
On the Bisimulation Proof Method�Davide SangiorgiINRIA Sophia Antipolis2004 Rue des Lucioles, B.P. 93,F-06902 Sophia Antipolis Cedex, France.Email: davide@cma.cma.fr.May 1994AbstractThe most popular method for establishing bisimilarities among processes is to exhibit bisimulationrelations. By de�nition, R is a bisimulation relation if R progresses to R itself, i.e., pairs of processesin R can match each other's actions and their derivatives are again in R.We study generalisations of the method aimed at reducing the size of the relations to exhibitand hence relieving the proof work needed to establish bisimilarity results. We allow a relation Rto progress to a di�erent relation F(R), where F is a function on relations. Functions which can besafely used in this way (i.e., such that if R progresses to F(R), then R only includes pairs of bisimilarprocesses) are sound. We give a simple condition which ensures soundness. We show that the class ofsound functions contains non-trivial functions and we study the closure properties of the class w.r.t.various important function constructors, like composition, union and iteration. These propertiesallow us to construct sophisticated sound functions | and hence sophisticated proof techniques forbisimilarity | from simpler ones.The usefulness of our proof techniques is supported by various non-trivial examples drawn from theprocess algebras CCS and �-calculus. They include the proof of the unique solution of equations andthe proof of a few properties of the replication operator. Among these, there is a novel result whichjusti�es the adoption of a simple form of pre�x-guarded replication as the only form of replication inthe �-calculus.
�A summary is to appear in the proceedings of MFCS`95, LNCS.1

1 IntroductionBisimilarity has emerged among the most stable and mathematically natural concepts formulated inconcurrency theory over the past decades. It is widely accepted as the �nest (extensional) behaviouralequivalence one would want to impose. Its robustness and elegance are evidenced by various charac-terisations, in terms of non-well founded sets, domain theory, modal logic, �nal coalgebras, open maps[Acz88, Abr91, HM85, RT94, JNG94]. Bisimilarity has also been advocated outside concurrency theory;for instance, co-induction principles based on bisimilarity have been proposed to reason about equalitybetween elements of recursively de�ned domains and data types [Fio93, Pit94].We �rst consider bisimilarity on standard labelled transition systems: Their transitions are of theform P ��! Q, where P and Q are called processes, and label � is drawn from some alphabet of actions.In such systems, bisimilarity, abbreviated �, is de�ned as the largest symmetric relation R on processess.t. if (P;Q) 2 R and P ��! P 0, then there is Q0 s.t. Q ��! Q0 and (P 0; Q0) 2 R . (�)(� can also be viewed as the greatest �xed-point of a certain monotone function on relations, whosede�nition closely follows clause (�).) A relation R which satis�es clause (�), without necessarily beingthe largest such relation, is called a bisimulation relation. By de�nition of �, a bisimulation relationis contained in �, and hence it consists of only pairs of bisimilar processes. This immediately suggestsa proof method for � | by far the most popular one: To demonstrate that (P;Q) 2 � holds, �nd abisimulation relation containing the pair (P;Q).Note that in clause (�), the same relation R is mentioned in the hypothesis and in the thesis. Inother words, when we check the bisimilarity clause on a pair (P;Q), all needed pairs of derivatives, like(P 0; Q0), must be present inR. We cannot discard any such pair of derivatives fromR, even \manipulate"its process components. In this way, a bisimulation relation often contains many pairs strongly relatedwith each other, in the sense that, at least, the bisimilarity between the processes in some of these pairsimplies that between the processes in other pairs. (For instance, in a process algebra a bisimulationrelation might contain pairs of processes obtainable from other pairs through application of algebraiclaws for �, or obtainable as combinations of other pairs and of the operators of the language.) Theseredundancies can make both the de�nition and the veri�cation of a bisimulation relation annoyinglyheavy and tedious: It is di�cult at the beginning to guess all pairs which are needed; and clause (�) mustbe checked on all pairs introduced.As an example, let P be a non-deadlocked process from a CCS-like language, and !P the processde�ned thus: !P def= P j !P . Process !P represents the replication of P , i.e., a countable number ofcopies of P in parallel. (In certain process algebras, e.g., the �-calculus, replication is the only form ofrecursion allowed, since it gives enough expressive power and enjoys interesting algebraic properties |see Section 6.) A property that we naturally expect to hold is that duplication of replication has nobehavioural e�ect, i.e, !P j !P � !P . To prove this, we would like to use the singleton relationR def= f(!P j !P ; !P)g :But R is easily seen not to be a bisimulation relation. If we add pairs of processes to R so to make it2

into a bisimulation relation, then we might �nd that the simplest solution is to take the in�nite relationR0 def= f(Q1; Q2) : for some R, Q1 � R j !P j !P and Q2 � R j !Pg :The size augmentation in passing from R to R0 is rather discouraging. But it does seems somehowunnecessary, for the bisimilarity between the two processes in R already implies that between theprocesses of all pairs of R0 .The study reported in this paper aims at relieving the work involved with the bisimulation proofmethod. We anticipate that on the previous example our proof techniques allow us to prove the property!P j !P � !P simply using the singleton R . We generalise the bisimulation proof method by relaxing thebare recursion in (�). First, we introduce the notion of progression: A symmetric relation R progressesto a relation S , abbreviated R�S, if:(P;Q) 2 R and P ��! P 0 imply that there is Q0 s.t. Q ��! Q0 and (P 0; Q0) 2 S.(Therefore, a relation R is a bisimulation relation i� R�R holds.) We examine progressions of theform R�F(R), where F is a function from relations to relations. We are interested in functions Fwhich are sound w.r.t. �, i.e. s.t. R�F(R) implies R � �. Questions we shall ask ourselves are: Whichconditions ensure soundness of functions? Which interesting functions are sound? Which interestingproperties are satis�ed by the class of sound functions?We show that a simple functorial-like condition, called respectfulness, guarantees the soundness of afunction F on relations. This condition requires that if R � S and R�S hold, then F(R) � F(S) andF(R)�F(S) must hold too. A very useful property about the class of respectful functions is that itis closed under important function constructors like composition, union and iteration. Consequently, itsu�ces to de�ne a few primitive respectful functions: More complex functions can then be derived viacombinations of the primitive ones, and the soundness of the former follows from that of the latter.Among our primitive functions there will be the identity function and the constant-to-� function,which maps every relation onto �. Another primitive function worth mentioning is a function C whichgives us the closure of a relation R under contexts; i.e., R�C(R) holds if (P;Q) 2 R and P ��! P 0imply that there are processes P 00; Q00 and a context C s.t.P 0 = C[P 00], Q ��! C[Q00] and (P 00; Q00) 2 R . (��)Function C yields an \up-to context" technique by which a common context in the derivatives of twoprocesses can be cancelled. We show that, in the case in which the transition relation among processesis de�ned structurally on the operators of the language, certain conditions on the form of the transitionrules ensure the respectfulness of C. These conditions are met in familiar process algebras like ACP[BK84] and CCS [Mil89].Examples of respectful functions easily derivable from our primitive ones are: The function whichreturns the transitive closure of a relation; the function which returns the closure of a relation underpolyadic contexts (i.e., contexts which might have more than one hole); the function mapping a relationR onto �R�, where �R� is the composition of the three relations (this function gives us Milner's3

bisimulation up-to � technique [Mil89]; in our setting, it is recovered as a combination of the identityand constant-to-� functions). Again, more sophisticated functions | and hence proof techniques for �| can in turn be derived from these ones; some of them will be described (and used) in later sections.A large part of the paper is devoted to applications of our proof techniques. For this, we havechosen CCS and the �-calculus. CCS is perhaps the most studied process algebra. The �-calculus is aprocess algebra which originates from CCS and permits a natural modelling of systems with dynamicrecon�guration of their communication topology. We show that our techniques yield simpler proofsof some standard theorems of CCS and �-calculus. Examples are the unique solution of equationsand the distributivity properties of private replications. We also apply our techniques to derive a newnormalisation result for the �-calculus, asserting that every replication !P can be rewritten in terms ofnormal replications !�:P , where � is a pre�x of the language. Normal replications are easier to dealwith. For instance, they enjoy simpler algebraic laws and are easier to implement.Further applications of the techniques can be found in the proof of the main results in [San95b, BS94],namely the full abstraction of certain semantics of true-concurrent behavioural equivalences in the �-calculus, and in [San95a], namely the characterisation of the equivalence induced on lambda-terms byMilner's encoding of the (lazy) lambda-calculus into the �-calculus.Our interest for the �-calculus is motivated, besides by its relevance as a process algebra, by certainpeculiarities of its transition system, which deviates from a standard system, like the one for CCS, insome important aspects: Firstly, the �-calculus is a special case of a value-passing calculus, and hencethe labels of its transitions may have more than one component. Secondly, �-calculus transition rulesutilise alpha conversion and substitution on names (\name" is a synonymous for \channel"). Thesefeatures have to be taken into account in the de�nition of bisimilarity and, among other things, mayseparate bisimilarity and its induced congruence. The separation a�ects, for instance, the de�nition ofthe function C (closure under contexts): For the use of clause (��) it is fundamental that bisimilarity bea congruence, since then, intuitively, P 00 bisimilar with Q00 implies C[P 00] bisimilar with C[Q00]. If this isnot the case, then appropriate constraints have to be added in (��), on the form of context C, or on therelationship between processes P 00 and Q00. The peculiarities of �-calculus transition system also suggestother primitive respectful functions. One is a function which allows us to apply injective substitutions onnames to the derivatives of two processes. This function yields a form of \up-to injective substitution"technique which is very handy when dealing with universally-quanti�ed substitutions on names | whichare common in the �-calculus.Related work: Some of the proof techniques described in the paper, or special cases of them, have alreadyappeared in the literature. But we should stress that there has never been a systematic study of thetopic. For instance, we feel that we lacked the capability of combining simpler proof techniques into morepowerful ones, which is made possible by the theory developed in this paper.We already mentioned Milner's bisimulation up-to � technique [Mil89], in which the closure of abisimulation relation is achieved up to bisimilarity itself. The portability of this technique onto weakbisimilarities (where a special action, called silent action, is distinguished from the others and partiallyignored in the bisimilarity clause) has been studied by Milner and Sangiorgi [SM92].Two special cases of the up-to-context technique had been previously put forward: In [Cau90], Caucal4

de�nes a notion of self-bisimulation in the setting of BPA processes (they can be viewed as the processesgenerated by a context-free grammar) which allows him to eliminate common pre�xes and su�xes in thederivatives of two processes. Self-bisimulations have been used in [Cau90], as well as in a number of otherpapers (e.g., [CHS92, HJM95]), to establish decidability results for the classes of BPA and BPA processes(roughly, the latter di�er from the former in that the composition operator is commutative). Anotherform of up-to-context technique is Milner, Parrow and Walker' bisimulation up-to restriction [MPW92],with which common outermost restrictions in the derivatives of two processes can be discarded.Finally, the up-to injective substitution technique for the �-calculus is also considered, or mentioned,by Boreale and De Nicola [BD92], and Milner, Parrow and Walker [MPW92].Structure of the paper: In Section 2 we develop the theory of progressions, sound functions and respectfulfunctions. In Section 3 we present the process algebra CCS, and apply our proof techniques based onrespectful functions to it. In Section 4 we present the syntax and the operational semantics of the �-calculus. In Section 5 we examine how to transport the theory of sound and respectful functions onto thenon-standard transition system of the �-calculus; we also introduce a new primitive respectful function,which allows us to work up to injective substitution on names. In Section 6 we apply the theory of theprevious section to reason about bisimilarity among �-calculus processes. Finally, in Section 7 we reportsome conclusions and possible directions for future work.2 Progressions and respectful functionsThe results in this section hold for any transition system (Pr;Act;�!) with domain Pr, set of actions(or labels) Act and transition relation �! � Pr �Act�Pr. We use P;Q and R to range over Pr andcall them processes; � and � range over Act. We write P ��! Q when (P; �;Q) 2�!, to be interpretedas \P may become Q by performing an action �".We let R and S range over binary relations on processes, i.e., if } denotes the powerset construct,then R and S are elements of }(Pr�Pr). The union of relationsR and S is R[S, and their compositionis RS(i.e., (P; P 0) 2 RS holds if for some P 00, both (P; P 00) 2 R and (P 00; P 0) 2 S hold). We often usethe in�x notation for relations; hence P R Q means (P;Q) 2 R . We use letters I and J for countableindexing sets in unions and sums.De�nition 2.1 (progression) Given two relations R and S, we say that R progresses to S, writtenR�S, if P R Q implies:1. whenever P ��! P 0, there is Q0 s.t. Q ��! Q0 and P 0 S Q0;2. the converse, i.e., whenever Q ��! Q0, there is P 0 s.t. P ��! P 0 and P 0 S Q0.When R and S coincide, the above clauses are the ordinary ones of the de�nition of a bisimulationrelation.De�nition 2.2 R is bisimulation relation if R progresses to itself, i.e. R�R holds.5

De�nition 2.3 Two processes P and Q are bisimilar, written P � Q, if P RQ holds, for some bisimu-lation relation R.Therefore, if R progresses to itself, then R is made of pairs of bisimilar processes. This is the basisof the standard method for proving the bisimilarity between two processes: Find a relation R whichprogresses to itself and which includes the pair of given processes.However, self-progressions R�R are special cases of progressions, but not the only ones by whichprocess bisimilarities can be inferred. In the paper, we look for general conditions on progressions whichguarantee this property. As we shall see, the
exibility so gained will allow us to work with relationsoften much smaller than those needed to exhibit self-progressions.We shall consider progressions of the formR�F(R) where F is a function on relations, i.e. a functionfrom }(Pr � Pr) to }(Pr � Pr). We call these �rst-order functions, brie
y functions. Below, F and Grange over such functions.De�nition 2.4 (soundness) A function F is sound if, for any R, R�F(R) implies R � �.Not all functions are sound. An example is the function which maps every relation to the universalrelation Pr�Pr. We wish to determine a class of sound functions for which membership is easy to check,which includes interesting functions and satis�es interesting properties. We propose the class of respectfulfunctions.De�nition 2.5 (respectfulness) A function F is respectful if whenever R � S and R�S holds, thenF(R) � F(S) and F(R)�F(S) also holds.Remark 2.6 If we replaced the respectfulness requirement by two separate ones, namely(a) R � S implies F(R) � F(S), and(b) R�S implies F(R)�F(S),then we would get a stronger de�nition (i.e, a stronger condition on F) which would not capture importantsound functions, like the function C for the closure under contexts (Section 2.1).Remark 2.7 Bisimilarity can also be presented as the greatest �xed-point of a certain monotone functionon relations [Mil89, Section 4.6], for which the bisimulation relations represent the post-�xed points.Progressions and respectful functions can then be de�ned in terms of this �xed-point machinery. Wepreferred the more operational de�nitions 2.1 and 2.5 because they are simpler to use | for the samereason why it is easier to establish that a relation is a bisimulation relation from De�nition 2.2 rather thanas a post-�xed point. See the concluding section for more comments on �xed-points and co-induction.We show that any respectful function is sound. First, we need two lemmas.Lemma 2.8 Let R def= Si2I Ri and suppose for all i 2 I there is j 2 I s.t. Ri�Rj holds. Then R is abisimulation relation. �6

Lemma 2.91. If, for some i 2 I, S�Ri, then also S�(Si2I Ri);2. if, for all i 2 I, Ri�S, then also (Si2I Ri)�S. �Corollary 2.10 If for all i 2 I there is j 2 J s.t. Ri�Sj holds, then also (Si2I Ri)�(Sj2J Sj). �Theorem 2.11 (soundness of respectful functions) If F is respectful, then F is sound.Proof: We have to show that if F is respectful and R�F(R) holds, then R � �. Consider thefollowing inductively-de�ned sequence of relations fRn : n � 0g:R0 def= R ;Rn+1 def= F(Rn) [Rn :Fact: For all n � 0, it holds that1. Rn � Rn+1;2. Rn�Rn+1.Proof of the fact: (1) is by de�nition of Rn+1. For (2), we proceed by induction on n. Ifn = 0, thenR�F(R)[R follows from the hypothesisR�F(R) and Lemma 2.9(1). Supposen > 0. By de�nition of Rn and Rn+1, we have to show that(F(Rn�1) [Rn�1)�(F(Rn) [Rn) : (1)Since Rn�1 � Rn and, by induction, Rn�1�Rn, from the respecfulness of F we infer thatF(Rn�1)�F(Rn). By Corollary 2.10, this and Rn�1�Rn prove (1).We can now conclude the proof of the theorem. Since for all n, Rn�Rn+1, by Lemma 2.8, SnRn is abisimulation relation and hence is contained in �. This is enough because R is contained in SnRn. �Remark 2.12 The proof of Theorem 2.11 carries over also with a weaker de�nition of respectfulness,namely\whenever R � S and R�S hold, then F(R)�F(S) holds too".However, in this way we would lose some important properties of the class of respectful functions, forinstance their closure under composition (Lemma 2.14).Theorem 2.11 shows that a respectful �rst-order function yields a sound proof technique for bisimi-larity. We can push further and look for ways of combining respectful functions in which respectfulnessis preserved.We call a function which takes �rst-order functions as arguments and yields back another �rst-orderfunction as a result, a second-order function or, brie
y, a constructor. A constructor is respectful ifwhenever its �rst-order function arguments are respectful, then also the �rst-order function result is7

respectful. This hierarchy of functions could be continued, by de�ning respectful third-order functions,respectful fourth-order functions and so on... . We stop at second order because it will be enough for ourpurposes.We shall present a few primitive functions and constructors, and prove that they are respectful. Theyare rather simple, but give rise to interesting compounds, whose respectfulness | and hence soundness| comes then for free.Two simple primitive respectful functions are the following:I(R) def= RU(R) def= �I is the identity function. U is the constant-to-� function, mapping every relation onto the bisimilarityrelation. Later we shall introduce two further primitive respectful functions. Roughly, one is a functionwhich returns the closure of a relation under contexts (Section 2.1); the other is a function which allowsus to manipulate a relation using injective substitutions on names (this will be introduced when dealingwith the �-calculus, in Section 5).The primitive constructors we consider are composition (�), union ([) and chaining (_), so de�ned:(G�F)(R) def= G(F(R))(Si2I Fi)(R) def= Si2I(Fi(R))(G_F)(R) def= G(R) F(R) = f(P; P 0) : for some P 00, (P; P 00) 2 G(R) and (P 00; P 0) 2 F(R) g(Note that, formally, for arity reasons, there is a di�erent union operator for all n 2 f0; 1; : : : ; !g.) Beforeproving the respectfulness of these primitive functions and constructors, let us see what we can derivefrom combinations of them. Examples of derived functions are:for n > 0; Dn def= I_ : : :_I ; n timesB def= U_I_UT def= Sn>0DnFunction Dn takes a functionR and makes the composition ofR with itself n times. Function B representsthe classical bisimulation up-to �, as in Milner's book [Mil89] (where the proof of the soundness of B isby checking that R � B(R) and that B(R) is a bisimulation relation). Function T returns the transitiveclosure of a relation. The plain de�nitions of these functions are:Dn(R) def= f(P; P 0) : for some P1; : : : ; Pn+1 with P = P1 and Pn+1 = P 0,it holds that PiRPi+1 for all 1 � i � ngB(R) def= � R �T (R) def= f(P; P 0) : for some n > 0 and processes P1; � � � ; Pn+1 with P = P1 and P 0 = Pn+1it holds that Pi R Pi+1 for all 1 � i � ngExamples of derived constructors are exponentiation and iteration, de�ned using composition and unionas follows: Fn(R) def= F((: : : (F(R)) : : :)) ; n timesF�(R) def= SnFn(R)8

We now come to the proof of the respectfulness of the primitive functions and constructors aboveintroduced.Lemma 2.13 (identity and constant-to-� functions) The identity function I and the constant-to-� function U are respectful. �Lemma 2.14 (composition) Composition is a respectful constructor.Proof: We have to show that if F and G are respectful, then also G�F is respectful. If R � S andR�S then, by respectfulness of F , also F(R) � F(S) and F(R)�F(S). From this, by respectfulnessof G, we derive G(F(R)) � G(F(S)) and G(F(R))�G(F(S)), which means (G�F)(R) � (G�F)(S) and(G�F)(R)�(G�F)(S). �Lemma 2.15 (union) Union is a respectful constructor.Proof: We have to show that if, for all i 2 I , Fi is respectful, then also Si2I Fi is respectful. SupposeR � S and R�S. For all i 2 I , Fi is respectful, hence Fi(R) � Fi(S) and Fi(R)�Fi(S) hold.From the former, we derive Si2I Fi(R) � Si2I Fi(S), and from the latter plus Corollary 2.10, we getSi2I Fi(R)�Si2I Fi(S); that is, (Si2I Fi)(R) � (Si2I Fi)(S) and (Si2I Fi)(R)�(Si2I Fi)(S). �Lemma 2.16 (chaining) Chaining is a respectful constructor.Proof: Suppose F and G are respectful. We check that also G_F is respectful. Suppose R � S andR�S. Then F(R) � F(S) and G(R) � G(S), which gives (G_F)(R) � (G_F)(S). We also have tocheck that (G_F)(R)�(G_F)(S). Take (P; P 0) 2 (G_F)(R) with P ��! P1. If (P; P 0) 2 (G_F)(R),then there is P 00 s.t. (P; P 00) 2 G(R) and (P 00; P 0) 2 F(S); moreover, since by respectfulness of G and Fit holds that G(R)�G(S) and F(R)�F(S), for some P 001 and P 01 the following diagram commutes:P G(R) P 00 F(R) P 0� # � # � #P1 G(S) P 001 F(S) P 01This shows that (P1; P 01) 2 (G_F)(S). In a symmetric way, one can show that if P 0 ��! P 01, then thereis P1 s.t. P ��! P1 and (P1; P 01) 2 (G_F)(S). We conclude that (G_F)(R)�(G_F)(S). �We saw that functions B, Dn and T , and constructorsFn and F� are de�nable in terms of the primitivefunctions I and U , and of the primitive constructors composition, chaining and union. Therefore, as aconsequence of Lemmas 2.13{2.16, these derived functions and constructors are respectful.2.1 Closure of a relation under contextsWe now consider the case | standard in process algebras | in which the class of processes is de�ned asthe term algebra generated by some signature.We work with one-sorted signatures �. We call the (possibly in�nite) set of symbols in � the operatorsof the language. Each operator has a �xed arity n � 0. If the arity of the operator is 0, we call it aconstant operator, if it is n > 0 we call it a functional operator. The term algebra over signature �,written Pr�, is the least set of strings which satisfy :9

� if f is an operator in � with arity 0, then f is in Pr�;� if f is an operator in � with arity n > 0, and t1; : : : ; tn are already in Pr�, then f(t1; : : : ; tn) is inPr�.Thus, having a signature �, the process language is Pr� and a process is an element of Pr�.We shall also be interested in extensions of a signature � with constant operators. If X is a set ofsymbols not in �, then �(X) is the signature which has all operators in � as before, and in addition eachsymbol in X is an operator in �(X) with arity 0. We write Pr�(X) for the term algebra over �(X).2.1.1 Closure under faithful contextsLet � be a signature and [�] a symbol not in �, called hole. A �-context is an element of Pr�([�]) withat most one occurrence of the hole [�] in it. We use C to range over �-contexts. If C is a �-context andP 2 Pr�, then C[P] 2 Pr� is the process obtained from C by �lling the hole [�] with P . We utilisecontexts to de�ne a function C� on process relations which makes the closure of a relation R under acertain class of contexts. Function C� will be one of our most useful primitive respectful functions.C�(R) def= [C faithfulf(C[P]; C[Q]) : (P;Q) 2 Rg : (2)Before saying what a faithful context is, note that in the de�nition of C� the contexts used may haveat most one occurrence of a unique hole [�]. More sophisticated closures, involving contexts which maycontain di�erent holes, and each of them an arbitrary number of times, can be recovered as a combinationof function C� and other respectful functions of the previous section (see Lemma 3.2). Chosing a simplefunction C� makes the proof of its soundness simple too.De�nition 2.17 A set Cont of �-contexts is a faithful context-set if for all C 2 Cont and P 2 Pr�whenever C[P] ��! R, there exist C 0 2 Cont s.t. either(a) R = C 0[P] and, for all Q, it holds that C[Q] ��! C 0[Q], or(b) there are P 0 2 Pr� and � 2 Act s.t. P ��! P 0 and R = C 0[P 0] and, moreover, for all Q;Q0 2 Pr�s.t. Q ��! Q0, it holds that C[Q] ��! C 0[Q0].A �-context C is faithful if C 2 Cont, for some faithful context-set Cont.Remark 2.18 The use of De�nition 2.17 is facilitated if clauses (a) and (b) are merged. Thus, if P b��! Qmeans \P = Q or P ��! Q", then (a) and (b) can be rewritten as follows:� there are P 0 2 Pr� and b� s.t. P b��! P 0 and R = C 0[P 0] and, moreover, for all Q;Q0 2 Pr� s.t.Q b��! Q0 it holds that C[Q] ��! C 0[Q0].The class of faithful contexts is usually very large. In familiar process algebras, such as ACP and CCS,all contexts are faithful (we shall prove this for CCS in Section 3.2). Indeed, faithful contexts correspondto Larsen and Liu's 1-to-1 contexts [LL91](1-to-1 meaning that these contexts have exactly one hole andthat they produce one action at a time). 10

Lemma 2.19 (closure under contexts) The function C is respectful.Proof: Suppose R � S and R�S. Clearly, also C(R) � C(S). Thus, we only have to proveC(R)�C(S). For this, we have to show that if P R Q holds, C is a faithful context and C[P] ��! P 00,then there are P 0; Q0 and a faithful context C 0 s.t. P 00 = C 0[P 0], Q ��! C 0[Q0] and P 0SQ0. By de�nitionof faithfulness, if C[P] ��! P 00, then for some process P 0, faithful context C 0 and (possibly empty) actionb�, we have P b��! P 0 and P 00 = C 0[P 0]. Since R�S and R � S, for some Q0 the diagramP R Qb� # b� #P 0 S Q0commutes. (Note that the hypothesis R � S is needed for the case in which b� is empty, when P 0 = Pand Q0 = Q). Again by de�nition of faithfulness, we have C[Q] ��! C 0[Q0]. This proves that the diagramC[P] C(R) C[Q]� # � #C 0[P 0] C(S) C 0[Q0]commutes, and concludes the proof. �2.1.2 The De Simone format for the transition rulesThe transition relation for the processes of the language generated by a signature � can be de�nedstructurally [Plo81], assigning a set of transition rules to each symbol in �. In some cases, it su�ces tolook at the format of such transition rules to know that the contexts of the language are faithful. Weshow that this is indeed the case for the rules in unary De Simone format over �, which we will oftenjust call De Simone format. It is a simpli�ed version of the format introduced by De Simone [DS85] (themain restriction is that only one action at a time is observable). In rule (3) below, Xr, 1 � r � n, andYj , j 2 J , are metavariables which are instantiated with processes when the rule is applied.De�nition 2.20 (unary De Simone format) A transition ruleXj �j�! Yj (j 2 J)f(X1; : : : ; Xn) ��! t (3)is in unary De Simone format over � if� n is the arity of f in �;� J � f1; : : : ; ng;� Xr, 1 � r � n, and Yj , j 2 J , are distinct variables;� t is a term in Pr�(X 01; : : : ; X 0n), where for all 1 � r � n, each X 0r occurs at most once in t, andX 0r = Yr if r 2 J , X 0r = Xr otherwise. 11

We show that all contexts of a language whose functional operators have transition rules in De Simoneformat are faithful. Actually, we shall be a little more general, and �rst consider the case in which onlya subset of the functional operators have transition rules in De Simone format; in this case we can provethe faithfulness of only a subset of the contexts.De�nition 2.21 ((�;�0)-contexts) Take signatures � and �0 with �0 � �. Suppose the meaning ofeach symbol in �0 is given using a set of transition rules in unary De Simone format over �0. Then wesay that a �-context C is a (�;�0)-context if1. C 2 Pr� (i.e., C is a process), or2. C = [�], or3. C = f(P1; : : : ; Pi�1; C 0; Pi+1; : : : ; Pn), where� f 2 �0,� n is the arity of f ,� 1 � i � n,� Pr 2 Pr� for r 2 f1; : : : ; ng � fig,� C 0 is a (�;�0)-context.The above inductive de�nition �rst asserts that all functional operators in �0 have transition rules inunary De Simone format over �0 (i.e., de�nable within �0); then a �-context C is a (�;�0)-context if allfunctional symbols above the hole of C are in �0.Proposition 2.22 For any � and �0, all (�;�0)-contexts are faithful.Proof: We show that the class of (�;�0)-contexts is a faithful context-set. We consider a context C insuch a class and verify the requirement in De�nition 2.17 proceeding by induction on the structure of C.The basic case, when C 2 Pr� or � = [�], is trivial.In the inductive case, we have C = f(R1; : : : ; Ri�1; C 0; Ri+1; : : : ; Rn), for f 2 �0 and C[P] =f(R1; : : : ; Ri�1; C 0[P]; Ri+1; : : : ; Rn). The last step of the derivation of C[P] ��! R uses a rule inunary De Simone format, like (3). Supposing i is in the set J named in (3) (the case where it is not issimpler), we can write this last step thus:Rj �j�! Tj (j 2 J � fig); C 0[P] �0�! R0f(R1; : : : ; Ri�1; C 0[P]; Ri+1; : : : ; Rn) ��! R = C 00[R0] (4)Context C 00 is a (�;�0)-context: Since f 2 �0, by de�nition of (�;�0)-context, each transition rule for fis in De Simone format over �0; hence all functional operators above the hole of C 00 are in �0.By induction, from C 0[P] �0�! R0 we infer that there is b�, P 0 and a (�;�0)-context D0 s.t.P b��! P 0 and R0 = D0[P 0] (5)12

and moreover, for all Q;Q0 2 Pr� with Q b��! Q0, alsoC 0[Q] �0�! D0[Q0] :From (4) and (5), we get that R = C 00[D0[P 0]] = D[P 0], for some (�;�0)-context D. Moreover, from (4),but with C 0[Q] �0�! D0[Q0] in place of C 0[P] �0�! R0, we inferf(R1; : : : ; Ri�1; C 0[Q]; Ri+1; : : : ; Rn) ��! C 00[D0[Q0]] = D[Q0] :Summarising, we have found that if C[P] ��! R, then there are P 0, b� and a (�;�0)-context D s.t.P b��! P 0, R = D[P 0] and for all Q;Q0 2 Pr� with Q b��! Q0, also C[Q] ��! D[Q0]. This concludes theproof. �Corollary 2.23 Consider the process language over a signature � in which the meaning of all functionalsymbols in � is given using a set of rules in unary De Simone format over �. Then all �-contexts arefaithful.Proof: With the hypothesis in the corollary, the (�;�0)-contexts are precisely the �-contexts. Thenthe result follows from Proposition 2.22. �Corollary 2.23 applies to well-know process algebras like CCS (see Lemma 3.1) and ACP. The DeSimone format excludes, for instance, operators which, in order to release some action, may require therelease of a sequence of actions | as opposed to one action | from some of their arguments (i.e., usingthe terminology in [GV92], these operators have lookahead greater than one), or operators de�ned withrules with negative premises, where the requirement on some of the arguments is that they cannot performcertain actions [BIM88, Gro90]. Also, the format does not capture value-passing process algebras, whereactions have more structure | they can also carry values. A special case of value-passing process algebra,namely the �-calculus, which supports communication of names, will be examined in Sections 4-6.In the remainder of the paper, to simplify the notation we omit the indication of the signature. Weassume that there is a given signature �, and that all contexts and processes, as well as quanti�cationover them, are, or refer to, contexts and processes in �. Thus, we shall call a �-context simply a context,and we shall abbreviate function C� in (2) as C. Also, we shall abbreviate C(R) as RC and T (R) asRT (that is, RC is the closure of R under faithful contexts and RT is the transitive closure of R). Inapplications of our proof techniques, we shall often employ the sound function � (�C)T�, which maps arelation R onto the relation � (RC)T�.2.1.3 Beyond faithfulnessFunction C yields the closure w.r.t. the faithful contexts. One migth reasonably think that the keyproperty which makes C respectful is that faithful contexts preserve bisimilarity, and therefore wonderwhether C could be strengthened to allow the closure under all contexts which preserve bisimilarity. Letus call C? this variant of C. We show in this subsection that C? is not respectful.Consider the simple process languageP := f(P) j a: P j 013

where a:� is a CCS-like pre�x, 0 is the inactive process and f is an operator whose behaviour is givenby the rule X a�! X 0 X 0 a�! X 00f(X) a�! X 00Since the transition rules of the operators are in tyft format, all contexts of the language preserve bisim-ilarity [GV92]. Note in particular that the transition rule for f uses a lookahead greater than one. Suchlookaheads are allowed in the tyft format but are not in the De Simone format. We can show that, onthis language, C? is not respectful. Take R def= f(a:0; a: a:0)gProcesses a:0 and a: a:0 are not bisimilar. But the diagrama:0 a: a:0#a #a0 � f(a:0) C?(R) f(a: a:0) � a:0shows that R� �C?(R)� holds: Hence C? is not respectful for, otherwise, also function �(C?(�))�would be so and we should have R � �.The counterexample above still does not show that C? itself is not sound. However, it does show thateven if C? were sound its interest would be rather limited because it could not be combined with verysimple functions like the constant-to-� function.3 CCS: Operational semantics and proof techniquesWe �rst give a brief synopsis of the section. We review the syntax and the operational semantics ofCCS. A quick inspection at the transition rules of the CCS operators shows that all proof techniques forbisimilarity introduced in the previous section can be applied to CCS processes. We use the techniques toderive a proof, simpler that the one in [Mil89], of a standard result of the calculus, namely the uniquenessof solutions of equations.3.1 The calculusWe assume an in�nite set Names = fa; b; : : : ; x; y; : : :g of names and a set of constant identi�ers Constantsranged over by A. The special symbol � does not occur in Names and in Constants. The class of the CCSprocesses is built from the operators of input pre�x, output pre�x, silent pre�x, parallel composition,sum, restriction, inaction, and constants:P := �: P j P1 j P2 j P1 + P2 j � aP j 0 j A� := a j a j � :Following �-calculus syntax (Section 4), we use � for restriction (� aP is normally written P na in CCS),and we omit the relabeling operator (which, anyhow, would not bring complications into the theory weshall present). Moreover, for notational convenience, we limit ourselves to �nite restrictions and �nite14

pre: �: P ��! P sum: P ��! P 0P +Q ��! P 0par: P ��! P 0P jQ ��! P 0 jQ com: P a�! P 0 Q a�! Q0P jQ ��! P 0 jQ0res: P ��! P 0� aP ��! � aP 0 � 6= a; a const: P ��! P 0A ��! P 0 if A def= PTable 1: The transition system for CCSsums. It is supposed that for each constant A there is a de�ning equation of the form A def= P . We refer to[Mil89] for details on the operators of the calculus. Sometimes, we use def= as an abbreviation mechanism,to assign a name to expressions or relations to which we want to refer later. In this section, P , Q, andR are CCS processes, and Pr is the class of all CCS processes.The transition system describing the operational semantics of CCS process is shown in Table 1. Ina transition P ��! Q, the label � can be an input a, an output a, or a silent move � . We use � torange over pre�xes and � over actions. We distinguish between pre�xes and actions for analogy with the�-calculus, in which the alphabets for pre�xes and actions are di�erent.3.2 Our proof techniques in CCSThe operational semantics of CCS uses a standard labelled transition system. Hence, to apply to CCSthe whole theory of proof techniques for bisimilarity developed in Section 2, we only have to understandwhich contexts are faithful; these are needed in the de�nition of function C (closure under contexts).Lemma 3.1 All CCS contexts are faithful.Proof: The CCS language can be described with the signature � def= fa: ; a: ; �: ; j ;� ; + ; A : a 2Names; and A 2 Constantsg whose symbols have the obvious meaning and the obvious arities. Allfunctional operators in �, namely fa: ; a: ; �: ; j ;� ; + g are de�ned by transition rules in De Simoneformat. By Corollary 2.23, all CCS contexts are faithful. �Therefore, the de�nition of function C in CCS becomes:C(R) def= [C f(C[P]; C[Q]) : (P;Q) 2 Rg :Lemmas 3.1, 2.19 and Theorem 2.11 ensure the soundness of C.3.3 An application: The proof of the uniqueness of solutions of equationsAn interesting example of application of our proof techniques to CCS is the proof of uniqueness ofsolutions of equations, as from Milner's book [Mil89]. This result says that if a context C obeys certainconditions, then all processes P which satisfy the equation P � C[P] are bisimilar with each other.15

We use a tilde to denote a �nite (and possibly empty) tuple. All notations we introduce are generalisedto tuples componentwise; thus, eP R eQ means that Pi R Qi, for each component of vectors eP and eQ. Fornotational convenience, in this section we work with polyadic contexts, i.e., contexts which may containan arbitrary number of di�erent holes [�]1; : : : ; [�]n, and, moreover, each of these holes may appear morethan once. If C contains at most holes [�]1; : : : ; [�]n, then we say that C is an n-ary context; moreover, ifeP is a vector of n processes, then C[eP] is the process obtained by replacing each occurrence of the hole[�]i with the i-th component of eP .In Sections 2 and 3.2 we only considered the closure of a relation under monadic contexts, i.e. contextscontaining at most one hole; this closure was given by function C. We can recover the closure of a relationunder polyadic contexts as the transitive closure of the closure under the monadic ones.Lemma 3.2 If (Pi; Qi) 2 R , i � i � n, and C is an n-ary context, then(C[P1; : : : ; Pn]; C[Q1; : : : ; Qn]) 2 (RC)T .Proof: Let eP def= P1; : : : ; Pn and eQ def= Q1; : : : ; Qn. We have to show that C[eP] and C[eQ] are in thetransitive closure of RC . We proceed by induction on the structure of C. All cases are simple; we onlylook at parallel composition. Suppose C = C1 j C2. By induction,(C1[eP]; C1[eQ]) 2 (RC)T and (C2[eP]; C2[eQ]) 2 (RC)T :Hence also(C1[eP] j C2[eP]; C1[eQ] j C2[eP]) 2 (RC)T and (C1[eQ] j C2[eP]; C1[eQ] j C2[eQ]) 2 (RC)T :Since (RC)T is transitive, we infer (C1[eP] j C2[eP]; C1[eQ] j C2[eQ]) 2 (RC)T . �We say that a context C is weakly guarded if each occurrence of each hole of C is within somesubexpression of the form �:C 0. For instance, �:[�] is weakly guarded, but [�] j �:[�] is not.Lemma 3.3 (Lemma 4.13 in [Mil89]) If C is weakly guarded and C[eP] ��! P 0, then P 0 is of theform C 0[eP], and moreover, for any eQ, C[eQ] ��! C 0[eQ].Proof: Simple induction on the structure of C. Intuitively, since C is weakly guarded, the processeswhich �ll the holes of C do not contribute to the �rst action produced. �We write eC for a tuple of contexts C1; : : : ; Cn; then eC[eP] is C1[eP]; : : : ; Cn[eP].Proposition 3.4 (unique solution of equations, Proposition 4.14(2) in [Mil89]) Suppose eC areweakly guarded contexts, with eP � eC[eP] and eQ � eC [eQ]. Then eP � eQ.Proof: Let n be the length of vectors eC , eP and eQ, and takeR def= f(Pi; Qi) : 1 � i � ng ;and suppose Pi ��! P 0i (the case of a move from Qi is symmetric). From Lemma 3.3 we deduce thatthere are C 0i and Q0i s.t. the following two diagrams commute:16

Pi � Ci[eP]� # � #P 0i � C 0i[eP] Ci[eQ] � Qi� # � #C 0i[eQ] � Q0iBy Lemma 3.2, this shows that R��(RC)T� holds. Since function �(�C)T� is sound, we infer R � �,which proves the proposition. �In the proof of Proposition 3.4, the cardinality of the relation R is the same as the cardinality of thevector of given contexts eC. In particular, if we are dealing with only one context (i.e., only one equation),then R consists of one only pair. For the proof of Proposition 3.4, Milner [Mil89] shows thatR0 def= [C f(C[eP]; C[eQ])gis a bisimulation up-to � (i.e., R0��R0� holds), proceeding on induction on the structure of C. Notethat in R0 the contexts in the union are all contexts | including the unguarded ones.4 The �-calculusThe �-calculus is an extension of CCS where names are exchanged as a result of a communication. Thisallows us to model systems with dynamic linkage recon�guration and confers a remarkable expressivenessto the calculus as testi�ed, for instance, by various works on the encoding of �-calculus, of higher-order calculi, of object-oriented languages and of non-interleaving behavioural equivalences [Mil91, San92,San95b, BS94, Wal94].We brie
y review the syntax and the operational semantics of the �-calculus. We refer to [MPW92,Mil91] for more details. We maintain the notations introduced for CCS, which will not be repeated. W.r.t.CCS, �-calculus grammar di�ers in the pre�xes, which now present an object part, and in the treatmentof constants, which are now parametrised on a tuple of names. In addition, �-calculus grammar usuallyincorporates a matching construct to test for equality between names. There are two forms of outputpre�x: The free output ab: P and the bound output a(b): P ; the latter is an abbreviation for � b ab: P .We admit bound output in the syntax of the calculus because of their important role in the operationalsemantic and in the algebraic theory.P := �: P j P1 j P2 j P1 + P2 j � aP j 0 j Ahebi j [a = b]P� := a(b) j ab j a(b) j � :De�ning equations take the form A def= (ec)P , which can be thought as a procedure with formal parameters~c; then Ahebi is like a procedure call with actual parameters eb. In the pre�xes a(b), ab and a(b) we call athe subject. The operators a(b):P , a(b): P , � b P and (eb)P bind all free occurrences of the names b and ebin P . We denote by fn(P) the set of free names of P . For notational simplicity, we impose that a processonly has a �nite number of free names and that in a constant de�nition A def= (ec)P , vector ec contains allfree names of P . We suppose that it is always possible to alpha-convert bound names of an expression to\fresh" ones. We shall identify processes which only di�er on the choice of the bound names. The symbol17

inp: a(c): P ab�! Pfb=cg pre: �: P ��! P ; if � is not an inputsum: P ��! P 0P +Q ��! P 0 par: P ��! P 0P jQ ��! P 0 jQ if bn(�) \ fn(Q) = ;com: P ab�! P 0 Q ab�! Q0P jQ ��! P 0 jQ0 close: P ab�! P 0 Q a(b)�! Q0P jQ ��! � b (P 0 jQ0) if b 62 fn(P)res: P ��! P 0� aP ��! � aP 0 a 62 n(�) open: P ab�! P 0� b P a(b)�! P 0 a 6= bconst: Pfeb=ecg ��! P 0Ahebi ��! P 0 if A def= (ec)P match: P ��! P 0[a = a]P ��! P 0Table 2: The transition system for the �-calculus= will mean \syntactic identity modulo alpha conversion". We denote by Pr� the class of all �-calculusprocesses.A substitution is a function from names to names. We use the standard notation for substitutions,e.g. fx=yg is the function which sends y to x and is identity on all names but y. We use �; � etc. to rangeover substitutions, and write P� for the agent obtained from P by replacing all free occurrences of anyname x by �(x), with change of bound names if necessary to avoid captures. Similarly, �� (or ��) is theresult of applying � to the pre�x � (or action �), and does not a�ect a bound name in � (or �), if any.Substitutions have precedence over the operators of the language. Also, �� is the composition of the twosubstitutions, in which � is applied �rst; therefore P�� is (P�)�.The operational semantics of the calculus is de�ned by the transition rules of Table 2. The silentaction P ��! Q has the same meaning as in CCS. An input action takes the form P ab�! Q andmeans \P receives name b at a and evolves to Q". Note that label ab does not have brackets around b,as in an input pre�x a(b): This is to evidence that in the input pre�x name b is a binder (waiting tobe instantiated), whereas in an input action b represents a value (with which an input binder has beeninstantiated). An output action can be either of the form P ab�! Q or P a(b)�! Q; the latter means \Psends the private (i.e., \fresh") name b at a". Bound outputs are the central argument of transition rulesopen and close, the most original rules of the �-calculus w.r.t CCS. All names in an action are free,except if the action is a bound output, say a(b), in which case a is free but b is bound. Bound and freenames of an action �, respectively written bn(�) and fn(�), are de�ned accordingly. The names of �,brie
y n(�), are bn(�) [fn(�). We work up to alpha conversion on processes also in transition systems,for which alpha convertible agents are deemed to have the same transitions.The reader familiar with the �-calculus would have noticed that we are using an early transitionsystem [San92] | since the bound names of an input are instantiated as soon as possible, in the inputrule | as opposed to a late transition system [MPW92, Mil91] | where the instantiation is done later,in the communication rule. The adoption of an early transition system naturally leads to the adoption18

of an early bisimilarity, so christened in the literature to distinguish it from other formulations like thelate and the open [FMQ94]. Our \early" choice is not critical for the results we shall present, althoughsome de�nitions (like that of function C� in Section 5), depend upon this choice.With the given early transition system, the de�nition of progression between relations on �-calculusprocesses only di�ers from the standard one (De�nition 2.1) because a side condition is added to ensurethe \freshness" of bound names of actions, as follows:De�nition 4.1 A progression R�S, between two relations R and S on �-calculus processes, holds iffor all P R Q� whenever P ��! P 0 with bn(�) \ fn(Q) = ; , there is Q0 s.t. Q ��! Q0 and P 0 S Q0,and the symmetric clause, on the actions by Q.The de�nitions of a bisimulation relation and of bisimilarity are as those for CCS-like languages, inSection 2. However, in contrast with CCS, in �-calculus bisimilarity is not a full congruence, since notpreserved by input pre�x. This failure arises because � is not preserved by name instantiation. Forinstance, [a = b]ac:0 � 0, but ([a = b]ac:0)fa=bg 6� 0fa=bg, since ([a = b]ac:0)fa=bg = [a = a]ac:0 is not adeadlocked process. In consequence, we also have d(a): [a = b]ac:0 6� d(a):0. We therefore also considerthe congruence �c induced by � [MPW92].De�nition 4.2 (congruence induced by �) We set P �c Q, pronounced \P and Q are congruent",if P� � Q�, for all substitutions �.5 Proof techniques for the �-calculusW.r.t CCS, in the �-calculus actions are more structured | there is also an object part | and thede�nitions of transition rules and progression involve alpha conversion and substitution on names. Thesedi�erences require straightforward modi�cations to the theory of sound and respectful functions presentedin Section 2. The only exception is the de�nition of function C (closure under contexts) and the proof ofits respectfulness. The De�nition 2.17 of faithful contexts | on which the de�nition of C is based | islimitative in the �-calculus, because it does not capture all contexts. For instance, C def= a(x): [�] is notfaithful: If P def= x(y):0, then C[P] ab�! Pfb=xg, but there is no b� s.t. P b��! Pfb=xg. The problem hasto do with substitutions, which play an important role in the �-calculus and cannot be ignored. Besidessubstitutions, in the �-calculus a closure under contexts should arguably take into account the di�erencebetween bisimilarity and induced congruence. Intuitively, if we have to prove C[P] � C[Q], then it isnot sound, in general, to cut the common context C and prove P � Q, for P � Q might not implyC[P] � C[Q]. One solution to this is to require that the hole occurs in C in a special position, so toguarantee that C preserves the bisimilarity between P and Q; another solution is to prove that P and Qare congruent, rather than bisimilar.We therefore revisit the de�nition of function C and the proof of its respectfulness for the �-calculus.We call the new function C�. We recall that a context C is guarded if the possible occurrence of the hole19

[�] is within a subexpression of C of the form �:C 0; otherwise C is non-guarded. We set:C�(R) def= SC non-guarded f(C[P]; C[Q]) : (P;Q) 2 Rg SSC guarded f(C[P]; C[Q]) : (P�;Q�) 2 R; for all substitutions �gRemark 5.1 Note that if R is closed under substitutions, then C�(R) simply become[C f(C[P]; C[Q]) : (P;Q) 2 Rg :Proposition 5.2 Function C� is respectful.Proof: Suppose that R � S and R�S. Then, clearly, C�(R) � C�(S). We also have to check thatC�(R)�C�(S) holds. For this, given (C[P]; C[Q]) 2 C�(R) with C[P] ��! R, we show that there areC 0; P 0 and Q0 s.t. R = C 0[P 0]; C[Q] ��! C 0[Q0] and (C 0[P 0]; C 0[Q0]) 2 C�(S) : (6)We proceed by induction on the structure of C.Case 1 C = [�].Then C[P] = P , C[Q] = Q and (6) follows from the hypothesis R�S.Case 2 C = a(x): C 0.Then C[P] = a(x): C 0[P], C[Q] = a(x): C 0[Q], � = ab, for some b, and R = C 0[P]fb=xg = C 00[Pfb=xg],for C 00 = C 0fb=xg. Moreover, it holds that C[Q] ab�! C 00[Qfb=xg]. Since C is guarded, from thede�nition of C� we deduce that (Pfb=xg�;Qfb=xg�) 2 R, for all �. This and the hypothesis R � Sdemonstrate (C 00[Pfb=xg]; C 00[Qfb=xg]) 2 C�(S).Case 3 C = C1 j T , or C = T j C1.We look at the case C = C1 j T . There are three possibilities to consider, according to whether theaction C[P] ��! R comes from C1[P] alone, from T alone, or from an interaction between C1[P]and T . We only consider the �rst, since the remaining two are similar. So, supposeC1[P] ��! R0 and R = R0 j T : (7)By de�nition of C�, (C1[P] j T;C1[Q] j T) 2 C�(R) implies(C1[P]; C1[Q]) 2 C�(R) : (8)From (8) and (7), by induction, there are C 01, P 0 and Q0 s.t.R0 = C 01[P 0]; C1[Q] ��! C 01[Q0] and (C 01[P 0]; C 01[Q0]) 2 C�(S) :Moreover, using rule par, we have C1[Q] j T ��! C 01[Q0] j T : (9)20

Finally, since (C 01[P 0]; C 01[Q0]) 2 C�(S) and the addition of a parallel component does not changethe guardness of a context, we get(C 01[P 0] j T;C 01[Q0] j T) 2 C�(S) : (10)If C 0 def= C1 j T , then R = C 01[P 0] j T , (9) and (10) prove (6).Case 4 C = ab: C 0, or C = �: C 0 or C = C1 + T , or C = T + C1, or C = � aC 0, or C = Ahebi, orC = [a = b]C 0.These cases are easy. �A useful fact, which derives from the de�nition (4.2) of the congruence �c , is the following:Corollary 5.3 Suppose that R�F(R) holds, for some sound function F , and suppose that for twogiven processes P and Q, and for all substitutions �, it holds that (P�;Q�) 2 R . Then P �c Q. �A special case of this corollary occurs when the relation R itself is closed under substitutions, inwhich case P �c Q holds for all pairs (P;Q) in R .5.1 Closure of relation under injective substitutions on namesA substitution � on names is injective on a set V of names if for all a; b 2 V , it holds that �(a) = �(b)implies a = b. A substitution � is injective if it is injective on the set of all names.A primitive respectful function, very useful in the �-calculus, is one which allows us to work up toinjective substitutions on names. It is called Sub and is so de�ned:Sub(R) def= f(P�;Q�) : (P;Q) 2 R and � is injective on fn(P;Q)g :We show that Sub is respectful. We �rst need a lemma:Lemma 5.4 Let � be a substitution injective on a �nite set V of names with fn(P) � V . Then there isan injective substitution � with �(a) = �(a) for all a 2 V , s.t.:1. If P ��! P 0, then P� ���! P 0�;2. If P� �0�! P 00, then there are P 0 and � with P ��! P 0 and �� = �0, P 0� = P 00.Proof: We �rst de�ne the function �. Let W , W� and V � be the following sets of names:W def= f�(a) : a 2 V gW� def= W � V = fa : a 2W and a 62 V gV � def= V �W = fa : a 2 V and a 62WgSince � is injective on V , sets V and W have the same �nite cardinality; hence also sets V � and W�have the same �nite cardinality. Take an ordering of names in V � and W�, sayW� = fa1; : : : ; ang ;V � = fb1; : : : ; bng :21

The substitution � is so speci�ed:�(a) def= 8>><>>: �(a) if a 2 Vbi if a = ai 2W�a otherwise, i.e. a 62 (V [W�)Function � is injective: First, notice that names in V are mapped onto distinct names of W , and thatnames in W� are mapped onto distinct names in V �. Hence �, restricted to V [W , is an injectivefunction from this set onto itself. Since names not in V [W are mapped onto themselves, � is injectiveon all names. Indeed, � is a bijection on names, and hence we can consider its inverse ��1.Now we prove clause (1) of the lemma by transition induction. The proof of clause (2) is similar and isomitted. Below, by alpha conversion we can assume that if x 2 bn(P), then x 62 V [W ; hence �(x) = x,and also �(y) 6= x, for all y 6= x.Case 1 P = a(x): Q, � = ab, P 0 = Qfb=xg.If �(a) = a0 and �(b) = b0, then we have P� = a0(x): Q� and P� a0b0�! Q�fb0=xg = Qfb=xg� = P 0�.Case 2 P = ab:Q, or P = a(b): Q, or P = �:Q, or P = Q1 +Q2, or P = � aQ, or P = [a = b]Q.Easy.Case 3 P = Q1 jQ2.We only consider the case of rule par, when Q1 performs the action:Q1 jQ2 ��! Q01 jQ2 ; for some Q01 s.t. Q1 ��! Q01 :By induction, Q1� ���! Q01�, hence(Q1 jQ2)� = Q1� jQ2� ���! Q01� jQ2� = (Q01 jQ2)� :Case 4 P = Ahebi, for A def= (ec)Q.The last inference rule applied is Qfeb=ecg ��! P 0Ahebi ��! P 0 :By induction, Qfeb=ecg� ���! P 0�. Since fn(Q) � ec, we have Qfeb=ecg� = Qf�(eb)=ecg (where � is de�nedon tuples componentwise), and therefore we can infer, using rule const:Ahebi� = Ah�(eb)i ���! P 0� : �Proposition 5.5 Function Sub is respectful.
22

Proof: We have to show that if R � S and R�S, then Sub(R) � Sub(S) and Sub(R)�Sub(S). Theformer is straightforward, so we only look at the latter.Take (P�;Q�) 2 Sub(R), for some (P;Q) 2 R and � injective on fn(P;Q). Suppose P� �0�! P 00. Wehave to �nd Q00 s.t. Q� �0�! Q00 and (P 00; Q00) 2 Sub(S) : (11)Let � be the injective function which Lemma 5.4 associates to � and the set of names fn(P)[fn(Q); thusP� = P� and Q� = Q�. By Lemma 5.4(2), there are � and P 0 s.t. P ��! P 0, �0 = �� and P 00 = P 0�.Since R�S, the diagram P R Q� # � #P 0 S Q0commutes, for some Q0. By Lemma 5.4(1), Q� ���! Q0�. Hence the diagramP� Sub(R) Q��� # �� #P 0� Sub(S) Q0�commutes too. For Q00 def= Q0�, since P 0� = P 00, Q� = Q� and �� = �0, this proves (11). �Having proved that Sub is respectful, we know that it is a sound function and, moreover, we cansafely combine it with other respectful functions, according to the modalities indicated in Section 2.6 Applications of the proof techniques in the �-calculus6.1 Use of the closure under injective substitutions on namesThe closure under injective substitutions on names (i.e., function Sub of Section 5.1) is useful for casesin which universal quanti�cations on substitutions are involved. For instance, such quanti�cations arepresent | implicitly | in the clause of progression for inputs and bound outputs (De�nition 4.1), and| explicitly | in the de�nition of function C�.As a simple example of application of function Sub, consider the processesP def= a(x):� b (xb j bx)Q def= a(x):� b xb: bxand suppose we want to prove P � Q. If we were to look for a bisimulation relation containing P and Qas a pair, then at least we would need:R def= f(P;Q); (0 j 0;0)g SSc2Names f(� d (cd j dc);� d cd: dc) : d 6= cg SSc2Names Sd2Names f(0 j dc; dc) : d 6= cgNote that R contains three unions which range over the in�nite set of names. These unions are neededbecause, for all names d and c with d 6= c, processes P and Q can perform an input action labelled ac23

and then a bound output action labelled c(d). Exploiting function Sub we can prove P � Q by simplytaking R0 def= f(P;Q); (� b (xb j bx); xb: bx); (0 j bx; bx); (0 j 0;0)gwhere b and x are any pair of distinct names. R0 only contains four pairs of processes. It is easy to checkthat R0�Sub(R0) holds, hence f(P;Q)g � R0 ��.We can do better than R0 using a combination of function Sub and simple respectful functions forgarbage collecting processes 0 from parallel compositions, and for discarding pairs of syntactically equalderivatives (it is easy to de�ne respectful functions which do this). In this way, P � Q can be proved byexhibiting a relation made of only two pairs of processes, namely (P;Q) and (� b (xb j bx); xb: bx).6.2 Unique solutions of equationsAs showed for CCS, so in the �-calculus the function �(�C�)T� can be used to get a simpler proof ofthe uniqueness of solutions of equations. Both the assertion and the proof of the result are similar tothose for CCS, in Section 3.3. There is, however, an additional ingredient in the �-calculus, namely theuse of parameters in constant de�nitions and calls. Because of this, and because � is not preserved bysubstitution of names, the uniqueness result must be proved w.r.t. the congruence �c , rather than thebisimilarity �. We omit the details.6.3 Normalisation of replicationsTo express processes with an in�nite behaviour, some presentations of the �-calculus use the replicationoperator !P in place of recursive de�nitions. Intuitively, !P stands for a countable in�nite number ofcopies of P in parallel. It is easy to code replication up using recursive de�nitions1. And if the numberof recursive de�nitions is �nite, then the other way round holds too [Mil91].The transition rule for replication is rep: P j !P ��! P 0!P ��! P 0 .In this and the following subsection, we exploit our proof techniques based on sound functions todemonstrate some results about the replication operator. The main result of this subsection is new.It says that, if we choose to have replication in the grammar of the �-calculus, then a simple form ofreplication su�ces, namely normalised replications of the form !�:P . All \free" replications !P can becoded up using normalised replications, up to the bisimilarity congruence �c . The proof of this result isobtained in three steps, the �rst of which uses our proof techniques, whereas the other two use a standardstructural induction. Subsection 6.4 considers certain distributivity properties of private replications, �rstproved by Milner [Mil91].Throughout this and the next subsection, we assume that the syntax of the �-calculus expressionscontains the replication operator !P in place of recursive de�nitions. The de�nition of function C� andthe proof of its soundness (Proposition 5.2) remain unchanged if in the de�nition of C� we require that1The recursive de�nition for !P would be !P def= P j !P ; in Section 1 replication was presented in this way.24

the hole of a context cannot occur underneath a replication; this will su�ce in the examples below. Itis easy to extend this de�nition, and allow holes of contexts also underneath replications, by utilisingpolyadic contexts.De�nition 6.1 We say that a replication !P is normal if P is of the form �:Q. A process has normalisedreplications if all replications it contains are normal.Normalised replications can be given the simple transition rulerep-nor: �:P ��! P 0!�:P ��! P 0 j !�: Por, alternatively, the two rulesrep-inp: ! a(x): P ab�! Pfb=xg j ! a(x): P rep-pre: !�: P ��! P j !�: P ; if � is not an inputRemark 6.2 As an aside, we wish to point out that rule rep-nor (as well as rep-inp and rep-pre)preserves the following pleasant property of �-calculus transition system in Table 2, and which we statehere very informally: If two inference proofs of transitions P ��! P 0 and P ��! P 00 consume the samepre�x(es) of P , then P 0 and P 00 are syntactically the same (up to alpha conversion). This is a handyproperty to have, for instance when examining the set of derivatives of a process, because it makes iteasier to reason by structural induction on processes. This property does not hold for rule rep. Forinstance, we can infer! ab:Q ab�! Q j ! ab:Q and ! ab:Q ab�! ab:Q jQ j ! ab:Q ;in these transitions, the same pre�x ab of ! ab:Q is consumed, but the derivatives Q j ! ab:Q andab:Q jQ j ! ab:Q are syntactically di�erent.Lemma 6.31. P j !P �c !P ;2. ! (P jQ) �c !P j !Q;3. ! (P +Q) �c ! (P jQ).Proof: Assertion (1) is trivial: Due to the transition rule for replication, for each P , we have !P ��! P 0i� P j !P ��! P 0. Assertions (2) and (3) can be proved by exhibiting the appropriate progressions, bothof which are of the form R��RC��. For (2), the relation to use isR2 def= [P;Qf(! (P jQ); !P j !Q)g;and for (3) it is R3 def= [P;Qf(! (P +Q); ! (P jQ))g25

Relations R2 and R3 are closed under substitutions, hence, by Corollary 5.3, they can be used toprove �c equalities.We consider the proof of R3��(R3)C�� in detail. We check that ! (P jQ) can match the movesby ! (P +Q); the converse, on the actions by ! (P jQ), can be treated similarly. By transition induction,we prove that if ! (P +Q) ��! T1, then there is R s.t.T1 � R j ! (P +Q) and, for some T2, ! (P jQ) ��! T2 � R j ! (P jQ) : (12)This shows that (T1; T2) 2 �R3C� �, and we are done. Note that we use function C� to cancel contextR j [�]; according to the de�nition of C�, this is legitimate because R j [�] is a non-guarded context (actually,in the case of relation R3 we could cancel any context because R3 is closed under substitutions on names| see Remark 5.1).To infer ! (P +Q) ��! T1, the last rule applied must have been of the form(P +Q) j ! (P +Q) ��! T1! (P +Q) ��! T1 :Therefore, there are three cases to consider, depending on whether (P + Q) j ! (P + Q) ��! T1 comesfrom P +Q alone, from ! (P +Q) alone, or from an interaction between P +Q and ! (P +Q). We onlylook at the last case, assuming P is the summand of P +Q which is used, and that it performs an inputat a of the free name b. Thus we have, for some T 01 and P 0 s.t. P ab�! P 0:P +Q ab�! P 0 ! (P +Q) ab�! T 01(P +Q) j ! (P +Q) ��! T1 = P 0 j T 01 : (13)By the inductive assumption, for some R0, we haveT 01 � R0 j ! (P +Q) (14)and, for some T 02, ! (P jQ) ab�! T 02 � R0 j ! (P jQ) : (15)Therefore we can infer P jQ ab�! P 0 jQ ! (P jQ) ab�! T 02(P jQ) j ! (P +Q) ��! P 0 jQ j T 02! (P jQ) ��! P 0 jQ j T 02 : (16)By (15), P 0 jQ j T 02 � P 0 jQ j R0 j ! (P jQ) : (17)Moreover, from associativity and commutativity of parallel composition, and Lemma 6.3(1-2) we getP 0 jQ jR0 j ! (P jQ) � P 0 j R0 jQ j !P j !Q (18)� P 0 j R0 j !P j !Q� P 0 j R0 j ! (P jQ) :Now, de�ne R def= P 0 j R0. From (13) and (14), we have T1 � R j ! (P + Q), and, from (16-18), we have! (P jQ) ��!� R j ! (P jQ). This proves (12). �26

L1 � a (P +Q) �c � aP + � aQL2 � a [b = c]P �c [b = c]� aP if a 62 fb; cgL3 � a [a = b]P �c 0 if a 6= bL4 � a [a = a]P �c � aPL5 � a�: P �c �:� aP if a 62 n(�)L6 � a�: P �c 0 if � is an input or an output at aL7 [a = b](P +Q) �c [a = b]P + [a = b]QL8 ! [a = b]P �c [a = b] !PL9 !�: P �c �: (P j !�: P) if bn(�) \ fn(�:P) = ;Table 3: Some simple laws for the �-calculusIn the proof of assertions (2) and (3) of Lemma 6.3, the possibility of cutting contexts o�, achievedthrough the closure under contexts, reduces the size of the relations to exhibit sensibly. Indeed, if we�x the processes P and Q to examine, and we content ourselves of proving bisimilarity | rather thencongruence | results, then relations R2 and R3 would only contain one pair of processes. For instance,R3 would be f(! (P +Q); ! (P jQ))g :Without the closure under contexts, the relations R2 and R3 in the proof of Lemma 6.3 wouldconsist of pairs of processes with at least a further component. For instance, R3 would becomeR03 def= [P;Q;Rf(R j ! (P +Q); R j ! (P jQ))g(R03 progresses to �R03�). Having R03 in place of R3 does not make the proof conceptually more di�cult,but it does make it more tedious.Remark 6.4 Reasoning as above, one can prove the result !P j !P � !P , mentioned in the introductorySection 1, using the singleton relation R def= f !P j !P; !Pg, and showing that R��(R)C�� holds.Table 3 contains a few simple �-calculus laws which will be used in Lemma 6.5. We shall also usethe expansion law, as formulated in [PS93], and which for easy of reference is reported in Table 4. Weabbreviate the sum of processes Pi, i 2 I , asPi2I Pi, and their parallel composition as Qi2I Pi. We useM to range over (possible empty) match sequences; thus ifM is [a = b][c = d], thenMP is [a = b][c = d]P .Lemma 6.5 For each process P there is a process Q of the form Pi2I Mi�i: Pi s.t. P �c Q. Moreover,the maximal number of nesting of replications in P and in Q is the same.Proof: By induction on the structure of P . The transformations we shall impose do not modify thenesting of replications. If P = �: P 0, there is nothing to prove. If P = P1 + P2, use induction twice. If27

Let P def= PiMi�i: Pi and Q def= Pj Nj�j : Qj where no �i (resp. �i) binds a name free in Q (resp. P).Then infer: P jQ �c Xi Mi�i: (Pi jQ) +Xj Nj�j : (P jQj) + X�i opp �j MiNj [xi = yj]�: Rijwhere xi and yj are the subjects of �i and �j , respectively, and �i opp �j and Rij are de�ned as follows:1. �i is xiu and �j is yj(v); then Rij is Pi jQjfu=vg;2. �i is xi(u) and �j is yj(v); then Rij is � w (Pifw=ug jQjfw=vg), where w is a fresh name;3. The converse of (1);4. the converse of (2). Table 4: The expansion law for the �-calculusP = [a = b]P 0, use induction plus the law L7. If P = P1 j P2, use induction plus the expansion law. IfP = � aP 0 use induction plus the laws L1-L6 to push a restriction underneath a sum, a matching, anda pre�x, plus | possibly | the laws [a = b]0 �c 0P + 0 �c 0to garbage collect 0 processes. We are left with the case of replication, i.e. P = !P 0. By induction,P 0 �c Pj2J Mj�j : P 0j , and we can deduce:!P �c ! (Pj2J Mj�j : P 0j)�c ! (Qj2J Mj�j : P 0j) (Lemma 6.3(3))�c Qj2J !Mj�j : P 0j (Lemma 6.3(2))�c Qj2J Mj !�j : P 0j (law L8)�c Qj2J Mj�j : (Pj j !P 0j) (law L9).Finally, Qj2J Mj�j : (Pj j !P 0j) can be rewritten into the form Pi2I Mi�i: Pi by means of the expansionlaw. �Theorem 6.6 For every process P there is a process Q with normalised replications s.t. P �c Q.Proof: By induction on the maximal number of nested replications in P . If P does not have replications,then there is nothing to prove. For the inductive case, we proceed by induction on the structure of P . Theonly interesting case is when P = !P 0. By Lemma 6.5, P 0 �c Pi2I Mi�i: P 0i and the two processes havethe same maximal number of nested replications. By the induction on the number of nested replications,there are processes P 00i �c P 0i with normalised replications. We can thus derive!P �c ! (Xi2I Mi�i: P 00i) ;28

and then, by Lemmas 6.3(2-3) and law L8,�c ! (Qi2I Mi�i: P 00i)�c Qi2I !Mi�i: P 00i�c Qi2I Mi !�i: P 00iwhich is a process with normalised replications. �6.4 Distributivity properties of private replicationsIn [Mil91], Milner shows certain distributivity properties for private replications w.r.t. parallel compo-sition and replication. The importance of these properties has emerged in di�erent situations, like thecorrectness of the encodings of �-calculus and higher-order calculi into the �-calculus [Mil91, San92] andin reasoning about data structures [Wal94].The replication theorems: Assume that a occurs free in R, P1, P2, and �:P only as subject of outputpre�xes. Then:11. � a (! a(x):R j P jQ) �c � a (! a(x):R j P) j � a (! a(x):R jQ);2. � a (! a(x): R j !�:P) �c !� a (! a(x): R j �: P).For the proof of these assertions, Milner [Mil91] uses relations R1 and R2, de�ned as below, andproves that they progress to �R1� and �R2�, respectively. We call N be the set of all processes whichcontain name a free only as subject of output pre�xes:R1 def= [P;Q;R2 N f(� eb� a (! a(x): R j P jQ);� eb (� a (! a(x): R j P) j � a (! a(x): R jQ)))gR2 def= [�:P;Q;R2 N f(� eb� a (! a(x): R j !�:P jQ);� eb(!� a (! a(x): R j �:P) j � a (! a(x): R jQ)))gSince R1 and R2 are closed under substitutions on names, they give us �c equalities (Corollary 5.3);and the assertions of the replication theorems follow for eb = ; and Q = 0.The use of function C� (closure under contexts) allows us a few simpli�cations: In the proof of (1), itallows us to eliminate the outermost vector of restrictions � eb from R1, and takeR01 def= [P;Q;R2 N f(� a (! a(x): R j P jQ);� a (! a(x): R j P) j � a (! a(x): R jQ))g :In the proof of (2), the use of C� suggests a drastic simpli�cation of R2 , by takingR02 def= [�:P;R2 N f(� a (! a(x): R j !�:P); !� a (! a(x): R j �:P))g :1To simplify the case analysis in the proof, in the assertion of the second replication theorem we have used a normalisedreplication !�: P , in place of a \free" replication !P as used by Milner [Mil91]. Some justi�cation for this simpli�cationcomes from Theorem 6.6. 29

To see that R02 progresses to � (R02)C��, suppose (Q1; Q2) 2 R02 , forQ1 def= � a (! a(x): R j !�: P) ;Q2 def= !� a (! a(x): R j �: P) :We assume that � is an output at a, say � = ab; all other cases are similar. The only moves which Q1and Q2 can do (up to unfolding of replications) are:Q1 ��! � a (Rfb=xg j ! a(x): R j P j !�:P) def= Q01Q2 ��! � a (Rfb=xg j ! a(x): R j P) jQ2 def= Q02 :Now, let C def= � a (! a(x): R j Rfb=xg j P) j [�] :We have, by the �rst replication theorem and commutativity and associativity of parallel composition:Q01 � � a (! a(x): R jRfb=xg j P j !�:P)� � a (! a(x): R jRfb=xg j P) j � a (! a(x): R j !�:P) = C[Q1] ;Q02 � � a (! a(x): R jRfb=xg j P) jQ2 = C[Q2] :This shows that (Q01; Q02) 2 � (R02)C��, and concludes the proof.7 Conclusions and further developmentsIn this paper, we have studied generalisations of the bisimulation proof method which allow us to reducethe size of the relations to exhibit | and hence relieve the work needed | for establishing bisimilarityresults. We have relaxed the self-progression requirement in the de�nition of a bisimulation relation,namely R�R, and considered progressions of the form R�F(R), where F is a function on relations.The sound functions are those for which R�F(R) implies that R only contains pairs of bisimilar pro-cesses, for all R. We have given a condition on functions, called respectfulness , which ensures soundness.We have showed that the class of respectful functions contains non-trivial functions and and that it enjoysclosure properties w.r.t. important function constructors: Thus, sophisticated sound functions (and hencesophisticated proof techniques) can be derived from simpler ones.The usefulness of our proof techniques has been supported by various non-trivial examples | drawnfrom CCS and the �-calculus| which include the proof of the unique solution of equations and the proofsof a few properties of the replication operator. Among these, there is a novel result, which justi�es theadoption of the simple form of replication !�: P as the only form of replication in the �-calculus.One of our most useful primitive proof techniques is an \up-to context" technique which allows usto cancel a common context in the derivatives of two processes. We have shown that the associatedfunction is respectful if the contexts canceled are faithful, but that it loses respectfulness if the canceledcontexts are simply required to preserve bisimilarity | a property weaker than faithfulness. We havealso seen that if the transition rules for the operators of the language are in unary De Simone format,then all contexts of the language are faithful. It remains to �nd out how far beyond faithfulness and theDe Simone format is possible to go while preserving respectfulness. Groote and Vaandrager' tyft format30

[GV92] | but without lookaheads greater than one | and Bloom, Istrail and Meyer' GSOS format[BIM88] are examples of formats which would be interesting to examine. Lookaheads greater than one,present in the tyft format, must be disallowed in the light of the counterexample in Section 2.1.3.Most of the respectful functions F we have considered have the property that if a relationR progressesto F(R), then F(R) is a bisimulation relation; that is, the bisimulation relation is found after oneapplication of the respectful function. However, the de�nition of respectfulness (De�nition 2.5) allowsus greater freedom: In the proof of soundness for respectful functions (Theorem 2.11), the bisimulationrelation is constructed from a sequence of relations in which the respectful function is applied unboundedlymany times. This suggests another direction to investigate, namely the search of other useful respectfulfunctions and function constructors, to be added to those we found.In this paper, we con�ned ourselves to strong bisimilarities, where all actions are treated equally. Anatural development of our work is to look at weak bisimilarities, where a special action, called silentaction, is distinguished from the others and partially ignored in the bisimilarity clause. Often a weakbisimilarity is not preserved by dynamic operators, i.e., operators like CCS or �-calculus sum which canbe discharged when some action is performed. This introduces problems for the soundness of the up-to-context technique similar to those we had to face in Section 5 with the �-calculus (where bisimilarityis not a congruence) and which, therefore, might be dealt with in analogous way. In the weak case itmight also be less easy to establish results about combinations of proof techniques (i.e., to develop atheory of sound or respectful function constructors). The reason is that the soundness of some basictechniques for weak bisimilarities presents a few rather delicate points whose fragility might be enhancedin combinations of techniques (see for instance the study of \weak bisimulations up-to weak bisimilarity"in [SM92]).We believe that our proof techniques could be very advantageous in higher-order calculi like CHOCS[Tho90], or Higher-Order �-calculus [San92], i.e calculi in which terms can be exchanged in a communi-cation. For instance, a few rather involved proofs in [San92], dealing with the Higher-Order �-calculus,should become simpler using some form of \bisimulation up-to context" (see Remark 6.6.18 in [San92]).Our proof techniques should also be useful in higher-order functional languages, for instance to reasonabout applicative bisimilarity of programs [Abr89].The bisimulation proof method stems from the theory of �xed-points and the co-induction principle[Mil89, MT91]. On a complete lattice (i.e., a partial order with all joins) the co-induction principle says:Let (D;<) be a complete lattice, and G : D ! D a monotone function with greatest �xed-point�G . To prove that x < �G it su�ces to prove that x is a post-�xed point of G, i.e, x < G(x).When the bisimilarity relation � is interpreted as the greatest �xed-point of a certain continuous functionon relations [Mil89, Section 4.6], this translate into saying that to prove R �� it su�ces to prove thatR is a bisimulation relation. We would like to see whether our study of the bisimulation proof methodleads to interesting generalisation of the co-induction principle. A possible generalisation, suggested bythe de�nition of respectful functions and the proof of Theorem 2.11, uses an auxiliary function F asfollows: 31

Theorem 7.1 Let (D;<) be a complete lattice, and G : D ! D a monotone function with greatest �xed-point �G . Suppose F : D ! D and that, for all z; y 2 D, z < y and z < G(y) implies F(z) < F(y) andF(z) < G(F(y)). Then to prove x < �G it su�ces to prove x < G(F(x)). �Theorem 2.11 is an instance of this theorem, and the proof is essentially the same. A more elegant butweaker formulation of Theorem 7.1 could require that F is monotone and that F�G < G�F (i.e., for allz, (F�G)(z) < (G�F)(z)). It is worth pointing out that if F is monotone, then the condition F�G < G�Fis the same as the condition \for all z; y 2 D, z < G(y) implies F(z) < F(G(y))". In terms of respectfulfunctions for bisimilarity, this formulation would amount to having the same conditions of Remark 2.6.AcknowledgementsThe ideas in this paper were developed when I was visiting Jaco de Bakker and his group at CWI(Amsterdam). I have bene�ted from discussions with people in CWI, especially Jan Rutten and DanieleTuri. I would also like to thank Glenn Bruns, Martin Hofmann, Marcelo Fiore, Robin Milner, AndrewPitts, Peter Sewell, David N. Turner and David Walker, whose comments helped me to improve thetechnical presentation. This research has been supported by the ESPRIT BRA project 6454 \CONFER".References[Abr89] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics in FunctionalProgramming, pages 65{116. Addison-Wesley, 1989.[Abr91] S. Abramsky. A domain equation for bisimulation. Information and Computation, 92:161{218,1991.[Acz88] P. Aczel. Non-well-funded Sets. CSLI lecture notes; no. 14, 1988.[BD92] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Tec. report SI-92/04,Dipartimento di Scienze dell'Informazione, Universit�a degli studi di Roma "La Sapienza",1992. To appear in Information and Computation.[BIM88] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't' be traced: preliminary report.In Conference Record of the 15th ACM Symposium on Principle of Programming Languages(POPL), pages 229{239, 1988.[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Informationand Computation, 60:109{137, 1984.[BS94] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the �-calculus. Tech-nical Report ECS{LFCS{94{297, LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1994. Anextract has appeared in Proc. STACS'95, LNCS 900, Springer Verlag.[Cau90] D. Caucal. Graphes canoniques de graphes alg�ebriques. Informatique Th�eorique et Applications(RAIRO), 24(4):339{352, 1990. 32

[CHS92] S. Christensen, H. H�uttel, and C. Stirling. Bisimulation equivalence is decidable for all context-free processes. In W.R. Cleveland, editor, Proceedings of CONCUR '92, volume 630 of LectureNotes in Computer Science, pages 138{147. Springer Verlag, 1992.[DS85] R. De Simone. Higher level synchronising devices in MEIJE-SCCS. Theoretical ComputerScience, 37:245{267, 1985.[Fio93] M. Fiore. A coinduction principle for recursive data types based on bisimulation. In 8th LICSConf. IEEE Computer Society Press, 1993.[FMQ94] G. Ferrari, U. Montanari, and P. Quaglia. A �-calculus with explicit substitutions: the latesemantics. In I. Pr�ivara, B. Rovan, and P. Ru�zi�cka, editors, Proc. MFCS'94, volume 841 ofLecture Notes in Computer Science. Springer Verlag, 1994.[Gro90] J.F. Groote. Transition system speci�cations with negative premises. In J.C.M. Baeten andJ.W. Klop, editors, Proc. CONCUR '90, volume 458 of Lecture Notes in Computer Science,pages 332{341, 1990.[GV92] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as acongruence. Information and Computation, 100:202{260, 1992.[HJM95] Y Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm for deciding bisimulationequivalence of normed context-free processes. Theoretical Computer Science, 1995. To appear.[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal ofthe ACM, 32:137{161, 1985.[JNG94] A. Joyal, M. Nielsen, and Winskel G. Bisimulation from open maps. Technical Report ReportRS-94-7, BRICS, 1994. An extract in Proc. LICS'93.[LL91] K.G. Larsen and X. Liu. Compositionality through an operational semantics of contexts. J.Logic Computat., 1(6):761{795, 1991.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[Mil91] R. Milner. The polyadic �-calculus: a tutorial. Technical Report ECS{LFCS{91{180, LFCS,Dept. of Comp. Sci., Edinburgh Univ., October 1991. Also in Logic and Algebra of Speci�cation,ed. F.L. Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag, 1993.[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and II). Infor-mation and Computation, 100:1{77, 1992.[MT91] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Computer Science,87:209{220, 1991.[Pit94] A.M. Pitts. A co-induction principle for recursively de�ned domains. Theoretical ComputerScience, 124:195{219, 1994. 33

[Plo81] G.D Plotkin. A structural approach to operational semantics. DAIMI-FN-19, ComputerScience Department, Aarhus University, 1981.[PS93] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Technical ReportECS{LFCS{93{262, LFCS, Dept. of Comp. Sci., Edinburgh Univ., 1993. To appear in Infor-mation and Computation.[RT94] J. Rutten and D. Turi. Initial algebra and �nal coalgebra semantics for concurrency. InProc. Rex School/Symposium 1993 \A Decade of Concurrency | Re
exions and Perspectives",volume 803 of Lecture Notes in Computer Science. Springer Verlag, 1994.[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-OrderParadigms. PhD thesis CST{99{93, Department of Computer Science, University of Edin-burgh, 1992.[San95a] D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR-2515,INRIA-Sophia Antipolis, 1995. available via anonymous ftp from cma.cma.fr aspub/papers/davide/RR-2515.ps.Z.[San95b] D. Sangiorgi. Locality and non-interleaving semantics in calculi for mobile processes. Theo-retical Computer Science, 1995. To appear. An extract appeared in Proc. TACS '94, LectureNotes in Computer Science 789, Springer Verlag.[SM92] D. Sangiorgi and R. Milner. The problem of \Weak Bisimulation up to". In W.R. Cleveland,editor, Proceedings of CONCUR '92, volume 630 of Lecture Notes in Computer Science, pages32{46. Springer Verlag, 1992.[Tho90] B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis, Department ofComputing, Imperial College, 1990.[Wal94] D. Walker. Algebraic proofs of properties of objects. In Proc. CAAP/ESOP'94, Lecture Notesin Computer Science. Springer Verlag, 1994.

34

