DCG: An Efficient, Retargetable Dynamic Code Generation System

Dawson R. Engler*

Massachusetts Institute of Technology

Abstract

Dynamic code generation allows aggressive optimiza-
tion through the use of runtime information. Previ-
ous systems typically relied on ad hoc code genera-
tors that were not designed for retargetability, and
did not shield the client from machine-specific de-
tails. We present a system, dcg, that allows clients
to specify dynamically generated code in a machine-
independent manner. Qur one-pass code generator is
easily retargeted and extremely efficient (code gener-
ation costs approximately 350 instructions per gen-
erated instruction). Experiments show that dynamic
code generation increases some application speeds by
over an order of magnitude.

1 Introduction

Dynamic code generation 1s the creation of executable
code by an executing process. Unlike self-modifying
code, dynamic code generation does not change the
existing code, but rather augments it. Dynamic code
generation enables programs to create specialized in-
struction sequences based on runtime information.
For instance, the statically generated code to scale
a vector by a runtime-determined value must rely on
a general multiply routine or instruction. A program
benefiting from dynamic code generation could, how-
ever, produce executable code optimized for the given

*Address: M.L.T. Laboratory of Computer Science, 545
Technology Square, Cambridge, MA 02139. Internet:
engler@lcs.mit.edu

tAddress: Department of Computer Science, University of
Arizona, Tucson, AZ 85721. Internet: todd@cs.arizona.edu

Todd A. Proebsting?

University of Arizona

scale factor (e.g., since it is a runtime constant, mul-
tiplication can be eliminated through strength reduc-
tion to shifts and adds). Our experiments indicate
that dynamic code generation can increase the speed
of dividing an integer matrix by a runtime determined
constant by a factor of 10 and integer matrix multi-
plication by a factor of 4.

Programmers who wish to exploit dynamic code
generation face many difficulties. Because binary in-
structions are generated, programs using dynamic
code generation must be retargeted for each ma-
chine — a potentially substantial programming ef-
fort. Differing memory subsystems (e.g., split 1/D
caches) present additional retargeting difficulties be-
cause code is generated in data space and then ex-
ecuted in instruction space. Furthermore, dynamic
code generation must be efficient since the code gen-
eration time will be incurred by the executing pro-
gram.

Our dynamic code generation system, dcg,
portably and efficiently generates executable code
at runtime. dcg client programs specify dynami-
cally generated code using the compact, machine-
independent intermediate representation (IR) of the
lcc compiler [8]. Binary code is selected using BURS
tree pattern-matching technology [17, 9]. The code
generator is very efficient — the creation and transla-
tion of IR to binary instructions takes approximately
350 instructions per generated instruction.

There are two contributions of this paper: (1)
a demonstration of efficient dynamic machine code
generation from a machine-independent specification,
and (2), the use of existing compiler technology to re-
duce the problem of building a dynamic code gener-
ation system to that of implementing a retargetable
compiler backend.

To our knowledge dcg is the only stand-alone re-
targetable dynamic code generator to emit binary in-
structions directly. We have automated code genera-
tor retargeting by developing simple machine spec-

ification languages and preprocessors. The retar-
get of the system to the MIPS R3000 from the
SPARC took approximately 1 week. The current sys-
tem runs on ABI compliant SPARC implementations
(e.g., SPARCI, SPARCI10, IPX) [11] and the MIPS
R2000/R3000 series [12]. We describe the design and
implementation of our system, and report preliminary
tests of its efficiency.

2 Previous Work

Many people have used dynamic code generation to
exploit runtime data for creating highly efficient code
that could not have been produced statically. In [14],
Keppel, Eggers and Henry survey many advantageous
uses for dynamic code generation.

Massalin and Pu used dynamic code generation in
their Synthesis Kernel to remove a layer of interpre-
tation from operating system routines [19]. Dynamic
code generation made a single byte read/write 56
times faster and a paged-sized read/write 4 to 6 times
faster in the Synthesis Kernel than in SunOS even
though SunOS was running on a faster machine. Un-
fortunately, their system was not easily retargetable
and ran only on the Motorola 680x0 family.

Implementations of languages that rely on dynamic
type information benefit from this technology as well.
Smalltalk [5] and Self [3], for example, have both used
dynamic code generation to optimize frequently exe-
cuted routines.

ParcPlace sells an implementation of of Smalltalk-
80 that uses a dynamic code generator for SPARC,
Motorola 68k and PowerPC, Intel x86, and other
architectures. Unlike dcg, this system is designed
specifically for the compilation of Smalltalk-80, and
not as a stand-alone system for dynamic code gener-
ation.

Leone and Lee describe a “lightweight” approach
to dynamic code generation, called deferred compila-
tion, that utilizes compile-time specialization to re-
duce run-time code generation costs [?]. Their ap-
proach relies on sophisticated compiler analysis of
programs to create efficient, “hard-wired” code emit-
ter routines. No mention is made of the system’s
retargetability.

Pike, Locanthi and Reiser exploited dynamic code
generation to optimize bitblt, a bit-manipulation
routine used in many windowing systems [16]. bitblt
merges a source rectangle with a destination rectan-
gle via logical bit operators. bitblt code to han-
dle every possible case of bit boundaries on a word-
oriented machine is slow because of its burdensome
generality. Static enumeration of all cases would re-

quire over 1MB of code. Instead, they dynamically
generate code for each case as needed. The dynami-
cally generated code was up to an order of magnitude
faster than the static code.

Keppel addressed some issues relevant to retarget-
ing dynamic code generation in [13]. He developed
a portable system for modifying instruction spaces
on a variety of machines. His system dealt with the
difficulties presented by caches and operating system
restrictions, but it did not address how to select and
emit actual binary instructions.

Many Unix systems provide utilities to dynamically
link object files to an executing process. Thus, a
retargetable dynamic code generation system could
emit C code to a file, spawn a process to compile
and assemble this code, and then dynamically link in
the result. Preliminary tests on gcc indicate that the
compile and assembly phases alone require approxi-
mately 30,000 cycles per instruction generated. Our
system 1s two orders of magnitude faster than this.

Outside the context of dynamic code generation,
retargetable code generation is well studied. Two
competing code generation strategies dominate re-
targetable compilers: Register Transfer Language
(RTL)-based rewriting rule systems [4], and tree pat-
tern matching systems [1, 9, 6]. RTL rewriting is
more general than tree pattern matching, but it is
more complex and slower.

3 dcg Code Generator Design

The primary design goals of our dynamic code gen-
eration system, dcg, were simplicity and efficiency.
dcg consists of a small, but complete, library of in-
terface routines that provides extremely efficient dy-
namic code generation facilities to client programs.
Furthermore, dcg is easy to retarget. (Of course, once
dcg is retargeted to a new machine, all clients should
then run unchanged.)

The unit of code generation for decg is a single pro-
cedure. dcg compiles each procedure and returns a
pointer to the executable code. The client invokes
that code as an indirect call to a C procedure.

To make client programs portable, they specify
code using a machine-independent intermediate rep-
resentation (IR) that is passed to dcg. The logical
infrastructure of dcg is taken directly from an exist-
ing retargetable ANSI C compiler, Lcc [8]. 1ec’s IR is
smaller, simpler, and more easily understood than the
obvious alternative, gcc’s. The simplicity and regu-
larity of the IR is important because this IR must be
easily generated by client programs. In essence, every
client program is a small compiler front-end. lcc’s

IR consists of expression trees with a minimal sym-
bol table for variables and data types. The abstract
machine, while small, is complete, being sufficient for
the construction of ANSI C compilers for both RISC
and CISC machines. An important benefit of using
an existing interface is testing. By retaining lcc’s
interface faithfully, dcg’s code generator is able to
link directly to lcc’s frontend; testing its correctness
consists of simply compiling existing test-suites to as-
sembly language, and testing the resultant output.

Code selection is done using burg, which uses
Bottom-Up Rewrite System (BURS) technology to
optimally translate an IR tree into machine instruc-
tions [9]. Instruction selection using dynamic pro-
gramming and tree pattern matching is easily under-
stood, automated, and quite fast.

dcg omits any significant global optimizations and
pipeline scheduling. Existing pipeline schedulers
would have made the code generator slower and more
complex. Global optimizations are the responsibil-
ity of the client, which has access to the low-level
IR specification. dcg is only responsible for emitting
efficient code locally. dcg does include a machine-
independent mechanism, however, to allow a small
amount of global register allocation. A few registers
are reserved as expression temporaries, and the rest
are available for a function’s local variables and ar-
guments. The client declares an allocation priority
ordering to dcg for all register candidates, and dcg
allocates registers according to that ordering. Once
the machine’s registers are exhausted, all subsequent
local variables are kept on the runtime stack. This
simple, machine-independent technique is extremely
fast, and still provides some register allocation control
to the client.

Complete code generation includes tree construc-
tion and labeling, register allocation, instruction se-
lection, jump resolution and binary code emission.
BURS tree labeling occurs during tree construction.
After a forest is passed to dcg, it consumes each
tree in one pass. The matching tree patterns are
traversed left-to-right — register allocation and in-
struction emission are done immediately. Currently,
spills are not handled; we assume that all expressions
can be evaluated with only eight temporary regis-
ters. When the forest has been consumed, unresolved
jumps are backpatched.

4 Client/dcg Interface

Clients dynamically develop code one procedure at a
time from a forest of IR trees. In addition, declara-
tions of local variables and procedure arguments must

be communicated to the code generator. Clients re-
spect the code generation interface defined by lcc
when invoking dcg. This interface is fully docu-
mented in [8].

dcg consists of library routines that simplify the
creation of lcc IR nodes and typing information.
Individual functions are provided for the construc-
tion of all legal IR nodes and correspond to lcc’s
109-operator language (36 operations with 9 poten-
tial types). Additional functions construct some com-
mon symbol types (e.g., constants, addresses and lo-
cal variables). The names of interface procedures are
lower-case versions of lcc’s operators: operators have
a functional prefix (e.g., ARG, MUL, DIV, CALL) and a
type suffix (e.g., D, F, I, U, P, C). For example, the
function negi builds a tree that computes the integer
negation of a subtree. Functions that return symbols
instead of tree nodes have an s prefixed to their name
(e.g., slabelv returns a symbol to a void label).

Trees are linked together in a forest, and the forest
is passed to the function dcg_gen for code generation.
dcg_gen returns a pointer to the generated code to
the client program.

Figure 1 contains a simple example that builds a
function of a single integer argument that returns the
value of the argument plus 1. The client routine de-
clares the single argument with sargi; register alloca-
tion is done using dcg_param_alloc. The procedure
is specified by a single IR tree that is registered with
dcg. When dcg_gen is called, code is generated. This
code can then be invoked by an indirect call. Figure 2
is the code generated by dcg (currently, dcg always
allocates an activation record).

Library routines are provided to make client pro-
grams simpler to write, while maintaining lcc’s code
generation interface. The dcg library interface is ma-
chine independent — client programs do not need to
be altered when linked with dcg routines on a new
target machine.

5 Experimental Clients

We illustrate using dcg with two simple clients: a cus-
tomizing matrix multiplication that synthesizes code
tailored for each row of an input matrix, and an in-
teractive small C-like language implementation that
compiles and executes its code on the spot. Our ex-
periments are conducted on a MIPS R3000 and a
SPARC 10.

5.1 Matrix Multiplication

Fast multiplication of matrices is important to many
graphics and image processing applications. Often

typedef int (*#FPtr)(int);

FPtr example() {
Symbol argl[2]; /* argument vec sent to gen */
int ncalls = 0; /* number of calls made by plusi */

argl0] = sargi(); /* allocate symbol for ’x’ */
dcg_param_alloc(arg, ncalls); /* associate with a virtual register (if possible) */

/* create and register IR tree for "return x + 1;" with dcg */
regtree(reti(addi(indiri(addrfp(argl0]l)), cnsti(scnsti(1)))));

/* generate code on heap */
return (FPtr) dcg_gen(sfunc("plusi"), arg, ncalls);

}
Figure 1: Routine to Build Function “int plusi(int x) { return x + 1; }” Dynamically
addiu $sp, -152 # allocate AR
add $25, $4, 1 # ADDI ($4 holds argument 1)
move $2, $25 # RETI ($2 holds return value)
addiu $sp, 152
j $31
Figure 2: The R3000 Code Emitted to Compute “return x + 1;”
these matrices have regular runtime determined char- Consider the example 3x3 matrix:

acteristics (e.g., large numbers of zeros and small in-
tegers) that cannot be exploited by static compilation
techniques. The use of dynamic code generation al-

o O W
O -1 O
(SRS]

lows these characteristics to be exploited by allowing
a client to craft locally optimized code based on the

actual values. Because code for each row is specified We want to emulate the following optimized C code

that describes a dot-product customized for each row
(for clarity, we elide the use of shifts and adds for
strength reduction).

once and then used n times (once for each column),
the costs of code generation are easily recouped. In
our example code, three optimizations are employed

for integer matrix multiplication — one by the client, int dot_row0(int *b) { return 3%b[0]+2%b[2];}

int dot_rowl(int *b) { return 7*b[1]+4*b[2];3}
int dot_row2(int *b) { return 3*b[2]; }

two by dcg. The client directly eliminates multiplica-
tion by zero. dcg encodes each value as an immediate
value of an emitted arithmetic instruction, where pos-

sible. When profitable, dcg does strength reduction, The following code is emitted by dcg for the tree
replacing multiplication with shifts and adds. specifying dot_row0:

/* return 3 * b[0] + 2 * b[2]; */

addiu $sp, -152 # allocate AR
1w $24, 0($4) # load value of b[0]
The following example is provided to illustrate dy- mul $25, $24, 3 # 3 * b[0]
namic code generation techniques and dcg’s interface. lw $15, 8($4) # load value of b[2]
(For efficiency the right-hand matrix ’b’ has been mul $24, $15, 2 # 2 * b[2]
transposed; matrix multiplication is done by comput- add $25, $25, $24 # add two results
ing the dot products of rows of each matrix.) move $2, $25 # put in return register

10+

Seconds

7/10% 7/90% 511/0% 511/90%

MIPS R3000

Seconds

7/10% 7/90% 511/0% 511/90%

MIPS R3000

] m dcg create
100
m| indir
: naive
50

710% 7/90%

8_
® dcg execute
6 m dcg create
m indir
4 -
naive
2_
ol] 1 | gl

710% 7/90%

511/0% 511/90%
SPARC 10

® dcg execute

511/0% 511/90%
SPARC 10

Figure 3: Matrix Multiplication times; dcg create refers to total code generation cost; x-axis labels are of the
form: ‘maximum element size/percentage of zero elements’.

addiu $sp, 152 # deallocate AR
j $31 # return

To test dynamic code generation in this setting,
matrix multiplication was implemented using three
algorithms. naive: A naive algorithm that does
not take advantage of zeros. indir: A sophisticated
scheme that uses indirection vectors to avoid multi-
plication by zeros. dcg: The dynamic code gener-
ation algorithm described above. (The C code for
indir and dcg are given in Appendix A.) Figure 3
gives timings to compare the three implementations
on both machines under various conditions for ran-
domly generated matrices. We vary the maximum

value held in the arrays to either 7 or 511, and choose
the percentage of 0’s in the arrays to be either 0% or
90%. The dcg timings are split into code generation
times, given by “dcg create,” and execution times,
given by “dcg execute.” As the timings indicate, dy-
namic code generation is almost always a win — often
by a tremendous amount.

On the SPARC, dcg-generated code can be close to
a factor of 4 faster than the optimized C implementa-
tion and almost 170 times faster than the naive one.
Because the SPARC does integer multiply in software,
using dynamically generated code 1s very profitable.

For small matrices, the MIPS implementation is

slightly slower than the indir method because of the
cost of code generation. The dcg generated code is
always faster than the indir code, but there is not
enough data over which to amortize the code genera-
tion costs. At larger sizes, dcg is profitable. Because
a substantial portion of execution time for both the
MIPS and SPARC dynamic code generation exam-
ples goes to code generation, overall execution time
will improve dramatically with even modest increases
in code generation speed.

To determine the efficiency of using dcg, we com-
puted how many instructions the matrix multiply
client executes for each instruction that is ultimately
emitted on the R3000. Instruction counts were made
using pixie. For matrix multiply, dcg routines ex-
ecuted approximately 350 instructions for every in-
struction emitted.

5.2 Interactive Tiny C Compiling In-
terpreter

Often, interpreters are more attractive than compilers
(e.g., during debugging). Interpretation may, how-
ever, be too slow to be a practical option. We have
implemented a simple, interactive compiler that reads
in C-like functions, generates code for those func-
tions dynamically, and then executes it. For recursive
Fibonacci, the compiled version runs between 18-50
times faster than the interpreted version. The resul-
tant code on a SPARC 10 executes within 9% as that
of gcc using the highest level of optimization. Ad-
ditionally, the compiling interpreter is 25% smaller
than its non-compiling counterpart.

Our language, Tiny C, has only a single type (inte-
ger), supports most of C’s relational and arithmetic
operations on it (/, -, <, etc.), and provides if
statements, while loops, and function calls as con-
trol constructs. Programs in Tiny C consist of global
declarations, followed by function declarations, these
declarations are terminated by the begin keyword,
which starts an interactive session. Code is compiled
as the user enters it.

A recursive Fibonacci program is used to measure
the performance of three Tiny-C implementations.

interp: A simple interpreter that translates Tiny C
to abstract syntax trees, which 1t then recursively
evaluates.

gcc: The C code is statically compiled using gee with
optimization level “-O3”. This is used to give an
upper bound on the quality of local code.

dcg: The compiling interpreter discussed above.
Tests compute the 30" and 35" Fibonacci num-
bers.

Figure 4 graphically summarizes the timings. Dy-
namic code generation clearly wins over interpreted
code: on the SPARC, dcg generated code is approx-
imately 53 times faster than interpreted code and
very close to the best static code. On the MIPS it
is approximately 20 times faster than an interpreted
version and within a factor of two of the statically
compiled code. The reason for the difference between
dcg generated and gec generated code on the MIPS is
that Fibonacci is composed mostly of jumps and calls
— actions which hurt deg because it does no pipeline
scheduling. The lack of a corresponding difference
on the SPARC is a result of prolific register window
dumping in response to Fibonacci’s recursive nature,
where dcg’s lack of pipeline scheduling is hidden in
the overhead of bulk memory transfers.

5.3 Additional Experiments

We implemented two packet filter engines for Mogul’s
packet-filter language [15]. The first is an ex-
tremely efficient byte-code interpreter that uses in-
direct jumps (a C extension provided by the GNU
C compiler) to achieve efficient interpretation. The
second uses dcg to generate code specialized for a
given filter and run it directly (eliminating interpre-
tation overhead). Even though dcg’s generated code
is fairly poor in this instance (packet filters utilize a
number of control flow constructs, consequently dcg’s
lack of pipeline scheduling hurts performance notice-
ably) the performance improvement is over a factor
of 10. With straightforward compiler techniques, the
generated code could be improved by 2-3 fold, yield-
ing a relative performance improvement of 20-30 fold.

We also implemented an optimized matrix scaling
library. Multiplication by a runtime constant is re-
duced to shifts and adds. Division is strength reduced
to multiplication (and then to shifts and adds) using
the techniques described in [10]. The performance of
multiplying a 1024x1024 integer matrix by a runtime
constant improved by a factor of 4 on a SPARC 10,
and 40% on a R3000. The performance of dividing
a 1024x1024 matrix of type short by a runtime con-
stant improved by a factor of 10 in a SPARC 10 when
the constant was a power of two and by a factor of 4
for more common values. On an R3000 the improve-
ment was approximately a factor of 2. More dramatic
improvements would be possible with a more sophis-
ticated factorization scheme.

6 Retargeting dcg

Once dcg is retargeted, all clients will run on the new
target machine. Despite the fact that each retarget

250

200

2 150 ® dcg
; 1 m gce
] naive
100
50
— B = H m
Fib30) Fib(35) Fib(30) Fib(35)
MIPS R3000 SPARC 10

Figure 4: Tiny-C Timings on Fibonacci (timings in seconds)

is only done once, we still felt it important to make
the process as easy as possible.

Retargeting dcg consists of three parts: creating a
mapping from IR patterns to machine instructions,
creating a mapping from machine instructions to bi-
nary templates, and defining auxiliary code for ob-
serving calling conventions, data layout restrictions,
register allocation, etc. We developed two small lan-
guages to make retargeting easy. The first language
expresses the mapping of IR patterns to machine in-
structions. The second language expresses the map-
ping of machine instructions to binary patterns that
can be emitted and directly executed by the client.

burg automatically generates routines that effi-
ciently map IR trees to machine instructions based
on tree patterns. We use a richer pattern specifica-
tion language than burg that is preprocessed into a
burg specification and auxiliary routines. The lan-
guage’s grammar follows:

template: ’template’ ’=’ type ’:’ burgname {
*[? typelist 1’ } ’|’ text
{7 { mlist }* '}’

/* macro list */

mlist: mname ’=’ token { ’,’ token }* ’;’

/* macro name */

mname: @[a-zA-Z0-9_"]17

type denotes the resulting type of a given action
(e.g., reg, const, addr); burgname is the name of the
burg rule; typelist is a list of child types; text is
literal text that is emitted with each rule after macro
expansion. The preprocessor expands the rules by
marching down the macro lists in parallel and sub-
stituting the given token for any targets given in the

template. The preprocessor has a few predefined re-
placements (e.g., @0 will give the register of the tree’s
leftmost child); two global state variables (@type and
@regpol) control, respectively, the type of each burg
rule and the register allocation/deallocation of each
associated action. The resulting text after macro ex-
pansion is emitted into two files: a burg input speci-
fication, and an emitter, written in C.
For example, the specification

/* rule type is reg */

Qtype = reg;

/* deallocate children, allocate parent */

Q@regpol = 2;

/* binary operations */

template = Q@type:Q@burglreg, regl |
asminst("@bop $r2, $r1, $r !Qburg");
Q@bop(Q@r, @r0, 0ri1); {
Oburg = BXORU, ADDI, ADDP, ADDU;
Q@bop = xor, add, add, add;

}

produces the following burg rule, and associated C
code for ADDI (integer addition)

/*
* Burg rule —— goes into file for burg
* input spec.
*/
reg: ADDI(reg, reg) = 9 (1);
/*
* Burg action -- goes into file containing
* the emitter.
*/

case 9: /* reg: ADDI(reg, reg) = 9 (1); */
putreg(b); putreg(a); getreg(p);
asminst("add $r0, $r1, $r 'ADDI");
add(p->x.reg, a->x.reg, b->x.reg);
break;

Our second preprocessor generates a binary emit-
ter for machine instructions. The binary emitter is
responsible for constructing the 32-bit values that en-
code a particular instruction. The input grammar
follows:

template: ’(’ args ’)’ literal_text ’{’
insn_name { insn_name }*
binary { binary }#

:}:

insn_name=[a-zA-Z0-9]

binary=[01]7?

Two lists are specified: a list of instruction names
(e.g., add, addu) and a list of their corresponding bi-
nary values (e.g., 100000, 100001). The instruction
name is concatenated to the template and the binary
value, after conversion to hexadecimal, replaces any
@bin label. The result is emitted as a C macro that
will construct the 32-bit instruction from the opcode
and any operands. (In the example below, STYPE is
a macro that builds 3-operand instructions for the
SPARC.) We currently do not handle machines with
variable-size instructions.
For example, the specification:

(dst, srcl, src2)
STYPE(@bin, dst, srcl, src2); {
add addu and nor or
100000 100001 100100 100111 100101
¥

Yields the following for add:

#tdefine add(dst, srcl, src2) \
STYPE(0x20, dst, srcl, src2)

The current specification languages are small, but
not as concise as other code generator specification
languages [7]. Future work will involve making the
preprocessors more sophisticated.

Few architectures with separate I/D caches require
that the I cache be kept coherent with memory. Con-
sequently, dynamic code generation requires that co-
herence be maintained manually. The R3000 does
have separate I/D caches, but a system routine is
provided for flushing the caches over a given address
range. The SPARC ABI documentation, after prud-
ish warnings against self-modifying code, states that
a special instruction must be used to explicitly flush

each word of code. Fortunately, most SPARC im-
plementations have unified I/D caches, obviating this
requirement.

7 Future Work

While dcg generates good code quickly, it can be im-
proved. dcg currently does not schedule instructions,
and must therefore take a conservative approach to
emitting instructions — too many nops are generated.
In the machines we targeted, we estimate that this
can degrade performance by up to 256%. Retargetable
scheduling systems would help eliminate this perfor-
mance penalty [2, 18]. Local code could be improved
by peephole optimization and by special-casing leaf
procedures.

While the interface of deg is more civilized than
machine code, it can be improved. We are currently
investigating two approaches. The first would be to
use lcc as a preprocessor that would accept C code
as input and emit the corresponding IR. The second
would be to augment ANSI C with language features
that allow dynamic code generation to be controlled
from within the language proper. This has the ad-
vantage that the cost of some optimizations done by
dcg at runtime could be shifted to compile time.

Our current model assumes that all procedure calls
obey C calling conventions. This is a serious restric-
tion for dynamic code generation clients that wish
to customize calling conventions for improved perfor-
mance. We anticipate augmenting lcc’s IR to provide
a lower-level view of procedure calls for such clients.

8 Conclusion

Our system, dcg, provides a set of routines that de-
fine a portable, efficient dynamic code generation sys-
tem. The machine-independent intermediate repre-
sentation specifies a small, but rich, set of operators
that are sufficient to express all Clanguage constructs
at nearly a machine-level, without sacrificing porta-
bility. The code generation interface is small and easy
to use — clients specify expression trees for a de-
sired chunk of code and deg returns a function pointer
callable from the client program.

dcg generates good executable code quickly. Opti-
mal tree pattern matching with BURS technology,
and careful engineering provide a system that can
generate executable instructions with at the rate of
one instruction every 350 instructions.

Because the IR was taken from an existing retar-
getable C compiler, it is easy to retarget. This job is

further simplified by preprocessors developed to sim-
plify instruction selection and creation of binary emit-
ters.

9 Acknowledgements

Christopher Fraser, Wilson Hsieh, Anthony Joseph,
Kevin Lew, Andrew Myers, Carl Waldspurger and
Deborah Wallach carefully read this paper and their
insightful comments greatly improved it. Lorenz
Huelsbergen brought the matrix multiplication ex-
ample to the attention of the second author, and
contributed valuable ideas about runtime code gen-
eration. Professor M. Frans Kaashoek of M.I.T.
graciously allowed the first author to complete this
“legacy work” at the beginning of his graduate ca-
reer; his support is greatly appreciated.

References

[1] Alfred V. Aho, Mahedevan Ganapathi, and Steven
W. K. Tjiang. Code generation using tree match-
ing and dynamic programming. ACM Transactions
on Programming Languages and Systems, 11(4):491—
516, October 1989.

[2] David G. Bradlee, Robert R. Henry, and Susan J.
Eggers. The Marion system for retargetable instruc-
tion scheduling. In Proceedings of the SIGPLAN °91
Conference on Programming Language Design and
Implementation, June 1991.

[3] Craig Chambers and David Ungar.
tion: Optimizing compiler technology for SELF,
a dynamically-typed object-oriented programming
language. In Proceedings of the SIGPLAN "89 Con-
ference on Programming Language Design and Im-
plementation, pages 146—-160, June 1989.

[4] Jack W. Davidson and Christopher W. Fraser. Code
selection through object code optimization. ACM
Transactions on Programming Languages and Sys-
tems, 6(4):7-32, October 1984.

[5] Peter Deutsch and Alan M. Schiffman. Efficient im-
plementation of the smalltalk-80 system. In Pro-
ceedings of the 9th Annual Symposium on Principles
of Programming Languages, pages 297-302, January
1984.

[6] Helmut Emmelmann, Friedrich-Wilhelm Schréer,
and Rudolf Landwehr. BEG—a generator for effi-
cient back ends. In Proceedings of the SIGPLAN ’89
Conference on Programming Language Design and
Implementation, pages 227-237, 1989.

Customiza-

[7] Christopher W. Fraser. A language for writing code
generators. In Proceedings of the SIGPLAN ’89 Con-
ference on Programming Language Design and Im-
plementation, pages 238-245, 1989.

[8] Christopher W. Fraser and David R. Hanson. A code
generation interface for ANSI C. Software— Practice
and Ezperience, 21(9):963-988, September 1991.

[9] Christopher W. TFraser, Robert R. Henry, and
Todd A. Proebsting. BURG — fast optimal instruc-
tion selection and tree parsing. SIGPLAN Notices,
27(4):68-76, April 1991.

[10] Torbjorn Granlund and Peter L. Montgomery. Di-
vision by invariant integers using multiplication.
Proceedings of the SIGPLAN °94 Conference on
Programming Language Design and Implementation,
June 1994.

[11] SPARC International. The SPARC Architecture
Manual. Prentice Hall, Englewood Cliffs, New Jersey
07632, 1992.

[12] Gerry Kane and Joe Heinrich. MIPS RISC Architec-
ture. Prentice Hall, 1992.

[13] David Keppel. A portable interface for on-the-fly
instruction space modification. In Fourth Interna-
tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages
86-95, April 1991.

[14] David Keppel, Susan J. Eggers, and Robert R.
Henry. A case for runtime code generation. Technical
Report 91-11-04, University of Washington, 1991.

[15] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The
packet filter: An efficient mechanism for user-level
network code. In Proc. of the Eleventh ACM Sympo-
stum on Operating System Principles, pages 39-51,
Nov. 1987.

[16] Rob Pike, Bart N. Locanthi, and John F. Reiser.
Hardware/software trade-offs for bitmap graphics
on the blit. Software— Practice and FExperience,
15(2):131-151, February 1985.

[17] Todd A. Proebsting. Simple and efficient BURS ta-
ble generation. In Proceedings of the SIGPLAN ’92
Conference on Programming Language Design and
Implementation, June 1992.

[18] Todd A. Proebsting and Christopher W. Fraser. De-
tecting pipeline structural hazards quickly. In Pro-
ceedings of the 21th Annual Symposium on Princi-
ples of Programming Languages, January 1994. to
appear.

[19] Calton Pu, Henry Massalin, and John Toannidis. The
synthesis kernel. Computing Systems, 1(1):11-32,
1988.

A Static Matrix Multiplication Routines
We include the code for the indir and dcg multiplication routines.

/* indirection vectors are used to record relevant indices —— written
* by David Mosberger-Tang */
void matrix_mult(int *nzv, int *nzi) {

int i, j, k, *b_j, n_nz, s;

for(i = 0; 1 < n; i++) {
for (s = n_ns =k = 0; k < n; kt+) {
if (alil[k] '= 0) {
s += ali][k] * b[0o][k];
nzv[n_nz] = ali][k];
nziln_nz++] = k;

}
}
clil[0] = s;
for (j = 1; j < m; j++) {
b_j = bljl;
for (s =k = 0; k < n_nz; k++) {
s += nzv[k] * *(b_j + nzil[k]);
}
cl[i1 3] = s;
}

}
}

/* Construct a tree representing a customized dot-product computation
* using dcg. ’n’ is the size of the matrix, A is a pointer to the
* row being customized and arg is a pointer to the arguments symbol. x*/
Node mkdot(int n,int *A, Symbol arg) {
Node sum=NULL, mul, a, b;
int j;
/* march down row, checking for zeros */
for(j=0;j<n;j++) {
if (A[3] '= 0) {
/* index off of a pointer passed as a parameter */
a = index(addrfp(argl0]), sizeof(int)*j);

b = cnsti(scnsti(A[j]1)); /* constant whose value is A[j] */
mul = muli(a, b); /* multiply node */
sum = !sum ? mul : addu(sum, mul); /* construct dot product */

}

return !sum ? NULL : reti(sum); /# return a tree, if any was constructed */

