
DCG: An E�cient, Retargetable Dynamic Code Generation SystemDawson R. Engler�Massachusetts Institute of Technology Todd A. ProebstingyUniversity of ArizonaAbstractDynamic code generation allows aggressive optimiza-tion through the use of runtime information. Previ-ous systems typically relied on ad hoc code genera-tors that were not designed for retargetability, anddid not shield the client from machine-speci�c de-tails. We present a system, dcg, that allows clientsto specify dynamically generated code in a machine-independent manner. Our one-pass code generator iseasily retargeted and extremely e�cient (code gener-ation costs approximately 350 instructions per gen-erated instruction). Experiments show that dynamiccode generation increases some application speeds byover an order of magnitude.1 IntroductionDynamic code generation is the creation of executablecode by an executing process. Unlike self-modifyingcode, dynamic code generation does not change theexisting code, but rather augments it. Dynamic codegeneration enables programs to create specialized in-struction sequences based on runtime information.For instance, the statically generated code to scalea vector by a runtime-determined value must rely ona general multiply routine or instruction. A programbene�ting from dynamic code generation could, how-ever, produce executable code optimized for the given�Address: M.I.T. Laboratory of Computer Science, 545Technology Square, Cambridge, MA 02139. Internet:engler@lcs.mit.eduyAddress: Department of Computer Science, University ofArizona, Tucson, AZ 85721. Internet: todd@cs.arizona.edu

scale factor (e.g., since it is a runtime constant, mul-tiplication can be eliminated through strength reduc-tion to shifts and adds). Our experiments indicatethat dynamic code generation can increase the speedof dividing an integer matrix by a runtime determinedconstant by a factor of 10 and integer matrix multi-plication by a factor of 4.Programmers who wish to exploit dynamic codegeneration face many di�culties. Because binary in-structions are generated, programs using dynamiccode generation must be retargeted for each ma-chine | a potentially substantial programming ef-fort. Di�ering memory subsystems (e.g., split I/Dcaches) present additional retargeting di�culties be-cause code is generated in data space and then ex-ecuted in instruction space. Furthermore, dynamiccode generation must be e�cient since the code gen-eration time will be incurred by the executing pro-gram.Our dynamic code generation system, dcg,portably and e�ciently generates executable codeat runtime. dcg client programs specify dynami-cally generated code using the compact, machine-independent intermediate representation (IR) of thelcc compiler [8]. Binary code is selected using BURStree pattern-matching technology [17, 9]. The codegenerator is very e�cient | the creation and transla-tion of IR to binary instructions takes approximately350 instructions per generated instruction.There are two contributions of this paper: (1)a demonstration of e�cient dynamic machine codegeneration from a machine-independent speci�cation,and (2), the use of existing compiler technology to re-duce the problem of building a dynamic code gener-ation system to that of implementing a retargetablecompiler backend.To our knowledge dcg is the only stand-alone re-targetable dynamic code generator to emit binary in-structions directly. We have automated code genera-tor retargeting by developing simple machine spec-



i�cation languages and preprocessors. The retar-get of the system to the MIPS R3000 from theSPARC took approximately 1 week. The current sys-tem runs on ABI compliant SPARC implementations(e.g., SPARC1, SPARC10, IPX) [11] and the MIPSR2000/R3000 series [12]. We describe the design andimplementationof our system, and report preliminarytests of its e�ciency.2 Previous WorkMany people have used dynamic code generation toexploit runtime data for creating highly e�cient codethat could not have been produced statically. In [14],Keppel, Eggers and Henry survey many advantageoususes for dynamic code generation.Massalin and Pu used dynamic code generation intheir Synthesis Kernel to remove a layer of interpre-tation from operating system routines [19]. Dynamiccode generation made a single byte read/write 56times faster and a paged-sized read/write 4 to 6 timesfaster in the Synthesis Kernel than in SunOS eventhough SunOS was running on a faster machine. Un-fortunately, their system was not easily retargetableand ran only on the Motorola 680x0 family.Implementations of languages that rely on dynamictype information bene�t from this technology as well.Smalltalk [5] and Self [3], for example, have both useddynamic code generation to optimize frequently exe-cuted routines.ParcPlace sells an implementation of of Smalltalk-80 that uses a dynamic code generator for SPARC,Motorola 68k and PowerPC, Intel x86, and otherarchitectures. Unlike dcg, this system is designedspeci�cally for the compilation of Smalltalk-80, andnot as a stand-alone system for dynamic code gener-ation.Leone and Lee describe a \lightweight" approachto dynamic code generation, called deferred compila-tion, that utilizes compile-time specialization to re-duce run-time code generation costs [?]. Their ap-proach relies on sophisticated compiler analysis ofprograms to create e�cient, \hard-wired" code emit-ter routines. No mention is made of the system'sretargetability.Pike, Locanthi and Reiser exploited dynamic codegeneration to optimize bitblt, a bit-manipulationroutine used in many windowing systems [16]. bitbltmerges a source rectangle with a destination rectan-gle via logical bit operators. bitblt code to han-dle every possible case of bit boundaries on a word-oriented machine is slow because of its burdensomegenerality. Static enumeration of all cases would re-

quire over 1MB of code. Instead, they dynamicallygenerate code for each case as needed. The dynami-cally generated code was up to an order of magnitudefaster than the static code.Keppel addressed some issues relevant to retarget-ing dynamic code generation in [13]. He developeda portable system for modifying instruction spaceson a variety of machines. His system dealt with thedi�culties presented by caches and operating systemrestrictions, but it did not address how to select andemit actual binary instructions.Many Unix systems provide utilities to dynamicallylink object �les to an executing process. Thus, aretargetable dynamic code generation system couldemit C code to a �le, spawn a process to compileand assemble this code, and then dynamically link inthe result. Preliminary tests on gcc indicate that thecompile and assembly phases alone require approxi-mately 30,000 cycles per instruction generated. Oursystem is two orders of magnitude faster than this.Outside the context of dynamic code generation,retargetable code generation is well studied. Twocompeting code generation strategies dominate re-targetable compilers: Register Transfer Language(RTL)-based rewriting rule systems [4], and tree pat-tern matching systems [1, 9, 6]. RTL rewriting ismore general than tree pattern matching, but it ismore complex and slower.3 dcg Code Generator DesignThe primary design goals of our dynamic code gen-eration system, dcg, were simplicity and e�ciency.dcg consists of a small, but complete, library of in-terface routines that provides extremely e�cient dy-namic code generation facilities to client programs.Furthermore, dcg is easy to retarget. (Of course, oncedcg is retargeted to a new machine, all clients shouldthen run unchanged.)The unit of code generation for dcg is a single pro-cedure. dcg compiles each procedure and returns apointer to the executable code. The client invokesthat code as an indirect call to a C procedure.To make client programs portable, they specifycode using a machine-independent intermediate rep-resentation (IR) that is passed to dcg. The logicalinfrastructure of dcg is taken directly from an exist-ing retargetable ANSI C compiler, lcc [8]. lcc's IR issmaller, simpler, and more easily understood than theobvious alternative, gcc's. The simplicity and regu-larity of the IR is important because this IR must beeasily generated by client programs. In essence, everyclient program is a small compiler front-end. lcc's



IR consists of expression trees with a minimal sym-bol table for variables and data types. The abstractmachine, while small, is complete, being su�cient forthe construction of ANSI C compilers for both RISCand CISC machines. An important bene�t of usingan existing interface is testing. By retaining lcc'sinterface faithfully, dcg's code generator is able tolink directly to lcc's frontend; testing its correctnessconsists of simply compiling existing test-suites to as-sembly language, and testing the resultant output.Code selection is done using burg, which usesBottom-Up Rewrite System (BURS) technology tooptimally translate an IR tree into machine instruc-tions [9]. Instruction selection using dynamic pro-gramming and tree pattern matching is easily under-stood, automated, and quite fast.dcg omits any signi�cant global optimizations andpipeline scheduling. Existing pipeline schedulerswould have made the code generator slower and morecomplex. Global optimizations are the responsibil-ity of the client, which has access to the low-levelIR speci�cation. dcg is only responsible for emittinge�cient code locally. dcg does include a machine-independent mechanism, however, to allow a smallamount of global register allocation. A few registersare reserved as expression temporaries, and the restare available for a function's local variables and ar-guments. The client declares an allocation priorityordering to dcg for all register candidates, and dcgallocates registers according to that ordering. Oncethe machine's registers are exhausted, all subsequentlocal variables are kept on the runtime stack. Thissimple, machine-independent technique is extremelyfast, and still provides some register allocation controlto the client.Complete code generation includes tree construc-tion and labeling, register allocation, instruction se-lection, jump resolution and binary code emission.BURS tree labeling occurs during tree construction.After a forest is passed to dcg, it consumes eachtree in one pass. The matching tree patterns aretraversed left-to-right | register allocation and in-struction emission are done immediately. Currently,spills are not handled; we assume that all expressionscan be evaluated with only eight temporary regis-ters. When the forest has been consumed, unresolvedjumps are backpatched.4 Client/dcg InterfaceClients dynamically develop code one procedure at atime from a forest of IR trees. In addition, declara-tions of local variables and procedure arguments must

be communicated to the code generator. Clients re-spect the code generation interface de�ned by lccwhen invoking dcg. This interface is fully docu-mented in [8].dcg consists of library routines that simplify thecreation of lcc IR nodes and typing information.Individual functions are provided for the construc-tion of all legal IR nodes and correspond to lcc's109-operator language (36 operations with 9 poten-tial types). Additional functions construct some com-mon symbol types (e.g., constants, addresses and lo-cal variables). The names of interface procedures arelower-case versions of lcc's operators: operators havea functional pre�x (e.g., ARG, MUL, DIV, CALL) and atype su�x (e.g., D, F, I, U, P, C). For example, thefunction negi builds a tree that computes the integernegation of a subtree. Functions that return symbolsinstead of tree nodes have an s pre�xed to their name(e.g., slabelv returns a symbol to a void label).Trees are linked together in a forest, and the forestis passed to the function dcg_gen for code generation.dcg_gen returns a pointer to the generated code tothe client program.Figure 1 contains a simple example that builds afunction of a single integer argument that returns thevalue of the argument plus 1. The client routine de-clares the single argument with sargi; register alloca-tion is done using dcg_param_alloc. The procedureis speci�ed by a single IR tree that is registered withdcg. When dcg_gen is called, code is generated. Thiscode can then be invoked by an indirect call. Figure 2is the code generated by dcg (currently, dcg alwaysallocates an activation record).Library routines are provided to make client pro-grams simpler to write, while maintaining lcc's codegeneration interface. The dcg library interface is ma-chine independent | client programs do not need tobe altered when linked with dcg routines on a newtarget machine.5 Experimental ClientsWe illustrate using dcgwith two simple clients: a cus-tomizing matrix multiplication that synthesizes codetailored for each row of an input matrix, and an in-teractive small C-like language implementation thatcompiles and executes its code on the spot. Our ex-periments are conducted on a MIPS R3000 and aSPARC 10.5.1 Matrix MultiplicationFast multiplication of matrices is important to manygraphics and image processing applications. Often



typedef int (*FPtr)(int);FPtr example() {Symbol arg[2]; /* argument vec sent to gen */int ncalls = 0; /* number of calls made by plus1 */arg[0] = sargi(); /* allocate symbol for 'x' */dcg_param_alloc(arg, ncalls); /* associate with a virtual register (if possible) *//* create and register IR tree for "return x + 1;" with dcg */regtree( reti( addi( indiri(addrfp(arg[0])), cnsti(scnsti(1)))));/* generate code on heap */return (FPtr) dcg_gen(sfunc("plus1"), arg, ncalls);} Figure 1: Routine to Build Function \int plus1(int x) f return x + 1; g" Dynamicallyaddiu $sp, -152 # allocate ARadd $25, $4, 1 # ADDI ($4 holds argument 1)move $2, $25 # RETI ($2 holds return value)addiu $sp, 152j $31 Figure 2: The R3000 Code Emitted to Compute \return x + 1;"these matrices have regular runtime determined char-acteristics (e.g., large numbers of zeros and small in-tegers) that cannot be exploited by static compilationtechniques. The use of dynamic code generation al-lows these characteristics to be exploited by allowinga client to craft locally optimized code based on theactual values. Because code for each row is speci�edonce and then used n times (once for each column),the costs of code generation are easily recouped. Inour example code, three optimizations are employedfor integer matrix multiplication| one by the client,two by dcg. The client directly eliminates multiplica-tion by zero. dcg encodes each value as an immediatevalue of an emitted arithmetic instruction, where pos-sible. When pro�table, dcg does strength reduction,replacing multiplication with shifts and adds.The following example is provided to illustrate dy-namic code generation techniques and dcg's interface.(For e�ciency the right-hand matrix 'b' has beentransposed; matrix multiplication is done by comput-ing the dot products of rows of each matrix.)
Consider the example 3x3 matrix:3 0 20 7 40 0 3We want to emulate the following optimized C codethat describes a dot-product customized for each row(for clarity, we elide the use of shifts and adds forstrength reduction).int dot_row0(int *b) { return 3*b[0]+2*b[2];}int dot_row1(int *b) { return 7*b[1]+4*b[2];}int dot_row2(int *b) { return 3*b[2]; }The following code is emitted by dcg for the treespecifying dot_row0:/* return 3 * b[0] + 2 * b[2]; */addiu $sp, -152 # allocate ARlw $24, 0($4) # load value of b[0]mul $25, $24, 3 # 3 * b[0]lw $15, 8($4) # load value of b[2]mul $24, $15, 2 # 2 * b[2]add $25, $25, $24 # add two resultsmove $2, $25 # put in return register



0

2

4

6

8

10

Se
co

nd
s

dcg execute
dcg create

indir 

naive

  7/0%    7/90%    511/0%    511/90%    7/0%    7/90%    511/0%    511/90%  

MIPS R3000 SPARC 10

0

50

100

150

Se
co

nd
s

dcg execute	
dcg create

indir 

naive

  7/0%    7/90%    511/0%    511/90%    7/0%    7/90%    511/0%    511/90%  

MIPS R3000 SPARC 10Figure 3: Matrix Multiplication times; dcg create refers to total code generation cost; x-axis labels are of theform: `maximum element size/percentage of zero elements'.addiu $sp, 152 # deallocate ARj $31 # returnTo test dynamic code generation in this setting,matrix multiplication was implemented using threealgorithms. naive: A naive algorithm that doesnot take advantage of zeros. indir: A sophisticatedscheme that uses indirection vectors to avoid multi-plication by zeros. dcg: The dynamic code gener-ation algorithm described above. (The C code forindir and dcg are given in Appendix A.) Figure 3gives timings to compare the three implementationson both machines under various conditions for ran-domly generated matrices. We vary the maximum
value held in the arrays to either 7 or 511, and choosethe percentage of 0's in the arrays to be either 0% or90%. The dcg timings are split into code generationtimes, given by \dcg create," and execution times,given by \dcg execute." As the timings indicate, dy-namic code generation is almost always a win | oftenby a tremendous amount.On the SPARC, dcg-generated code can be close toa factor of 4 faster than the optimized C implementa-tion and almost 170 times faster than the naive one.Because the SPARC does integer multiply in software,using dynamically generated code is very pro�table.For small matrices, the MIPS implementation is



slightly slower than the indir method because of thecost of code generation. The dcg generated code isalways faster than the indir code, but there is notenough data over which to amortize the code genera-tion costs. At larger sizes, dcg is pro�table. Becausea substantial portion of execution time for both theMIPS and SPARC dynamic code generation exam-ples goes to code generation, overall execution timewill improve dramatically with even modest increasesin code generation speed.To determine the e�ciency of using dcg, we com-puted how many instructions the matrix multiplyclient executes for each instruction that is ultimatelyemitted on the R3000. Instruction counts were madeusing pixie. For matrix multiply, dcg routines ex-ecuted approximately 350 instructions for every in-struction emitted.5.2 Interactive Tiny C Compiling In-terpreterOften, interpreters are more attractive than compilers(e.g., during debugging). Interpretation may, how-ever, be too slow to be a practical option. We haveimplemented a simple, interactive compiler that readsin C-like functions, generates code for those func-tions dynamically, and then executes it. For recursiveFibonacci, the compiled version runs between 18-50times faster than the interpreted version. The resul-tant code on a SPARC 10 executes within 9% as thatof gcc using the highest level of optimization. Ad-ditionally, the compiling interpreter is 25% smallerthan its non-compiling counterpart.Our language, Tiny C, has only a single type (inte-ger), supports most of C's relational and arithmeticoperations on it (/, -, <, etc.), and provides ifstatements, while loops, and function calls as con-trol constructs. Programs in Tiny C consist of globaldeclarations, followed by function declarations, thesedeclarations are terminated by the begin keyword,which starts an interactive session. Code is compiledas the user enters it.A recursive Fibonacci program is used to measurethe performance of three Tiny-C implementations.interp: A simple interpreter that translates Tiny Cto abstract syntax trees, which it then recursivelyevaluates.gcc: The C code is statically compiled using gcc withoptimization level \-O3". This is used to give anupper bound on the quality of local code.dcg: The compiling interpreter discussed above.Tests compute the 30th and 35th Fibonacci num-bers.

Figure 4 graphically summarizes the timings. Dy-namic code generation clearly wins over interpretedcode: on the SPARC, dcg generated code is approx-imately 53 times faster than interpreted code andvery close to the best static code. On the MIPS itis approximately 20 times faster than an interpretedversion and within a factor of two of the staticallycompiled code. The reason for the di�erence betweendcg generated and gcc generated code on the MIPS isthat Fibonacci is composed mostly of jumps and calls| actions which hurt dcg because it does no pipelinescheduling. The lack of a corresponding di�erenceon the SPARC is a result of proli�c register windowdumping in response to Fibonacci's recursive nature,where dcg's lack of pipeline scheduling is hidden inthe overhead of bulk memory transfers.5.3 Additional ExperimentsWe implemented two packet �lter engines for Mogul'spacket-�lter language [15]. The �rst is an ex-tremely e�cient byte-code interpreter that uses in-direct jumps (a C extension provided by the GNUC compiler) to achieve e�cient interpretation. Thesecond uses dcg to generate code specialized for agiven �lter and run it directly (eliminating interpre-tation overhead). Even though dcg's generated codeis fairly poor in this instance (packet �lters utilize anumber of control ow constructs, consequently dcg'slack of pipeline scheduling hurts performance notice-ably) the performance improvement is over a factorof 10. With straightforward compiler techniques, thegenerated code could be improved by 2-3 fold, yield-ing a relative performance improvement of 20-30 fold.We also implemented an optimized matrix scalinglibrary. Multiplication by a runtime constant is re-duced to shifts and adds. Division is strength reducedto multiplication (and then to shifts and adds) usingthe techniques described in [10]. The performance ofmultiplying a 1024x1024 integer matrix by a runtimeconstant improved by a factor of 4 on a SPARC 10,and 40% on a R3000. The performance of dividinga 1024x1024 matrix of type short by a runtime con-stant improved by a factor of 10 in a SPARC 10 whenthe constant was a power of two and by a factor of 4for more common values. On an R3000 the improve-ment was approximately a factor of 2. More dramaticimprovements would be possible with a more sophis-ticated factorization scheme.6 Retargeting dcgOnce dcg is retargeted, all clients will run on the newtarget machine. Despite the fact that each retarget



0

50

100

150

200

250

Se
co

nd
s dcg

gcc
naive

Fib(30) Fib(35) Fib(30) Fib(35)

MIPS R3000 SPARC 10Figure 4: Tiny-C Timings on Fibonacci (timings in seconds)is only done once, we still felt it important to makethe process as easy as possible.Retargeting dcg consists of three parts: creating amapping from IR patterns to machine instructions,creating a mapping from machine instructions to bi-nary templates, and de�ning auxiliary code for ob-serving calling conventions, data layout restrictions,register allocation, etc. We developed two small lan-guages to make retargeting easy. The �rst languageexpresses the mapping of IR patterns to machine in-structions. The second language expresses the map-ping of machine instructions to binary patterns thatcan be emitted and directly executed by the client.burg automatically generates routines that e�-ciently map IR trees to machine instructions basedon tree patterns. We use a richer pattern speci�ca-tion language than burg that is preprocessed into aburg speci�cation and auxiliary routines. The lan-guage's grammar follows:template: 'template' '=' type ':' burgname {'[' typelist ']' } '|' text'{' { mlist }* '}'/* macro list */mlist: mname '=' token { ',' token }* ';'/* macro name */mname: @[a-zA-Z0-9_"]?type denotes the resulting type of a given action(e.g., reg, const, addr); burgname is the name of theburg rule; typelist is a list of child types; text isliteral text that is emitted with each rule after macroexpansion. The preprocessor expands the rules bymarching down the macro lists in parallel and sub-stituting the given token for any targets given in the

template. The preprocessor has a few prede�ned re-placements (e.g., @r0will give the register of the tree'sleftmost child); two global state variables (@type and@regpol) control, respectively, the type of each burgrule and the register allocation/deallocation of eachassociated action. The resulting text after macro ex-pansion is emitted into two �les: a burg input speci-�cation, and an emitter, written in C.For example, the speci�cation/* rule type is reg */@type = reg;/* deallocate children, allocate parent */@regpol = 2;/* binary operations */template = @type:@burg[reg, reg] |asminst("@bop $r2, $r1, $r !@burg");@bop(@r, @r0, @r1); {@burg = BXORU, ADDI, ADDP, ADDU;@bop = xor, add, add, add;}produces the following burg rule, and associated Ccode for ADDI (integer addition)/** Burg rule -- goes into file for burg* input spec.*/reg: ADDI(reg, reg) = 9 (1);/** Burg action -- goes into file containing* the emitter.*/



case 9: /* reg: ADDI(reg, reg) = 9 (1); */putreg(b); putreg(a); getreg(p);asminst("add $r0, $r1, $r !ADDI");add(p->x.reg, a->x.reg, b->x.reg);break;Our second preprocessor generates a binary emit-ter for machine instructions. The binary emitter isresponsible for constructing the 32-bit values that en-code a particular instruction. The input grammarfollows:template: '(' args ')' literal_text '{'insn_name { insn_name }*binary { binary }*'}'insn_name=[a-zA-Z0-9]binary=[01]?Two lists are speci�ed: a list of instruction names(e.g., add, addu) and a list of their corresponding bi-nary values (e.g., 100000, 100001). The instructionname is concatenated to the template and the binaryvalue, after conversion to hexadecimal, replaces any@bin label. The result is emitted as a C macro thatwill construct the 32-bit instruction from the opcodeand any operands. (In the example below, STYPE isa macro that builds 3-operand instructions for theSPARC.) We currently do not handle machines withvariable-size instructions.For example, the speci�cation:(dst, src1, src2)STYPE(@bin, dst, src1, src2); {add addu and nor or100000 100001 100100 100111 100101}Yields the following for add:#define add(dst, src1, src2) \STYPE(0x20, dst, src1, src2)The current speci�cation languages are small, butnot as concise as other code generator speci�cationlanguages [7]. Future work will involve making thepreprocessors more sophisticated.Few architectures with separate I/D caches requirethat the I cache be kept coherent with memory. Con-sequently, dynamic code generation requires that co-herence be maintained manually. The R3000 doeshave separate I/D caches, but a system routine isprovided for ushing the caches over a given addressrange. The SPARC ABI documentation, after prud-ish warnings against self-modifying code, states thata special instruction must be used to explicitly ush

each word of code. Fortunately, most SPARC im-plementations have uni�ed I/D caches, obviating thisrequirement.7 Future WorkWhile dcg generates good code quickly, it can be im-proved. dcg currently does not schedule instructions,and must therefore take a conservative approach toemitting instructions | too many nops are generated.In the machines we targeted, we estimate that thiscan degrade performance by up to 25%. Retargetablescheduling systems would help eliminate this perfor-mance penalty [2, 18]. Local code could be improvedby peephole optimization and by special-casing leafprocedures.While the interface of dcg is more civilized thanmachine code, it can be improved. We are currentlyinvestigating two approaches. The �rst would be touse lcc as a preprocessor that would accept C codeas input and emit the corresponding IR. The secondwould be to augment ANSI C with language featuresthat allow dynamic code generation to be controlledfrom within the language proper. This has the ad-vantage that the cost of some optimizations done bydcg at runtime could be shifted to compile time.Our current model assumes that all procedure callsobey C calling conventions. This is a serious restric-tion for dynamic code generation clients that wishto customize calling conventions for improved perfor-mance. We anticipate augmenting lcc's IR to providea lower-level view of procedure calls for such clients.8 ConclusionOur system, dcg, provides a set of routines that de-�ne a portable, e�cient dynamic code generation sys-tem. The machine-independent intermediate repre-sentation speci�es a small, but rich, set of operatorsthat are su�cient to express all C language constructsat nearly a machine-level, without sacri�cing porta-bility. The code generation interface is small and easyto use | clients specify expression trees for a de-sired chunk of code and dcg returns a function pointercallable from the client program.dcg generates good executable code quickly. Opti-mal tree pattern matching with BURS technology,and careful engineering provide a system that cangenerate executable instructions with at the rate ofone instruction every 350 instructions.Because the IR was taken from an existing retar-getable C compiler, it is easy to retarget. This job is



further simpli�ed by preprocessors developed to sim-plify instruction selection and creation of binary emit-ters.9 AcknowledgementsChristopher Fraser, Wilson Hsieh, Anthony Joseph,Kevin Lew, Andrew Myers, Carl Waldspurger andDeborah Wallach carefully read this paper and theirinsightful comments greatly improved it. LorenzHuelsbergen brought the matrix multiplication ex-ample to the attention of the second author, andcontributed valuable ideas about runtime code gen-eration. Professor M. Frans Kaashoek of M.I.T.graciously allowed the �rst author to complete this\legacy work" at the beginning of his graduate ca-reer; his support is greatly appreciated.References[1] Alfred V. Aho, Mahedevan Ganapathi, and StevenW. K. Tjiang. Code generation using tree match-ing and dynamic programming. ACM Transactionson Programming Languages and Systems, 11(4):491{516, October 1989.[2] David G. Bradlee, Robert R. Henry, and Susan J.Eggers. The Marion system for retargetable instruc-tion scheduling. In Proceedings of the SIGPLAN '91Conference on Programming Language Design andImplementation, June 1991.[3] Craig Chambers and David Ungar. Customiza-tion: Optimizing compiler technology for SELF,a dynamically-typed object-oriented programminglanguage. In Proceedings of the SIGPLAN '89 Con-ference on Programming Language Design and Im-plementation, pages 146{160, June 1989.[4] Jack W. Davidson and Christopher W. Fraser. Codeselection through object code optimization. ACMTransactions on Programming Languages and Sys-tems, 6(4):7{32, October 1984.[5] Peter Deutsch and Alan M. Schi�man. E�cient im-plementation of the smalltalk-80 system. In Pro-ceedings of the 9th Annual Symposium on Principlesof Programming Languages, pages 297{302, January1984.[6] Helmut Emmelmann, Friedrich-Wilhelm Schr�oer,and Rudolf Landwehr. BEG|a generator for e�-cient back ends. In Proceedings of the SIGPLAN '89Conference on Programming Language Design andImplementation, pages 227{237, 1989.[7] Christopher W. Fraser. A language for writing codegenerators. In Proceedings of the SIGPLAN '89 Con-ference on Programming Language Design and Im-plementation, pages 238{245, 1989.

[8] Christopher W. Fraser and David R. Hanson. A codegeneration interface for ANSI C. Software|Practiceand Experience, 21(9):963{988, September 1991.[9] Christopher W. Fraser, Robert R. Henry, andTodd A. Proebsting. BURG | fast optimal instruc-tion selection and tree parsing. SIGPLAN Notices,27(4):68{76, April 1991.[10] Torbjorn Granlund and Peter L. Montgomery. Di-vision by invariant integers using multiplication.Proceedings of the SIGPLAN '94 Conference onProgramming Language Design and Implementation,June 1994.[11] SPARC International. The SPARC ArchitectureManual. Prentice Hall, Englewood Cli�s, New Jersey07632, 1992.[12] Gerry Kane and Joe Heinrich. MIPS RISC Architec-ture. Prentice Hall, 1992.[13] David Keppel. A portable interface for on-the-yinstruction space modi�cation. In Fourth Interna-tional Conference on Architectural Support for Pro-gramming Languages and Operating Systems, pages86{95, April 1991.[14] David Keppel, Susan J. Eggers, and Robert R.Henry. A case for runtime code generation. TechnicalReport 91-11-04, University of Washington, 1991.[15] J.C. Mogul, R.F. Rashid, and M.J. Accetta. Thepacket �lter: An e�cient mechanism for user-levelnetwork code. In Proc. of the Eleventh ACM Sympo-sium on Operating System Principles, pages 39{51,Nov. 1987.[16] Rob Pike, Bart N. Locanthi, and John F. Reiser.Hardware/software trade-o�s for bitmap graphicson the blit. Software|Practice and Experience,15(2):131{151, February 1985.[17] Todd A. Proebsting. Simple and e�cient BURS ta-ble generation. In Proceedings of the SIGPLAN '92Conference on Programming Language Design andImplementation, June 1992.[18] Todd A. Proebsting and Christopher W. Fraser. De-tecting pipeline structural hazards quickly. In Pro-ceedings of the 21th Annual Symposium on Princi-ples of Programming Languages, January 1994. toappear.[19] Calton Pu, Henry Massalin, and John Ioannidis. Thesynthesis kernel. Computing Systems, 1(1):11{32,1988.



A Static Matrix Multiplication RoutinesWe include the code for the indir and dcg multiplication routines./* indirection vectors are used to record relevant indices -- written* by David Mosberger-Tang */void matrix_mult(int *nzv, int *nzi) {int i, j, k, *b_j, n_nz, s;for(i = 0; i < n; i++) {for (s = n_ns = k = 0; k < n; k++) {if (a[i][k] != 0) {s += a[i][k] * b[0][k];nzv[n_nz] = a[i][k];nzi[n_nz++] = k;}}c[i][0] = s;for (j = 1; j < n; j++) {b_j = b[j];for (s = k = 0; k < n_nz; k++) {s += nzv[k] * *(b_j + nzi[k]);}c[i][j] = s;}}}/* Construct a tree representing a customized dot-product computation* using dcg. 'n' is the size of the matrix, A is a pointer to the* row being customized and arg is a pointer to the arguments symbol. */Node mkdot(int n,int *A, Symbol arg) {Node sum=NULL, mul, a, b;int j;/* march down row, checking for zeros */for(j=0;j<n;j++) {if(A[j] != 0) {/* index off of a pointer passed as a parameter */a = index(addrfp(arg[0]), sizeof(int)*j);b = cnsti(scnsti(A[j])); /* constant whose value is A[j] */mul = muli(a, b); /* multiply node */sum = !sum ? mul : addu(sum, mul); /* construct dot product */}}return !sum ? NULL : reti(sum); /* return a tree, if any was constructed */}


