Practical Network Support for IP Traceback

Stefan Savage, David Wetherall, Anna Karlin and Tom Anderson

Department of Computer Science and Engineering
University of Washington
Seattle, WA, USA

Abstract

This paper describes a technique for tracing anonymousepack
flooding attacks in the Internet back towards their sourcéis T
work is motivated by the increased frequency and sophtstica
of denial-of-service attacks and by the difficulty in tragipackets
with incorrect, or “spoofed”, source addresses. In thisepape
describe a general purpose traceback mechanism based mn pro
abilistic packet marking in the network. Our approach afioav
victim to identify the network path(s) traversed by attackffic
without requiring interactive operational support frontdmet Ser-
vice Providers (ISPs). Moreover, this traceback can beopmaed
“post-mortem” — after an attack has completed. We preseiman
plementation of this technology that is incrementally dgpble,
(mostly) backwards compatible and can be efficiently imgatad
using conventional technology.

1. INTRODUCTION

Denial-of-service attacks consume the resources of a eehast or
network, thereby denying or degrading service to legitenagers.
Such attacks are among the hardest security problems tessldr
because they are simple to implement, difficult to preventg a
very difficult to trace. In the last several years, Internenidl-
of-service attacks have increased in frequency, sevariysaphis-
tication. Howard reports that between the years of 1989 &8&,1
the number of such attacks reported to the Computer Emeygenc

attacks back towards their origin — ideally stopping ancitta at
the source.

A perfect solution to this problem is complicated by the paitd
use of indirection to “launder” the true causal origin of dtaek.
For example, an attack may consist of packets sent from miény d
ferent slave machines, themselves under the control of @teem
master machine. Such indirection may be achieved eithéicakp
(by compromising the individual slave hosts directly) opimitly
(by sending false requests to the slaves on behalf of theniet

a so-calledreflecto)). More challenging still, the true origin and
identity of the attacker can be similarly concealed throughins

of false computer accounts, call forwarding, and so fortbn€e-
quently, we regard a complete solution — particularly onke &b
address the forensic needs of law enforcement — as an opbn pro
lem.

Instead, we address the more limited operational goal oplgim
identifying the machines thatirectly generate attack traffic and
the network path this traffic subsequently follows. We dail$ the
traceback problermand it is motivated by the operational need to
control and contain attacks. In this setting, even incobepbe ap-
proximate information is valuable because the efficacy aisnees
such as packet filtering improve as they are applied furtioenthe
victim and closer to the source.

Response Team (CERT) increased by 50 percent per year [25].However, even for our restricted problem, determining tberee

More recently, a 1999 CSI/FBI survey reports that 32 peroéra-
spondents detected denial-of-service attacks directathstgtheir
sites [16]. Even more worrying, recent reports indicatet thia
tackers have developed tools to coordinate distributeatkstfrom
many separate sites [14].

Unfortunately, mechanisms for dealing with denial-ofvses have
not advanced at the same pace. Most work in this area hasefibcus
on tolerating attacks by mitigating their effects on the victim [38,
2, 26, 29, 9]. This approach can provide an effective stqprgea-
sure, but does not eliminate the problem nor does it disgeusd-
tackers. The other option, and the focus of this paper, isaet
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generating attack traffic is surprisingly difficult due te@tstateless
nature of Internet routing. Attackers routinely disguikeit loca-
tion using incorrect, or “spoofed”, IP source addresses.these
packets traverse the Internet their true origin is lost amattm is
left with little useful information. While there are sevee hoc
traceback techniques in use, they all have significant daaks
that limit their practical utility in the current Internet.

In this paper we present a new approach to the tracebackegonobl
that addresses the needs of both victims and network opgrato
Our solution is to probabilistically mark packets with palpath
information as they arrive at routers. This approach expkbie ob-
servation that attacks generally comprise large numbepsacifets.
While each marked packet represents only a “sample” of thie pa
it has traversed, by combining a modest number of such paeket
victim can reconstruct the entire path. This allows victimtocate
the approximate source of attack traffic without requiring assis-
tance of outside network operators. Moreover, this deteation
can be made even after an attack has completed. Both facais of
solution represent substantial improvements over exjstapabili-
ties for dealing with flooding-style denial-of-serviceaatks.



A key practical deployment issue with any modification ofent
net routers is to ensure that the mechanisms are efficiemily i
plementable, may be incrementally deployed, and are badsva
compatible with the existing infrastructure. We describaze-
back algorithm that adds little or no overhead to the rosteritical
forwarding path and may be incrementally deployed to ali@aé-
back within the subset of routers supporting our schemethEgr
we demonstrate that we can encode the necessary path itifmmma
in a way that peacefully co-exists with existing routerssthgys-
tems and more than 99% of today's traffic.

The rest of this paper is organized as follows: In Section &, w
describe related work concerning IP spoofing and solutiorthe
traceback problem. Section 3 outlines our basic approadtsec-
tion 4 characterizes several abstract algorithms for impleting

it. In Section 5 we detail a concrete encoding strategy forabu
gorithm that can be implemented within the current Inteerati-
ronment. We also present experimental results demonsjrétie
effectiveness of our solution. In section 6 we discuss thi fira-
itations and weaknesses of our proposal and potential Sxteh
to address some of them. Finally, we summarize our findings in
Section 7.

2. RELATED WORK

It has been long understood that the IP protocol permitsyanoos
attacks. In his 1985 paper on TCP/IP weaknesses, Morrigsurit

“The weakness in this scheme [the Internet Protocol]
is that the source host itself fills in the IP source host
id, and there is no provision in ... TCP/IP to discover
the true origin of a packet.” [31]

In addition to denial-of-service attacks, IP spoofing carubed
in conjunction with other vulnerabilities to implement arymous
one-way TCP channels and covert port scanning [31, 3, 24, 44]

There have been several efforts to reduce the anonymitydaifo
by IP spoofing. Table 1 provides a subjective charactednatif
each of these approaches in terms of management cost,onedliti
network load, overhead on the router, the ability to tracdtimu
ple simultaneous attacks, the ability trace attacks aftey have
completed, and whether they are preventative or reactiveaMb
characterize our proposed traceback scheme according &athe
criteria. In the remainder of this section we describe eaekipus
approach in more detail.

2.1 Ingress filtering

One way to address the problem of anonymous attacks is te elim
inate the ability to forge source addresses. One such agiproa
frequently calledngress filtering is to configure routers to block
packets that arrive with illegitimate source addresses [PAis re-
quires a router with sufficient power to examine the sourciress

of every packet and sufficient knowledge to distinguish leetwie-
gitimate and illegitimate addresses. Consequently, sgjfiétering

is most feasible in customer networks or at the border ofrivete
Service Providers (ISP) where address ownership is relgtivn-
ambiguous and traffic load is low. As traffic is aggregatednfro
multiple ISPs into transit networks, there is no longer egtoin-
formation to unambiguously determine if a packet arrivingagar-
ticular interface has a “legal” source address. Moreovennany
deployed router architectures the overhead of ingressliiéeomes
prohibitive on high-speed links.

The principal problem with ingress filtering is that its effiee-
ness depends on widespread, if not universal, deploymemnt. U
fortunately, a significant fraction of ISPs, perhaps thearigj, do
not implement this service — either because they are umddr
or have been discouraged by the administrative burdestential
router overhead and complications with existing servites te-
pend on source address spoofing (e.g. some versions of Mobile
IP [33] and some hybrid satellite communications architesg). A
secondary problem is that even if ingress filtering were ersally
deployed at the customer-to-ISP level, attackers couldfstge
addresses from the hundreds or thousands of hosts withifich va
customer network [14].

It is clear that wider use of ingress filtering would dramaliiz im-
prove the Internet's robustness to denial-of-serviceltaAt the
same time it is prudent to assume that such a system will rmver
fullproof — and therefore traceback technologies will doné to be
important.

2.2 Link testing

Most existing traceback techniques start from the routesedt to
the victim and interactively test its upstream links urtiéy deter-
mine which one is used to carry the attacker's traffic. Ige#iis
procedure is repeated recursively on the upstream routédrthe
source is reached. This technique assumes that an attaekngem
active until the completion of a trace and is therefore imappate
for attacks that are detected after the fact, attacks thatraoter-
mittently, or attacks that modulate their behavior in resmto a
traceback (it is prudent to assume the attacker is fullyrmfd).
Below we describe two varieties of link testing scheniegut de-
buggingandcontrolled flooding

2.2.1 Input debugging

Many routers include a feature callédput debugging that al-
lows an operator to filter particular packets on some egress p
and determine which ingress port they arrived on. This cipab
ity is used to implement a trace as follows: First, the victimst
recognize that it is being attacked and develoatiack signature
that describes a common feature contained in all the attack-p
ets. The victim communicates this signature to a networkaipg
frequently via telephone, who then installs a correspamdiput
debugging filter on the victim's upstream egress port. Tltisr fi
reveals the associated input port, and hence which upstreater
originated the traffic. The process is then repeated remlyson
the upstream router, until the originating site is reachetthe trace
leaves the ISP's border (and hence its administrative aootwer
the routers). In the later case, the upstream ISP must baatent
and the procedure repeats itself. While such tracing isuieatly
performed manually, several ISPs have developed toolsttoreat-
ically trace attacks across their own networks [41].

The most obvious problem with the input debugging approach,
even with automated tools, is its considerable managemestt o
head. Communicating and coordinating with network opesatt
multiple ISPs requires the time, attention and commitméioth

the victim and the remote personnel — many of whom have no di-
rect economic incentive to provide aid. If the appropriagéwork

!Some modern routers ease the administrative burden ofgagre
filtering by providing functionality to automatically chiesource
addresses against the destination-based routing tahigs (@
verify uni cast reverse-pathonCisco's IOS). This ap-
proach is only valid if the route to and from the customer isi1sy
metric — generally at the border of single-homed stub nétaior



Management Network | Router | Distributed| Post-mortem| Preventative/
overhead | overhead| overhead| capability capability reactive
Ingress filtering Moderate Low Moderate N/A N/A Preventative
Link testing
Input debugging High Low High Good Poor Reactive
Controlled flooding Low High Low Poor Poor Reactive
Logging High Low High Excellent Excellent Reactive
ICMP Traceback Low Low Low Good Excellent Reactive
Marking Low Low Low Good Excellent Reactive

Table 1: Qualitative comparison of existing schemes for cobrating anonymous attacks and the probabilistic marking appoach we

propose.

operators are not available, if they are unwilling to assistf they
do not have the appropriate technical skills and capadslithen a
traceback may be slow or impossible to complete [21].

2.2.2 Controlled flooding

Burch and Cheswick have developed a link testing tracebesadi t
nigue that does not require any support from network opesd6€d.
We call this techniqueontrolled floodingoecause it tests links by
flooding them with large bursts of traffic and observing hovs th
perturbs traffic from the attacker. Using a pre-generatedg’m
of Internet topology, the victim coerces selected hostaglihe
upstream route into iteratively flooding each incoming lakthe
router closest to the victim. Since router buffers are stgpackets
traveling across the loaded link — including any sent by thecier
— have an increased probability of being dropped. By obegrvi
changes in the rate of packets received from the attaclkevyithim
can therefore infer which link they arrived from. As with etHink
testing schemes, the basic procedure is then applied reslyren
the next upstream router until the source is reached.

While the scheme is both ingenious and pragmatic, it hagakeve
drawbacks and limitations. Most problematic among thesbat
controlled flooding is itself a denial-of-service attackxpiting
vulnerabilities in unsuspecting hosts to achieve its eftiss draw-
back alone makes it unsuitable for routine use. Also, cdletio
flooding requires the victim to have a good topological malaafe
sections of the Internet in addition to an associated lisividfing”
flooding hosts. As Burch and Cheswick note, controlled flngdi
is also poorly suited for tracing distributed denial-of\8ee attacks
because the link-testing mechanism is inherently noisyieoan
be difficult to discern the set of paths being exploited whari-m
tiple upstream links are contributing to the attack. Fipdlke all
link-testing schemes, controlled flooding is only effeetat tracing
an on-going attack and cannot be used “post-mortem”.

2.3 Logging

2.4 |CMP Traceback

Since the first writing of this paper, a new traceback propbaa
emerged based on the use of explicit router-generated |Catie-t
back messages [4]. The principle idea in this scheme is feryev
router to sample, with low probability (e.g., 1/20,000)eouf the
packets it is forwarding and copy the contents into a spéCisiP
traceback message including information about the adjaoaters
along the path to the destination. During a flooding-stytack,
the victim host can then use these messages to reconstrath a p
back to the attacker. This scheme has many benefits compared t
previous work and is in many ways similar to the packet maykin
approach we have taken. However, there are several diszden

in the current design that complicate its use. Among theG#®R
traffic is increasingly differentiated and may be filteredate lim-
ited differently from normal traffic, the ICMP Traceback reage
relies on an input debugging capability (i.e. the abilityasso-
ciate a packet with the input port and/or MAC address on which
it arrived) that is not available in some router architeesyrif only
some of the routers participate it seems difficult to posl§ivicon-
nect” traceback messages from participating routers sgg@dby a
non-participating router, and finally, it requires a keytdimition
infrastructure to deal with the problem of attackers segdaise
ICMP Traceback messages. That said, we believe that thensche
is promising and that hybrid approaches combining it wittnemf
the algorithms we propose are likely to be quite effective.

3. OVERVIEW

Burch and Cheswick mention the possibility of tracing flowgat-
tacks by “marking” packets, either probabilistically orteleninisti-
cally, with the addresses of the routers they traverse [B¢ victim
uses the information in the marked packets to trace an altack
to its source. This approach has not been previously explarany
depth, but has many potential advantages. It does not eeuptiar-
active cooperation with ISPs and therefore avoids the highage-
ment overhead of input debugging. Unlike controlled floggliit
does not require significant additional network traffic aat po-
tentially be used to track multiple attacks. Moreover, lizgging,

An approach suggested in [37] and [41] is to log packets at key packet marking can be used to trace attacks “post-morterahig |

routers and then use data mining techniques to determingatine
that the packets traversed. This scheme has the usefulrpyropat

it can trace an attack long after the attack has completediemer,

it also has obvious drawbacks, including potentially ermumre-
source requirements (possibly addressed by sampling) éande
scale inter-provider database integration problem. Weinesvare
of any commercial organizations using a fully operatiomate-

back approach based on logging

2Historically, the T3-NFSNETid log network-to-network traffic
statistics and these were used on at least one occasiorcéolRa
spoofing attacks to an upstream provider [43].

after the attack has stopped. Finally, we have found thakimgr
algorithms can be implemented without incurring any sigatifit
overhead on network routers. The remainder of this papearsies
on fully exploring and characterizing this approach.

3.1 Definitions

Figure 1 depicts the network as seen from a viclim For the
purposes of this pape¥, may be a single host under attack, or a
network border device such as a firewall or intrusion detecsys-
tem that represents many such hosts. Every poteattiatk origin

A; is aleaf in a tree rooted &f and every routeR; is an internal



Figure 1: Network as seen from the victim of an attack,V'.
Routers are represented byR;, and potential attackers by A;.
The dotted line represents a particularattack path between an
attacker and the victim.

node along a path between someandV. Theattack pathfrom
A; is the unique ordered list of routers betweénandV'. For in-
stance, if an attack originates froAy then to reactV it must first
traverse the pat®s, R3, R», andR; — as shown by the dotted line
in Figure 1.

The exact tracebaclproblem is to determine the attack path and
the associated attack origin for each attacker. Howevévjngp
this problem is complicated by several practical limitaio The
exact attack origin may never be revealed (even MAC souree ad
dresses may be spoofed) and a wily attacker may send falsasig
to “invent” additional routers in the traceback path. We radd
these issues in section 6, but for now we restrict our disongs
solving a more limited problem. We define thpproximate trace-

packets may be lost or reordered,

attackers send numerous packets,

the route between attacker and victim is fairly stable,

¢ routers are both CPU and memory limited, and

routers are not widely compromised.

The first four assumptions represent conservative assessroe
the abilities of the modern attackers and limitations ofrieewvork.
Designing a traceback system for the Internet environmeeixi
tremely challenging because there is very little that catristed.
In particular, the attacker's ability to create arbitragckets sig-
nificantly constrains potential solutions. When a routeerees a
packet, it has no way to tell whether that packet has beenedark
by an upstream router or if the attacker simply has forgesl ithi
formation. In fact, the only invariant that we can dependthat
a packet from the attacker must traverse all of the routetsdrn
it and the victim.

The remaining assumptions reflect the basis for our desigrdan
serve additional discussion. First, denial-of-servitaeks are only
effective so long as they occupy the resources of the vicGon-
sequently, most attacks are comprised of thousands owonsliof
packets. Our approach relies on this property because wk mar
each packet with only a small piece of path state and thenvicti
must observe many such packets to reconstruct the cométe p
back the the attacker. If many attacks emerge that requisean
single packet to disable a host (e.g. ping-of-death [Lhpntthis
assumption may not hold (although we note that even thesekatt
require multiple packets tkeepa machine down).

Second, measurement evidence suggests that while Inteutes
do change, it is extremely rare for packets to follow manjedént
paths over the short time-scales of a traceback operatémo(sis

backproblem as finding a candidate attack path for each attacker in our system) [32]. This assumption greatly simplifies tble of

that contains the true attack path as a suffix. We call thivtie
suffixof the candidate path. For exampl®s( Rs, Rs, R, R1) is
a valid approximate solution to Figure 1 because it contiasrue
attack path as a suffix. We say a solution to this problerolisist
if an attacker cannot prevent the victim from discoveringdidate
paths containing the valid suffix.

All marking algorithms have two components:ngarking proce-
dure executed by routers in the network ancpath reconstruc-
tion procedureimplemented by the victim. A router “marks” one
or more packets by augmenting them with additional infofamat
about the path they are traveling. The victim attempts tomstruct
the attack path using only the information in these markexdkeis.
Theconvergence timef an algorithm is the number of packets that
the victim must observe to reconstruct the attack path.

3.2 Basic assumptions

The design space of possible marking algorithms is largd,tan
place our work in context we identify the assumptions thativate
and constrain our design:

e an attacker may generate any packet,
e multiple attackers may conspire,

e attackers may be aware they are being traced,

the victim, since it can therefore limit its consideratiana single
primary path for each attacker. If the Internet evolves tovakig-
nificant degrees of multi-path routing then this assumptiay not
hold.

Third, while there have been considerable improvementsuiter
implementation technology, link speeds have also incrbase-
matically. Consequently, we assert that any viable impleaten
must have low per-packet overhead and must not require @&r-fl
state. Significantly simpler schemes than ours can be ingiézd

if we assume that routers are not resource constrained.

Finally, since a compromised router can effectively eliatenany
information provided by upstream routers, it is effectivaidis-

tinguishable from an attacker. In such circumstances, ¢bargy
violation at the router must be addressed first, before arthdu
traceback is attempted. In normal circumstances, we leelieis
is an acceptable design point. However, if non-malicious,if-

formation hiding, routing infrastructures become poputarch as
described in [22, 35], then this issue may need to be redisite

4. BASIC MARKING ALGORITHMS

In this section we describe a series of marking algorithimsi#ing
from the most simple and advancing in complexity. Each étgor
attempts to solve the approximate traceback problem in anaran
consistent with our assumptions.



Marking procedure at router:
for each packetw, appendR to w

Path reconstruction procedure at victim
for any packetw from attacker
extract path R;..R;) from the suffix ofw

Figure 2: Node append algorithm.

4.1 Node append

The simplest marking algorithm — conceptually similar te ti®
Record Route option [34] —is to append each node's addréiss to
end of the packet as it travels through the network from k#tato
victim (see Figure 2). Consequently, every packet receinethe
victim arrives with a complete ordered list of the routersatersed
— a built-in attack path.

The node append algorithm is both robust and extremely qoick
converge (a single packet), however it has several serimitat
tions. Principal among these is the infeasibly high routerbead
incurred by appending data to packets in flight. Moreovercesi
the length of the path is not knowea priori, it is impossible to
ensure that there is sufficient unused space in the packéhdor
complete list. This can lead to unnecessary fragmentatidrbad
interactions with services such as MTU discovery [30]. Tgrisb-
lem cannot be solved by reserving “enough” space, as thekatta
can completely fill any such space with false, or misleadpaih
information.

4.2 Node sampling

To reduce both the router overhead and the per-packet space r

Marking procedure at router:
for each packetw
let z be a random number from [0..1)
if z < pthen,
write R into w.node

Path reconstruction procedure at victim
let NodeT'bl be a table of tuples (node,count)
for each packetv from attacker
z := lookupw.node inNodeTbl
if z!=NIL then
incrementz.count
else
insert tuple {v.node,1) iNNodeT'bl
sort NodeT'bl by count
extract path R;..R;) from ordered node fields itVodeT'bl

Figure 3: Node sampling algorithm.

more samples than a downstream router, nor to reorder \@aligrs
in the path by contributing more samples than the differdree
tween any two downstream routers.

However, there are also two serious limitations. Firstirihg the
total router order from the distribution of samples is a sfracess.
Routers far away from the victim contribute relatively feansples
(especially sincg must be large) and random variability can eas-
ily lead to misordering unless a very large number of samates
observed. Forinstance,df= 15 andp = 0.51, the receiver must
receive more than 42,000 packets on average before it B=caiv
singlesample from the furthest router. To guarantee that the order

quirement, we can sample the path one node at a time instead ofis correct with 95% certainty requires more than seven tithas

recording the entire path. A single static “node” field isee®d

in the packet header — large enough to hold a single routeessid
(i.e. 32 bits for IPv4). Upon receiving a packet, each rockeoses

to write its address in the node field with some probabibityAf-

ter enough packets have been sent, the victim will havevedeit
least one sample for every router in the attack path. Asdtate
section 3, we assume that the attacker sends enough paokets a
the route is stable enough that this sampling can converge.

Although it might seem impossible to reconstruct an ordgratth
given only an unordered collection of node samples, it tomghat
with a sufficient number of trials, the order can be deducenhfine
relative number of samples per node. Since routers aregedse-
rially, the probability that a packet will be marked by a reuand
then left unmolested by all downstream routers is a stridigreas-
ing function of the distance to the victim. If we constrairo be
identical at each router, then the probability of receivinmarked
packet from a routed hops away ig(1 — p)?~*. Since this func-
tion is monotonic in the distance from the victim, rankingclea
router by the number of samples it contributes will tend todarce
the accurate attack path. The full algorithm is shown in Fegi

Putting aside for the moment the difficulty in changing thé&ader
to add a 32-bit node field, this algorithm is efficient to implnt
because it only requires the addition of a write and checkspm
date to the forwarding path. Current high-speed routersadly
must perform these operations efficiently to updatetithe-to-live
field on each hop. Moreover, jf > 0.5 then this algorithm is ro-
bust against a single attacker because there is no way foreaer
to insert a “false” router into the path's valid suffix by captiting

number.

Second, if there are multiple attackers then multiple nsutaay
exist at the same distance — and hence be sampled with théesamp
probability. Therefore, this technique is not robust agaimultiple
attackers.

4.3 Edge sampling

A straightforward solution to these problems is to expljo@incode
edgesn the attack path rather than simply individual nodes. To do
this, we would need to resert@o static address-sized fieldstart
andend in each packet to represent the routers at each end of a
link, as well as an additional small field to represent theadise of

an edge sample from the victim.

When a router decides to mark a packet, it writes its own axddre
into the start field and writes a zero into the distance fieldh-O
erwise, if the distance field is already zero this indicatest the
packet was marked by the previous router. In this case, tiero
writes its own address into the end field — thereby represgrttie
edge between itself and the previous router. Finally, if inater
doesn't mark the packet then it always increments the distan
field. This somewhat baroque signaling mechanism allows edg
sampling to be incrementally deployed — edges are constiutily
between participating routers.

The mandatory increment iitical to minimize spoofing by an
attacker. When the packet arrives at the victim its distdield
represents the number of hops traversed since the edgetdinsn



Marking procedure at router:
for each packetw
let z be a random number from [0..1)
if z < pthen
write R into w.start and O intav.distance
else
if w.distance = 0 then
write R into w.end
incrementw.distance

Path reconstruction procedure at victim
let G be a tree with root
let edges inG be tuples (start,end,distance)
for each packet from attacker
if w.distance =0 then
insert edge.startp,0) intoG
else
insert edge.startw.endw.distance) inta
remove any edgex(y,d) with d # distance from: to v in G
extract path R;..R;) by enumerating acyclic paths @

Figure 4: Edge sampling algorithm.

was sampled.Any packets written by the attacker will necessarily
have a distance greater or equal to the length of the truekatth.
Therefore, a single attacker is unable to forge any edgedmtw
themselves and the victim (for a distributed attack, of seuthis
applies only to the closest attacker) and the victim doeshage

to worry about “chaff” while reconstructing the valid suffof the
attack path. Consequently, since we no longer use the sagnpli
rank approach to distinguish “false” samples, we are freas®
arbitrary values for the marking probabilipy

The victim uses the edges sampled in these packets to crgateta
(much as in Figure 1) leading back to the source, or sourdes, o
attack. The full algorithm is described in Figure 4. Becatse
probability of receiving a sample is geometrically smatlee fur-

ther away it is from the victim, the time for this algorithm ¢on-
verge is dominated by the the time to receive a sample from the
furthest routerm in expectation, for a routet hops away.

However, there is a small probability that we will receiveaanple
from the furthest router, but not from some nearer router. cAfe
bound this effect to a factor dfi(d) by the following argument:
We conservatively assume that samples from all of dheuters
appear with the same likelihood as the furthest router. &these
probabilities are disjoint, the probability that a givencket will
deliver a sample from some router is at ledgtl — p)?~!. Fi-
nally, as per the well-knowooupon collectoproblem, the number
of trials required to select one of each éfequi-probable items
is d(In(d) + O(1)) [19]. Therefore, the number of packetX,
required for the victim to reconstruct a path of lengtthas the

following bounded expectation:

In(d)

EX) < /————
) p(l—p)t?

1
10?7
31t is important that distance field is updated using a sangaid-
dition. If the distance field were allowed to wrap, then thacker
could spoof edges close to the victim by sending packets aith
distance value close to the maximum.

For example, ifp = and the attack path has a length of 10,

then a victim can typically reconstruct this path after reicg 75
packets from the attacker. While this choicepof= % is optimal,
the convergence time is not overly sensitive to this paranfet the
path lengths that occur in the Internet. So long as % the results
are generally within a small constant of optimal. In the cfghis
paper we will use = 21—5 since few paths exceed this length [7, 42,
17]. For comparison, the previous example converges with on
108 packets using = =.

25

This same algorithm can efficiently discern multiple attade-
cause attackers from different sources produce disjoigegéch the
tree structure used during reconstruction. The number okeia
needed to reconstruct each path is independent, so the naibe
packets needed to reconstruct all paths is a linear funcfdhe
number of attackers. Finally, edge sampling is also robiisiat

is it is impossible for any edge closer than the closest lettam
be spoofed, due to the robust distance determination. Cselye
in a distributed attack this also means that it is impossiblgust
the contents of any edderther away than the closest attacker. As
with the ICMP Traceback approach [4], an additional mectrani
incorporating a shared secret is required to completelyezdcthe
problem of attackers spoofing edges.

Of course, a significant practical limitation of this appebas that

it requires additional space in the IP packet header anéfireris
not backwards compatible. In the next section we discussd mo
ified version of edge-sampling that addresses this probidoeit

at some cost in performance and a reduction in robustnegsgdur
large distributed attacks.

5. ENCODING ISSUES

The edge sampling algorithm requires 72 bits of space inye\rer
packet (two 32-bit IP addresses and 8 bits for distance teerep
sent the theoretical maximum number of hops allowed using IP

It would be possible to directly encode these values into &L$1
label stack [36], to enable traceback within a single homegeas

ISP network. However, our focus is on a heterogeneous emviro
ment based purely on IP datagrams. One obvious approach is to
store the edge sample data in an IP option, but this is a paiceh

for many of the same reasons that the node append algorithm is
infeasible — appending additional data to a packet in flighdx-
pensive and there may not be sufficient space to append tiais da
We could also send this data out-of-band — in a separate fpacke
but this would add both router and network overhead plus ¢ine-c
plexity of a new and incompatible protocol.

Instead, we have developed a modified version of edge sagnplin
that dramatically reduces the space requirement in retura fnod-
est increase in convergence time and a reduction in robsstioe
multiple attackers. Following an analysis of our algorithra ex-
plore the practical implementation issues and discuss onerete
encoding of this scheme based on overloading the 16-hidfti-
ficationfield used for fragmentation. Any solution involving such
overloading necessarily requires compromises and wessthes
our solution reflects only one design point among many piaknt
implementation tradeoffs for this class of algorithm atwes not
necessarily reflect an optimal balance among them.

5.1 Compressed edge fragment sampling

We use three techniques to reduce per-packet storage eatgrits
while preserving robustness. First, we encode each edgalin h
the space by representing it as #aeclusive-or(XOR) of the two

IP addresses making up the edge, as depicted in Figure 5. When
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packets

Path reconstruction
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in path

allb
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Figure 5: Edge data can be communicated in half the space by
sending the XOR of the two nodes (i.e. router IP addresses)
making up an edge, rather than sending each node separately.
Over time the victim receives the messages ¢ & d, b & ¢, and

a & b. By XORing these messages together the original path can
be reconstructed.

Address

Bitinterleave

Hash(Address)

[N N WD N N U W —
0 k-1

Send k fragments into network

Figure 6: Each router calculates a uniform hash of its IP ad-
dress once, at startup, using a well-known function. This hsh
is interleaved with the original IP address (the original address
on odd bits, the hash on even bits). The resulting quantity is
then broken into k fragments, which the router selects among
randomly when marking a packet. Although it is hot shown,
each of these fragments is further labeled with its offset. fie
next downstream router uses this offset to select the apprap
ate fragment to XOR — thereby encoding part of an edge.

some router decides to mark a packet it writes its addigssito

the packet. The following routeb, notices that the distance field
is 0 and (assuming it does not mark the packet itself) reafdsm

the packet, XORs this value with its own address and writes th
resulting valuea &b, into the packet. We call the resulting value the
edge-idfor the edge betweem andb. The edge-ids in the packets
received by the victim always contain the XOR of two adjacent
routers, except for samples from routers one hop away fram th
victim, which arrive unmodified. Since® a © b = a, marked
packets from the final router can be used to decode the pieviou
edge id, and so on, hop-by-hop until we reach the first router.

Our second modification further reduces our per-packetespac
quirements by subdividing each edge-id into some nunmbeof
smaller non-overlapping fragments. When a router deciolesark
a packet, it selects one of these fragments at random arebkstor
in the packet. We use a few additional bitsgi k) to store the off-
set of this fragment within the original address — this isassary to
ensure that both fragments making up an edge-id are takertfre
same offset. If enough packets are sent by the attackerjdtismv
will eventually receive all fragments from all edge-ids.

Combine k fragments from network

0 k-1
[t St cuntens Sunten St Gunten St )

BitDeinterleave

Address? Hash(Address)?

Hash

Hash(Address?)

Address

Figure 7: When reconstructing a candidate edge, the vic-
tim combines k fragments to produce a bit string. By de-
interleaving this string, the address portion and the hash pr-
tion are extracted. We recalculate the hash over this addres
portion using the same hash function used by the router. If
the resulting hash is the same as the hash portion extracted,
then the address is accepted as valid. This procedure protec
against accidentally combining fragments of different edgs.

Finally, unlike full IP addresses, edge-id fragments areumique
and multiple fragments from different edge-ids may havestae
value. If there are multiple attackers, a victim may receigtiple
edge fragments with the same offset and distance. To redhace t
probability that we accidentally reconstruct a “false” edd by
combining fragments from different paths, we add a simpterer
detection code to our algorithm. Vifecreasethe size of each router
address, and hence each edge-id, by bit-interleaving itsltiPess
with a random hash of itself (depicted in Figure 6). As desemli
earlier, this value is split into fragments, each fragmergelected
randomly and stored with an offset, and downstream routees u
XOR to combine fragments at the same offset to make up edge-id
fragments. The victim constructsindidate edge-idsy combining

all combinations of fragments at each distance with disjoffset
values. As shown in Figure 7, a candidate edge-id is onlymede

if the hash portion matches the data portion for each of its tw
nodes. As we increase the size of the hash, the probability of
collision is reduced. We provide a describe the full procedn
Figure 8.

The expected number of packets for this algorithm to corevésg
similar to the edge sampling approach, except now we kedeab-
ments for each edge-id, rather than just one, a totedidfagments.
If we again assume conservatively that each of these fragnien
delivered equi-probably with probabiliy(1 — p)¢~"', the expected
number of packets required for path reconstruction is bedrigy:

B(X) < k- ln(kdz
p(1 —p)+!
For example, if there are 8 fragments per edge-id, an attask®
hops away, ang = % then a victim can reconstruct the full path
after receiving slightly less than 1,300 packets on averaéging
techniques similar to those used to show sharp concentnasults
for the coupon collectors problem, we can further show that t
approximate the number of packets required to ensure thatha p



Marking procedure at router:
let R' = BitintereaveR, Hash(R))
let k be the number of non-overlapping fragmentgih
for each packetw
let z be a random number from [0..1)
if z < pthen
let o be a random integer from [@&. — 1]
let f be the fragment oR?' at offseto
write f into w.frag
write 0 intow.distance
write o into w.offset
else
if w.distance =0 then
let f be the fragment of?’ at offsetw.offset
write f & w.frag intow.frag
incrementw.distance

Path reconstruction procedure at victim
let FragTbl be a table of tuples (frag,offset,distance)
let G be a tree with root
let edges inG be tuples (start,end,distance)
let maxzd:=0
letlast :=v
for each packety from attacker
FragThbl.Insertqw.fragw.offsetw.distance)
if w.distance> maxd then
maxd ;= w.distance
for d := 0 tomaxzd
for all ordered combinations of fragments at distadce
construct edge
if d # 0then
z:=z®last
if Hash(EvenBits{)) = OddBitsg) then
insert edge {,EvenBits¢),d) into G
last := EvenBitsg);
remove any edgex(y,d) with d # distance from: to v in G
extract path ;..R;) by enumerating acyclic paths @&

Figure 8: Compressed edge fragment sampling algorithm.

can be reconstructed with probability— % is:

k- In(kdc)
p(l—p)*!

packets. To completely reconstruct the previous path wh% 9
certainty should require no more than 2150 packets. Maniatien
of-service attacks send this many packets in a few seconds.

Finally, we explore the robustness of this algorithm witbgect to
multiple attackers. For a random hash of lenigtthe probability of
accepting an arbitrarily constructed candidate edge-'gé; isin the
event that there are attackers, then at any particular distad¢cen
the worst case there may be upradistinct routers: Consequently
the probability that any edge-id at distantis accepted incorrectly
is at most:
1 ok

1—-(1- 2—h)
In practice, the number of distinct routers is likely to beaier
for the portion of the path closest to the receiver, sinceyratn
tackers will still share significant portions of their attgmath with
one another.

IP header
ver|h|6n| TOS |
tHgs|

*header checksum

total length

identification offset

time to Iive| protocol

source IP address

destination IP adtiress

offset | distance edge fragment

0 23 78 15

Figure 9: Encoding edge fragments into the IP identification
field.

since there are:* possible combinations of fragments in the worst
case. Foh = 32 andk = 4 this means that 100 distinct routers
at the same distance (i.e. disjoint attack paths) will belvesl
with no errors with a probability of better than 97%. For= 32
andk = 8, (the values we use for our implementation) the same
certainty can only be provided for 10 distinct routers at shene
distance. Our use of the XOR function further complicate®ne
struction since all combinations of XOR values must be taed
attack paths diverge. This is somewhat mitigated as theapibb

ity of propagating an error from a single edge all the way t th
attacker is is extremely small because the resulting edgedien
XORed with the previous edge-id, must again produce a correc
hash.

The most significant drawback to this scheme is the large eaotb
combinations that must be considered as the multiple apiatts
diverge. While these combinations can be computed off-lioe
large values ok andm even this can become intractable. For ex-
ample, even wittk = 8 andm = 10, if the separate attack paths
diverge such that there are 10 completely independent guigres
attacker, this will require roughly a billion combinatiottsbe con-
sidered. Consequently, there is a design tension in theo$ize-
per-packet space overhead is reduced by a ldrgeshile compu-
tational overhead and robustness benefits from a snialler

5.2 IP header encoding

To allow for practical deployment requires that we “ovedbax-
isting header fields in a manner that will have minimal impawct
existing users. This is a difficult task, especially giveatteven
after prodigious effort we require 16 bits of space. Nonkthe we
believe it possible to obtain this space by overloading it IP
identification field. This field is currently used to diffetate IP
fragments that belong to different packets. We describepoor
posed encoding below, and then discuss the issues of batdwar
compatibility that it raises. However, we note that becahseis-
sue of backwards-compatible encoding is largely separate dur
traceback algorithms, we could adopt any reasonable emgdldat
comes to light.

Figure 9 depicts our choice for partitioning the identifioatfield:
3 offset bits to represent 8 possible fragments, 5 bits toessmt



the distance, and 8 bits for the edge fragment. We use a 32-bit
hash, which doubles the size of each router address to 64Thiis
implies that 8 separate fragments are needed to represgnéedge

— each fragment indicated by a unique offset value. Fin&llyits

is sufficient to represent 31 hops, which is more than almibst a
Internet paths [7, 42, 17].

The observant reader will note that this layout is choserlltwa
the highest performance software implementation of ousritlym,
which already had a low per-packet router overhead. In tme-co
mon case, the only modification to the packet is to incremisnt i
distance field. Because of its alignment within the packes, in-
crement precisely offsets the required decrement of the-tiorlive
field implemented by each router [1]. Consequently, the aead
checksundoes not need to be altered at atid the header manipu-
lation overhead could be even lower than in current softvizased
routers — simply an addition to the distance field, a decremnoghe
TTL field, and a comparison to check if either has overflowed. |
the worst case, our algorithm must read the IP identificdirld,
lookup an edge fragment and XOR it, and fold the write-ba¢& in
the existing checksum update procedure (a few ALU operslion
Of course, for modern ASIC-based routers these optiminatare
unnecessary.

As we reuse of the IP identification field, we must addresss st
backwards-compatibility for IP fragment traffic. Ultimatethere
is no perfect solution to this problem and we are forced toenak
compromises that disadvantage fragmented traffic. Faitnae-

4500
4000
3500

— 95th percentile
— Mean
Median

15 20 25 30

Path length

Figure 10: Experimental results for number of packets neede
to reconstruct paths of varying lengths. The marking probabl-
ity, p, is set to%. Each path length result represents the results
of 1,000 independent simulation runs.

decide to mark a fragment, we prepend a new ICMP “echo reply”
header, along with théull edge data — truncating the tail of the
packet. This ICMP packet is considered “marked” and itsadise
field is set to zero, thereby guaranteeing that the distaet -
flects the number of edges traversed on the way to the victime. T
packet is consequently “lost” from the standpoint of theeieer,

but the edge information is delivered in a way that does npgich

cent measurements suggest that less than 0.25% of packets arl€9acy hosts. Because we can use the full edge samplingthrgor

fragmented [40, 10]. Moreover, it has long been understbadl t
network-layer fragmentation is detrimental to end-to-gmaifor-
mance [27] so modern network stacks implement automatic MT
discovery to prevent fragmentation regardless of the unpiter
media [30]. Consequently, we believe that our encoding intiér-
operate seamlessly with existing protocol implementationthe
vast majority of cases.

U

However, there is a small but real fraction of legitimatdftcathat
is fragmented, and we wish to ensure that it is not affected by
our modifications to the extent that this is possible. Notynidla
packet is fragmented, its identification field is copied tohefiag-
ment so the receiver can faithfully reassemble the fragsnito
the original packet. Our marking procedure can violate pinep-
erty in one of two ways: by writing different values into thaen-
tification fields of fragments from the same datagram or byingi
the same values into the identification fields of fragmeramfdif-
ferent datagrams. These two problems present differefieciges
and have different solutions.

First, a datagram may be fragmentagdstreamfrom a marking
router. If the fragment is subsequently marked and futwagrfrents
from the same datagram are not marked consistently thesawas
bly may fail or data may be corrupted. While the simplest solu
tion to this problem is to simply not mark fragments, an adaey
would quickly learn to evade traceback by exploiting thisita-
tion. In fact, some current denial-of-service attacksadseuse 1P
fragments to exploit errors in host IP reassembly funct[@g@$. In-
stead, we propose an alternative marking mechanism fomfeags.
We use a separate marking probabilityfor fragments. When we

%It is also reasonable to turn off marking on any routers thanot
be directly connected to an attacking host (e.g. core rgytédihis
both reduces the convergence time, and increases the "refitie
distance field.

q can be more than an order of magnitude smaller thamd yet
achieve the same convergence time. This solution incréasésss
rate of fragmented flows somewhat (more substantially fogér
paths) but preserves the integrity of the data in these flows.

A more insidious problem is presented by fragmentation titat
curs downstreamfrom a marking router. If a marked packet is
fragmented, but one of the fragments is lost, then the rengin
fragments may linger in the victim's reassembly buffer forex-
tended period [5]. Future packets marked by the same roater ¢
have the same IP identification value and consequently may be
correctly reassembled with the previous fragments. Onsipitisy

is to leave this problem to be dealt with by higher layer clsechks.
However, not all higher layer protocols employ checksumsl, ia

any case it is dangerous to rely on such checksums becauyse the
are typically designed only for low residual error rates. oftrer
solution is to set th®on't Fragmenflag on every marked packet.
Along rare paths that require fragmentation, this solutioh de-
grade communication between hosts not using MTU path discov
ery, and may filter marked packets if a reduced MTU edge ieclos
to the victim, but it will never lead to data corruption.

5.3 Experience

We have implemented the marking and reconstruction patadn
our algorithm and have tested it using a simulator that esegtn-
dom paths and originates attacks. In Figure 10 we graph tlz&ame
median and 95th percentile for the number of packets reduoe
reconstruct paths of varying lengths over 1,000 randonrtestfor
each length value. We assume a marking probabilit)j—Sof Note
that while the convergence time is theoretically exporadnti the
path length, all three lines appear linear due to the finith fgangth
and appropriate choice of marking probability.

We see that most paths can be resolved with between one and two



thousand packets, and even the longest paths can be regothied
a very high likelihood within four thousand packets. To fhage
numbers in context, most flooding-style denial of servidackis

could insert “fake” edges by carefully manipulating theritifica-
tion fields in the packets it sends. While the distance fieddgmts
an attacker from spoofing edges between it and the victim -+ wha

send many hundreds or thousands of packets each second. Thave call thevalid suffix— nothing prevents the attacker from spoof-

analytic bounds we described earlier are conservativejrbatir
experience they are no more than 30% higher than our expetane
results.

6. LIMITATIONS AND FUTURE WORK

There are still a number of limitations and loose ends in quir a
proach. We discuss the most important of these here:

e backwards compatibility,
e distributed attacks,
e path validation, and

e approaches for determining the attack origin.

6.1 Backwards compatibility

The IP header encoding as we have described it has sevectit pra
cal limitations. It negatively impacts users that requmsggfnented
IP datagrams and is currently incompatible with parts o€tH28]
(the Authentication Header provides cryptographic pridecfor
the identification field and therefore the field cannot belgafed-
ified by routers). These problems are hardly unique to trackeb
and are inherent limitations that come about from attenggtirco-
exist with or co-opt protocol features that did not anti¢éga new
use. One way to address this issue, originally proposed by Jo
Hawkinson, is to selectively enable traceback support spoase
to operational needs. A “request for traceback” from a patsr
network could be encoded as a BGP attribute in the netwaokiter
advertisement. Routers receiving such an advertisemeuitivem-
able traceback support on packets destined for that netv@&irice

a network requesting such support is presumably alreadgring
under an attack, any minor service degradation for frageteor
authenticated flows would be acceptable.

Finally, our scheme does not address implementation in,|E6
proposed successor to IPv4, which does not have an idetitifica
field [18]. While we do not attempt to propose a complete emgpd
here, we believe that the same techniques we have proposkt co
also be employed within IPv6, perhaps by overloading théi24-
flow labelfield (without any further modifications this would re-
sult in roughly a factor of three increase in the number okpts
required to reconstruct a path).

6.2 Distributed attacks

For large distributed attacks, the practical implementatie have
described has serious limitations due to the difficulty inrectly
grouping fragments together. Consequently, the proliglafimis-
attributing an edge, as well as the amount of state neededhto e
uate this decision, increases very quickly with the fan-ouan
attack. There is significant future work in designing altgive en-
coding methods that scale their robustness as they receive m
data.

6.3 Path validation

ing extra edges past the end of the true attack path.

There are several ways to identify the valid suffix within &ygen-
erated by the reconstruction procedure. With minimal krealge
of Internet topology one can differentiate between routleas be-
long to transit networks (e.g. ISPs) and those which belorsjub
networks (e.g. enterprise networks). Generally spealangalid
path will never enter a stub network and then continue int@a-t
sit network. Moreover, simple testing tools sucht ascer out e
should enable a victim to determine if two networks do, int,fac
connect. More advanced network maps [8, 23] can resolveghis
sue in an increasing number of cases.

A more general mechanism is to provide each router with a “se-
cret” that is sent along with each marked packet (perhapgén t
single unallocated bit in the IP flags field). When the victiznts
to validate a router in the path, it contacts the associagddark
(possibly out of band, via telephone or e-mail) and obtdiesse-
cret used by the router at the time of the attack. To guardnagai
replay, the secret can be time-varying and hashed with thkepa
contents. Since the attacker will not know the router' setethey
will not be able to include the proper bit in their forged edde
fragments. By eliminating edge-ids for which the secrethaitt
constituent fragments can not be validated, we can prun@di-ca
date attack path to only include the valid suffix.

6.4 Attack origin detection

While our IP-level traceback algorithm could be an impottaart

of the solution for stopping denial-of-service attacksisiby no
means a complete solution. Our algorithm attempts to deéterm
the approximate origin of attack traffic — in particular, tharliest
traceback-capable router involved in forwarding attaelffic from
the source that directly generated it. As mentioned eathare
are a number of reasons why this may differ from the true sourc
of the attack: attackers can hide their true identities faufider-
ing” attacks through third parties, either indirectly (egmurf at-
tacks [13] or DNS reflectors [15]) or directly via compromidse
“stepping stone” machines or IP-in-IP tunnels. While thisren-
going work on following attackers through intermediate tkdd45,
39], there are still significant challenges in developingeaggally
applicable and universally deployable solution to thiyem. One
interesting possibility enabled by the packet marking epph is to
extend traceback across “laundering points”. For examgeti-
fying marks could be copied from a DNS request packet into the
associated DNS reply, thereby allowing the victim to trawe full
causal path.

Even in absence of such “laundering”, our approach doesexot r
veal the actual host originating the attack. Moreover, sihosts
can forge both their IP source address and MAC address thimori
of a packet may never be explicitly visible. On shared medihs

as FDDI rings, this problem can only be solved by explicitites
However, on point-to-point media, the input port a packeves on

is frequently enough to determine its true origin. On othedia,
there may be a MAC address, cell number, channel, or othér hin
that would help to locate the attack origin. In principler algo-

Some number of the packets sent by the attacker are unmarkedrithm could be modified to report this information by occasitly

by intervening routers. The victim cannot differentiateviseen
these packets and genuine marked packets. Therefore akeatta

marking packets with a special edge-id representing a latkwben
the router and the input port on which the packet arrived {beo



“hint” information). We have not explored the design of swch
feature in any depth.

Finally, traceback is only effective at finding the sourceatthck
traffic, not necessarily thattackerthemselves. Stopping an attack
may be sufficient to eliminate an immediate problem, but leanm
disincentives may require a legal remedy and thereforedtengic
means to determine an attacker's identity. Even with petface-
back support, unambiguously identifying a sufficientiyliski and
paranoid attacker is likely to require cooperation from kwforce-
ment and telecommunications organizations.

7. CONCLUSION

In this paper we have argued that denial-of-service attaubs-
vate the development of improved traceback capabilities aa
have explored traceback algorithms based on packet markihe
network. We have shown that this class of algorithm, bestaeinb
ied in edge samplingcan enable efficient and robust multi-party
traceback that can be incrementally deployed and effigientt
plemented. As well, we have developed variant algorithnad th
sacrifice convergence time and robustness for reducedagmep
space requirements. Finally, we have suggested one aitdeti
ployment strategy using such an algorithm based on ovarigad
existing IP header fields and we have demonstrated thantipie+
mentation is capable of fully tracing an attack after havisceived
only a few thousand packets. We believe our solution reptese
a valuable first step towards an automated network-wide rack
facility. Several areas remain to be addressed in futurdysrch
as the combination of widely distributed attacks and padfiadi-
rection such as reflectors.
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