On the Bisimulation Proof Method*

Davide Sangiorgi
INRIA Sophia Antipolis
2004 Rue des Lucioles, B.P. 93,
F-06902 Sophia Antipolis Cedex, France.

Email: davide@cma.cma.fr.

May 1994

Abstract

The most popular method for establishing bisimilarities among processes is to exhibit bisimulation
relations. By definition, R is a bisimulation relation if R progresses to R itself, i.e., pairs of processes
in R can match each other’s actions and their derivatives are again in R.

We study generalisations of the method aimed at reducing the size of the relations to exhibit
and hence relieving the proof work needed to establish bisimilarity results. We allow a relation R
to progress to a different relation F(R), where F is a function on relations. Functions which can be
safely used in this way (i.e., such that if R progresses to F(R), then R only includes pairs of bisimilar
processes) are sound. We give a simple condition which ensures soundness. We show that the class of
sound functions contains non-trivial functions and we study the closure properties of the class w.r.t.
various important function constructors, like composition, union and iteration. These properties
allow us to construct sophisticated sound functions — and hence sophisticated proof techniques for
bisimilarity — from simpler ones.

The usefulness of our proof techniques is supported by various non-trivial examples drawn from the
process algebras CCS and w-calculus. They include the proof of the unique solution of equations and
the proof of a few properties of the replication operator. Among these, there is a novel result which
justifies the adoption of a simple form of prefix-guarded replication as the only form of replication in

the m-calculus.

*A summary is to appear in the proceedings of MFCS‘95, LNCS.

1 Introduction

Bisimilarity has emerged among the most stable and mathematically natural concepts formulated in
concurrency theory over the past decades. It is widely accepted as the finest (extensional) behavioural
equivalence one would want to impose. Its robustness and elegance are evidenced by various charac-
terisations, in terms of non-well founded sets, domain theory, modal logic, final coalgebras, open maps
[Acz88, Abr91l, HM85, RT94, ING94]. Bisimilarity has also been advocated outside concurrency theory;
for instance, co-induction principles based on bisimilarity have been proposed to reason about equality
between elements of recursively defined domains and data types [Fi093, Pit94].

We first consider bisimilarity on standard labelled transition systems: Their transitions are of the
form P -% @, where P and Q are called processes, and label p is drawn from some alphabet of actions.
In such systems, bisimilarity, abbreviated ~, is defined as the largest symmetric relation R on processes

s.t.
if (P,Q) € R and P 5 P’ then thereis Q' st. Q -~ Q' and (P',Q') € R. (%)

(~ can also be viewed as the greatest fixed-point of a certain monotone function on relations, whose
definition closely follows clause (x).) A relation R which satisfies clause (%), without necessarily being
the largest such relation, is called a bisimulation relation. By definition of ~, a bisimulation relation
is contained in ~, and hence it consists of only pairs of bisimilar processes. This immediately suggests
a proof method for ~ — by far the most popular one: To demonstrate that (P,Q) € ~ holds, find a
bisimulation relation containing the pair (P, Q).

Note that in clause (), the same relation R is mentioned in the hypothesis and in the thesis. In
other words, when we check the bisimilarity clause on a pair (P, @), all needed pairs of derivatives, like
(P',Q"), must be present in R. We cannot discard any such pair of derivatives from R, even “manipulate”
its process components. In this way, a bisimulation relation often contains many pairs strongly related
with each other, in the sense that, at least, the bisimilarity between the processes in some of these pairs
implies that between the processes in other pairs. (For instance, in a process algebra a bisimulation
relation might contain pairs of processes obtainable from other pairs through application of algebraic
laws for ~, or obtainable as combinations of other pairs and of the operators of the language.) These
redundancies can make both the definition and the verification of a bisimulation relation annoyingly
heavy and tedious: It is difficult at the beginning to guess all pairs which are needed; and clause (*) must
be checked on all pairs introduced.

As an example, let P be a non-deadlocked process from a CCS-like language, and ! P the process
defined thus: ' P &' p | ' P. Process !P represents the replication of P, i.e., a countable number of
copies of P in parallel. (In certain process algebras, e.g., the w-calculus, replication is the only form of
recursion allowed, since it gives enough expressive power and enjoys interesting algebraic properties —
see Section 6.) A property that we naturally expect to hold is that duplication of replication has no

behavioural effect, i.e, ! P| ! P ~ ! P. To prove this, we would like to use the singleton relation

def

R Lpp, 1P,

But R is easily seen not to be a bisimulation relation. If we add pairs of processes to R so to make it

into a bisimulation relation, then we might find that the simplest solution is to take the infinite relation
R € {(@1,Q,) : forsome R, Qi ~R|!P|[!P and Q.~R|!P}.

The size augmentation in passing from R to R’ is rather discouraging. But it does seems somehow
unnecessary, for the bisimilarity between the two processes in R already implies that between the
processes of all pairs of R’ .

The study reported in this paper aims at relieving the work involved with the bisimulation proof
method. We anticipate that on the previous example our proof techniques allow us to prove the property
IP|!P ~ ! Psimply using the singleton R. We generalise the bisimulation proof method by relaxing the
bare recursion in (x). First, we introduce the notion of progression: A symmetric relation R progresses

to a relation S , abbreviated R—S, if:
(P,Q) € R and P % P’ imply that there is Q' s.t. Q —— Q' and (P',Q’) € S.

(Therefore, a relation R is a bisimulation relation iff R>—=R holds.) We examine progressions of the
form R—F(R), where F is a function from relations to relations. We are interested in functions F
which are sound w.r.t. ~, i.e. s.t. R—F(R) implies R C ~. Questions we shall ask ourselves are: Which
conditions ensure soundness of functions? Which interesting functions are sound? Which interesting
properties are satisfied by the class of sound functions?

We show that a simple functorial-like condition, called respectfulness, guarantees the soundness of a
function F on relations. This condition requires that if R C S and R—S hold, then F(R) C F(S) and
F(R)—F(S) must hold too. A very useful property about the class of respectful functions is that it
is closed under important function constructors like composition, union and iteration. Consequently, it
suffices to define a few primitive respectful functions: More complex functions can then be derived via
combinations of the primitive ones, and the soundness of the former follows from that of the latter.

Among our primitive functions there will be the identity function and the constant-to-~ function,
which maps every relation onto ~. Another primitive function worth mentioning is a function C which
gives us the closure of a relation R under contexts; i.e., R»—=C(R) holds if (P,Q) € R and P -~ P’
imply that

there are processes P, Q" and a context C s.t. (%)
P'=C[P"), Q - C[Q") and (P",Q") € R.

Function C yields an “up-to context” technique by which a common context in the derivatives of two
processes can be cancelled. We show that, in the case in which the transition relation among processes
is defined structurally on the operators of the language, certain conditions on the form of the transition
rules ensure the respectfulness of C. These conditions are met in familiar process algebras like ACP
[BK84] and CCS [Mil&9].

Examples of respectful functions easily derivable from our primitive ones are: The function which
returns the transitive closure of a relation; the function which returns the closure of a relation under
polyadic contexts (i.e., contexts which might have more than one hole); the function mapping a relation

R onto ~R~, where ~R~ is the composition of the three relations (this function gives us Milner’s

bisimulation up-to ~ technique [Mil89]; in our setting, it is recovered as a combination of the identity
and constant-to-~ functions). Again, more sophisticated functions and hence proof techniques for ~
— can in turn be derived from these ones; some of them will be described (and used) in later sections.

A large part of the paper is devoted to applications of our proof techniques. For this, we have
chosen CCS and the m-calculus. CCS is perhaps the most studied process algebra. The w-calculus is a
process algebra which originates from CCS and permits a natural modelling of systems with dynamic
reconfiguration of their communication topology. We show that our techniques yield simpler proofs
of some standard theorems of CCS and w-calculus. Examples are the unique solution of equations
and the distributivity properties of private replications. We also apply our techniques to derive a new
normalisation result for the m-calculus, asserting that every replication ! P can be rewritten in terms of
normal replications !a.P, where a is a prefix of the language. Normal replications are easier to deal
with. For instance, they enjoy simpler algebraic laws and are easier to implement.

Further applications of the techniques can be found in the proof of the main results in [San95b, BS94],
namely the full abstraction of certain semantics of true-concurrent behavioural equivalences in the 7-
calculus, and in [San95a], namely the characterisation of the equivalence induced on lambda-terms by
Milner’s encoding of the (lazy) lambda-calculus into the w-calculus.

Our interest for the m-calculus is motivated, besides by its relevance as a process algebra, by certain
peculiarities of its transition system, which deviates from a standard system, like the one for CCS, in
some important aspects: Firstly, the m-calculus is a special case of a value-passing calculus, and hence
the labels of its transitions may have more than one component. Secondly, w-calculus transition rules
utilise alpha conversion and substitution on names (“name” is a synonymous for “channel”). These
features have to be taken into account in the definition of bisimilarity and, among other things, may
separate bisimilarity and its induced congruence. The separation affects, for instance, the definition of
the function C (closure under contexts): For the use of clause (xx) it is fundamental that bisimilarity be
a congruence, since then, intuitively, P" bisimilar with Q" implies C[P"] bisimilar with C[Q"']. If this is
not the case, then appropriate constraints have to be added in (*x), on the form of context C, or on the
relationship between processes P" and Q. The peculiarities of w-calculus transition system also suggest
other primitive respectful functions. One is a function which allows us to apply injective substitutions on
names to the derivatives of two processes. This function yields a form of “up-to injective substitution”
technique which is very handy when dealing with universally-quantified substitutions on names which

are common in the mw-calculus.

Related work: Some of the proof techniques described in the paper, or special cases of them, have already
appeared in the literature. But we should stress that there has never been a systematic study of the
topic. For instance, we feel that we lacked the capability of combining simpler proof techniques into more
powerful ones, which is made possible by the theory developed in this paper.

We already mentioned Milner’s bisimulation up-to ~ technique [Mil89], in which the closure of a
bisimulation relation is achieved up to bisimilarity itself. The portability of this technique onto weak
bisimilarities (where a special action, called silent action, is distinguished from the others and partially
ignored in the bisimilarity clause) has been studied by Milner and Sangiorgi [SM92].

Two special cases of the up-to-context technique had been previously put forward: In [Cau90], Caucal

defines a notion of self-bisimulation in the setting of BPA processes (they can be viewed as the processes
generated by a context-free grammar) which allows him to eliminate common prefixes and suffixes in the
derivatives of two processes. Self-bisimulations have been used in [Cau90], as well as in a number of other
papers (e.g., [CHS92, HIM95]), to establish decidability results for the classes of BPA and BPA processes
(roughly, the latter differ from the former in that the composition operator is commutative). Another
form of up-to-context technique is Milner, Parrow and Walker’ bisimulation up-to restriction [MPW92],
with which common outermost restrictions in the derivatives of two processes can be discarded.

Finally, the up-to injective substitution technique for the w-calculus is also considered, or mentioned,
by Boreale and De Nicola [BD92], and Milner, Parrow and Walker [MPW92].

Structure of the paper: In Section 2 we develop the theory of progressions, sound functions and respectful
functions. In Section 3 we present the process algebra CCS, and apply our proof techniques based on
respectful functions to it. In Section 4 we present the syntax and the operational semantics of the -
calculus. In Section 5 we examine how to transport the theory of sound and respectful functions onto the
non-standard transition system of the m-calculus; we also introduce a new primitive respectful function,
which allows us to work up to injective substitution on names. In Section 6 we apply the theory of the
previous section to reason about bisimilarity among m-calculus processes. Finally, in Section 7 we report

some conclusions and possible directions for future work.

2 Progressions and respectful functions

The results in this section hold for any transition system (Pr, Act,—) with domain Pr, set of actions
(or labels) Act and transition relation — C Pr x Act x Pr. We use P,@ and R to range over Pr and
call them processes; p and A range over Act. We write P £, Q when (P, 1, Q) €—, to be interpreted
as “P may become @) by performing an action u”.

We let R and S range over binary relations on processes, i.e., if p denotes the powerset construct,
then R and S are elements of p(Pr x Pr). The union of relations R and S is RUS, and their composition
is RS(i.e., (P,P') € RS holds if for some P", both (P,P") € R and (P"”,P') € S hold). We often use
the infix notation for relations; hence P R @) means (P,Q) € R . We use letters I and J for countable

indexing sets in unions and sums.

Definition 2.1 (progression) Given two relations R and S, we say that R progresses to S, written
R—S, if PR Q implies:

1. whenever P -5 P, there is Q' s.t. Q 2> Q' and P' S Q';
2. the converse, i.e., whenever Q —— Q' there is P' s.t. P X5 P' and P' S Q'.

When R and S coincide, the above clauses are the ordinary ones of the definition of a bisimulation

relation.

Definition 2.2 R is bisimulation relation if R progresses to itself, i.e. R=—R holds.

Definition 2.3 Two processes P and @) are bisimilar, written P ~ Q, if PR Q holds, for some bisimu-

lation relation R.

Therefore, if R progresses to itself, then R is made of pairs of bisimilar processes. This is the basis
of the standard method for proving the bisimilarity between two processes: Find a relation R which
progresses to itself and which includes the pair of given processes.

However, self-progressions R>—R are special cases of progressions, but not the only ones by which
process bisimilarities can be inferred. In the paper, we look for general conditions on progressions which
guarantee this property. As we shall see, the flexibility so gained will allow us to work with relations
often much smaller than those needed to exhibit self-progressions.

We shall consider progressions of the form R—F(R) where F is a function on relations, i.e. a function
from ©(Pr x Pr) to p(Pr x Pr). We call these first-order functions, briefly functions. Below, F and G

range over such functions.
Definition 2.4 (soundness) A function F is sound if, for any R, R—F(R) implies R C ~.

Not all functions are sound. An example is the function which maps every relation to the universal
relation Pr x Pr. We wish to determine a class of sound functions for which membership is easy to check,
which includes interesting functions and satisfies interesting properties. We propose the class of respectful

functions.

Definition 2.5 (respectfulness) A function F is respectful if whenever R C S and R»—S holds, then
F(R) CF(S) and F(R)—F(S) also holds.

Remark 2.6 If we replaced the respectfulness requirement by two separate ones, namely
(a) R C S implies F(R) C F(S), and

(b) R+—S implies F(R)— F(S)

3

then we would get a stronger definition (i.e, a stronger condition on F) which would not capture important

sound functions, like the function C for the closure under contexts (Section 2.1).

Remark 2.7 Bisimilarity can also be presented as the greatest fixed-point of a certain monotone function
on relations [Mil89, Section 4.6], for which the bisimulation relations represent the post-fixed points.
Progressions and respectful functions can then be defined in terms of this fixed-point machinery. We
preferred the more operational definitions 2.1 and 2.5 because they are simpler to use for the same
reason why it is easier to establish that a relation is a bisimulation relation from Definition 2.2 rather than

as a post-fixed point. See the concluding section for more comments on fixed-points and co-induction.
We show that any respectful function is sound. First, we need two lemmas.

Lemma 2.8 Let R &/ Uics Ri and suppose for all i € I there is j € I s.t. Rip>—R; holds. Then R is a

bisimulation relation. O

Lemma 2.9

1. If, for some i € I, SR, then also S>—>(Ui€[72i);

2. if, for alli € I, RS, then also (U, Ri)—S. O
Corollary 2.10 If for all i € I there is j € J s.t. R;»—S; holds, then also (Uiel Ri)H(Ujeij). O
Theorem 2.11 (soundness of respectful functions) If F is respectful, then F is sound.

PrOOF: We have to show that if F is respectful and R—F(R) holds, then R C ~. Consider the

following inductively-defined sequence of relations {R, : n > 0}:

Fact: For all n > 0, it holds that

1. Rn g Rn+1;
2. RnHRn+1.

Proof of the fact: (1) is by definition of R,,4+1. For (2), we proceed by induction on n. If
n = 0, then R—F(R)UR follows from the hypothesis R—F(R) and Lemma 2.9(1). Suppose
n > 0. By definition of R,, and R, 1, we have to show that

(]-'(Rn,l)URn71)>—>(]‘—(Rn)URn)~ (1)

Since R,,_1 € R,, and, by induction, R, _1>—R,,, from the respecfulness of F we infer that

F(Ru—1)—F(Ry). By Corollary 2.10, this and R,,_1—R,, prove (1).

We can now conclude the proof of the theorem. Since for all n, R,, >R, 41, by Lemma 2.8, | J,, R, is a

bisimulation relation and hence is contained in ~. This is enough because R is contained in |J,, R,. O

Remark 2.12 The proof of Theorem 2.11 carries over also with a weaker definition of respectfulness,

namely
“whenever R C § and R—S hold, then F(R)>—F(S) holds too”.

However, in this way we would lose some important properties of the class of respectful functions, for

instance their closure under composition (Lemma 2.14).

Theorem 2.11 shows that a respectful first-order function yields a sound proof technique for bisimi-
larity. We can push further and look for ways of combining respectful functions in which respectfulness
is preserved.

We call a function which takes first-order functions as arguments and yields back another first-order
function as a result, a second-order function or, briefly, a constructor. A constructor is respectful if

whenever its first-order function arguments are respectful, then also the first-order function result is

respectful. This hierarchy of functions could be continued, by defining respectful third-order functions,
respectful fourth-order functions and so on... . We stop at second order because it will be enough for our
purposes.
We shall present a few primitive functions and constructors, and prove that they are respectful. They
are rather simple, but give rise to interesting compounds, whose respectfulness and hence soundness
comes then for free.

Two simple primitive respectful functions are the following:

7 is the identity function. U is the constant-to-~ function, mapping every relation onto the bisimilarity
relation. Later we shall introduce two further primitive respectful functions. Roughly, one is a function
which returns the closure of a relation under contexts (Section 2.1); the other is a function which allows
us to manipulate a relation using injective substitutions on names (this will be introduced when dealing
with the m-calculus, in Section 5).

The primitive constructors we consider are composition (°), union (U) and chaining (™), so defined:

(G=F)R) = G(FR))
def
(Uie] fi)(R) = Uie[(}—i(R))
G~F)R) L G(R)F(R)={(P,P) : for some P, (P,P") € G(R) and (P",P') € F(R)}
(Note that, formally, for arity reasons, there is a different union operator for all n € {0,1,...,w}.) Before

proving the respectfulness of these primitive functions and constructors, let us see what we can derive

from combinations of them. Examples of derived functions are:

forn>0, D, = I ...77, ntimes

Function D,, takes a function R and makes the composition of R with itself n times. Function B represents
the classical bisimulation up-to ~, as in Milner’s book [Mil89] (where the proof of the soundness of B is
by checking that R C B(R) and that B(R) is a bisimulation relation). Function 7 returns the transitive
closure of a relation. The plain definitions of these functions are:

def

Dn(R) = {(P,P') : forsome Py,..., P, with P= P, and P, = P,
it holds that P,/RP;4; for all 1 <i<n}
B(R) £ ~R~
T(R) def {(P,P') : for some n > 0 and processes Py, -+, P,1q1 with P =P, and P' = P,

it holds that P; R Pi4q for all 1 <i<n}

Examples of derived constructors are exponentiation and iteration, defined using composition and union
as follows:
FrR) L OF((..(F(R))..)), n times

def

(R = U, 7"(R)

o

We now come to the proof of the respectfulness of the primitive functions and constructors above

introduced.

Lemma 2.13 (identity and constant-to-~ functions) The identity function T and the constant-to-

~ function U are respectful. O
Lemma 2.14 (composition) Composition is a respectful constructor.

ProOF: We have to show that if F and G are respectful, then also G°F is respectful. If R C S and
R>—S8 then, by respectfulness of F, also F(R) C F(S) and F(R)—F(S). From this, by respectfulness
of G, we derive G(F(R)) C G(F(S)) and G(F(R))—G(F(S)), which means (G-F)(R) C (G=F)(S) and
(G-F)(R)—(GF)(S). O

Lemma 2.15 (union) Union is a respectful constructor.

ProoF: We have to show that if, for all ¢ € I, F; is respectful, then also Uie] F; is respectful. Suppose
R C S and R—S. For all i € I, F; is respectful, hence F;(R) C Fi(S) and F;(R)—F;(S) hold.
From the former, we derive (J,.; 7i(R) C U,c; Fi(S), and from the latter plus Corollary 2.10, we get
Uier Fi(R)— Uier Fi(S); that is, (Ui Fi)(R) € (Uier Fi)(S) and (U Fi)(R)— (Uie, Fi)(S)- O

Lemma 2.16 (chaining) Chaining is a respectful constructor.

PRrOOF: Suppose F and G are respectful. We check that also G F is respectful. Suppose R C S and
R—S. Then F(R) C F(S) and G(R) C G(S), which gives (GTF)(R) C (G~ F)(S). We also have to
check that (G F)(R)— (G F)(S). Take (P,P') € (G"F)(R) with P X P,. 1f (P, P') € (G™F)(R),
then there is P" s.t. (P,P") € G(R) and (P",P') € F(S); moreover, since by respectfulness of G and F
it holds that G(R)»—G(S) and F(R)—F(S), for some P;" and P] the following diagram commutes:

P GMR) P" FR) P

wl wl wl
P G P’ F©S) P

This shows that (P, P]) € (G~ F)(S). In a symmetric way, one can show that if P’ %+ P}, then there
is Py st. P 25 Ppand (P, P!) € (GTF)(S). We conclude that (G7F)(R)— (G~ F)(S). O

We saw that functions B, D,, and 7, and constructors 7™ and F* are definable in terms of the primitive
functions Z and U, and of the primitive constructors composition, chaining and union. Therefore, as a

consequence of Lemmas 2.13-2.16, these derived functions and constructors are respectful.

2.1 Closure of a relation under contexts

We now consider the case standard in process algebras in which the class of processes is defined as
the term algebra generated by some signature.

We work with one-sorted signatures . We call the (possibly infinite) set of symbols in ¥ the operators
of the language. Each operator has a fixed arity n > 0. If the arity of the operator is 0, we call it a
constant operator, if it is n > 0 we call it a functional operator. The term algebra over signature X,

written Pry, is the least set of strings which satisfy :

e if f is an operator in ¥ with arity 0, then f is in Pry;

e if f is an operator in ¥ with arity n > 0, and ¢, ..., ¢, are already in Pry, then f(¢1,...,t,) isin
737“2.

Thus, having a signature X, the process language is Pry and a process is an element of Pry.
We shall also be interested in extensions of a signature ¥ with constant operators. If X is a set of
symbols not in ¥, then X(X') is the signature which has all operators in ¥ as before, and in addition each

symbol in X is an operator in £(X) with arity 0. We write Pry;(X) for the term algebra over 3(X).

2.1.1 Closure under faithful contexts

Let ¥ be a signature and [-] a symbol not in X, called hole. A ¥-context is an element of Pry([-]) with
at most one occurrence of the hole [-] in it. We use C to range over X-contexts. If C' is a E-context and
P € Pry, then C[P] € Pry is the process obtained from C by filling the hole [-] with P. We utilise
contexts to define a function Cyx; on process relations which makes the closure of a relation R under a

certain class of contexts. Function Cy; will be one of our most useful primitive respectful functions.
def
cs(R)= |J {c@PLoR) : (PQ)eR}. (2)
C faithful

Before saying what a faithful context is, note that in the definition of Cy the contexts used may have
at most one occurrence of a unique hole [-]. More sophisticated closures, involving contexts which may
contain different holes, and each of them an arbitrary number of times, can be recovered as a combination
of function Cyx, and other respectful functions of the previous section (see Lemma 3.2). Chosing a simple

function Cx, makes the proof of its soundness simple too.

Definition 2.17 A set Cont of Y-contexts is a faithful context-set if for all C € Cont and P € Pryg
whenever C[P] - R, there exist C' € Cont s.t. either

(a) R = C'[P] and, for all Q, it holds that C[Q] -~ C'[Q], or
(b) there are P' € Pry and A\ € Act s.t. P 2 P and R = C'[P'] and, moreover, for all Q,Q" € Pry,
s.t. Q =5 Q') it holds that C[Q] = C'[Q'].
A Y-context C is faithful if C € Cont, for some faithful context-set Cont.

Remark 2.18 The use of Definition 2.17 is facilitated if clauses (a) and (b) are merged. Thus, if P 2,Q

means “P = Q or P —» Q”, then (a) and (b) can be rewritten as follows:

e there are P' € Pry and A s.t. P 2, P and R = C'[P'] and, moreover, for all Q,Q" € Pry s.t.
Q - Q' it holds that C[Q] -~ C'[Q'].

The class of faithful contexts is usually very large. In familiar process algebras, such as ACP and CCS,
all contexts are faithful (we shall prove this for CCS in Section 3.2). Indeed, faithful contexts correspond
to Larsen and Liu’s I-to-1 contexts [LL91](1-to-1 meaning that these contexts have exactly one hole and

that they produce one action at a time).

10

Lemma 2.19 (closure under contexts) The function C is respectful.

PROOF: Suppose R C S and R—S. Clearly, also C(R) C C(S). Thus, we only have to prove
C(R)—C(S). For this, we have to show that if P R Q holds, C is a faithful context and C[P] - P",
then there are P’, Q' and a faithful context C' s.t. P" = C'[P'], Q -~ €'[Q'] and P'SQ’. By definition
of faithfulness, if C[P] £~ P”, then for some process P’, faithful context C' and (possibly empty) action

//\\., we have P 25 P’ and P" = C'[P']. Since R—S8 and R C S, for some @’ the diagram

P R Q
py! X
P S Q

commutes. (Note that the hypothesis R C S is needed for the case in which \is empty, when P’ = P
and Q' = Q). Again by definition of faithfulness, we have C[Q] —— C’[Q']. This proves that the diagram

wl nl
c'p]oc(s) Q]

commutes, and concludes the proof. O

2.1.2 The De Simone format for the transition rules

The transition relation for the processes of the language generated by a signature ¥ can be defined
structurally [Plo81], assigning a set of transition rules to each symbol in ¥. In some cases, it suffices to
look at the format of such transition rules to know that the contexts of the language are faithful. We
show that this is indeed the case for the rules in unary De Simone format over ¥, which we will often
just call De Simone format. It is a simplified version of the format introduced by De Simone [DS85] (the
main restriction is that only one action at a time is observable). In rule (3) below, X,, 1 < r < n, and

Y;, j € J, are metavariables which are instantiated with processes when the rule is applied.
Definition 2.20 (unary De Simone format) A transition rule

A ,
X; —Y;(iel)

F(X1,. X)) S50t
is in unary De Simone format over X if

e n is the arity of f in X;

o X,,1<r<n,and?}, j € J, are distinct variables;

o t is a term in Prx(X{,..., X)), where for all 1 < r < n, each X occurs at most once in t, and
X, =Y. ifreJ, X =X, otherwise.

11

We show that all contexts of a language whose functional operators have transition rules in De Simone
format are faithful. Actually, we shall be a little more general, and first consider the case in which only
a subset of the functional operators have transition rules in De Simone format; in this case we can prove

the faithfulness of only a subset of the contexts.

Definition 2.21 ((X,X')-contexts) Take signatures ¥ and X' with X' C . Suppose the meaning of
each symbol in X' is given using a set of transition rules in unary De Simone format over ¥'. Then we
say that a S-context C is a (3, Y')-context if

1. C € Pry (i.e., C is a process), or
2. C =[], or

3. C= f(P17...,PZ‘,17O’,PZ‘+1,...,PTL), where

fex,
e n is the arity of f,

e 1<i<n,

P. e Prs forre{l,...,n} —{i},

C'"is a (X,%')-context.

The above inductive definition first asserts that all functional operators in ¥’ have transition rules in
unary De Simone format over ¥’ (i.e., definable within £'); then a ¥-context C' is a (X, ¥')-context if all

functional symbols above the hole of C are in Y.
Proposition 2.22 For any ¥ and ¥/, all (,%')-contexts are faithful.

Proor: We show that the class of (X, X')-contexts is a faithful context-set. We consider a context C' in
such a class and verify the requirement in Definition 2.17 proceeding by induction on the structure of C.
The basic case, when C' € Pry; or ¥ =[], is trivial.

In the inductive case, we have C = f(Ry,...,Ri_1,C',Riy1,...,R,), for f € ¥ and C[P] =

3

f(Ry,...,R;i 1,C'[P],Rit1,....R,). The last step of the derivation of C[P] —*5 R uses a rule in

unary De Simone format, like (3). Supposing i is in the set J named in (3) (the case where it is not is

simpler), we can write this last step thus:

R, T (jed (i), C'P R

(4)
f(Ry,...,R;i 1,C'[P],Rit1,....R,) = R=C"[R]

Context C" is a (X, X')-context: Since f € ¥, by definition of (X, ¥')-context, each transition rule for f
is in De Simone format over ¥'; hence all functional operators above the hole of C" are in ¥'.
By induction, from C'[P] = R’ we infer that there is A, P' and a (X, X')-context D’ s.t.

P 2 P and R' = D'[P] (5)

12

and moreover, for all Q, Q" € Pry, with @ N Q’, also
QS pQ).

From (4) and (5), we get that R = C"[D'[P’]] = D[P'], for some (X, X')-context D. Moreover, from (4),
but with C'[Q] £~ D’[Q'] in place of C'[P] £~ R’, we infer

f(Ri,...,Ri_1,C"[Q], Rit1,..., R,) = C"[D'[Q] = D|Q'].

Summarising, we have found that if C[P] —“> R, then there are P', X and a (,Y’)-context D s.t.

P 2 P R =D[P'] and for all Q, Q' € Pry. with Q = @', also C[Q] > D[Q']. This concludes the
proof. |

Corollary 2.23 Consider the process language over a signature Y. in which the meaning of all functional
symbols in X is given using a set of rules in unary De Simone format over . Then all X-contexts are
faithful.

Proor: With the hypothesis in the corollary, the (X, ¥')-contexts are precisely the ¥-contexts. Then

the result follows from Proposition 2.22. |

Corollary 2.23 applies to well-know process algebras like CCS (see Lemma 3.1) and ACP. The De
Simone format excludes, for instance, operators which, in order to release some action, may require the
release of a sequence of actions as opposed to one action from some of their arguments (i.e., using
the terminology in [GV92], these operators have lookahead greater than one), or operators defined with
rules with negative premises, where the requirement on some of the arguments is that they cannot perform
certain actions [BIM88, Gro90]. Also, the format does not capture value-passing process algebras, where
actions have more structure they can also carry values. A special case of value-passing process algebra,
namely the 7-calculus, which supports communication of names, will be examined in Sections 4-6.

In the remainder of the paper, to simplify the notation we omit the indication of the signature. We
assume that there is a given signature X, and that all contexts and processes, as well as quantification
over them, are, or refer to, contexts and processes in X. Thus, we shall call a ¥-context simply a context,
and we shall abbreviate function Cx in (2) as C. Also, we shall abbreviate C(R) as R¢ and 7 (R) as
RT (that is, R is the closure of R under faithful contexts and R7 is the transitive closure of R). In
applications of our proof techniques, we shall often employ the sound function ~ (—C)T~7 which maps a

. . T
relation R onto the relation ~ (R€) ~.

2.1.3 Beyond faithfulness

Function C yields the closure w.r.t. the faithful contexts. One migth reasonably think that the key
property which makes C respectful is that faithful contexts preserve bisimilarity, and therefore wonder
whether C could be strengthened to allow the closure under all contexts which preserve bisimilarity. Let
us call C* this variant of C. We show in this subsection that C* is not respectful.

Consider the simple process language

P:=f(P) |aP]|o

13

where a. — is a CCS-like prefix, 0 is the inactive process and f is an operator whose behaviour is given

by the rule

X L} X/ X/ N X/I
fX) = X"

Since the transition rules of the operators are in tyft format, all contexts of the language preserve bisim-

ilarity [GV92]. Note in particular that the transition rule for f uses a lookahead greater than one. Such
lookaheads are allowed in the tyft format but are not in the De Simone format. We can show that, on

this language, C* is not respectful. Take

R ¥ {(a.0,a.a.0)}

Processes a.0 and a.a.0 are not bisimilar. But the diagram

a.0 a.a.0

la la
0 ~ f(a.0) C(R) f(a.a.0) ~ a0

shows that R »—= ~C*(R) ~ holds: Hence C* is not respectful for, otherwise, also function ~(C*(—))~
would be so and we should have R C ~.

The counterexample above still does not show that C* itself is not sound. However, it does show that
even if C* were sound its interest would be rather limited because it could not be combined with very

simple functions like the constant-to-~ function.

3 CCS: Operational semantics and proof techniques

We first give a brief synopsis of the section. We review the syntax and the operational semantics of
CCS. A quick inspection at the transition rules of the CCS operators shows that all proof techniques for
bisimilarity introduced in the previous section can be applied to CCS processes. We use the techniques to
derive a proof, simpler that the one in [Mil89], of a standard result of the calculus, namely the uniqueness

of solutions of equations.

3.1 The calculus

We assume an infinite set Names = {a,b,...,z,y, ...} of names and a set of constant identifiers Constants
ranged over by A. The special symbol 7 does not occur in Names and in Constants. The class of the CCS
processes is built from the operators of input prefix, output prefix, silent prefix, parallel composition,

sum, restriction, inaction, and constants:
P = aP | PP | A+ | vaP | 0] 4
a = a ‘ a ‘ T.

Following m-calculus syntax (Section 4), we use v for restriction (v a P is normally written P\ a in CCS),
and we omit the relabeling operator (which, anyhow, would not bring complications into the theory we

shall present). Moreover, for notational convenience, we limit ourselves to finite restrictions and finite

14

R i

pre: a.P = P sum: ———— ——
P+@Q — P
P p P % p Q % Q
par: m com: —
PlQ = PQ PlQ = P
P L P P 5 P .
res: 7 % a,a const: 7}7 if AL p
vaP — vaP' A — P!

Table 1: The transition system for CCS

def

sums. It is supposed that for each constant A there is a defining equation of the form A “' p. We refer to
[Mil89] for details on the operators of the calculus. Sometimes, we use 4" a5 an abbreviation mechanism,
to assign a name to expressions or relations to which we want to refer later. In this section, P, @), and

R are CCS processes, and Pr is the class of all CCS processes.

The transition system describing the operational semantics of CCS process is shown in Table 1. In
a transition P - @, the label i can be an input a, an output @, or a silent move 7. We use a to
range over prefixes and p over actions. We distinguish between prefixes and actions for analogy with the

m-calculus, in which the alphabets for prefixes and actions are different.

3.2 Our proof techniques in CCS

The operational semantics of CCS uses a standard labelled transition system. Hence, to apply to CCS
the whole theory of proof techniques for bisimilarity developed in Section 2, we only have to understand

which contexts are faithful; these are needed in the definition of function C (closure under contexts).
Lemma 3.1 All CCS contexts are faithful.

Proor: The CCS language can be described with the signature X def {a.,a.,7., |,v,+,A : a€
Names, and A € Constants} whose symbols have the obvious meaning and the obvious arities. All
functional operators in X, namely {a.,a.,7., | ,v, + } are defined by transition rules in De Simone
format. By Corollary 2.23, all CCS contexts are faithful. |

Therefore, the definition of function C in CCS becomes:
def
c(R) = | J{CIPLCQD : (P.Q) € R}.
c

Lemmas 3.1, 2.19 and Theorem 2.11 ensure the soundness of C.

3.3 An application: The proof of the uniqueness of solutions of equations

An interesting example of application of our proof techniques to CCS is the proof of uniqueness of
solutions of equations, as from Milner’s book [Mil89]. This result says that if a context C' obeys certain

conditions, then all processes P which satisfy the equation P ~ C[P] are bisimilar with each other.

15

We use a tilde to denote a finite (and possibly empty) tuple. All notations we introduce are generalised
to tuples componentwise; thus, PR @ means that P; R Q;, for each component of vectors P and @ For
notational convenience, in this section we work with polyadic contexts, i.e., contexts which may contain
an arbitrary number of different holes [-];,...,[]., and, moreover, each of these holes may appear more
than once. If C' contains at most holes []1,...,[]., then we say that C is an n-ary context; moreover, if
P is a vector of n processes, then C[ﬁ] is the process obtained by replacing each occurrence of the hole
[]; with the i-th component of P.

In Sections 2 and 3.2 we only considered the closure of a relation under monadic contexts, i.e. contexts
containing at most one hole; this closure was given by function C. We can recover the closure of a relation

under polyadic contexts as the transitive closure of the closure under the monadic ones.

Lemma 3.2 If (P;,Q;) € R,1<i<mn, and C is an n-ary context, then
T
(CIPi, ..., P.),C[Q,. ., Qu]) € (RY)

PrOOF: Let P & Pi,...,P, and Q Lef Q1,...,Q,. We have to show that C[ﬁ] and C[@] are in the

transitive closure of R€. We proceed by induction on the structure of C. All cases are simple; we only

look at parallel composition. Suppose C = Cy | Cy. By induction,
(Bl ci@)) € (RE)" and (Co[B). o)) € (RE) .
Hence also
(1P| GalP) (0] ColP]) € (RE)T and (1@ CalPL,ca1Q) | GalQ)) € (RE)”

Since (RC)T is transitive, we infer (01 [P]| C,[P], C1[Q] | Cg[@]) € (RC)T. O

We say that a context C' is weakly guarded if each occurrence of each hole of C' is within some

subexpression of the form a. C'. For instance, a.[-] is weakly guarded, but [-] | a.[] is not.

Lemma 3.3 (Lemma 4.13 in [Mil89]) If C is weakly guarded and 0[15] £, P!, then P' is of the
form C'[P], and moreover, for any Q, C[Q] - C'[Q)].

PROOF: Simple induction on the structure of C. Intuitively, since C is weakly guarded, the processes
which fill the holes of C' do not contribute to the first action produced. |

We write C' for a tuple of contexts Cy, ..., Cy; then C[P]is C1[P],...,C,[P].

’

Proposition 3.4 (unique solution of equations, Proposition 4.14(2) in [Mil89]) Suppose C are
weakly guarded contexts, with P ~ C[P] and Q ~ C[Q]. Then P ~ Q.
PRroor: Let n be the length of vectors 5, P and @, and take

def

and suppose P, — P! (the case of a move from @Q; is symmetric). From Lemma 3.3 we deduce that

there are C! and Q! s.t. the following two diagrams commute:

16

nl 1 l~ Iz l~ ul
P}~ Ci[P] aGlel ~ @

7 K

By Lemma 3.2, this shows that R>—>~(RC)T~ holds. Since function ~(—C)T~ is sound, we infer R C ~,

which proves the proposition. |

In the proof of Proposition 3.4, the cardinality of the relation R is the same as the cardinality of the
vector of given contexts C. In particular, if we are dealing with only one context (i.e., only one equation),

then R consists of one only pair. For the proof of Proposition 3.4, Milner [Mil89] shows that
def o ~
R = UJlerr, o}
c

is a bisimulation up-to ~ (i.e., R’ »=~R'~ holds), proceeding on induction on the structure of C. Note

that in R’ the contexts in the union are all contexts including the unguarded ones.

4 The w-calculus

The n-calculus is an extension of CCS where names are exchanged as a result of a communication. This
allows us to model systems with dynamic linkage reconfiguration and confers a remarkable expressiveness
to the calculus as testified, for instance, by various works on the encoding of A-calculus, of higher-
order calculi, of object-oriented languages and of non-interleaving behavioural equivalences [Mil91, San92,
San95b, BS94, Wal94].

We briefly review the syntax and the operational semantics of the 7-calculus. We refer to [MPW92,
Mil91] for more details. We maintain the notations introduced for CCS, which will not be repeated. W.r.t.
CCS, m-calculus grammar differs in the prefixes, which now present an object part, and in the treatment
of constants, which are now parametrised on a tuple of names. In addition, 7-calculus grammar usually
incorporates a matching construct to test for equality between names. There are two forms of output
prefix: The free output @b. P and the bound output @(b). P; the latter is an abbreviation for v bab. P.
We admit bound output in the syntax of the calculus because of their important role in the operational

semantic and in the algebraic theory.

P = aP | PR | A+P | vaP | 0 | AQ®) | [a=08lP
ab) | ab | a@) | 7.

(%

Defining equations take the form A def (¢) P, which can be thought as a procedure with formal parameters
¢; then A(b) is like a procedure call with actual parameters b. In the prefixes a(b), @b and a(b) we call a
the subject. The operators a(b).P, @(b). P, vb P and (b)P bind all free occurrences of the names b and b
in P. We denote by fn(P) the set of free names of P. For notational simplicity, we impose that a process
only has a finite number of free names and that in a constant definition A def (¢)P, vector ¢ contains all
free names of P. We suppose that it is always possible to alpha-convert bound names of an expression to

“fresh” ones. We shall identify processes which only differ on the choice of the bound names. The symbol

17

e a(c). P b, P{be} PRE: «.P -2 P if ais not an input

P -5 p p -5 p
sum: ;u PAR: 7 it bn(p) Nfn(Q) =0
P+Q 4 P PlQ -5 PQ
p 2 p Q™ p 2 p o™ o
com: - CLOSE: - it b ¢ fn(P)
PlQ = Pl PIQ = vb(P'[Q)
P p P2 p
RES: —L> a & n(p) oPEN: —— ¢ #b
vaP X vaP vop O pr
Pg M P . P Iz P
CONST: {KE}——> if 4% ()P MATCH: — -
A(b) - P [a:a]P’—>P’

Table 2: The transition system for the 7-calculus

= will mean “syntactic identity modulo alpha conversion”. We denote by Pr, the class of all w-calculus
processes.

A substitution is a function from names to names. We use the standard notation for substitutions,
e.g. {%fy} is the function which sends y to = and is identity on all names but y. We use o, p etc. to range
over substitutions, and write Po for the agent obtained from P by replacing all free occurrences of any
name z by o(x), with change of bound names if necessary to avoid captures. Similarly, ac (or uo) is the
result of applying o to the prefix « (or action i), and does not affect a bound name in « (or u), if any.
Substitutions have precedence over the operators of the language. Also, op is the composition of the two
substitutions, in which ¢ is applied first; therefore Pop is (Po)p.

The operational semantics of the calculus is defined by the transition rules of Table 2. The silent
action P~ @ has the same meaning as in CCS. An input action takes the form P b, Q@ and
means “P receives name b at a and evolves to Q7. Note that label ab does not have brackets around b,
as in an input prefix a(b): This is to evidence that in the input prefix name b is a binder (waiting to
be instantiated), whereas in an input action b represents a value (with which an input binder has been
instantiated). An output action can be either of the form P 0, QorP =) Q; the latter means “P
sends the private (i.e., “fresh”) name b at a”. Bound outputs are the central argument of transition rules
oPEN and cLosEg, the most original rules of the w-calculus w.r.t CCS. All names in an action are free,
except if the action is a bound output, say @(b), in which case a is free but b is bound. Bound and free
names of an action u, respectively written bn(u) and fn(u), are defined accordingly. The names of p,
briefly n(u), are bn(u) U frn(u). We work up to alpha conversion on processes also in transition systems,
for which alpha convertible agents are deemed to have the same transitions.

The reader familiar with the m-calculus would have noticed that we are using an early transition
system [San92] since the bound names of an input are instantiated as soon as possible, in the input
rule as opposed to a late transition system [MPW92, Mil91] where the instantiation is done later,

in the communication rule. The adoption of an early transition system naturally leads to the adoption

18

of an early bisimilarity, so christened in the literature to distinguish it from other formulations like the
late and the open [FMQ94]. Our “early” choice is not critical for the results we shall present, although
some definitions (like that of function Cy in Section 5), depend upon this choice.

With the given early transition system, the definition of progression between relations on m-calculus
processes only differs from the standard one (Definition 2.1) because a side condition is added to ensure

the “freshness” of bound names of actions, as follows:

Definition 4.1 A progression R—S, between two relations R and S on w-calculus processes, holds if

for all PR Q
o whenever P % P’ with bn(p) N fn(Q) =0, there is Q' s.t. Q - Q' and P' S Q',
and the symmetric clause, on the actions by Q.

The definitions of a bisimulation relation and of bisimilarity are as those for CCS-like languages, in
Section 2. However, in contrast with CCS, in w-calculus bisimilarity is not a full congruence, since not
preserved by input prefix. This failure arises because ~ is not preserved by name instantiation. For
instance, [a = bJac. 0 ~ 0, but ([a = blac. 0){b} ~ 0{%b}, since ([a = b]ac. 0){4b} = [a = a]ac. 0 is not a
deadlocked process. In consequence, we also have d(a).[a = bJac. 0+ d(a).0. We therefore also consider
the congruence ~¢ induced by ~ [MPW92].

Definition 4.2 (congruence induced by ~) We set P ~¢ @, pronounced “P and Q are congruent”,

if Po ~ Qao, for all substitutions o.

5 Proof techniques for the m-calculus

W.r.t CCS, in the w-calculus actions are more structured — there is also an object part — and the
definitions of transition rules and progression involve alpha conversion and substitution on names. These
differences require straightforward modifications to the theory of sound and respectful functions presented
in Section 2. The only exception is the definition of function C (closure under contexts) and the proof of
its respectfulness. The Definition 2.17 of faithful contexts — on which the definition of C is based — is

limitative in the w-calculus, because it does not capture all contexts. For instance, C def a(z).[-] is not

faithful: If P < 2(y). 0, then C[P] -“% P{b}, but there is no A s.t. P —> P{bz}. The problem has
to do with substitutions, which play an important role in the w-calculus and cannot be ignored. Besides
substitutions, in the w-calculus a closure under contexts should arguably take into account the difference
between bisimilarity and induced congruence. Intuitively, if we have to prove C[P] ~ C[Q], then it is
not sound, in general, to cut the common context C and prove P ~ @, for P ~) might not imply
C[P] ~ C|[Q]. One solution to this is to require that the hole occurs in C' in a special position, so to
guarantee that C' preserves the bisimilarity between P and @); another solution is to prove that P and @
are congruent, rather than bisimilar.

We therefore revisit the definition of function C and the proof of its respectfulness for the m-calculus.

We call the new function C,. We recall that a context C' is guarded if the possible occurrence of the hole

19

[-] is within a subexpression of C of the form «.C’; otherwise C' is non-guarded. We set:

Cx(R) = UC non-guarded {errc) - (P eRr}y U
Ue guarded {(C[P],C|Q)) : (Po,Qc) € R, for all substitutions o}

Remark 5.1 Note that if R is closed under substitutions, then C,(R) simply become
UJtcrp.cn : (P.Q) e R}
c

Proposition 5.2 Function C, is respectful.

PROOF: Suppose that R C S and R>—S. Then, clearly, C.(R) C C.(S). We also have to check that
C(R)—C(S) holds. For this, given (C[P],C[Q]) € Cx(R) with C[P] - R, we show that there are
C', P and Q' s.t.

R=C'P], C[Q] 2~ C'1Q] and (C'[P'],C'[Q") € Ca(S). (6)
We proceed by induction on the structure of C.

Case 1 C =[]
Then C[P] = P, C[Q] = Q and (6) follows from the hypothesis R>—S.

Case 2 C =a(z).C".

Then C[P] = a(z). C'[P], C[Q] = a(z). C'[Q], p = ab, for some b, and R = C'[P]{b/z} = C"'[P{b/x}],
for C" = C'{b/x}. Moreover, it holds that C[Q)] b, C"[Q{Yx}]. Since C is guarded, from the
definition of C, we deduce that (P{Vz}o, Q{b/x}o) € R, for all o. This and the hypothesis R C S
demonstrate (C"[P{Yx}], C"[Q{Vx}]) € C.(S).

Case 3 C=C,|T,or C=T|Ch.

We look at the case C' = Cy | T. There are three possibilities to consider, according to whether the
action C[P] -~ R comes from C;[P] alone, from T alone, or from an interaction between C,[P)]

and T'. We only consider the first, since the remaining two are similar. So, suppose
Ci[P] > R and R=R'|T. (7)
By definition of C,, (C1[P]|T,C1[Q] | T) € C-(R) implies
(C1[P], C1[Q]) € Cr(R) . (8)
From (8) and (7), by induction, there are C{, P’ and Q' s.t.
R =[P, G1Q] = QT and (C[P],CIQ']) € Cx(S).
Moreover, using rule PARr, we have

GQIT = Ci[QIT. (9)

20

Finally, since (C[P'],C[Q']) € C«(S) and the addition of a parallel component does not change
the guardness of a context, we get

(CHPTIT.CLQTIT) € Cx(S) . (10)
1t " < 0y | T, then R = C}[P']| T, (9) and (10) prove (6).

Case4 C =ab.C',or C=7C"or C=Ci+T,or C=T+Cy,0or C =valC', or C = A(b), or
C =la =0b]C".

These cases are easy. O

A useful fact, which derives from the definition (4.2) of the congruence ~¢ , is the following:

Corollary 5.3 Suppose that R—F(R) holds, for some sound function F, and suppose that for two
given processes P and Q, and for all substitutions o, it holds that (Po,Qo) € R . Then P ~° Q. 0O

A special case of this corollary occurs when the relation R itself is closed under substitutions, in
which case P ~¢ @ holds for all pairs (P,Q) in R .

5.1 Closure of relation under injective substitutions on names

A substitution ¢ on names is injective on a set V of names if for all a,b € V, it holds that o(a) = o(b)
implies @ = b. A substitution o is injective if it is injective on the set of all names.
A primitive respectful function, very useful in the w-calculus, is one which allows us to work up to
injective substitutions on names. It is called Sub and is so defined:
Sub(R) wef {(Po,Qo) : (P,Q) € R and o is injective on fu(P,Q)} .
We show that Sub is respectful. We first need a lemma:

Lemma 5.4 Let o be a substitution injective on a finite set V' of names with fn(P) C V. Then there is

an injective substitution p with o(a) = p(a) for alla € V, s.t.:
1. If P % P, then Pp 2 P'p;
2. If Pp > P", then there are P' and p with P > P’ and up = u', P'p = P".

PROOF: We first define the function p. Let W, W~ and V— be the following sets of names:

w L (o) :ae V)
w- € W-V={a:aeWandagV}
V- VoW = {a:aeVandag W}

Since ¢ is injective on V', sets V and W have the same finite cardinality; hence also sets V'~ and W~

have the same finite cardinality. Take an ordering of names in V'~ and W~ say

w-— = {a17...7an}7
V- = {bl,,bn}

21

The substitution p is so specified:

ola) faeV
p(a) Lef b; ifa=a, € W~
a otherwise, i.e. a g (VUW™)

Function p is injective: First, notice that names in V' are mapped onto distinct names of W, and that
names in W~ are mapped onto distinct names in V~. Hence p, restricted to V U W, is an injective

function from this set onto itself. Since names not in V U W are mapped onto themselves, p is injective

on all names. Indeed, p is a bijection on names, and hence we can consider its inverse p~!.

Now we prove clause (1) of the lemma by transition induction. The proof of clause (2) is similar and is
omitted. Below, by alpha conversion we can assume that if z € bn(P), then z ¢ V U W; hence p(x) = =z,
and also p(y) # x, for all y # .

Case 1 P =a(x).Q, u= ab, P' = Q{bz}.
If p(a) = @’ and p(b) = ', then we have Pp = a/(x). Qp and Pp b, Qp{V'/x} = Q{bx}p = P'p.
Case 2 P=ab.Q,or P=a(b).Q,or P=7.Q,0or P=0Q1 +Q2, or P=va@, or P=[a=10]Q.
Easy.

Case 3 P= Q1] Q.
We only consider the case of rule par, when); performs the action:
Q11Q2 - Q1 1Qy, for some Q) s.t. Q1 = Q.
By induction, Q,p =% Q' p, hence
(Q11Q2)p=Qip| Qap "= Qip| Qap = (Q1|Q2)p.
Case 4 P = A(b), for A < (0)Q.

The last inference rule applied is N
Q= P
Ay 5 P

By induction, Q{gﬁ}p L2, P'p. Since fn(Q) C ¢, we have Q{E/E}p = Q{P@/E} (where p is defined

on tuples componentwise), and therefore we can infer, using rule const:

A@D)p = Alp(B)) L& Plp.

Proposition 5.5 Function Sub is respectful.

22

PRrROOF: We have to show that if R C S and R—S, then Sub(R) C Sub(S) and Sub(R)—Sub(S). The
former is straightforward, so we only look at the latter.
Take (Po, Qo) € Sub(R), for some (P, Q) € R and o injective on fn(P, Q). Suppose Po 4L P We
have to find Q" s.t.
Qo "5 Q" and (P".Q") € Sub(S). (11)

Let p be the injective function which Lemma 5.4 associates to o and the set of names fn(P) U fn(Q); thus
Pp = Po and Qp = Qo. By Lemma 5.4(2), there are p and P’ s.t. P <5 P', i/ = up and P" = P'p.
Since R»—S, the diagram

P R Q
ul wl
P S Q

commutes, for some @'. By Lemma 5.4(1), Qp +% Q’'p. Hence the diagram

Pp Sub(R) Qp
up | ol
Pp Sub(S) Q'p

commutes too. For Q" def Q'p, since P'p=P", Qp = Qo and pp = ', this proves (11). O

Having proved that Sub is respectful, we know that it is a sound function and, moreover, we can

safely combine it with other respectful functions, according to the modalities indicated in Section 2.

6 Applications of the proof techniques in the n-calculus

6.1 Use of the closure under injective substitutions on names

The closure under injective substitutions on names (i.e., function Sub of Section 5.1) is useful for cases

in which universal quantifications on substitutions are involved. For instance, such quantifications are

present implicitly in the clause of progression for inputs and bound outputs (Definition 4.1), and
explicitly in the definition of function C,.

As a simple example of application of function Sub, consider the processes
P = a(z).vb(@b|br)
Q = a(z).vbThbx

and suppose we want to prove P ~ Q. If we were to look for a bisimulation relation containing P and @

as a pair, then at least we would need:

def
R {(P.Q).0]0,0)} U
Usenames 1 (vd(@d|de),vded.dc) : d#c} U
UceNames UdeNames {(0 ‘ de dC) td 7é C}
Note that R contains three unions which range over the infinite set of names. These unions are needed

because, for all names d and ¢ with d # ¢, processes P and @) can perform an input action labelled ac

23

and then a bound output action labelled ¢(d). Exploiting function Sub we can prove P ~ @ by simply
taking
R < {(P,Q), (vb(@b|bx),7b.5x), (0| bz, bz), (0]0,0)}

where b and z are any pair of distinct names. R’ only contains four pairs of processes. It is easy to check
that R"—Sub(R') holds, hence {(P,Q)} CR' C ~.

We can do better than R’ using a combination of function Sub and simple respectful functions for
garbage collecting processes 0 from parallel compositions, and for discarding pairs of syntactically equal
derivatives (it is easy to define respectful functions which do this). In this way, P ~ @ can be proved by

exhibiting a relation made of only two pairs of processes, namely (P, Q) and (v b (%b | bx),Tb. bx).

6.2 Unique solutions of equations

As showed for CCS, so in the m-calculus the function ~(—C’“)T~ can be used to get a simpler proof of
the uniqueness of solutions of equations. Both the assertion and the proof of the result are similar to
those for CCS, in Section 3.3. There is, however, an additional ingredient in the 7-calculus, namely the
use of parameters in constant definitions and calls. Because of this, and because ~ is not preserved by
substitution of names, the uniqueness result must be proved w.r.t. the congruence ~¢, rather than the

bisimilarity ~. We omit the details.

6.3 Normalisation of replications

To express processes with an infinite behaviour, some presentations of the w-calculus use the replication
operator ! P in place of recursive definitions. Intuitively, ! P stands for a countable infinite number of
copies of P in parallel. It is easy to code replication up using recursive definitions'. And if the number
of recursive definitions is finite, then the other way round holds too [Mil91].

The transition rule for replication is

Pl'P 5 P
REP. —MmMm .
'p L p

In this and the following subsection, we exploit our proof techniques based on sound functions to
demonstrate some results about the replication operator. The main result of this subsection is new.
It says that, if we choose to have replication in the grammar of the w-calculus, then a simple form of
replication suffices, namely normalised replications of the form !a.P. All “free” replications ! P can be
coded up using normalised replications, up to the bisimilarity congruence ~¢ . The proof of this result is
obtained in three steps, the first of which uses our proof techniques, whereas the other two use a standard
structural induction. Subsection 6.4 considers certain distributivity properties of private replications, first
proved by Milner [Mil91].

Throughout this and the next subsection, we assume that the syntax of the m-calculus expressions
contains the replication operator ! P in place of recursive definitions. The definition of function C, and

the proof of its soundness (Proposition 5.2) remain unchanged if in the definition of C, we require that

. .. def
IThe recursive definition for ! P would be | P = P | 1 P; in Section 1 replication was presented in this way.

24

the hole of a context cannot occur underneath a replication; this will suffice in the examples below. It
is easy to extend this definition, and allow holes of contexts also underneath replications, by utilising

polyadic contexts.

Definition 6.1 We say that a replication ! P is normal if P is of the form a. Q. A process has normalised

replications if all replications it contains are normal.

Normalised replications can be given the simple transition rule

a.P 2 p

REP-NOR: m
'a.P — P'|'a.P

or, alternatively, the two rules
rReP-INP: !a(z). P b, P{bg}|'a(x).P RrEP-PRE: !a. P -%5 P|!a.P, if a is not an input

Remark 6.2 As an aside, we wish to point out that rule REP-NOR (as well as REP-INP and REP-PRE)
preserves the following pleasant property of m-calculus transition system in Table 2, and which we state
here very informally: If two inference proofs of transitions P —*+ P’ and P -“> P" consume the same
prefix(es) of P, then P’ and P" are syntactically the same (up to alpha conversion). This is a handy
property to have, for instance when examining the set of derivatives of a process, because it makes it
easier to reason by structural induction on processes. This property does not hold for rule rEp. For

instance, we can infer
1ab.Q % Q|labh.Q and 1@h.Q > @h.Q| Q| 'ah.Q;

in these transitions, the same prefix @b of !@b.Q is consumed, but the derivatives @ | !@b.Q and
ab. Q| Q| 'ab. Q are syntactically different.

Lemma 6.3
1. P[P ~° IP;
2. 1(P|Q) ~¢ IP|1Q;
3. 1(P+Q) ~ (P|Q).

PROOF: Assertion (1) is trivial: Due to the transition rule for replication, for each P, we have ! P £ P’
it P[P £, P'. Assertions (2) and (3) can be proved by exhibiting the appropriate progressions, both

of which are of the form R—~RC~. For (2), the relation to use is
def
Ry = [J{H(P1Q). 1P 1Q)),
P,Q
and for (3) it is

Rs [J{(P+Q), 1 (P|Q)}
P,Q

25

Relations R, and 7R3 are closed under substitutions, hence, by Corollary 5.3, they can be used to

C

prove ~¢ equalities.
We consider the proof of Ry —~(Rz)"~ in detail. We check that ! (P | @) can match the moves
by ! (P + @); the converse, on the actions by ! (P|Q), can be treated similarly. By transition induction,

we prove that if ! (P + Q) —= T}, then there is R s.t.
Ty ~R|!(P+Q) and,for some Ty, ! (P|Q) = Ty ~R|!(P|Q). (12)

This shows that (T7,75) € NRgc“ ~, and we are done. Note that we use function C, to cancel context
R|[]; according to the definition of C,, this is legitimate because R|[] is a non-guarded context (actually,
in the case of relation R3 we could cancel any context because Rz is closed under substitutions on names
— see Remark 5.1).

To infer ! (P + Q) % Ty, the last rule applied must have been of the form

(P+Q)|(P+Q) = Ty
!(P"f'Q)L)Tl .

Therefore, there are three cases to consider, depending on whether (P 4+ Q)| (P + Q) - T comes

from P + @ alone, from ! (P + @) alone, or from an interaction between P + @ and ! (P + Q). We only
look at the last case, assuming P is the summand of P + @ which is used, and that it performs an input

at a of the free name b. Thus we have, for some T} and P’ s.t. P <, pr.

P+Q % P H(P+Q) 2 T 13)
(P+Q)|'(P+Q) — Tv=P'|T]
By the inductive assumption, for some R’, we have
T ~R | (P+Q) (14)
and, for some Ty,
(P]Q) = T3~ R | [(P|Q). (15)
Therefore we can infer 3
PlQ = PlQ \(P|Q =T
PIQ(P+Q = PQ|1 16)
H(P|Q) — P'|QIT;
By (15),
PQIT;~P QIR | 1(P]Q). (17)

Moreover, from associativity and commutativity of parallel composition, and Lemma 6.3(1-2) we get

PIQIR|I(P|Q) ~ PR[Q|IP1Q (18)
~ P'\R'|!P|!Q
~ PIR[1(P|Q).

Now, define R <" P’ | R'. From (13) and (14), we have T} ~ R| ! (P + @), and, from (16-18), we have

'(P|Q) = ~R|!(P|Q). This proves (12). O

26

L1 va(P+@Q) ~° wvaP+va@

L2 valb=cP ~° [b=dvaP if a & {b,c}

L3 vala=bP ~¢ 0 ifa#bd

L4 vala=alP ~° wvaP

L5 vaa.P ~° a.vaP if a € n(a)

L6 vaa.P ~° 0 if @ is an input or an output at a
L7 [a=b(P+Q) ~° [a=0bP+[a=0Q

L8 la=bP ~° Ja=0]!P

L9 la.P ~° a.(P|'a.P) if bn(a) Nfn(a.P) =10

Table 3: Some simple laws for the w-calculus

In the proof of assertions (2) and (3) of Lemma 6.3, the possibility of cutting contexts off, achieved
through the closure under contexts, reduces the size of the relations to exhibit sensibly. Indeed, if we
fix the processes P and) to examine, and we content ourselves of proving bisimilarity rather then

congruence results, then relations Rs and R3 would only contain one pair of processes. For instance,
R3 would be

{(HP+Q),'(PQ))}-

Without the closure under contexts, the relations Ro and 7R3 in the proof of Lemma 6.3 would

consist of pairs of processes with at least a further component. For instance, R3 would become

def
Ry = (J AR 1(P+Q),R[(P|Q)}
P.Q.R
(R% progresses to ~R4~). Having R in place of R3 does not make the proof conceptually more difficult,

but it does make it more tedious.

Remark 6.4 Reasoning as above, one can prove the result ! P| ! P ~ ! P, mentioned in the introductory
Section 1, using the singleton relation R def {!P| ! P, ! P}, and showing that R »—~(R) ~ holds.

Table 3 contains a few simple 7w-calculus laws which will be used in Lemma 6.5. We shall also use
the expansion law, as formulated in [PS93], and which for easy of reference is reported in Table 4. We
P;. We use
M to range over (possible empty) match sequences; thus if M is [a = b][¢ = d], then M P is [a = b][¢ = d]P.

abbreviate the sum of processes P;, i € I, as)., P;, and their parallel composition as],

Lemma 6.5 For each process P there is a process Q of the form Y ., Mia;. P; s.t. P ~¢ Q. Moreover,

the mazximal number of nesting of replications in P and in @ is the same.

el

ProoOF: By induction on the structure of P. The transformations we shall impose do not modify the

nesting of replications. If P = «. P’, there is nothing to prove. If P = P; + P», use induction twice. If

27

Let P& > Mia;. Py and Q def Zj Njaj.Q; where no a; (resp. ;) binds a name free in @ (resp. P).

Then infer:

PlQ ~ > Mo (P|Q)+Y Njoy. (P|Q))+ > MN[z; =y,]r. Ri
i J

a; opp f;

where x; and y; are the subjects of ; and j3;, respectively, and «; opp 3; and R;; are defined as follows:
1. o; is Tu and f; is y;(v); then R;; is P; | Q;{%v};
2. «; is Ti(uw) and B is y;(v); then R;; is v w (Pi{Wu} | Q;{%/v}), where w is a fresh name;
3. The converse of (1);

4. the converse of (2).

Table 4: The expansion law for the m-calculus

P = [a = b]P’, use induction plus the law L7. If P = P, | P, use induction plus the expansion law. If
P = va P’ use induction plus the laws L1-L6 to push a restriction underneath a sum, a matching, and
a prefix, plus — possibly — the laws

[a=0b]0 ~° O

P+0 ~¢ 0
to garbage collect 0 processes. We are left with the case of replication, i.e. P = ! P’. By induction,

P ~¢ 3., Mja;. P}, and we can deduce:

P~ (X0, Mia;.P)
~ 1(I,e; Mja;. P)) (Lemma 6.3(3))
~ e ' Mja;. P (Lemma 6.3(2))
~¢ ey Mita;. P (law L8)
~¢ e, Myay. (P, 1P} (law L9).

Finally, [[,c, Mja;. (P; | I P]) can be rewritten into the form ., M;a;. P; by means of the expansion

law. O
Theorem 6.6 For every process P there is a process Q) with normalised replications s.t. P ~° Q.

PROOF: By induction on the maximal number of nested replications in P. If P does not have replications,
then there is nothing to prove. For the inductive case, we proceed by induction on the structure of P. The
only interesting case is when P = ! P’. By Lemma 6.5, P' ~¢ 7., M;a;. P{ and the two processes have
the same maximal number of nested replications. By the induction on the number of nested replications,
there are processes P!’ ~° P! with normalised replications. We can thus derive

1P~ (Y Miay. PY'),

el

28

and then, by Lemmas 6.3(2-3) and law L8,
~° ' (Hie[Miai.Pi”)

c ! . . "
~¢ Tlie; ! Mic;. P!

c I . "
~ Tlie, Mi'a,. P,

which is a process with normalised replications. |

6.4 Distributivity properties of private replications

In [Mil91], Milner shows certain distributivity properties for private replications w.r.t. parallel compo-
sition and replication. The importance of these properties has emerged in different situations, like the
correctness of the encodings of A-calculus and higher-order calculi into the w-calculus [Mil91, San92] and

in reasoning about data structures [Wal94].

The replication theorems: Assume that a occurs free in R, Py, Py, and a.P only as subject of output

prefives. Then:!
1. Va(!a(x).R\P|Q) ~¢ va(la(z).R|P)|lva(la(z).R|Q);
2. va(la(z).R|'a.P) ~° lva(la(z). R|a.P).

For the proof of these assertions, Milner [Mil91] uses relations R; and Rs, defined as below, and
proves that they progress to ~Ri~ and ~Rs~, respectively. We call N be the set of all processes which

contain name a free only as subject of output prefixes:

R, « U {(Vgua(!a(a:).R\P\Q).,Vg(ua(!a(x).R\P)|Va(!a(x).R\Q)))}
P,Q,ReEN

R, & U {(wbva(la@).R|1aP|Q).vi(lva(la(z).R|aP)|va(la(2).R|Q)))}
a.P,Q,REN

c

Since Ry and R, are closed under substitutions on names, they give us ~¢ equalities (Corollary 5.3);
and the assertions of the replication theorems follow for b=10 and Q=0.
The use of function C, (closure under contexts) allows us a few simplifications: In the proof of (1), it

allows us to eliminate the outermost vector of restrictions v b from R1, and take

Ry =) {(va(a@).RIP|Q)va(la@).R|P)|va(la(z).R|Q))}.

P,Q,Re N
In the proof of (2), the use of C, suggests a drastic simplification of R , by taking
def

Ry ¥) {(va(la@@).R|'a.P).'va(la(z).R|a.P))}.

a.P,Re N

ITo simplify the case analysis in the proof, in the assertion of the second replication theorem we have used a normalised
replication !a. P, in place of a “free” replication ! P as used by Milner [Mil91]. Some justification for this simplification

comes from Theorem 6.6.

29

To see that R progresses to ~ (R)C’“~, suppose (Q1,Q2) € RS, for
def
Q1 = va(la(z).R|!a.P),
def

Q> = 'wa(la(z).R|a.P).

We assume that a is an output at a, say a = ab; all other cases are similar. The only moves which Q)

and Q2 can do (up to unfolding of replications) are:

def
=@
def

:Q(z.

Q1 — va(R{Ys}|'a(z).R|P|'a.P)

T

Q2 — wva(R{%}]|a(z).R|P)|Q2

Now, let

Cva(la(x).R|R{Y:}|P)|]].

We have, by the first replication theorem and commutativity and associativity of parallel composition:

Q) ~ va(la(z).R|R{Y:s}|P|'a.P)
~ va(la(z).R|R{V} | P)|va(la(z).R| 'a.P) =

[62]7
Q) ~ va(la(x).R|R{tx}| P)|Q, ~

Clth
ClQ:]

This shows that (Q], Q%) € ~ (R})C"N, and concludes the proof.

7 Conclusions and further developments

In this paper, we have studied generalisations of the bisimulation proof method which allow us to reduce
the size of the relations to exhibit — and hence relieve the work needed — for establishing bisimilarity
results. We have relaxed the self-progression requirement in the definition of a bisimulation relation,
namely R>—R, and considered progressions of the form R>—F(R), where F is a function on relations.
The sound functions are those for which R>—F(R) implies that R only contains pairs of bisimilar pro-
cesses, for all R. We have given a condition on functions, called respectfulness, which ensures soundness.
We have showed that the class of respectful functions contains non-trivial functions and and that it enjoys
closure properties w.r.t. important function constructors: Thus, sophisticated sound functions (and hence
sophisticated proof techniques) can be derived from simpler ones.

The usefulness of our proof techniques has been supported by various non-trivial examples — drawn
from CCS and the m-calculus which include the proof of the unique solution of equations and the proofs
of a few properties of the replication operator. Among these, there is a novel result, which justifies the
adoption of the simple form of replication !a. P as the only form of replication in the w-calculus.

One of our most useful primitive proof techniques is an “up-to context” technique which allows us
to cancel a common context in the derivatives of two processes. We have shown that the associated
function is respectful if the contexts canceled are faithful, but that it loses respectfulness if the canceled
contexts are simply required to preserve bisimilarity — a property weaker than faithfulness. We have
also seen that if the transition rules for the operators of the language are in unary De Simone format,
then all contexts of the language are faithful. It remains to find out how far beyond faithfulness and the

De Simone format is possible to go while preserving respectfulness. Groote and Vaandrager’ tyft format

30

[GV92] but without lookaheads greater than one and Bloom, Istrail and Meyer’ GSOS format
[BIMS8S8] are examples of formats which would be interesting to examine. Lookaheads greater than one,
present in the tyft format, must be disallowed in the light of the counterexample in Section 2.1.3.

Most of the respectful functions F we have considered have the property that if a relation R progresses
to F(R), then F(R) is a bisimulation relation; that is, the bisimulation relation is found after one
application of the respectful function. However, the definition of respectfulness (Definition 2.5) allows
us greater freedom: In the proof of soundness for respectful functions (Theorem 2.11), the bisimulation
relation is constructed from a sequence of relations in which the respectful function is applied unboundedly
many times. This suggests another direction to investigate, namely the search of other useful respectful
functions and function constructors, to be added to those we found.

In this paper, we confined ourselves to strong bisimilarities, where all actions are treated equally. A
natural development of our work is to look at weak bisimilarities, where a special action, called silent
action, is distinguished from the others and partially ignored in the bisimilarity clause. Often a weak
bisimilarity is not preserved by dynamic operators, i.e., operators like CCS or w-calculus sum which can
be discharged when some action is performed. This introduces problems for the soundness of the up-
to-context technique similar to those we had to face in Section 5 with the w-calculus (where bisimilarity
is not a congruence) and which, therefore, might be dealt with in analogous way. In the weak case it
might also be less easy to establish results about combinations of proof techniques (i.e., to develop a
theory of sound or respectful function constructors). The reason is that the soundness of some basic
techniques for weak bisimilarities presents a few rather delicate points whose fragility might be enhanced
in combinations of techniques (see for instance the study of “weak bisimulations up-to weak bisimilarity”
in [SM92)]).

We believe that our proof techniques could be very advantageous in higher-order calculi like CHOCS
[Tho90], or Higher-Order w-calculus [San92], i.e calculi in which terms can be exchanged in a communi-
cation. For instance, a few rather involved proofs in [San92], dealing with the Higher-Order m-calculus,
should become simpler using some form of “bisimulation up-to context” (see Remark 6.6.18 in [San92]).
Our proof techniques should also be useful in higher-order functional languages, for instance to reason
about applicative bisimilarity of programs [Abr89].

The bisimulation proof method stems from the theory of fixed-points and the co-induction principle

[Mil89, MT91]. On a complete lattice (i.e., a partial order with all joins) the co-induction principle says:

Let (D, <) be a complete lattice, and G: D — D a monotone function with greatest fized-point
ug. To prove that x < pg it suffices to prove that x is a post-fized point of G, i.e, x < G(x).

When the bisimilarity relation ~ is interpreted as the greatest fixed-point of a certain continuous function
on relations [Mil89, Section 4.6], this translate into saying that to prove R C~ it suffices to prove that
R is a bisimulation relation. We would like to see whether our study of the bisimulation proof method
leads to interesting generalisation of the co-induction principle. A possible generalisation, suggested by
the definition of respectful functions and the proof of Theorem 2.11, uses an auxiliary function F as

follows:

31

Theorem 7.1 Let (D, <) be a complete lattice, and G : D — D a monotone function with greatest fived-
point ug. Suppose F : D — D and that, for all z,y € D, z <y and z < G(y) implies F(z) < F(y) and
F(z) < G(F(y)). Then to prove x < ug it suffices to prove v < G(F(z)). O

Theorem 2.11 is an instance of this theorem, and the proof is essentially the same. A more elegant but
weaker formulation of Theorem 7.1 could require that F is monotone and that F<G < G°F (i.e., for all
2, (F°G)(2) < (G=F)(2)). It is worth pointing out that if F is monotone, then the condition F°G < G°F
is the same as the condition “for all z,y € D, z < G(y) implies F(z) < F(G(y))”. In terms of respectful

functions for bisimilarity, this formulation would amount to having the same conditions of Remark 2.6.

Acknowledgements

The ideas in this paper were developed when I was visiting Jaco de Bakker and his group at CWI
(Amsterdam). I have benefited from discussions with people in CWI, especially Jan Rutten and Daniele
Turi. I would also like to thank Glenn Bruns, Martin Hofmann, Marcelo Fiore, Robin Milner, Andrew
Pitts, Peter Sewell, David N. Turner and David Walker, whose comments helped me to improve the
technical presentation. This research has been supported by the ESPRIT BRA project 6454 “CONFER”.

References

[Abr89] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics in Functional
Programming, pages 65—-116. Addison-Wesley, 1989.

[Abr91] S. Abramsky. A domain equation for bisimulation. Information and Computation, 92:161 218,
1991.

[Acz88] P. Aczel. Non-well-funded Sets. CSLI lecture notes; no. 14, 1988.

[BD92] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Tec. report SI-92/04,
Dipartimento di Scienze dell’Informazione, Universita degli studi di Roma ”"La Sapienza”,

1992. To appear in Information and Computation.

[BIM88] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t’ be traced: preliminary report.
In Conference Record of the 15th ACM Symposium on Principle of Programming Languages
(POPL), pages 229 239, 1988.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Computation, 60:109-137, 1984.

[BS94] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the 7-calculus. Tech-
nical Report ECS LFCS 94 297 LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1994. An
extract has appeared in Proc. STACS’95, LNCS 900, Springer Verlag.

[Cau90] D. Caucal. Graphes canoniques de graphes algébriques. Informatique Théorique et Applications
(RAIRO), 24(4):339 352, 1990.

32

[CHS92]

[DS85]

[Fio93]

[FMQ94]

[Gro90]

[GV92]

[HIMO5]

[HMS5]

[ING94]

[LL1]

[Milg9]

[Mil91]

[MPW92]

[MT91]

[Pit94]

S. Christensen, H. Hiittel, and C. Stirling. Bisimulation equivalence is decidable for all context-
free processes. In W.R. Cleveland, editor, Proceedings of CONCUR °92, volume 630 of Lecture
Notes in Computer Science, pages 138-147. Springer Verlag, 1992.

R. De Simone. Higher level synchronising devices in MEIJE-SCCS. Theoretical Computer
Science, 37:245-267, 1985.

M. Fiore. A coinduction principle for recursive data types based on bisimulation. In 8th LICS
Conf. IEEE Computer Society Press, 1993.

G. Ferrari, U. Montanari, and P. Quaglia. A m-calculus with explicit substitutions: the late
semantics. In I. Prfvara, B. Rovan, and P. Ruzicka, editors, Proc. MFCS’94, volume 841 of
Lecture Notes in Computer Science. Springer Verlag, 1994.

J.F. Groote. Transition system specifications with negative premises. In J.C.M. Baeten and
J.W. Klop, editors, Proc. CONCUR ’90, volume 458 of Lecture Notes in Computer Science,
pages 332 341, 1990.

J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as a

congruence. Information and Computation, 100:202-260, 1992.

Y Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm for deciding bisimulation

equivalence of normed context-free processes. Theoretical Computer Science, 1995. To appear.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of
the ACM, 32:137 161, 1985.

A. Joyal, M. Nielsen, and Winskel G. Bisimulation from open maps. Technical Report Report
RS-94-7, BRICS, 1994. An extract in Proc. LICS’95.

K.G. Larsen and X. Liu. Compositionality through an operational semantics of contexts. .J.
Logic Computat., 1(6):761-795, 1991.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. The polyadic w-calculus: a tutorial. Technical Report ECS-LFCS-91-180, LFCS,
Dept. of Comp. Sci., Edinburgh Univ., October 1991. Also in Logic and Algebra of Specification,
ed. F.L. Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag, 1993.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and II). Infor-
mation and Computation, 100:1 77, 1992.

R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Computer Science,
87:209-220, 1991.

A M. Pitts. A co-induction principle for recursively defined domains. Theoretical Computer
Science, 124:195-219, 1994.

33

[Plo81]

[PS93]

[RT94]

[San92]

[San95a]

[San95b]

[SM92]

[Tho90]

[Wal94]

G.D Plotkin. A structural approach to operational semantics. DAIMI-FN-19, Computer

Science Department, Aarhus University, 1981.

J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Technical Report
ECS-LFCS-93-262, LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1993. To appear in Infor-

mation and Computation.

J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency. In
Proc. Rex School/Symposium 19938 “A Decade of Concurrency — Reflexions and Perspectives”,
volume 803 of Lecture Notes in Computer Science. Springer Verlag, 1994.

D. Sangiorgi. Ezpressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis CST-99-93, Department of Computer Science, University of Edin-
burgh, 1992.

D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR-2515,
INRIA-Sophia Antipolis, 1995. available via anonymous ftp from cma.cma.fr as

pub/papers/davide/RR-2515.ps.Z.

D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile processes. Theo-
retical Computer Science, 1995. To appear. An extract appeared in Proc. TACS 94, Lecture
Notes in Computer Science 789, Springer Verlag.

D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In W.R. Cleveland,
editor, Proceedings of CONCUR 92, volume 630 of Lecture Notes in Computer Science, pages
32-46. Springer Verlag, 1992.

B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis, Department of
Computing, Imperial College, 1990.

D. Walker. Algebraic proofs of properties of objects. In Proc. CAAP/ESOP’9/, Lecture Notes
in Computer Science. Springer Verlag, 1994.

34

