
Realtime 3D Computer Graphics
& Virtual Reality

OpenGL Introduction

VR-programming

Input and display devices are the main
hardware interface to users
Immersion embeds users through the
generation of live-like sensory experiences
But how is the programmers/designers
view?

VR-programming tools

Direct rendering and gfx packages
– OpenGL, Direct3D, GKS (3D)

Scene graph based tools
– VRML, OpenGL Performer, OpenGL

Optimizer, Open Inventor, PHIGS+
VR modeling toolkits
– AVANGO, World toolkit, Masive1-3, Dive,

Lightning, game engines

designmodeling

programming
(procedural)

(declarative)

A Scene Graph Language: VRML
#VRML V2.0 utf8
Transform {

translation -3 0 0
children Shape {

geometry Box { }
appearance Appearance {

material Material { diffuseColor .8 .2 .2 } }
}

}
Transform {

translation 3 0 0
children Shape {

geometry Cone { }
appearance Appearance {

material Material { diffuseColor .2 .2 .8 } }
}

}

More VRML later in this course!

What is a gfx package?
software
– that takes user input and passes it to

applications
– that displays graphical output for applications

Graphics
System

(2D/3D graphics,
UI toolkit,

input manager
window system)

Application
Program

Application
Model

An Interactive Introduction to
OpenGL Programming

Partly based on SIGGRAPH course notes by Dave
Shreiner, Ed Angel and Vicki Shreiner

What You’ll See

General OpenGL Introduction
Rendering Primitives
Rendering Modes
Lighting
Texture Mapping
Additional Rendering Attributes
Imaging

Goals
Demonstrate enough OpenGL to write an
interactive graphics program with
– custom modeled 3D objects or imagery
– lighting
– texture mapping

Introduce advanced topics for future investigation
Generate knowledge to understand high-level
scene graph based engines for VE-design

OpenGL and GLUT Overview

OpenGL and GLUT Overview

What is OpenGL & what can it do for me?
OpenGL in windowing systems
Why GLUT
A GLUT program template

What Is OpenGL?

OpenGL – Open Graphics Library
Graphics rendering API
– high-quality color images composed of

geometric and image primitives
– window system independent
– operating system independent
– hardware independent layer to different

acceleration designs (supporting software
modes as well)

What Is OpenGL?

Introduced 1992 by SGI
Based on IRIS GL, an API for the SGI
personal IRIS workstation and follow-ups
Now an open standard that is widely
adopted for all types of applications
Under the supervision of the OpenGL
architecture review board

OpenGL Design Goals
SGI’s design goals for OpenGL:
– High-performance (hardware-accelerated) graphics API
– Some hardware independence
– Natural, terse API with some built-in extensibility

OpenGL has become a standard because:
– It doesn’t try to do too much

Only renders the image, doesn’t manage windows, etc.
No high-level animation, modeling, sound (!), etc.

– It does enough
Useful rendering effects + high performance

– It is promoted by SGI (& Microsoft, half-heartedly)

OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

OpenGL as a Renderer

Geometric primitives
– points, lines and polygons

Image Primitives
– images and bitmaps
– separate pipeline for images and geometry

linked through texture mapping

Rendering depends on state
– colors, materials, light sources, etc.

Related APIs

AGL, GLX, WGL
– glue between OpenGL and windowing systems

GLU (OpenGL Utility Library)
– part of OpenGL
– NURBS, tessellators, quadric shapes, etc.

GLUT (OpenGL Utility Toolkit)
– portable windowing API
– not officially part of OpenGL

OpenGL and Related APIs

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif
widget or similar

OpenGL: Conventions

Functions in OpenGL start with gl
– Most functions just gl (e.g., glColor())
– Functions starting with glu are utility functions
(e.g., gluLookAt())

– Functions starting with glx are for interfacing
with the X Windows system (e.g., in gfx.c)

OpenGL: Conventions

Variables written in CAPITAL letters
– Example: GLUT_SINGLE, GLUT_RGB
– usually constants
– use the bitwise or command (x | y) to combine

constants

Preliminaries
Headers Files

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

Compile with libraries
cc myapp.c –o myapp –lgl –lglu –lglut –lm –lX11
Adopt different library places using e.g. –L/usr/…

Preliminaries
Simple make looks like

CC = cc
CXX = gcc
LDLIBS = -lglut –lgl –lglu –lX11 –lm –L/usr/…
.c:

$(CC) $@.c $(LDLIBS) –o $@
.c++:

$(CXX) $@.c++ $(LDLIBS) –o $@

Enumerated Types
– OpenGL defines numerous types for compatibility

between different systems
– GLfloat, GLint, GLenum, etc.

Preliminaries
Enumerated Types

GLvoidvoid
GLuint, GLenum, GLbitfieldunsigned intui
GLushortunsigned charus
GLubyte, GLbooleanunsigned charub
GLdouble, GLclampddoubled
GLfloat, GLclampffloatf
Glint, GLsizeiinti
GLshortshorts
GLbytesigned charb
OpenGL typeC-typeChar

OpenGL Command Formats

glVertex3fv(v)

Number of
components

2 - (x,y)
3 - (x,y,z)
4 - (x,y,z,w)

Data Type
b - byte
ub - unsigned byte
s - short
us - unsigned short
i - int
ui - unsigned int
f - float
d - double

Vector

omit “v” for
scalar form

glVertex2f(x, y)

GLUT Basics

Application Structure
– Configure and open window
– Initialize OpenGL state
– Register input callback functions

render
resize
input: keyboard, mouse, etc.

– Enter event processing loop

Basic OpenGL template

/* simple program template for OpenGL
progs */

#include <GL/glut.h>

void myDisplay()
{

/* clear the window */
glClear(GL_COLOR_BUFFER_BIT);
/* draw something */
glBegin(GL_LINES);

glVertex2f(-0.5, -0.5);
glVertex2f(0.5, 0.5);

glEnd();
glFlush();

}

int main (int argc,

char** argv)
{

glutInit(&argc, argv);

glutCreateWindow("basic
template 1");

glutDisplayFunc(myDisplay);

glutMainLoop();

}

Sample Program
void main(int argc, char** argv)
{
glutInit(argc, argv);
int mode = GLUT_RGB|GLUT_SINGLE;
glutInitDisplayMode(mode);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutKeyboardFunc(key);
glutMouseFunc(mouse);
glutIdleFunc(idle);
glutMainLoop();

}

OpenGL Initialization
Set up whatever state you’re going to use

void init(void)
{
glClearColor(0.0, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);
glClearDepth(1.0);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);

}

GLUT Callback Functions

A callback is a routine to call when something
happens
– window resize or redraw
– user input
– animation

GLUT Callback Functions
“Register” callbacks with GLUT

glutDisplayFunc(display);
glutIdleFunc(idle);
glutResizeFunc(resize);
glutKeyboardFunc(keyboard);
glutSpecialFunction(special)
glutMouseFunc(mouse);
glutMotionFunc(mouse_motion);
glutPassiveMotionFunc(mouse_pmotion);
glutEntryFunc(on_focus_change);

Rendering Callback

Do all of your drawing here
glutDisplayFunc(display);

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_LINES);

glVertex2f(50.0, 50.0);
glVertex2f(100.0, 100.0);
glVertex2f(70.0, 10.0);
glVertex2f(100.5, 70.1);

glEnd();
glFlush();

}

Idle Callbacks

Use for animation and continuous update
glutIdleFunc(idle);

void idle(void)
{

t += dt;
glutPostRedisplay();

}

“smart” update

glutPostRedisplay();

Requests that the display callback be executed

Allows the implementation to be smarter in
deciding when to carry out the display callback
– As GLUT goes through the event loop, more than one event can

require a redraw which should only be carried out once during the
loop

Idle callback and smart update

Processing an animation should be done
with respect to the elapsed time
– t += dt;

No hint when the update occurs
How can we achieve a minimal simulation
and frame rate using this application
structure?

User Input Callbacks

Process user keyboard input
glutKeyboardFunc(keyboard);

void keyboard(char key, int x, int y)
{
switch(key) {
case ‘q’ : case ‘Q’ :
exit(EXIT_SUCCESS);
break;

case ‘r’ : case ‘R’ :
rotate = GL_TRUE;
break;

}
}

User Input Callbacks

Process user special keyboard input
glutSpecialFunction(special);

void special(char key, int x, int y)
{
if(key == GLUT_KEY_F1) help();
if(key == GLUT_KEY_UP) up();
if(key == GLUT_KEY_DOWN) down();
if(key == GLUT_KEY_LEFT) left();
if(key == GLUT_KEY_RIGHT) right();

}

User Input Callbacks

Process user mouse input
glutMouseFunc(mouse);

void mouse(int button, int state, int
x, int y)

{
if (state == GLUT_DOWN &&

button == GLUT_LEFT_BUTTON)
exit(EXIT_SUCCESS);

}

User Input Callbacks

Process user mouse motion input with a
pressed button
glutMotionFunc(mouse_motion);

void mouse_motion(int x, int y)
{
if (first_time_called)

glBegin();
…
glEnd();
first_time_called = GL_false;

}

User Input Callbacks

Process user mouse motion input without a
button pressed
glutPassiveMotionFunc(mouse_pmotion);

void mouse_pmotion(int x, int y)
{
last_points_visited.push(pair(x,y));
if(last_points_visited.size() > 100)
last_points_visited.remove_last();

}

User Input Callbacks

Process leaving and entering the OpenGL
window with the mouse

glutEntryFunc(on_focus_change);

void on_focus_change(int state)
{
if (state == GLUT_ENTERED)
beep();

if (state == GLUT_LEFT)
exit(EXIT_SUCCESS);

}

Elementary raster algorithms for
fast rendering

Elementary Rendering

Geometric Primitives
– Line processing
– Polygon processing

Managing OpenGL State
OpenGL Buffers

OpenGL Geometric Primitives

All geometric primitives are specified by
vertices

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_POINTSGL_POINTS

GL_LINESGL_LINES

GL_LINE_LOOPGL_LINE_LOOPGL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES

GL_QUADSGL_QUADS

Design of Line Algorithms

Why Lines?

Lines:
– Most common 2D primitive - done 100s or 1000s of

times each frame, even 3D wireframes are eventually
2D lines!

– Lines are compatible with vector displays but
nowadays most displays are raster displays. Any
render stage before viz might need discretization.

– Optimized algorithms contain numerous
tricks/techniques that help in designing more advanced
algorithms for line processing.

Line Algorithms in the OpenGL
Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

Line Requirements
Must compute integer coordinates of pixels which lie on or near a line or
circle.
Pixel level algorithms are invoked hundreds or thousands of times when
an image is created or modified – must be fast!
Lines must create visually satisfactory images.

– Lines should appear straight
– Lines should terminate accurately
– Lines should have constant density

Line algorithm should always be defined.

Basic Math Review

Point-slope Formula For a Line
Given two points (X1,Y1), (X2, Y2)
Consider a third point on the line:

P = (X,Y)

Slope = (Y2 - Y1)/(X2 - X1)
= (Y - Y1)/(X - X1)

Solving For Y
Y = [(Y2-Y1)/(X2-X1)]*(X-X1)+ Y1

or, plug in the point (0, b) to get the
Slope-intercept form:
Y = mx + b

Cartesian Coordinate System

2

4

1 2 3 4 5 6

3

5

6

1 P1 = (X1,Y1)

P2 = (X2,Y2)

P = (X,Y)

SLOPE =
RISE

RUN
=

Y2-Y1

X2-X1

Other Helpful Formulas
Length of line segment between P1 and P2:
L =

Midpoint of a line segment between P1 and P3:
P2 = ((X1+X3)/2 , (Y1+Y3)/2)

Two lines are perpendicular iff
1) M1 = -1/M2

2) Cosine of the angle between them is 0.

2
12

2
12)()(yyxx −+−

Using this information, what are
some possible algorithms for line

drawing?

Parametric Form

Given points P1 = (X1, Y1) and P2 = (X2, Y2)

X = X1 + t(X2-X1)
Y = Y1 + t(Y2-Y1)

t is called the parameter. When
t = 0 we get (X1,Y1)
t = 1 we get (X2,Y2)

As 0 < t < 1 we get all the other points on the line segment between
(X1,Y1) and (X2,Y2).

New algorithm ideas based on
parametric form?

Simple DDA* Line Algorithm

void DDA(int X1,Y1,X2,Y2)

{

int Length, I;

float X,Y,Xinc,Yinc;

Length = ABS(X2 - X1);

if (ABS(Y2 - Y1) > Length)

Length = ABS(Y2-Y1);

Xinc = (X2 - X1)/Length;

Yinc = (Y2 - Y1)/Length;

*DDA: Digital Differential Analyzer

X = X1;
Y = Y1;
while(X<X2){

Plot(Round(X),Round(Y));

X = X + Xinc;

Y = Y + Yinc;

}

}

DDA creates good lines but it is too time consuming due to the rDDA creates good lines but it is too time consuming due to the round ound
function and long operations on real values.function and long operations on real values.

Compute which pixels should be turned on to represent
the line from (6,9) to (11,12).

Length = ?
Xinc = ?
Yinc = ?

DDA Example

6 7 8 9 10 11 12 13

9

10

11

12

13

DDA Example
Line from (6,9) to (11,12).

Length := Max of (ABS(11-6), ABS(12-9)) = 5
Xinc := 1
Yinc := 0.6

Values computed are:
(6, 9)
(7, 9.6)
(8, 10.2)
(9, 10.8)
(10, 11.4)
(11, 12) 6 7 8 9 10 11 12 13

9

10

11

12

13

Fast Lines – Midpoint Method
Simplifying assumptions: Assume we
wish to draw a line between points (0,0)
and (a,b) with slope m between 0 and 1
(i.e. line lies in first quadrant).

The general formula for a line is
y = mx + B where
m is the slope of the line and
B is the y-intercept. From our
assumptions m = b/a and B = 0.

y = (b/a)x + 0
--> f(x,y) = bx - ay = 0
is an equation for the line.

+x-x

-y

+y

Having turned on pixel P at (xi, yi), the next pixel is
– NE at (xi+1, yi+1) or
– E at (xi+1, yi).

Choose the pixel closer to the line f(x, y) = bx - ay = 0.

Fast Lines (cont.)

For lines in the first
quadrant, given one pixel
on the line, the next pixel is
to the right (E) or to the
right and up (NE).

P = (xi ,yi) E = (xi + 1, yi)

NE = (xi + 1, yi + 1)

current pixel possible
next pixels

Fast Lines (cont.)

The midpoint between pixels E and
NE is (xi + 1, yi + ½).
Let e be the “upward” distance

between the midpoint and where the
line actually crosses between E and
NE.
If e is positive the line crosses

above the midpoint and is closer to
NE.
If e is negative, the line crosses

below the midpoint and is closer to
E.
To pick the correct point we only

need to know the sign of e.

(xi +1, yi + ½ + e)
e

(xi +1, yi + ½)

P = (xi ,yi) E = (xi + 1, yi)

NE = (xi + 1, yi + 1)

The Decision Variable
f(xi+1, yi+ ½ + e) = 0 (point on line)

= b(xi + 1) - a(yi + ½ + e)
= b(xi + 1) - a(yi + ½) – ae
= f(xi + 1, yi + ½) - ae

Let di = f(xi + 1, yi + ½) = ae; di is known as the decision variable.
Since a ≥ 0, di has the same sign as e.

Therefore, we only need to know the value of di to choose between
pixels E and NE. If di ≥ 0 choose NE, else choose E.

But, calculating di directly each time requires at least two adds, a
subtract, and two multiplies -> too slow!

f(xi + 1, yi + ½) = ae

Decision Variable calculation

Algorithm:
Calculate d0 directly, then for each i >= 0:
if di ≥ 0 Then

Choose NE = (xi + 1, yi + 1) as next point
di+1 = f(xi+1 + 1, yi+1 + ½) = f(xi + 1 + 1, yi + 1 + ½)

= b(xi + 1 + 1) - a(yi + 1 + ½) = f(xi + 1, yi + ½) + b - a
= di + b - a

else
Choose E = (xi + 1, yi) as next point
di+1 = f(xi+1 + 1, yi+1 + ½) = f(xi + 1 + 1, yi + ½)

= b(xi + 1 + 1) - a(yi + ½) = f(xi + 1, yi + ½) + b
= di + b

Knowing di, we need only add a constant term to find di+1 !

The initial value for the decision variable, d0, may be calculated directly from the
formula at point (0,0).
d0 = f(0 + 1, 0 + 1/2) = b(1) - a(1/2) = b - a/2

Therefore, the algorithm for a line from (0,0) to (a,b) in the first quadrant is:

x = 0;
y = 0;
d = b - a/2;
for(i = 0; i < a; i++) {

Plot(x,y);
if (d ≥ 0) {

x = x + 1;
y = y + 1;
d = d + b - a;

}

else {
x = x + 1;
d = d + b

}
}

Fast Line Algorithm

Note that the only non-integer value is a/2. If we then multiply by 2 to get d' = 2d, we can do all
integer arithmetic. The algorithm still works since we only care about the sign, not the value
of d.

Bresenham’s Line Algorithm
We can also generalize the algorithm to work for lines beginning at points

other than (0,0) by giving x and y the proper initial values. This results in
Bresenham's Line Algorithm.

{Bresenham for lines with slope between 0 and 1}
a = ABS(xend - xstart);
b = ABS(yend - ystart);
d = 2*b - a;
Incr1 = 2*(b-a);
Incr2 = 2*b;
if (xstart > xend) {

x = xend;
y = yend

}
else {

x = xstart;
y = ystart

}

for (i = 0; i<a; i++){
Plot(x,y);
x = x + 1;
if (d ≥ 0) {

y = y + 1;
d = d + incr1;

}
else

d = d + incr2;
}

}

Optimizations

Speed can be increased even more by detecting cycles in the decision variable.
These cycles correspond to a repeated pattern of pixel choices.

The pattern is saved and if a cycle is detected it is repeated without recalculating.

11 12 13 14 15 16 17

9

10

11

12

13

14

15

16

6 7 8 9 10

didi= = 2 2 --6 6 6 6 --2 102 10 2 2 --6 6 6 6 --2 102 10

The aliasing problem

Aliasing is caused by finite addressability of the display.

Approximation of lines and circles with discrete points often gives
a staircase appearance or "Jaggies".

Desired line

Aliased rendering of the line

Antialiasing - solutions
Aliasing can be smoothed out by using higher addressability.

If addressability is fixed but intensity is variable, use the intensity to
control the address of a "virtual pixel". Two adjacent pixels can be be
used to give the impression of a point part way between them. The
perceived location of the point is dependent upon the ratio of the
intensities used at each. The impression of a pixel located halfway
between two addressable points can be given by having two adjacent
pixels at half intensity.

An antialiased line has a series of virtual pixels each located at the
proper address.

Aliasing / Antialiasing
Examples

Antialiased Bresenham Lines

Line drawing algorithms such as Bresenham's can easily be modified to
implement virtual pixels. We use the distance (e = di/a) value to
determine pixel intensities.
Three possible cases which occur during the Bresenham algorithm:

AA

B

C

e

B

C

e

A

B

C

e

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0
B = 1 - abs(e+0.5)
C = -0.5 - e

e > 0 0 > e > -0.5 e < -0.5

Line Rendering References
Bresenham, J.E., "Ambiguities In Incremental Line Rastering," IEEE

Computer Graphics And Applications, Vol. 7, No. 5, May 1987.

Eckland, Eric, "Improved Techniques For Optimising Iterative Decision-
Variable Algorithms, Drawing Anti-Aliased Lines Quickly And Creating
Easy To Use Color Charts," CSC 462 Project Report, Department of
Computer Science, North Carolina State University (Spring 1987).

Foley, J.D. and A. Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley 1982.

Newman, W.M and R.F. Sproull, Principles Of Interactive Computer
Graphics, McGraw-Hill, 1979.

