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Abstract
This paper describes a technique for tracing anonymous packet
flooding attacks in the Internet back towards their source. This
work is motivated by the increased frequency and sophistication
of denial-of-service attacks and by the difficulty in tracing packets
with incorrect, or “spoofed”, source addresses. In this paper we
describe a general purpose traceback mechanism based on prob-
abilistic packet marking in the network. Our approach allows a
victim to identify the network path(s) traversed by attack traffic
without requiring interactive operational support from Internet Ser-
vice Providers (ISPs). Moreover, this traceback can be performed
“post-mortem” – after an attack has completed. We present anim-
plementation of this technology that is incrementally deployable,
(mostly) backwards compatible and can be efficiently implemented
using conventional technology.

1. INTRODUCTION
Denial-of-service attacks consume the resources of a remote host or
network, thereby denying or degrading service to legitimate users.
Such attacks are among the hardest security problems to address
because they are simple to implement, difficult to prevent, and
very difficult to trace. In the last several years, Internet denial-
of-service attacks have increased in frequency, severity and sophis-
tication. Howard reports that between the years of 1989 and 1995,
the number of such attacks reported to the Computer Emergency
Response Team (CERT) increased by 50 percent per year [25].
More recently, a 1999 CSI/FBI survey reports that 32 percentof re-
spondents detected denial-of-service attacks directed against their
sites [16]. Even more worrying, recent reports indicate that at-
tackers have developed tools to coordinate distributed attacks from
many separate sites [14].

Unfortunately, mechanisms for dealing with denial-of-service have
not advanced at the same pace. Most work in this area has focused
on toleratingattacks by mitigating their effects on the victim [38,
2, 26, 29, 9]. This approach can provide an effective stop-gap mea-
sure, but does not eliminate the problem nor does it discourage at-
tackers. The other option, and the focus of this paper, is to trace
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attacks back towards their origin – ideally stopping an attacker at
the source.

A perfect solution to this problem is complicated by the potential
use of indirection to “launder” the true causal origin of an attack.
For example, an attack may consist of packets sent from many dif-
ferent slave machines, themselves under the control of a remote
master machine. Such indirection may be achieved either explicitly
(by compromising the individual slave hosts directly) or implicitly
(by sending false requests to the slaves on behalf of the victim –
a so-calledreflector). More challenging still, the true origin and
identity of the attacker can be similarly concealed throughchains
of false computer accounts, call forwarding, and so forth. Conse-
quently, we regard a complete solution – particularly one able to
address the forensic needs of law enforcement – as an open prob-
lem.

Instead, we address the more limited operational goal of simply
identifying the machines thatdirectly generate attack traffic and
the network path this traffic subsequently follows. We call this the
traceback problemand it is motivated by the operational need to
control and contain attacks. In this setting, even incomplete or ap-
proximate information is valuable because the efficacy of measures
such as packet filtering improve as they are applied further from the
victim and closer to the source.

However, even for our restricted problem, determining the source
generating attack traffic is surprisingly difficult due to the stateless
nature of Internet routing. Attackers routinely disguise their loca-
tion using incorrect, or “spoofed”, IP source addresses. Asthese
packets traverse the Internet their true origin is lost and avictim is
left with little useful information. While there are several ad hoc
traceback techniques in use, they all have significant drawbacks
that limit their practical utility in the current Internet.

In this paper we present a new approach to the traceback problem
that addresses the needs of both victims and network operators.
Our solution is to probabilistically mark packets with partial path
information as they arrive at routers. This approach exploits the ob-
servation that attacks generally comprise large numbers ofpackets.
While each marked packet represents only a “sample” of the path
it has traversed, by combining a modest number of such packets a
victim can reconstruct the entire path. This allows victimsto locate
the approximate source of attack traffic without requiring the assis-
tance of outside network operators. Moreover, this determination
can be made even after an attack has completed. Both facets ofour
solution represent substantial improvements over existing capabili-
ties for dealing with flooding-style denial-of-service attacks.



A key practical deployment issue with any modification of Inter-
net routers is to ensure that the mechanisms are efficiently im-
plementable, may be incrementally deployed, and are backwards
compatible with the existing infrastructure. We describe atrace-
back algorithm that adds little or no overhead to the router's critical
forwarding path and may be incrementally deployed to allow trace-
back within the subset of routers supporting our scheme. Further,
we demonstrate that we can encode the necessary path information
in a way that peacefully co-exists with existing routers, host sys-
tems and more than 99% of today's traffic.

The rest of this paper is organized as follows: In Section 2, we
describe related work concerning IP spoofing and solutions to the
traceback problem. Section 3 outlines our basic approach and sec-
tion 4 characterizes several abstract algorithms for implementing
it. In Section 5 we detail a concrete encoding strategy for our al-
gorithm that can be implemented within the current Internetenvi-
ronment. We also present experimental results demonstrating the
effectiveness of our solution. In section 6 we discuss the main lim-
itations and weaknesses of our proposal and potential extensions
to address some of them. Finally, we summarize our findings in
Section 7.

2. RELATED WORK
It has been long understood that the IP protocol permits anonymous
attacks. In his 1985 paper on TCP/IP weaknesses, Morris writes:

“The weakness in this scheme [the Internet Protocol]
is that the source host itself fills in the IP source host
id, and there is no provision in ... TCP/IP to discover
the true origin of a packet.” [31]

In addition to denial-of-service attacks, IP spoofing can beused
in conjunction with other vulnerabilities to implement anonymous
one-way TCP channels and covert port scanning [31, 3, 24, 44].

There have been several efforts to reduce the anonymity afforded
by IP spoofing. Table 1 provides a subjective characterization of
each of these approaches in terms of management cost, additional
network load, overhead on the router, the ability to trace multi-
ple simultaneous attacks, the ability trace attacks after they have
completed, and whether they are preventative or reactive. We also
characterize our proposed traceback scheme according to the same
criteria. In the remainder of this section we describe each previous
approach in more detail.

2.1 Ingress filtering
One way to address the problem of anonymous attacks is to elim-
inate the ability to forge source addresses. One such approach,
frequently calledingress filtering, is to configure routers to block
packets that arrive with illegitimate source addresses [20]. This re-
quires a router with sufficient power to examine the source address
of every packet and sufficient knowledge to distinguish between le-
gitimate and illegitimate addresses. Consequently, ingress filtering
is most feasible in customer networks or at the border of Internet
Service Providers (ISP) where address ownership is relatively un-
ambiguous and traffic load is low. As traffic is aggregated from
multiple ISPs into transit networks, there is no longer enough in-
formation to unambiguously determine if a packet arriving on a par-
ticular interface has a “legal” source address. Moreover, on many
deployed router architectures the overhead of ingress filter becomes
prohibitive on high-speed links.

The principal problem with ingress filtering is that its effective-
ness depends on widespread, if not universal, deployment. Un-
fortunately, a significant fraction of ISPs, perhaps the majority, do
not implement this service – either because they are uninformed
or have been discouraged by the administrative burden1, potential
router overhead and complications with existing services that de-
pend on source address spoofing (e.g. some versions of Mobile
IP [33] and some hybrid satellite communications architectures). A
secondary problem is that even if ingress filtering were universally
deployed at the customer-to-ISP level, attackers could still forge
addresses from the hundreds or thousands of hosts within a valid
customer network [14].

It is clear that wider use of ingress filtering would dramatically im-
prove the Internet's robustness to denial-of-service attacks. At the
same time it is prudent to assume that such a system will neverbe
fullproof – and therefore traceback technologies will continue to be
important.

2.2 Link testing
Most existing traceback techniques start from the router closest to
the victim and interactively test its upstream links until they deter-
mine which one is used to carry the attacker's traffic. Ideally, this
procedure is repeated recursively on the upstream router until the
source is reached. This technique assumes that an attack remains
active until the completion of a trace and is therefore inappropriate
for attacks that are detected after the fact, attacks that occur inter-
mittently, or attacks that modulate their behavior in response to a
traceback (it is prudent to assume the attacker is fully informed).
Below we describe two varieties of link testing schemes,input de-
buggingandcontrolled flooding.

2.2.1 Input debugging
Many routers include a feature calledinput debugging, that al-
lows an operator to filter particular packets on some egress port
and determine which ingress port they arrived on. This capabil-
ity is used to implement a trace as follows: First, the victimmust
recognize that it is being attacked and develop anattack signature
that describes a common feature contained in all the attack pack-
ets. The victim communicates this signature to a network operator,
frequently via telephone, who then installs a corresponding input
debugging filter on the victim's upstream egress port. This filter
reveals the associated input port, and hence which upstreamrouter
originated the traffic. The process is then repeated recursively on
the upstream router, until the originating site is reached or the trace
leaves the ISP's border (and hence its administrative control over
the routers). In the later case, the upstream ISP must be contacted
and the procedure repeats itself. While such tracing is frequently
performed manually, several ISPs have developed tools to automat-
ically trace attacks across their own networks [41].

The most obvious problem with the input debugging approach,
even with automated tools, is its considerable management over-
head. Communicating and coordinating with network operators at
multiple ISPs requires the time, attention and commitment of both
the victim and the remote personnel – many of whom have no di-
rect economic incentive to provide aid. If the appropriate network1Some modern routers ease the administrative burden of ingress
filtering by providing functionality to automatically check source
addresses against the destination-based routing tables (e.g. ip
verify unicast reverse-path on Cisco's IOS). This ap-
proach is only valid if the route to and from the customer is sym-
metric – generally at the border of single-homed stub networks.



Management Network Router Distributed Post-mortem Preventative/
overhead overhead overhead capability capability reactive

Ingress filtering Moderate Low Moderate N/A N/A Preventative
Link testing

Input debugging High Low High Good Poor Reactive
Controlled flooding Low High Low Poor Poor Reactive

Logging High Low High Excellent Excellent Reactive
ICMP Traceback Low Low Low Good Excellent Reactive
Marking Low Low Low Good Excellent Reactive

Table 1: Qualitative comparison of existing schemes for combating anonymous attacks and the probabilistic marking approach we
propose.

operators are not available, if they are unwilling to assist, or if they
do not have the appropriate technical skills and capabilities, then a
traceback may be slow or impossible to complete [21].

2.2.2 Controlled flooding
Burch and Cheswick have developed a link testing traceback tech-
nique that does not require any support from network operators [6].
We call this techniquecontrolled floodingbecause it tests links by
flooding them with large bursts of traffic and observing how this
perturbs traffic from the attacker. Using a pre-generated “map”
of Internet topology, the victim coerces selected hosts along the
upstream route into iteratively flooding each incoming linkon the
router closest to the victim. Since router buffers are shared, packets
traveling across the loaded link – including any sent by the attacker
– have an increased probability of being dropped. By observing
changes in the rate of packets received from the attacker, the victim
can therefore infer which link they arrived from. As with other link
testing schemes, the basic procedure is then applied recursively on
the next upstream router until the source is reached.

While the scheme is both ingenious and pragmatic, it has several
drawbacks and limitations. Most problematic among these isthat
controlled flooding is itself a denial-of-service attack – exploiting
vulnerabilities in unsuspecting hosts to achieve its ends.This draw-
back alone makes it unsuitable for routine use. Also, controlled
flooding requires the victim to have a good topological map oflarge
sections of the Internet in addition to an associated list of“willing”
flooding hosts. As Burch and Cheswick note, controlled flooding
is also poorly suited for tracing distributed denial-of-service attacks
because the link-testing mechanism is inherently noisy andit can
be difficult to discern the set of paths being exploited when mul-
tiple upstream links are contributing to the attack. Finally, like all
link-testing schemes, controlled flooding is only effective at tracing
an on-going attack and cannot be used “post-mortem”.

2.3 Logging
An approach suggested in [37] and [41] is to log packets at key
routers and then use data mining techniques to determine thepath
that the packets traversed. This scheme has the useful property that
it can trace an attack long after the attack has completed. However,
it also has obvious drawbacks, including potentially enormous re-
source requirements (possibly addressed by sampling) and alarge
scale inter-provider database integration problem. We areunaware
of any commercial organizations using a fully operational trace-
back approach based on logging2.2Historically, the T3-NFSNETdid log network-to-network traffic
statistics and these were used on at least one occasion to trace IP
spoofing attacks to an upstream provider [43].

2.4 ICMP Traceback
Since the first writing of this paper, a new traceback proposal bas
emerged based on the use of explicit router-generated ICMP trace-
back messages [4]. The principle idea in this scheme is for every
router to sample, with low probability (e.g., 1/20,000), one of the
packets it is forwarding and copy the contents into a specialICMP
traceback message including information about the adjacent routers
along the path to the destination. During a flooding-style attack,
the victim host can then use these messages to reconstruct a path
back to the attacker. This scheme has many benefits compared to
previous work and is in many ways similar to the packet marking
approach we have taken. However, there are several disadvantages
in the current design that complicate its use. Among these: ICMP
traffic is increasingly differentiated and may be filtered orrate lim-
ited differently from normal traffic, the ICMP Traceback message
relies on an input debugging capability (i.e. the ability toasso-
ciate a packet with the input port and/or MAC address on which
it arrived) that is not available in some router architectures, if only
some of the routers participate it seems difficult to positively “con-
nect” traceback messages from participating routers separated by a
non-participating router, and finally, it requires a key distribution
infrastructure to deal with the problem of attackers sending false
ICMP Traceback messages. That said, we believe that the scheme
is promising and that hybrid approaches combining it with some of
the algorithms we propose are likely to be quite effective.

3. OVERVIEW
Burch and Cheswick mention the possibility of tracing flooding at-
tacks by “marking” packets, either probabilistically or deterministi-
cally, with the addresses of the routers they traverse [6]. The victim
uses the information in the marked packets to trace an attackback
to its source. This approach has not been previously explored in any
depth, but has many potential advantages. It does not require inter-
active cooperation with ISPs and therefore avoids the high manage-
ment overhead of input debugging. Unlike controlled flooding, it
does not require significant additional network traffic and can po-
tentially be used to track multiple attacks. Moreover, likelogging,
packet marking can be used to trace attacks “post-mortem” – long
after the attack has stopped. Finally, we have found that marking
algorithms can be implemented without incurring any significant
overhead on network routers. The remainder of this paper focuses
on fully exploring and characterizing this approach.

3.1 Definitions
Figure 1 depicts the network as seen from a victimV . For the
purposes of this paper,V may be a single host under attack, or a
network border device such as a firewall or intrusion detection sys-
tem that represents many such hosts. Every potentialattack originAi is a leaf in a tree rooted atV and every routerRi is an internal
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Figure 1: Network as seen from the victim of an attack,V .
Routers are represented byRi, and potential attackers byAi.
The dotted line represents a particularattack path between an
attacker and the victim.

node along a path between someAi andV . Theattack pathfromAi is the unique ordered list of routers betweenAi andV . For in-
stance, if an attack originates fromA2 then to reachV it must first
traverse the pathR6,R3,R2, andR1 – as shown by the dotted line
in Figure 1.

The exact tracebackproblem is to determine the attack path and
the associated attack origin for each attacker. However, solving
this problem is complicated by several practical limitations. The
exact attack origin may never be revealed (even MAC source ad-
dresses may be spoofed) and a wily attacker may send false signals
to “invent” additional routers in the traceback path. We address
these issues in section 6, but for now we restrict our discussion to
solving a more limited problem. We define theapproximate trace-
backproblem as finding a candidate attack path for each attacker
that contains the true attack path as a suffix. We call this thevalid
suffixof the candidate path. For example, (R5, R6, R3, R2, R1) is
a valid approximate solution to Figure 1 because it containsthe true
attack path as a suffix. We say a solution to this problem isrobust
if an attacker cannot prevent the victim from discovering candidate
paths containing the valid suffix.

All marking algorithms have two components: amarking proce-
dure executed by routers in the network and apath reconstruc-
tion procedureimplemented by the victim. A router “marks” one
or more packets by augmenting them with additional information
about the path they are traveling. The victim attempts to reconstruct
the attack path using only the information in these marked packets.
Theconvergence timeof an algorithm is the number of packets that
the victim must observe to reconstruct the attack path.

3.2 Basic assumptions
The design space of possible marking algorithms is large, and to
place our work in context we identify the assumptions that motivate
and constrain our design:� an attacker may generate any packet,� multiple attackers may conspire,� attackers may be aware they are being traced,

� packets may be lost or reordered,� attackers send numerous packets,� the route between attacker and victim is fairly stable,� routers are both CPU and memory limited, and� routers are not widely compromised.

The first four assumptions represent conservative assessments of
the abilities of the modern attackers and limitations of thenetwork.
Designing a traceback system for the Internet environment is ex-
tremely challenging because there is very little that can betrusted.
In particular, the attacker's ability to create arbitrary packets sig-
nificantly constrains potential solutions. When a router receives a
packet, it has no way to tell whether that packet has been marked
by an upstream router or if the attacker simply has forged this in-
formation. In fact, the only invariant that we can depend on is that
a packet from the attacker must traverse all of the routers between
it and the victim.

The remaining assumptions reflect the basis for our design and de-
serve additional discussion. First, denial-of-service attacks are only
effective so long as they occupy the resources of the victim.Con-
sequently, most attacks are comprised of thousands or millions of
packets. Our approach relies on this property because we mark
each packet with only a small piece of path state and the victim
must observe many such packets to reconstruct the complete path
back the the attacker. If many attacks emerge that require only a
single packet to disable a host (e.g. ping-of-death [11]), then this
assumption may not hold (although we note that even these attacks
require multiple packets tokeepa machine down).

Second, measurement evidence suggests that while Internetroutes
do change, it is extremely rare for packets to follow many different
paths over the short time-scales of a traceback operation (seconds
in our system) [32]. This assumption greatly simplifies the role of
the victim, since it can therefore limit its consideration to a single
primary path for each attacker. If the Internet evolves to allow sig-
nificant degrees of multi-path routing then this assumptionmay not
hold.

Third, while there have been considerable improvements in router
implementation technology, link speeds have also increased dra-
matically. Consequently, we assert that any viable implementation
must have low per-packet overhead and must not require per-flow
state. Significantly simpler schemes than ours can be implemented
if we assume that routers are not resource constrained.

Finally, since a compromised router can effectively eliminate any
information provided by upstream routers, it is effectively indis-
tinguishable from an attacker. In such circumstances, the security
violation at the router must be addressed first, before any further
traceback is attempted. In normal circumstances, we believe this
is an acceptable design point. However, if non-malicious, but in-
formation hiding, routing infrastructures become popular, such as
described in [22, 35], then this issue may need to be revisited.

4. BASIC MARKING ALGORITHMS
In this section we describe a series of marking algorithms – starting
from the most simple and advancing in complexity. Each algorithm
attempts to solve the approximate traceback problem in a manner
consistent with our assumptions.



Marking procedure at routerR:
for each packetw, appendR tow

Path reconstruction procedure at victimv:
for any packetw from attacker

extract path (Ri..Rj) from the suffix ofw
Figure 2: Node append algorithm.

4.1 Node append
The simplest marking algorithm – conceptually similar to the IP
Record Route option [34] – is to append each node's address tothe
end of the packet as it travels through the network from attacker to
victim (see Figure 2). Consequently, every packet receivedby the
victim arrives with a complete ordered list of the routers ittraversed
– a built-in attack path.

The node append algorithm is both robust and extremely quickto
converge (a single packet), however it has several serious limita-
tions. Principal among these is the infeasibly high router overhead
incurred by appending data to packets in flight. Moreover, since
the length of the path is not knowna priori, it is impossible to
ensure that there is sufficient unused space in the packet forthe
complete list. This can lead to unnecessary fragmentation and bad
interactions with services such as MTU discovery [30]. Thisprob-
lem cannot be solved by reserving “enough” space, as the attacker
can completely fill any such space with false, or misleading,path
information.

4.2 Node sampling
To reduce both the router overhead and the per-packet space re-
quirement, we can sample the path one node at a time instead of
recording the entire path. A single static “node” field is reserved
in the packet header – large enough to hold a single router address
(i.e. 32 bits for IPv4). Upon receiving a packet, each routerchooses
to write its address in the node field with some probabilityp. Af-
ter enough packets have been sent, the victim will have received at
least one sample for every router in the attack path. As stated in
section 3, we assume that the attacker sends enough packets and
the route is stable enough that this sampling can converge.

Although it might seem impossible to reconstruct an orderedpath
given only an unordered collection of node samples, it turnsout that
with a sufficient number of trials, the order can be deduced from the
relative number of samples per node. Since routers are arranged se-
rially, the probability that a packet will be marked by a router and
then left unmolested by all downstream routers is a strictlydecreas-
ing function of the distance to the victim. If we constrainp to be
identical at each router, then the probability of receivinga marked
packet from a routerd hops away isp(1� p)d�1. Since this func-
tion is monotonic in the distance from the victim, ranking each
router by the number of samples it contributes will tend to produce
the accurate attack path. The full algorithm is shown in Figure 3.

Putting aside for the moment the difficulty in changing the IPheader
to add a 32-bit node field, this algorithm is efficient to implement
because it only requires the addition of a write and checksumup-
date to the forwarding path. Current high-speed routers already
must perform these operations efficiently to update thetime-to-live
field on each hop. Moreover, ifp > 0:5 then this algorithm is ro-
bust against a single attacker because there is no way for an attacker
to insert a “false” router into the path's valid suffix by contributing

Marking procedure at routerR:
for each packetw

let x be a random number from [0..1)
if x < p then,

writeR intow.node

Path reconstruction procedure at victimv:
letNodeTbl be a table of tuples (node,count)
for each packetw from attackerz := lookupw.node inNodeTbl

if z != NIL then
incrementz.count

else
insert tuple (w.node,1) inNodeTbl

sortNodeTbl by count
extract path (Ri..Rj) from ordered node fields inNodeTbl

Figure 3: Node sampling algorithm.

more samples than a downstream router, nor to reorder valid routers
in the path by contributing more samples than the differencebe-
tween any two downstream routers.

However, there are also two serious limitations. First, inferring the
total router order from the distribution of samples is a slowprocess.
Routers far away from the victim contribute relatively few samples
(especially sincep must be large) and random variability can eas-
ily lead to misordering unless a very large number of samplesare
observed. For instance, ifd = 15 andp = 0:51, the receiver must
receive more than 42,000 packets on average before it receives a
singlesample from the furthest router. To guarantee that the order
is correct with 95% certainty requires more than seven timesthat
number.

Second, if there are multiple attackers then multiple routers may
exist at the same distance – and hence be sampled with the sample
probability. Therefore, this technique is not robust against multiple
attackers.

4.3 Edge sampling
A straightforward solution to these problems is to explicitly encode
edgesin the attack path rather than simply individual nodes. To do
this, we would need to reservetwostatic address-sized fields,start
andend, in each packet to represent the routers at each end of a
link, as well as an additional small field to represent the distance of
an edge sample from the victim.

When a router decides to mark a packet, it writes its own address
into the start field and writes a zero into the distance field. Oth-
erwise, if the distance field is already zero this indicates that the
packet was marked by the previous router. In this case, the router
writes its own address into the end field – thereby representing the
edge between itself and the previous router. Finally, if therouter
doesn' t mark the packet then it always increments the distance
field. This somewhat baroque signaling mechanism allows edge
sampling to be incrementally deployed – edges are constructed only
between participating routers.

The mandatory increment iscritical to minimize spoofing by an
attacker. When the packet arrives at the victim its distancefield
represents the number of hops traversed since the edge it contains



Marking procedure at routerR:
for each packetw

let x be a random number from [0..1)
if x < p then

writeR intow.start and 0 intow.distance
else

if w.distance = 0 then
writeR intow.end

incrementw.distance

Path reconstruction procedure at victimv:
letG be a tree with rootv
let edges inG be tuples (start,end,distance)
for each packetw from attacker

if w.distance = 0 then
insert edge (w.start,v,0) intoG

else
insert edge (w.start,w.end,w.distance) intoG

remove any edge (x,y,d) with d 6= distance fromx to v in G
extract path (Ri..Rj) by enumerating acyclic paths inG

Figure 4: Edge sampling algorithm.

was sampled.3 Any packets written by the attacker will necessarily
have a distance greater or equal to the length of the true attack path.
Therefore, a single attacker is unable to forge any edge between
themselves and the victim (for a distributed attack, of course, this
applies only to the closest attacker) and the victim does nothave
to worry about “chaff” while reconstructing the valid suffixof the
attack path. Consequently, since we no longer use the sampling
rank approach to distinguish “false” samples, we are free touse
arbitrary values for the marking probabilityp.

The victim uses the edges sampled in these packets to create agraph
(much as in Figure 1) leading back to the source, or sources, of
attack. The full algorithm is described in Figure 4. Becausethe
probability of receiving a sample is geometrically smallerthe fur-
ther away it is from the victim, the time for this algorithm tocon-
verge is dominated by the the time to receive a sample from the
furthest router, 1p(1�p)d�1 in expectation, for a routerd hops away.
However, there is a small probability that we will receive a sample
from the furthest router, but not from some nearer router. Wecan
bound this effect to a factor ofln(d) by the following argument:
We conservatively assume that samples from all of thed routers
appear with the same likelihood as the furthest router. Since these
probabilities are disjoint, the probability that a given packet will
deliver a sample from some router is at leastdp(1 � p)d�1. Fi-
nally, as per the well-knowncoupon collectorproblem, the number
of trials required to select one of each ofd equi-probable items
is d(ln(d) + O(1)) [19]. Therefore, the number of packets,X,
required for the victim to reconstruct a path of lengthd has the
following bounded expectation:E(X) < ln(d)p(1� p)d�1
For example, ifp = 110 , and the attack path has a length of 10,3It is important that distance field is updated using a saturating ad-
dition. If the distance field were allowed to wrap, then the attacker
could spoof edges close to the victim by sending packets witha
distance value close to the maximum.

then a victim can typically reconstruct this path after receiving 75
packets from the attacker. While this choice ofp = 1d is optimal,
the convergence time is not overly sensitive to this parameter for the
path lengths that occur in the Internet. So long asp � 1d , the results
are generally within a small constant of optimal. In the restof this
paper we will usep = 125 since few paths exceed this length [7, 42,
17]. For comparison, the previous example converges with only
108 packets usingp = 125 .

This same algorithm can efficiently discern multiple attacks be-
cause attackers from different sources produce disjoint edges in the
tree structure used during reconstruction. The number of packets
needed to reconstruct each path is independent, so the number of
packets needed to reconstruct all paths is a linear functionof the
number of attackers. Finally, edge sampling is also robust.That
is it is impossible for any edge closer than the closest attacker to
be spoofed, due to the robust distance determination. Conversely,
in a distributed attack this also means that it is impossibleto trust
the contents of any edgefurther away than the closest attacker. As
with the ICMP Traceback approach [4], an additional mechanism
incorporating a shared secret is required to completely address the
problem of attackers spoofing edges.

Of course, a significant practical limitation of this approach is that
it requires additional space in the IP packet header and therefore is
not backwards compatible. In the next section we discuss a mod-
ified version of edge-sampling that addresses this problem,albeit
at some cost in performance and a reduction in robustness during
large distributed attacks.

5. ENCODING ISSUES
The edge sampling algorithm requires 72 bits of space in every IP
packet (two 32-bit IP addresses and 8 bits for distance to repre-
sent the theoretical maximum number of hops allowed using IP).
It would be possible to directly encode these values into an MPLS
label stack [36], to enable traceback within a single homogeneous
ISP network. However, our focus is on a heterogeneous environ-
ment based purely on IP datagrams. One obvious approach is to
store the edge sample data in an IP option, but this is a poor choice
for many of the same reasons that the node append algorithm is
infeasible – appending additional data to a packet in flight is ex-
pensive and there may not be sufficient space to append this data.
We could also send this data out-of-band – in a separate packet –
but this would add both router and network overhead plus the com-
plexity of a new and incompatible protocol.

Instead, we have developed a modified version of edge sampling
that dramatically reduces the space requirement in return for a mod-
est increase in convergence time and a reduction in robustness to
multiple attackers. Following an analysis of our algorithmwe ex-
plore the practical implementation issues and discuss one concrete
encoding of this scheme based on overloading the 16-bit IPidenti-
ficationfield used for fragmentation. Any solution involving such
overloading necessarily requires compromises and we stress that
our solution reflects only one design point among many potential
implementation tradeoffs for this class of algorithm anddoes not
necessarily reflect an optimal balance among them.

5.1 Compressed edge fragment sampling
We use three techniques to reduce per-packet storage requirements
while preserving robustness. First, we encode each edge in half
the space by representing it as theexclusive-or(XOR) of the two
IP addresses making up the edge, as depicted in Figure 5. When
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Figure 5: Edge data can be communicated in half the space by
sending the XOR of the two nodes (i.e. router IP addresses)
making up an edge, rather than sending each node separately.
Over time the victim receives the messagesd, c � d, b� c, anda�b. By XORing these messages together the original path can
be reconstructed.

0 k-1

Address Hash(Address)

BitInterleave

Send k fragments into network

Figure 6: Each router calculates a uniform hash of its IP ad-
dress once, at startup, using a well-known function. This hash
is interleaved with the original IP address (the original address
on odd bits, the hash on even bits). The resulting quantity is
then broken into k fragments, which the router selects among
randomly when marking a packet. Although it is not shown,
each of these fragments is further labeled with its offset. The
next downstream router uses this offset to select the appropri-
ate fragment to XOR – thereby encoding part of an edge.

some router decides to mark a packet it writes its address,a, into
the packet. The following router,b, notices that the distance field
is 0 and (assuming it does not mark the packet itself) readsa from
the packet, XORs this value with its own address and writes the
resulting value,a�b, into the packet. We call the resulting value the
edge-idfor the edge betweena andb. The edge-ids in the packets
received by the victim always contain the XOR of two adjacent
routers, except for samples from routers one hop away from the
victim, which arrive unmodified. Sinceb � a � b = a, marked
packets from the final router can be used to decode the previous
edge id, and so on, hop-by-hop until we reach the first router.

Our second modification further reduces our per-packet space re-
quirements by subdividing each edge-id into some number,k, of
smaller non-overlapping fragments. When a router decides to mark
a packet, it selects one of these fragments at random and stores it
in the packet. We use a few additional bits (log2k) to store the off-
set of this fragment within the original address – this is necessary to
ensure that both fragments making up an edge-id are taken from the
same offset. If enough packets are sent by the attacker, the victim
will eventually receive all fragments from all edge-ids.
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Figure 7: When reconstructing a candidate edge, the vic-
tim combines k fragments to produce a bit string. By de-
interleaving this string, the address portion and the hash por-
tion are extracted. We recalculate the hash over this address
portion using the same hash function used by the router. If
the resulting hash is the same as the hash portion extracted,
then the address is accepted as valid. This procedure protects
against accidentally combining fragments of different edges.

Finally, unlike full IP addresses, edge-id fragments are not unique
and multiple fragments from different edge-ids may have thesame
value. If there are multiple attackers, a victim may receivemultiple
edge fragments with the same offset and distance. To reduce the
probability that we accidentally reconstruct a “false” edge-id by
combining fragments from different paths, we add a simple error
detection code to our algorithm. Weincreasethe size of each router
address, and hence each edge-id, by bit-interleaving its IPaddress
with a random hash of itself (depicted in Figure 6). As described
earlier, this value is split into fragments, each fragment is selected
randomly and stored with an offset, and downstream routers use
XOR to combine fragments at the same offset to make up edge-id
fragments. The victim constructscandidate edge-idsby combining
all combinations of fragments at each distance with disjoint offset
values. As shown in Figure 7, a candidate edge-id is only accepted
if the hash portion matches the data portion for each of its two
nodes. As we increase the size of the hash, the probability ofa
collision is reduced. We provide a describe the full procedure in
Figure 8.

The expected number of packets for this algorithm to converge is
similar to the edge sampling approach, except now we needk frag-
ments for each edge-id, rather than just one, a total ofkd fragments.
If we again assume conservatively that each of these fragments is
delivered equi-probably with probabilityp(1�p)d�1, the expected
number of packets required for path reconstruction is bounded by:E(X) < k � ln(kd)p(1� p)d�1
For example, if there are 8 fragments per edge-id, an attacker is 10
hops away, andp = 125 , then a victim can reconstruct the full path
after receiving slightly less than 1,300 packets on average. Using
techniques similar to those used to show sharp concentration results
for the coupon collectors problem, we can further show that the
approximate the number of packets required to ensure that a path



Marking procedure at routerR:
letR0 = BitIntereave(R, Hash(R))
let k be the number of non-overlapping fragments inR0
for each packetw

let x be a random number from [0..1)
if x < p then

let o be a random integer from [0..k � 1]
let f be the fragment ofR0 at offseto
write f intow.frag
write 0 intow.distance
write o intow.offset

else
if w.distance = 0 then

let f be the fragment ofR0 at offsetw.offset
write f �w.frag intow.frag

incrementw.distance

Path reconstruction procedure at victimv:
let FragTbl be a table of tuples (frag,offset,distance)
letG be a tree with rootv
let edges inG be tuples (start,end,distance)
letmaxd := 0
let last := v
for each packetw from attackerFragTbl.Insert(w.frag,w.offset,w.distance)

if w.distance> maxd thenmaxd :=w.distance
for d := 0 tomaxd

for all ordered combinations of fragments at distanced
construct edgez
if d 6= 0 thenz := z � last
if Hash(EvenBits(z)) = OddBits(z) then

insert edge (z,EvenBits(z),d) intoGlast := EvenBits(z);
remove any edge (x,y,d) with d 6= distance fromx to v in G
extract path (Ri..Rj) by enumerating acyclic paths inG

Figure 8: Compressed edge fragment sampling algorithm.

can be reconstructed with probability1� 1c is:k � ln(kdc)p(1� p)d�1
packets. To completely reconstruct the previous path with 95%
certainty should require no more than 2150 packets. Many denial-
of-service attacks send this many packets in a few seconds.

Finally, we explore the robustness of this algorithm with respect to
multiple attackers. For a random hash of lengthh, the probability of
accepting an arbitrarily constructed candidate edge-id is12h . In the
event that there arem attackers, then at any particular distanced, in
the worst case there may be up tom distinct routers.4 Consequently
the probability that any edge-id at distanced is accepted incorrectly
is at most: 1� (1� 12h )mk4In practice, the number of distinct routers is likely to be smaller
for the portion of the path closest to the receiver, since many at-
tackers will still share significant portions of their attack path with
one another.
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Figure 9: Encoding edge fragments into the IP identification
field.

since there aremk possible combinations of fragments in the worst
case. Forh = 32 andk = 4 this means that 100 distinct routers
at the same distance (i.e. disjoint attack paths) will be resolved
with no errors with a probability of better than 97%. Forh = 32
andk = 8, (the values we use for our implementation) the same
certainty can only be provided for 10 distinct routers at thesame
distance. Our use of the XOR function further complicates recon-
struction since all combinations of XOR values must be triedas
attack paths diverge. This is somewhat mitigated as the probabil-
ity of propagating an error from a single edge all the way to the
attacker is is extremely small because the resulting edge-id, when
XORed with the previous edge-id, must again produce a correct
hash.

The most significant drawback to this scheme is the large number of
combinations that must be considered as the multiple attackpaths
diverge. While these combinations can be computed off-line, for
large values ofk andm even this can become intractable. For ex-
ample, even withk = 8 andm = 10, if the separate attack paths
diverge such that there are 10 completely independent edgesper
attacker, this will require roughly a billion combinationsto be con-
sidered. Consequently, there is a design tension in the sizeof k –
per-packet space overhead is reduced by a largerk, while compu-
tational overhead and robustness benefits from a smallerk.

5.2 IP header encoding
To allow for practical deployment requires that we “overload” ex-
isting header fields in a manner that will have minimal impacton
existing users. This is a difficult task, especially given that even
after prodigious effort we require 16 bits of space. Nonetheless, we
believe it possible to obtain this space by overloading the 16-bit IP
identification field. This field is currently used to differentiate IP
fragments that belong to different packets. We describe ourpro-
posed encoding below, and then discuss the issues of backwards-
compatibility that it raises. However, we note that becausethe is-
sue of backwards-compatible encoding is largely separate from our
traceback algorithms, we could adopt any reasonable encoding that
comes to light.

Figure 9 depicts our choice for partitioning the identification field:
3 offset bits to represent 8 possible fragments, 5 bits to represent



the distance, and 8 bits for the edge fragment. We use a 32-bit
hash, which doubles the size of each router address to 64 bits. This
implies that 8 separate fragments are needed to represent each edge
– each fragment indicated by a unique offset value. Finally,5 bits
is sufficient to represent 31 hops, which is more than almost all
Internet paths [7, 42, 17].5

The observant reader will note that this layout is chosen to allow
the highest performance software implementation of our algorithm,
which already had a low per-packet router overhead. In the com-
mon case, the only modification to the packet is to increment its
distance field. Because of its alignment within the packet, this in-
crement precisely offsets the required decrement of the time-to-live
field implemented by each router [1]. Consequently, the header
checksumdoes not need to be altered at alland the header manipu-
lation overhead could be even lower than in current software-based
routers – simply an addition to the distance field, a decrement to the
TTL field, and a comparison to check if either has overflowed. In
the worst case, our algorithm must read the IP identificationfield,
lookup an edge fragment and XOR it, and fold the write-back into
the existing checksum update procedure (a few ALU operations).
Of course, for modern ASIC-based routers these optimizations are
unnecessary.

As we reuse of the IP identification field, we must address issues of
backwards-compatibility for IP fragment traffic. Ultimately, there
is no perfect solution to this problem and we are forced to make
compromises that disadvantage fragmented traffic. Fortunately, re-
cent measurements suggest that less than 0.25% of packets are
fragmented [40, 10]. Moreover, it has long been understood that
network-layer fragmentation is detrimental to end-to-endperfor-
mance [27] so modern network stacks implement automatic MTU
discovery to prevent fragmentation regardless of the underlying
media [30]. Consequently, we believe that our encoding willinter-
operate seamlessly with existing protocol implementations in the
vast majority of cases.

However, there is a small but real fraction of legitimate traffic that
is fragmented, and we wish to ensure that it is not affected by
our modifications to the extent that this is possible. Normally if a
packet is fragmented, its identification field is copied to each frag-
ment so the receiver can faithfully reassemble the fragments into
the original packet. Our marking procedure can violate thisprop-
erty in one of two ways: by writing different values into the iden-
tification fields of fragments from the same datagram or by writing
the same values into the identification fields of fragments from dif-
ferent datagrams. These two problems present different challenges
and have different solutions.

First, a datagram may be fragmentedupstreamfrom a marking
router. If the fragment is subsequently marked and future fragments
from the same datagram are not marked consistently then reassem-
bly may fail or data may be corrupted. While the simplest solu-
tion to this problem is to simply not mark fragments, an adversary
would quickly learn to evade traceback by exploiting this limita-
tion. In fact, some current denial-of-service attacks already use IP
fragments to exploit errors in host IP reassembly functions[12]. In-
stead, we propose an alternative marking mechanism for fragments.
We use a separate marking probability,q, for fragments. When we5It is also reasonable to turn off marking on any routers that cannot
be directly connected to an attacking host (e.g. core routers). This
both reduces the convergence time, and increases the “reach” of the
distance field.
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Figure 10: Experimental results for number of packets needed
to reconstruct paths of varying lengths. The marking probabil-
ity, p, is set to 125 . Each path length result represents the results
of 1,000 independent simulation runs.

decide to mark a fragment, we prepend a new ICMP “echo reply”
header, along with thefull edge data – truncating the tail of the
packet. This ICMP packet is considered “marked” and its distance
field is set to zero, thereby guaranteeing that the distance field re-
flects the number of edges traversed on the way to the victim. The
packet is consequently “lost” from the standpoint of the receiver,
but the edge information is delivered in a way that does not impact
legacy hosts. Because we can use the full edge sampling algorithm,q can be more than an order of magnitude smaller thanp and yet
achieve the same convergence time. This solution increasesthe loss
rate of fragmented flows somewhat (more substantially for longer
paths) but preserves the integrity of the data in these flows.

A more insidious problem is presented by fragmentation thatoc-
curs downstreamfrom a marking router. If a marked packet is
fragmented, but one of the fragments is lost, then the remaining
fragments may linger in the victim's reassembly buffer for an ex-
tended period [5]. Future packets marked by the same router can
have the same IP identification value and consequently may bein-
correctly reassembled with the previous fragments. One possibility
is to leave this problem to be dealt with by higher layer checksums.
However, not all higher layer protocols employ checksums, and in
any case it is dangerous to rely on such checksums because they
are typically designed only for low residual error rates. Another
solution is to set theDon't Fragmentflag on every marked packet.
Along rare paths that require fragmentation, this solutionwill de-
grade communication between hosts not using MTU path discov-
ery, and may filter marked packets if a reduced MTU edge is close
to the victim, but it will never lead to data corruption.

5.3 Experience
We have implemented the marking and reconstruction portions of
our algorithm and have tested it using a simulator that creates ran-
dom paths and originates attacks. In Figure 10 we graph the mean,
median and 95th percentile for the number of packets required to
reconstruct paths of varying lengths over 1,000 random testruns for
each length value. We assume a marking probability of125 . Note
that while the convergence time is theoretically exponential in the
path length, all three lines appear linear due to the finite path length
and appropriate choice of marking probability.

We see that most paths can be resolved with between one and two



thousand packets, and even the longest paths can be resolvedwith
a very high likelihood within four thousand packets. To put these
numbers in context, most flooding-style denial of service attacks
send many hundreds or thousands of packets each second. The
analytic bounds we described earlier are conservative, butin our
experience they are no more than 30% higher than our experimental
results.

6. LIMITATIONS AND FUTURE WORK
There are still a number of limitations and loose ends in our ap-
proach. We discuss the most important of these here:� backwards compatibility,� distributed attacks,� path validation, and� approaches for determining the attack origin.

6.1 Backwards compatibility
The IP header encoding as we have described it has several practi-
cal limitations. It negatively impacts users that require fragmented
IP datagrams and is currently incompatible with parts of IPsec [28]
(the Authentication Header provides cryptographic protection for
the identification field and therefore the field cannot be safely mod-
ified by routers). These problems are hardly unique to traceback
and are inherent limitations that come about from attempting to co-
exist with or co-opt protocol features that did not anticipate a new
use. One way to address this issue, originally proposed by John
Hawkinson, is to selectively enable traceback support in response
to operational needs. A “request for traceback” from a particular
network could be encoded as a BGP attribute in the network's route
advertisement. Routers receiving such an advertisement would en-
able traceback support on packets destined for that network. Since
a network requesting such support is presumably already suffering
under an attack, any minor service degradation for fragmented or
authenticated flows would be acceptable.

Finally, our scheme does not address implementation in IPv6, the
proposed successor to IPv4, which does not have an identification
field [18]. While we do not attempt to propose a complete encoding
here, we believe that the same techniques we have proposed could
also be employed within IPv6, perhaps by overloading the 24-bit
flow labelfield (without any further modifications this would re-
sult in roughly a factor of three increase in the number of packets
required to reconstruct a path).

6.2 Distributed attacks
For large distributed attacks, the practical implementation we have
described has serious limitations due to the difficulty in correctly
grouping fragments together. Consequently, the probability of mis-
attributing an edge, as well as the amount of state needed to eval-
uate this decision, increases very quickly with the fan-outof an
attack. There is significant future work in designing alternative en-
coding methods that scale their robustness as they receive more
data.

6.3 Path validation
Some number of the packets sent by the attacker are unmarked
by intervening routers. The victim cannot differentiate between
these packets and genuine marked packets. Therefore an attacker

could insert “fake” edges by carefully manipulating the identifica-
tion fields in the packets it sends. While the distance field prevents
an attacker from spoofing edges between it and the victim – what
we call thevalid suffix– nothing prevents the attacker from spoof-
ing extra edges past the end of the true attack path.

There are several ways to identify the valid suffix within a path gen-
erated by the reconstruction procedure. With minimal knowledge
of Internet topology one can differentiate between routersthat be-
long to transit networks (e.g. ISPs) and those which belong to stub
networks (e.g. enterprise networks). Generally speaking,a valid
path will never enter a stub network and then continue into a tran-
sit network. Moreover, simple testing tools such astraceroute
should enable a victim to determine if two networks do, in fact,
connect. More advanced network maps [8, 23] can resolve thisis-
sue in an increasing number of cases.

A more general mechanism is to provide each router with a “se-
cret” that is sent along with each marked packet (perhaps in the
single unallocated bit in the IP flags field). When the victim wants
to validate a router in the path, it contacts the associated network
(possibly out of band, via telephone or e-mail) and obtains the se-
cret used by the router at the time of the attack. To guard against
replay, the secret can be time-varying and hashed with the packet
contents. Since the attacker will not know the router's secret, they
will not be able to include the proper bit in their forged edge-id
fragments. By eliminating edge-ids for which the secret in their
constituent fragments can not be validated, we can prune a candi-
date attack path to only include the valid suffix.

6.4 Attack origin detection
While our IP-level traceback algorithm could be an important part
of the solution for stopping denial-of-service attacks, itis by no
means a complete solution. Our algorithm attempts to determine
the approximate origin of attack traffic – in particular, theearliest
traceback-capable router involved in forwarding attack traffic from
the source that directly generated it. As mentioned earlier, there
are a number of reasons why this may differ from the true source
of the attack: attackers can hide their true identities by “launder-
ing” attacks through third parties, either indirectly (e.g. smurf at-
tacks [13] or DNS reflectors [15]) or directly via compromised
“stepping stone” machines or IP-in-IP tunnels. While thereis on-
going work on following attackers through intermediate hosts [45,
39], there are still significant challenges in developing a generally
applicable and universally deployable solution to this problem. One
interesting possibility enabled by the packet marking approach is to
extend traceback across “laundering points”. For example,identi-
fying marks could be copied from a DNS request packet into the
associated DNS reply, thereby allowing the victim to trace the full
causal path.

Even in absence of such “laundering”, our approach does not re-
veal the actual host originating the attack. Moreover, since hosts
can forge both their IP source address and MAC address the origin
of a packet may never be explicitly visible. On shared media such
as FDDI rings, this problem can only be solved by explicit testing.
However, on point-to-point media, the input port a packet arrives on
is frequently enough to determine its true origin. On other media,
there may be a MAC address, cell number, channel, or other hint
that would help to locate the attack origin. In principle, our algo-
rithm could be modified to report this information by occasionally
marking packets with a special edge-id representing a link between
the router and the input port on which the packet arrived (or other



“hint” information). We have not explored the design of sucha
feature in any depth.

Finally, traceback is only effective at finding the source ofattack
traffic, not necessarily theattackerthemselves. Stopping an attack
may be sufficient to eliminate an immediate problem, but longterm
disincentives may require a legal remedy and therefore the forensic
means to determine an attacker's identity. Even with perfect trace-
back support, unambiguously identifying a sufficiently skilled and
paranoid attacker is likely to require cooperation from lawenforce-
ment and telecommunications organizations.

7. CONCLUSION
In this paper we have argued that denial-of-service attacksmoti-
vate the development of improved traceback capabilities and we
have explored traceback algorithms based on packet markingin the
network. We have shown that this class of algorithm, best embod-
ied in edge sampling, can enable efficient and robust multi-party
traceback that can be incrementally deployed and efficiently im-
plemented. As well, we have developed variant algorithms that
sacrifice convergence time and robustness for reduced per-packet
space requirements. Finally, we have suggested one potential de-
ployment strategy using such an algorithm based on overloading
existing IP header fields and we have demonstrated that this imple-
mentation is capable of fully tracing an attack after havingreceived
only a few thousand packets. We believe our solution represents
a valuable first step towards an automated network-wide traceback
facility. Several areas remain to be addressed in future work, such
as the combination of widely distributed attacks and pointsof indi-
rection such as reflectors.
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