actiong results in new state , and all subagents observe the same costc, and rein-
forcementr. The temporal difference error  is computedfor each subagent group j.

(7.8)

♦ For each subagent group j the square of this error is back propagated through the output unit cor-
responding to the action  selected by groupj at timet.

The architecture is presented here as it applies to control of articulatory gestures. However, it is
applicable to anyn degree-of-freedom control problem in which selection of actions in each control dimen-
sion is independent per Equation (7.6).

This approach was introduced by Markey (1994a). A similar approach was developed indepen-
dently by Tham and Prager (1993). Tan (1993) pioneered the use of cooperating Q-learning agents on a
joint task.

7.7   Motor control simulations

Results of simulations demonstrating the stand-alone behavior of HABLAR’s motor control and
behavior of the integrated sensorimotor model are presented in Chapter 8.

7.8   Why does parallel Q-learning work?

Parallel Q-learning has now been applied to a number of problems, including a phonological task
which resembles a 4-dimensional maze, control of a realistic vocal tract model (Markey 1994a, see also
Chapter 8), more traditional 2-dimensional mazes and other problems designed to induce failure by the
method (Markey in preparation), and a simulated robot with a 2-joint arm (Tham & Prager 1993, 1994).
Why does the technique succeed without an explicit representation of the utility of all possible action com-
binations and without any explicit communication or planning among subagents? How might it fail?
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7.8.1   Cooperation emerging from self-interested behavior

Consider the problem from the point of view of one subagent exploring its articulatory dimension.
It attempts to maximize its future return without explicit regard for the behavior of others. A subagent’s
estimate of itsown action’s value is not a simple function of its own isolated behavior. Rather it is a func-
tion of the joint behavior of all subagents. Since the subagent is not privy to other subagents’ “planned”
behavior for the current time step, it can only estimate it. Its value estimate for its own actions in the cur-
rent state is a function of theexpected behavior of the other subagents, conditioned on the current state. A
complete expression of subagentj’s Q-value for action  in statex is thus:

(7.9)

All agents are linked through a common shared state. Hence, current state — together with the dis-
tribution of other subagents’ actions as conditioned on current state — is the implicit mechanism to “trans-
mit” information about what agents are likely to do.1

The method succeedsnot because subagents make mutually independent decisions. As we have
argued, the decision along one dimension is based on the expected subagent behavior in other dimensions.
Instead, each subagent’s estimate of the value of its own action must ultimately approximate the value of
the joint actiona of all subagents in statex.

(7.10)

This depends on cooperation emerging from the subagents’ self-interested behavior (Barto 1985),
which seems likely given their common state and reinforcement schedule. There are several empirical
results for stochastic gradient-following reinforcement algorithms (terminology due to Williams 1992),
which easily learn multi-dimensional vector actions (Ackley & Littman 1990, Gullapalli 1993, Markey &
Mozer 1992, Prescott & Mayhew 1992, Williams & Peng 1989).

Equation (7.10) is equivalent to saying that each subagent learns the value function for the joint
task. Thevalue function measures the discounted return of following the optimal policy starting in the cur-
rent statex and is related to the Q-function.

(7.11)

In the limit . Empirically, this is the case in all successful simulations.
One example for which we have simulation results involves learning to negotiate the 10 x 10 maze

pictured in Figure 7.6 (lower left panel). An agent moves through the maze in any of 9 directions, N, NW,
W, SW, S, SE, E, NE, and at-rest. The agent must negotiate around a wall, also pictured. Each trial starts
with the agent placed at some random location in the maze and ends when the agent reaches the goal. One
set of simulations employs the standard Q-learning architecture with a single agent with 9 possible actions
(each of the above moves). Another set of simulations employs parallel Q-learning with two quasi-inde-
pendent subagents. The action space is decomposed into two dimensions. The first subagent has 3 possible
actions: N, S, and neither. The second subagent has 3 possible actions: E, W, and neither. The single agent

1 I am indebted to Steve Nowlan for this suggestion.

aj

Q j x aj,( ) Q j x aj E ak x{ } k j≠,{ },( ) ,= j 1…n=

max
aj Aj∈

Q j x aj E ak x{ } k j≠,{ },( )[ ] maxa A∈ Q x a,( )[ ]→ j∀,

V x( ) maxa A∈ Q x a,( )=

Vj x( ) V x( )=



70

G

Figure 7.6   Value functions for standard and parallel Q-learning

Value functions generated by standard single-agent (lower right) and quasi-independent (upper left
and right) architectures for a traditional 10x10 maze-exploration task (lower left).

Subagent 1’s value function

Standard Q-learnng agent’s value
function for the same maze

Subagent 2’s value function

Maze
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learns the task in 8220 trials (632 standard deviation); the quasi-independent subagents learn the task in
3560 trials (743 sd). Besides solving the problem faster, the parallel Q subagents learn virtually identical
value functions (top panels) which are almost indistinguishable from the value function learned by the
standard Q-learning architecture (lower right panel).

These observation together with the empirical success of multi-dimensional control with gradient-
following algorithms suggests using the Adaptive Heuristic Critic architecture (Barto et al. 1983) with one
critic and many controllers (Dayan, personal communication). This has been implemented successfully by
Tham and Prager (1993) for a two-dimensional robotic control problem.

7.8.2   Limitations of parallel-Q’s sparse representation of action

The parallel-Q architecture, as applied to problems in which action is decomposed by degree-of-
freedom, assumes that action choices in all dimensions are independent. Formally, that means that the
probability of the joint action  is the product of the probabilities of each subagent’s
action in each action space dimension (7.6).1

This implies that not all possible policies can be represented by a parallel-Q architecture. Only pol-
icies which admit to an outer-product decomposition may be represented (Robert Dodier, personal commu-
nication). However, we conjecture that all states are accessible by at least one optimal policy. An example
is an XOR-like task in whichonly one of two lights must be turned on. The set of all possible policies is
represented by the following matrix.

Probability of actions Turn Light 1 OFF Turn Light 1 ON
Turn Light 2 OFF 0.0 0.5
Turn Light 2 ON 0.5 0.0

This does not admit to an outer product representation, and parallel-Q may not represent both policies.
However, it may represent either one or the other possible optimal policy, e.g., either

Probability of actions Turn Light 1 OFF Turn Light 1 ON
Turn Light 2 OFF 0.0 1.0
Turn Light 2 ON 0.0 0.0

or its transpose

Probability of actions Turn Light 1 OFF Turn Light 1 ON
Turn Light 2 OFF 0.0 0.0
Turn Light 2 ON 1.0 0.0

In simulations, 56% find one policy and 44% find the other. Similar instances occur in mazes in which
there are two possible routes around an obstacle. Parallel Q simulations discover one of the two routes.
This is an outcome of Q-learning’s greedy behavior.

The 2-light problem is an example of a cooperative game. In general, cooperative one-step games
do not necessarily converge to a global optimum. As formulated above, both local optima are also global
optima because each light is equally rewarded per the following reward matrix:

1 This discussion is due in part to conversations with Robert Dodier.

a a1 … an, ,( )=
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Symmetric reward contingencies Light 1 OFF Light 1 ON
Light 2 OFF -1 1
Light 2 ON 1 -1

However, if the contingencies favor one light over another, we observe two Nash equilibria, stable states in
which no agent benefits by unilaterally changing its strategy (Nash 1950, see Narendra & Thathachar
1989).

Asymmetric reward contingencies Light 1 OFF Light 1 ON
Light 2 OFF -1 1
Light 2 ON 4 -1

The situation in which light 1 is ON with light 2 OFF is a local but not global optimum. In one-step
games, this is likely to lead to suboptimal solutions. However, parallel Q-learning is not a one-step game
but a dynamical system in which each agent gets to observe the results of its actions and correct its poli-
cies. Simulations given the asymmetric reward contingencies find the optimal policy 97% of the time. We
are still attempting to understand why and when parallel Q-learning solves cooperative tasks despite Nash
equilibria.1

7.8.3   Nonstationary environments and parallel subagents

Parallel-Q decomposition of a task leaves the state and reward structure unaffected. The transition
of states observed by each subagent is still Markovian (if the undecomposed environment is Markovian).
The environmental dynamics of the joint task are the same as the environmental dynamics of the undecom-
posed task. However, no subagent can know the transition function for the joint task. The environmental
dynamics it observes are limited to the effect that its own actions have on state transitions, given the esti-
mated behavior of other subagents. Since each subagent’s behavior changes, individually for each subagent
the environmental dynamics appear to be nonstationary. This issue does not appear to be of practical con-
cern, since all subagents coevolve to achieve the same goal. However, it does violate the formal constraints
under which Q-learning is currently known to succeed.

7.8.4   Empirical success

A formal analysis of task decomposition by degree-of-freedom is needed, but is beyond the scope
of this dissertation. Empirically it appears to be robust, limited only by unrelated issues of state representa-
tion and function approximation. A formal assessment must address how cooperative behavior emerges
from self-interested behavior, implications and limitations due to the sparse representation of action and
the assumption of action independence, and the possible problem of individually nonstationary environ-
ments observed by each subagent. Crites (1994) reviews results in dynamic programming, automata the-
ory, game theory, and other formal domains but finds few which seem to be directly relevant to questions
of cooperative learning.

1 Satinder Singh suggested exploring behavior in tasks which have Nash equilibria.
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Chapter 8 Results of Motor Control and Integrated
Model Simulations

In this chapter, we test HABLAR’s motor control. We evaluate its ability to perform simple articu-
latory tasks without phonetic feedback. We also describe results of simulations which integrate audition
with motor control, evaluating HABLAR’s ability to learn a small inventory of vowels and consonant-
vowel syllables. Planned simulations which test hierarchical aspects of HABLAR’s motor control are also
described.

8.1   Proximal task simulations

In this section, we test the effectiveness with which a single articulatory controller can learn prox-
imal articulatory tasks in isolation without phonetic feedback. These are simple articulatory tasks mea-
sured directly from patterns of vocal tract and respiratory parameters, which attempt to shape articulatory
patterns, not the resulting sound patterns. There are no phonetic targets, and the phonological controller
does not generate reinforcement signals based on phonetic targets. This simplifies the articulatory control-
ler’s task and allows for easier diagnosis of failures. Distal tasks with phonetic targets and phonetic perfor-
mance measures are the subject of Section 8.2.

8.1.1   Stop-consonant motion

Task 1 (reported originally in Markey 1994a) corresponds to the motion required to produce a sim-
ple stop consonant. Starting with a neutral, open oral cavity, the tongue must lift and make contact with a
target region of the palate and then release contact, or the lips must close, touch, then release. The entire
motion must occur in minimal time without encountering anatomically impossible configurations or mak-
ing contact at a non-target location. Successful completion of the task within a time-out period garners a
reward of 1.0 and ends the trial. An impossible physical configuration receives a penalty of –1.0 and ends
the trial. Otherwise, a trial ends without reward or penalty after timing out. The set of gestures is somewhat
different than listed in Table 7.3, involving 9 jaw angle, 5 lip height, 7 lip protrusion, 7 tongue tip angle, 6
tip length, 12 tongue body angle, 10 tongue body displacement, and 7 hyoid gesture targets. Three different
target places-of-articulation are tested: labial, alveolar, and velar.

Examples of stop-consonant motion training sequences are pictured in Figure 8.1. In the figure’s
top three panels, contact of velum and release by tongue body is learned within 13,800 trials. During trial
200, every articulator moves — lips, tongue body and tip, hyoid, and jaw. By trial 13,800 motion is very
economical, involving only tongue body and jaw; only the hyoid shows extraneous motion. This is an early
simulation. More recent simulations pictured in the figure’s bottom three panels and summarized in
Table 8.1 learn these tasks much more quickly due to changes in how credit is assigned during the refrac-
tory period after a new gesture is initiated. In the bottom row of panels, contact of alveolar ridge and
release by tongue tip is learned within 700 trials. In trial 200, nearly every articulator moves. In trial 500,
the tongue attempts to lift toward the alveolar ridge, but falls short each time, finally succeeding after 358
msec. By now the controller has learned that the tongue body and tip are the salient articulators, but has not
yet learned the entire motion. Trial 1900 accomplishes the task in 88 msec, without any extraneous motion.

We measure controller performance by the average time per trial necessary to complete the target
trajectory and reach the final desired configuration. Worst case is to time out after 400 msec. Based on the
time required for a hand-crafted solution to accomplish each task, best case is about 72 to 80 msec per trial.
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Trial 200 Trial 8800 Trial 13800

Figure 8.1   Articulatory controller learning consonant-like motion

In each panel, the vocal tract outline for each time step is overlaid, representing the entire range of
motion for all vocal tract articulators for the duration of the trial from beginning until success or
timeout. Lips are to the right; tongue body is to the left. See Figure 5.1 for the relative location of
vocal tract articulators. Motion of the tongue tip reflects its own motion plus that of jaw and tongue
body. However, it is possible to make out the range of tongue tip motions by looking for how its
angle changes.

Trial 200 Trial 500 Trial 1900
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“Time” here is as simulated by the vocal tract model’s dynamics. After as few as 700 trials, the articulatory
controller has achieved near-optimal stop-consonant motions. Table 8.1 summarizes results.

Table 8.1   Stop-consonant contact and release

8.1.2   Primitive consonant-vowel syllables. “Deaf” babble.

The second task calls for the generation of a primitive consonant-vowel syllable, targeting only the
consonant as measured by place-of-articulation, but leaving the vowel unspecified. It starts with the motion
required to make a stop-consonant but adds the requirements that the oral cavity remain open after the
stop-consonant and that glottal vibration above a threshold intensity occur for at least 64 msec after articu-
lator contact is released. Three different target places-of-articulation are tested: labial, alveolar, and velar.
The inventory of gestures is similar to those listed in Table 7.3 except for fewer hyoid gestures, which are
largely irrelevant to the task.

Strictly articulatory criteria are used to judge performance of this task, the tactile feedback of the
tongue-palate or lips’ contact, and tactile sensation of the glottal vibration. Acoustic feedback and phonetic
characteristics of the resulting sound are ignored. Criteria for success are thus less exacting than if auditory
perception were to test for some target syllable. In a sense, this simulates deaf babble which might occur if
a deaf infant were to attempt a similar pattern of tactile feedback.

Average results for successful simulations and for all target places-of-articulation are summarized
in Table 8.2. The average time to learn each task was only 42 minutes (in the model’s simulated time
scale). This seems reasonable even after adding additional respiratory time. Nine-thousand trials may seem
quite high, but young children speak as many as 14,000 words per day (Wagner 1985). Training failures
are discussed in Section 8.1.4.

Table 8.2   Articulatory controller learning of primitive syllables

8.1.3   Reduplicated babble

In several instances, the sound generated by the primitive syllable simulations resembles redupli-
cated babble. This occurs when the articulatory controller approximates but does not achieve full articula-
tor contact, then vocalizes and opens the oral cavity. Once open, the articulatory controller senses a state
similar to the starting neutral configuration and attempts the stop-consonant once again. This can occur
several times until full contact and subsequent release and vocalization are made. Once the target articula-
tory pattern is detected, the trial ends; however, if we allow the articulatory controller to continue once
achieving its goal, reduplicated babble would continue until exhausting lung capacity.

Place-of-Articulation

Time per trial
after 10,000
trials

Trials to
converge to
90% success

Model time to
converge to 90%
success

Labial 94.6 msec 860 4.2 minutes
Alveolar 116.4 msec 2810 9.9 minutes
Velar 92.5 msec 3610 12.8 minutes

Average number of trials to achieve 90% success 9,360 trials
Average time per trial 189 msec
Estimated “real world” time to learn each task 42 minutes
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8.1.4   Training failures

Simulations of tasks 1 and 2 sometimes fail. Once the articulatory controller initially learns the
intended task, there is typically a period during which it is performed consistently. As training continues,
performance sometimes deteriorates and the controller seems to unlearn the entire task. Upon closer
inspection, these failures appear to be caused by generalization-based aliasing (see Section 7.4.3). Three
factors contribute to the failures. First, tactile event memory and other temporal cues (e.g., gestural phase)
are required to distinguish states before and after a consonantal release. Otherwise, rewards are not Mark-
ovian (see Section 7.4.4) and these tasks cannot be solved. Second, with its neural network implementa-
tion, it is not sufficient that the articulatory controller merely observe tactile event memory and other
temporal cues. It must also abstract internal features which capture all functional distinctions among input
states. Third, there is some evidence that internal features which encode recent tactile events are lost due to
overtraining.

In these tasks, there are few constraints on the vocal tract’s motion after consonantal release; the
oral cavity must merely remain unobstructed. Thus, any sequence of gestures which opens the oral cavity
and maintains continued vocalization after contact is acceptable. Often the gestures chosen by the articula-
tory controller after the consonantal closure take the tongue bodythrough a configuration nearly identical
to the vocal tract’s neutral open position. After a period of additional training, the controller immediately
seeks the post-consonant, fully open configuration without first attempting the consonant. The distinction
between the neutral open configuration before the consonant and the neutral open configuration after the
consonant seem to be lost. It is plausible that the controller overgeneralizes the final portion of its trajec-
tory to the initial portion of its trajectory, ignoring state variables such as gestural phase and its memory of
tactile contact which usually distinguish the two subtrajectories. This conjecture is strengthened by simula-
tions which use a non-discrete representation of phase rather than the customary discrete, six-bit per artic-
ulator representation. The non-discrete representation failed eight times more often than the discrete
representation.

These failures might be avoided by employing the experience replay method pioneered by Lin
(1992). Unfortunately, articulatory state is too large and trials too long for this to be practical.

8.2   Integration of audition and motor control

The first step in evaluating HABLAR as an integrated sensorimotor system is to test the effective-
ness of feedback from auditory perception in training articulatory controllers to pronounce simple target
sounds. Several questions arise. (1) How robust is audition under less-than-ideal conditions? Simulations
in Chapter 6 used well-behaved “parental” stimuli with well-defined syllables. HABLAR’s untrained
speech is not as well-behaved. Even if auditory perception cannot correctly classify all sounds, then can it
at least provide feedback sufficient to guide early motor learning such that it becomes more speech-like?
(2) How well does the articulatory controller scale up to more exacting articulatory problems than before?
Simulations of stand-alone articulatory controllers above required the production of a primitive stop-con-
sonant-vowel syllable, but tolerated any vowel. The constraints of speech are much narrower. (3) How
effective is the phonetic distance metric and reinforcement function? The reinforcement function used to
train articulatory controllers in stand-alone simulations was based on a proximal articulatory measure. In
simulations reported in this section, reinforcement is calculated from a distal phonetic measure of success.

This initial set of simulations also served the purpose of calibrating model parameters (e.g., audi-
tory, learning, reinforcement function, and various timing parameters and distance metrics) and correcting
problems in the implementation.
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8.2.1   Procedure

For these simulations, the model is configured with a single articulatory controller. Since there is
no choice to make among articulatory controllers, the phonological controller’s only purpose is to measure
and transmit reinforcement signals to the sole articulatory controller.

Each trial begins with the presentation of a target stimulus. We assume that inhalation is a built-in
vegetative function of the model, and pulmonary parameters are set to simulate lungs filled to tidal capac-
ity. A trial ends after a maximum of 4 or 6 acoustic segments, 750 msec, or successful achievement of the
goal, whichever comes first.

Articulatory controller rewards are calculated according to Equation (7.3) for each sequence of
acoustic segments that ends with a static, prevoiced, or silent segment type. The articulatory controller
receives a reward signal immediately after a stand-alone static segment or after a transient and static seg-
ment occur together, but not after a stand-alone transient segment. The purpose of this procedure is to cor-
rect for the disabled phonological controller and to reward entire syllables.

We present the model with several arbitrary stimuli to imitate, representing a range of targets of
diverse articulatory complexity. These include isolated vowels /u/ and /&/, consonant-vowel syllables /bi/
and /bA/, and (other target sounds in progress). The /bi/ stimulus explicitly requires prevoicing before con-
sonant release, but the /bA/ stimulus does not (and thus should be easier to achieve than the /bi/ stimulus).

We judge that the goal has been realized when the phonetic distance between actual and target
utterance is less than 10% of the distance between the target and a null phonetic pattern. For these target
utterances, this sufficed to identify those tokens whose segmental features matched the target exactly and
whose spectral feature activations differed from the target by less than 0.5. At the conclusion of each trial,
we also measure the cosine between actual and target phonetic representations for the entire utterance.

To evaluate results, we measure percent of successes, average phonetic proximity of actual and tar-
get phonetic representations, and cosine between actual and target utterance representations. We also deter-
mine the percent of trials during which the sequence of segment types matches the target, even if the
spectral features do not match. Finally, we listen to samples of the sounds generated and transcribe them
phonetically. This affords an unsystematic validation of the model’s classification of its own speech.

8.2.2   Results

Of 24 preliminary simulations, each with one target utterance, 14 result in stable or quasi-stable
babble or speech-like sounds, of which eight were relatively close to the target sounds. Table 8.3 presents a
summary of select simulations. These areinitial results, run with a variety ofpreviously untested training
parameter settings.

Most simulations converge quickly on the broad properties of the target sounds, mastering voice
control, achieving stable or quasi-stable speech-like sounds, and exhibiting phonetic features present in the
target sound, even if the target sound was never accurately replicated. Based on our transcription of its
sounds, the model’s phonetic classification of its own speech appears to be relatively accurate. Most impor-
tantly, these initial results suggest that auditory feedback is an effective reward signal.

Most problems appear to involve motor control. Simulations often converge on local optima or
oscillate among suboptimal solutions. Some such local optima are the result of anomalies in the model’s
calculation of phonetic distance, but this should be easily corrected. We also suspect that generalization-
based aliasing similar to that observed in Section 8.1.4 affects some simulations, but we have not yet con-
firmed this with a complete analysis.
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Table 8.3   Select integrated sensorimotor simulations

Target
Sound

Observed
Sound

When
observed Cosine Comments

u [A] 300 trials 0.724 Very stable but suboptimal pat-
tern.

u [u] or [U] 2300 trials 0.979 Sound is shorter than a true /u/,
sounding closer to /U/, because
trial ends as soon as the static
segment is detected.

u [hAjAjAjA]
and similar.

8000-11000
trials

0.463 Quasi-stable babble-like pat-
tern.

u [hU, huE,
huB, huF]

1000-4000
trials

0.501 Considerable variation in pro-
ductions, but consistent pres-
ence of [u] sounds, preceded
by aspiration [h] and usually
followed by fricative sounds.

& between [&]
and [E]

6000 trials 0.765

& [hAe, hoA,
hA, huI, hAE,
huE]

2000-4000
trials

maximum
of 0.500

Never converges. Final seg-
ment in many sounds is pho-
netically close to & (e.g., E and
e).

bi [dubbub, bud-
dub], etc.

11000 trials 0.328 to
0.428

Never converges, but about 15-
20% of trials are true stop con-
sonants, matching the target’s
prevoicing-transition-static
segment type pattern.

bA [bi] 4700 trials 0.842
bA [hAwA,

hAwA,
hAUA]

6000-9000
trials

0.735 wA pattern is consistent with
/bA/ without prevoicing.

bA [bA] or [wA]
without plo-
sion

5100 trials 0.808 Sounds like bA or wA without
the prevoicing and plosion

bA [bI] 5400 trials 0.680 Not stable.
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Thus, performance in these initial simulations is imperfect. But children’s speech is imperfect, too.
The long term aim of this research (see Chapter 10) is to determine whether the errors made by HABLAR
correspond to those made by children.

8.3   An engineered hierarchy

The purpose of the next set of simulations is to determine HABLAR’s ability to compose simple
sequences of sounds using an engineered hierarchy. This will evaluate the compositional characteristics of
the phonetic representation, the effectiveness of phonetic distance and reward signals, and adequacy of the
phonological controller’s learning algorithm.

We train the model to imitate targets composed of sounds learned by articulatory controllers in the
simulations reported in Section 8.2. The model is configured with several articulatory controllers, each ini-
tialized with weights saved from the previous simulations. Articulatory controller weights are frozen (or
the learning rate and temperature are set very low), and only phonological controller weights are allowed
to vary.

8.4   Phased complexity simulations

As a final demonstration of the model, we present it with the task of learning to “imitate” nine CV
syllables built from three consonants (b, d, g) and three vowels (i, a, U). Veridical phonetic representations
of each target utterance are presented as “parental” stimuli. The goal is to generate sounds whose phonetic
representations are as close to target utterances as possible. Parental stimuli are selected from a set of
tokens already built to test auditory perception.

The model is fully configured, a test of the fully integrated sensorimotor system, including the
phonological controller’s ability to guide the acquisition of sounds which approximates the distribution of
sounds in the environment under different bootstrapping strategies.

We vary the order of stimulus presentation to simulate different simple bootstrapping strategies:
(1) random (no bootstrapping), and (2) extended periods of training with each syllable type. We also vary
the number of articulatory controllers, and relative training and annealing rates of articulatory and phono-
logical controllers.

Each trial begins with the presentation of a target stimulus. We assume that inhalation is a built-in
vegetative function of the model, and pulmonary parameters are set to simulate lungs filled to tidal capac-
ity. Each trial ends (1) when the distance between target and feedback phonetic representations falls within
some tolerance, (2) when the distance rises beyond some threshold, or (3) after a time-out period.

Based on simulations to date, we expect that the integrated model will initially demonstrate poor
articulatory control and considerable variation with a large number of non-speech sounds. It will show evi-
dence of increasingly competent control but randomly distributed syllable types resembling random but
canonical babbling (Oller & Lynch 1992). The distribution of syllables will initially reflect the natural con-
straints of vocal tract anatomy, showing a wide variety of vowels and stop consonants. But after a time, the
distribution of syllables will start to approximate the distribution of syllables in “parental” stimuli, resem-
bling the process of accommodation which occurs in infant babble (Vihman et al. 1986).
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Chapter 9 Explaining Developmental Psycholinguistic
Data

Results of simulations with HABLAR conducted to date demonstrate the faithfulness of its audi-
tory perception, the feasibility of articulatory control in many dimensions, and the effectiveness of inte-
grating auditory perception and articulatory control modules. It will take time to systematically and
exhaustively test the model’s fidelity with respect to developmental phenomena. A methodology for this
task is presented in Chapter 10 (see Section 10.1). In the meantime, it is reasonable to ask if the model can
plausibly simulate or explain developmental phenomena. In this chapter, we examine HABLAR’s proper-
ties and explore the model’s qualitative explanations of developmental phenomena. We also identify its
weaknesses and how they might be corrected.

9.1   HABLAR’s properties which contribute to observed phenomena

In the introductory chapters, we drew from observations of phonological phenomena a number of
key abstractions which constrain HABLAR’s design. These include the assumption that some veridical
learned representation of speech underlies children’s pronunciation. This representation classifies local,
static, contextual, and dynamical acoustic features in a way which captures the phonetic similarities among
sounds and their relative order. Associative, stochastic mechanisms are assumed to link this internal repre-
sentation of target sounds and their articulation. Anatomical constraints and motor skill are assumed to
play a central role in the evolution of the model’s phonological competence. Finally, the dual composi-
tional and articulatory character of speech motivate the model’s form of hierarchical motor control.

Having built HABLAR based on these constraints, we now seek to identify the model’s emergent
properties, how its components behave and interact as implemented, and how these characteristics explain
developmental phenomena. Lacking exhaustive simulations, we hypothesize how the integrated model will
behave based on observations of partial simulations, architectural relationships among model components,
and known properties of connectionist learning systems and other mechanisms used in HABLAR’s con-
struction. We expect that several mechanisms contribute to each behavioral pattern. For example, anatomi-
cal constraints, acoustic properties, proprioceptive cues, and properties of the model’s learning algorithms
all contribute in various ways to substitution errors. Some mechanisms seem to contribute to multiple phe-
nomena. Rather than explaining them repeatedly, we summarize them in this section. The following sec-
tions then explain key data using these and other model properties.

9.1.1   Effects of articulatory mechanisms

Some sounds are more difficult to make than others. In HABLAR this is expressed as the relative
likelihood of generating each sound, which is a function of several mechanisms: anatomical, acoustic, and
aerodynamic constraints, the sound’s articulatory complexity, and the availability of proprioceptive cues.
For example, a fricative occurs only within a small range of vocal tract configurations and requires more
precise control of articulatory motion than a related stop consonant. The probability of generating each
sound is also a function of articulatory controller weights and other parameters (e.g., Boltzmann distribu-
tion temperature). At the beginning of training, the weights of each articulatory controller are randomly
initialized and temperature is high, leading to a distribution of sounds which reflect on average the priors of
anatomy, acoustics, and aerodynamics. These factors continue to bias the distribution of speech sounds and
contribute to sound substitutions even after weights have been shaped by training.
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Proprioceptive feedback includes information about past tactile and respiratory events. However,
memory of such past states is limited. Consequently, the articulatory controller’s ability to distinguish
between states distant in time but otherwise alike in proprioceptive feedback — hence its ability to distin-
guish between different sequences of articulatory events — is also limited. Given the articulatory control-
ler’s closed-loop control, one likely result is repetitive articulatory motion, including reduplicative babble,
a result observed in some preliminary simulations (see Section 8.1.3).

9.1.2   Effects of stochastic gradient descent learning algorithms

HABLAR assumes only scalar rewards and costs. Without a signed error vector, the model relies
on stochastic reinforcement learning methods to evaluate the relative utility of different actions and to cor-
rect its utility estimates based on reinforcement signals it observes. After an action is taken, each controller
incrementally changes weights to reduce its error in predicting future rewards. Errors are reduced in the
direction of greatest error reduction, i.e., in the direction of the error gradient, or equivalently in the direc-
tion of incrementally greater rewards. In order to explore the consequences of all actions, suboptimal
actions are sometimes chosen, although actions which are expected to maximize future rewards are more
likely to be selected (see Section 7.6).

Thus, each controller engages in a form of stochastic gradient descent learning. At each control
level there is a gradual, stochastic approximation of target pronunciations. The gradient descent character
of the process ensures that the biggest errors get eliminated first. The stochastic character of the process
ensures individual behavioral differences. It also results in trial-to-trial behavioral differences which are
observed as phonetic variation when they occur at the articulatory control level and as compositional alter-
nation when they occur at the phonological control level (see Section 2.7).

Pronunciation errors and substitutions are in part a function of articulatory difficulties in producing
various sounds, initially inaccurate estimates of future rewards, the gradual correction of estimated utili-
ties, and random suboptimal actions.

9.1.3   Effects of the phonological controller’s associative architecture

The phonological controller’s associative mapping of phonetic targets to articulatory sequences is
subject to generalization across phonetic similarities. This derives from two sources: (1) basic generaliza-
tion properties of its neural network implementation, and (2) phonetic similarities captured in target sound
representations formed by auditory perception. These properties contribute to the phonological composi-
tionality of the model’s utterances (Section 2.3.1), but it also ensures overgeneralization errors
(Section 2.5). Associative models are also subject to overtraining and memorization, contributing to the
inertia observed when particularly old pronunciation patterns resist change (Section2.5).

9.1.4   Effects of external and internal phonetic features

All phonetic features in a syllabic target are present in the target phonetic representation, and all
are present as inputs to the phonological controller. Hence, all affect the output. This makes possible phe-
nomena in which the target word’s component sounds get rearranged or transposed (e.g., metathesis) and
in which non-contiguous target sounds affect each other (e.g., consonant harmony: see Section 2.4). Con-
textual features in the representation also contribute to context sensitive errors (see Section2.2).

Internal subsymbolic cues learned gradually from the associative mapping between phonetic fea-
tures and articulatory events govern utterances more directly than features in the target word’s phonetic
representation. In isolation, a target sound’s phonetic features have no articulatory significance, only
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acoustic and statistical distinctiveness. The articulatory significance of phonetic patterns must be learned.
This is the role of the phonological controller as it learns which articulatory controller is most likely to
generate each target sound. As it does so, it develops weights which encode phonetic-articulatory relation-
ships and internal distributed representations (expressed as activation patterns of its hidden units) which
signify the articulatory determinants of the phonetic target.

The subsymbolic, distributed nature of these internal cues and the incremental manner with which
they are learned contribute to irregularities in developing speech (Section 2.6). It also contributes to the
systematicity of pronunciation patterns and errors, especially the systematicity of context sensitive patterns
such as consonant harmony (see Section 9.2.6, below).

9.1.5   Effects of the phonological controller’s model of speech sounds

HABLAR differs from simple articulatory skill models (Section 3.4) by its introduction of a pho-
nological control level between auditory perception and articulatory control. Superficially, it seems to pos-
sess some attributes of abstract phonological models (Section 3.3), composing phonological patterns from
elemental phonetic units. From a somewhat different perspective, it seems to function as a sequential gat-
ing mechanism, selecting the sequence of articulatory controllers best suited to generate a target sound. But
its role is more abstract, involving more than motor control. Together with articulatory controllers, the pho-
nological controller builds a statistical model of the likelihood with which each articulatory controller gen-
erates some sound. This statistical model is absolutely fundamental to HABLAR’s behavior. It serves the
same function as an inverse model. Substitutions occur when the statistical model is wrong. Changes con-
tribute to the evolving phonetic characteristics of babble and speech. It may also explain the direct percep-
tion of articulatory gestures (Fowler & Rosenblum 1991) and the apparent gestural character of speech
perception (Liberman & Mattingly 1985; see Section 9.4.1). It resembles a statistical mixture model.

A statistical mixture model is a set of statistical distributions whose parameters may be adjusted to
simulate a set of environmental observations, especially observations whose values are clustered into
groups. An example is the Gaussian mixture model (Nowlan 1991a,b), which is used by HABLAR’s audi-
tory perception to categorize static and dynamic spectra (see Section 6.2.5 and Figure 6.2). A Gaussian
mixture model’s goal is to simulate a set of observations with not one but many Gaussian distributions.
Given an observation it determines which of several Gaussians is most likely to have generated it, calculat-
ing the conditional probabilities for each. The mixture model is updated by incrementally changing the
means and variances of each Gaussian in proportion to the likelihood that it generated the observation.

In HABLAR, articulatory controllers correspond to the statistical mixture’s multiple distributions.
Each target utterance corresponds to an “observation.” The phonological controller estimates the likeli-
hood with which each articulatory controller (distribution) generated the target utterance (the observation).
This is pictured in Figure 9.1. Each possible sound is produced with some probability by each articulatory
controller (as shown schematically in the top portion of the figure). Given a target utterance, the phonolog-
ical controller asks which articulatory controller is likely to have generated it — not by computing condi-
tional probabilities directly, but indirectly by computing the Boltzmann distribution over its Q-values per
Equations (7.7) and (7.4). The Boltzmann distribution is the mechanism by which a Q-agent chooses an
action and experiments with optimal and suboptimal choices. Having been chosen according to this distri-
bution, an articulatory controller becomes active and its behavior is observed. Unlike a Gaussian mixture
model, there is no simple “mean” and “variance” to adjust. The articulatory controllers’ parameters are
updated indirectly by reinforcement learning. The chosen articulatory controller’s “mean” sound stochasti-
cally and incrementally moves closer to the target sound (as shown in the figure). The phonological con-
troller adjusts its model of articulatory controller behavior, too.



83

9.1.6   Other effects of computational mechanisms

A number of other computational attributes affect HABLAR’s behavior. The nonstationary envi-
ronment observed by the phonological controller and the computational complexity of hierarchical motor
control contributes to the difficulty of learning phonological control. On the other hand, excess articulatory
degrees-of-freedom together with the wide acoustic latitude afforded sounds in each phonetic category by
HABLAR’s categorical perception make possible a wide range of articulatory solutions for each target
sound.

9.2   Qualitative Explanations and Predictions

Having characterized key mechanisms which contribute to pronunciation errors, we now explore
several specific phenomena in more detail, showing how these mechanisms and their properties interact to
generate observed behavior.

9.2.1   The phonetic characteristics of babble

Children’s earliest babble shows a universal preference for sounds which do not necessarily match
the statistics of adult speech (e.g., Kent & Bauer 1985, Locke 1983, Oller et al. 1976). As time progresses,
these trends give way to preferences more closely resembling parental models, showing less variance and
higher correlations among subjects in the same linguistic community (de Boysson-Bardies et al. 1992, de
Boysson-Bardies & Vihman 1991, Vihman et al. 1986, Whalen et al. 1991).

HABLAR’s explanation draws on three principal factors: the relative difficulty and likelihood of
producing various sounds, evolving articulatory controller skills, and the phonological controller’s evolv-
ing map between phonetic targets and articulatory events.

We assume that speech targets drawn from imitation and lexical memory reflect the distribution of
sounds in the environment. Motor skill limits the sounds actually generated. With minimal experience, the
distribution of sounds generated by articulatory controllers will show high variance and will reflect relative
articulatory difficulty (and contributing factors such as anatomical and acoustic constraints, articulatory
degrees of freedom, and proprioceptive cues) rather than linguistic constraints. Likewise, the phonological
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Target phonetic pattern

Change articulatory controller 2’s parameters to
move its expected sound closer to target

Sounds produced by articulatory controllers

Sounds observed in environment

Figure 9.1   A statistical mixture model of the linguistic environment
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controller’s estimate of articulatory controllers matched with target sounds will reflect this. However, with
greater experience and guided by rewards which favor phonetic targets perceived in the linguistic environ-
ment, articulatory controller behavior narrows and comes to reflect linguistic requirements. Also, the pho-
nological controller will more accurately model the mapping between target sounds and articulatory
controller capabilities. This merely restates the process which occurs as HABLAR’s motor control builds a
statistical mixture model of linguistically relevant targets (see Section 9.1.5). These factors ensure that
vowels, nasals, glottal stops, and primitive stop-vowel syllables will occur most frequently in early
HABLAR utterances, precisely the vocalizations most frequent in early babble.

We have not yet completely assessed the characteristics of HABLAR’s babble, but a crude com-
parison suggests that its initial behavior parallels early babbling by children, governed more by anatomical
constraints than by the linguistic environment. Table 9.1 tabulates HABLAR’s vocal tract constrictions by
place-of-articulation during the first 100 trials of 40 simulations. It also tabulates the distribution of stop-
consonant places-of-articulation observed in infant babble before any active vocabulary has been acquired
(Vihman et al. 1986). The two distributions are qualitatively alike. Differences from human data are
unavoidable, since HABLAR’s anatomical and other constraints do not precisely match those of an infant.
The table reports percent at each place-of-articulation, with standard deviations in parentheses.

Table 9.1   Infant stop consonants vs. HABLAR vocal tract constrictions

9.2.2   Sound substitution

Perhaps the most characteristic pronunciation error is children’s substitution of a target sound with
a phonetically similar but easier to pronounce sound: fricatives with stops, liquids with glides, voiceless
word-initial consonants with voiced consonants (see Section 2.1).

In HABLAR, producing some sounds is more probable than others due to the anatomic, acoustic,
and aerodynamic constraints and their interaction, relative articulatory complexity, and proprioceptive cues
available to guide articulatory control (see Section 9.1.1). For example, compared with fricatives, stop con-
sonants require less precise control, rely on fewer, clearer proprioceptive cues, and can take greater advan-
tage of the vocal tract’s excess degrees-of-freedom. Until mastered, the likelihood of accurately rendering
a fricative is lower than that of a phonetically similar stop consonant.

When choosing between two pronunciations (e.g., [T] vs. [t]), the phonological controller’s choice
of articulatory controller depends on reward probabilities. It will weigh the much higher probability of
receiving a somewhat lower reward (e.g., substituting a reliably produced [t] for the target sound [T])
against the much lower probability of receiving a higher reward (e.g., choosing an articulatory specialist
which may produce [T], but unreliably). This is illustrated in Figure 9.4.

Hence, HABLAR will usually substitute a less accurate sound (e.g., pronouncingthank [T&Nk] as
“tank” [t&Nk]) or omit a sound segment if the estimatednet reward for the resulting utterance is higher.
Recall that the phonological controller is rewarded based on the accuracy of thewhole word, as determined
by the phonetic distance between target and actual words. The phonetic distance betweenthank andtank is
small, as their representations differ only in the type of onset segment detected in each word (e.g., static fri-
cative vs. burst segments). Even their spectral onsets (e.g., [T&] vs. [t&]) are similar.

Subject Labial Dental Velar
Infants during babble (when active

vocabulary is 0 words)
44% (26) 43% (26) 13% (9)

HABLAR (during 1st 100 trials, aver-
age of 40 simulations)

34% (11) 35% (12) 23% (12)
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9.2.3   Sound competition

As error patterns change, they give way to newer errors or accurate, adult-like pronunciations.
Often they do so only gradually. During this period old and new patterns compete. Contributing are the
same mechanisms which underlie sound substitution, plus HABLAR’s gradual, stochastic approximation
of target pronunciations (see Section 9.1.2).

The model always computes the relative likelihoods that different actions produce the target
sound. Often the relative likelihood of one sequence of actions will greatly surpass all others. If not, how-
ever, the actions and their phonetic consequences will compete. More technically, the likelihood of each
action’s generating a sound is explicitly determined by computing the Boltzmann distribution over the Q-
values for all possible actions. If the Q-values of two actions are equal, they and their subsequent trajecto-
ries are equiprobable.

Actions may compete at the articulatory or phonological control levels. The phonological control-
ler is responsible for alternation of larger chunks of sound whose specific articulatory details have been
mastered (e.g., Daniel’s harmony patterns, see Table 2.4 on page 11). Phonetic variation of yet unmastered
sound segments is the responsibility of the articulatory controller, although phonetic variation and compo-
sitional alternation may often overlap.

Linguistically, is this form of competition among sounds free variation or alternation? In adult
phonology, alternation denotes the relationship that exists among alternative forms or variants (Crystal
1985), conditioned on some phonetic, morphological, or grammatical context. According to HABLAR’s
account, the variation is statistically conditioned on subsymbolic features in phonetic context; hence, it is
alternation.

9.2.4   Voicing contrast

Macken & Barton (1979) analyze the acquisition of the voicing contrast in considerable detail for
4 children between 18 to 25 months, based not only on longitudinal phonetic transcriptions but acoustic
measurements of voice onset time (VOT) as well. They identify three overall stages: (1) no contrast, (2)

Probability distribution for “stop consonant controller”

Target phonetic pattern

Environmental sounds

Probability that articulatory
controller will generate a
soundwithin a given pho-

netic distance of each target
sound.

Figure 9.2   Sound substitution

Substitution occurs when the likelihood of reward due to an inaccurate sound exceeds likelihood
of reward due to an accurate sound. Probability distributions portray the likelihood of generating a
sound within some phonetic tolerance of the target.

Probability distribution for “fricative” controller

[T][t]
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apparent acoustic contrast but not consistently perceptible to adults, and (3) contrast which resembles adult
speech. Stage two is characterized by a gradual statistical approximation of adult VOT. Thus, children
seem to recognize the contrast even if they have not yet mastered it in speech production. This observation
supports HABLAR’s assumption that a veridical representation of target sounds underlies children’s
speech. The observed gradual statistical approximation of adult VOT is what would be expected from
HABLAR’s stochastic gradient descent.

The shift between stages two and three is abrupt. Early in stage three, aspiration (which is neces-
sary to achieve target VOT durations) is employed for voiceless stops for the first time, but mean VOT
greatly exceeds mean adult VOT, and VOT distributions are relatively uniform. Only later in stage three do
VOT distributions more closely approximate the adult target. When aspiration is first introduced, it is as if
there were no information about the magnitude of error correction needed to achieve the target VOT. The
pattern seems plausible for a learning paradigm in which articulatory innovations are introduced by ran-
dom experimentation and in which there is no signed error vector. Certainly, however, this conjecture must
be confirmed by simulation.

9.2.5   Context sensitive generalization

Children’s pronunciation errors are special because of their context sensitivity (see Section 2.2)
and because of the approximately lawful relationship between target and actual utterances (Section 2.3).
Many such errors emerge when newly learned sounds (often accurate at first) are overgeneralized to inap-
propriate lexical contexts. For example (see Section 2.5), Daniel started to use word-initial nasals inno-
cently enough in his nearly correct pronunciation ofmoon [mun, mum], but then inappropriately applied
initial nasals tobroom, mug, going, spoon, andprune (Menn 1971, unpublished data).

In HABLAR, the phonological controller generalizes by producing similar articulatory patterns in
response to similar phonetic representations. Phonetic representations tend to be similar for acoustically
similar words. Moreover, the phonological controller’s input spans the whole target syllable, and phonetic
features capture the coarticulation of contiguous sounds. Thus, HABLAR’s generalization patterns are
expected to be context sensitive in ways which differ from adult phonotactic rules and in ways which
resemble child-like context sensitive errors. For example, in adult targets, the vowel preceding a nasal is
also nasalized (e.g.,tune [t n]). In HABLAR, the nasalized vowel will affect the phonetic representation
of the onset demisyllable (e.g., [t ]) in consonant-vowel-nasal targets. This may cause the target’s initial
consonant to be pronounced as a nasal instead of an oral stop, explaining some forms of consonant har-
mony as in the example above (see also Levelt 1994).

9.2.6   Consonant harmony

Consonant harmony is one of the more dramatic types of context sensitive errors. It often cannot
be explained by the model’s tendency to capture the contextual phonetic properties of contiguous sounds,
nor by any other single factor. Instead, a plausible story emerges from contributions of two factors: the
behavior of HABLAR’s gradient descent learning mechanisms and the uneven rate with which the phono-
logical controller learns the articulatory correlates of phonetic features in its input.

This story is best told by an example: the substitution ofguck [gAkh] for duck [dAkh]. The rele-
vant mechanisms and their interaction are illustrated in Figure 9.3. The top portion of the figure portrays
the phonetic features activated by the target utterance [dAkh]. Highlighted are the most salient groups of
phonetic features, those which act as cues for syllable shape and place-of-articulation. Phonological con-
troller mechanisms are explained in the middle portion of the figure. The bottom portion displays the pho-
netic features of the actual utterance. Details of articulatory controllers are omitted.

ũ
ũ
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Actual phonetic representation:
guck [gAkh]

Phonetic cue for
alveolar release

0 P T S X 00P 0PT PTS TST ST0 T0X dA A Ag g6

Phonetic cues for
CVC syllable

Phonetic cues for
velar closureand

release

Based oninternal velar cues, phonological controller selects
articulatory controllers specialized in velar closure.

0 P T S X 00P 0PT PTS TST ST0 T0X gA A Ag g6

Gradient descent reduces biggest sources of error first. Only 1 feature wrong.
Smaller reward, but reward nonetheless. This remains a stable form unless

there is a more accurate competing form.

Internal cues for
velar closure and release

Internal cues for
stop-vowel-stop syllable

Estimate of most likely articulatory controllers to
generate target sound perinternal cues

Figure 9.3   Consonant harmony — howduck becomesguck

Target phonetic representation:duck [dAkh]

Phonological Controller

Weights encode the articulatory significance of phonetic features

Chosen Articulatory Controllers
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HABLAR’s gradient descent based learning algorithms tend to eliminate the biggest sources of
error first (see Section 9.1.2). The phonetic representation of an utterance affected by consonant harmony
often differs by a single featurefrom the accurate target representation and is much closer to the target than
many other possible pronunciations. For example, the representation ofguck differs by only one feature
from the targetduck (e.g., [gA] vs. [dA]). Table 9.2 summarizes the squared Euclidean distances between
the target and various CV and CVC forms (assigning a feature activation of 1.0 for each segmental and
spectral feature).Guck is closer toduck than virtually any other form.

Table 9.2   Phonetic distance between target and various pronunciations

Unfortunately, other sounds are just as close to the target as the harmonic form, or nearly so (e.g.,
[bAkh, dAth, dikh]). Moreover, phonetic distance does not distinguish consonant harmony from simple
forms of substitution.Guck is the same phonetic distance fromduck whether [g] replaces the adult /d/ in all
contexts or only when followed by a word-final velar. Recall that harmony’s presence is betrayed by its
systematic context sensitive distribution, not by individual words. Daniel’sguck is considered consonant
harmony and not simple substitution because open /dV/ syllables are pronounced accurately (e.g.,tea [di])
but [g] replaces initial consonants in all velar-final forms regardless of the initial consonant (Menn 1971).

Context sensitivity is the distinguishing property of consonant harmony. Non-contiguous sounds
in the target affect each other in the child’s output. The final velar induck or book colors the place-of-artic-
ulation of initial alveolar or labial consonants. We must look for mechanisms by which this occurs. We
argued in Section 9.1.4 that the model’s whole-syllable phonetic representation enables the rearrangement
or assimilation of sounds and other context sensitive effects. Certainly, that is the case here. Theentire tar-
get phonetic representation andall its phonetic features are present in the input to the phonological control-
ler (as shown at the top of Figure 9.3). It contains cues for the onset’s alveolar release [dA], the coda’s
velar closure [Ag] and velar release [g6]. Unfortunately, this is necessary but not sufficient to cause the
systematic occurrence of consonant harmony observed in some children (Menn 1971, Smith 1973, Vihman
1978; see Section 2.4). A mechanism is needed by which harmony is generalized in the right contexts.

A complete account requires an understanding of the mapping performed by the phonological con-
troller. Its input is the activation pattern of all phonetic features detected in the target syllable, including
those associated with the initial and final consonants. However, phonetic features only encode the distinc-
tiveness of sounds, not their articulatory correlates. Articulatory correlates are acquired only when the pho-
nological controller learns which articulatory controller is best suited to generate the target sound.
Articulatory correlates are therefore encoded in the phonological controller’s weights. This mapping is
learned gradually. It is quite possible at some intermediate stage while learning the complicated mappings
of consonant-vowel-consonant syllables, that the phonological controller encodes the articulatory corre-
lates of some but not all phonetic features in the input. It might ignore the place-of-articulation of one con-
sonant but not another, yet accurately encode the basic shape of the syllable.

Alternative forms for duck Square distance from target
dAkh (target) 0
gAkh, bAkh 2
dikh, dAth 4
dA, dAx, gAg 8
dAd 9
bA, dAn, dAN, gA 10
nAkh 11
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Indeed, there is no guarantee that all articulatory correlates of the input’s phonetic features will be
learned at the same time. Properties of the phonological controller’s gradient descent learning algorithm
imply just the opposite — that the biggest sources of error will be eliminated first. For example, phonetic
features induck which signify the overall syllable shape far outweigh features implying place-of-articula-
tion. Triads TST, ST0, and T0X and the simultaneous presence of dynamic spectra [dA], [Ag], and [g6]
distinguish the target’s CVC shape from the shape of a simple CV syllable. The phonological controller’s
learning algorithm is likely to solve the problem of syllabic shape first, even at the expense of some pho-
netic details like place-of-articulation.

In our example, the phonological controller might learn the articulatory correlates of [Ag] and [g6]
phonetic features: velar closure and release. It might also learn that two vocal tract closures and one stop
consonant release are implied when PST, TST, ST0, and T0X prosodic triads are in the target’s phonetic
representation. However, it might not immediately or completely learn the alveolar articulatory correlates
of the other dynamic spectral cue, [dA]. Thus, the activation of velar and stop-vowel-stop phonetic cues
would far outweigh the single phonetic cue for the syllable’s alveolar onset, affecting the choice of articu-
latory controllers. In contrast, if no velar phonetic cue were present in the target word (e.g., Daniel’stea),
then alveolar cues would not be outweighed by velar cues, and the word would be accurately rendered.

Finally, the model’s hidden unit weights encode the articulatory significance of phonetic features
in the target utterance. This enables generalization of consonant harmony to other stop-vowel-stop, velar-
final targets. Thus,guck is pronounced instead of the targetduck, gook [gUk] for book, gink [gInk] for
drink, and so on (Menn 1971).

The model makes some tentative predictions about consonant harmony: its stability, the possible
effect of unrelated phonetic cues, and the relative frequency of progressive and regressive harmony.

Depending on the model’s tolerance for error, a harmonic form will obtain a smaller reward, but a
reward nonetheless. It will remain stable unless there is a more accurate competing form. There is no sys-
tematic developmental evidence in support of this conjecture, but some anecdotal evidence exists. For
example, Daniel’s velar harmony lasted for nearly a year before competing forms appeared (Menn 1971,
unpublished data). Once introduced, however, the accurate competing forms quickly became dominant and
velar harmony disappeared (Menn unpublished data, see Table 2.4 on page 11).

According to this account, output forms are a function of all phonetic input cues. Thus, consonant
harmony may be conditioned on the presence or absence of other seemingly irrelevant phonetic features in
the target word, including vocalic context. Although such effects will be idiosyncratic, we find several
well-analyzed cases to support this contention. Amahl harmonizes nasals and continuants but not stops
(Smith 1973). Daniel does not always harmonize consonants for place-of-articulation if one consonant or
the other is nasal (Menn 1971, unpublished data). For a number of children learning Dutch (Levelt 1994),
consonant harmony appears to be conditioned on the vowel between the consonants.

The role of gradient descent learning in this account suggests that harmony is more likely between
phonetically similar segments (i.e., segments which differ by only one feature). Otherwise, the distance
between target and harmonized form would be greater. This is indirectly supported by Vihman’s (1978)
finding that full harmony (assimilation of all features) is more frequent than partial harmony. Also, Daniel
harmonizes place-of-articulation among consonants which differ only in place or perhaps voicing (Menn
1971). However, some of these observations may be explained by other influences. For example, fricatives
may be entirely deleted and thus not come under the influence of consonant harmony.

HABLAR also makes a weak prediction with regard to the relative frequency of progressive and
regressive harmony for C1VC2

h and C1VC2V... target words. Onset consonants typically only have a single
phonetic cue, the onset transition (C1V). Medial and coda consonants have multiple cues: the transition
during closure (VC2) and the transition during release for coda consonants (C2

h) or the transition into the
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following vowel for medial consonants (C2V). Holding other factors constant, multiple spectral cues may
give coda and medial consonants an edge in developing articulatory associations. This should favor the
occurrence of regressive consonant harmony. Of course, other factors, particularly the relative salience of
onset transitions, coda transitions, and consonant releases, the strength of medial syllables, morphophone-
mic influences, and adult phonotactics all affect the strength of these cues. Vihman’s (1978) analysis sup-
ports the prediction. However, the analysis is a compilation of several longitudinal studies without controls
for linguistic environment and without methodological consistency among the studies compiled.

Surely, this section on consonant harmony is speculative, and its conjectures have not yet been
demonstrated with quantitative simulations. A evaluative methodology is summarized in Chapter 10. More
generally, HABLAR offers an experimental paradigm with which to make testable predictions about con-
sonant harmony and other phenomena for specific linguistic environments and specific language-learner
strategies. It should be possible, for example, to test the effect of articulatory patterns favored during bab-
ble. Menn (1983) suggests that differences in tolerance for phonetic inaccuracy may influence the types of
errors children encounter. This too should be experimentally testable.

9.2.7   Pronunciation difficulties and learning strategies

Children use an amazing array of strategies in learning how to pronounce words, differing in their
phonetic preferences, tolerance for error, and developmental paths (Menn 1983, Vihman 1993). What is the
ideal strategy? Perhaps an analytic, gradual approach which avoids targets too distant from already-mas-
tered sounds and which deliberately paces the increase in target complexity.

To our knowledge, no definitive studies have been conducted of the efficacy of different acquisi-
tion strategies, but in a reanalysis of several children’s data, Peters (1977) observes that children with an
“analytic” or “referential” strategy, who limit their early utterances to single words (or perhaps a subset
thereof), are easier to understand. Children with “global” or “gestalt” strategies, who attempt multisyllabic
words or whole phrases and sentences prematurely, are difficult to understand and show much more pho-
netic variation. She terms this latter style of speech “mushmouth.”

Observation of children prematurely attempting to master individual complex targets reveals simi-
lar difficulties. One of Jacob’s first words isthankyou. He used it to request objects or assistance before
mastering its component sounds. Jacob experiments with an untold number of variations for six months
before finally giving up, never once accurately rendering the complex utterance (Menn data 1976). Some
features match the target. Attempts usually have two-syllables with dental and velar consonants. First syl-
lable vowels are typically front, but second syllable vowels are back or central and range between middle
and high. However, the sequence, voicing, and manner of consonants are never mastered. For example,
Jacob experimented with all possible dental and velar consonant sequences [deigA, dido, d&tA, geigu,
gigo, gi:do]. Figure 9.4 summarizesthankyou’s place-of-articulation variation between 12 and 18 months.

Initial difficulties in mastering elementary sounds may in part explain the long period of seemingly
aimless babbling which children pursue. It appears not to be goal-directed because the untrained adult
observer cannot divine a purpose other than play. Yet, it moves forward, statistically approximating adult
phonetic properties more and more with age (e.g., Vihman et al. 1986, de Boysson-Bardies et al. 1992).

Such difficulties may be comparable to those faced by HABLAR’s motor control architecture.
Mastering speech is a hard problem because of its many articulatory and temporal degrees of freedom.
HABLAR’s hierarchical control architecture attempts to simplify it by introducing constraints and struc-
ture not present in a simpler articulatory skill model. However, hierarchical reinforcement learning is com-
putationally hard despite the advantages of its divide-and-conquer strategy (Singh 1992d), even with
HABLAR’s added constraints and safeguards (see Section 7.4). For example, articulatory controllers’
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expected behaviors change over time as they learn their specialized subtasks. Thus, the phonological con-
troller’s environment (which includes unstable articulatory controllers) is not stationary. Motor learning
must also overcome the combinatorial complexity of simultaneous exploration at two control levels.
Indeed, there do not appear to be any principled methods for reducing the difficulties of hierarchical rein-
forcement learning (Singh, personal communication).

As result of these considerations, HABLAR postulates a set of heuristic bootstrapping strategies
which roughly correspond to analytic strategies which children employ (see Section 7.4.7). Based on rein-
forcement and supervised learning simulations in a variety of compositional domains (e.g., Elman 1993,
Singh 1992a-c, Tham & Prager 1994), the model is predicted to have rough going if it does not use a strat-
egy which effectively paces development. Section 10.1.5 describes a methodology to test this conjecture.

9.2.8   Emergence of phonological awareness

Children’s speech perception is organized around the syllable and encodes dynamic properties
which appear to correspond to articulatory gestures (see Section 2.8.3). Their speech production is thought
to be organized at first around articulatory gestures, not phoneme-sized segments (Goodell & Studdert-
Kennedy 1993, Nittrouer et al. 1989, Piroli 1991; see Section 5.2), and their pronunciation errors reveal
suprasegmental and even suprasyllabic patterns in which non-contiguous sounds regularly affect each
other (see Section 2.4). However, children’s phonological structure shows a transition from whole-word to
syllabic to segmental organization as development proceeds (Macken 1979, Nittrouer et al. 1989, Vihman
& Velleman 1989). Most children come to organize their speech in phoneme-sized units and become aware
of such units as revealed by phoneme awareness tasks.1 Such tasks require that phonemes be identified as
individual units (e.g., selecting the non-rhyming word from among a set of words which otherwise rhyme,
selecting the word whose initial consonant differs from others in a list). In normal children, phoneme
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Figure 9.4   Place-of-articulation variation in a complex morpheme

Variation relative proportion of dental-velar, dental-dental, velar-velar, and velar-dental consonant
sequences in Jacob’s attempts to pronouncethankyou, never converging on any solution. Not shown
are infrequent palatal sequences. Additional dimensions of variation (nasality, voicing, and vowel
quality) are not shown here.
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awareness precedes acquisition of reading and contributes to their ability to read. Children deficient in pho-
neme awareness are likely to be dyslexic (Lefly & Pennington 1995, Olson et al. 1994, Pennington et al.
1990, Wagner & Torgesen 1987). Paradoxically, children who are dyslexic or are at risk of developing dys-
lexia perform normally on phoneme perception (Lefly & Pennington 1995), as is generally measured by
testing the ability to imitate words and nonwords with and without noise (Brady et al. 1983).

No phonemes are explicitly represented in HABLAR. The model’s speech perception and produc-
tion are at first organized into syllable-sized and demisyllable-sized units. For example,duck’s phonetic
representation does not encode consonants as isolated segments, but as categories of spectral transitions
(e.g., [dA], [Ak], [kh]). Motor control may initially be organized much the same, with each articulatory
controller specialized to produce only a single demisyllable or even whole consonant-vowel-consonant
syllables (e.g., [dA], [kh], [dAk]). This is a rather inefficient motor encoding, requiring as many articula-
tory controllers as there are demisyllables, diphthongs, and stand-alone static sounds in the language (e.g.,
for English we estimate about 400 categories, ignoring the effects of noncontiguous coarticulation, and not
counting whole syllable types). Phonemic segmentation is more efficient than demisyllabic or syllabic seg-
mentation, requiring many fewer articulatory controllers to generate the same set of target sounds (e.g., the
number of phonemes in the language, ignoring the effects of coarticulation). Moreover, we hypothesize
that it is the most efficient specialization, since a phoneme-sized unit is the least common denominator
between the model’s acoustic segments and its articulatory gestures and hence is the minimum possible
temporal granularity of its motor control. The number of articulatory controllers is limited. Without phone-
mic segmentation, the system’s asymptotic performance will be lower.

We hypothesize that phoneme-sized units of speech production emerge after a gradual process of
differentiation as motor control and perception interact while learning a large vocabulary. Thus,duck
would become encoded as a sequence of consonants and vowels, (e.g., /d/, /A/, /k/, and the aspirated
release). This ideal segmentation into phoneme-sized articulatory schemata is portrayed in Figure7.3.
Issues of articulatory segmentation are also discussed in Section 7.3.2 and Section 7.3.4.

Phonemic segmentation should not be necessary for accurate imitation of relatively simple targets.
Without phonemic segmentation, HABLAR should not be deficient in phoneme perception as measured by
imitation tasks. Imitation requires only the accuratephonetic representation of target sounds and their artic-
ulatory interpretation by phonological and articulatory controllers, whether or not the latter are differenti-
ated into phoneme-sized units.

However, phoneme awareness tasks are more complicated than imitation. Not only is phonemic
segmentation required, but the results of such segmentation are used to solve a secondary task. Once artic-
ulatory controllers have become phonemically differentiated, HABLAR’s phonemic segmentation occurs
as a process of analysis-by-synthesis, in which the phonological controller activates a sequence of articula-
tory controllers when exposed to a target word. However, phoneme awareness requires that the results of
phonemic segmentation be stored in a secondary representation and then used to solve the secondary task.

Thus, HABLAR suggests three possible hypotheses that account for deficits in phoneme aware-
ness and possibly underlie developmental dyslexia. (1) Phonemic segmentation of motor control may not
emerge. (2) The secondary representation of phonemes identified in target words may be deficient. (3)
Both phonemic segmentation and secondary representation may be deficient. HABLAR also suggests two
possible accounts of phonemic segmentation deficits. Temporal processing deficits (e.g., Tallal et al. 1991)

1 Phonological awareness is not the same as phoneme-like perception. The former refers to the understanding that
words may be segmented into phoneme-sized units. The latter refers to the perceptual assimilation of sounds to
the nearest phonemic category.
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may prevent accurate phonemic decomposition of sounds by disrupting acoustic segmentation of sounds.
Alternatively, learning and generalization deficits may prevent the necessary differentiation of articulatory
controllers into consonant and vowel specialists. For example, in order for an articulatory controller origi-
nally specialized to generate /ka/ to become a vowel specialist, it must generalize the applicability of jaw
opening and tongue body lowering gestures to other subsyllabic contexts and boundary conditions. Demi-
syllables /ka/, /pa/, /ta/, and /ma/ contrast in the tactile feedback due to the location of articulator contact at
the beginning of the syllable, but they share other properties: articulator contact, positive oral air pressure,
no vibration, and relatively little motion.

9.3   Explanatory shortcomings due to HABLAR’s scope or design

Though it builds on a long tradition of research, this model is only a start, a crude approximation
of the computational principles which may ground phonological development. Several obvious shortcom-
ings are beyond the scope of this work but provide opportunities for future research.

9.3.1   Coarticulation and assimilation

There are two varieties of coarticulation. Anticipatory coarticulation involves the motion of a
vocal tract articulator prior to the sound for which it is required if it is not involved in the production of any
intervening sounds. Thus, the lips are usually rounded during /S/ inshoe in anticipation of the rounded
vowel. Perseveratory coarticulation involves the apparently unintentional effects of previous articulatory
events on currently produced sounds. Anticipatory coarticulation seems to be planned, but perseveration is
not (Whalen 1990).

Adult coarticulation and related forms of assimilation are not limited to neighboring phonemes but
may jump syllable and even word boundaries (see Durand 1990). One key example is vowel harmony, in
which two or more consecutive vowels share one or more distinctive features such as rounding or nasality
when separated by consonants which conform to language-specific rules.

A natural account of anticipatory coarticulation and forms of multisyllabic assimilation is incon-
sistent with HABLAR’s current design. While this is an acceptable simplification for a monosyllabic
model, it is a serious shortcoming of a more general model of phonological development or adult phonol-
ogy. The crucial weakness is the phonological controller’s exclusive activation of a single articulatory con-
troller at any one time. This localist articulatory representation requires a proliferation of articulatory
controllers to handle allophonic variations in different coarticulatory contexts. Several possible alternatives
(additional control layers, articulatory controllers with phonetic parameters) may violate computational
constraints.

Phonological theory struggles with the same question. Its solution is parallelism.The Sound Pat-
tern of English proposes splitting phonemes into distinctive features (Chomsky & Halle 1968). Autoseg-
mental phonology proposes decomposing syllable structure into tiers (Goldsmith 1990).

In HABLAR, each articulatory controller crucially depends on a set of parallel agents, each of
which independently manages an articulatory dimension. To accommodate anticipatory coarticulation, it
may be necessary to move some of the articulatory controller’s parallelism to the phonological control
level. It is an open question whether hierarchical and parallel decomposition may be so thoroughly inte-
grated, but it is certainly plausible. One possible decomposition is anatomical, dividing phonological con-
trol into seven subagents, one each for jaw, lips, tongue, hyoid, velum, glottis, and lungs. Articulatory
controllers would be specialized not only by phonetic task but also by articulator. If necessary, each would
distribute control of its domain among several subagents. For example, lip controllers would have sub-
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agents managing height and protrusion. Tongue controllers would manage tongue body angle and displace-
ment plus tongue tip angle and length in parallel.

9.3.2   Multisyllabic targets and utterances

HABLAR’s auditory perception faithfully represents only monosyllabic stimuli. This is suitable to
study the composition of many complex English single-syllable morphemes, but several barriers must be
overcome before it is adequate to study multisyllabic phenomena in English or any other language. The
principal change required of the articulatory system is control of pitch (i.e., fundamental frequency). To do
so involves introducing another articulatory degree of freedom (glottal tension), computation of fundamen-
tal frequency by the source model, and technical changes in gesture and articulatory controller implemen-
tation.

More serious extensions are required of the model’s auditory perception, including changes in the
form of phonetic representation to accommodate prosodic cues (pitch and stress, changes in pitch and
stress) and the relative order of syllables or demisyllables. HABLAR’s simple built-in Wickelfeature
encoding of relative segment order may need to give way to a better structured representation of syllable
shape or a self-organized process which discovers a structured representation.

It may be appropriate to organize the overall phonetic representation hierarchically, with a mor-
phemic level specifying prosodic structure and the relative order of syllables and a syllabic level which
resembles the present model’s phonetic representation. It is an open question whether such a reorganization
would entail a new level of hierarchical motor control.

9.3.3   Rapid adult speech

Adult speech is often too rapid to accommodate the phonetic feedback required by the phonologi-
cal controller. However, the model claims that undisturbed auditory feedback is necessary for executing
speech. Slightly delayed auditory feedback severely disrupts normal speech in humans (Black 1951, Hug-
gins 1964, Lee 1950). The worst disruption occurs for delays equal to about the average length of a sylla-
ble. Delay causes stuttering, slurring, repeated syllables, and intense frustration. However, these
experiments do not eliminate feedback; they mask feedback and introduce noise. On the other hand, mid-
utterance and even mid-phoneme self-corrections suggest the active monitoring of auditory feedback. In
any case, adult speech may have properties of both closed-loop and open-loop control.

HABLAR’s phonetic feedback is discrete and event-driven. During the interval between phonetic
events, continuous proprioceptive feedback governs the articulatory control level. Thus, the interaction of
phonological and articulatory control may account for some apparent off-line properties of speech.

Even so, adult speech may sometimes short-circuit explicit phonetic feedback. Likewise, adult
reaction times suggest short-circuiting explicit proprioceptive feedback (e.g., Evarts 1971, Higgens &
Angel 1970, Taylor & Birmingham 1948). Is it possible to do so without invalidating HABLAR’s princi-
ples of closed-loop control? A more complete model with predictive components that anticipate phonetic
and proprioceptive feedback achieves these goals and offers unexpected benefits.

Extending HABLAR with a predictive acoustic or phonetic component, has the effect of imple-
menting the articulatory loop proposed by the theory of phonological working memory (Baddeley 1986,
1992). Working memory related phenomena (Baddeley 1986) suggest that articulatory dynamics are
retained by the articulatory loop. Thus, we propose to insert a forward model of gestural dynamics and
vocal tract acoustics between articulatory controllers and early stages of auditory perception. HABLAR’s
superpositional phonetic representation or its short-term memory model act as the phonological store.
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As result, the model can engage in off-line babble and experimentation. It can also model observa-
tions that children with working memory deficiencies show deficits in the later stages of phonological
development (Gathercole & Baddeley 1990). Certainly, the simplifying assumptions we have made are
adequate for a model of early development, but the extensions suggested are attractive possibilities.

9.3.4   Articulatory limitations

HABLAR’s articulatory and acoustic realism is limited in several crucial ways. Even with the
addition of the source model, the articulatory synthesizer (Rubin et al. 1981) has weaknesses which limit
the utterances the model can attempt, and its anatomical constraints do not always match human anatomy.
For example, accurate production of liquids [l] and [r] requires a three-dimensional vocal tract model, but
the synthesizer is two-dimensional. In lieu thereof, it offers control parameters which cannot be fully inte-
grated with HABLAR’s gestural model. Jaw and lip motions are more highly constrained than in humans,
making it difficult to simulate labiodental [v] and [f] sounds. Furthermore, fricatives and aspiration are
unnatural.

Its greatest weakness is its inability to reconfigure the dimensions of the vocal tract to conform to a
child’s anatomy (e.g., Goldstein 1980). Thus, our model cannot address the difficult problem of perceptual
vocal tract normalization, which may be an important factor in early phonological development. Even if
the vocal tract were configurable, HABLAR does not incorporate a model of vocal tract normalization (but
see Hodge 1989).

The articulatory controller’s use of Q-learning limits it to discrete choices among gestural targets.
Continuous variation among targets would be more natural. An alternative control strategy which retains
the articulatory controller’s parallelism would employ a many-actor, single-critic (e.g., Tham & Prager
1993) Adaptive Heuristic Critic architecture but would implement actors with Williams’ (1992) Gaussian
REINFORCE algorithm.

9.4   HABLAR and phonetic speech perception

In many ways, auditory perception is the key to HABLAR’s sensorimotor integration. It defines
the representational form and contents of utterances. Its phonetic representation defines dimensions of pho-
netic similarity and acts as the foundation for generalization and compositionality. Acoustic segmentation
provides the event-driven timing needed for hierarchical motor control. Acoustic segmentation and pho-
netic categorization define the abstract state space employed by hierarchical motor control. Reinforcement
signals which guide motor learning depend on phonetic representations of the target utterance and auditory
feedback.

Despite this central role, HABLAR is designed to test patterns of speech production, not to test
auditory or phonetic perception. Still, HABLAR offers explanations of perceptual phenomena. It models
the categorical perception of speech which develops during infancy (Section 6.4.5). With appropriate
extensions and methodology, we believe it will explain the emergence of phonological awareness
(Section 9.2.8). In this section, we explore how it might explain other high-level perceptual phenomena,
and in particular how its account compares with the motor theory of speech (e.g., Liberman & Mattingly
1985) and the theory of direct perception (e.g., Fowler & Rosenblum 1991).

9.4.1   Motor and direct perception theories of speech perception

The basic question addressed by motor and direct perception theories of speech perception is the
problem of invariant perceptual cues. It is observed that the same static acoustic cue often gives rise to dif-
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ferent percepts in different contexts, but different cues often give rise to the same percept in different con-
texts. Attempts to identify invariant static cues which underlie speech perception have failed; dynamic
acoustic cues seem to be essential instead (see Section 2.8.3). Motor and direct perception theories each
argue that what is invariant are linguistically organized phonetic gestures, not instrumentally observable
acoustic events and not individually observable motor events. They contend that gestures are perceived
directly, not mediated by prior stages of acoustic and phonetic analysis proposed by process-oriented cog-
nitive models (e.g., Sawusch 1986). It is here, however, that the motor theory and the theory of direct per-
ception diverge.

Motor theory (Liberman & Mattingly 1985) contends that both speech perception and speech pro-
duction draw on the same set of invariants, explaining the articulatory characteristics of speech perception.
For example, it claims that there is some abstract notion of “lip rounding” that underlies both the articula-
tory program to accomplish lip rounding and the perception of lip rounding. Thus, the link between percep-
tion and production is not learned but is some innate neural structure. It is claimed to be a privileged
speech perception module which enables the direct perception of articulatory gestures without intervening
auditory analysis (Liberman & Mattingly 1989).

On the other hand, the theory of direct perception (Fowler & Rosenblum 1991) contends that the
perception of distal events is not mediated by motor systems or any component shared with the motor con-
trol of speech. It rejects the notion of a privileged, special, or closed module. Instead, it takes the Gibsonian
stance that all perception is direct (Gibson 1966, 1979). Percepts are meaningful distal events. Proximal
signals (e.g., context-sensitive acoustic cues) are merely the medium of transmission. Phonetic gestures are
the distal events which are recovered by speech perception from proximal auditory stimulation. Further-
more, direct perception is able to unravel overlapping gestures whose acoustic signals are combined
(Fowler & Smith 1986, Fowler & Rosenblum 1991). For example, pitch conveys both linguistic and prag-
matic information. Despite the many determinants of absolute pitch (e.g., intonation gestures which stretch
the vocal folds, respiration, tongue motion which incidentally stretches the vocal folds), the listener unrav-
els and attributes variations on pitch to each source, accurately decoding linguistic (vowel height) and
pragmatic (intonation) information.

Neither theory offers further computational details of how direct perception occurs, of what infor-
mation present in the speech signal is used to recover the distal stimulus, or of how the distal stimulus is
recovered. In his commentary on the Fowler & Rosenblum paper, MacNeilage (1991) asserts that neither
motor theorists nor direct realists have adequately defined “phonetic gesture”, and that neither has
explained how gestures might underlie perception (since production always lags behind perception devel-
opmentally).

According to MacNeilage the direct perception assumption that there is no distinction between
surface (auditory) and underlying (phonetic) representations of speech sounds is unjustified. In this regard,
Sawusch (1986) reviews psychophysical evidence clearly showing perceptual effects due to distinct audi-
tory processes (such as selective adaptation) and phonetic processes (Ainsworth 1977, Sawusch & Jusczyk
1981, Sawusch & Nusbaum 1983).

9.4.2   Grounding the notion of direct perception

What computational process might ground the notion of direct perception, explain the articulatory
character of phonetic perception, yet acknowledge effects due to auditory processing? The resolution of
this dilemma is to observe that it is possible build a statistical mixture model of the environment which
learns its (possibly overlapping) invariant featuresby modeling the processes which generate them (Now-
lan 1991a,b; see Section 6.2.5).
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Assume that properties of phonetic events may be characterized not as one uniform distribution,
but as clusters of phonetically similar events, which can be described as a mixture of many distributions. A
statistical mixture model then assumes thateach cluster may be modeled by a separate parametric statisti-
cal model, and that the whole population of phonetic events may be modeled as a mixture of such paramet-
ric statistical models. More generally, since we are considering dynamic speech events, the population may
be modeled as being generated by a collection of parametric stochastic processes. In this paradigm, recog-
nition of a phonetic event consists in determining which stochastic process is most likely to have generated
the event.

Thus, a statistical mixture model for the recognition of continuous speech consists of a set of sto-
chastic processes whose parameters may be adjusted to simulate (and perhaps generate) the set of linguisti-
cally organized phonetic gestures in the environment, a procedure for adjusting stochastic process
parameters, and a model which estimates the likelihood with which each stochastic process generates an
observed sound. Such a model can employ an approach like the EM algorithm (Dempster et al. 1977) to
learn the linguistic environment’s characteristics. For each observed sound, the algorithm iteratively
adjusts the parameters of each stochastic process to maximize its likelihood of generating the sound, pro-
portional to the likelihood that it generated it in the first place.

This approach precisely describes HABLAR’s motor control apparatus and how it models the lin-
guistic environment (see Section 9.1.5). The set of stochastic processes which simulate linguistically orga-
nized phonetic gestures are HABLAR’s articulatory controllers. The model which estimates the likelihood
with which each stochastic process generates an observed sound is HABLAR’s phonological controller.
The procedure for adjusting stochastic process parameters is the reinforcement learning method employed
by the articulatory controllers. Likewise, the procedure for adjusting the likelihood model is the reinforce-
ment learning method used by the phonological controller. Sound recognition consists of the phonological
controller’s identifying the sequence of articulatory controllers which is most likely to generate the
observed sound.

This account acknowledges the primacy of functionally coordinated sets of gestures and provides a
proximal method for estimating the distal gesture from the speech signal. Thus, it grounds the direct per-
ception of distal phonetic events. Like the motor theory, it suggests that the link between production and
perception is common process, though it makes explicit the computational nature of the process. When
extending HABLAR as suggested in Section 9.3.1 to better account for coarticulatory patterns of speech
production, the model suggests a mechanism for structural credit assignment among overlapping gestures.

HABLAR thus suggests an implementation and unification of the motor and direct perception the-
ories, but it is not equivalent to either theory. The phonological controller observes sounds, but it does not
match them with actual gestures. It matches them with an abstract model most likely to have generated
each sound. Although nominally a motor component, the phonological controller’s role is phonetic and
phonological. Besides, it is probably impossible to unravel its perception and production responsibilities.
The phonological controller is specialized in its tasks, but it clearly does not meet the criteria for a closed
or privileged module (Fodor 1983).

HABLAR does not short-circuit acoustic, auditory, or phonetic analysis of speech signals. It
acknowledges the role of each processing stage in speech perception. Moreover, HABLAR’s recoding of
phonetic inputs in abstract articulatory terms is an example of the re-representation process proposed by
Karmiloff-Smith (1992) as underlying higher levels of cognition. We have not yet considered how the out-
put of this process might be stored or employed in other phonological processes. Also unexplained is why
perception comes to attend the analysis of the phonological controller instead of auditory or phonetic rep-
resentations generated by auditory perception. That is a question beyond the scope of this research.
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Chapter 10 Conclusions and Future Directions

The goal of this research is a computational model of the sensorimotor foundations of phonology
which explains key characteristics of phonological development. We have accomplished part of the goal;
the model is built. We have demonstrated some of its capabilities. We have provided qualitative accounts
of the data. However, we have not yet conducted definitive quantitative simulations. An assessment of its
predictions also suggests a number of extensions and modifications.

The purpose of this chapter is to outline possible future directions in this research. We propose a
set of simulations to test HABLAR’s fidelity and scientific validity and summarize extensions of the model
which we intend to explore. Finally, we conclude the thesis with a summary of the work’s contributions.

10.1   Design for an empirical test of HABLAR’s fidelity

With few exceptions, the key generalizations of psycholinguistic studies of phonological develop-
ment are qualitative. Most are based on longitudinal studies of individual children (e.g., Menn 1971, 1976,
Waterson 1971, Smith 1973, Macken 1979). More recently some quantitative assessments using larger
samples and cross-linguistic controls have appeared (e.g., de Boysson-Bardies et al. 1989, de Boysson-
Bardies and Vihman 1991, de Boysson-Bardies et al. 1992, Kuhl et al. 1992, Vihman et al. 1986, Werker et
al. 1981). Even these studies have been limited to simple cross-linguistic comparisons of phonetic percep-
tion or the phonetic properties of babble and early speech. Children’s developmental paths are so idiosyn-
cratic (Vihman 1993) that a common basis on which to compare them is elusive, especially beyond the
earliest stages. Controlled experiments within a linguistic community are not possible without observing
and manipulating parent-child interactions. Experimental manipulations are usually fortuitous (Menn
1971) or of limited applicability (e.g., Berko 1958).

Thus, to test the fidelity of the model’s simulation of human phonological development, we com-
pare its qualitative behavior with that observed for children in a number of key areas. In some cases we
may use experimental manipulations or directly inspect internal representations in ways not possible with
real children. The most direct experimental control common to all simulations is HABLAR’s linguistic
environment. Parental vocabulary is selected from a synthetically generated corpus of one-syllable and
simple two-syllable sounds which conforms to the phonotactic and syllable structure rules of English pho-
nology. We select words from this database which (1) are statistically likely to occur in parent-child speech
interactions, (2) represent stressed syllables of common polysyllabic utterances, (3) can be accurately pro-
nounced by the articulatory synthesizer, (4) represent a reasonable distribution of sound patterns from
which the compositional structure of one-syllable utterances may be induced, and (5) conform to a chosen
experimental design. For some experimental manipulations, we may compile a vocabulary from actual
samples of child-directed speech, drawing from the CHILDES database (MacWhinney 1991).

The basic observational method common to most experiments will be phonetic transcription of
speech samples with specific structural, longitudinal, and statistical analyses. Some if not most transcrip-
tions will be automatic, using formant frequencies to classify vowels, a neural network classifier trained to
recognize parental syllables, and a set of rules to analyze the syllabic structure of utterances based on the
model’s own acoustic segmentation algorithm. The validity of automated transcriptions will be tested
against human observers trained in phonetic transcription, and if necessary it will be adapted and adjusted
such that it achieves cross-transcription agreement rates comparable to typical studies of child phonology
(e.g., Oller et al. 1976, Vihman et al. 1986). Unsystematic validation of the auditory perception module’s
segmentation and classification of its own speech is encouraging in this regard.
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The key properties we shall test are (1) changes in the phonetic characteristics of babble, (2) pat-
terns of sound substitutions and deletions, (3) the systematicity of pronunciation errors, (4) overgeneraliza-
tion, (5) pronunciation difficulties due to inefficient learning strategies, and (6) the emergence of phoneme-
sized phonological units and phonological awareness. For each of these we shall explain the method used
to test the model’s behavior.

10.1.1   The phonetic characteristics of babble

The simplest test of babble’s increasing approximation of adult phonetics is a comparison of pho-
netic statistics for model and parental corpus. Lacking any control, this method will be reserved for initial
informal tests of the model’s behavior. A formal test will introduce several model instances divided into
two groups. Each group will be exposed to parental corpora with statistically different phonetic character-
istics (e.g., distribution of vowels, stops, nasals, places of articulation). If the model behaves like children,
at first the mean phonetic properties of the two groups should be similar and their variances high; then their
means should diverge, more closely approximating parental phonetics, and their variances should fall.

10.1.2   Sound substitution and deletion

To test simple substitutions and deletions requires a statistical compilation of the model’s segmen-
tal substitutions or deletions at various stages of development. However, direct comparisons between
human and model behaviors will be misleading because the model’s anatomical constraints do not match
human anatomy. Still, if the model is correct, the types of substitutions HABLAR makes should qualita-
tively resemble those by children.

10.1.3   Context sensitive systematicity of pronunciation errors

The context sensitivity and systematicity of pronunciation errors will be captured by conditional
statistics or by one of several methods used by linguists: rewrite rules which describe the errors and their
contexts (e.g., Menn 1971, Smith 1973), or a set of canonical forms or prosodic structures which describe
contextual regularities (Macken 1979, Menn 1976, Waterson 1971). Given the idiosyncratic nature of such
context sensitive errors among children, and without any known statistical assessment of their systematic-
ity, we can only qualitatively compare HABLAR’s behavior with human behavior. However, to experi-
mentally confirm its behavior we will introduce new words which conform to the suspected patterns and
observe the model’s pronunciations.

We conjecture that some context sensitive error patterns (e.g., consonant harmony) are partly due
to the effect of idiosyncratic sound preferences and developmental history which bias new sound patterns.
To test this hypothesis, we will experimentally manipulate developmental path and vocabulary introduc-
tion for some model instances.

10.1.4   Overgeneralization and inertia

As a test of overgeneralization and inertia, we introduce new words which differ from the model’s
repertory along specific dimensions and observe the model’s pronunciation. We also manipulate the sched-
ule with which words are introduced.
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10.1.5   Articulatory precision and bootstrapping strategies

We hypothesize that “analytic” and “gestalt” speaking styles and apparent differences in articula-
tory precision observed by Peters (1977) are a result of differences in the rate with which the complexity of
target vocabulary grows, that is, differences in children’s internal selective strategies. To test this supposi-
tion and to test different selective strategies, we shall compare the behavior of two groups of model
instances, one group exposed to a lexicon which grows in phonological complexity gradually, and the other
group exposed to the same lexicon in random order. Additional experimental manipulations will test the
effect of differences in (1) error tolerance, and (2) specific lexical and phonetic preferences.

10.1.6   Emergence of phonological segmentation and awareness

To test HABLAR’s evolving phonemic segmentation, we can directly inspect the behavior of the
phonological controller to see how it parcels the pronunciation of complex utterances among several artic-
ulatory controllers. To induce deficits in phonemic segmentation caused by temporal processing deficits,
we shall experiment with delays introduced into auditory perception. To induce deficits in phonemic seg-
mentation caused by learning deficits, we will manipulate connectivity, memory constraints, and factors
influencing generalization. To test phoneme awareness, we will augment the model with a secondary repre-
sentation of the sequence of phonological controller actions and with an additional component which is
trained to perform one or more phoneme awareness tasks. We will test its ability to perform phoneme
awareness tasks under a range of phonemic segmentation conditions, comparing its behavior with results
obtained from the literature.

10.2   Candidate model extensions and applications

In Chapter 9, we identify a number of HABLAR’s weaknesses. Chief among these is its failure to
adequately account for anticipatory coarticulation observed in speech — the motion of an articulator which
anticipates a future sound and colors the phonetic properties of intervening sounds. Exclusive activation of
one articulatory controller at a time makes it difficult to simulate normal patterns of coarticulation. A
scheme in which several articulatory controllers might be active at any one time will enable the parallel
execution of several functionally coordinated articulatory gestures. Introducing parallelism to the phono-
logical control level should also augment HABLAR’s account of direct perception, enabling the model to
unravel the acoustic signals of overlapping gestures. It may be that some developmental phenomena
depend on the child’s inability to accurately unravel these sounds. Consonant harmony may owe some of
its systematicity to the way in which a distributed phonological control system assigns credit for compo-
nent sounds among overlapping articulatory programs. Thus, this extension has a particularly high priority.

Adding the capacity for multisyllabic speech perception and production to HABLAR is essential
for any cross-linguistic validation of the model. As suggested in Chapter 9, perceptual representations and
articulatory capabilities must be augmented for this to occur.

Currently speech in HABLAR is exclusively synthetic. This is a function of practical consider-
ations and the controlled linguistic environment necessary to test the model’s validity (Section 10.1). How-
ever, an exhaustive test of HABLAR’s validity should include an evaluation of how well its auditory
perception module can segment and categorize natural speech. Sawusch (personal communication) argues
that dynamic spectral properties are not as well behaved in natural speech as in synthetic speech. However,
analysis of adult and children’s speech using a regression model of consonant-vowel coarticulation (Suss-
man et al. 1994) and acoustic analysis of children’s consonant-vowel gestures (Piroli 1991) suggest well-
defined dynamic acoustic cues. Application of HABLAR’s auditory perception to real speech requires at
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least the addition of a signal processing front end (e.g., Seneff 1988). If the evaluation is successful, its
application to automatic speech recognition is a possibility.

10.3   Contributions

HABLAR is distinguished in several respects. It models human performance over a broad range of
high-level cognitive tasks. It models an integrated system situated in a realistic though controlled environ-
ment. As a large scale sensorimotor and developmental model of complex human behavior, it faces certain
disadvantages. Most serious is the difficulty of testing and validating its claims. Even so, it makes assump-
tions usually missing from most limited-scope, single-task models quite explicit by simulating, as it does,
an entire sensorimotor system.

10.3.1   Technical features

HABLAR features auditory and articulatory systems and a cognitive architecture which bridges
the two. Several components make specific technical contributions. Some offer new ways of thinking
about speech perception and production by applying known computational methods to old psychological
and linguistic dilemmas.

Auditory perception contributes a method to segment and categorize speech sounds based exclu-
sively on acoustic cues. It employs soft competitive learning (Nowlan 1991a,b), a self-organized process,
to learn categories of vowels and consonant-vowel demisyllables which mimic the categorical perception
which emerges in late infancy. Furthermore, auditory perception is adapted to the needs of motor control
and plays a central role in sensorimotor integration.

Hierarchical control integrates continuous, fine-grained control and event-driven compositional
control. It employs Q-learning (Watkins 1989) to link perceptual and articulatory events. The model’s
auditory perception is specialized to segment and categorize acoustic feedback into discrete phonetic
events which closely correspond to discrete functionally coordinated gestures learned by articulatory con-
trollers. HABLAR need not solve the hard problem of relating continuous speech sound and continuous
vocal tract motion. It learns the correspondence between one discrete sequence of events and another.

Hierarchical control also plays a perceptual role. By performing a kind of analysis-by-synthesis of
speech stimuli, it can account for the emergence of phonological awareness and may be useful in under-
standing why and when deficiencies in phonological awareness occur. It also provides a computational
grounding for the direct perception of speech gestures, possibly implementing and unifying the motor the-
ory of speech (Liberman & Mattingly 1985) and the theory of direct perception (Fowler & Rosenblum
1991).

HABLAR introduces and applies a parallel reinforcement learning architecture, a parallel version
of Q-learning, to learn articulatory control of the vocal tract’s many degrees of freedom.

10.3.2   Systemic constraints on neural network hypotheses

Language’s complexity and the relative ease with which most children acquire language suggests
built-in knowledge (e.g., Chomsky 1965). What form does that knowledge take? Certainly part may be
encoded in the intricacies of human neural architecture. Yet, the architecture must be flexible enough to
accommodate any language, physical environment, and culture.

Is it possible to merely discover regularities in the environment? Unfortunately, neural networks
are not immune to the laws of statistics (Smolensky 1994). Without constraints on a network’s hypothesis
space, it is unlikely to learn the right generalizations or discover the appropriate regularities in the environ-
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ment (Geman et al. 1992). Furthermore, constraints on what is learnable and the architecture of linguisti-
cally relevant cognitive machinery may shape the regularities observed in language. Are we thus forced to
explicitly introduce prior knowledge?

Real neural computation occurs in a large systemic context. Anatomy, motor dynamics, drives,
child-parent interactions, and — in the case of phonological development — speech articulators, vocal
tract acoustics, and auditory feature detectors specialized for speech, may govern development no less than
the prior knowledge built into the system’s overall neural architecture and individual neural components.
To find the most parsimonious account, one must explore this larger context. Knowledge may be stored in
the world (Ballard 1991), not just in the language acquisition device. HABLAR takes this approach, mod-
eling emergent linguistic behavior with minimal linguistic assumptions. Its hypothesis space is constrained
by its architecture, the form of its internal representations, interactions among its components, and interac-
tions with its linguistic environment.

Complexity has its costs — and its payoffs.

10.3.3   A new testbed and analytic framework

HABLAR offers a useful computational testbed for evaluating theories of phonological develop-
ment and broader questions of language acquisition. It also provides a new framework within which to for-
mulate and assess hypotheses about phonological development. Our task now is to experimentally
demonstrate its scientific validity. That work is already underway.
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