
A Mechanization of Strong Kleene Logic forPartial Functions�Manfred Kerber Michael KohlhaseFachbereich Informatik, Universit�at des Saarlandes66041 Saarbr�ucken, Germany+49-681-302-f4628j4627gfkerber|kohlhaseg@cs.uni-sb.deAbstractEven though it is not very often admitted, partial functions do play asigni�cant role in many practical applications of deduction systems. Kleenehas already given a semantic account of partial functions using three-valuedlogic decades ago, but there has not been a satisfactory mechanization. Recentyears have seen a thorough investigation of the framework of many-valuedtruth-functional logics. However, strong Kleene logic, where quanti�cationis restricted and therefore not truth-functional, does not �t the frameworkdirectly. We solve this problem by applying recent methods from sorted logics.This paper presents a resolution calculus that combines the proper treatmentof partial functions with the e�ciency of sorted calculi.Keywords: Partial functions, many-valued logic, order-sorted logic, resolution.
�This work was supported by the Deutsche Forschungsgemeinschaft (SFB 314)1

Contents1 Introduction 32 Strong Order-Sorted Kleene Logic (SKL) 4Syntax : 5Semantics : 5Extended Example : 8Relativization into Truth-Functional Logic : : : : : : : : : : : : : : : : : : 8Extended Example (continued) : 123 Simple Resolution 12Clause Normal Form : 13Resolution Calculus (RPF) : 14Extended Example (continued) : 16Soundness and Completeness : 174 Resolution with Order-Sorted Uni�cation 20Uni�cation : 20Resolution (RPF(D)) : 22Extended Example (continued) : 245 Conclusion 25

2

1 IntroductionMany practical applications of deduction systems in mathematics and computer sci-ence rely on the proper treatment of partial functions. Although there are work-arounds for most concrete situations, there has been a considerable interest in thecommunity for clean formalizations of partial functions.One of the key problems to be solved when formalizing partial functions is to de-cide, what happens if partial functions are applied to arguments not in their domain.In mathematical practice expressions like 00 = 1 or odd(predecessor(0)) are thoughtto be neither true nor false. This phenomenon can be handled in the well-knownsystems for intuitionistic logic, where the law of the excluded middle does not hold,hence 00 = 1 can be (and in fact is) neither true nor false, since neither the truthnor the falsehood of this expression can be shown. However, most mathematiciansdo not want to give up the law of the excluded middle, because it is basic for astrong proof technique, the indirect proof1. Another standard way to deal with thissituation is to consider expressions like 00 as \meaningless". Kleene makes this ap-proach formal, by introducing an individual ? denoting meaningless individuals anda third truth value u, standing for the \unde�ned" truth value. However, in contrastto the general framework for many-valued truth-functional logics, Kleene's quanti�-ers only range over de�ned values, that is, not over ?, making a direct utilizationof the methods developed by Carnielli [6, 7], H�ahnle [11], Baaz and Ferm�uller [2]impossible. Kleene's approach has been utilized by Tichy [19], Lucio-Carrasco andGavilanes-Franco [14] to give logical systems for partial functions. Both approacheso�er unsorted operationalizations of the systems in sequent calculi.Other authors (cf. [5, 8, 17, 20]) have avoided the problems that accompanytreating a third truth value, and simply consider all atomic expressions containinga meaningless term as false. This has the advantage that partial functions can behandled within the classical two-valued framework. However, the serious drawbackis that the results of these logic systems can be unintuitive to the working mathem-atician. For instance in elementary arithmetic the following sentence8x; y; z z = xy) x = y � zis a theorem of such systems since the scope is true for y 6= 0 and z = x0 obtains thetruth value f which in turn makes the implication true. However, it is mathematicalconsensus that the equation should only hold provided that y is not 0. It will turn1For example, consider the following problem: are there irrational numbers a and b such thatab is rational. With the law of the excluded middle this can be easily shown. If p2p2 is rational,a = b := p2 solve the problem, since p2 is irrational. Is, however, p2p2 irrational, then a = p2p2and b = p2 solve the problem, since ab = (p2p2)p2 = 2 is rational. You don't have to knowwhether p2p2 is rational or not and indeed this question is not easily answered. (Compare [13,p.160]) 3

out (cf. example 3.11) that the formula is not a theorem in our formalization, sincethe case y = 0 is a counterexample.We formalize Kleene's ideas for partial functions in an order-sorted three-valuedlogic, called SKL, that uses the Kleene's strong interpretation of connectives andquanti�ers and adapts techniques from Weidenbach's logic [20] to handle de�nednessinformation. We furthermore present two versions RPF and RPF(D) of a resolutioncalculus for partial functions.We would like to thank Christian Ferm�uller and Ortwin Scheja for stimulatingdiscussions.2 Strong Order-Sorted Kleene Logic (SKL)In [12] Kleene presents a logic, which he calls strong three-valued logic for reasoningabout partial recursive predicates on the set of natural numbers. He argues thatthe intuitive meaning of the third truth value should be \unde�ned" or \unknown"and introduces the truth tables shown in de�nition 2.7. Similarly Kleene enlargesthe universe of discourse by an element ? denoting the unde�ned number. In hisexposition the quanti�ers only range over natural numbers, in particular he does notquantify over the unde�ned individual (number).The approach of this paper is to make Kleene's meta-level discussion of de�nedand unde�ned individuals explicit by structuring the universe of discourse with thesortD for all de�ned individuals. Furthermore we declare all functions and predicatesto be strict, that is, if one of the arguments of a compound term or an atom evaluatesto ?, then the term evaluates to ? or the truth value of the atom is u. Just as inKleene's system, our quanti�ers only range over individuals in D, that is, individualsthat are not unde�ned. This is in contrast to the well-understood framework fortruth-functional many-valued logics, where the concept of de�nedness and de�nedquanti�cation cannot be easily introduced, since quanti�cation is truth-functionaland depends on the truth values for all (even the unde�ned) instantiations of thescope. Kleene's concept of bounded quanti�cation is essential for our program ofrepresenting partial functions, since in a truth-functional approach no proper univer-sally quanti�ed expression can evaluate to the truth value t (dually for the existentialquanti�er), since all functions and predicates are assumed strict.In the following we present the logic system SKL, which is a sorted version of whatwe believe to be a faithful formalization of Kleene's ideas from [12]. We treat thesorted version here, since we need the machinery for dynamic sorts in the calculusto be able to treat the sort D (sort techniques as that from [20, 21] give us thebounded quanti�cation). We will call formulations of SKL where D is the only sortsymbol in the signature strong unsorted Kleene logic. The further use of sorts givesthe well-known advantages of sorted logics for the conciseness of representation andreduction of search spaces. 4

SyntaxDe�nition 2.1 (Signature) A signature �:= (S;V;F;P) consists of the followingdisjoint sets� S is a �nite set of sort symbols including the sort D. We de�ne S� := S n fDg� V is a set of variable symbols. Each variable x is associated with a unique sortS, which we write in the index, i.e. xS . We assume that for each sort S 2 Sthere is a countably in�nite supply of variables of sort S in V.� F is a set of function symbols.� P is the set of predicate symbols.The sets F and P are subdivided into the sets Fk of function symbols of arity k andPk of predicate symbols of arity k. Note that individual constants are just nullaryfunctions.We call a signature unsorted if S� is empty, that is, if D is the only sort symbol.De�nition 2.2 (Well-formed Terms and Formulae) We de�ne the set of well-formed terms to be the set of variables together with f(t1; : : : ; tk) for well-formedterms t1; : : : ; tk and f 2 Fk.If P 2 Pk, then P (t1; : : : ; tk) is a proper well-formed atom. If t is a term and S asort then t<�S is a well-formed sort atom. The set of well-formed formulae containsall well-formed atoms and with formulae A and B the formulae A ^B, :A, !A, and8xS A. Here the intended meaning of the classical connectives is the usual, whereasthe intended meaning of !A is that A is de�ned.SemanticsIn this section we will de�ne the three valued semantics for SKL by extending theuniverse of discourse with ? for the unde�ned. Note that this is similar to theclassical at CPO construction [18], but Kleene's interpretation of truth values doesnot make u minimal. Since we are not interested in least �x-points, monotonicitydoes not play a role in this paper.De�nition 2.3 (Partial �-Algebra) Let � be a signature, then a partial �-algebraconsists of a1. non-empty carrier set A,2. an interpretation function I : Fk �! Fp(Ak;A)I : Pk �! Fp(Ak; ff; tg)I : S� �! F(A; ff; tg)2:where Fp(A;B) is the set of partial functions form A into B, and F(A;B) is2For de�ned individuals the membership to a sort is not unde�ned.5

that of total functions. Partial functions are de�ned as right-unique relations.We de�ne the carrier AS of sort S as AS := fa 2 A j I(S)(a) = tg. Note thatin contrast to other sorted logics, it is not assumed that the AS are non-empty.This fact will require special treatments in the transformation to clause normalform and for instantiations in the resolution calculus.The partial �-algebra is an algebraic account of the standard interpretation inmathematics, where partiality of functions is directly modelled by right-unique rela-tions. To be able to use standard methods from predicate logics, we close the universewith a bottom element ? and model partial functions as strict total function. Obvi-ously these notions of algebras have a one-to-one correspondence, so both approachesare equivalent.De�nition 2.4 (Strict �-Algebra) Let � be a signature and (A;I) a partial �-algebra then we obtain the strict �-algebra (A?;I?) for (A;I) by the followingextensions1. A?: = A [f?g, where we assume that ? is not already a member of A2. The interpretation function I? is de�ned to be(a) I?(f):= [I(f)]?, where h? is the strict extension of a function, that is,h?(a1; : : : ; ak) = h(a1; : : : ; ak), if (a1; : : : ; ak) 2 Dom(h) andh?(a1; : : : ; ak) = ? otherwise.(b) I?(P):= [I(P)]?, where Q? is the strict extension of a predicate, that is,Q?(a1; : : : ; ak) = Q(a1; : : : ; ak), if (a1; : : : ; ak) 2 Dom(Q) andQ?(a1; : : : ; ak) = u otherwise.(c) I is extended to I? for sorts in S� just as in the predicate case.(d) I?(D)(a) := t, if a 2 A and I?(D)(?) := f.Since strict �-algebras are the intended semantics of SKL, we will often drop theexplicit reference to ? in our notation. Note that ? =2 AS for any S 2 S.De�nition 2.5 (�-assignment) Let (A;I) be a strict �-algebra, then we call atotal mapping ':V �! A? a �-assignment, i� '(xS) 2 AS , provided AS is non-empty and '(xS) = ? if AS = ;. We denote the �-assignment that coincides with' away from x and maps x to a with '; [a=x].De�nition 2.6 Let ' be a �-assignment into a strict �-algebra (A;I) then we de�nethe value function I' from well-formed formulae to A inductively to be1. I'(f) := I(f), if f is a function or a predicate.2. I'(x) := '(x), if x is a variable. 6

3. I'(f(t1; : : : ; tk) := I(f)(I'(t1); : : : ;I'(tk))4. I'(t<�S) = I(S)(I'(t))Note that this de�nition applies to P and F alike, thus we have given the semanticsof all atomic formulae. The semantic status of sorts is that of total unary predicates;in particular in A? we have I'(t<�S) = u, i� I'(t) = ?.De�nition 2.7 The semantics of composed formulae is obtained from the values ofthe atomic subformulae in a truth functional way. Therefore it su�ces to de�ne thetruth tables for the connectives:^ f u tf f f fu f u ut f u t :f tu ut f !f tu ft tKleene does not use the ! operator as a connective but treats it on the meta-level.Note while it is useful it is not necessary for the treatment. Furthermore, even thisconnective does not render SKL truth-functionally complete, since, just like negationand conjunction, ! is normal.The semantics of the universal quanti�er is de�ned with the help of a function e8from the non-empty subsets of the truth values in the truth values. We de�neI'(8xS A) := e8(fI';[a=x](A) j a 2 ASg) with e8(T) := 8><>: t for T = ftgu for T = ft; ug or fugf f 2 TNote that with this de�nition quanti�cation is separated into a truth functionalpart e8 and an instantiation part that only considers members of AS.Using the classical de�nitions the other connectives and the existential quanti�ercan be de�ned in terms of :, ^, and 8, e.g., A _B: = :(:A ^ :B).De�nition 2.8 (�-Model) Let A be a well-formed formula, then we call a strict�-algebra M := (A;I) a �-model for A (written M j= A), i� I'(A) = t for all'. With this notion we can de�ne the notions of validity, (un)-satis�ability, andentailment in the usual way.Remark 2.9 The \tertium non datur" principle of classical logic is no longer valid,since formulae can be unde�ned, in which case they are neither true nor false. Wedo however have a \quartum non datur"-principle, that is, formulae are either true,false, or unde�ned, which allows us to derive the validity of a formula by refutingthat it is false or unde�ned. We will use this observation in our resolution calculus.7

Extended ExampleWe will formalize an extended example from elementary algebra that shows the basicfeatures of SKL. Here the sort IR� denotes the real numbers without zero. Note thatwe use the sort information to encode de�nedness information for inversion: 1x isde�ned for all x 2 IR�, since IR� is subsort of D by de�nition. Naturally, we giveonly a reduced formalization of real number arithmetic that is su�cient for ourexample. (For instance, we could add expressions like 10 6<�D.) Consider the formulaA := (A1 ^A2 ^ A3 ^A4 ^A5)) T withA1 8xIR x 6= 0) x<�IR�A2 8xIR� 1x<�IR�A3 8xIR� x2 > 0A4 8xIR 8yIR x� y<�IRA5 8xIR 8yIR x� y = 0) x = yT 8xIR 8yIR x 6= y) � 1x�y�2 > 0An informal mathematical argumentation why T is entailed by A1^ : : :^A5 canbe as follows:Let x and y be arbitrary elements of IR. If x = y, the premise of T is wrong,hence the whole expression true (in this case the conclusion evaluates to u). If x 6= y,then the premise is true and the truth value of the whole expression is equal to thatof the conclusion � 1x�y�2 > 0. Since x 6= y we get by A5 that x � y 6= 0 and byA4 that x� y<�IR, hence by A1 x � y<�IR� and by A2 1x�y<�IR�, which �nally gives� 1x�y�2 > 0 together with A3.However, if we analyze the justi�cation of this argumentation, we see that thereis a hidden assumption, namely the totality of the binary predicate > on IR� IR. Infact the formula A is not a tautology, since it is possible to interpret the > predicateas unde�ned for the second argument being zero, so that A3 as well as T evaluate tou, while the other Ai evaluate to t, hence the whole expression evaluates to u. Thereare two solutions of this problem, namely adding further formulae Ai, in which thede�niteness of the predicates are speci�ed, or { what is normally done in mathematics{ to start with a formula where the Ai are assumed to be true, that is neither falsenor unde�ned. We will discuss the alternatives later, when we give a formal prooffor the example.Relativization into Truth-Functional LogicIn this section we show that we can always systematically transform SKL formulaeto formulae in an unsorted truth-functional three-valued logic K3 in a way that8

respects the semantics. However, we will see that this formulation will lose muchof the conciseness of the presentation and enlarge the search spaces involved withautomatic theorem proving.At �rst glance it may seem that SKL is only an order-sorted variant of a three-valued instance of the truth functional many-valued logics that were very thoroughlyinvestigated by Carnielli, H�ahnle, Baaz and Ferm�uller [2, 6, 7, 11]. However, sinceall instances of this framework are truth-functional, that is, the denotations of theconnectives and quanti�ers only depend on the truth values of (certain instancesof) their arguments, even unsorted Kleene logic does not �t into this paradigm,since quanti�cation excludes the unde�ned element. In SKL we solve the problemwith the quanti�cation by postulating a sort D of all de�ned individuals, which is asupersort of all other sorts. Therefore the relativization mapping not only considerssort information, it also has to care about de�nedness aspects in quanti�cation.Informally K3-formulae are just �rst-order formulae (with the additional unaryconnective !). While the three-valued semantics of the connectives is just that givenin de�nition 2.7, the semantics of the quanti�er uses unrestricted instantiation, thatis, I'(8x A) := e8(fI';[a=x](A) j a 2 Ag)De�nition 2.10 We de�ne transformations RelS and RelD, that map SKL-senten-ces to unsorted SKL-sentences and further into K3-sentences. RelS is the identityon terms and atoms and homomorphic on connectives andRelS(8xS �) := 8xD x<�S) RelS(�)Note that in order for these sentences to make sense in unsorted SKL we have toextend the set of predicate symbols by unary predicates S for all sort symbols S 2 S�.Furthermore, for any of these new predicates we need the axiom: 8xD !S(x). Theset of all these axioms is denoted by RelS(�).We de�ne RelD to be the identity (only dropping the sort references from thevariables) on terms and proper atoms and� RelD(t<�D):= D(t)� RelD(8xD A):= 8x D(x)) RelD(A)Just as above we have to extend the set of predicate symbols by a unary predicateD and need a set RelD(�) of signature axioms, which contains the axioms8x1; : : : ; xn P n(x1; : : : ; xn) _ :P n(x1; : : : ; xn)) (D(x1) ^ : : : ^D(xn))8x1; : : : ; xn D(f(x1; : : : ; xn))) (D(x1) ^ : : : ^D(xn))for any predicate symbol P 2 Pn, such that P 6= D and for any function symbolf 2 Fn, together with the axioms8x D(x) _ :D(x) and 9x D(x)9

These axioms axiomatize the SKL notion of de�nedness in K3. In particular thelast axioms state that the predicate D is two-valued and non-empty, in contrast toall other sort predicates which are strict and thus three-valued and may be empty.The other axioms force all functions and predicates to be interpreted strictly withrespect to the D predicate.Note that in the case of nullary function symbols (constants) the signature axiomshave the form D(co).Theorem 2.11 (Sort Theorem) Let � be a set of sentences, then the followingare equivalent1. � has a �-model.2. RelS(�) has a � [S�-model that satis�es RelS(�).3. RelD �RelS(�) has a K3-model that satis�es RelD(� [S�) [RelS(�).Proof: We will only show the equivalence of 2. and 3. since the equivalence of 1.and 2. can be proven with the same methods. Therefore we can restrict our proof tounsorted SKL, where S� = ;Let M := (A;I) be a �-model for �, then we construct a K3-model M3 =(A3;I3) for RelD(�). Let A3 := A, I3(f) := I(f) and I3(P) := I(P) where f isa function symbol and P is a predicate symbols or the sort D. Clearly, we haveM3 j=K3 RelD(�), since M is a �-model, where all functions are strict and thecarrier A = Im(I3(D)) is nonempty.Furthermore let ' be a �-assignment and M j=' �, then we show by structuralinduction that I3'(RelD(�)) = I'(�) and therefore M3 j=K3' RelD(�). This claimis immediate for terms and proper atoms. For sort atoms we haveI3'(RelD(t<�D)) = I3'(D(t)) = I3(D)(I3'(t)) = I(D)(I'(t)) = I'(t<�D)thus we have I3'(RelD(A)) = I'(A) for all atoms A. For quanti�ed formulae we haveI3'(RelD(8xD)) = I3'(8x D(x)) RelD()) = e8(�3) ;where �3 := fI3 ((D(x))) RelD()) j a 2 A3g and := '; [a=x]. On the otherhand I'(8xD) = e8fI () j a 2 Ag = e8(�)Now I3'(RelD(8xD)) = I3'(8x D(X)) RelD())= e8(fI3(';[a=x](D(X)) RelD())) j a 2 A3g);so we have to consider the following cases for a. If a = ?, then I3 (D(x)) = fand therefore I3 (D(x)) RelD()) = t. If a 6= ?, then by inductive hypothesisI3'(RelD()) = I'() and therefore �3 = � [ftg.I3'(RelD(8xD)) = t i� �3 = � = ftg i� I'(8xD) = tI3'(RelD(8xD)) = u i� �3 = � = fu; tg or fug i� I'(8xD) = uI3'(RelD(8xD)) = f i� f 2 �3 = � [ftg i� I'(8xD) = f10

Since RelD is homomorphic for connectives, we have completed the induction, thusM3 j=K3 RelD(�) and we have proven the necessitation direction of the theorem.For the proof of su�ciency let M3 := (A3;I3) be a K3-model, such that M3 j=RelD(�) [RelD(�). LetA := fa 2 A3 j I3(D)(a) = tg and A? := fa 2 A3 j I3(D)(a) = fgthen A3 = A [A?, since 8x D(x) _ :D(x) 2 RelD(�) and A 6= ; as requiredin the de�nition, since 9x D(x) 2 RelD(�). If A? = ; it is easy to see that(A3;I3) is already a partial �-algebra and the assertion is trivial for the correspondingstrict �-algebra. So in the following we will assume that A? is nonempty. Now let�:A3 �! A? be a function that is the identity on A and �(a) = ? for all a 2 A?.As M3 j= RelD(�), we know that I3(f)(a1; : : : ; an) 2 A? if one ai 2 A?, so thefollowing de�nition is well-de�ned.I(f)(�(a1); : : : ; �(an)) := �(I3(f)(a1; : : : ; an))Now we will see that I��'(t) = �(I3'(t)) for all well-formed SKL terms t and assign-ments ' into M3.1. I��'(x) = � � '(x) = �(I3'(x)).2. I��'(c) = I(c) = �(I3(c)) = �(I3'(c)).3. I��'(f(t1; : : : ; tn)) = I(f)(I��'(t1); : : : ;I��'(tn))= I(f)(�(I3'(t1)); : : : ; �(I3'(tn)))= �(I3(f)(I3'(t1); : : : ;I3'(tn)))= �(I3'(f(t1; : : : ; tn)))Similarly the de�nitionI(p)(�(a1); : : : ; �(an)) := I3(p)(a1; : : : ; an)is well-de�ned, because M3 j= RelD(�) and gives us I��'(A) = I3(RelD(A)) forall atoms A. From this we obtain the general result I��'(�) = I3'(RelD(�)) bytreating quanti�ed formulae by a case analysis just as in the necessitation direction.In particular we have I��'(�) = t, i� I3'(�) = t and therefore M j= �, wheneverM3 j= RelD(�).As a consequence of the sort theorem, the standard operationalization for many-valued logics [2, 6, 7, 11] can be utilized to mechanize strong order-sorted Kleene logicand in fact the system of Lucio-Carrasco and Gavilanes-Franco [14] can be seen as astandard many-valued tableau operationalization [11, 3] of the relativization of SKL.However, as the extended example shows, we can do better by using sorted methods,since relativization expands the size and number of input formulae and furthermoreexpands the search spaces involved in automatic theorem proving by building up11

many meaningless branches. Note that already the formulation of SKL where we onlyhave the required sort D is more concise than the relativized version and as we willsee the theory of de�nedness is treated goal-driven by the RPF calculus (cf. section3). Thus the RPF calculus is closer to informal practice than the relativization inthis respect.Extended Example (continued)The relativization RelS(RelD(A)) of the formula A in the extended example is theK3-formula (R1 ^ R2 ^ R3 ^ R4 ^ R5)) RT.R1 8x D(x)) (IR(x)) (x 6= 0) IR�(x)))R2 8x D(x)) (IR�(x)) IR�(1x))R3 8x D(x)) (IR�(x)) x2 > 0)R4 8x D(x)) (IR(x)) (8y D(y) ^ IR(y)) IR(x� y)))R5 8x D(x)) (IR(x)) (8y D(y)) (IR(y)) (x� y = 0) x = y))))RT 8x D(x)) (IR(x)) (8y D(y)) (IR(y)) (x 6= 0) � 1x�2 > 0))))The set of signature axioms RelD(� [S�) [RelS(�) is the following set of K3-formulae:R= 8x; y (x = y _ x 6= y)) D(x) ^D(y)R> 8x; y (x > y _ x 6> y)) D(x) ^D(y)R� 8x; y D(x� y)) D(x) ^D(y)R= 8x D(1x)) D(x)R0 D(0)R2 8x D(x2)) D(x)D! 8x D(x) _ :D(x)D; 9x D(x)3 Simple ResolutionIn this section we present a resolution calculus with dynamic sorts that is a gen-eralization of Weidenbach's work [20, 21] with ideas from [2, 11]. The concept ofdynamic sorts is essential to our program, since de�nedness cannot in general bedecided by syntactic means only, but is usually given in the form of logical axioms12

that have to be reasoned about in the calculus itself. Thus static sort methods likethose in [16, 10] are not su�cient for our purposes.Clause Normal FormDe�nition 3.1 Let A be a well-formed formula, then we call A� (the formula Aindexed with the intended truth value � 2 ff; u; tg), a labelled formula. We willcall a labelled atom A� a literal and a set of literals fA�11 ; : : : ; A�nn g a clause. Wesay that a �-model M satis�es a clause C, i� it satis�es one of its literals L�, thatis, I'(L�) = �. M satis�es a set of clauses i� it satis�es each clause. In order toconserve space, we employ the \," as the operator for the disjoint union of sets, sothat C;L� means C [fL�g, in particular L� is not a member of C. Furthermore weadopt H�ahnle's notion of multi-labels in the form C;A�� to mean C;A�; A�.Now we are in the position to give a set of transformations that take a set oflabelled formulae to an equivalent set of clauses.De�nition 3.2 (Transformations for Clause Normal Form)C; (A ^B)tC;At C;Bt C; (A ^ B)uC;Aut C;But C;Au; Bu C; (A ^B)fC;Af; BfC; (:A)tC;Af C; (:A)uC;Au C; (:A)fC;AtC; (8xS A[xS])tC;A[xS]t C; (8xS A[xS])uC;A[f(y1; : : : ; yn)]u C;A[xS]ut C; (f(y1; : : : ; yn)<�S)tC; (8xS A[xS])fC;A[f(y1; : : : ; yn)]f C; (f(y1; : : : ; yn)<�S)tC; (!A)tC;Atf C; (!A)uC C; (!A)fC;AuC; (t<�D)uC C; (t<�S)uC; (t<�D)fwhere fxS; y1; : : : ; yng = Free(A) and f is a new function symbol of arity n. HereFree(A) denotes the set of free variables of A.For any set � of well-formed labelled sentences we will denote the set of clausesresulting from a total reduction of � by the above transformations with CNF(�).13

General Assumption 3.3 The clause normal form transformations as presentedabove are not complete, i.e. they do not transform every given labelled formula intoclause form, since the rules for quanti�ed formulae insist that the bound variableoccurs in the scope. In fact the handling of degenerate quanti�cations poses someproblems in the presence of possibly empty sorts, as quanti�cation over empty setsare vacuously true. In this situation we have three possibilities, either to forbid de-generate quanti�cations, or empty sorts, or treat degenerate quanti�cations in theclause normal form transforamtions. For this paper we chose the �rst, since degen-erate quanti�cations do not make much sense mathematically and do not appear ininformal mathematics. Thus we will asssume that in all formulae in this paper thebound variables of quanti�cations occur in the scopes.Remark 3.4 For treating degenerate quanti�cations in the clause normal form trans-formation we have to add the rulesC; (8xS A)tC;At; (x<�S)f C; (8xS A)fC; (c<�S)t C;Af C; (8xS A)uC; (c<�S)t C;AuIn the context of mathematics it is often natural to assume the sorts to benon-empty. In this case the the quanti�er rules can be simpli�ed, by changing theclause declaring the Skolem constant from C; (f(y1; : : : ; yn)<�S)t to the unit clause(f(y1; : : : ; yn)<�S)t. Naturally the resolution calculus has to be changed accordingly,as we will see below.Furthermore the discussion above is obsolete and the assumption 3.3 can be takenback.Remark 3.5 Some transformation rules for multi-labels look more natural and sym-metric than those for single truth values. For instance we have the rule:C; (A ^B)fuC;Afu; BfuAs usual the reduction to clause normal form conserves satis�ability.Theorem 3.6 Let � be a set of labelled sentences, then the clause normal formCNF(�) is satis�able, i� � is.Resolution Calculus (RPF)Now proceed to give a simple resolution calculus, which utilizes unsorted uni�cation.However despite its name the calculus still utilizes the sort information present in theclause set and therefore gives considerably improved search behavior over unsortedmethods as in [14]. In the next section, we will further improve the calculus by using14

sorted uni�cation algorithm, which delegates parts of the search into the uni�cationalgorithm.For unsorted substitutions the naive resolution rule is unsound. Therefore wehave to add a residual (the sort constraint) that ensures the well-sortedness of theuni�er.De�nition 3.7 (Sort Constraints) Let � = [t1=x1S1]; : : : ; [tn=xnSn] be a substitu-tion, then we de�ne the sort constraint for � to be the clauseSC(�) := f[t1<�S1]fu; : : : ; [tn<�Sn]fugDe�nition 3.8 (Resolution Inference Rules (RPF))L�; C M�;D Res�(C); �(D);SC(�) L�;M�; C Fac�(L�); �(C);SC(�)(t<�D)f ; C L ;D Strict�(C); �(D);SC(�)where � 6= � and 2 ft; fg. For Res and Fac the substitution � is the most general(unsorted) uni�er of L and M and for Strict there exists a subterm s of L, such that� is a most general uni�er of t and s.Remark 3.9 Note that clauses containing Afut are tautologous and can thereforebe deleted in the generation of the clause normal form as well as in the deductionprocess. The calculus can be extended by the usual subsumption rule, allowing todelete clauses that are subsumed (super-sets).In the case where we have assumed non-empty sorts we have to provide declara-tions (unit clauses) of the form (cS<�S)t with new constants cS for all sorts S 2 S�in order to obtain a complete calculus.De�nition 3.10 Let A be a sentence and � be the clause normal form of the setffAfg; fAugg then we say that A can be derived inRPF (` A), i� there is a derivationof the empty clause 2 from � with the inference rules above.Example 3.11 Now we can come back to the example from the exposition. Theassertion is not a theorem of SKL, since the clause normal form of the instanceff(1 = 10) 1 = 0 � 1)fg; f(1 = 10) 1 = 0 � 1)ugg:(1 = 10)u; (1 = 10)t(1 = 0 � 1)u; (1 = 0 � 1)fis satis�able. In fact in any reasonable formalization of elementary algebra 1 = 10is unde�ned, whereas 1 = 0 � 1 is false. Thus, since RPF is sound (cf. 3.13), theexample cannot be a theorem. 15

Remark 3.12 In practical applications most problems will be of the formA := (A1^: : : ^ An) C) where the Ai are the assumptions and C is the intended conclusion.In contrast to classical �rst-order predicate logic where it su�ces to take the clausenormal form of ffAt1g; : : : ; fAtng; fC fgg the situation here is more complex, since inSKL we also have to refute the case that A gets the value u. It is however easy tosee, that we can start the calculation of the clause normal form with the setnfAut1 g; : : : ; fAutn g; fC fugoor with the setsnfAut1 g; : : : ; fAutn g; fAu1; : : : ; Aung; fCugo (�)nfAt1g; : : : ; fAtng; fC fugo (��)which have to be refuted by the resolution calculus independently. In the secondcase the refutation can be split in two independent proofs, thus reducing the searchspace considerably. Nevertheless, the refutation of the set (�) is impractical except fortrivial examples. Fortunately in mathematical practice the assumptionsAi often havethe status of axioms, which are assumed to be true independently of the theorem3.Then the problem is really of the formA0 := (A1^!A1 ^ : : : ^ An^!An) C)The clause normal form of A0 is just that of (��), which is close to the classical casein derivational complexity. In particular the background theory formalized by the Airesults in exactly the same clauses as in the classical case.Extended Example (continued)Following the discussion above we will continue our extended example with the cal-culation of the clause normal form (��) of A1^!A1^ : : :^A5^!A5) T. Since IR andIR� are not empty, we use the simpli�ed quanti�cation rules of remark 3.4 and providethe declaration 1<�IR and 1<�IR�, which we will not need in the particular refutation.Without this assumption clauses T1 through T5 would have extra literals.A1 (xIR = 0)t; (x<�IR�)tA2 (1xIR�<�IR�)tA3 (x2IR� > 0)tA4 (xIR � yIR<�IR)tA5 (xIR � yIR = 0)f ; (xIR = yIR)t3This is also the very idea of the set of support strategy in resolution theorem proving.16

The price for the formal treatment of three-valued partiality has to be paid in thecomplicated clause normal form of the formula T with the label fu.T1 (c<�IR)tT2 (d<�IR)tT3 (e<�IR)tT4 (f<�IR)tT5 (g(yIR)<�IR)t T6 (c = d)f ; (e = f)fuT7 (c = d)f ;�� 1e�f �2 > 0�fuT8 �� 1c�d�2 > 0�f ; (e = f)fuT9 �� 1c�d�2 > 0�f ;�� 1e�f �2 > 0�fuEight further clauses resulting from the theorem are not shown here, four aretautologies, four others not needed for the derivation below.T6 & A5�!R1 (c� d = 0)f ; (e = f)fu; (c<�IR)fu; (d<�IR)fuR1 & A1�!R2 (c� d<�IR�)t; (e = f)fu; (c� d<�IR)fu; (c<�IR)fu; (d<�IR)fuR2 & A4�!R3 (c� d<�IR�)t; (e = f)fu; (c<�IR)fu; (d<�IR)fuR3 & T1�!R4 (c� d<�IR�)t; (e = f)fu; (d<�IR)fuR4 & T2�!R5 (c� d<�IR�)t; (e = f)fuT8 & A3�!R6 (e = f)fu; �� 1c�d�<�IR��fuR5 & A2�!R7 (e = f)fu; (c� d<�IR�)fuR7 & R5�!R8 (e = f)fuAnalogously, clause T7 can be reduced with T9 to R16.: : : & : : : �!R16 �� 1e�f �2 > 0�fuR16 & A3 �!R17 � 1e�f<�IR��fuR17 & A2 �!R18 (e� f<�IR�)fuR18 & A1 �!R19 (e� f = 0)t; (e� f<�IR)fuR19 & A4 �!R20 (e� f = 0)t; (e<�IR)fu; (f<�IR)fuR20 & A5 �!R21 (e = f)t; (e<�IR)fu; (f<�IR)fuR21 & T3 �!R22 (e = f)t; (f<�IR)fuR22 & T4 �!R23 (e = f)tR8 & R23�!R24 2Soundness and CompletenessTheorem 3.13 (Soundness) Let � be set of clauses with � ` 2, then � is unsat-is�able.Proof sketch: The soundness of the resolution and factoring rules is establishedin the usual way taking into account that the sort constraints make the substitutions17

\well-sorted" and thus compatible with the semantics: The sort constraints add twosort literals (t<�S)f ; (t<�S)u per component of the substitution, which only can berefuted if indeed (t<�S)t.The Strict rule is sound, because functions and predicates in SKL are strict andthus unde�ned subterms of a literal make the literal unde�ned.De�nition 3.14 Let C := fL�11 ; : : : ; L�nn g be a clause, then the conditional instan-tiation �# (C) of � to C is de�ned by�# (C) := f�(L�11); : : : ; �(L�nn)g [SC(�jFree(C))The following result from [20] is independent of the number of truth values.Lemma 3.15 Conditional instantiation is sound: for any clause C, substitution �and �-model M we have that M j= �# (C), whenever M j= C.De�nition 3.16 Let A be a well-formed sentence andCNF(A) be the clause normalform of A, then we de�ne the Herbrand set of clauses CNFH(A) for A to beCNFH(A) := f�# (C) j C 2 CNF(A); � ground substitution;Dom(�) = Free(C)gDe�nition 3.17 We will call two literals L� and L� complementary, if � 6= � andliterals L and (t<�D)f ?-complementary, if t is a subterm of L and 2 ft; fg.De�nition 3.18 (Herbrand Model) Let � be a set of clauses, then the Herbrandbase H(�) of � is de�ned to be the set of all ground atoms containing only functionsymbols that appear in the clauses of �. If there is no constant in �, we add a newconstant c. A valuation � is a function H(�) �! ff; u; tg, such that for all atomsL;M 2 H(�) the literals L�(L) and M�(M) are not ?-complementary. Note thatthese literals are not complementary since � is a function. The �-Herbrand Model Hfor � and � is the set H := fL� j � = �(L); L 2 H(�)g.We say that a �-Herbrand model H satis�es a clause set � i� for all groundsubstitutions � and clauses C 2 � we have �# (C) \ H 6= ;. A clause set is called�-Herbrand-unsatis�able i� there is no �-Herbrand-model for �.Theorem 3.19 (Herbrand Theorem) Let A be a well-formed formula, then theclause normal form CNF(A) has a �-model i� CNFH(A) has a �-Herbrand-model.Proof: Let M = (A;I) be a �-model for � := CNF(A). We will see thatH := fL� j L 2 H(�); � = I'(L)gis a �-Herbrand model for 	 := CNFH(A) if ' is an arbitrary �-assignment. It isimmediately clear that I' is a valuation, therefore H is �-Herbrand model. Assumethat it is not a �-Herbrand model for 	, that is, there is a clause C 2 	, such that18

H \ C = ;. Since C 2 	 there is a substitution � = [ti=xiSi] and a clause D 2 �,such that C = �# (D) = �(D) [SC(�).Without loss of generality we can assume that I(Si)(I'(ti)) = t, since otherwiseI'(ti<�Si) 2 ff; ug, and therefore (ti<�Si) 2 H for 2 ff; ug, which contradicts theassumption. Thus the mapping := '; [I'(ti)=xi] is a �-assignment.Note that sinceM is a model of �, we have thatM j= D and therefore there is aliteral L� 2 D, such that � = I (L) = I'(�(L)), hence �(L) 2 H, which contradictsthe assumption.For the converse direction let H be a �-Herbrand model for 	. To construct a�-modelM for � we �rst construct a partial �-algebra (A;I). LetA := ft j 9L� 2 H where � 2 ff; tg and t subterm of Lgand let I(S), I(fn) and I(P n) be partial functions, such thatI(S)(t) = t i� (t<�S)t 2 HI(fn)(t1; : : : ; tn) := fn(t1; : : : ; tn) i� fn(t1; : : : ; tn) 2 AI(P n)(t1; : : : ; tn) := � i� (P n(t1; : : : ; tn))� 2 HNow let M be the strict �-algebra corresponding to the partial �-algebra (A;I).We proceed by convincing ourselves that M j= �. Let C 2 � and ' := [ti=xiSi]be an arbitrary �-assignment. Since A is a set of ground terms ' is also a groundsubstitution and moreover (ti<�Si)t 2 H by construction of I.SinceH is a �-Herbrand model for 	 we have '# (C)\H = ('(C)[SC('))\H 6=;. Since H cannot contain complementary literals we must already have a literal'(L�) 2 '(C)\H. Now let � be the valuation associated with H. Since '(L�) 2 Hwe have � = �('(L)) = I'(L), which impliesM j=' L�. Since we have taken C and' arbitrary, we get the assertion.Corollary 3.20 A set � of ground unit clauses is unsatis�able i� it contains twocomplementary or ?-complementary literals.Theorem 3.21 (Ground Completeness) Let � be an unsatis�able set of groundclauses, then there exists a RPF derivation of the empty clause from �.Proof: The proof is analogous to the standard k-parameter proof of Anderson andBledsoe [1]. We show be induction on k := PC2�(card(C) � 1) that there exists arefutation for �.If k = 0 then � is a set of ground unit clauses. Therefore by Lemma 3.20 and theassumed unsatis�ability there has to be a pair of complementary or ?-complementaryliterals in �. Thus a single application of the rule Res or Strict yields the emptyclause.If k > 0, then there is a non-unit clause C =: C1 [C2 2 �. If � = �0 [fCg thenthe k parameters for �1 := �0 [fC1g and �2 := �0 [fC2g are smaller than k and19

therefore by inductive hypothesis there are refutations for �1 and �2 which can becombined to a refutation for �, since � is ground.Theorem 3.22 (Completeness) The calculus consisting of the rules Res, Fac, andStrict is refutation complete.Proof: For the proof of this assertion we combine the completeness result from theground case with a lifting argument. It turns out that the lifting property can beestablished by methods from [20], since they are independent of the number of truthvalues.4 Resolution with Order-Sorted Uni�cationThe calculus de�ned above can still be improved by introducing an order-sorteduni�cation.De�nition 4.1 (Conditional Objects) A pair oc = @jjC is called a conditionaldeclaration (a conditional term, a conditional substitution), if C is a set of literalsand @ is a declaration t<�S (a term t, a substitution �). We will call a conditionalobject ground, i� @ is ground. We de�ne the application of a conditional substitution�c := �jjD to a conditional term oc := @jjC (denoted by �c(oc)) to be �(@)jj�(C)[D.De�nition 4.2 Let D be a set of conditional declarations, then the set wsTS(�;D)of well-sorted conditional terms of sort S is inductively de�ned by1. variables xS 2 wsTS(�;D)2. if t<�T jjC 2 D then t 2 wsTT (�;D)3. if t 2 wsTT (�;D) and s 2 wsTS(�;D) then [s=xS]t 2 wsTT (�;D).We call a conditional substitution [t1=x1S1]; : : : ; [t1=xnSn]jjC a well-sorted substitution,i� tijjCi 2 wsTSi(�;D), for some sets of literals Ci, such that C = Si Ci. Ob-viously the application of well-sorted conditional substitutions to well-sorted con-ditional terms yields well-sorted conditional terms, so wsT(�;D) is closed underwell-sorted substitutions and the set of well-sorted substitutions is a monoid withfunction composition.Uni�cationDe�nition 4.3 (Uni�cation Problem) Let � := fs1 = t1; : : : ; sn = tng be a set oftwo-elementmulti-sets of terms (called disagreement set), then we will call a pair �jjDa uni�cation problem, that is, an uni�cation problem is a conditional disagreementset. It is called well-sorted, i� tijjCi and sijjDi 2 wsT(�;D) for some sets Ci;Di ofliterals, such that SiCi [SiDi = D. We will call a uni�cation problem solved , if20

� it is of the form x1S1 = t1; : : : ; xnSn = sn; y1 = y1; : : : ; ym = ymjjC, and� the xi are distinct and do not occur on the right hand sides of equations.� ti 2 wsTSi(�;D) for all 1 � i � n.Now we will present a set of transformations for a nondeterministic uni�cationalgorithm that computes complete sets4 of uni�ers for well-sorted uni�cation prob-lems. The nondeterministic uni�cation algorithm starts with a well-sorted uni�cationproblem � and enumerates the set of irreducible uni�cation problems from �. Such auni�cation problem is called a success node, if it is in solved form and a failure nodeotherwise. The set of substitutions corresponding to the success nodes is the outputof the algorithm.De�nition 4.4 (Order-sorted Uni�cation) The following inference system givesa non-deterministic algorithm for order-sorted uni�cation in SKL.elim-var xS = yT ;�jjCx = y; [y=x]�jj[y=x]C [D if zT<�SjjD 2 D or S = T (then D is empty).decompose f(s1; : : : ; sn) = f(t1; : : : ; tn);�jjCs1 = t1; : : : ; sn = tn;�jjCimitate xS = f(s1; : : : ; sn);�jjCxS = f(t1; : : : ; tn); s1 = t1; : : : ; sn = tn;�jjC [D if f(t1; : : : ; tn)jjD 2 Dor S = D (then D is empty) and furthermore xS =2 Free(f(t1; : : : ; tn)).intersect xS = yT ;�jjCxS = zV ; yT = zV ;�jjC [D1 [D2 if z1V<�SjjD1 and z2V<�SjjD2 2 Dnon-reg xS = yT ;�jjCxS = (f(s1; : : : ; sn); yT = (f(t1; : : : ; tn); s1 = t1; : : : ; sn = tn;�jjC [D1 [D2if f(s1; : : : ; sn)<�SjjD1 and f(t1; : : : ; tn)<�T jjD2 2 D.For the rules imitate, intersect, and non-reg we assume the sets of variables inthe declarations in D and the uni�cation problem to be disjoint. If this is not thecase the variables have to be renamed in the declarations. For all newly introducedx = t, these rules are directly followed by applications of the ruleelim-new x = t;�jjCx = t; [t=x]�jj[t=x]C4Here the instantiation ordering for completeness is just that for ordinary substitutions, sincethis set of transformations is clearly not complete for the instantiation ordering derived from thede�nition of composition for conditional substitutions.21

Remark 4.5 Note that we have to keep trivial variable pairs in our solved forms,since we do not postulate transformation rule for deleting trivial pairs (constantsand function symbols can be deleted by the decompose rule). This trick prevents theloss of already used variables from the uni�cation problem and eases the freshnessconditions (we only have to consider the free variables of the current uni�cationproblem) in the rules imitate, intersect and non-reg.In contrast to the related set of rules for order-sorted uni�cation in [21] or [16]we only eliminate solved pairs, that are known to be well-sorted from the set D ofdeclarations. Therefore we do not need the explicit failure rules these authors need,since they do not test for well-sortedness of the pair before eliminating. In our systemwe de�ne failure as irreducibility and non-solvedness, but we could also add explicitfailure rules to detect failure early for a practical implementation.Theorem 4.6 The above set of rules de�ne a sound and complete non-deterministicuni�cation algorithm.Proof sketch: It is obvious that all inference rules maintain the property of well-sortedness for uni�cation problems, since all new pairs added are from declarations(and we also record the respective conditions) and are therefore well-sorted by de�n-ition and the set of well-sorted terms is closed under well-sorted substitutions.The rest of the soundness and completeness proof is independent of the conditions,since we have chosen the instantiation ordering independently. In particular solvedforms are independent of the conditions. Since without conditions the set of inferencerules corresponds to that given in [16, p.98], we refer to the proofs given there.Resolution (RPF(D))The notion of substitution discussed above is not yet the one appropriate for a resol-ution calculus, where substitutions are required to have ground instances. otherwisethe resolution rule becomes unsound: Let S be a sort that does not have groundterms, i.e. where AS may be empty, then the clause set ff(PxS)tg; f(PyS)fgg wouldbe refutable, without being unsatis�able. A well-sorted term may not have groundinstances, if it contains variables of sorts that do not have ground terms. Thereforewe are interested in conditions for sorts to be non-empty.Lemma 4.7 Let D be a set of conditional sort declarations, then the problem whetherthe set of conditional ground terms of sort S is empty is decidable. Furthermore theset of conditions for the nonemptyness with respect to D is e�ectively computable.Proof sketch: LetAx(D) be the set of propositional formulaeS1) : : :) Sn) T ,such that t<�T jjC 2 D and fx1Sig are the free variables of t. Then the emptynessproblem is equivalent to the problem whether Ax(D) j= S in propositional logic,which is known to be decidable. 22

In particular the set Ax(D) is a Horn clause set, therefore propositional SLD-resolution with an appropriate strategy is a decision algorithm for the problemAx(D) j= S. From a SLD proof Ax(D) ` S, the set of conditions for S to haveground formulae can be computed by identifying the declarations corresponding tothe clauses in the proof and collecting the suitably instantiated versions of theirconditions.De�nition 4.8 Let S be a sort, then we de�ne �(S) to be the set of conditionscomputed by the algorithm sketched in 4.7, if S is nonempty and �(S) a tautologyif S is empty. For a substitution � := [t1=x1]; : : : [tn=xn] let S(�) the set of all sortsof variables free in t1; : : : ; tn, then we de�ne �(�) := SS2S(�) �(S).Now we can adapt the resolution calculus to order-sorted uni�cation:De�nition 4.9 (Resolution with Order-Sorted Uni�cation (RPF(D)))Let D be a set of conditional declarationsL�; C M�;D Res(D)�(C); �(D); E; �(�) L�;M�; C Fac(D)�(L�); �(C); E; �(�)(t<�D)f ; C L ;D Strict(D)�(C); �(D); F; �(�)where � 6= � and 2 ft; fg. For Res(D) and Fac(D) the substitution �jjE is themost general well-sorted uni�er of L and M and for Strict(D) there exists a subterms of L, such that �jjF is a most general well-sorted uni�er of t and s.Note that by residuating �(�) in our calculus, we have not prohibited inferenceswith substitutions that do not have ground instances. We have merely renderedthe generated clauses tautologous. A practical implementation would not add suchclauses, since they can never contribute to a refutation.Let 	 be a clause set andDM () := ft<�SjjC j C; (t<�S)t 2 	gand DC () � DM () a subset, such that for any clause of the form C; (t<�S)t in 	there is exactly one conditional declaration t<�SjjC in DC ().These de�nitions give us two variants of the resolution calculus, RPF(DM) if wetake D to be DM () or RPF(DC), if we take D := DC(). For the latter variantwe have to reevaluate the set DC() after each inference step to obtain a completecalculus. 23

Remark 4.10 In the case of non-empty sorts we can simplify the inference rules bydeleting the non-emptyness conditions �(�) and �(�) in the de�nition of RPF(D).Furthermore, unlike in the simple resolution calculus we do not need to add newconstant declarations for completeness.Remark 4.11 At �rst glance the use of order-sorted uni�cation in the calculus isnot a great improvement over that with unsorted uni�cation, since in the re�nedcalculus residuation is also required. The di�erence in the calculi is that each use ofa conditional declaration in the uni�cation algorithm of RPF(D) has to be imitatedby a resolution step in RPF. The conditions residuated in RPF(D) are only those,that are not yet present as positive information in the clause set, whereas those ofRPF are all that are needed for well-sortedness irrelevant of the sort informationalready present in the clause set.Theorem 4.12 Both variants RPF(DC) and RPF(DM) are sound and complete.Proof: The methods from [21] apply to SKL, since uni�cation is only concernedwith terms and the di�erence in the number of truth values does not a�ect the termstructure.Extended Example (continued)Following the discussion above we will continue our extended example and show aproof using order-sorted uni�cation. The re�ned calculus uses the same clause normalform as in the unsorted case.T6 & A5�!R1 (c� d = 0)f ; (e = f)fuR1 & A1�!R2 (c� d<�IR�)t; (e = f)fuT8 & A3�!R3 (e = f)fuT7 & A5�!R4 (c� d = 0)f ;�� 1e�f �2 > 0�fuR4 & A1�!R5 (c� d<�IR�)t;�� 1e�f �2 > 0�fuT9 & A3�!R6 �� 1e�f �2 > 0�fuR6 & A3�!R7 (e� f = 0)tR7 & A5�!R8 (e = f)tR3 & R8�!R9 2Note that clauses R2 and R5 are conditional declarations that have been addedto our set of declarations, these additional declarations have made resolution stepsR3 and R7 possible. Now we see the improvement of the re�ned calculus, where weneed 9 steps as compared to 24 steps in the unsorted case. One can easily imaginethe magnitude of the search space and the proof for the relativized formulation.24

5 ConclusionWe have developed an order sorted three-valued logic for the formalization of informalmathematical reasoning with partial functions. This system generalizes the systemproposed by Kleene in [12] for the treatment of partial functions over natural numbersto general �rst-order logic. In fact we believe that the unsorted version of our systemwithout the ! operator is a faithful formalization of Kleene's ideas. Furthermore wehave presented a sound and complete resolution calculus with dynamic sorts for oursystem, which uses the sort mechanism to capture the fact that in Kleene's logicquanti�cation only ranges over de�ned individuals.Our calculus can be seen as an extension of classical logic that combines methodsfrom many-valued logics (cf. [2, 11]) for a correct treatment of the unde�ned andorder-sorted logics (see [20, 21]) for an adequate treatment of the de�ned. It di�ersfrom the sequent calculus in [14] in that the use of dynamic sort techniques greatlysimpli�es the calculus, since most de�nedness preconditions can be taken care of inthe uni�cation. Thus we believe that our system is not only more faithful to Kleene'sideas (de�nedness inference is handled in the uni�cation at a level below the calculus)but also more e�cient for the sort techniques involved.Of course further extensions of the system described here have to be consideredin order to be feasible for practical mathematics.In particular this calculus does not address the question of the e�cient mechaniz-ation of equality, here paramodulation (cf. [15]) or even superposition ([4]) methodswould be interesting to study. However, we believe that this endeavor will mainlyinvolve the development of the sort aspects for these calculi, because we think thatthe aspects of three-valuedness will not be critical.On the other hand, the mechanization of higher-order features is essential for theformalization of mathematical practice. Higher-order logics are especially suitablefor formalizing partial functions, since functions are �rst class objects of the systems,that can even be quanti�ed over. In this direction the work of Farmer et al. [8, 9]has shown that partial functions are a very natural and powerful tool for formalizingmathematics. We expect that our three-valued approach, which remedies some prob-lems of their simpler two-valued approach (see the discussion in the introduction andin example 3.11) can be generalized in much the same manner and will be a usefultool for formalizing mathematics.
25

References[1] R. Anderson and W.W. Bledsoe. A linear format for resolution with merging anda new technique for establishing completeness. Journal of the ACM, 17:525{534,1970.[2] Matthias Baaz and Christian G. Ferm�uller. Resolution for many-valued logics.In A. Voronkov, editor, Proceedings of International Conference on Logic Pro-gramming and Automated Reasoning, pages 107{118, St. Petersburg, Russia,1992. Springer Verlag, Berlin, Germany. LNAI 624.[3] Matthias Baaz, Christian G. Ferm�uller, and Richard Zach. Dual systemsof sequents and tableaux for many-valued logics. Technical Report TUW-E185.2BFZ.2-92, Technische Universit�at Wien, Institut f�ur Computersprachen,1993. Short version in Proceedings of the 23rd International Symposium on Mul-tiple Valued Logic, Sacramento, California, 1993. IEEE Press.[4] Leo Bachmair and Harald Ganzinger. Non-clausal resolution and superpositionwith selection and redundancy criteria. In A. Voronkov, editor, Proceedingsof International Conference on Logic Programming and Automated Reasoning,pages 273{284, St. Petersburg, Russia, 1992. Springer Verlag, Berlin, Germany.LNAI 624.[5] Michael J. Beeson. Foundations of Constructive Mathematics. Springer Verlag,1985.[6] Walter A. Carnielli. Systematization of �nite many-valued logics through themethod of tableaux. Journal of Symbolic Logic, 52:473{493, 1987.[7] Walter A. Carnielli. On sequents and tableaux for many-valued logics. Journalof Non-Classical Logic, 8(1):59{76, 1991.[8] William M. Farmer. A partial functions version of Church's simple theory oftypes. Technical Report M88-52, Revision 1, The MITRE Corporation, Bedford,Massachusetts, USA, February 1990.[9] WilliamM. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An Inter-active Mathematical Proof System. Journal of Automated Reasoning, 11(2):213{248, October 1993.[10] Alan M. Frisch. The substitutional framework for sorted deduction: Funda-mental results on hybrid reasoning. Arti�cial Intelligence, 49:161{198, 1991.[11] Reiner H�ahnle. Automated Theorem Proving in Multiple Valued Logics. PhDthesis, Fachbereich Informatik, Universit�at Karlsruhe, Karlsruhe, Germany,March 1992. revised version: Automated Deduction in Multiple-Valued Logics,Oxford University Press, Oxford, England, 1994.26

[12] Stephen Cole Kleene. Introduction to Metamathematics. Van Nostrand, Ams-terdam, The Netherlands, 1952.[13] Lothar Kreiser, Siegfried Gottwald, and Werner Stelzner, editors. Nichtklassis-che Logik. Akademie Verlag, Berlin, Germany, 1990.[14] Francisca Lucio-Carrrasco and Antonio Gavilanes-Franco. A �rst order logic forpartial functions. In Proceedings STACS'89, volume 349 of LNCS, pages 47{58.Springer Verlag, 1989.[15] Arthur Robinson and Larry Wos. Paramodulation and TP in �rst order theorieswith equality. Machine Intelligence, 4:135{150, 1969.[16] Manfred Schmidt-Schau�. Computational Aspects of an Order-Sorted Logic withTerm Declarations, volume 395 of LNAI. Springer Verlag, 1989.[17] R. Schock. Logics without Existence Assumptions. Almquist & Wisell, Stock-holm, 1968.[18] Dana S. Scott. Outline of a mathematical theory of computation. TechnicalMonograph PRG-2, Oxford University Computing Laboratory, November 1970.[19] Pawel Tichy. Foundations of partial type theory. Reports on Mathematical Logic,14:59{72, 1982.[20] Christoph Weidenbach. A resolution calculus with dynamic sort structures andpartial functions. SEKI Report SR-89-23, Fachbereich Informatik, Universit�atKaiserslautern, Kaiserslautern, Germany, 1989. Short version in ECAI'90,p.668{693.[21] Christoph Weidenbach. A sorted logic using dynamic sorts. Technical ReportMPI-I-91-218, Max-Planck-Institut f�ur Informatik, Im Stadtwald, Saarbr�ucken,Germany, 1991. Short version in IJCAI'93, p.60{65.
27

