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Abstract labelled by predicates and objects, and arcs directed from
. . . . . higher-order predicates to the lower-order predicates and ob-
Many computational models in cognitive science and artifi- . . . .
cial intelligence face the problem of computational intractabil-  JECtS that are their arguments (see Figure 1 for an illustra-
ity when assumed to operate for unrestricted input domains. tion). Because both the base and the target can have many

Tractability may be achieved by restricting the input domain,  ppdes and arcs, with complex connectivity, there exist many
but some degree of generality is typically required to model ibl - h f b . if both
human-like intelligence. Moreover, it is often non-obvious POSSIble mappings to choose from. To be precise, if bot

which restrictions will render a model tractable or not. We N /n 2
present an analytical tool that can be used to identify sources base and target havenodes, then there eXISZ) <k> -k!
of intractability in a model’'s input domain. For our illustra- k=

tion, we use Gentner's Structure-Mapping Theory of analogy possible mappings. For networks with 6 nodes this already

as a running example. leads to 13,327 possible mappings and for networks with 18
Keywords: computational complexity; intractability; parame-  or more nodes the number of mappings exceed the seconds
terized complexity; analogy; structure mapping since the birth of the universe. Exhaustively searching such
| ducti a (super-polynomially sized) search space is unfeasible even
ntroduction for intermediate problem sizes. Yet the proposal that SMT
Computational intractability is a problem that plagues manymay model the human ability for analogizing—as well as the
models of human and artificial intelligence. If such modelsdesire to emulate this ability in artificial systems—raises the
are assumed to apply to inputs of real-world size and comguestion if there exist algorithms that can find the right map-
plexity, then they require more computational resources (e.9ping without having to perform such an exhaustive search.
time or memory) than can be reasonably attributed to any A finding that seems to bear on this question is that
computing machine, whether human or artificial. The prObstructure—mapping as defined by SMT is an NP-hard problem
lem seems to often arise from the rich, combinatorial struc(Evans, Gedge, Mler, van Rooij, & Wareham, 2008; Veale
ture of the representations posited by our theories of cognig, Keane, 1997). This means thall algorithms solving the
tion, but typ|Ca"y it is hard to tell what it is exaCtIy about prob|em are of Super-po|ynomia| Comp|ex}tyt also means
the structure that makes the computations defined over theggat there is only one way to ensure SMT is a computationally

structures computationally so expensive. If cognitive mod-easible model of analogy-makifgThe structure-mapping
elers have a means of identifying structural properties that—

either combined or in isolation—are responsible for amodel’s *This interpretation of the NP-hardness of SMT holds under the

. . . . _assumption that B NP, a mathematical conjecture that is unproven
intractability, then they could use this knowledge for ComiNGy, ;¢ has strong empirical support. The interested reader is referred to

up with informed hypotheses of how an intractable cognitiveGarey and Johnson (1979) and Arora and Barak (in press) for more
theory can be rendered tractable. details.

Take, for example, the influential theory of Dedre Gentner__>The problem of intractability is so familiar that many cognitive
scientists may instantaneously have ideas about how this problem

(1983) of analogy, called Structure-Mapping Theory (SMT). couid be solved, but the fact of the matter is that all such solutions
According to this theory, humans form analogies by map-either restrict the domain of inputs for which the theory is believed

i i i i hold or the theory is revised so as to allow for (slightly) different
ping relations in one predicate structure (the base) to relaE)Qutputs than the one specified by the original theory (van Rooij, in

tions in anpther (the target). One can think of predicate StruCpress). Since our purpose is to present analytical tools for identifying
tures as directed acyclic graphs with the nodes in the grap$ources of intractability in giventheory, we focus on the first option



processes must be assumed to operate for a restricted domain
of input structures, where those structures have special prop? Cause R
erties that can be exploited in the tractable computation of
analogies.

Cause And Cause

How can we find out what these special properties areZravity Greater  Aftracts Revolve Opposite-Sign Greater  Attracts Revolve
One way of approaching this question (though not one that | >\ | >\,
we recommend) is to implement an algorithm that computes ™ Mass Charge  Charg
structure-mappings and investigate how long it runs for dif-
ferent input structures (e.g., Falkenhainer, Forbus, & Gentner, et 9 nucleus - electron
1989). By systematically varying structural aspects of the in-
put one may then discover that even though the algorithm runs e T T
slow for many input structures, it runs relatively fast for some. Greater--Attracts---Revolve - Greater  Atiracts Revolve
By comparing the “easy” and “hard” inputs one may observe / \ & /g
that they differ in several respects, e.g., certain structural as¥s Charge Charg
pects may be relatively small, relatively large, or otherwise
special in the “easy” inputs. One may then be led to believe ) )
that it is theabsencef these special properties in the “hard”
inputs that makes structure-mapping hard in general.

nucleus elgtrnn
7 -

d)

Granting that such an approach may overcome the practical Partor et Contral PartOf PartOr
obstacle that a systematic search of the space of inputs is it- 3 3 | | |
self computationally expensive (to our knowledge, so far only ,im,,/e,i },e,,e,{,-,, | },,,,,,,s/e | >chestr{ § >rcus{on § \dlm
unsystematic searches have been performed for SMT), the oy oo L . !
more important theoretical obstacle remains that we cannot | PamOF o Affect 1 Control 1 PartOf 1 PartOf
infer from the slow running of an algorithm that the structure- V/ \v/ \V/ \ i / \,“7 / \“7
mapping problem is intractable for the same domain of in- " ey general o amy o anilley - cannon
puts. There could always exist a different algorithm for the
structure-mapping problem that runs fast for those same inﬁ
puts? In other words, an algorithmic simulation approach can

¥

igure 1: lllustrations of graph representations of predicate-
. . .. structures and analogy-mappings as defined by SMT. (a) So-
perhaps tell us something about the computational efﬂmenc?/ar system predicate-structure. (b) Rutherford atom predicate-

of particular structure-mappirajgorithms but it need not tell .
us anything about the complexity inherent in the structure> tructure. () Analogy-mapping between (@) and (b). (d)

. . . Analogy-mapping between Composer and General predicate-
;ngﬁ_frgregrﬂrgzlsr?ags for this reason that we propose to use structures. Parts (a) and (b) are adapted from (Falkenhainer

et al., 1989, Fig. 9) and part (d) is adapted from (Veale et al.,
The approach that we investigate in this paper adopts theg9g, Fig. 8).

analytical tools of computational complexity theory. We will

first explain how these tools can be used to identify what we

call ‘sources of complexity’ in an intractable problem (i.e., A Method for Identifying Sources of

problem aspects that can confine the super-polynomial time Complexity

complexity inherent in a problem). We then use these tools

to test if aspects that have been proposed to be responsifMPutational complexity theory actually refers to a whole
for the intractability of structure-mapping are indeed sourced@mily of mathematical theories developed with the purpose
of complexity in SMT. We show that none of the conjectured®f classifying problems according to their inherent complex-
aspects are—by themselves or in combination—responsibli®y: Of particular relevance for our purposes is a relatively re-
for the intractability of SMT. We furthermore show that some Cent variant calleparameterized complexity theofpunded

previously unidentified aspecise so responsible. The non- by Downey and Fellows in the 90s and currently the topic of

obvious nature of these theoretical results illustrates the utiia@ny néw complexity results and techniques (see the special
ity of the analytical tools that we describe. issue edited by Downey, Fellows, & Langston, 2008). Param-

eterized complexity theory is motivated by the observation
that many NP-hard problems can be computed by algorithms

here (but see Hamilton, ler, van Rooij, and Wareham (2007) and WNOS€ running time is polynomial in the overall input size
van Rooij and Wright (2006) for discussions of the second option). and non-polynomial only in one or more small aspects of the
3In general, ifA; and A, are two algorithms that compute in- input. These aspects are callggrameters As the main part

tractable problen® : | — O. Then there can exist two distinct input of the inout contributes to the overall complexity in a “ "
domainsly, |2 C | such that is a tractable algorithm fdr but not of the input contributes to the overall complexity in a "good

for I, andA; is a tractable algorithm fdp but not forl;. If so, then ~ Way, ar?d only the parameters contri_bute to the overall com-
the problenP is computationally tractable fdg U I5. plexity in a “bad” way, the problem is well-solved even for



large inputs provided only that the parameters remain smalketK. Proving fixed-parameter tractability may be techni-
This intuitive characterization is captured by the formal no-cally challenging but is conceptually straightforward: It suf-
tion of fixed-parameter tractability (see also Downey & Fel-fices to produce just one algorithm that computes the problem

lows, 1999). in fixed-parameter tractable time (see, e.g., Sloper & Telle,
o ) - 2008, for a review of generic techniques for building such al-

Definition 1. Fixed-parameter tractability. Let P : gorithms). Fixed-parameter intractability can be established
| — O be a problem with input parametekg ko, ..., km. by proving the problem W[1]-hard (the parameterized analog
ThenP is said to befixed-parameter tractabléor pa- of NP-hard)? To prove this it suffices to construciparame-
rameter seK = {kq, k, ..., km} if there exists atleastone  (grized reductiorfrom a known W[1]-hard probler® to the
algorithm that computeB for any input of sizenin time problemP.
f (k1, ko, ..., km)n®, wheref (.) is an arbitrary computable
function andc is a constant. If no such algorithm exists Definition 3. Parameterized reduction. Let P, : 11 —
thenP is said to bdixed-parameter intractable 01 andP; : I, — Oy be two problems with parameter set

) ] ) ] K1 andK; respectively. Then parameterized reduction
We note the following observation, which follows from Defi- Py to P, consist of two algorithmsd andA,, that

nition 1. are fixed-parameter tractable relativektg such that
Observation 1. If P is fixed-parameter intractable — A transforms any input € |1 (with associated values
for parameter seK thenP is also fixed-parameter in- for parameters irKy) into an inputi, € 1, (with the
tractable for any subset of paramet&’sc K. If P is elements irk; bounded by some computable function
fixed-parameter tractable for parameter KethenP is of Ky), and
also fixed-parameter tractable for any superset of param-  _ A, transforms any output; = Py(iz) into an output
etersK” D K. 01 = Py(i1).

Given the notion of fixed-parameter (in)tractability and Ob-Note that if there exists a parameterized reduction from a
servation 1 we can derive a natural candidate for what defineﬁomemp/ to another problen®, thenP is fixed-parameter

a source of complexity in an intractable problem (see alsQractaple only ifP is too. After all, in that situatio® can be
van Rooij, Stege, & Kadlec, 2005; van Rooij & Wareham, in computed in fixed-parameter tractable time by first transform-
press). ing its input into the corresponding input f&% using algo-
rithm A;, then solvingP, and finally transforming the output
of P back to the corresponding output fér using algorithm

Ao. This implies that, i’ is fixed-parameter intractable, then

Definition 2. Source of complexity. Let P: 1 — O
be an intractable problem. Then parameter lset
{ki,ko,...,km} is said to be a@ource of complexitin P,

if P is fixed-parameter tractable for parameteri6eind SO IsP.
fixed-parameter intractable for all subsktsc K. Candidate Sources of Complexity in
In other words, a parameter gétis considered a source of Structure-mapping

complexity in an intractable problem if it is sufficient for cap- The structure-mapping problem can be informally stated as
turing the non-polynomial complexity inherent in the prob- follows (see Evans et al. (2008) for a formalization of this
lem and it does not contain any unnecessary elements. Thgfinition).
notion of a source of complexity, so defined, expresses the
intuitive idea that a parameter is a source of complexity if, STRUCTUREMAPPING
all else being equdl high values of the parameter cause thelnput  Two directed acyclic graphss; = (V1,A1) and
problem to be hard, and low values of the parameter causg, — (V2,Az), each encoding a predicate structure.
it to be easy. In accordance, we judge an input aspect (iDutput The best of all structurally consistent mappings from
this case, elements & being large) to be responsible for G, to G,.
the intractability of the problem if ite&bsencg(in this case,
elements oK being small) renders the problem tractable.  Here a mapping fron; andG; is structurally consistenif

It remains to be explained how one can determine if a probthe following two conditions are met: (1) a vertex\h is
lem P is fixed-parameter (in)tractable for some parameteinapped to at most one vertexV and (2) for every predi-

“We add the phrase ‘all else being equal’ because there may e)?_atev € Vi that is mapped to a predicatg € V; also all the
ist some other parameter sét distinct fromK for which P may = arguments of; are mapped to the argumentswef Further,
also be fixed-parameter tractable. If parameters in that set are smadl, mappingm, is consideredetterthan another mappingy
then even if the elements &f are large P will be tractable. This
means that a problefd need not have one unique source of com-  3We will work under the assumption W[t} FPT (here FPT
plexity. We believe that this does not undermine the intuitive inter-the class of fixed-parameter tractable problems). Liké RP, this
pretation of large values for parameterskirbeing responsible for  mathematical conjecture is unproven but has strong empirical sup-
the intractability inP, even if large values for parametersknh are port. The interested reader is referred to Downey and Fellows (1999)
as well. and Flum and Grohe (2006) for more details.



if My maps relatively more higher-order predicates than

SMT defines therder of a predicate to be the maximum or- Table 1: Overview of parameters for structure-mapping, with

; : ; : the corresponding value of each parameter in the Rutherford
der of its argumentplus 1, with objects being order O. -
9 P J 9 example in Figure la/b, and the Composer-General example

Now note that every instance Of the structure-mapping, Figure 1d. Without loss of generality, we assume tBat
problem will have values for specific problem parameters,iS larger tharG,

each such parameter constituting a potential source of com-

plexity. Table 1 lists the parameters considered in this paper. “Name Definition Fig. Fig.
For simplicity, in the remainder of this paper we will drop the la/b 1d
subscript for a parametgy and writex to refer to eithex; or n number of vertices 16, 11 11
X2 (depending on which happens to be largest).

Our choice of parameters is motivated in part by specu- Ny number of vertices G, 9 11
lations in the literature about aspects of predicate structures
that may be responsible for the computational intractability hy maximum order 4 1
of SMT. of predicates irG;

Based on the finding that their implemented structure- ho maximum order 3 1
mapping algorithm ran slower for the Composer-General ex- of predicates irG,
ample than for the Rutherford example, Falkenhainer et al. % measure of ‘flatness’ a; 2.75 11
(1989) conjectured that the complexity of structure-mapping
may depend not so much on the number of vertiegskut R measure of flatness’ @&, 3 11

more on the heighth) of the predicate structures. Specifi-
cally, these researchers suggested that worst-case times occur

i ) ) - p1 number of predicates iG; 9 5
when relatively ‘flat’ predicate structures (i.e., structures with
minimal or no prgdlcatg—nestlng (see _al.s.o Vegle & Keane, 02 number of predicates i6; 7 5
1997, p. 1). To investigate this possibility using our pro-
posed tool of parameterized complexity analysis, we need to r1 number of root predicates 5 5

define a parameter that is large for ‘flat’ predicate structures -
L . in Gy
and prove that it is fixed-parameter (in)tractable. We propose

. ) r number of root predicates 3 5
to usef as a measure of the relative ‘flatness’ of the input 2 inG P
structures. With this measure we intend to capture the idea 2
. . . . St number of non-root 7 0
that flatnessy) is large when heighth) is small, relative to . :
. predicates irG;
the overall size of the graphg)(
) ) S number of non-root 5 0
We noticed that the Composer-General predicate struc- predicates irG;
tures, besides being relatively flat, also have relatively many o number of objects IGi_12 2 6

root predicates and relatively many objects, especially

when compared to the Rutherford example. To investigate f frequency of a given 2 3
if they could serve as alternative explanations of the apparent predicate label iIG;_1 »
hardness of Structure mapping for these types of predicate a number of arguments 2 2

structures we included these parameters in our analysis. For
completeness, we also include the total number of predicates
(p) and the number of non-root predicatay i6 our analy-
sis, to investigate if possibly they could be responsible for the
intractability of Structure mapping for other types of inputs. (Halford, Wilson, & Phillips, 1998). It is of interest to see if
It has also been proposed that the “performance [of algo@ bound on the arity of mentally represented relations helps
rithms for SMT] is more a function of representation and keep analogical mapping computational tractable for human
repetitiveness rather than size [of the predicate structures]” minds.
(Falkenhainer et al., 1989, p. 47). One possible measure
of repetitiveness is the number of occurrences of the same Results and Discussion
predicate ) in a given predicate structure. To investigate if
this form of repetitiveness indeed is a cause for difficultiesVVe next present a list of fixed-parameter (fp-) tractability and
for Structure-mapping algorithms we includédn the set of ~ intractability results for sets of parameters selected from Ta-
considered parameters. ble 1. Proofs of all these results can be foun&upplemen-
Lastly, we included arity of predicates)(in our analy- tary Materials published onlin@. We start with the results

sis, because there exists empirical evidence that this pararf" 9eneral input structures. Subsequently we also consider

eter is naturally kept small in human mental representations
by cognitive processing (e.g., working memory) limitations  Shttp://www.nici.ru.nlf risvr/supplement08.pdf

per predicate i1Gj—1 »




results for predicate structures consisting of ordéyedi- Structure mapping for predicate structures with ordered
cates only. It will become clear why this has relevance for predicates is

SMT. 5. fp-tractable for parameter sgb}

Structure mapping in general is To interpret Result (5), first observe that the Composer-
General example in Figure 1d contains only ordered predi-

1. fp-intractable for parameter sgh,a, f, s} cates. This means that if we want to explain why this type of

2. fp-intractable for parameter sgf } input is hard we may assume w.l.0.g. that we are dealing only
3. fp-tractable for parameter sén; } with predicate structures with ordered predicates. Then Re-
4. fp-intractable for parameter sy, r,h, a, p} sult (5) naturally explains why Structure mapping algorithms

run long for this type of input. After all, Result (5) shows

Result (1) means that the height of the predicate structuregat the parametes (the number of objects in the predicate
(h), the arity of predicatesa, the frequency of predicate la- structures) is a source of complexity for Structure mapping
bels (f), and the number of non-root predicatss<(p—r,  of predicate structures with ordered predicates, @istrela-
wherep is the total number of predicates ands the num- tively large in the Composer-General predicate structures.
ber of root predicates) are neither individually, nor combined At this point, the reader may wonder if perhaps the pa-
in any way, a source of complexity for Structure mapping.rameters shown not to be sources of complexity for Structure
In other words, even if all these parameters are small thermapping in general (Results (1), (2), and (4)), may also turn
all else being equal, Structure mapping remains computaeut to be sources of complexity if inputs are constrained to
tionally unfeasible for all but small inputs. We particularly predicate structures with ordered predicates only. This is not
note two important implications for the SMT literature: First, the case, however, as is evidenced by Result (6).
even if repetitiveness in predicate structures introduces diffi-
culties for structure-mapping, as proposed by Falkenhainer et
al. (1989, p. 47), then this will not be due to the repetitive-
ness of predicate labels alone, and second, the natural bouftiom Result (6) we conclude that of all the parameters that
on arity in human mental representations assumed by Halforde have considered in this paper, the relatively large size of
et al. (1998) is insufficient to yield analogical mappings com-only one of them (viz.p) yields a parsimonious explanation
putationally tractable for human minds, at least for analogicabf the apparent ‘hardness’ of Structure mapping for inputs of
mappings as construed by SMT. Composer-General type. Admittedly, the paramaiecould

Interestingly, we have also Result (2), which shows thain principle be used to explain ‘hardness’ of this type (or any
contrary to the conjecture of Falkenhainer et al. (1989), théype!) of input as well, but it would hardly be parsimonious,
flatness of a predicate structure (measuredibyis not a  becausen > o+ p and courtesy of Result (5) we know that
source of complexity for Structure mapping. Also, contrary too already suffices to capture the non-polynomial complexity
the conjecture that the number of vertices do not matter muctinherent in the Structure mapping problem for inputs like the
we have Result (3), showing that the number of vertices—a€omposer-General example.

6. Resultsl—4 hold even if the predicate structures con-
tain ordered predicates only

least in the larger of the two predicate structures, ne—+ We remark that Result (5) does not yet explain why Struc-
is a source of complexity. We should qualify, however, thatture mapping for inputs of the type shown in Figure 1a/b (the
it is impossible to have large input if parameteris small,  Rutherford example) is “easy”, because these predicate struc-

since the whole input siz® +n, is bounded by x n;. Since  tures contairunordered predicates (viz., AND(X,Y)). There-

intractability is only an issue for non-small inputs, the obser-fore it is of interest to note that we have the following result

vation thatn; is a source of complexity is more or less redun-which establishes that Result (5) also holds for general inputs

dant. We see that if we switch from to n; (i.e., the num-  with both ordered and unordered predicates.

ber of vertic_gs in the s_maller of the two preQicate strugturgs) Structure mapping in general is

then the ability to confine the non-polynomial complexity in

Structure mapping to the parameter is lost (Result (4)). Also, /- fp-tractable for parameter sgo}.

Result 4 shows that the number of root predicatg¢ss(not  Result (7) yields a natural explanation of why inputs like the

a source of complexity, not individually nor combined with Rutherford example make for easy structure-mapping, viz.,

any of the parametens, a, nz, p. In other words, like its  because the number of objects in base and target is small (in

relative flatness, the large number of roots in the Composethis casep; = 0, = 2).

General example in Figure 1d fails to explain why inputs of  |n sum, with our analyses we have shown that several (in-

this type (or any type) are “hard” for Structure mapping. Wetuitively plausible) conjectures about what makes structure-

next present a result theanexplain the apparent hardness of mapping computationally difficult are incorrect. In addition,

this type of input. our results show that the relative difficulty of the Composer-
A predicate is said to be ordered if the order of its argument General example compared to the Rutherford examples can

matter, otherwise it is said to be unordered. For example, the preaspe_parsi_moniously_ explained by the difference in number of
cate AND(X,Y) is unordered, but GREATER(X,Y) is ordered. objects in the predicate structures.
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Oft lgorithmic simulati f tational-level th University of Newfoundland.
en aigorithmic simutations ot computationa-level th€o- zo o nhainer, B., Forbus, K. D., & Gentner, D. (1989). The

res give gooq, first guesses a_bout Input aspg_cts that Cause:structure-mapping engine: Algorithm and examplasti-
the computational problem defined by a cognitive theory to

be computationally intractable. However, to validate thos ficial Intelligence 41, 1-63.

b y In : ' : ..elgum, J., & Grohe, M. (2006).Parameterized complexity
guesses we need evidence that we have actually identifie theory Berlin: Springer
sources of intractibility in the computationgioblem rather ) . i

th tifacts of an inadvertently inefficient impl tati Forbus, K. D., & Gentner, D. (1989). Structural evaluation
of?ﬁeatrh;?ys ot an Inadvertently ineticient implementation ¢ analogies: What counts? Rroceedings of the Eleventh

) , , Annual Conference of the Cognitive Science Sodey
In this paper, we have illustrated how parameterized com- 341-348). Mahwah, NJ: Erlbaum.

plexity theory provides some useful analytical tools that Carbarey M. R., & Johnson, D. S. (1979%Computers and in-
help substantiate claims or intuitions about what makes a trac’éability:,A guide to the theory of NP-completeneSan
given problem hard or easy. The same tools also can help . cisco CA: W.H. Ereeman.

us disqover whgn our intuitions apouti sources of intr.actabiI-Gemner, D. (1983). Structure-mapping: A theoretical frame-
ity are in fact mistaken. That such intuitions can be mistaken, ok for analogy.Cognitive Science, 155-170.

even after considerable simulation tests, is illustrated by OUlalford. G. S.. Wilson. W. H.. & Phillips, W. (1998). Process-
results for SMT and how they bear on existing conjectures in ing capacity defined by relational complexitgehavioral
the literature about potential sources of intractability in this ¢ ‘5.2 Sciences21, 803-831.

theory. . N Hamilton, M., Muller, M., van Rooij, ., & Wareham, T.
Intuitions about sources of intractability may be more often  (2007). Approximating solution structure. In E. Demaine,
mistaken than we realize. Not only are people poor atintuit- Gz Gutin, D. Marx, & U. Stege (Eds.Btructure The-
ing the speed of combinatorial expansfolut to pinpoint ex- ory and FPT Algorithmics for Graphs, Digraphs, and Hy-
actly which aspects of representational structures are respon-pergraphs. Schloss Dagstuhl, Germany: Internationales
sible for (or contribute to) computational intractability one  gegegnungs- und Forschungszentrum fur Informatik.
needs to understand the subitiéeraction between a com-  gjgper, C., & Telle, J. A. (2008). An overview of techniques
binatorially complex domain and the problem to be solved for designing parameterized algorithm&omputer Jour-
for that domain. This is a highly non-trivial task. Itis not ng 51 122-136.
for nothing that a whole branch of mathematics is devoted torygrsky, A., & Kahneman, D. (1973). Availability: A heuris-
building tools and concepts for performing exactly this task. tjc for judging frequency and probability. In D. Kahne-
We think that cognitive scientists can greatly benefit from man, P. Slovic, & A. Tversky (Eds.Judgment under un-
adopting the tools of parameterized complexity theory, as certainty: Heuristics and biase©xford University Press.
many cognitive theories are known to face computational inyan Rooij, I. (in press). The tractable cognition thesisg-
tractability for unrestricted domains. If a computational-level nijtive Science
theory can be shown to be tractable under certain input conzan Rooij, I., Stege, U., & Kadlec, H. (2005). Sources of
straints and there is empirical evidence that inputs are in- complexity in subset choicdournal of Mathematical Psy-
deed so constrained for human cognizers, then the theory canchology 49, 160-187.

maintain a status of psychological and computational plausivan Rooij, I., & Wareham, T. (in press). Parameterized com-

bility, despite its intractability for unrestricted domains. plexity in cognitive modeling: Foundations, applications
and opportunitiesComputer Journal
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