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Abstract way of storing both proof objects and proof plans within
a single data structure, called Proof Plan Data Structure
We present a new data structure that enables to store(PDS). It enables to represent abstract tactics and meth-
three-dimensional proof objects in a proof development en-ods as well as calculus level proof steps in the same proof
vironment. The aim is to handle calculus level proofs as object. Moreover, it is not just a planar graph, but has a
well as abstract proof plans together with information of three-dimensional structure that allows for representing di-
their correspondences in a single structure. This enablesrect correspondences between abstract proof steps and con-
not only different means of the proof development environ-crete calculus level subproofs. These correspondences can
ment (e.g., rule- and tactic-based theorem proving, or proof be successfully exploited when expanding abstract proof
planning) to act directly on the same proof object but it also plans into machine checkable calculus level proofs. Fur-
allows for easy presentation of proofs on different levels of thermore, it aids the presentation of a proof in a proof de-
abstraction. However, the three-dimensional structure re- velopment environment such 88 EGA, since it allows not
quires adjustment of the regular techniques for addition and only for displaying different levels of abstraction of a proof
deletion of proof lines and backtracking of the proof plan- but also for freely shifting these levels with the help of ex-
ner. pansion of proof tactics or methods and contraction of sub-
proofs into abstract step. However, proof development in
the PDS requires adjustment of the regular techniques for

1. Introduction addition and deletion of proof lines and backtracking of the
proof planner.

In some deduction systems, especially those for doing Th_e paper is organized as follows:_ In Sec. 2 we elaborate
mathematics, proofs are explicitly kept [2, 7]. Theseof ~ ©Ur View on proofs and proof plans in tSBMEGA system
objectsgenerally consist of a planar, acyclic graph that which will consequently lead to a proof object_such as the
stores derivations in a certain calculus, e.g., natural deduc” PS- We then give an example for an entry in tROS
tion calculus [8], together with some information on the N S€c. 3 which we will refer to when giving an overview
proof history, i.e. information for backtracking. In tactic ©n the single components and different operations on data
based theorem provers (c.f. [10]) proof tactics are either structur_e in Sec. 4 and 5 respectively. We conclude and hint
immediately executed, thereby introducing several calcu- &t Possible future work in Sec. 6.
lus level proof steps into the proof object, or tactics are
considered as macro steps which are equally stored within2. Characterization of the PDS
the proof steps without the possibility to view the calculus
level subproof they abbreviate [2]. Furthermore, in proof In QMEGA proofs can be constructed by automated or
planning systems (c.f. [5]) abstract proof methods are au- mixed-initiative planning, or by pure user interaction, start-
tomatically combined by a planning component to proof ing from an initial problem consisting of a theorem together
plans which, when refined, result in a calculus level proof. with asserted hypotheses. In particular, new pieces can be
However, both planning and projection onto calculus level added to a proof by directly calling tactics, by inserting
is done in separate data structures such that the corresporfacts from a data base, or by calling some external reasoner,
dence between single planning steps and the subproofs theguch as automated theorem provers or computer algebra
contribute becomes blurred. systems. All these different kinds of reasoning methods are

In the OMEGA system [3] we have developed a new uniformly viewed as generalbstract inference stepbat
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Figure 1. Proof Plan Data Structure.

can be formalized as therefore the name proof plan data structure — and needs to
be expanded in order for the proof to be fully checkable.
P,..., P, . )
o . S(Ty ... Ty), 1 The expansion of an abstract inference step does not nec-
0renm S essarily have to yield a subproof which contains primitive

inferences, only. Instead, there might also be other abstract
inference steps included in the subproof which, in turn, are
expandable. This enables us to specify hierarchies for ab-
stract inferences and abstraction levels within the proof that
Lepresent proof plans of different granularity. Moreover, the

wheresS is the name of the inference, e.g., the name of a
tactic, Cy, ..., C,, areconclusionsi.e. formulas that can
be derived by applying to thepremisesp, ..., P, with

the help of theadditional parameter§ ... T;. These addi-

tional parameters, for instance, can be some required term Lo : ;
or term positions. Note, that for an inference step at least Process of expansion is reversible, that is, once an abstract

one conclusion is mandatory, whereas premises and paral,ni_nference step has been expanded, the abstract step is not

eters are optional, only. This is also indicated by the choiceSlmply _dlscarded, instead the subproof result_mg from the
of indices. expansion, can be contracted again to the single abstract

However, theQMEGA system accepts proofs that are step. Figure 1 c!epicts this vigw o_f proofs, albeit it is a
machine-checkable in its own basic calculus, a natural de-Schematic depiction of the reality, since there can be more
duction (ND) calculus [8] based on a typed higher order than two levels of abstractions as well as the abstraction lev-

logic [6], only. Therefore, abstract inference steps are just els cannot be t_hat ea_sny d|§t|ngwshed. .

valid if they can be expressed in termgimitive inference The three-dimensional view of proofs leads to ourimple-
steps i.e. the rules of the ND calculus. Thus, we have to Mentation of the proof plan data structufeRS). The logi-
view any abstract inference step as an abbreviation of a sub<al dépendencies between single proof steps, corresponding
proof in ND calculus to which it can be expanded. Unlike (© & horizontal level in thDS, are best modeled with a
in other tactical theorem proving or proof planning systems, directed acyclic graph. This graph needs to be extended in
the expansion of abstract inference$iMEGA is generally order to also maintain the dependencies between abstract in-
not carried out immediately but postponed until the given ference steps and the subproofs they abbreviate, which cor-

theorem is fully justified from the hypotheses. Yet, as long responds.to the vertical links in Fig. 1. Besides the_insertion
as a proof step is still abstract tis considereglasned —  and deletion of proof steps we need the expansion of ab-
stract inferences as additional operation onftieS. Since

1We call abstract inference steplannedsince we allow for specifying
inferences that can sometimes be faulty. Hence, the exgransisuch a employ uncertain heuristics and external reasoners teat@rnecessarily
step can fail, leaving a part of the proof still open. Thiddea permits us to always correct.
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Figure 2. Expansion of the tactic LR2s.

expansion generally leads to the insertion of new proof stepsBefore elaborating the details, we need to introduce the ac-
(on a less abstract level) we need to specially treat the insertual format of proof nodes in th®DS. This format is
tion and deletion of those steps taking the vertical depen-a linearized format for ND proofs as introduced, for in-

dencies in thé>DS into account. stance, in [1]. Figure 3 depicts the first expansion step of
the L R2< tactic from Fig. 2 in linearized form.
3. Example The components a proof node is composed of are: a

uniguename(e.g., L»), asequent(a - A < B) and a
justification(LR2<: L1 L3). The sequent itself consists of

a formula and, preceding the symbol, a set of hypothe-
ses the formula depends on. Another feature of a node is

Before we describe the components of fiBS and its
operations in more detail, we illustrate the overall idea, in

this section, by giving an example of an abstract proof tactic ! ) . .
y gving P P a so calledreason listwhich stores information for back-

and its expansion. Although the example is relatively small tracki Th d i how th d
due to the limited space, it sheds some light on the nature racking purposes. e node reasons inform now the node

of the PDS and suffices to explain most of its pecularities. \:\v:ielgtridf;:fort%éhggi a]:g?:oe\:vmlt Ilcse relﬁ;etﬂ;?t?]?iro de
Thus, we will refer to this example throughout the remain- ) indl ' xampie, w

der of this paper was created by some inference application or rather by ex-

Figure 2 depicts the expansion of the relatively simple panding some abstract inference. Reasons are not displayed

tactic LR2<. It implements the inference step that if the lsnelr?tge;.d?)ihbsuégrz crucial for the operations on S pre-

two facts A and B can be derived in the same proof they T ) )

have to have equivalent truth-value. One observation we can make in the expansion of node
Since the tactic is only an abbreviation of a more com- L2 in Fig. 3 is, that solely the justification of the node

plicated proof on the ND-calculus level, we can expand the changes from one abstracupn level to the other. And in-

abstractL R24 step to the next, less abstract, level. This deed, all other components, i.e. name, sequent, and reasons,

expansion is also depicted in Fig. 2 in the second column.remain constant on all levels of abstraction. Therefore, jus-

Here the subproofis a derivation of the two directions of the tifications implement both the horizontal and vertical links

equivalence by exploiting the logical equivalence-cfv B in the DS and motion between the abstraction levels is
andA = B. Note, that the curves in Fig. 2 correspond to implemented by changing the justification of a node from
the vertical links in Fig. 1. more to less abstract or vice versa.

However, in the derivation of the second columnonly the A justification consists of an inference (i.e. a ND rule,
steps justified by I, are already ND proof steps, whereas tactic, method, etc.), a set of premises (i.e. nodes the given
the justificationsv2=- and < consist of abstract tactics node can be derived from with the inference), and possibly
themselves. Thus, these steps can, in turn, be expanded ar@ilist of additional parameters necessary for the application
this has been executed for the second application2et of the inference. The set of premise nodes functions as the
in the right column of Fig. 2. In this subproof all the justifi- horizontal links in thePDS, since they determine the log-
cations contained are now basic ND-rules and consequentlyical connections between the single nodes. As additional
cannot be expanded any further. Therefore, the right col- features a justification can have two pointers that function
umn of Fig. 2 actually corresponds to a part of the lowest as the vertical links in th&DS. There can be at most one
layer of thePDS as depicted in Fig. 1. pointer to a more abstract justificatioabiove linj and at
most one pointer to a less abstract justificatioal¢w link).
These pointers might be empty in case the justification is
on the topmost or lowest level of tHeDS, respectively.

) . ) Changing the level of abstraction automatically introduces

In this section, we describe theDS components and oy excludes) nodes from the proof as shown in Fig. 3: On
explain how they implement the characterization of Sec. 2. the |eft-hand side, the horizontal links from noflg to L,

4.PDS components
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Figure 3. Expansion of the tactic LR2< in linearized form.

and L3 are direct, whereas on the right-hand side, the link  Generally, some conclusions and premises of an infer-
to I, is via Ls and L4, the link toL; via L; and L. ence are matched with focus goals dndus supportse-
Exceptions to a justification as described are (Hyp) and spectively, where thiocus supportsorrespond to the com-
(Open) justifications. The former denote lines that are gen-mon supports of the focus goals. The matched conclu-
uine hypotheses for the original theorem and are not de-sions are the primary goals and the matched premises are
rived from any other line. Thus, they do not contain a list of called theexistent premiseg-or instance, lin€., in the left
premises and function as leaf nodes of a horizontal level in column of Fig. 3 matches the sole conclusion of the tac-
the PDS. The latter, (Open) justifications, indicate a sub- tic LR2< and corresponds therefore to the primary goal.
goal that is yet to be proven. Neither hypothesis nor openIn this backward application, the left premise bR2<> is
justifications contain horizontal or vertical links. However, matched with the focus suppatt , which is the sole exis-
in order to determine the applicability of inferences to a re- tent premise, and a new open lig is introduced for the
spective open proof line we also have a concepgugfport right premise. Nodes likd.; are called thenference sub-
lines i.e. those lines that are eligible to deduce the opengoals since they are createspenfor inference premises
line from, that is similar to the one introduced in [1]. Sup- which are not matched with focus supports.
port lines are computed whenever an open node is created |n principle, the inference subgoals inherit the focus
and can be updated after application of single inferences. supports. However, an inference application may exclude
some of the inference premises as supports of the result-
5. PDS operations ing inference subgoals. We call these premisesditlete
premises In inferences, like the ND rule>I, new hy-
potheses are introduced locally as additional assumptions

Proofs inQAMEGA are mainly constructed by interleaving for some premises, we call thesstra hypothesesSub

inference application and inference expansion. Both oper :
ations. described below in Sec. 5.1 and Sec. 5.2. can in_sequently, each inference subgoal that results from the ap-

sert new open nodes as subgoals. When such an open nocﬂiicaﬂon of an inference introducing extra hypotheses will
cannot be closed, the inference which originally led to this ave thes.e. as addltllonalll supports. o _
node, together with other related proof construction steps, A specific operation in the forward application of an in-
must be retracted. The removal of an inference step is ex-ference is the updating of the supports of the secondary

plained in Sec. 5.3. goals by excluding the delete premises and adding the nodes
which are created for the inference conclusions, called the
5.1. Inference application add conclusions Possibly arising inference subgoals are

treated similar to the backward case.

The application of a single inference, always focuses on ~ We formalize the support changes for inference appli-
some open nodes in tfBDS, which we call thefocus cations of arbitrary direction. Consider the inferengge
goals The inference application should contribute to the givenin (1), with conclusion€, ..., Cr,. LetGo, ..., Gy
proof of the focus goals by closing some of them and up- Pe the focus goals,SGi., ..., SG, inference subgoals,
dating the supports of the rest. The focus goals which areG1: - - -, G}, secondary subgoalss,,...,S; delete
closed directly are called thgimary goalsand those which ~ Premises, and’i, ..., C; the add conclusions. The sup-
remain open are referred to by teecondary goalsNone ports of an inference subgodlG; is initialized according
of the focus goals is primary (secondary), when the infer- t0 (2), and those of a secondary gé4lis updated accord-
ence is applied forwards (backwards). Inferences with moreing to (3).
than one conclusion can be also applied sideways, where All the conclusion nodes in an inference application, the
we have to deal simultaneously with primary and secondaryprimary goals as well as the add conclusions, are associated
goals. the same justification which consist of the same inference,
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parameters, and premises. However, these justifications ar¢o the reason of., which represents the application of the
distinct objects since they are generally associated differ-tactic LR2<. The same reason would be associated to the
ent justifications in the inference expansion. Each nodeexpansion nodes of the tacti?=> in the current justifica-
involved in the inference application, i.e. the conclusion tion of the node’;.
nodes, the premise nodes, the extra hypotheses, and the sec- One way of implementing hierarchical proof planning is
ondary goals, gets a new reason associated containing deto hide some subgoals until a planning method is expanded.
tailed control informationof the application step (i.e. infor-  The expansion proof plan of such a method comprises con-
mation on all effects of inference application on th®S). sequently open nodes, which we call teepansion sub-
This control information is crucial for both expanding the goals whose supports have to be initialized. Since we sup-
inference (see Sec. 5.2) and retracting it (see Sec. 5.3).  pose that the premises of the expanded justification suffice
to construct a complete proof plan of the expanded node,
5.2. Inference expansion these premises are used as supports to the expansion sub-
goals. In addition to the premises of the expanded justifica-

For the expansion of an abstract inference it is important tion, the supports of each expansion subgoal can contain its
own extra hypotheses specified in the method.

to consider whether the inference has more than one conclu-
sion. In this case the expansion of a given node imposes to o o
expand all other conclusions simultaneously. These nodes-3. Undoing inference application
are obtained from the reason that represents how the given
node was justified by the abstract inference. The removal of an inference application includes, in ad-

Instead of the sole proof step which justifies the conclu- dition to retracting its elementary effects, the recursive re-
sion nodes, a more detailed proof plan is inserted by themoval of other related proof steps in order to maintain a
inference expansion on the next, less abstract, level of theconsistent state of thieDS. For proof planning purposes,
PDS. This expansion proof plapossibly includes new  control information needs to be updated to prevent the re-
nodes, calledexpansion nodes Each of the conclusion consideration of the same inference in the same application
nodes is associated a new justification which is connectedcontext.
to the original, now expanded, justification by vertical links. ~ Let i be the reason that contains the control information
That is, the below link of the expanded justification points for the application of inferencé that is to be removed.
to the new justification, whose above link, in turn, refers to The undoing operation, as described below, is based on this
the old, more abstract, justification. The above and below control information.
links of the expansion nodes are initially empty.

For backtracking purposes we keedigect dependency
of the expansion nodes to theginal inference application
whose associated proof plan includes these nodes: If a node
is expanded that was closed by an inference application —
it then corresponds either to a primary goal or to an add
conclusion (see Sec. 5.1) — the control information for this
inference application is passed to all the expansion nodes
as a reason. Likewise, when expanding one of these ex-
pansion nodes the same control information is passed on to
any originating expansion node. Thus, the information on  § The retraction of the elementary effectslafis carried
which original inference step an expansion node dependson ;¢ by:
is propagated by subsequent expansion steps.

e Suppose thé®DS contains a proof plan fofg after
several expansions. This proof plan must be removed
first by deleting those intermediate nodes, between the
conclusion nodes and the premise nodes, which are as-
sociated the reasaR. Such a node can be involved in
other inference applications, when it corresponds to an
expansion subgoal, i.e. it is introduced open by some
expansion. In this case we recursively remove these
inference applications as well.

In our example of the expansion of the tacli®2< in — deleting the inference subgoals and the add con-
Fig. 3 the below link of the justificatio(LR2<: L, Ls) clusions, which includes the recursive undoing of
of Ly points to(<1: Ls L) and its above link vice versa. other inference applications these nodes are in-

The reasons of the expansion nodsgs. . ., L; correspond volved in,



— removingR from the reason lists of the remain-
ing, involved, nodes, i.e. the focus goals and the
existent premises,

— reopening the primary goals, and

— updating the supports of the secondary goals and
of their subgoals which were created aftgrwas
introduced into thePDS, by replacing the add
conclusions with the delete premises.

e [g, including its parameters (and possibly other infor-
mation which define the application context), has to be
stored as a failed step for the focus goals.

In addition to the information on the involved nodes and
on their role in the application ofg, we need temporal
information wrt. other inference applications in tfDS.

as to expand abstract steps into lower-level sub-proofs and
to maintain the appropriate correspondences.

Although we have presented t#DS in the context of a
higher order natural deduction calculus — the basis calculus
of the OMEGA system — the data structure can obviously
be used in any tactical theorem prover independent of the
underlying calculus. In fact, since different calculi can be
specified withif2MEGA the PDS is already used to repre-
sent proofs of other systems, namely TPS [2] and LEO [4],
where the former implements a higher order natural deduc-
tion calculus (however slightly different of the one used in
QOMEGA) and the latter works with a higher order resolution
calculus. Unfortunately, the advanced features ofRlf&S,
which necessitate to maintain many dependencies, make the
implementation of both objects and algorithms of the datas-
tructure slightly cumbersome.

This allows us to determine the subgoals of the secondary So far one can introduce in theDS abstract inferences

goals which were created aftgs was introduced in orderto

and subsequently expand them or abstract automatically

update their supports. Each secondary goal can be involvedrom the ND-level to theassertion leve[9]. However, it

in inference applications which precefig and in other ap-

will be desirable to provide a mechanism that enables a user

plications afted z. Only the inference subgoals in the latter to manually abstract within an already constructed proof in
applications and their recursive inference subgoals inherita meaningful way. Thus future work has to include the con-
the supports of the secondary goals, which were modifiedstruction of means to enable manual abstraction. Moreover,

by Ig.

For instance, the undoing of the applicationdt2< in
Fig. 3 would delete the expansion nodes. . ., Ly and the
subgoal nodd.;. Moreover, the nodd., is reopened and
the tacticL R2< is noted as a failed step which may not be
applied again to the now open nofle.

The operation of undoing some inference application
serves to implement the deletion of an arbitrary node in the
PDS. A given node can be deleted by undoing the original
inference application which introduced this node and recur-
sively all other inference applications that depend on the
existence of this node. The necessary control information is

abstraction should not only be available on the level of justi-
fication but on the level of formulas as well. Thereby proofs
can also be presented including simplified (abstracted) for-
mulas.
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