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Abstract

In this paper we present the architecture an urban traffic surveillance system
based on smart sensors capable of license plate recognition. A data model that is
suitable to store data coming from this system is also discussed. This data model
needs to be connected to the spatial description of the underlying road network.

Due to the relatively high cost of the sensors, a software for simulating vehicle
movements and detection by the sensors is needed, as well. We have developed two
applications for this purpose.

Categories and Subject Descriptors: H.4 [Information Systems Applications];
J.7 [Computers in Other Systems]; K.4 [Computers and Society]; E.1 [Data Struc-
tures]

Key Words and Phrases: Traffic simulation, Data model

1 Introduction

An increasing problem in the modern world is the rapidly growing urban traffic. The
highly populated cities are not prepared to ward off the effects of this growth, such as
traffic jams, flow slowdown, not speaking about the environmental pollution and the
psychological effects. In most cases the lack of space is the major issue. The public road
development as part of the urban planning has to be performed in the most appropriate
way.

In an urban environment vehicle counting alone may not be enough to acquire satis-
fying information about the behaviour of traffic participants, their route choosing habits.
Knowing not only quantitative information, but concrete vehicle paths, we can determine
more precise origin-destination profiles, patterns and trends in the traffic. Therefore we
intend installing sensor devices capable of recognizing license plates. These sensors will
be placed on previously selected lanes in a well delimited area. Knowing the precision
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of the devices and simulating the urban traffic in that specific area, we can propose the
minimum number of sensors needed in the actual data acquisition, and the position of
the sensors.

Our aim is to create an intelligent urban traffic development support system to mon-
itor urban traffic, and to predict traffic behavior. To reach this goal a project has been
started with a consortium (the members are the Adaptive Recognition Hungary Ltd. [1]
and the Institute of Informatics, University of Debrecen) to manage the development and
deployment. In the last years the work has been separated into two large parts, namely
the development for software and database techniques and simulation software tools and
a development for a statistical model. The second part is explained in [2].

Our goal is to collect information about the urban traffic which can be the starting
point of a statistical analysis which provides useful data for the designers and maintainers
of the public road network in order to use them for both tuning the legacy network and
further development.

This paper is organized as follows. Our 4-layered system architecture is discussed in
Section 2. Section 3 describes the data model used for storing data acquired by the sen-
sors. In Section 4 we discuss the need for a simulation software and two implementations
are proposed. Section 5 contains concluding remarks.

2 Architecture

The architecture of our system is a 4-layered one. Each layer is based on the layer below
it and provides services for the above layer.

The bottom layer is the physical road network itself.
Spatial model stores the physical location of both the roads and sensors. It provides an

abstraction of the road network. It is considered as a “digital picture” of the underlying
road network. Sensors form a directed graph called sensor graph. These sensors are
considered to be smart : they are not only counting the number of cars but gather more
information about vehicular traffic, including license plate identification of the crossing
vehicles and (optionally) the photo of the license plate.

Since statistical model needs aggregated data which is not supported by the spatial
model, we need a new layer, the inputs of which are the data gathered by the sensors
and provides the required aggregates.

Hence, collected information from each sensor are inserted into a database. However,
sensor graph can be derived from the spatial model, the need for faster processing suggests
to store the graph in a database, as well. Therefore the database, besides storing data
produced by the sensors, contains data about the sensors, as well, which need to be
connected to the sensor descriptions of the spatial model.

Data are collected in order to create a forecast, e.g., about the preferred paths of
drivers at Easter, or the average speed of vehicles in the morning, etc. To do so, complex
statistical computings are needed. These issues are discussed in detail in [2].

3 Data model

As we mentioned, data collected by the sensors are inserted into a database. Each sensor
has a unique ID, knows the timestamp of the photo, the recognized license plate of the
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Figure 1: Data model used for storing sensor data

vehicle, and optionally, the reliability of the recognition and the photo itself (in JPG
or BMP format). These data serve as a base for the statistical analysis. To store the
gathered information we have developed the data model shown in Figure 1.

This model is based on the relational model for databases [3]. Therefore, all the
entities of Figure 1 are mapped to a database table and SQL should be used for data
manipulation.

Derived data from the spatial model should be stored, as well. The physical location
of sensors is given by the spatial model. To achieve independence of the spatial model,
sensors are assigned unique identifiers which can connect to the spatial model using a
database table serving as an interface between the spatial and the data models. This
table needs to map each sensor as a spatial model element to a generated ID. This
solution makes the data model independent of the underlying spatial description.

SENSOR stores the information about sensors. We have three sensor types used when
computing origin-destination (OD) matrices: input, output and pass-through.

As we mentioned before, sensors form a sensor graph. This can be derived from
the spatial model but for faster processing we need to store it in the database, as well.
SENSORGRAPH stores which sensors have direct connections and the distance of them. The
latter can be used for computing average speed of vehicle flow, for example.

ENTRY stores data acquired by sensors. For each vehicle, the time of recognition is
recorded as a timestamp which can be used for computing trends and seasonalities. The
result of the recognition is a license plate. The reliability of the recognition and the image
taken may also be provided by the sensors. The former allows the statistical correction
of the erroneous data caused by the incidental incorrect recognition.

The table OD_MATRIX is used from time to time for aggregating information needed
to compute OD matrices.

CODE is a singular table (its singularity is maintained by a database trigger) used for
security reasons but its detailed discussion is outside the scope of this paper.



Fazekas, A., Kollár, L., Zörgő, Z., et al.: Simulation software and database 4

3.1 Functions, services

Logical data independence as a general principle in database design suggests to have
the data model independent of the other parts of the system which results in avoiding
data manipulation directly in the tables (i.e., the subsystem controlling sensors should
not insert new entries using direct INSERT SQL statements, and the statistical model
consuming the produced aggregates should be prohibited from direct SELECTs). An
interface should be defined through which other parts of the system can access database
services such as determining average speed between two sensors or computing the OD
matrix.

The interface can be implemented using stored subprograms because the change of
the database structure results in refactoring this code only and the other parts of the
system are not affected.

Besides trivial services, such as adding, re-locating or deleting a sensor, querying
sensor type or deleting obsolete data, this interface should provide all the information
which are needed for the statistical analysis. Production of OD matrices, determining
both the average speed of a vehicle and the number of appearing/disappearing vehicles,
and appointing the flow rating of a given sensor are included in these services and they
need to be extensible.

3.2 Security issues

Since personal data are stored (the technology allows the tracing of whole paths of
given vehicles), it is very important, how data are protected against incompetent access.
Although data are stored itemised (i.e., there are entries for every recognized license
plate), no one should be allowed to access these detailed data. Only the number of vehicles
are important so aggregated data need to be provided, i.e., one can get information about
the number of vehicles on a given path but cannot access data of concrete ones.

We have created an interface on top of the data model which consists of several
stored procedures and functions. For security reasons, only the interface is allowed to
manipulate itemised data, i.e., no one but the interface is authorized to access database
tables directly. Thus, data protection is played back to the security mechanism of the
underlying DBMS.

Since sensors are intended to send data to the database over network, data need
to be secured not only in the database but in the course of network communication, as
well. Accordingly, license plates should be encrypted using cryptographical methods, e.g.,
DES3. Decryption should be done before inserting into the database and the proposed
interface approach provides an easy way to do so.

3.3 Implementation

The proposed data model can be implemented in any RDBMS or ORDBMS, e.g., Oracle,
MySQL, PostgreSQL, etc. For implementing interfaces, it is subservient to choose such
a DBMS which supports stored subprograms. If they are not supported by the DBMS,
interface can be implemented in a high-level programming language, e.g., Java or C++,
which accesses the database via JDBC or ODBC.

For our implementation we have chosen Oracle9i as a back-end because of its high
performance, wide support for aggregations (data warehouse operations) and its powerful
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PL/SQL [4] language for creating stored subprograms.

4 Simulation software

For testing our system we needed many sensors to be deployed. As they are “smart”,
e.g., equipped with a camera, their costs are relatively high. For this reason a simulation
software has been developed which is able to simulate not only the movement of vehicles
but license plate recognition, as well. Beside these, the program has to be able to generate
common traffic events, and to follow some of the behavioural differences between drivers.
This kind of software can be used not only for testing purposes but tuning the minimum
number of sensors to be deployed to a given area.

There are some traffic simulation projects, but this last feature is not included in any
of them. So we need to develop our own software for this task.

The results of the simulation will be used not only in planning the data acquisition,
but in refining the requirements for the sensors, which are currently developed by our
partners.

4.1 Specifying requirements for the simulation software

First of all we need to specify the desirable features for the software. Some of these
requirements are absolutely necessary; some of them could help in a more accurate and
more realistic urban traffic simulation.

4.1.1 Simulating road system and traffic

It is a basic feature to store a model of the road system in an easily expandable way. A too
complicated storage may cause performance problems. As we do not intend to simulate
whole cities, only smaller regions of a few square kilometres, we do not calculate with
large storage needs. The internal format must contain some geographical positioning
information about the road sections. The ability to identify the lanes separately is also a
must. For a more precise driver behaviour simulation, the visibility and terrain conditions
could also be represented. For an easy data exchange with the local Transportation
Departments, the application should have some built-in import features for the most
commonly used map formats. As we noticed no trends in this matter in Hungary, we
haven’t focused on none of the alternatives.

As streets are either one-way or two-way ones, we cannot ignore this in a simulation.
But as we all know, there are some exceptions too—like vehicles with distinctive flare.
It would be interesting to simulate a traffic situation in which police or fire engines are
involved.

As urban traffic is happening in time, and it is far from being constant in time, many
statistical descriptors need to be calculated for specific time intervals. Thus we need to
simulate the timeline too, even if the virtual time flows quicker or slower as our one.
Thus, a timestamp can be attached to the data acquired.

As in real life, traffic flow may be controlled with traffic lights. When implementing
this feature we need to able to simulate concrete traffic lights or light system programs.
We need to identify the lights controllers separately to be able to simulate the outages,
or the overnight caution light program.
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It is obvious that not all vehicles have the same speed, thus we shouldn’t ignore this.
This involves some very complicated problems, like overtaking, and this, on it’s turn
involves the need of representing the size and some other physical parameters of the
vehicles. We have to mention, that in the current state we have ignored this attributes,
and we have calculated with some average values.

As traffic in general is guided by traffic signs, urban traffic is highly influenced by
traffic rules. These ones cannot be ignored. It is not absolutely necessary to actually store
the traffic signs, but to incorporate their effect in the internal representation. Neverthe-
less, the first alternative is more obvious. As not all drivers respect these regulations,
why should a simulated driver be different? The simulation of a realistic urban driver
is a very challenging problem, involving artificial intelligence and psychological research.
In the current stage we reduced this task onto specifying some stochastic parameters for
the virtual car objects.

4.1.2 Simulating data acquisition

As mentioned above we need to simulate the activity of the proposed sensors and the
data acquisition process. This way—with regard to, and using the chosen statistical
methods—we can give some guidelines for placing the physical sensors, the number of
sensors needed, and the expectable result reliability.

First of all it is necessary to specify the position of the virtual sensors. The manual
placing of the simulated sensors is inevitable, but in some cases, beside the manual one,
random placement could be helpful. Automated full-range coverage with sensors of a
selected region is also useful, because the starting point for the optimisation may be such
a fully covered state.

Besides their own optical range limitations, there can be situations in which part of
the field of vision of a sensor is permanently covered by field objects. So, when specifying
position—including the height over the road surface—and the viewing direction of the
device, the actual range could be also specified.

To track the traffic flow in commonly used routes consisting on many consequent
streets, virtual path definition could also be useful.

4.1.3 Exception event simulation

There are normal events occurring during a journey. Some of them are actual traffic
events, like jam, or lane lockdown. These events will come trough as irregularities in the
data flow. Another sort of exception is caused by hardware or software error. As such,
not all exceptions are errors. Let’s take for example the case when a car disappears. That
means it is not seen by the sensors for a while. The most common event this represents is
that the vehicle has ended its itinerary, and it stopped somewhere between two sensors.
But of course this can be caused by misrecognition of the license plates too.

It can happen that a vehicle jumps over a sensor. This can be an error in the
recognition, or the license plate may temporary covered by another car, so the car is not
“seen” by sensors.

It is possible that a car stops, but after a while, it is back again. This situation should
not affect the calculation of the average time for a street.

But some events are real errors occurring in the software of the sensor devices, the
hardware or in the network.
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So we can see that the simulation software should be able to generate such exception
events, but handling such data by the statistical model is a very challenging problem.

4.1.4 Simulation output

The simulation software is expected to provide well formatted output data, which can be
used as input for the statistical analysis on one hand, and can be interpreted by humans
to follow the events standing as base for the data. Thus we expect more than one output
files.

The main data file must have the same format and content logic as the files acquirable
with the sensor system. The timestamp contains common hour–minute–second time
information. When simulating traffic over many days, the date information must also
be included. If the sensor devices are capable of generating the same identification
data for a specific license plate, it is not absolutely necessary to store the actual license
plate content. This could be another improvement in security. The reliability factor is
calculated by the sensor itself for every recognition separately. This “self-rating” should
also be simulated. It can happen to have a correct sensor recognition, but low level of
sureness. To implement this feature, we need to know the recognition algorithm.

Another data file can contain information about the events generated by the simula-
tion.

4.2 Implementations

Because our simulation needs contain very special requirements, we found no appro-
priate software available for the public. That is why we began to implement different
combinations of features. At this point we have two implementations. The first one is
a GUI (Graphical User Interface) based Windows program, the second one is a console
application.

4.2.1 TrafficSim

As mentioned above this software is a graphical application. It was developed in collab-
oration with our partners, the Adaptive Recognition Hungary [1] Ltd. This application
supports MapInfo Interchange Data Form-style file import. Traffic flow can be predefined
for a simulation but we can use random traffic too. This can be stored and reloaded to
be investigated under other conditions. The program can transmit using TCP/IP com-
munication recognition event data to a server application. The users can define virtual
paths with adjustable flow weights. Sensors can be placed on different parts of a road;
the height from the ground can be specified too. Users can Save and Load virtual paths
and the position of the sensors.

In the initialization file we can specify parameters for the recognition error simulation:
missed recognitions, bad character recognition, extra tailing characters, extra leading
characters, extra characters in the middle and missing characters at the beginning, the
end and in the middle of license plates.

Screenshots of the application are shown in Figure 2. The spots in Figure 2(c) repre-
sent the virtual vehicles. During the simulation we can see the vehicles moving. A record
to the “node” log file is added every time a vehicle reaches a road junction. The “sensor”
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log file contains the sensor identification, the actual license plate text and the simulated
recognition. The “path” log’s entries consists of the nodes hit by the vehicles.

(a) Virtual paths loaded (b) Sensors loaded

(c) Simulation in progress

Path.log

ABC159,427,428

ABC326,687,438

ABC254,749,945

ABC260,916,915,152,150

ABC348,70,86,85

ABC405,331,332

ABC156,781,780,776,779,1015

ABC245,438,686,347

ABC432,614,293

ABC340,911,910,362

ABC478,687,438

ABC493,687,438

ABC483,972,916

ABC366,438,686,347

ABC142,721,436,684,681,348

ABC324,461,102,101,871

ABC470,30,42,37,35

Node.log

29,ABC138,ABC138

22,ABC238,ABC238

28,ABC222,

14,ABC210,ABC210

21,ABC152,ABC152

37,ABC396,ABC396

24,ABC253,ABC253

22,ABC360,ABC360

24,ABC206,ABC206

35,ABC188,ABC188

25,ABC270,ABC270

8,ABC150,ABC150

Node.log

136,ABC123

209,ABC124

493,ABC125

476,ABC126

1036,ABC127

337,ABC128

324,ABC129

860,ABC130

389,ABC131

(d) Fragments from output files

Figure 2: TrafficSim screenshots

4.2.2 CrossRoads

Features This software is a console application, currently with no interactive interface.
Road-system and simulation parameters can be specified in an XML file with special
DTD. The application can simulate traffic light programs, supports multiple lane for a
road section. It is timeline based. The user can define nodes to be reached by a vehicle.
Every vehicle (driver) has its own affinity to quicker or shorter tracks. This is a stochastic
threshold values upon which the program chooses the direction in the intersections.

The simulation process The database of the program consists of the lists of the
vehicles, intersection, road sections and sensors. The program picks every vehicle one
by one and checks the state of them. A vehicle can be either moving towards a node or
waiting at an intersection. The position (the lane on which it is, and the relative position
from the lane end) of the vehicle is stored in the vehicle object.

If the vehicle is on its way on a lane, the program checks whether it’s reaching the
end of the section. In this case chooses a new direction according to the predefined route
or, if not present, the affinity of the driver. Otherwise checks if the vehicle has reached
a sensor. In this case the virtual recognition is performed, and the result is logged.
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If the intersection is controlled by traffic-lights, the vehicle is enrolled in the queue,
according to its direction. During the wait-state the vehicle is idle. If there is no traffic
light or finds clear signal, then the vehicle is passed to the desired road. If the vehicle
reaches an output node, then it is removed from the active vehicle list.

The simulation ends if there are no more vehicles on the roads, or it is interrupted.

The input file format As mentioned before, this implementation uses as input an
XML (Extensible Markup Language) file with special DTD (Document Type Definition).
This way the introduction of new features is very simple. The definitions contain human-
readable information besides the relational and other technical ones.

5 Conclusions

The development of easily expandable and configurable traffic simulation software is a
must for our project in order to simulate real traffic events, vehicle movements and sensor
detection. The database gets the simulation output transparently as it would come from
real sensors. This allows the switching to real sensors without affecting both the data
model and the statistical model using the services of the data model.

If the traffic simulation software is developed according to well-defined requirements,
such a software could be used in other projects too. Our implementations do not meet
all desirable requirements, but they were suitable for the basic statistical models. Our
future aim is to create a more realistic, and more accurate software for traffic simulation.
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Abstract

In this paper we present a statistical model that is suitable to evaluate data
coming from an urban traffic surveillance system. The detection of the traffic flow
is based on a sensor system using machine vision, which is able to determine the
license plate characters of the vehicles. By extending former approaches of using
origin destination matrices, we define a topological layer as a theoretical background
for the suitable statistical model. To reduce the charges of the system we also study
the effect of dropping different kind of sensors, as well.

1 Introduction

Our aim is to create an intelligent traffic development support system to monitor urban
traffic, and to predict traffic behavior. To reach this goal a project has been started by a
consortium (with the participation of the AR-Hungary Co. Budapest and the Institute of
Informatics, University of Debrecen) to manage the development and deployment. Our
work has been focused on two large parts, namely on composing a statistical model and
on developing collateral software and database techniques and simulation software tools.
In this paper we present our results according to the first part, while those about the
second one are shown in [4].

Our statistical model for evaluating the observed data is primarily based on the topol-
ogy of origin-destination (shortly OD) matrices. This way we can determine the traffic
flow within different urban areas and also can investigate the flow between them. As
basic statistical measures we calculate: flow rate (vehicle/h), density (vehicle/km/lane)
and mean speed (km/h). Observing the dependencies between these parameters we can
derive descriptive statistics. Namely, we can consider speed as the function of flow, speed
as the function of density and flow as the function of density. Determining local/global
minima/maxima of these functions we can describe the behaviour of free-flow speed,
jam-density, capacity-flow and critical density.

∗This work was supported in part by the NKFP2 grant 2/2002, and by the OTKA grants T032361
and F043090.
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2 Monitoring the traffic, deploying sensors

Detecting vehicles and monitoring the traffic are based on the usage of sensors. Many
types of them were developed for collecting quantitative information (the passes of ve-
hicles). Such sensors are the inductive loops built in the road or infra-red gates located
at the roadside. In some cases (for example using sensor-pairs) more information (e.g.
speed, vehicle length) can be collected. The usage of machie vision (camera sensors)
leads to a more complex model. The advantage of this approach is the possibility to
collect additional information (color, size, shape) or even unique identifiers (e.g. license
plates).

The appropriate number and placing of sensors is a challenging problem in traffic
surveillance. If we want to collect only flow rate and load data, then the location of the
sensor for a particular road segment is not that important. The main question in this
case is the number of the sensors. If we monitor more lanes of a road, we have to use more
sensors. If the observed area is a crossroad or a region, we have to use sensors for every
entry and exit points, as well. (If some sensors are missing, then it will be impossible to
detect all of the traffic jams in the observed area.) In case of a larger observed area the
stopping and starting vehicles also may yield problems.

The descriptive statistics we considered (for describing traffic behavior) can be classi-
fied into three groups. The first one contains information about the lanes or lane segments
which can be the flow rate, mean speed, etc. If the maximum flow rate is known, then
the ratio of the current and maximum flow rates give the load of the lane. If the load
tends to one, then the possibility of a traffic jam increases at the given measuring point.
The changes of these values according to the time are also important statistics. The
second group contains statistics for crossroads. Using them we can describe e.g. the pre-
ferred directions of a crossroad. After a large number of observations we can calculate
the probability by which a path (output) will be chosen if a vehicle enters a crossroad.
(Clearly, the sum of the probabilities for the output paths equals one). The changes of
these probabilities against the time (the changes of the preferred paths) are also impor-
tant descriptiors of traffic behaviour. The third group contains statistics for regions. We
can build up OD matrices for a particular region, based on the observations performed
at all of its entry and exit points. The precise theoretical model will be given later.

There are many factors affecting the statistics which are classified into two groups
in our model. The first group contains the unobservable events caused by the stopping
and starting vehicles during the observation time which obviously increase the error of
our statistical results. The second group contains irregular traffic situations, like traffic
jams and possible accidents. These two groups must be unambiguously separated from
one another.

Before using our system under real traffic conditions we performed simulation to test
our methods. In the following we list what traffic behavior was modeled by a simulation
software for getting necessary data. When the flow rates and the load is examined, it
is indispensable to simulate the speed of the vehicles, and to assign a constant speed to
all of the vehicles in the system is not sufficient. (The higher speed gives larger volume
and flow rate, but the load will not increase, while slow vehicles give lower flow rate,
but may cause traffic jams). In the simulation of speed we also considered the effect of
traffic signs: speed limit or STOP signs and traffic lights, as well. For the prediction of
the preferred paths we also have to handle the one-way roads. (Especially, if the given
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road is an entry or exit observation point.)

3 Origin-Destination (OD) matrices

To perform observations, we consider such areas, where sensors are deployed at their
entry and exist points. The literature refers to these areas as Origin-Destination (shortly
OD) matrices (see e.g. [6]) in such systems that are based on mainly quantitative data,
when the sensors are able to detect only the passes of the vehicles. Accordingly, the (i, j)
element of the OD matrix is defined as the number of passes between the entry point i
and exit point j. OD matrices can be also considered dynamically, when the elements of
the matrix change as a function of time. Many sensors applied in existing systems (e.g.
inductive loops built under the surface of the road) do not allow unique vehicle detection.
Thus, numerous theoretical approaches (see e.g. [1, 3, 2]) were developed to estimate the
traffic flow based on the number of entries and exists. These techniques naturally can
be improved by using an intelligent sensor system that provide unique vehicle detection,
as well. As we consider license plate recognition in our system, the unique detection is
guaranteed here.

As the above mentioned OD matrix estimations are not reliable under general con-
ditions, in the existing systems the network topology is usually restricted to the simple
motorway model [6], shown in Figure 1, where some license plate reader sensors are also
deployed beside the traditional inductive loops. For a more general network model only
few results are known, see [5].

Figure 1: Motorway topology for classic Origin-Destination matrices.

As our sensor system is an intelligent one with respect to unique vehicle detection,
we can extend the OD matrix model to more general (urban) traffic conditions without
ruining the efficiency of the estimation of the traffic flow. We introduce a relation on
the set of the road map points using the sensor system in the following way. Two points
of the physical road map are in relation if either of the points can be reached from the
other one without captured by a sensor. It is obvious that this relation is

• reflexive (a point can be reached from itself without captured by a sensor),

• symmetric (if we are not captured during traveling to one of the points to the other,
we also will not be captured if we go back in the same way),
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• transitive (if we can reach the second point from the first and also the third from
the second without being captured, we can reach the third point from the first by
taking the concatenation of the previous two paths),

and so is an equivalence relation. Thus, using this relation we can divide the road
map into disjoint classes, and we call these classes complete OD matrices. Intuitively,
we divide the road map into disjoint areas in such a way that a vehicle always will
be captured by a sensor if it leaves or enters an area, where the sensors reside on the
“boundary” of the area. Since these boundaries separate the OD matrices, the main
advantage of this method is that we can monitor traffic flow as entries and exists into
and from OD matrices, respectively. We can perform the following observations based
on this approach:

• monitoring the traffic of a closed urban zone (main directions of the through traffic,
rush hours, most polluted parts, etc.). The observation is based on the boundary
sensors, but we can deploy some additional inner sensors to have better insight for
the inner traffic,

• monitoring motorway-like urban routes, see Figure 1 (most popular entry and exist
points of the route).

Using the above described OD matrix model, we can make observations not only for
individual OD matrices, but also for their relations. Namely, OD matrices can surround
others, or can reside at large distances. In case of “inclusion” (note that OD matrices
are disjoint sets so this is only an intuitive terminology), when an OD matrix “contains”
more OD matrices, we can monitor the following behaviour of traffic flow based on the
distribution of the traffic of the surrounding zone with respect to the inner zones:

• locations of traffic jams inside the surrounding zone,

• most popular parking locations according to the number of stopping vehicles,

• pollution changes during the observation period according to the degree of loading
of the inner zones,

• suggesting less loaded routes to pass through the surrounding zone.

When OD matrices reside at large distances we can perform the following observa-
tions:

• finding most popular (loaded) routes through zones, which help to determine the
reasons of traffic jams in given zones,

• suggesting less loaded routes to reach a destination zone through intermediate
zones.

At the definition of complete OD matrices we assume that every entry and exit points
of the desired zones are observed by sensors. However, to decrease the charges of the
system the number of the sensors should be minimized without loosing too much traffic
data to keep statistical analysis reliable. On the other hand, if we decrease the number of
sensors, the above introduced theory of OD matrices will ruin theoretically. To avoid this
problem we handle the decrement of the number of sensors by introducing the concept
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s0 s1 s2 s3

86 203 312 1491
101 198 280 1566
93 200 320 1521

100 195 289 1556
93 193 312 1483

...
...

...
...

s0 s1 s2 s3

0.011628 0.019704 0.016026 0.024816
0.019802 0.010101 0.021429 0.021073
0.010753 0.030000 0.015625 0.019066
0.020000 0.015385 0.024221 0.021208
0.021505 0.020725 0.009615 0.020904

...
...

...
...

Table 1: Valid flow rates and the difference of the valid and empirical ones for sensors s0, . . . , s3.

of a random p-OD matrix with respect to a complete OD matrix, where 0 ≤ p ≤ 1.
Namely, in the p-OD matrix we can observe the (p ∗ 100)% of the data of the complete
OD-matrix, where the p-OD matrix contains the same road map points as the complete
one, but having less sensors on its boundary. As a natural consequence, the number
of starting and stopping vehicles will increase in a p-OD matrix causing larger error in
traffic estimations. However, by leaving less important sensors (those ones which serve
relatively small number of detections) the increment of error can be kept low, and the
estimation remains reliable. In practice, this process can be realized by creating the
estimations according to the observations of the complete OD matrix first. Then, after
decreasing the number of sensors, we recalculate the estimations according to the poorer
observation data, and the parameter p can be determined based on the comparison of
resulted estimations for these two cases.

4 Experimental results

Generally, the technique for monitoring an area with fix number of sensors is based on the
usage of OD matrices. In our tests, we deployed 50 sensors with the TrafficSim software
(see [4]) to observe a valid area, which is a region of Budapest XIV (more precisely, a
rectangle bounded by the roads Thököly, Lumumba, Mogyoródi, Mexikói between the
boulevards Hungária and Nagy Lajos). The output of the simulation software is a set of
files containing the ID of sensors, the original license plates and the observed license plate
triplets, so the database layer can compute the measured data. The observation time
was about 11 hours. Each sensor detected about 40 000–50 000 passes. The observed
area had 20 exit sensors, 18 entry sensors and 12 inner sensors. The sensors was set up
at the distance 10-15 meters from the crossroads. More technical details can be found in
[4]. The following traffic parameters were calculated:

Valid flow rates for each sensor (vehicle/hour). The output table contains 50
columns with respect to the sensors s0, . . . , s49 , and 11 rows (for each observed hour).
According to the i-th sensor and j-th hour the entries of the table are denoted by v(si)j

(shortly vi,j). For a part of such a table see Table 1.
Empirical flow rates. Similarly to valid flow rates, these values are also contained

in a table, whose entries are denoted by m(si)j (shortly mi,j).
Differences of the valid and the empirical flow rates. The difference values

(|mi,j − vi,j |) are organized into a table as well. The error (|mi,j − vi,j |/vi,j) is about
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2%, which comes from the detection error of the sensors. The empirical mean value of
the differences is 2.091%, shown in the Table 2.

The computing of flow rates does not use the license plate, only the quantitative
data (vehicle passes). However the prediction of the preferred paths are based on the
recognition of the plates. (A valid pass can be counted if the license plate has appeared
also at an entry and an exit sensor in the given ordering).

For the 11 observing hours the system creates the particular OD matrices. So we
have 20 exit and 18 entry sensors, thus the number of theoretical paths between them is
360. (Actually, there are more paths, but for the measurement we can consider only 360
different paths). For every hour we have three OD matrices data. The first is the valid
OD matrix data, the second is the observed one, and the third is the difference of the
first two. At this point not only sensor detection error appeared, but also the error of
the stopped and started vehicles (there are input detections without output detections
and vice versa). The error is between 10% and 50% (the mean value is approximately
27%).

The 12 inner sensors is used for defining paths through the observed region. From
the observations we can state, that the transits follow the shortcuts in general. (The
inner sensors with large flow rates are in between input and output sensors with large
flow rates, too). So in the first step we can drop the inner sensors to reduce the charge
of the whole system.

From the valid and empirical OD matrices data and from the error between them, we
can derive that the mean value of the difference of the total entries and exits is about
2%, and this value is about 26% for transits. See also Table 2, where vp is for the valid
passes, op is for the observed passes, d is for their difference and % is for the error in
percentage.

entry points
vp op d %

21387 20952 435 2.0339
21389 20925 464 2.1693
21370 20930 440 2.0590
21444 21038 406 1.8933
21380 20923 457 2.1375

...
...

...
...

transits
vp op d %

13895 10154 3741 26.9234
13938 10295 3643 26.1372
14088 10345 3743 26.5687
14067 10252 3815 27.1202
13961 10314 3647 26.1228

...
...

...
...

Table 2: Valid (vp) and observed passes (op), their difference (d) (in percentage, as well (%)).

5 Prediction opportunity

From the location of the sensors and the measured data, we can determine the most
loaded roads (namely the roads Thököly and Mexikói). The changes of the flow rates
can be seen in the sequence diagram.

The preferred way can also be determined from the measured data. If the flow rates
have suddenly changed in some measuring point, from the change of the preferred paths
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Figure 2: Sequence diagram for the changes of flow rates (vi’s) of different sensors.

we can localize the area of a possible accident. From longer observation periods we can
derive trends according to the behavior of the traffic in the observed area. At this point
a question arises, namely, what about the missing sensors?

6 Missing sensors

Let us see what happens if some entry sensors are missing. In our tests, three sensors with
small flow rates were dropped. The average flow rates of the missing sensors were 417,
253 and 311 (per hour), respectively. The total number of observed vehicles was 10791
which is about 4.5% of the total entries. Our results are shown in Table 3, where oe is
for the observed entering vehicles and e% is for the new detection error in percentage,
ot is for the observed transit vehicles and t% is for the new transit error.

This case the error groves to 6.0% and the error of transits to 30.18%. We also dropped
three sensors with large flow rates. The rates were 3795, 2407 and 1911, respectively,
which yields 89268 unobserved vehicles (37%). The results can be seen in Table 3. The
detection error in this case is 39.9%, while the transit error is 57%.

We also investigated the effects of dropping exit sensors. As it is expected, the results
are similar to the case of the entry sensors. First, three sensors were dropped with small
(1%) flow rates: 94, 21 and 60 vehicles per hour, respectively. The detection error is
3%, and the mean value of the transit errors is approximately 27%. Table 4 contains our
results, when sensors were dropped with large flow rates (3623, 1754 and 1410 vehicles
per hour, respectively, so we cannot detect 37% of the exiting vehicles), where ox is for
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small flow rates
oe e% ot t%

20006 6.4572 9680 30.3347
19983 6.5735 9808 29.6312
19958 6.6074 9849 30.0894
20015 6.6639 9741 30.7528
19905 6.8990 9795 29.8403

...
...

...
...

large flow rates
oe e% ot t%

13032 39.0658 5906 57.4955
12809 40.1141 5818 58.2580
12762 40.2808 5889 58.1985
12943 39.6428 5898 58.0721
12812 40.0748 5879 57.8898

...
...

...
...

Table 3: Transits (ot) and their error (t%) in case of missing entry sensors having small and
large flow rates.

the observed exits, x% for its error, ot is for the observed transits and t% is for its error.
Now, the detection error is about 39%, while the transit error is 58%.

ox x% ot t%
10901 39.7702 5727 58.7837
10956 39.3859 5898 57.6840
11000 39.5737 5892 58.1772
11102 39.0603 5870 58.2711
11082 39.1366 5875 57.9185

...
...

...
...

Table 4: Transits (ot) and errors (t%) in case of missing exit sensors with large flow rates.

When both types of sensors are missing, tests were classified into two groups. First
some sensors were dropped with small flow rates. In this case the detection error is 4%
for the inputs, 1% for the outputs and the total transit error is 31%. In case of sensors
with large flow rates, the input detection error is 39%, the output detection error is 37%
and the total transit error is 86%.

7 Summary

In this section we sumerize our experiments about the error term which is a key problem
in traffic surveillance. It is obvious that with missing sensors we cannot explote the
possibilities of the OD matrices, only the stand-alone sensor detection results (e.g. the
flow rates and the load of lanes). Table 5 summarizes the errors for our tests, where me
is for the missed vehicles in percentage caused by dropping entry sensors, mx is for the
missed vehicles in percentage caused by dropping exit sensors, ee is for the entry error,
xe is for the exit error, while te is for the transit error.

We can derive that the sensors with large flow rates are very important. Dropping
sensors with large flow rates will deteriorate the efficiency of the measuring in a large
extent. The only possibilty to avoid such faults is the usage of duplicate sensors.
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me mx ee xe te
0 0 2 2 26
4 0 6 2 30
0 1 2 3 27
4 1 6 3 31

37 0 39 2 57
0 37 2 39 58

37 37 39 39 86

Table 5: Missed vehicles in percentage (me, mx) and the total errors (ee, xe, te) in case of
missing sensors.

In our simulations, the difference of the valid and observed passes casued by the
sensor detection error was fixed for 2%, and could not be changed dynamically. In future
tests we aim to study such cases, where the detection error can be changed. These
investigations should be separated into two subclasses. Namely, when all of the sensors
have the same (but variable) detection error, and when the sensor detection errors are
independent variables.
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