Finitary inductively presented logics
by

Solomon Feferman'!

Departments of Mathematics and Philosophy
Stanford University

Abstract

A notion of finitary inductively presented (f.i.p.) logic is proposed here, which in-
cludes all syntactically described logics (formal systems) met in practice. A fi.p. theory
FSy is set up which is universal for all fi.p. logics; though formulated as a theory of
functions and classes of expressions, F'Sy is a conservative extension of PRA. The aims of
this work are (i) conceptual, (ii) pedagogical and (iii) practical. The system FSj serves
under (i) and (ii) as a theoretical framework for the formalization of metamathematics.
The general approach may be used under (iii) for the computer implementation of logics.
In all cases, the work aims to make the details manageable in a natural and direct way.

What is a logic? The question here is not “What is logic?”, which (tendentiously)
seeks to canonize some one distinguished system of reasoning as being the only true
one. But also, here, we are not after any logic—only those that are syntactically
described, or formal, as distinguished from those that are semantically described.
For the latter, a reasonable general basic notion has evolved, that of model-theoretic
logic; cf. e.g. Barwise-Feferman [1985]. Curiously (for a subject so devoted to
foundational matters), there is no corresponding generally accepted basic notion
for the formal logics. Such should cover as special cases propositional and predicate
calculi of various kinds (classical, intuitionistic, many-valued, modal, temporal,
deontic, relevance, etc.) and styles (Hilbert, Gentzen-natural deduction, Gentzen-
sequential, linear, etc.), as well as equational calculi, lambda calculi, combinatory
calculi (typed and untyped), and various applied logics (theories of arithmetic,
algebraic systems, analysis, types, sets, etc.) and logics of programs.?

The first answer usually given is that by a syntactically described logic we
mean a formal system, i.e. a triple consisting of a language, azioms and rules of
inference, all of these specified by their syntactic form. But what does this last

1 Reprinted, with some minor corrections and additions, from Logic Colloquium ‘88

(R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, eds.), North-Holland Publishing
Co., Amsterdam (1989), pp. 191-220. Permission to reprint granted by Elsevier Science
Publishers, B.V.

2 Thus the approach here is neutral as to the reasons for choosing any particular logic
for study, or for choosing one logic in preference to another.

1

mean? And what is a language anyhow? In practice, languages are themselves
systems of interrelated syntactic categories including such notions as sorts, vari-
ables, terms, propositional operators, quantifiers, abstraction operators, atomic
formulas, formulas, etc. So what do we mean by a formal language system?

Some answers to these questions have been proposed, but none so far has
gained wide acceptance. Either they are too general, so that lots of things we would
not ordinarily call logics are lumped in together and nothing interesting about
them can be proved, or they are too specific, so that many logics met in practice
are excluded, or they are too abstract, so that many significant particularities of
logics in practice are simply ignored, or they are too coercive, so that everything
is forced into one uncomfortable mould.

The aim here is to propose a comprehensive definition of a finitary inductive
system which includes both languages and logics and which covers all examples met
in practice, in a reasonably natural and direct way. As is to be expected for work
of this nature, many of the ideas will have already been employed in the literature,
in one way or another, for this and related purposes. The novelty here lies mainly
in the particular combination of ideas, although there are some definitely new
concepts which are introduced, the main ones being that of a presentation of a
finitary inductive system and thence of a finitary inductively presented logic.

The most closely related work by others is, on the one hand, that of Smullyan
[1961] (following Post [1943]—cf. also Fitting [1987]) and, on another hand, that
of Moschovakis [1984], where the question dealt with—“What is an algorithm?”—
is answered in terms of a more general class of inductive systems. The direct
predecessor of this paper is Feferman [1982], “Inductively presented systems and
the formalization of meta-mathematics”, which I refer to in the following as [IPS].
What is done below corrects, extends and improves [IPS] in certain respects, but
is based on the same leading ideas; I shall refer to it frequently in the following.

There are three main reasons for pursuing our leading question:

(i) Conceptual. The topologists have their topological spaces, the algebraists have
their algebraic structures (the very abstract algebraists have their categories), the
analysts have their normed spaces, the probabilists have their measure spaces, the
model-theorists have their model-theoretic logics, so the formal logicans ought to
have their formal logics.

But the matter on the conceptual level goes deeper. Many subjects have been
transformed by the search for the “right way” to provide a manageable systematic
development of their part of mathematics, even though some of the basic ideas and
results are very intuitive. Examples are the exterior differential calculus as the
framework for the ordinary and higher dimensional versions of Stokes” and Gauss’
theorems, or the categorical theory of homology as the framework for combinatorial
topology.

Where an exact notion of formal system is particularly needed in our subject
is in the formalization of metamathematics, beginning with Gédel’s Second Incom-
pleteness Theorem. As we know, this is very sensitive to how the formal systems
dealt with are presented (cf. Feferman [1960], Kreisel [1965], 153-154). While
the two-line informal argument for Godel’s theorem is very convincing?®, there is
no really satisfactory presentation which is both detailed and sufficiently general.
But, as anyone knows who has gone into proof theory at all, this is just the tip
of the iceberg. For a number of other examples, see the concluding section of this

paper.

(ii) Pedagogical. This is simply an extension of (i). A good conceptual framework
is necessary to explain the formalization of metamathematics in a reasonable and
convincing way without excessive hand-waving. Students gain confidence when
they see that various steps can be worked out systematically and in detail. This
does not mean that the subject must be presented entirely at such a level, just that
the mechanics of the details are at hand when confidence falters. As intuition and
experience take over, the need for such recedes, but the existence of a manageable
underlying framework is always reassuring.

(iii) Practical. There has been much talk in recent years of implementing various
kinds of logics on computers, especially for the purposes of proof-checking. Exam-
ples for relatively specific logical systems are provided by projects of de Bruijn,
Boyer and Moore, Constable, Ketonen, and others. The ELF (Edinburgh Logi-
cal Framework) project led by Plotkin (see Harper, et al [1987] and Avron, et al
[1987]) aims to handle an enormous variety of formal logics, by a kind of reduction
in each case to the typed lambda-calculus. However, in the ELF approach much
preparatory work must be done by hand for each logic so that it can then be im-
plemented on a computer. I believe the step from a logic, as it is presented in usual
(humanly understandable) terms to its computer-ready presentation should be as
natural and direct as possible. The use of some notion such as that of (presented)
finitary inductive system developed here, seems to me to be essential for this goal.

Because there is much ground to be covered, the work in the following con-
centrates on statements of notions and results; by necessity, proofs are omitted or
only sketched.

3 See p.137 of Kleene'’s introductory note to Gadel 1931 in Godel [1986].

3

1. The universe of tree expressions. The collection V' of individuals dealt
with, is taken to be built up from a class U of urelements by closure under the
operation P of pairing. We write Py, P, for the left and right inverses of P, resp.,
so that P;(P(x1,22)) = x;, and x is a pair just in case x = P(Pyx, Pyx). Thus U
is the class of © such that @ # P(Pyx, Prx). U has a distinguished element 0, and
Vo denotes the subclass of V' generated from 0 by closure under pairing. Elements
of V are called (binary) tree expressions over U, and elements of V; are called the
pure tree erpressions.

The standard alternative approach to syntax takes the universe of expressions
to be the class U* of finite strings, or words, ug...u,—1 with u; € U, thinking of
U as a set of basic symbols or alphabet (cf. e.g. Smullyan [1961], Fitting [1987]).
These are represented here instead by finite sequences, defined below in terms
of iterated pairing. The present approach builds in the tree structure of expres-
sions met in practice, with 1, z2 being considered the immediate subexpressions
of P(x1,x2). The main advantage is that it provides for a more natural and di-
rect introduction of syntactic functions, typically introduced by recursion (from
subexpressions to expressions). The same approach is followed in the familiar
list-processing programming language LISP.*+5

For simplicity in the following we shall work entirely with pure tree expres-
sions. There is no loss of generality for syntactic applications over any finite
alphabet U, by representation of such U within V;. The more general situation
(V over any U) is useful if we want to develop recursion theory over an arbitrary
structure (U,...), as done e.g. in Moschovakis [1969], as well as treat general
model theory (as initiated in [IPS]). All of our work extends directly to the more
general situation.

Abbreviations. (x,y) := P(x,y)

(r1) =21, (@1,..,n, Tny1) = (21,0, Tn), Tnt1) -
Note that this representation makes each n-tuple (x1,...,z,) an m-tuple for each
m < n, eg. (r1,22,23,24,25) = ((21,22,23),24,25). Finite sequences will be

represented below in a modified form in such a way that each finite sequence has
a definite length.

* A third alternative (to the theory of trees as here, or to concatenation theory)
is to work in some form of hereditarily finite set theory. However, sets must still
be represented by trees or lists when it comes to effective implementation.

> Another reason for working with trees rather than sequences is that the former
have a natural generalization to syntactically described infinitary logics; cf. also
the concluding remarks to this paper.

As further abbreviations, we take
' = (z,0), 1:=0", 2:=1') ete.

Note &' #0 (by (x,y) #0), and o' =y’ =« =y.

2. Functions, classes, relations.

Functions. We use f,g,h (with or without subscripts) to range over arbitrary
unary functions from Vy to Vy. Each unary f determines an n-ary f™ by
FONay, . an) = fo for @ = (21,...,2,), Le. f0 is the restriction of f to
the class of n-tuples. We do not distinguish f(™ from f; thus each f is simul-
taneously an n-ary function for all n. (This is an immediate advantage of the
pairing structure of the universe.) Capital letters F, G, H are also used for specific
functions.

Classes. We use A, B,C, XY, Z to range over arbitrary subclasses of V5. The
0 z€A

characteristic function c4 : Vo — Vo of A C Vj is given by cax = {1 e
T

Here, and in the following, ‘0’ represents ‘True’ and ‘1’, ‘False’.

Relations. As with functions, each class A determines an n-ary relation A™ given
by:
(T1,...,2,) € AM iffr e A, fora =(21,...,%,) .

Again we shall not distinguish A from A; thus each A acts simultaneously as an
n-ary relation for each n. Following usual relational notation, we shall also write

Alxy, ... xy) for (zq,...,2,) € A.

Functionals and collections. At the next level, script letters like G, H will be used
for certain specific functionals on and to functions or classes, as e.g. G(f,¢) = h,
H(A,B) = C, etc., and script letters like F(K) will be used for certain collections

of functions (classes).

3. The explicit functions. The basic functions (on Vi) are I, Ky, D, Py, Py,
where
Koyr =0 all z,

Ix=x,

D(x17x27y17y2) = {yl

o o
v otherise + (Du=01fuis not a -tuple).
2

and Py, P, are the inverses to pairing from §1.

5

The explicit compounding functionals are P (for pairing) and C (for composi-
tion), given by
P(f,g)x = (fr, gz)

C(f,9)e = flgz) .
We also write (f,g) for P(f,¢) and f o g for C(f,g).

A class F of functions is said to be closed under ezplicit definition, or E-closed,
if it contains I, Ky, D, Py, P, and is closed under P and C. We denote by & the

least &-closed class.
Throughout the following F is any &-closed class.

P, ;€& foreachi, 1 <i<n,with P, (21,...,2,) = 2;.

(i)
(i) K, € & for each a € Vj, where K,z = a.
(iii) F is closed under n-tupling of functions: (g1,...,¢n)x = (g12,...,gnx).
(iv) F is closed under general composition:
(fol(gr,eoosgn))x = flg1,. .., gn2) .

(Note then (fo(g1,....gn))(@1,.cvxm) = flor(21, -y Tm)se ey gnlT1, .o Tm)).)

(v) E €&, where E(x1,22) = {0 1= (and E0 = 0)

1 otherwise

(vi) E, € & for each a € V}, where

Ea:z::{o T =a

1 otherwise

(vil) Qg € &€ where Q@ = (x,a) for each a € Vj.

(viii) The propositional functions Neg, Cny, Dsj € £, where, for x,y € {0,1} we

have
Neg0=1, Negl1l=0,

Cnj(v,y)=0&2=0Ay=0,
Dsj(z,y)=0&2=0Vy=0.

All these (1)—(viil) are easily established.
Remark. Speaking logically, every propositional combination of equations between
terms built up from variables and 0 by the &-closure conditions reduces to an

equation of the form ¢ = 0, by (v) and (viii).

6

4. Explicitly determined classes and relations. A class A is said to be
explicitly determined, and we write A € &, if ¢4 € &; we do the same for a class B
considered as a relation. The following are easily checked:

(i) {0}e¢
(ii) If fe & and A € € then f~1A(= {z|fz € A})isin &.

(iii) & is closed under N,U and — (complementation).

FEzercises.

1. Foreach f € &, f~{0}(= {z|fr = 0}) is in . Hence V; = K; {0}, 0 =
K;{'{0} and {a} = E;*{0} are in £.

2. AL Bef=AxDBEE,

by A x B ={z|x = (Pix,Pya) N Phe € AN Pyx € B}
= {z|E(z,(Piz,Pyz)) =0} NP 'ANP;'B

Abbreviations. Al := A, A"TL .= A" x A,

A collection K of classes is said to be F-closed if it contains {0} and is closed
under f~! for each f € F, U,N and —. K is said to be an F*-closed collection if it
satisfies the same closure conditions except possibly for the complement operation.

Note that € is the least £ -closed collection since if A € € then A = ¢'{0}. Most
closure conditions stated in the following apply to any F*-closed collection.

We shall represent m + 1-tuples of classes (Ag,..., Ap) by disjoint sums,

(Ao, ..., Am) = | Ai x {i}.

Thus A; = Ql_l (Ao,..., Am). We also write (A;);<m (or simply (A;)) for (Ag,..., Am).

5. Primitive recursive functions and classes. The functional R for definition
by primitive recursion is given by

h0=0
R(f,g) = h where ¢ h(z,0) = fx
Mz, (y,2)) = g(x,y, 2, h(z,y), h(z,2)) .

7

We consider this as primitive recursion with one parameter x. By the represen-
tation of n-tuples in §1, the very same functional yields primitive recursion with
n-parameters for any n > 1:

h(xq,...,20,0) = fla1,...,25)
hxr, ... xn,(y,2) = g(x1, s an,y 2, R, ooy an,y) (@1, .o 20, 2))

To obtain recursion with no parameters, i.e.

h0=a
h(y,z) = g(y,z, hy, hz) ,

one applies R to suitable (fo, o).

A collection F of functions is said to be PR-(primitive recursively) closed if it
is E-closed and closed under R. The least such collection is denoted PR. A class
A is said to be primaitive recursive, and we write A € PR, if ¢4 € PR. The PR
classes are also E-closed. For any F, PR(F) denotes the least PR-closed collection
of functions (and thence of classes) which contains F; members of PR(F) are said
to be primitive recursive i F.

6. Presentation of primitive recursive functions. Informally, by a pre-
sentation of any specific ' € PR we mean a description of how F' is defined in
some particular way from the basic functions by successive application of the com-
pounding functionals. Later, this will be specified by a function term in the formal
system F'Sy . However, there are other more ad hoc means of presentation, such
as provided by the following coding system C.

C is defined as the least class X C V| such that:
(1) (0,2) € X for e =0,...,4, and
1,62 € X = (J,(c1,02)) € X for y =1,2,3.

With each ¢ € C is associated a function [¢] € PR by:

[(070)] I, [(07 1)] = I, [(072)] =D, [(073)] =P, [(074)] = Py,
(2) § [(L(ere2))] == "P(lea], [e2]), [(2(ex,e2))] := C([ea], [e2]),
[(3, (1, ¢2))] :=R([e1], [e2])

Every PR function F is [¢] for some ¢ € C (in fact for infinitely many ¢ € C).
Presentations of explicit functions are obtained from the subclass Cy of C' gener-
ated from the (0,2)(z = 0,...,4) by closing under (1, (¢1,¢2)) and (2, (¢1, ¢2)) only.
Thus F € £ just in case F' = [¢] for some ¢ € Cj.

8

It is interesting to note the following results concerning C', though they are
not needed below.

(3) Substitution (“s-1-17) theorem. There is an operation S € PR such that
¢ € C implies S(c¢,a) € C, and [S(¢,a)]x = [¢|(a,x) for all a,x.

(4) Recursion theorem. For each PR function [f] we can find e € C with [e]x =
[f](e, x) for all x.

Proofs. The function S for (3) is simply given by S(¢,a) = (2, (¢, (1,(AK'a,(0,0)))))
where K'0 = (0,1), K'(a,b) = (1,(K'a, K'b)), so that [K'a] = K, for all a.
Then (4) is proved by the usual diagonalization argument, taking e = [S(c,c)]
where [e)(z,) = [f(S(2,), 2).

Note. Both (3), (4) hold for the E-closure of the single function K, in place of
PR.

7. Finitary inductive systems. We now come to a central concept of our
work. By a system of finitary inductive closure conditions for classes Xy,..., X,
we mean a finite set of conditions of the form:

(i) ACX;, (0<i<m)

(1) . yl EXk17...,ynj Ean]

(ii) X Bi(z,y1,--- yn;) (0<j<p).

Such a system is specified by two sequences of classes (A4;)i<m (the basis condi-
tions) and (Bj) <, (the rules of inference) and a signature o, which is an assign-
ment to each j < p of an (n;+1)-tuple (¢, k1, ..., ky;) with ¢ < m and each k, < m
(1 < r < nj). By the finitary inductive system ¥ of signature o for (1) we mean
the pair ((A:)i<m, (Bj)j<p) specifying these closure conditions.

In more logical form, the closure conditions (1) can be rewritten as:
Closy(Xo, ..., Xm) ::Aigm Ve(z € A; =z € XA

(2)
A Ajgp Y, Y1, Yny [Alfrfnj (yr € Xi,) A Bj(,y1,- - yn;) = v € X

Clearly there is a least (Xo,...,X,,) satisfying these closure conditions; it is de-
noted

(3) SI7(Y):= (least(Xo,..., X)) Closg(Xo,..., Xnmn).

9

‘ST is used for simultaneous induction. Note that for (Xy,... X,,) = ST79(X) we
have each X; = Q7 'SZ7(2) = {z|(z,i) € ST?(2)}.

Four measures of complexity of a simultaneous inductive definition
SI7((Ai)i<m,(Bj)j<p) concern us in the following. The first is the number, m+1,
of classes being determined simultaneously by the closure conditions (1). The sec-
ond is the number, p + 1, of rules of inference B; being applied in (1). The third

is the number n = max 1, given by o; we call n; the number of hypotheses (or
0<5<p

assumptions) of B;, and n the mazimum number of hypotheses of this inductive
definition. The final measure is qualitative, namely as to how “complicated” are
the classes A;, Bj; this will be described by different collections K from which
these classes may be drawn.

When the signature o is indicated by context, we shall omit it to simplify

notation. We write S7«,, for ST% when the signature o gives n = max n;.
- 0<5<p
The simplest case for m is that of m = 0, when we are dealing with a single

inductively defined class, and in this case we write Z<, (A, (B;);j<p) for the result
of the inductive definition. That is,

(4) T<n(A,(Bj)) is the least class X satisfying:

(i)ACX

yeesYn, €X
(i) Y1 Yn;
reX

Bji(z,y1,...yn;) (0<j <p)
for n = max n;.
0<5<p

Finally, we write Z,,(A, B) for the result of defining a single class using a single
rule of inference with n hypotheses, that is,

(5) I,(A, B) is the least class X satisfying:

(i)ACX

(11) Y1, 7yn€X
reX

B(a,y1,--yYn) -

8. Reduction in the complexity of inductive definitions. In this section
we shall show how to reduce the complexities of simultaneous inductive definitions
according to the first three measures just described; then we shall accomplish a

10

reduction in the complexity of basis conditions and rules of inference in the next
section. The basic ideas, all quite simple, come from [IPS], pp. 101-102.

8.1 Reduction of ST<, to I<,.

To define ST<,((Ai)i<m, (Bj)j<p) as Z<n(A', (Bj);<p) we simply put conditions
on X = (Xo,...,X) by treating * € X; as (x,7) € X. The desired closure
conditions on X are then given in the form

(1) <A07-"7Am> g X7 and

(1) .. (ylakl)EXv---(ynwknj)EX
(if) (v,i) € X

Bi(x, 41, Yn;) -

This is recast as

(i) A" C X, for A" = (Ap,...,Ap), and

oy ULy ey Up; €X
(2) (11) veX B}(vvulv-"vunj)

for B}(v,ul, cosUp;) ©Bj(Prv, Prug, ..., Prug;)A

v:(Plv,i)/\ul:(Plul,kl)/\.../\unj :(Plunj,knj).

Note that any £T-closed K which contains (4;), (B;), also contains A’, (B}

8.2 Reduction of I<, to I,.

Given A, (Bj)j<p where the Bj are treated as nj-ary relations, let n =

max ;. Then replace B; by B} where Bl(x,y1,...,yn) & Bj(, Y1, Yn;) A
0<5<p

Ynjps = --- = Yn = y1. This makes T<, (A, (Bj);<p) = T<n(A, (Bj);<p) with each
B n-ary. But then we simply have T<,(A, (B});<p) = Zn(A, B") for B" = L<J B;.
i<p

Again, any £t-closed K which contains A4, (B;) also contains A, B".

8.3 Reduction of I, to Is.

The idea here is to replace the n-hypothesis rule of inference in Z,,(A, B):

11

Y1y Yn € X

1 ACX:
(1) = re X

B(xvylv"'vyn)v

by the rule with single hypothesis:

uec X"
re X

(2) ACX;

B(x, Ppiu,...,Pyuu) .

However, X™ must be defined simultaneously with X, and for that we need more
generally to define X* simultaneously with X for each k = 2,...,n. Thus consider
the following conditions on classes X1,..., X,:

e X;,ze X .
ACX;; Y - lx:(y,z), for1<i<n;
l’EXH.l

(3)

Xn

% B(x, Pp1y, ..., Pony) .
The least (Xi,...,X,,) satisfying this is of the form SZ<s((A})1<i<n, <B}>1§j§n)
where A} = A, Al =0, Bi(z,y1,92) © & = (y1,y2) for j <n and

B (z,y1,y2) & Bz, Poiy1, ..., Panyi) A ya = y1. Moreover, ST<,((A}), <B;>) =
(X, X?,...,X") where X = T,(A, B) is the least solution of (1). Now by 8.1
and 8.2, we re-represent ST<3((A}), (B})) as Iz(A"”, B") for suitable A", B", so
X = Qy (A", B"). Again, if K is £t-closed and contains A, B, we may obtain
A" B"in K.

9. Inductive closure and the Normal Form Theorem. We define S-
IND(K) to be the least PR*-closed collection which contains SZ°((A4;), (B;)) for
all A;, B; € K. Similarly, IND2(K) is defined to be the least PR -closed collection
which contains Z5(A, B) for all A, B € K. Finally, define ZAD to be the least K
such that

IND2(K) C K,

i.e. the least PRT-closed K such that K is closed under Z». These notions can be
relativized to any class F of functions in place of PR, as S—IND(T)(IC), INDg}—)(/C),

and IND(T), and the following results hold for £-closed F and FT-closed (K).

First we can summarize the results of 8.1-8.3 by:

THEOREM. If K is ET -closed then S-IND(K) = IND»(K).

12

COROLLARY. S-IND(ZN'D) = IND.

Our main result here is the following (which again holds for ZN' D) for any
E-closed F in place of PR).

THE NORMAL FORM THEOREM FOR ZAND.% For each X € IND we can find
A, B € PR with X = Q;'T2(A, B).

Proof. It is simpler to first represent X in terms of ST<y and then apply the
reductions of §8.

LEMMA. FEach X € IND is representable as X = Xy for the least solution
(Xo,...,Xm) of closure conditions of the form

y1 € Xy, y2 € Xy
x e X,

A, C X, Bijk($7y17y2)

with A;, Bijx € PR. In other words X = QalSI§2(<Ai>, (Bijk))-

Proof. This proceeds by induction on the generation of ZN'D as the least X which
is closed under Z5(A, B) for A, B € K.

(i) X ={0}; then X = Q; " (Least(X,))({0} C Xo).

In the following, assume by induction hypothesis that ¥ = Y, for the least
(Yy,...,Y,,) satisfying

neY, el

1 C; CY;; ij

(xvylvyZ))

and that Z = Z, for the least (Zy,... Z,) satisfying

Uy EZ]‘, Uy € 2y

2 D, CZ;;
() B z € Z;

D;jk(27u17u2)

where all C;, D;, Cl,;, D;y € PR. We shall show that X = 7Y (for f € PR),

7

X=YUZ X=YNZand X =7,(Y, Z) satisfy the conclusion of the lemma in
the following (ii)—(v).

6 This result is analogous to (but formally simpler than) the Reduction The-
orem of Moschovakis [1969], p.331 (also called a Normal Form Theorem), for his
inductive approach to the general notion of algorithm.

13

(ii)) To show that X = f~'Y for f € PR satisfies the lemma, we take X = X
for the least (Xo,Yy,...,Y:) satisfying the closure conditions (1) and

y € Yo
r € Xy

y=fx.

(As in 8.2, this one-hypothesis rule is trivially transformed into a rule with two
hypotheses; the same applies in the following.)

(iii) To show X = Y U Z satisfies the lemma, we take X = X, for the least
(Xo0,Y0,..., Y, Zo, ..., Z,) satistying the closure conditions (1), (2) and, in addi-
tion,

y €Yo y € Zo

— =T
xGXoy ’ :z:EXoy

(iv) To show X = Y N Z satisfies the lemma, we represent X = X, for the
least (Xo,Yo,...,Yn, Zy,...,Z,) satisfying the closure conditions (1), (2) and, in

addition
y1 € Yo, y2 € Zo

x € Xy

(v) To show X = Zy(Y, Z) satisfies this form, we consider first its given repre-
sentation as the least X satisfying

ylvyZEX
reX

Now in place of this, we take X = X for the least (X¢,Yy,....Ym, Zo,..., 24, W)
satisfying (1), (2) and the following conditions:

Y CX; (T,y1,92) € Z .

y € Yo s Y1,Y2 € Xo
x € Xg s ueWw

UEW,ZEZO
r € Xy

u:(ylvyZ); Z:(J?,Plu,qu).

The class W is introduced to make W = X? in the least solution and thus to keep
to rules with two hypotheses.

This concludes the proof of the Lemma. Now the Normal Form Theorem
itself follows by the reduction methods of §8:

X = Qg Least(Xo, ..., Xpm) Clos(a s,y (Xos- - Xm)
= Q; ' (Least Y)Clos 4 p:/(Y)
where A" = (Ag,..., An) =JA; x {¢} and

ngk(v,ul,uz) = v :(Plv,i) ANup = (Plul,j) N Uug = (P1UQ,]{?)
A Bl‘]‘k(Plv,Plul,P1UQ) .

14

ik
In the following sections we turn to some interesting specific examples of
classes defined by elementary closure conditions.

10. The natural numbers. We are using the abbreviation &' = (2,0) from §1;
it follows that « = Pya’. Moreover, ' # 0, and 2’ = y' = = = y. Now N is
defined as the least class X satisfying

yeX
re X

o
r=yvy,

that is, N = Z1({0}, {(«,y)|r = ¢'}). Hence we have:
Closure. 0 € N AVx(x € N = a' € N).
Induction. 0 € AANVe(e € A=2'€ A)= N C A

Next note that N s primitive recursive. Its characteristic function cy is
defined by the primitive recursion (with no parameters):

ex0=0. cN(y,Z):{O ifz=0Aecny=0

1 otherwise.

This is because (y,z) e N <y € N Az =0.

Primative recursion on N. We can define an operator Ry from R so that

h=R(f.9) = h(z,0) = fa and h(z,y') = f(z,y, h(z,y)).

From this one obtains recursion on N with n parameters for any n > 0.
Note. histotal on Vy; the equations only show how h(z,y) acts for « € Vj, y € N.

It is immediate that all number-theoretic primitive recursive functions and
relations are in PR. But also many closure conditions on PRy extend to arbitrary
functions. For example, we have:

Bounded quantification. With each f is associated ¢ such that for each y € N
and z € V:
g(z,y) =0 Vz(z <y= f(z,z) =0).

¢ is defined by recursion on N, with

0 if =0A =0
o(2.0)=0, glay) = {0 Holoy) =0Nflry) =0,

15

Similarly with each f is associated ¢ such that for each y € N and x € Vj,
g(x,y) =0& Jz(z <y A flz,z) =0).
Finally, we can introduce the bounded minimum

g(x,y) = (pz <y)f(x,z) =0

forye N, z € V.

11. Sequences. Here we follow [IPS] §3.3: each x € V| represents a sequence,
with O representing the empty sequence and if y represents (yo,...,yn—1) then

(y, z) represents (Yo,...,Yn—1,%).

Sequences from a class. For each class Z, the class Seq(Z), or Z<%, of finite
sequences, all of whose terms belong to 7, is defined as the least class X satisfying:

yeX

0e X
€ ’ re X

That is, Seq(Z) = Z:({0},{(z,y)|x = (y, Pyx) N Pox € Z}). Again we have the

closure and induction principles for Z<“. Moreover, Z<% is PR in Z.

Length. This is defined for arbitrary sequences (in other words, arbitrary
members of V) by means of the primitive recursive definition:

Lho=0, Lh(y,z)=Lh(y)+1.

Then it is proved by induction on Vj that Lk : V; — N. The ¢*" term of a sequence
x, denoted Val(x,1), is defined recursively by

Val(y,i) if ¢ < Lh(y)

z otherwise

Val(0,i) =0, Val((y,2),) = {

Thus if y represents (yo, ..., Yn—1) we have Lh(y) = nand y; = Val(y,7). From now
on, we write ¥ = (Yo,...,YLh(y)—1) OF ¥ = (Yi)i<Lh(y) for arbitrary y, considered
as a finite sequence. y = (z) is used for a sequence of length 1 with yy = =.

Concatenation. Again this applies to all sequences, with = * y defined recur-
sively by
rx0=a, xx(y,z)=(rxy,z2).

Thus LY = <x07' - s LLR(z)—15Y0,5- - 7th(y)—1> and $>|<<Z> = <$0,. .- 7th(x)—172> =

(x,2) .

16

Restriction of functions to sequences (“apply-to-all”). Define f |\ x recursively
by:
fro=o0, fhwz) =01y x(f).

Thus f | (zo,.. s Zra(a)=1) = (fzos- - frn)—1). (In [IPS] 5.4 we wrote f oz for
fla)

Sets from sequences. Given v = (xg,...,Tn_1), the set {z¢,...,2p_1} can
be identified with the class {z|xt = x¢ V...V 2 = 2,,_1}. However, this is not an
object in V. We can define equivalence of sequences if they determine the same
set, by e =y := [z Cy Ay C z], where @ C y:=Vi < Lh(z) 35 < Lh(y)[z; = y;].

12. Inductive definitions with variably many hypotheses. In practice
one also meets finitary inductive definitions with no pre-assigned bound to the
number of hypotheses in the rules of inference, e.g. when defining the class of
terms in a language with function symbols of every arity. Using the representation
of sequences in the preceding section, we show how such an inductive definition
T« can be reduced to 7.

A rule of inference R between a conclusion x and a sequence
Y = (Yo, ---YLh(y)—1) of hypotheses is simply of the form R(x,y). Then we define
Z<.(R) to be the least X such that

(1) L Riey)

Note that no separate base case is necessary, as 0 € X<% is always true; thus

A ={z|R(x,0)} takes over the base case A C X.

The method of reduction is given in [IPS] 3.4(iv) (p.102). We can take
T<.(R) = X for the least (X,Y") satisfying the simultaneous inductive definition

yeY zeX
u €Y

yey
reX

(2) 0cY; u=(y,2) ; R(z,y) ,

since the least Y™ here is then X <. This gives T« (R) in terms of an SZ<5, which
is reduced to Z; by §8.

In the same way we can treat more generally a simultaneous inductive defini-
tion of (Xy,...,X,,) with variably many hypotheses from each Xj.

17

13. Transitive closure. Informally, the transitive closure of @, TC(x), is the set
of y’s below z in the build-up of & from 0. TC(x) = Zz({z}, B) for suitable B.
But T'C(«) is finite and we can define a function t¢ € PR which gives for each
a sequence te(x) enumerating T'C(x) as follows:

(1) te(0) =0, te(y,z)=te(y) *te(z) * (y, z) .
Thus we can also define TC(z) := {y|3i < Lh(te(x))(y = (te(x));)}. Another

useful function is

(2) plly,x) := pi < Lh(te(z))ly = (te()):]

which gives the place of y in the sequence tc(x) when y € TC(z). Finally, write
y < xfory € TC(x) and y = « for y < @ Vy = x; this relation is primitive
recursive.

Induction with respect to <. This is the principle
(3) VelVyly <z =yeX)=> e X]= V(e € X),

which follows from the above definition. In addition we have:

Recursion with respect to <. Given ¢ we can obtain h primitive recursive
(uniformly) in ¢, such that

(4) he = g(x,h |\ te(x)) forall a.

The idea for this is to first define hx = h | te(x) for each z, so that hx = g(z, hz)
for each x. & is given by the primitive recursion:

h0 =0, h(y,z) = (hy) = (hz) * (g(y. hy), 9(z, hz)) .

Rank. Ordinary primitive recursion serves to define the function Rnk with
Rnk(0) =0 Rnk(y,z)=max(Rnk(y), Rnk(z))+1.

Thus Rnk(x) = the height of & considered as a binary branching tree. We have
Rnk : Vo — N and y < @ = Rnk(y) < Rnk(xz). There are only finitely many
y with Rnk(y) < Rnk(x). (Note that this is not true for the corresponding rank
function on V' = U* when we have an arbitrary class of urelements.) We can
define a primitive recursive function on N which gives for each n a pair of sequences
(rn,) where r,, enumerates {x|Rnk(z) < n} and r!, enumerates {z|Rnk(xz) = n},
since {x|Rnk(z) <n+ 1} = {(y,2)|Rnk(y) < n A Rnk(z) < n} and {z|Rnk(z) =
n+ 1} ={(y,2)|(Rnk(y) <n A Rnk(z) =n)V (Rnk(y) =n A Rnk(z) <n)}.

18

14. Trees and derivations. In order to explain derivations for inductive defini-
tions, we introduce finitely branching labelled trees. As all the inductive definitions
dealt with here reduce to Zs, it is sufficient to deal with binary branching labelled
trees. The more general notion is treated in [IPS] pp.110-111, but the special case
is simpler to deal with in certain respects.

The informal idea is that (0,z) represent a tree with single node labelled
z, and if y1,y2 represent (binary) trees then « = ((y1,y2), 2) represents the tree
with label z at its tip and immediate subtrees yy,y2. Thus Trees is the least X
satisfying the closure conditions:

Yi,Y2 EX

(1) (0,z) € X forall z; Tex

r=((y1,92), Pa)

The label of any @ € Trees 1s just P, and its immediate subtrees are y; = P; Py«
when Pyx # 0. Since each y; < x in the latter case, recursion on trees is just a
special case of recursion with respect to <, in the following form.

(2) For each f,¢ we can find h primitive recursive (uniformly) in f, ¢ with

h(072) - fzv and h((y1,y2),2) = g(y17y2727hy17hy2) .

In particular, we can define the height |z| of tree by

(3) (0,2)] =1, [((y1,92), 2)| = max(|y1], |y2[) + 1.

Given A, B we define the class D(A, B) C Treey of Z3(A, B)-derivations as

the least X which satisfies the following closure conditions:

(i) (0,2) € X foreachaz e A
4 dy,dy € X
®) G) P ER Bpd Pydy, Pody) Ad = ((dy,dy), Pod) .

de X

When d € D(A, B) and Pyd = x we write Der 4 py(d,), or d (4 gy x or simply
dF 2. (4)(1) expresses that when @ € A, the tree d with single node 0 and label
has d - x, and (4)(ii) expresses that if di b y; and dy F y2 and B(x,y1,y2) then
the tree d = ((dy,d3),) has d b . It is thus seen that

v € T(A,B) & 3d(d € D(A,B) ANdF z)

(5) & 3d(d € D(A,B) A Pyd =) .

It will be shown in the next section that D(A, B) is primitive recursive (uniformly)

in A, B.

19

15. Deterministic and decidable inductive definitions. For implementation
of logics on computers, we need to know that various syntactic classes dealt with
are algorithmically decidable. We show how to do this for certain inductively
defined classes of 7, form (see [IPS] pp.111-112 for the more general case).

An inductive definition Z3(A, B) is said to be deterministic if for each © €
72(A, B) there is a unique d € D(A, B) with d - «. A n.a.s.c. for this is that

(1) Vo € To(A,B){x € AV Fy1,y20y1,y2 € To(A, B) A B(x,y1,y2)]}

Now for (1) it is sufficient that we have predecessor functions fi, f2 for B, in the
sense that:

(2) B(x7y17y2)2>y1 = fir Ny2 = fax .

In this case, Zo(A, B) is called functionally deterministic; f1, f2 are called transitive
predecessor functions if (2) holds and

(3) B(z,y1,y2) = y1 <z Ay <.

THEOREM. If B has transitive predecessor functions fi, fo then Iy(A, B) is prim-
itive recursive (uniformly) in A, B, f1, f2.

Proof. Let J = Iy(A,B). Its characteristic function c¢; is defined by the <
recursion

cr = {0 if v € Aor [B(x, fiz, fan) Nej(fix) = cs(fax) = 0]

1 otherwise .

COROLLARY. For each A, B, the class D(A, B) of Io(A, B)-derivations is primitive
recursive in A, B.

Proof. By the preceding section,
D(A,B) =1I,(A',B")

with Al = (0, l’)|$ - A} and Bl == {(d, d17d2)|B(P2d, Pzdl, Pzdz)/\d == ((dl,dz), Pzd)}
This has the PR transitive predecessor functions fid = Py Pyd, fod = P, Pd.

Note. The facts that N € PR (§10), and that A<“ is PR in A (§11), both follow

from the theorem above.

20

We can carry out definition by recursion on classes 73(A, B) satisfying the
hypothesis of the theorem, so that for each ¢, g2 we obtain h primitive recursive
in gy, g2 with

Wip) — 917 forx € A
() = g2(x, h(frz), h(fox)) for each v € To(A,B) with « ¢ A

This is again a special case of <-recursion.

16. The axiomatic theory FS, for functions and classes of expressions.
We now set up a formal system F'Sy in which all the preceding work may be directly
formalized. The language L(FS) of this system is three-sorted, for individuals,
functions, and classes. The symbols used for various entities in F'Sy will be similar
to those used in the informal development §§1-15, e xcept that we use Roman let-
ters instead of italics; however, we shall still use script letters for the compounding
functionals. Thus we use a, b, ¢, u, v, w, x, y, z for individual variables, f, g, h
for function variables and A, B, C, X, Y, Z for class variables (in all cases with or
without subscripts).” We denote by InTm the class of individual terms (for which
we use s, t,...), by FnT'm the class of function terms (F, G,...) and by ClTm the
class of class terms (R, S, T,...). InTm and FnTm are defined simultaneously
as the smallest classes satisfying:

InTm (i) Each individual variable is in InTm.
(i1) The constant 0 is in InTm.
i If t1,t2 € InTm then (t1,t2) € InTm.

IfF e FnTm and t € InTm then Ft € InTm.

11

(iii

o
<

FnTm (i) Each function variable is in FnTm.
(ii) The constants I, D, Py, Py are in FnTm.
(iii) If t € InTm then K(t) € FnTm.

(iv) IfF,G € FnTm then P(F,G),C(F,G),R(F,G) € FnTm.

)
)
)
)
)
)

Then ClTm is defined as the smallest class satisfying:

ClTm (i) Each class variable is in ClTm.
(i1) The constant {0} € ClTm.
(iii) If F € FnTm and S € CITm then F~!S € ClTm.
(iv) If S, T € ClTm then SNT,SUT and Z5(S,T) € ClTm.

The atomic formulas of L(FSy) are just those of the form (t1 = tg) with t1,t2 €
InTm, and t € S with t € InTm and S € ClTm.

The class of formulas (¢,,6,...) is the least class containing the atomic
formulas and closed under =, A, V, —,V, 3 (applied to variables of any sort). The

7 These are not the “official” lists of variables.

21

underlying logic of F'Sy is that of 3-sorted classical predicate calculus with = in
the first sort only.

Remark. We regard F = G as defined by Vx[Fx = Gx|, and S = T as defined by
Vx[x € S < x € T]. We could add = as a basic symbol in both these sorts and
then take these (extensionality) statements as axioms.

The abbreviations introduced in §1 and §2 are also used in F'Sy and we write

SCTforVx(xeS—xeT).

AXIOMS OF F5; .

I. Pairing, projections.

(1) (x1,%2)#0

(11) Pl(X17X2) =X, P2(X17X2) = X9.

II. Basic function azxioms.
(i) x=x
(i) K(a)x =a
(111) [Xl = X2 — D(X17X27YI7YZ) = YI] A [Xl 7£ X27_> D(X17X27Y17Y2) = y2]
A(=3x1,%2,¥1,¥2[u = (x1,X2,¥1,¥2)] — Du=0).

III. Compound function axioms.

(i) h="P(,g) — Vx[hx = (fx, gx)]
(i) h =C(f,g) — Vx[hx = {(gx)]

IV. Recursion aziom.
h=R(f,g) =h0 =0AVz[h(z,0) = fz]A
AVx,y,z[h(x, (y,2)) = g(x,¥,2,h(x,¥),h(x, 2))]

V. Ezxplicit class constructions azioms.

(i) xe{0}—=x=0

(i) xefTAefxeA

i) xeANB—xe€AAxeB
)

(iii
(iv) x€eAUB—<x€AVxeB

22

VI. Inductive generation axiom.
.. C=1,(A,B) A CCA
@) AVX,y1,¥2[y1 € CAy2 € CA(X,¥1,¥2) € B —x € C]
C=7(A,B) AN A C XA
AV, y1,v2[yr € XAye € XA(X,y1,72) EB—=xeX] > CCX.

(if)

VII. Induction on the universe.

0eXAVx,y[xe XANyeX — (xy) € X] — Vx(x € X).

This completes the description of F\Sy; . We shall also consider the subsystem
EFS, obtained by deleting the R-operator and axiom IV.

17. Models and presentations. The standard model for Axioms I and VII
is the structure Vo = (W, P, P, P»,0). We shall not be concerned here with
non-standard models. The function axioms II, IIT are satisfied by any &-closed
collection of functions f : Vy — V4, in particular by & itself. The axioms II-IV
are satisfied by any PR-closed collection of functions.® The axiom V is satisfied
by any £T-closed collection of classes in EF Sy, and any PRT-closed collection of
classes in F'Sy . The Axiom VT is satisfied in any collection of classes closed under
T,. In particular, the class axioms are satisfied by ZAD (the least PR -closed K
which is closed under 7).

The minimal model of FSy is thus given by Vo, PR and ZND. We shall use
[-] to associate with each formal term its corresponding informal interpretation in
this model. A term of any sort is called closed if it contains no variables of any
sort.

Each closed individual term t denotes an element [t] of Vj, and each a € V}
is denoted by a closed individual term a, given by (a,b) = (a, b); thus [a] = a.

Each closed function term F of FS; denotes a function [F] in PR. We call
F a presentation of [F]. The term F shows exactly how [F] is built up from the
basic functions by the compounding functionals.

Each closed class term S of FS; denotes a class [S] in ZND. We call S a
presentation of [S]. Again, the term S shows exactly how [S] is obtained by the

explicit and inductive class construction axioms.

8 The operation a — K(a), from individuals to functions, was not needed in
PR since for each a € V we have K(a) = K, € PR. However, if we just took Ky
in the axioms, we would not be able to define K(a) with ‘a’ variable. The latter
is necessary if we are to prove that for each term t[x], IHVx(fx = t[x]), as well as
recursion with no parameters.

23

By a presentation of a finitary inductive system X (of signature o), we mean a
presentation of a pair ((A;)i<m, (R;)j<p) of classes specifying (with o) the closure
conditions for 3.

18. Primitive recursive and inductive completeness of FS;,. C-InTm(C-
FnTm, C-ClTm) denotes the class of closed individual (function, class) terms.
C-InTm and C-FnTm are obtained by a simultaneous inductive definition simply
by omitting the basis condition for variables in §16; similarly for C-CITm.

LEMMA. If a,b € Vo and a # b then EFSy t a # b.

THEOREM 1. (v) If t € C-InTm and [[t] = a then FSy Ft = a.
(11) If F € C-FnTm and [F]a = b then FSy - Fa = b.
Proof. This is carried out by induction on the simultaneous generation of C'-InTm

and C-FnTm. In the cases that F has the form R(G, H), we carry out a subsidiary
induction on its argument a € V.

COROLLARY. (i) For each t € C-InTm there exists a with FSy Ft=a
(11) For each F € C-FnTm and each a there exists b with FSy - Fa = b.

Note. The corollary may be proved directly without appeal to the semantic inter-
pretations [-].

THEOREM 2. If S € C-ClTm and a € [S] then FSy - (a € S).

Proof. This is carried out by induction on the generation of C-CI{Tm. In the case
that S = Z3(T,R) we have a subsidiary induction on the inductive generation of

[S] from [T] by the rule [R].

Similar results hold for EFS,, when the terms are restricted to L(EFSy).

19. Functional and class abstraction. By the class of 3T-formulas of FS, we
mean the smallest class which contains all equations t; = to, inequalities t1 # to,
as well as atomic formulas of the form t € T (t,t1,t2 individual terms, and T a
class term), and closed under A, V, and Ix applied to any individual variable.

THEOREM (i) For each individual term t with free variables included in {x1,...,x,}
we can find a closed function term Fy such that

FSO "Ft(Xl,...,Xn) =t.

24

(it) For each function term G with free variables included in {x1,...,Xn} we
can find a closed function term Fg such that

FSy FFa(x,...,x,,y) =Gy .

(111) For each 3T -formula ¢ with free variables included in {xi,...,x,} we
can find a closed class term Sg such that

FSO "(Xl,...,Xn)EngHqﬁ.

Proof. Parts (i) and (ii) proceed by simultaneous induction. For part (iii), the
essential new point is closure under 4. This comes from the following observation.
Given any B, we can define {z|3yB(z,y)} as Q7' X where X is the least class
satisfying:

(y,0) € X

0)e X forall v ; ———+——
(x,0) € or all z ;)X

(v,y) € B.

Remark. We may regard Fy as A(x1,...,x,)t, Fq as A(x1,...,%,,y)Gy, and Sy as

{(le s 7Xn)|¢}

20. Proof-theoretical strength of F'S;. By formalizing the inductive definition
of the class N of natural numbers (§10) and the treatment of PRy in terms of
PR, we can interpret the system PRA of primitive recursive arithmetic in FSy.
Moreover, the fragment 39-T4 of (first-order) Peano Arithmetic based on PRA and
the Y{-induction axiom is also contained in FSy under this interpretation. For,
every ©¢-formula is equivalent to an 3t-formula, and each such defines a class by
§19. Since the induction axiom for N in the form

DeXAVx(xeX—-x e€X)=NCX

is a consequence of the induction axiom VII for the universe, it follows that we
have the induction scheme for all 3T-formulas.

Now it can also be shown that FS, is interpretable in ©9-TA. The idea for
this is that we interpret individual, function, and class variables all as ranging
over w, with the pairing and projection functions taken to be primitive recursive
with (x,y) # 0. We interpret fx as [f](x) where the enumeration [f] of primitive
recursive functions is defined in terms of the more general enumeration {z} of
partial recursive functions. Finally x € z is interpreted as {z}(x)|, i.e. as x €

W, (= {u|3yTi(z,u,¥)}).

25

These kinds of arguments lead to the following.

THEOREM. FSy is of the same proof-theoretical strength as (X0-TA), and hence of
PRA®

Comparison with the system FM, and correction to [IPS]. The system FM, in
[IPS] used only individual terms built up by pairing and projections, and class
terms built up by class comprehension for 3T-formulas together with Z, inductive
generation. FM, is easily seen to be a subsystem of FSg, in fact already of EFS;.1°
It was claimed in IPS that FM, contains the system ©9-TA. The idea was first to
define a general recursion theory over the universe by means of an inductively
defined 3-placed relation xy ~ z, and then to obtain primitive recursion as a
special case. However, the unicity property for ~,

Xy ~¥z1 ANXy ™29 — 71 = Zg

in 3.5(vi) (p.102) of [IPS], does not seem to follow from FM, as asserted there.
FM, can be expanded by a basic relation symbol ~ with the statements 3.5(1)—(vi)
of [IPS] as axioms to give a system FM{ which is equivalent to X9-TA. For, we
can interpret xy =~ z via {x}(y) ~ z in o.r.t. Instead, we have chosen here to
incorporate the primitive recursion part of the recursion theory into the formalism
of F'Sy. This is more intuitive and closer to the needs of logical practice.

It would be of interest to determine the exact proof-theoretical strength of

the systems FM, and EFS, .

21. Finitary inductively presented logics. In the most general sense, a formal
logic is just a finitary inductive system ¥, and a finitary inductively presented
(f.i.p.) logic is just a presented finitary inductive system, i.e. one represented by
a class term S of F'Sy . By carrying out the arguments of §§8-9 in F'Sy , we can
even take S in the normal form QO_IIZ(T7 R) where T,R are primitive recursive
class terms.

Some among the variety of logics that are met in practice have been mentioned
in the introduction. These can all be regarded as f.i.p. logics in the above sense
and can be reasoned about in F'Sy . Notions and results about wide classes of logics
might be considered to be part of the subject of meta-logic; these can also be formu-
lated in F'Sy at various levels of generality. For example, one might study closure

? Parsons [1970] proved that (39 —TIA) and PRA are of the same proof-theoretical
strength.
10 The universe of FMy is U* for an unspecified class U of urelements, with

0eU.

26

conditions on rules of inference (or consequence relations, as in Avron [1987]), the
difference between derived rules and admissible rules, notions of schematic axioms
and rules, interpretation of one logic into another, etc.

For illustrative purposes and to get quickly to Godel’s incompleteness theo-
rems, we shall limit ourselves in the following to a very special case, namely logics
based on many-sorted first-order classical predicate calculus with equality (in some
sorts). A number of details for the single-sorted case have been given in [IPS] §6
(pp.114-119) and will not be repeated here.!! First one defines (in FSg) the
classes Var, Const, Fun and Rel of variables, constants, function symbols and rela-
tion symbols of arbitrary arities; these are all given explicitly. (In the many-sorted
case these are supplemented by the class Sort of sorts, and arities are sequences
from Sort.) By a language is meant an arbitrary subclass L of ConstUFunURel
containing the relation symbol rg s for equality. Note that L is treated as a vari-
able class in FiSy . Then one defines inductively Term(L), Atom(L) and Form(L),
all of which have PR transitive predecessor functions and hence (by §12 and §15)
are PR in L. Next one defines the general notions of being a free variable, and of
being a term free for a variable in a formula, and the operation Sub of substitution
of a term for a variable in a term or formula; Sub is defined by <-recursion and is
primitive recursive. Finally one defines the (PR) class LogAx of logical axioms,
and takes LogAx(L)=LogAxNForm(L), the class of logical azioms in L, which is
PR in L. For the formulation of predicate calculus in [IPS], only two rules of
inference were used: modus ponens (MP) and universal generalization (UG); these
relations are in &.

By an aziomatic system is meant a pair S = (L, A) where L is a language and
A C Form(L). A is considered to be the class of “non-logical” azioms of S, denoted
A = Ax(S), and L is denoted L(S). Again L, A, S are treated as arbitrary (variable)
classes in F'Sy , subject to the given restrictions. The class Proof(S) is defined as the
class of derivation trees for the class Prov(S) = Z(LogAx(L) U Ax(S), MPUUG);
by §5§14,15, Proof(S) is PR in S and

a € Prov(S) « 3d[d € Proof(S) Aa =Pyd] .

We also write Proofg(d,a) for d € Proof(S) A a = Pad, and Provg(a) or S F a for
a € Prov(S).

Examples of elementary meta-logical theorems about Prov(S) which can be
proved in F'S; for arbitrary (variable) S are the Deduction Theorem and the Finite-
ness Theorem.

1 Tn IPS it was assumed that the class U of urelements contains eight basic
symbols ‘07, ‘v’ ‘¢’, “f7, ‘7, ‘=7 ‘=7, Vs these would here be replaced by ‘0’,...,
‘77, resp.

27

An axiomatic system is said to be inductively presented if it is given by a
specific closed class term S of FS; . In this case, all the notions leading up
to Prov(S) are also fi.p. S is said to be p.r.p. if it is given in the form S =
F~1{0}(= {z|Fz = 0}) for a closed function term F; then all the notions leading
up to Proof(S) are also p.r.p., while Prov(S) is f.i.p.

22. Godel’s incompleteness theorems for finitary inductively presented
extensions of FS, . With the notions of §21 suitably expanded to the many-
sorted case, it is seen that F'Sy is itself a p.r.p. logic given by a PR class term
FSy of FSy .12 Godel’s incompleteness theorems are here formulated for arbitrary
finitary inductively presented extensions S = (L, A) of FSy , given by a closed class
term S = (L, A). Each member ¢ of Form(L) is identified with an element of Vj.
Then ¢ is the canonical closed term of L(FSy) which denotes ¢. The function Sb
which associates with each ¢ and a the result Sb(¢,a) = ¢(a) of substituting a for
the variable x (or vo) in ¢, is in PR, presented by a function term Sh. In particular,

given ¢(x) we can form ¢(x) = ¢(Sh(x,x)), so that for y = ¢ (¢») = Sb(,), we

have

(1) FSy Fx < o(X) -

This gives the first ingredient of the incompleteness theorems, the construction of
“self-referential” statements. The second ingredient is the inductive completeness
of FSy from §18, which is here specialized to Prov(S):

(2) St ¢ implies FSy F Provg(o) .

For Godel’s First Incompleteness Theorem, we apply (1) to form ys with
(3) FSy F xs < —Provs(Yg) -

Then by the usual argument we have:

THEOREM 1. If S = [S] is a consistent extension of FSy then S } ys.'?

Let Cong = —Provg(¢), for ¢ = =(0 = 0), be the canonical consistency statement
associated with the presentation S of S. Then what must be shown for Godel’s
Second Incompleteness Theorem is:

THEOREM 2. FSy - Cong — —Provs(Yg), for S = [S] extending FSy .

12 Tn fact, Ax(FSy) is finite.
13 This is the first half of Godel’s First Incompleteness Theorem; the second half

is that if S is correct for statements of the form Provg(¢) then S } —xs.

28

For the proof of Theorem 2 we need to formalize (2) in FSy and for this more
generally we need to formalize Theorem 2 of §18. The details of that require a
more extended presentation than is possible here. Only one point should be noted.
In the proof of Theorem 2 of §18 we are carrying out a double induction, first on
the closed class terms of F'Sy and then on [Z2(A, B)] for each inductive class term.
However, for fixed S there are only a finite number of subterms that must be
considered, and so we are reduced to a finite number of individual inductions.
Alternatively, using the Normal Form Theorem of §9, we can reduce the inductive
argument to a single one. Prior to that one must establish a formal version of the
primitive recursive completeness theorem of FSy (Theorem 1 of §18); again, only
a finite number of inductions need to be made for each specific function.

23. Where do we go from here? Returning to the three basic aims that
we set for this work in the introduction—conceptual, pedagogical, and practical
(computational)—what has been accomplished here lies mainly in providing a con-
ceptual framework, with indications in the preceding paragraph how this would
be spelled out for a pedagogically reasonable exposition of Godel’s incompleteness
theorems. That should be carried out in detail and extended to include other
results in the “arithmetization of metamathematics” and proof theory, for exam-
ple concerning provable reflection principles (cf. Kreisel, Levy [1968], Smorynski
[1977]), and proof-theoretical conservation results (cf. Feferman [1988]). The use
of infinitary methods in proof theory for which finitary formalizations can be given
requires particular attention (cf. Feferman [1967], pp.93-95, and Schwichtenberg
[1977]). Another step into the transfinite, for which finitary treatments can be
given (at least, in part) is provided by the iteration of (non-provable) reflection
principles in recursive progressions of theories (Feferman [1962], [1964]). I believe
that F'Sy provides a natural framework in which to re-develop these topics in a
proper way. Finally, there should be an extension of F'Sy to a theory of infinitely
branching trees (with primitive recursive functions and inductive classes of such)
which would serve as a natural framework in which to formalize essentially infini-
tary logics, using inductive systems with infinitary closure conditions.

In another direction, one can form a non-finitist extension F.S; of FSy (anal-
ogous to the extension FM;, of FM, in [IPS]) by adding complementation as an
operation on classes; the resulting system is a conservative extension of PA. As
sketched in [IPS] §8, much countable model theory can be formalized in FSy, in
fact already in FSy + WKL (Weak Koénig’s Lemma). The conservation result of
Friedman for Z?—IA—I— WKL over PRA gives conservation of F'Sy + WKL over PRA,
as can be established directly by finitist methods (e.g. those of Sieg [1985]). But
already in F'Sy and closely related systems one can develop non-trivial parts of
countable model theory, thus generalizing portions of recursive model theory. Sys-
tematic work in this direction is being carried out by my doctoral student, Paolo
Mancosu.

29

Finally, on the computational front, the work of §15 establishes implementabil-
ity in principle, but clearly this is only the beginning. Whether implementation is
feasible and what its value might be can only be judged by actually trying to carry
it out. Good test cases for general topics are provided by the examples considered
for the ELF project (cf. Avron et al [1987]). Elaboration of the preceding section
could provide another test case, and here one has the work of Shankar [1985] for
an interesting comparison.

References

A. Avron [1987] Simple consequence relations, LFCS Report Series 87-30, Lab-
oratory for Foundations of Computer Science, University of Edinburgh.

A. Avron, F.A. Honsell, and I.A. Mason [1987], Using typed lambda calculus to
implement formal systems on a machine, LFCS Report Series 87-31, Lab-
oratory for Foundations of Computer Science, University of Edinburgh.

J. Barwise and S. Feferman [1985] (eds.) Model-theoretic logics, (Springer-
Verlag, Berlin).

S. Feferman

[1960] Arithmetization of metamathematics in a general setting, Fundamenta
mathematica 49, 35-92.

[1962] Transfinite recursive progressions of axiomatic theories, J. Symbolic
Logic 27, 259-316.

[1964] Systems of predicative analysis, J. Symbolic Logic 29, 1-30.

[1967] Lectures on proof theory, Lecture Notes in Mathematics 70, 1-107.

[1982] Inductively presented systems and the formalization of meta-mathematics,
in Logic Colloquium ’80 (D. van Dalen et @l eds., North-Holland, Am-
sterdam) 95-128.

[1988] Hilbert’s program relativized: proof-theoretical and foundational reduc-
tions, J. Symbolic Logic 53, 364-384.

M. Fitting [1987], Computability theory, semantics and logic program-
ming, (Oxford University Press, New York).

K. Goédel [1986], Collected Works, Volume I. Publications 1929-1936 (S.
Feferman et al, eds., Oxford University Press, New York).

R. Harper, F. Honsell and G. Plotkin [1987], A framework for defining logics, Proc.
Second Annual Conference on Logic and Computer Science, Cornell 1987 (to

appear).

G. Kreisel [1965], Mathematical logic, in Lectures on Modern Mathematics
IIT (T.L. Saaty, ed., Wiley, New York) 95-195.

30

G. Kreisel and A. Levy [1968], Reflection principles and their use for establishing
the complexity of axiomatic systems, Zeitschrift f. Mathematische Logik
u. Grundlagen d. Mathematik 14, 97-142.

Y. Moschovakis
[1969], Abstract first-order computability I, Trans. Amer. Math. Soc. 138,
427-464.
[1984], Abstract recursion as a foundation for the theory of algorithms, Lec-
ture Notes in Mathematics 1104, 289-364.

C. Parsons [1970], On a number-theoretic choice schema and its relation to in-
duction, in Intuitionism and Proof Theory (eds. J. Myhill et al, North-
Holland, Amsterdam) 459-474.

E. Post [1943], Formal reductions of the general combinatorial decision problem,
Amer. J. Math. 65, 197-214.

H. Schwichtenberg [1977], Proof theory: some applications of cut-elimination, in
Handbook of Mathematical Logic (J. Barwise ed., North-Holland, Ams-
terdam) 867-895.

W. Sieg [1985], Fragments of arithmetic, Annals of Pure and Applied Logic
28, 33-72.

N. Shankar [1985], Towards mechanical metamathematics, J. Automated Rea-
soning 1, 407-434.

C. Smorynski [1977], The incompleteness theorems, in Handbook of Mathe-
matical Logic (J. Barwise ed., North-Holland, Amsterdam) 821-865.

R. Smullyan [1961], Theory of formal systems (Princeton University Press,
Princeton).

Added March 10, 1992

The following references bear on two of the proposals in §23, namely for the finitary
formalization of infinitary methods in proof theory, and for the implementation of
F'Sy, resp.

W. Buchholz [1991], Notation systems for infinitary derivations, Archive for
Mathematical Logic 30, 277-296.

S. Matthews, A. Smaill, and D. Basin [1991], Ezperience with F'Sy as a logical
framework, (preprint) for the Second Logical Frameworks Basic Research Ac-
tion Workshop, Edinburgh, July 1991.

The work of P. Mancosu mentioned in §23 resulted in a Ph.D. dissertation at
Stanford University in 1989, and was later published under the same title as:

P. Mancosu [1991], Generalizing classical and effective model theory in theories of
operations and classes, Annals of Pure and Applied Logic 52, 249-308.

31

