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Abstract

Concurrent object-oriented programming (COOP)
languages focus the abstraction and encapsulation
power of abstract data types on the problem of con-
currency control. In particular, pure fine-grained
concurrent object-oriented languages (as opposed
to hybrid or data parallel) provides the programmer
with a simple, uniform, and flexible model while
exposing maximum concurrency. While such lan-
guages promise to greatly reduce the complexity of
large-scale concurrent programming, the popularity
of these languages has been hampered by efficiency
which is often many orders of magnitude less than
that of comparable sequential code. We present
a sufficient set of techniques which enables the ef-
ficiency of fine-grained concurrent object-oriented
languages to equal that of traditional sequential
languages (like C) when the required data is avail-
able. These techniques are empirically validated by
the application to a COOP implementation of the
Livermore Loops.

1 Introduction

The increasing use of parallel machines has exacer-
bated the longstanding tension between high-level
and low-level programming languages. Though
high-level languages ease the task of expressing a
computation, advocates of low-level languages ar-
gue that detailed control is required to achieve ef-
ficiency. Arguably, moving to parallel systems in-
creases both the complexity of programming and
the importance of achieving high efficiency. Thus,
determining what high level features can be sup-
ported efficiently and how to implement them effi-
ciently is an important topic of research.

Concurrent object-oriented programming lan-
guages are a promising approach to parallel pro-
gramming. Recent years have seen the rapid pop-
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ularization of object-oriented programming tech-
niques for sequential computers, largely because
of their benefits in managing program complexity.
Concurrent object-oriented programming (COOP)
languages focus the abstraction and encapsulation
power of abstract data types on managing the com-
plexities of concurrency and distribution. With
concurrent objects, which encapsulate their own
concurrency control, programmers can safely com-
pose concurrent operations on distributed collec-
tions of objects. Unfortunately, to date the best
COOP implementations have been inefficient com-
pared to sequential languages.’

In this paper, we focus on achieving efficient se-
quential execution of COOP languages. The larger
problem of achieving good parallel performance re-
quires both generation of efficient sequential code
and data locality. This latter issue is beyond the
scope of this paper.? We focus on the former issue,
exploring the elimination of object-orientation and
concurrency control costs in the generated code.
Concurrent object-oriented languages have been in-
efficient largely because they provide a uniform
view of all program data. Even the best imple-
mentations incur tens to hundreds of instructions
for each method invocation [26, 47] due to the cost
of managing a distributed memory (method invoca-
tions are location independent) and managing con-
currency (locks). Furthermore, the high procedure
call frequency typical of object-oriented programs
not only magnifies the method invocation overhead,
it also reduces the benefits of traditional optimiza-
tions.

The overhead of method invocations and con-
currency control can be eliminated by aggressive
inlining, access region optimizations, and state
caching. All of these optimizations are based on
excellent (and generally precise) concrete type in-
formation [38]. With this set of optimizations, our
COOP implementation equals the efficiency of the
sequential language C on the Livermore Kernels,
a demanding set of numerical benchmarks. While

1We consider only languages that support object-level
concurrency. For a discussion of the alternatives see Sec-
tion 5.

2We defer to the wealth of research in this area [30, 39,
22, 36, 3].



the Livermore Kernels do not benefit greatly from
object-orientation, all the arrays in the COOP ver-
sion of the kernels are implemented as concurrent
objects, and accessed via object method invocation.
Thus to achieve efficiency comparable to C, our
compiler must eliminate virtually all of the over-
head of concurrency control and object orientation.
We believe the performance of our compiler not
only exceeds that of all other concurrent object-
oriented implementations, but even surpasses many
other implementations of sequential object-oriented
implementations such as C++.

The specific contributions of this work are:

o Identifying the critical efficiency issues in
achieving sequential efficiency in concurrent
object-oriented languages,

e A combination and extension of program op-
timizations which together produce sequen-
tially efficient COOP implementations, and

e A demonstration of these techniques on the
Livermore Kernels which provides empirical
evidence that COOP languages can be effi-
cient.

The remainder of this paper is organized as fol-
lows. Section 2 describes the COOP programming
model, execution model, and compiler framework.
Section 3 describes a sufficient set of transforma-
tions to construct an efficient implementation for
COOP programs. In Section 4, we report the re-
sults of applying these transformations to the Liver-
more Loops. Related work is discussed in Section 5,
and we summarize the paper in Section 6.

2 Background

We describe the programming model, execution
model, and the compiler framework. The mapping
of the programming model to the execution model
described here is largely conceptual; further infor-
mation about our approach and actual implemen-
tation of COOP can be found in [9, 30].

2.1 Programming Model

The programming model we assume is the syner-
gistic union of Actors [1, 12, 21] and the object-
oriented model [17]. Each object can act concur-
rently to update its own state, create new objects
or invoke methods on other objects. An object pro-
vides a set of abstract operations, of which only
one may be active at a time. This allows objects
to control updates to their internal state. Methods
(abstract operations) may invoke methods on sev-
eral other objects concurrently, waiting on the re-
sponses only when required by data flow or the pro-
grammer. In this way, the programmer can safely
and conveniently compose larger parallel abstrac-
tions and entire programs. A number of languages
share this model [10, 26, 33, 46].

The programming model has three features
which contribute fundamentally to its programma-
bility:

e a shared name space,
e dynamic thread creation, and

e object level access control.

A shared namespace allows programmers to sep-
arate data layout and functional correctness. Dy-
namic thread creation allows programmers to ex-
press the natural concurrency of the application,
leaving the system to map it to the underlying
machine. Object-level access control provides a
basic mutual exclusion mechanism which can be
used to construct larger atomic operations or other
synchronization structures. When such exclusive
methods are invoked on the current object, self,
they inherit any access privileges the caller might
have, enabling recursion in exclusive methods.

2.2 Execution Model

The execution model is based on a set of single-
threaded processing elements with local names-
paces. Only objects local to a processing element
can be accessed directly. The system synthesizes
the global namespace of the programming model
by detecting and mapping operations on remote
objects into communication. The multithreading
in the programming model is achieved by multi-
plexing the processing elements in software. Thus,
each processing element can be viewed as a sequen-
tial machine augmented with runtime primitives
supporting naming, locking, location, and concur-
rency control. This model matches existing mas-
sively parallel processors [42; 13], and we believe it
is appropriate for the next generation machines as
well.
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Figure 1: Execution Model Example

Each object has a global name, a lock to im-
plement access control, and a queue for ready and
suspended contexts. Contexts are heap-allocated
activation records which contain a thread’s state.
When a message is sent, a future is created to hold
the return value and a thread is started on the tar-
get object. When the return value is required, the
future is touched and the thread suspended until
the value is present. Thus, the logical thread within
the object may split then rejoin or seem to migrate
from processor to processor as in Figure 1.



Basic operations of the execution model such
as locking, queuing, and context switching are ex-
pensive, but often can be optimized away. For ex-
ample, a naive approach would create a new thread
for each method invocation, but an implementation
can execute several threads within their parent to
improve efficiency. Thus the concurrency (relaxed
serialization) supplied by the programmer can be
exploited for parallel speedup, or discarded for se-
quential efficiency. The runtime exposes the fol-
lowing operations:

e LOCAL NAME converts a global object name to
a local name or returns a failure value.

e TAKE LOCKS, given a set of local names, at-
tempts to acquire locks on all the correspond-
ing objects and returns a success or failure
value.

e FREE_LOCKS, given a set of local names on
which locks have been acquired, releases those

locks.

e INVOKE invokes the specified method, han-
dling all cases (remote objects, locked objects,
etc.).

These primitives allow the compiler to test lo-
cality and locks inline, opening the door for spec-
ulative optimization. They also expose the basic
costs in the execution model, enabling many op-
timizations including some described later in this

paper.

2.3 Compiler Framework

The optimizations described in this paper have
been implemented as part of the Concert compiler
[9]. The intermediate form used in our compiler
is the Program Dependence Graph (PDG) [16] in
Static Single Assignment (SSA) [15] form. Using
the intermediate form, the compiler performs con-
crete type inference, global constant propagation,
cloning, inlining and extension of access regions.
Next, instance variables are converted to SSA, and
constant folding, common subexpression elimina-
tion, and strength reduction are performed. In the
back end, the Control Flow Graph (CFG) is recon-
structed and the program is translated into Reg-
ister Transfer Language (RTL). Context slots are
allocated and cached in registers, and the RTL is
converted into C++, which we use as a portable
machine language.

Properties of the intermediate form enable the
optimizations described in this paper. Using the
PDG, the compiler can determine both the partial
order of execution as well as some total order on
the contained statements. We say that two access
regions (see Section 3.1) are adjacent when no other
access regions appear between them in the total or-
der. A set of statements are between two statements
when they are required to execute so by the partial
order. The SSA transformation changes variables

with storage locations into values. Since our mo-
del does not allow arbitrary pointers, only instance
variables are associated with storage locations and
even these can be converted to SSA within access
regions. We say a statement is functional when its
execution cannot result in the thread blocking, a
message being sent, a lock taken, or an update to
a storage location.

3 Program Optimizations

In this section, we present three compiler transfor-
mations which minimize concurrency overhead for
sequential portions of COOP programs. Each opti-
mization exploits information available at compile
time to reduce and eliminate runtime overhead. In-
line substitution of methods eliminates method dis-
patch overhead and enables intra-procedural opti-
mizations. Access region expansion reduces local-
ity and access control overhead. Context and ob-
ject state caching exploit the memory hierarchy of
modern microprocessors to reduce multi-threading
overhead during sequential execution.

for ( 1=1 ; 1<=loop ; 1++ ) {
for ( k=0 ; k<n ; k++ ) {
x[k] = y[k+1] - y[k];
¥
¥

Figure 2: C code for Livermore Loops Kernel 12

Throughout, we use the Livermore Kernels as
a benchmark for sequential efficiency. Although
the Livermore Kernels do not benefit greatly from
object-oriented structure, they are well-known to
be a demanding test of a compiler’s ability to gen-
erate good sequential code. Even a single extra
memory reference within the innermost loop can
cause a major drop in performance. To illustrate
specific optimizations, we use Livermore Kernel 12
shown in Figure 2. The inner loop body contains
three array accesses. Because each array is an ob-
ject in a pure object-oriented language,® each array
access involves a method invocation. Making these
invocations each iteration, particularly in a COOP
model, would incur substantial overhead compared
to a C implementation. As a running example, we
show how this overhead can be removed as a result
of the three optimizations.

3.1 Inline Substitution

Inlining is crucial for fine-grained COOP languages
because methods are small and general method in-
vocation overhead is high, including procedure call,
concurrency control, and even communication over-
head. Without inlining, method invocation over-
head can easily account for over 95% of a program’s

3Each array as a whole is an object. Distributed ar-
rays are available through aggregates — a concurrent multi-
access data abstraction.



execution time. In sequential languages, the main
restraint on inlining is the increase in program size.
For concurrent object-oriented languages, inlining
is constrained by program size, access control, and
locality.

A method invocation can be inlined only if the
target object is local and can be accessed (any re-
quired lock is available). Otherwise message pass-
ing or queuing of the message is required. It is not
always possible to statically determine these prop-
erties. As a result, we speculatively inline method
invocations by testing the required properties at
run time using the inlining template shown in Fig-
ure 3. The template applied to an invocation of
method at on the object X is shown. The runtime
primitives CHECK_LOCAL () and TAKE_LOCKS () check
the locality and take the object lock, respectively.
Together they define an access regionunder the true
arm of the conditional where the object X is known
to be local and locked. Because the original method
invocation is retained in the false arm as a fallback,
the inlining template is safe for all method call sites.

if( CHECK_LOCAL(X)
&& TAKE_LOCKS(X) )
inlined method body of at
FREE_LOCKS(X)

else
INVOKE(at, X, i)

runtime guards
access region of X

| fallback code

Figure 3: Inlining Template

When locality or access control information is
available at compile time, the inlining template
is specialized to eliminate the testing overhead or
eliminate unreachable fallback code. For example,
no locking is required for immutable objects, and
invocations on self require additional locking only
when the callee is an exclusivemethod but the caller
non-exclusive. For other objects, the caller need
only take the object lock if the target method is
exclusive. Similarly, the locality of the target ob-
ject can be frequently guaranteed at compile-time,
as well. Immutable objects and self are always lo-
cal, and the locality of other types of target objects
can be estimated using object creation points and
the interprocedural call graph.

The inlining template enables inlining at all
method call sites where suitable type information
for the target object is available.* To guide inlining
decisions, we use simple heuristics based on static
call frequency estimators [44], the size of both the
caller and the callee method, and the inline depth.
Our experience shows that the simple heuristics
combined with compile-time specialization of the
inlining template reduces method invocation over-
head significantly without excessive code size or
compile time. For instance, full optimization of
Kernel 12 results in approximately a 50% increase
in compile time, 35% decrease in the object code
size, and 50% decrease in the the backend C++
compilation time.

4wWe perform global concrete type analysis and
customization[38, 6] to bind methods statically in the pres-
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Figure 4: The PDG of Kernel 12 After Inlining

An important result of inlining is the creation of
access regions which define a portion of the program
in which the two properties, locality and access, are
satisfied. Subsequent optimizations build on and
leverage off these properties to achieve sequential
efficiency. For example, the PDG of the Kernel
12 after inlining (Figure 4) shows an inner loop
body consisting of three access regions created by
the inlining of the three array accesses. Within each
region, a standard suite of sequential optimizations
can be applied.

3.2 Expanding Access Regions

Entering the access regions introduced by specula-
tive inlining requires runtime checks which can cost
ten or more instructions. If access regions are small
or executed frequently the overhead can be severe
(as in the loop of Figure 4). In order to reduce this
overhead we expand the dynamic extent of access
regions. This not only reduces the runtime check
overhead but also produces larger basic blocks for
classical optimizations. In this section, we consider
the general problem of expanding and merging ac-
cess regions then describe two such optimizations,
merging adjacent access regions and lifting access
regions above loops and conditionals.

Aspects of the programming and execution mo-
del influence these optimizations. Since control
flow is structured, the PDG forms a tree of prop-
erly nested statements. The access regions are also
properly nested, with the locks being acquired and
released at the same nesting level. As a result, we
can compose access reglon expansion optimizations
from two steps: 1) moving statements into a region
and 2) creating an empty region with a particu-
lar set of runtime tests. Note that the statements
moved in may include conditionals or loop heads di-
rectly above the region, expanding the region to in-
clude higher levels of the statement nesting. Lastly,
execution is non-preemptive with only the runtime
context switching, so we need only consider local
interactions between runtime primitives.

ence of type-dependent dispatch and inheritance.



3.2.1 Correctness

Access-region expanding optimizations must pre-
serve the semantics implied by the original method
invocations. This includes preserving the locality
and access control properties as well as mutual ex-
clusion of any statements moved into a new re-
gion. In addition, we must ensure that neither mov-
ing statements nor creating new regions introduces
deadlock. These properties are most conveniently
discussed within the concurrent systems framework
of critical regions [20], monitors [5] and deadlock
prevention [23].

Moving Statements into a Region

When moving statements into a region, we dif-
ferentiate three cases: functional statements (Sec-
tion 2.3), statements which access storage (non-
SSA variables), and potentially blocking runtime
primitives. Statements which are functional do not
call the runtime nor modify storage so they cannot
affect the locality or access properties of a region.
Hence, they can be moved safely into any region.

All exclusive storage accesses are conditioned by
tests for locality and access control by the program-
ming model. If a storage access is moved into the
region the tests for the destination region must sub-
sume the tests for the storage access. Furthermore,
if storage accesses for the same object from two dis-
tinct regions are moved into the region, they must
occur in whole, before or after each other, ensuring
locally the mutual exclusion that the programming
model guarantees [20]. Together these conditions
are sufficient to ensure the exclusion properties of
the programming model are preserved.

Potentially blocking runtime primitives cannot
be moved into regions unless it can be proven that a
resource cycle will not result. This is because block-
ing operations can give rise to non-local resource
deadlock [23]. In the absence of global dependence
analysis, correctness can be assured conservatively
by preventing such statements from being moved
into access regions.

Creating New Regions

Creating an access region containing no statements,
but with arbitrary runtime tests, does not change
the program providing that no deadlocks are in-
troduced. New deadlocks can only arise if new
dependences between locks are introduced. Dead-
lock can be prevented by obtaining all required
locks atomically; that is, all must be availabile for
any to be acquired and the entire operation must
be executed non-preemptively. Our multi-locking
runtime primitive provides this atomicity, avoiding
any lock ordering (and thereby avoiding any new
lock dependences).5 Thus, new regions can be cre-

5Note, that this is not an expensive operation in our
model since all objects in multi-locking operation will be
local.

ated without introducing deadlocks. Subsequently,
statements can be moved into the region subject to
the constraints above.

The fallback code used when the tests fail must
be completely general. For any combination of
tests, the fallback code must correctly handle the
situation where any of the component tests would
have succeeded.
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Figure 5: Kernel 12 After Merge

3.2.2 Merging Adjacent Access Re-
gions

Merging adjacent access regions combines the run-
time checks for two access regions and merges their
code bodies. Merging consists of several steps.
First, we create a new region with the combined en-
trance criteria. Then, using the partial order of ex-
ecution from the PDG, we identify the code which
must execute between the two regions and move it
into both the entry and fallback branches of the ac-
cess test. Finally, we move the entry and fallback
code from the original regions into their respective
branches of the new region.

The combined entrance criteria represent the
conjunction of the checks for the original regions.
If the new checks attempt to acquire the lock on a
single object twice, the attempt will fail, preserving
the mutual exclusion property. However, if at com-
pile time we know two objects are really the same,
we can take out a single lock and ensure mutual ex-
clusion by sequencing the operations from the two
regions so that they do not interleave. This must-
alias determination need only be conservative since
the fallback code is completely general.

Note that this approach aggressively merges ad-
jacent regions, so that the optimized path is only
be executed when all locks can be acquired at once.
Since the cost of blocking on a failure to acquire
a lock 1s large, this optimization extracts high effi-
ciency from the optimized path at a relatively small
increase in cost along the unoptimized path. The
result of these transformations on the program in



Figure 4 appears in Figure 5. All three of the condi-
tionals have been merged into a single test and two
branches, an optimized path and a fallback path.
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Figure 6: Kernel 12 After Hoist

3.2.3 Lifting Access Regions

Lifting access regions higher in the PDG can im-
prove code efficiency by enabling runtime testing
overhead to be removed from loop bodies. In or-
der to ensure correctness, we proceed stepwise as
follows. Using a bottom up traversal of the PDG
(essentially the program block structure), we at-
tempt to merge adjacent access regions until only
one remains within the control dependence region.
We then attempt to place the remaining statements
within the single access region. If this succeeds we
are prepared to lift the regions.

There are only two types of control structures
in our intermediate representation: while loops and
conditionals. For while loops, the situation is sim-
ple. If the control dependence region under the
loop is entirely contained in a single access region,
the loop header can be moved into the access re-
gion. The result is that the access region is lifted
over the loop. The same situation holds for single
armed conditionals.

if ( CHECK_LOCAL(x) && CHECK_LOCAL(y)
%% TAKE_LOCKS(x,y) )
for ( 1=1 ; 1<=loop ; 1++ )
for ( k=0 ; k<n ; k++ )
x[k] = y[k+1] - y[kl;
FREE_LOCKS (x,y) ;
else {
for ( 1=1 ; 1<=loop ; 1++ )
for ( k=0 ; k<n ; k++ ) {
t1 = INVOKE(at, y, k+1);
t2 = INVOKE(at, y, k);
INVOKE(putat, x, t1 - t2);

Figure 7: Example Compiler Output After Lifting
on Kernel 12

Conditionals with two arms require that the two
regions be merged and lifted simultaneously. The

logical steps required to show correctness are: first,
break the conditional into two one armed condition-
als, one with the negation of the original condition.
Then, lift the access regions above these condition-
als as above. Next, merge the two resulting access
regions. Finally, merge the two one armed condi-
tionals to reconstruct the original conditional.

After inlining and access region expansion, the
code within a function or method consists of re-
gions of optimized sequential code. If the program
spends the majority of its time in these regions it
will be nearly as efficient as a sequential unipro-
cessor implementation. For example, applying this
transformations to our example produces the struc-
ture shown in Figure 6. When both x and y are
local, this first loop nest is identical to a sequen-
tial program. An example of the code which our
compiler might generate appears in Figure 7.

3.3 Caching Object and Context
States

Caching both local temporaries (context state) and
heap-allocated objects (object state) in registers is
required to obtain sequential efficiency. We accom-
plish this by refining standard register allocation
techniques to account for the multithreaded execu-
tion model and object level access control.

3.3.1 Caching Context State

Caching context state in a multithreaded execution
model is complicated by the possibility of context
switching due to synchronization. Because register
values are not preserved across context switches,
the register allocator must guarantee that when
a context switch occurs at a touch, the cached
state is saved before the thread yields control. It
is also crucial to minimize unnecessary state saving
when the thread does not context switch since the
amount of register-cached state can be large and
touches frequent.

save values in S — L to the context
TOUCHBEGIN(Full, futureslot,...)
save values in .S N L to the context
CONTEXT_SWITCH
Restart: load values in SN L into registers
Full: TOUCH_END
load values in I — S into registers

Figure 8: Lazy State Saving at a Touch

To minimize unnecessary overhead, we save and
load register cached state lazily by exploiting the
runtime test which determines the context switch.
Figure 8 shows our touch template, assuming S and
L are the set of values saved and loaded respec-
tively at a context switch. The runtime primitive
TOUCHBEGIN tests the state of the futures. If all



futures have values, the code branches to the la-
bel Full without blocking; otherwise execution falls
through, saving the shared values in SN and yield-
ing control at CONTEXT SWITCH. When the thread re-
sumes after a context switch, control returns to the
label Restart and immediately restores the shared
values in .S N L into registers.

save(x)

restore(x)

=X

Figure 9: Control flow graph of three access regions
merged, with three touches (shaded boxes) in the
fallback code.

The possibility of context switching also affects
the choice of live ranges[11] — throughout which
a value is either cached and maintained in a reg-
ister or kept in memory. Low probabilities of
context switching favor live ranges extending over
touches; high probabilities favor live ranges delim-
ited by touches, treating touches as function calls
in a caller-saved linkage convention. The extensive
use of speculative inlining eliminates suspension
points inside access regions and increase the like-
lihood of context switching for suspension points in
the fallback code. Therefore, we choose to delimit
live ranges by touches and apply a heuristic that
caches each live range whose value is accessed at
least twice. For example, Figure 9 shows the re-
sulting control flow graph after speculative inlining
and merging of access regions at three call sites.
Separate live ranges of x delimited by touches al-
low x to be cached throughout the access region
(left) and avoid unnecessary reloading overhead in

the fallback code (right).

3.3.2 Caching Object State

We exploit access regions to cache object state in
registers safely. Within an access region, the ob-
ject’s state is protected by its lock, preventing ac-
cesses by other threads. Thus we can safely cache
this state in temporary variables; eliminating mem-
ory accesses and requiring only a single update at
the end of the access region or before any subse-
quent method invocation.

For example, Figure 10 shows two possible
code sequences for a loop nest traversing a two-
dimensional array. The two-dimensional array is
constructed from a one-dimensional array with the

// Code sequence without object state caching
if( CHECK_LOCAL(a) && TAKE_LOCKS(a) )
for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
... = a[ a.dimension * i + jl; //al[ill[j]
FREE_LOCKS (a) ;
else

// Code sequence with object state caching
if( CHECK_LOCAL(a) && TAKE_LOCKS(a) )

temp = a.dimension;

for(i = 0; i < n; i++)

for(j = 0; j < n; j++)
... =al temp * i + j];

FREE_LOCKS (a) ;

else

//alil[j]

Figure 10: Comparing two output sequences, one
with object state caching (bottom) and one without

(top).

instance variable dimension of the object a being
used for index linearization. The bottom code uses
the properties of access regions to cache dimension
in a local temporary temp, potentially saving a
memory reference in the innermost loop and en-
abling other optimizations such as strength reduc-
tion. Another advantage of the COOP model is
that objects cannot be aliased within the region
since an exclusive lock is acquired for each object
at run time. In effect, the object level access con-
trol serves as a form of non-aliasing declaration,
enabling loads and stores to be moved freely within
the access region and making the COOP version po-
tentially more efficient than a sequential language
version.

4 Results

To demonstrate the effectiveness of these transfor-
mation, we compare the performance of our concur-
rent object-oriented system to a low-level sequen-
tial language, C [31]. For the comparison, we use
the Livermore Loops, a set of numerical kernels [35]
used to measure computation rates for CPU-limited
computational structures. All reported numbers
are for the third workload of the Livermore ker-
nels at single precision run on a Sparcstation II.
The COOP execution times were collected with the
UNIX time facility using high iteration counts, and
are accurate to within a few percent.

In order to actually test a COOP programming
style, we translated the FORTRAN code in a natu-
ral object-oriented style. Multi-dimensional arrays
were created by subclassing a single dimensional
array and using methods to linearize the indexing
operations. Since our COOP language does not
have pointers, the programmer cannot bypass the
encapsulation of the arrays as is typically done in
C++ programs to obtain efficiency. We compare
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Figure 11: Performance on Livermore Loops

our COOP system’s performance against the native
C version of the Livermore kernels compiled by the
GNU C/C++ compiler.6 This i1s the same com-
piler used by our COOP system as a backend, min-
imizing differences in low-level optimizations like
instruction selection and scheduling.

MFLOPS
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Figure 13: Cumulative Effect of Optimizations on
Kernel 12

To illustrate the effect of each optimization we
applied each in turn to Kernel 12, and present the
performance numbers in Figure 13. FEach addi-
tional optimization produced a significant increase
in performance. With only traditional optimiza-
tions, none, achieved only several kiloFLOPS. Ap-
plying speculative inlining produced an eighteen-
fold performance increase, as show by inline. Ex-
panding regions by merging increased performance
by another 60% while adding lifting access regions
brought this to 440%. Caching of context values
as in cache resulted in 4.5 times performance im-
provement, coming close to C’s performance. The

6 We used the highest level of optimization and identical
compiler options for all of our measurements.

remaining performance gap was traced to our back-
end C/C++ compiler being unable in some cases to
do common optimizations on the somewhat unnat-
ural code output by our compiler. We implemented
these optimizations in our COOP compiler, and the
final results all include the resulting 40% increase
in performance, essentially matching the native C
implementation and nearly 500 times better than
that achieved by none.

Figure 11 contains performance results for all
of the Livermore Loops. The performance of the
COOP code is quite close to that of the native C
code. Essentially all of the object-orientation over-
head and concurrency control overhead has been
eliminated. Note that this performance exceeds
that which would be delivered by most C++4 com-
pilers on code written in an object-oriented style.
For example, we measured the performance of two
representative Livermore kernels in C++4 using the
GNU C4+ compiler. Kernel 12, using virtual func-
tions to access elements in a one-dimensional array,
achieves 0.42 MFLOPS — less than a third of the
COOP or the C performance. Kernel 21, which
operates on two-dimensional arrays achieves 0.32
MFLOPS and even by using non-virtual functions,
achieves only 0.45 MFLOPS — less than one fifth
of the COOP or C performance.

In Figure 12 we report the performance of the
COOP implementations relative to the C imple-
mentations ((COOP-C)/C). Of the 24 kernels, our
COOP implementation was more than 20% faster
on five, the C implementation was more than 20%
faster on six, and the remaining thirteen were es-
sentially the same. For the codes where the C com-
piler gave superior performance, these differences
were traced to special purpose array manipulation
optimizations in the native C compiler and defi-
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Figure 12: Performance Difference ((COOP-C)/C)

ciencies in our strength reduction optimization (it
uses extra registers and does not work for opera-
tions under conditionals in loops as in Kernel 15).
In cases where the COOP system was faster, the
major factor was our ability to apply some opti-
mizations where the C compiler was unable to. The
main point of these results is that the COOP mo-
del can be essentially as efficient at a sequential C
programming model. Any differences that remain
are purely in the purview of traditional low level
optimization.

5 Related Work

The fine-grained approach to COOP has been stud-
ied extensively [33]. In particular, ABCL [45, 46,
47] and Concurrent Smalltalk (CST) [25, 26] were
instrumental in helping define the programming
and implementation models described here. How-
ever, their focus was not on extensive compile-
time inter-object transformations. A variety of
other parallel object-oriented systems pursue the
approach of relying on an underlying sequential lan-
guage for efficiency [4, 8, 18, 29, 32, 40].

Our work also draws on developments in both
the sequential and parallel compiler community.
While most of our techniques are familiar ones, we
have adapted them significantly to the COOP mo-
del. Many researchers have studied inlining for se-
quential languages [2, 28, 34]; however, their main
concern is different from our focus on concurrency
and locality. Our inlining techniques are most sim-
ilar to the ones used in the SELF compiler [6, 7, 24]
in their requirement for accurate type information
and customization to enable inlining, speculative
optimizations, and the insertion of runtime checks
to condition optimized code. Our inlining heuris-

tics are a combination of static frequency estima-
tion [44] and the commonly used size constraints.
One unique aspect of our inlining transformations
is the creation of access regions and the aggressive
exploitation of access region properties by subse-
quent optimizations.

The lifting of access region is conceptually sim-
ilar to moving loops across procedure boundaries
and lifting and blocking of communication in par-
allel Fortran [19, 22]. In our case, the possibility of
deadlock requires atomic primitives and more ex-
tensive analysis. Our register allocation scheme is
based on that of Chow and Hennessy [11], adapted
for lazy state saving. The problem of register allo-
cation in the presence of synchronization points has
been studied in dataflow models [14, 41, 43], but the
model is slightly different. For instance, TAM has
many threads per context, whereas our execution
model has only single thread per context, making
local analysis around the touches sufficient. The
non-aliasing property of an access region’s objects
inside the region achieves runtime disambiguations
of objects. Previous work [27, 37] on runtime dis-
ambiguation focuses on memory accesses at the in-
struction level.

6 Summary and Future Work

We have shown that it is possible to produce effi-
cient implementations from high-level COOP lan-
guages, dispelling the myth that such a program-
ming model is inherently inefficient. Using a de-
manding set of numerical benchmarks, the Liv-
ermore Kernels, we have demonstrated that our
concurrent object-oriented programming model can
achieve good sequential performance. This sequen-
tial efficiency forms an important basis for high ab-



solute performance through hardware parallelism.
However, it is only half of the solution. The ef-
fectiveness of the optimizations depends the data
being available (local and not currently in use).
Work is underway on both static analyses [39] and
runtime techniques [30] to enable the system to en-
sure availability and thus apply the optimizations
in a more informed manner, with the goal of freeing
the programmer from the burden of data and task
placement.

We have presented a simple programming model
and implementation model for a pure concurrent
object-oriented language which includes a shared
global namespace, dynamic thread creation and ob-
ject level access control and shown it can be ef-
ficient. Our continuing research is directed to-
ward developing additional optimization for array
and pointer based data structures through data lay-
out, program analysis and transformation and run-
time migration techniques. We are optimistic that
through the development of such techniques con-
current object-oriented programming can enable ef-
ficient, portable parallel programming.
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