
PDS — A Three-Dimensional Data Structure for Proof Plans

Lassaad Cheikhrouhou and Volker Sorge
Department of Computer Science (FB 14)

Saarland University
Postfach 151150, D-66041 Saarbrücken, Germanyflassaadjsorgeg@ags.uni-sb.de

Abstract

We present a new data structure that enables to store
three-dimensional proof objects in a proof development en-
vironment. The aim is to handle calculus level proofs as
well as abstract proof plans together with information of
their correspondences in a single structure. This enables
not only different means of the proof development environ-
ment (e.g., rule- and tactic-based theorem proving, or proof
planning) to act directly on the same proof object but it also
allows for easy presentation of proofs on different levels of
abstraction. However, the three-dimensional structure re-
quires adjustment of the regular techniques for addition and
deletion of proof lines and backtracking of the proof plan-
ner.

1. Introduction

In some deduction systems, especially those for doing
mathematics, proofs are explicitly kept [2, 7]. Theseproof
objectsgenerally consist of a planar, acyclic graph that
stores derivations in a certain calculus, e.g., natural deduc-
tion calculus [8], together with some information on the
proof history, i.e. information for backtracking. In tactic
based theorem provers (c.f. [10]) proof tactics are either
immediately executed, thereby introducing several calcu-
lus level proof steps into the proof object, or tactics are
considered as macro steps which are equally stored within
the proof steps without the possibility to view the calculus
level subproof they abbreviate [2]. Furthermore, in proof
planning systems (c.f. [5]) abstract proof methods are au-
tomatically combined by a planning component to proof
plans which, when refined, result in a calculus level proof.
However, both planning and projection onto calculus level
is done in separate data structures such that the correspon-
dence between single planning steps and the subproofs they
contribute becomes blurred.

In the 
MEGA system [3] we have developed a new

way of storing both proof objects and proof plans within
a single data structure, called Proof Plan Data Structure
(PDS). It enables to represent abstract tactics and meth-
ods as well as calculus level proof steps in the same proof
object. Moreover, it is not just a planar graph, but has a
three-dimensional structure that allows for representing di-
rect correspondences between abstract proof steps and con-
crete calculus level subproofs. These correspondences can
be successfully exploited when expanding abstract proof
plans into machine checkable calculus level proofs. Fur-
thermore, it aids the presentation of a proof in a proof de-
velopment environment such as
MEGA, since it allows not
only for displaying different levels of abstraction of a proof
but also for freely shifting these levels with the help of ex-
pansion of proof tactics or methods and contraction of sub-
proofs into abstract step. However, proof development in
thePDS requires adjustment of the regular techniques for
addition and deletion of proof lines and backtracking of the
proof planner.

The paper is organized as follows: In Sec. 2 we elaborate
our view on proofs and proof plans in the
MEGA system
which will consequently lead to a proof object such as thePDS. We then give an example for an entry in thePDS
in Sec. 3 which we will refer to when giving an overview
on the single components and different operations on data
structure in Sec. 4 and 5, respectively. We conclude and hint
at possible future work in Sec. 6.

2. Characterization of thePDS
In 
MEGA proofs can be constructed by automated or

mixed-initiative planning, or by pure user interaction, start-
ing from an initial problem consisting of a theorem together
with asserted hypotheses. In particular, new pieces can be
added to a proof by directly calling tactics, by inserting
facts from a data base, or by calling some external reasoner,
such as automated theorem provers or computer algebra
systems. All these different kinds of reasoning methods are
uniformly viewed as generalabstract inference stepsthat
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can be formalized asP1; : : : ; PnC0; : : : ; Cm S(T1 : : : Tl); (1)

whereS is the name of the inference, e.g., the name of a
tactic,C0; : : : ; Cm areconclusions, i.e. formulas that can
be derived by applyingS to thepremisesP1; : : : ; Pn with
the help of theadditional parametersT1 : : : Tl. These addi-
tional parameters, for instance, can be some required terms
or term positions. Note, that for an inference step at least
one conclusion is mandatory, whereas premises and param-
eters are optional, only. This is also indicated by the choice
of indices.

However, the
MEGA system accepts proofs that are
machine-checkable in its own basic calculus, a natural de-
duction (ND) calculus [8] based on a typed higher order
logic [6], only. Therefore, abstract inference steps are just
valid if they can be expressed in terms ofprimitive inference
steps, i.e. the rules of the ND calculus. Thus, we have to
view any abstract inference step as an abbreviation of a sub-
proof in ND calculus to which it can be expanded. Unlike
in other tactical theorem proving or proof planning systems,
the expansion of abstract inferences in
MEGA is generally
not carried out immediately but postponed until the given
theorem is fully justified from the hypotheses. Yet, as long
as a proof step is still abstract it is considered asplanned1 —

1We call abstract inference stepsplannedsince we allow for specifying
inferences that can sometimes be faulty. Hence, the expansion of such a
step can fail, leaving a part of the proof still open. This feature permits us to

therefore the name proof plan data structure — and needs to
be expanded in order for the proof to be fully checkable.

The expansion of an abstract inference step does not nec-
essarily have to yield a subproof which contains primitive
inferences, only. Instead, there might also be other abstract
inference steps included in the subproof which, in turn, are
expandable. This enables us to specify hierarchies for ab-
stract inferences and abstraction levels within the proof that
represent proof plans of different granularity. Moreover, the
process of expansion is reversible, that is, once an abstract
inference step has been expanded, the abstract step is not
simply discarded, instead the subproof resulting from the
expansion, can be contracted again to the single abstract
step. Figure 1 depicts this view of proofs, albeit it is a
schematic depiction of the reality, since there can be more
than two levels of abstractions as well as the abstraction lev-
els cannot be that easily distinguished.

The three-dimensional view of proofs leads to our imple-
mentation of the proof plan data structure (PDS). The logi-
cal dependencies between single proof steps, corresponding
to a horizontal level in thePDS, are best modeled with a
directed acyclic graph. This graph needs to be extended in
order to also maintain the dependencies between abstract in-
ference steps and the subproofs they abbreviate, which cor-
responds to the vertical links in Fig. 1. Besides the insertion
and deletion of proof steps we need the expansion of ab-
stract inferences as additional operation on thePDS. Since

employ uncertain heuristics and external reasoners that are not necessarily
always correct.
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expansion generally leads to the insertion of new proof steps
(on a less abstract level) we need to specially treat the inser-
tion and deletion of those steps taking the vertical depen-
dencies in thePDS into account.

3. Example

Before we describe the components of thePDS and its
operations in more detail, we illustrate the overall idea, in
this section, by giving an example of an abstract proof tactic
and its expansion. Although the example is relatively small
due to the limited space, it sheds some light on the nature
of thePDS and suffices to explain most of its pecularities.
Thus, we will refer to this example throughout the remain-
der of this paper.

Figure 2 depicts the expansion of the relatively simple
tacticLR2,. It implements the inference step that if the
two factsA andB can be derived in the same proof they
have to have equivalent truth-value.

Since the tactic is only an abbreviation of a more com-
plicated proof on the ND-calculus level, we can expand the
abstractLR2, step to the next, less abstract, level. This
expansion is also depicted in Fig. 2 in the second column.
Here the subproof is a derivation of the two directions of the
equivalence by exploiting the logical equivalence of:A_B
andA ) B. Note, that the curves in Fig. 2 correspond to
the vertical links in Fig. 1.

However, in the derivation of the second column only the
steps justified by_Ir are already ND proof steps, whereas
the justifications_2) and,I consist of abstract tactics
themselves. Thus, these steps can, in turn, be expanded and
this has been executed for the second application of_2)
in the right column of Fig. 2. In this subproof all the justifi-
cations contained are now basic ND-rules and consequently
cannot be expanded any further. Therefore, the right col-
umn of Fig. 2 actually corresponds to a part of the lowest
layer of thePDS as depicted in Fig. 1.

4.PDS components

In this section, we describe thePDS components and
explain how they implement the characterization of Sec. 2.

Before elaborating the details, we need to introduce the ac-
tual format of proof nodes in thePDS . This format is
a linearized format for ND proofs as introduced, for in-
stance, in [1]. Figure 3 depicts the first expansion step of
theLR2, tactic from Fig. 2 in linearized form.

The components a proof node is composed of are: a
uniquename(e.g.,L2), a sequent(� ` A , B) and a
justification(LR2,: L1L3). The sequent itself consists of
a formula and, preceding thè symbol, a set of hypothe-
ses the formula depends on. Another feature of a node is
a so calledreason listwhich stores information for back-
tracking purposes. The node reasons inform how the node
was introduced into thePDS and how it is related to other
nodes. A reason indicates, for example, whether the node
was created by some inference application or rather by ex-
panding some abstract inference. Reasons are not displayed
in Fig. 3, but are crucial for the operations on thePDS pre-
sented in Sec. 5.

One observation we can make in the expansion of nodeL2 in Fig. 3 is, that solely the justification of the node
changes from one abstraction level to the other. And in-
deed, all other components, i.e. name, sequent, and reasons,
remain constant on all levels of abstraction. Therefore, jus-
tifications implement both the horizontal and vertical links
in thePDS and motion between the abstraction levels is
implemented by changing the justification of a node from
more to less abstract or vice versa.

A justification consists of an inference (i.e. a ND rule,
tactic, method, etc.), a set of premises (i.e. nodes the given
node can be derived from with the inference), and possibly
a list of additional parameters necessary for the application
of the inference. The set of premise nodes functions as the
horizontal links in thePDS, since they determine the log-
ical connections between the single nodes. As additional
features a justification can have two pointers that function
as the vertical links in thePDS. There can be at most one
pointer to a more abstract justification (above link) and at
most one pointer to a less abstract justification (below link).
These pointers might be empty in case the justification is
on the topmost or lowest level of thePDS , respectively.
Changing the level of abstraction automatically introduces
(or excludes) nodes from the proof as shown in Fig. 3: On
the left-hand side, the horizontal links from nodeL2 to L1
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Figure 3. Expansion of the tactic LR2, in linearized form.

andL3 are direct, whereas on the right-hand side, the link
toL1 is viaL5 andL4, the link toL3 viaL7 andL6.

Exceptions to a justification as described are (Hyp) and
(Open) justifications. The former denote lines that are gen-
uine hypotheses for the original theorem and are not de-
rived from any other line. Thus, they do not contain a list of
premises and function as leaf nodes of a horizontal level in
thePDS . The latter, (Open) justifications, indicate a sub-
goal that is yet to be proven. Neither hypothesis nor open
justifications contain horizontal or vertical links. However,
in order to determine the applicability of inferences to a re-
spective open proof line we also have a concept ofsupport
lines, i.e. those lines that are eligible to deduce the open
line from, that is similar to the one introduced in [1]. Sup-
port lines are computed whenever an open node is created
and can be updated after application of single inferences.

5.PDS operations

Proofs in
MEGA are mainly constructed by interleaving
inference application and inference expansion. Both oper-
ations, described below in Sec. 5.1 and Sec. 5.2, can in-
sert new open nodes as subgoals. When such an open node
cannot be closed, the inference which originally led to this
node, together with other related proof construction steps,
must be retracted. The removal of an inference step is ex-
plained in Sec. 5.3.

5.1. Inference application

The application of a single inference, always focuses on
some open nodes in thePDS, which we call thefocus
goals. The inference application should contribute to the
proof of the focus goals by closing some of them and up-
dating the supports of the rest. The focus goals which are
closed directly are called theprimary goalsand those which
remain open are referred to by thesecondary goals. None
of the focus goals is primary (secondary), when the infer-
ence is applied forwards (backwards). Inferences with more
than one conclusion can be also applied sideways, where
we have to deal simultaneously with primary and secondary
goals.

Generally, some conclusions and premises of an infer-
ence are matched with focus goals andfocus supportsre-
spectively, where thefocus supportscorrespond to the com-
mon supports of the focus goals. The matched conclu-
sions are the primary goals and the matched premises are
called theexistent premises. For instance, lineL2 in the left
column of Fig. 3 matches the sole conclusion of the tac-
tic LR2, and corresponds therefore to the primary goal.
In this backward application, the left premise ofLR2, is
matched with the focus supportL1, which is the sole exis-
tent premise, and a new open lineL3 is introduced for the
right premise. Nodes likeL3 are called theinference sub-
goals, since they are createdopenfor inference premises
which are not matched with focus supports.

In principle, the inference subgoals inherit the focus
supports. However, an inference application may exclude
some of the inference premises as supports of the result-
ing inference subgoals. We call these premises thedelete
premises. In inferences, like the ND rule)I , new hy-
potheses are introduced locally as additional assumptions
for some premises, we call theseextra hypotheses. Sub-
sequently, each inference subgoal that results from the ap-
plication of an inference introducing extra hypotheses will
have these as additional supports.

A specific operation in the forward application of an in-
ference is the updating of the supports of the secondary
goals by excluding the delete premises and adding the nodes
which are created for the inference conclusions, called the
add conclusions. Possibly arising inference subgoals are
treated similar to the backward case.

We formalize the support changes for inference appli-
cations of arbitrary direction. Consider the inferenceS,
given in (1), with conclusionsC0; : : : ; Cm. LetG0; : : : ; Gf
be the focus goals,SG1; : : : ; SGs inference subgoals,G01; : : : ; G0f+a�m secondary subgoals,S1; : : : ; Sd delete
premises, andC 01; : : : ; C 0a the add conclusions. The sup-
ports of an inference subgoalSGi is initialized according
to (2), and those of a secondary goalG0i is updated accord-
ing to (3).

All the conclusion nodes in an inference application, the
primary goals as well as the add conclusions, are associated
the same justification which consist of the same inference,
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parameters, and premises. However, these justifications are
distinct objects since they are generally associated differ-
ent justifications in the inference expansion. Each node
involved in the inference application, i.e. the conclusion
nodes, the premise nodes, the extra hypotheses, and the sec-
ondary goals, gets a new reason associated containing de-
tailedcontrol informationof the application step (i.e. infor-
mation on all effects of inference application on thePDS).
This control information is crucial for both expanding the
inference (see Sec. 5.2) and retracting it (see Sec. 5.3).

5.2. Inference expansion

For the expansion of an abstract inference it is important
to consider whether the inference has more than one conclu-
sion. In this case the expansion of a given node imposes to
expand all other conclusions simultaneously. These nodes
are obtained from the reason that represents how the given
node was justified by the abstract inference.

Instead of the sole proof step which justifies the conclu-
sion nodes, a more detailed proof plan is inserted by the
inference expansion on the next, less abstract, level of thePDS. This expansion proof planpossibly includes new
nodes, calledexpansion nodes. Each of the conclusion
nodes is associated a new justification which is connected
to the original, now expanded, justification by vertical links.
That is, the below link of the expanded justification points
to the new justification, whose above link, in turn, refers to
the old, more abstract, justification. The above and below
links of the expansion nodes are initially empty.

For backtracking purposes we keep adirect dependency
of the expansion nodes to theoriginal inference application
whose associated proof plan includes these nodes: If a node
is expanded that was closed by an inference application —
it then corresponds either to a primary goal or to an add
conclusion (see Sec. 5.1) — the control information for this
inference application is passed to all the expansion nodes
as a reason. Likewise, when expanding one of these ex-
pansion nodes the same control information is passed on to
any originating expansion node. Thus, the information on
which original inference step an expansion node depends on
is propagated by subsequent expansion steps.

In our example of the expansion of the tacticLR2, in
Fig. 3 the below link of the justification(LR2,: L1L3)
of L2 points to(,I : L5L7) and its above link vice versa.
The reasons of the expansion nodesL4; : : : ; L7 correspond

to the reason ofL2 which represents the application of the
tacticLR2,. The same reason would be associated to the
expansion nodes of the tactic_2) in the current justifica-
tion of the nodeL7.

One way of implementing hierarchical proof planning is
to hide some subgoals until a planning method is expanded.
The expansion proof plan of such a method comprises con-
sequently open nodes, which we call theexpansion sub-
goals, whose supports have to be initialized. Since we sup-
pose that the premises of the expanded justification suffice
to construct a complete proof plan of the expanded node,
these premises are used as supports to the expansion sub-
goals. In addition to the premises of the expanded justifica-
tion, the supports of each expansion subgoal can contain its
own extra hypotheses specified in the method.

5.3. Undoing inference application

The removal of an inference application includes, in ad-
dition to retracting its elementary effects, the recursive re-
moval of other related proof steps in order to maintain a
consistent state of thePDS . For proof planning purposes,
control information needs to be updated to prevent the re-
consideration of the same inference in the same application
context.

LetR be the reason that contains the control information
for the application of inferenceIR that is to be removed.
The undoing operation, as described below, is based on this
control information.� Suppose thePDS contains a proof plan forIR after

several expansions. This proof plan must be removed
first by deleting those intermediate nodes, between the
conclusion nodes and the premise nodes, which are as-
sociated the reasonR. Such a node can be involved in
other inference applications, when it corresponds to an
expansion subgoal, i.e. it is introduced open by some
expansion. In this case we recursively remove these
inference applications as well.� The retraction of the elementary effects ofIR is carried
out by:

– deleting the inference subgoals and the add con-
clusions, which includes the recursive undoing of
other inference applications these nodes are in-
volved in,



– removingR from the reason lists of the remain-
ing, involved, nodes, i.e. the focus goals and the
existent premises,

– reopening the primary goals, and

– updating the supports of the secondary goals and
of their subgoals which were created afterIR was
introduced into thePDS , by replacing the add
conclusions with the delete premises.� IR, including its parameters (and possibly other infor-

mation which define the application context), has to be
stored as a failed step for the focus goals.

In addition to the information on the involved nodes and
on their role in the application ofIR, we need temporal
information wrt. other inference applications in thePDS .
This allows us to determine the subgoals of the secondary
goals which were created afterIR was introduced in order to
update their supports. Each secondary goal can be involved
in inference applications which precedeIR and in other ap-
plications afterIR. Only the inference subgoals in the latter
applications and their recursive inference subgoals inherit
the supports of the secondary goals, which were modified
by IR.

For instance, the undoing of the application ofLR2, in
Fig. 3 would delete the expansion nodesL4; : : : ; L7 and the
subgoal nodeL3. Moreover, the nodeL2 is reopened and
the tacticLR2, is noted as a failed step which may not be
applied again to the now open nodeL2.

The operation of undoing some inference application
serves to implement the deletion of an arbitrary node in thePDS. A given node can be deleted by undoing the original
inference application which introduced this node and recur-
sively all other inference applications that depend on the
existence of this node. The necessary control information is
given in the reason list of the deleted node. For instance, if a
node is deleted that originated from an expansion, the orig-
inal inference on whose expansion the node depends, must
be removed, too. This is secured by the reason that has
been propagated from the original inference as described in
Sec. 5.2.

6. Conclusion and future work

We have presented a new data structurePDS for storing
proofs within a deduction system. Its main feature is a way
to represent proofs in a three-dimensional way thereby en-
abling to store several levels of abstraction simultaneously.
On the lowest level of thePDS proofs are represented in
the basic calculus of the deduction system. Higher levels
contain abstract steps that abbreviate subproofs on the re-
spective lower level. ThePDS provides facilities to intro-
duce and remove proof steps of different granularity as well

as to expand abstract steps into lower-level sub-proofs and
to maintain the appropriate correspondences.

Although we have presented thePDS in the context of a
higher order natural deduction calculus — the basis calculus
of the
MEGA system — the data structure can obviously
be used in any tactical theorem prover independent of the
underlying calculus. In fact, since different calculi can be
specified within
MEGA thePDS is already used to repre-
sent proofs of other systems, namely TPS [2] and LEO [4],
where the former implements a higher order natural deduc-
tion calculus (however slightly different of the one used in
MEGA) and the latter works with a higher order resolution
calculus. Unfortunately, the advanced features of thePDS ,
which necessitate to maintain many dependencies, make the
implementation of both objects and algorithms of the datas-
tructure slightly cumbersome.

So far one can introduce in thePDS abstract inferences
and subsequently expand them or abstract automatically
from the ND-level to theassertion level[9]. However, it
will be desirable to provide a mechanism that enables a user
to manually abstract within an already constructed proof in
a meaningful way. Thus future work has to include the con-
struction of means to enable manual abstraction. Moreover,
abstraction should not only be available on the level of justi-
fication but on the level of formulas as well. Thereby proofs
can also be presented including simplified (abstracted) for-
mulas.
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