
Ensemble Learning for Blind Image Separationand DeonvolutionJames Miskin and David J. C. MaKay
Summary. In this hapter Ensemble Learning is applied to the problem of BlindSoure Separation and Deonvolution of images. It is assumed that the observedimages were onstruted by mixing a set of images (onsisting of independent iden-tially distributed pixels), onvolving the mixtures with unknown blurring �ltersand then adding Gaussian noise.Ensemble Learning is used to approximate the intratable posterior distributionover the unknown images and unknown �lters by a simpler separable distribution.The mixture of Laplaians used for the soure prior respets the positivity of theimage and favours sparse images. The model is trained by minimising the Kullbak-Leibler divergene between the true posterior distribution and the approximatingensemble.Unlike Maximum-Likelihood methods, inreasing the number of hidden imagesdoes not lead to over�tting the data and so the number of hidden images in theobserved data an be inferred.The results show that the algorithm is able to deonvolve and separate theimages and orretly identify the number of hidden images.1 IntrodutionPrevious work on Blind Soure Deonvolution has foused mainly on the problemof deonvolving sound samples. It is assumed that the observed sound samplesare temporally onvolved versions of the true soure samples. Blind Deonvolutionalgorithms have fallen into two types, those where the inverse of the onvolution�lter is learnt [1℄,[3℄ and those where the aim is to learn the �lter itself [1℄.When applying these ideas to the problem of deonvolving images two problemsbeome apparent. Firstly in many real data sets (for instane the images generatedby telesopes observing the sky or the power spetrum from a Nulear MagnetiResonane (NMR) spetrometer) the pixel values orrespond to intensities. So thepixel values must be positive. The standard blind separation approahes of assum-ing that the soures are distributed as 1osh [3℄ or mixtures of Gaussians [2℄ lose thispositivity of the soure images. Deonvolution without a positivity onstraint leadsto reonstruted images that have areas of negative intensity orresponding to en-ergy being suked out of the detetor. Lak of a positivity onstraint explains whyan optimal linear �lter is suboptimal for deonvolution. The derivation of the opti-mal linear �lter assumes that the soure image onsists of independent identiallydistributed Gaussian pixels and so does not fore positivity [4℄,[8℄.



2 James Miskin, David J. C. MaKayAnother problem is that we know that the onvolution �lters must also bepositive (in the ase of observing the sky the onvolution �lter orresponds toblurring due to an imperfet telesope). Most algorithms that learn the inverses ofthe �lters do not take this into aount, partiularly sine positivity is only trueof the onvolution �lter and not of the deonvolution �lter. Those algorithms thatlearn the onvolution �lter also have problems if they assume that the �lter an beinverted exatly, whih is not neessarily the ase sine there may be zeros in thepower spetrum of the onvolution �lter whih lead to poles in the power spetrumof the deonvolution �lter. Poles in the power spetrum of the deonvolution �lterwould not be a problem if the observed image were noise free and there were nonumerial errors in the alulation but in real problems the inverse is ill onditioned.It is possible to use MCMC sampling to solve blind inverse problems by samplingfrom the true posterior density for the latent variables, [7℄. Sampling methods havethe disadvantage that preditions an only be made by storing a set of samples orby repeating the sampling proess whenever samples are needed.In this hapter we apply Ensemble Learning (as introdued in hapter 6) tothe problem of Blind Soure Separation and Deonvolution. We apply EnsembleLearning so as to �t the ideal posterior density by an approximation satisfyingthe positivity onstraints. The result of the training is a distribution (not a set ofsamples from the distribution) and so further inferenes an be made by evaluat-ing expetations using this approximation. Ensemble Learning has previously beenapplied to the Blind Soure Separation problem where it was used to separate asample of speeh into independent omponents [5℄.We apply the image separation algorithm to the problem of �nding a represen-tation for a sub-set of the MNIST handwritten digit data base. We show that thedigit images an be represented by a smaller set of loalised images representingparts of the digits. Fatorisation of data using a positive onstraint on latent vari-ables has previously been used to �nd a parts based representation for images offaes and for text passages,[6℄.2 Separation of ImagesWe will onsider separating a linear mixture of hidden soure images. The set of Nobserved images (eah of whih are I by J pixels) are assumed to be given byyij;n = MXm=1wnmxij;m + �ij;n= ŷij;n + �ij;n (1)where w is an N by M matrix, x is the set of M hidden images (eah I by J pixels)and � is some zero mean Gaussian noise.The priors over the latent variables (w and x) must respet the positivity on-straint. The prior for the matrix elements is a Laplaianp (wnm) = ��w exp (��wwnm) wnm � 00 wnm < 0 (2)



Ensemble Learning for Blind Image Separation and Deonvolution 3where �w is a sale parameter with the sale invariant priorp (ln �w) = 1: (3)The prior for the soure pixels is a mixture of Laplaiansp (xij;n) = �PN��=1 �� 1b� exp ��xij;mb� � xij;m � 00 xij;m < 0 (4)where the hyper-priors arep (ln b�) = 1 (5)p (f��g) / Æ N�X�=1 �� � 1! N�Y�=1�� : (6)Figure 1 shows how a prior of this form favours sparse images, it should be notedthat the prior does not inlude any prior knowledge we may have about spatialstruture.
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Sample from the prior densityFig. 1. Example of the form of the soure pixel prior density. The sum of Laplaiansan have a sharp peak at zero intensity and a long tail. Consequently the priorfavours sparse soure imagesIf we assume that we observe the mixtures with additive Gaussian noise, thenthe likelihood for the observed pixels isp (fyg jfxg ; fwg ; �� ) =Yij;n G �yij;n; ŷij;n; ��1� � (7)



4 James Miskin, David J. C. MaKaywhere G (a; b; ) is a Gaussian distribution over a with mean b and variane . ��is the inverse variane of the Gaussian noise and is assigned the hyper-priorp (ln ��) = 1: (8)We now de�ne the model H to be the variables M , fb�g and f��g and � tobe the latent variables fxg, fwg, �� and �w . Using Bayes theorem, the posteriordensity over the latent variables isp (� jfyg ;H ) = p (fyg j�;H ) p (�)p (fyg ;H) : (9)The proess of making inferenes involves �nding expetations under this prob-ability density (typially expetations of the latent variables themselves), whihis analytially intratable. As shown in hapter 6, we an approximate the trueposterior by a more tratable distribution, q (fxg ; fwg ; ��; �w), for whih the ex-petations are tratable. We an do this by minimising the ost funtionCKL = D (q (�) jjp (� jfyg ;H ))� ln p (fyg jH )� ln p (fb�g)� ln p (f��g)= Z q(�) ln q(�)p (�; fyg jH )d� � ln p (fb�g)� ln p (f��g)= Z �ln q (fwg)p (fwg) + ln q (fxg)p (fxg) + ln q (��)p (��)+ ln q (�w)p (�w) � ln p (fyg j�;H )� d� � ln p (fb�g)� ln p (f��g) : (10)It should be noted that beause of the produt form of the true posterior density,the ost funtion an be written as a sum of simpler terms.2.1 Learning the EnsembleIn order to simplify the posterior density, we hoose to use a separable distributionof the formq (�) =Yijm q (xij;m)�Ynm q (wnm)� q (��) q (�w) : (11)We will not assume a spei� form for these distributions, instead we will �nd theset of funtions that optimises the ost funtion (subjet to the separable form andthe onstraint that eah distribution is normalised).



Ensemble Learning for Blind Image Separation and Deonvolution 5We an update eah distribution in turn, using urrent estimates for all ofthe other distributions. To illustrate this, we an onsider performing all of theintegrations in the ost funtion with the exeption of the integration over �wCKL = Z q (�w)"ln q (�w)�Xnm (ln �w � �w hwnmi) + ln�w# d�w (12)where we have dropped all terms that are independent of �w and h:i denotes theexpetation under the approximating ensemble. We now need to minimise this ostfuntion with respet to the distribution q (�w), subjet to the onstraint that q (�w)is normalised.�CKL�q (�w) = ln q (�w)�Xnm (ln �w � �w hwnmi) + ln�w + 1 + �w (13)where �w is a Lagrange multiplier. Setting this derivative to zero, we �nd that theoptimum distribution for �w isln q (�w) =Xnm [ln �w � �w hwnmi℄� ln �w � 1� �w: (14)Therefore the optimal distribution isq (�w) = �  �w ;Xnm hwnmi ; NM! (15)where the � distribution is� (a; b; ) = 1� () ba(�1) exp (�ab) : (16)Similarly we �nd that the optimal distribution for �� isq (��) = �  ��; 12Xijn 
(yij;n � ŷij;n)2� ; IJN2 ! : (17)For the remaining parameters the optimal distributions areq (wnm) = 1Z(w)nm p (wnm) exp��12w(2)nm �wnm � w(1)nm�2� (18)q (xij;m) = 1Z(x)ij;m p (xij;m) exp��12x(2)ij;m �xij;m � x(1)ij;m�2� (19)



6 James Miskin, David J. C. MaKaywhere nZ(w)nmo and nZ(x)ij;mo are the sets of normalising onstants and we havede�ned w(2)nm = 1h��iXij 
x2ij;m� (20)w(1)nmw(2)nm = h��iXij hxij;mi yij;n � Xm0 6=m hwnm0 i hxij;m0 i! (21)x(2)ij;m = 1h��iXn 
w2nm� (22)x(1)ij;mx(2)ij;m = h��iXn hwnmi yij;n � Xm0 6=m hwnm0 i hxij;m0i! : (23)The optimal distributions for w are produts of Laplaians and Gaussians, so theoptimal distributions are reti�ed Gaussians (i.e. q (wnm) is Gaussian for wnm � 0and zero otherwise). Similarly the optimal distributions for x are mixtures of reti-�ed Gaussians. When evaluating the updates for the distributions, it is neessary toevaluate the expetations of the form hwnmi, 
w2nm�, et. These an be evaluatedusing error funtions.The distributions an be trained by repeatedly updating eah one in turn. But itis important to note that while we have hosen the approximate ensemble suh thatsamples from the distributions are independent, the parameters of the distributionsare orrelated and so optimisation by suessive update of eah distribution an beslow to onverge.We an update all of the distributions in parallel by noting that the ensemblean be parametrised by the vetor� = ��x(1)	 ;�log x(2)	 ;�w(1)	 ;�logw(2)	 ; log aw; log a�� (24)whereaw =Xnm hwnmi ; (25)a� = 12Xijn 
(yij;n � ŷij;n)2� : (26)The urrent estimate of the ensemble an be parametrised by �(�). We an thende�ne the vetor �(opt) to be the ensemble formed from the optimal distributionsaording to Eqns. 15, 17 and 20{ 23. A small step along the vetor from �(�) to�(opt) must redue the ost funtion. Therefore the new ensemble an be de�ned tobe the minimum along the vetor from �(�) to �(opt).



Ensemble Learning for Blind Image Separation and Deonvolution 7If the distributions are independent, a single line minimisation will result inonvergene to the optimum distribution (sine in this ase �(�+1) = �(opt)). Alter-natively if the distributions are not independent, suessive line minimisations willresult in onvergene to the optimum ensemble.2.2 Learning the ModelWe would also like to be able to infer the parameters of the prior on the sourepixels. We an do this by noting that the terms in the ost funtion relating to theprior on the soure pixels areCKL = � ln p (fb�g)� ln p (f��g)�Xij;m hln p (xij;m)i= � ln p (fb�g)� ln p (f��g)�Xij;m Z q (xij;m) lnX� �� 1b� exp��xij;mb� � dxij;m : (27)If the urrent parameters are nb(�)� o and n�(�)� o and the updated parameter val-ues are nb(�+1)� o and n�(�+1)� o, then by appliation of Jensen's inequality anddisarding onstants, a bound on the ost funtion an be obtainedCKL � � Xij;m;� Z f�;i;j;m (xij;m) ln��(�+1)� 1b(�+1)� exp�� xij;mb(�+1)� �� dxij;m� ln p ��b(�+1)� 	�� ln p ���(�+1)� 	� (28)wheref�;i;j;m (xij;m) = 1Z(x)ij;m �(�)� 1b(�)� exp��xij;mb(�)� �� exp��12x(2)ij;m �xij;m � x(1)ij;m�2� : (29)The bound on the ost funtion an be optimised by setting the new parametersfor the prior to�(�+1)� = 1 +Pijm �R f�;i;j;m (xij;m) dxij;m�IJM +N� (30)b(�+1)� = Pijm �R f�;i;j;m (xij;m)xij;mdxij;m�1 +Pijm �R f�;i;j;m (xij;m) dxij;m� : (31)



8 James Miskin, David J. C. MaKay2.3 ExampleFigure 2 shows the results of separating a mixture of three grey-sale Dilbert im-ages [Dilbert image Copyright 1997 United Feature Syndiate, In., used withpermission.℄. The images were mixed with a random positive matrix and Gaussiannoise was added. The three olumns of the �gure show the true hidden images, thenoisy observations and the ensemble average for the reonstruted images. Three ofthe reonstruted images math the hidden images. The other two images do notontribute to the mixture. The elements in the w matrix orresponding to thoseimages are set to approximately zero. If we look at (22), the x(2) parameters tendto zero as the elements of w tend to zero and so the posterior density for all of thepixels in the blank images mathes the prior density.We an see that the posterior tends to the prior by looking at Fig. 3 wherethe KL divergene between the posterior and prior soure pixel densities for eahreonstruted image is plotted as a funtion of iteration. It an be seen that thedivergene tends to zero for two of the images whih means that the posterior andthe prior are the same densities.It might be useful to infer the number of soure images that ontribute to theobservation. In Maximum Likelihood methods, inreasing the number of souresannot derease the likelihood sine the extra soure images will model the noisein the observations. Therefore the number of soure images will be inferred to beat least as large as the number of observed images.The orret way to perform the inferene of the number of soures is to performmodel seletion, where eah model orresponds to a di�erent number of hiddenimages. The ost funtion gives us a bound on the evidene for a model,ln p (fyg jH ) � �CKL: (32)Therefore we an use Bayes theorem to evaluate the posterior probability of a givenmodel usingp (H jfyg ) = p (fyg jH ) p (H)p (fyg) : (33)If we hoose a at prior over the number of hidden images, the model that maximisesthe posterior distribution is the model that maximises p (fyg jH ). We ould assumethat this is the same as the model that maximises the bound on p (fyg jH ) and sothe model to hoose is the model that minimises CKL.It may be too time onsuming to train multiple models, one for eah possiblenumber of images. A simpler method would be to remove soure images from themodel that do not ontribute to the observations, this will redue the ost funtionsine we know that the KL divergene between the posterior and prior densities forthe soure pixels and for the mixing matrix elements must be greater than zero.Pratially, we remove a soure image if the KL divergene between the posteriorand prior densities drops to less than 10�3 per pixel.Figure 4 shows how the histograms of intensity ompare for the hidden images,the observed images and the reovered images. It should be noted that the reoveredimages are muh more sparse than the observed images.
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Hidden Images

Observed Images Reconstructed ImagesFig. 2. Demonstration of the separation of a mixture of three images from a setof �ve observed images. The left hand olumn shows the true hidden images. Theentre olumn shows the noisy mixtures of the hidden images. The right hand ol-umn shows the reonstruted soure images. Three of the reonstruted imagesmath the true images, the remaining two images are uniform as their approxi-mate posterior density, q (xij;m), is equivalent to the prior density. [Dilbert imageCopyright 1997 United Feature Syndiate, In., used with permission.℄



10 James Miskin, David J. C. MaKay

10
0

10
1

10
2

0

1

2

3

4

5

6

7

Iteration

K
L 

D
iv

er
ge

nc
e 

be
tw

ee
n 

pr
io

r 
an

d 
po

st
er

io
r 

de
ns

iti
es

 /b
its

 p
er

 p
ix

el

Fig. 3. Variation of the KL divergene between the approximate posterior densityand the prior density for eah of the reonstruted images. There are three stages totraining. During the �rst stage the soure prior and q (��) are not trained. Duringthe seond stage q (��) is trained so the approximate posterior distributions beomesharper and the KL divergene inreases. During the �nal stage the soure prioris updated so that it better �ts the approximate posterior and the KL divergenedrops. For two of the images, the KL divergene tends to zero (that is the posteriordensity tends to the prior density), these images are not required to be able toreonstrut the observations2.4 Parts-Based Image DeompositionPositive onstraints on latent pixels have previously been used to �nd a non-negativefatorisation of a set of fae data, [6℄. In that ase it was found that the reonstrutedimages orresponded to a parts-based deomposition of the fae data into loalisedfeatures.We an onsider trying to �nd images in a set of natural images by using theEL blind separation algorithm. Figure 5 shows the �rst 16 examples of handwritten\3"s in the MNIST data set. Figure 6 shows the �rst 16 PCA omponents generatedfrom the �rst 256 \3"s in the MNIST data set. These omponents represent thehighest variane omponents of the data set, but it is not obvious visually what theset of omponents represents.The PCA omponents do not respet the known positivity of the images (thedigits range from white to blak or zero ink to lots of ink). Therefore when thePCA omponents are added together there is an interation between positive andnegative regions in di�erent omponents to give the positive digit images.
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Fig. 4. Histograms of the intensities of the pixels in the images. The �rst plot showsthe true images, here we an see that the images are quantised grey-sale images.The seond plot shows the plot for the observed images, as there is a mixing of thequantised levels, the observations are no longer quantised. The third plot shows thehistogram for the reonstruted images. The reonstruted images do not maththe true images exatly beause the ICA model has an invariane with respet toresaling eah soure image, but the reonstruted images are more sparse than theobserved images

Fig. 5. The �rst 16 \3"s in the MNIST handwritten data set. The digits are storedas 28x28 pixel grey sale images. Eah digit has been preproessed to enter it inthe image and to deskew it



12 James Miskin, David J. C. MaKay

Fig. 6. The �rst 16 PCA omponents from the �rst 256 \3"s in the MNIST dataset. Statistially these omponents orrespond to the highest variane omponentsin the data set, but visually it is not obvious what these omponents representInstead we an onsider enforing positivity of the latent images. Applying theEnsemble Learning algorithm to the set of 256 \3"s (assuming that there are 64hidden images) leads to the deomposition shown in Fig. 7. Instead of the imagesbeing based on orretions to a prototype \3" (as in the PCA ase) the reonstrutedimages are all loalised and take the form of di�erent shapes of urves, tails, et.Figure 8 shows the reonstrutions of the digits in Fig. 5 using the learnt hiddenimages. Therefore a parts based deomposition an give a good representation ofthe data set.The parts based representation ould be used for image ompression (by storingimages in terms of the parts required to onstrut them) or as a method of imagereognition (by training a set of models of di�erent digits, \1"s, \2"s, et, a lassi�erould be made by evaluating the posterior probability of eah model for eah trialdigit).3 Deonvolution of ImagesWe an extend the model to inlude loalised blurring of the images. The model forblurring ould be used to model the point spread funtion for a telesope, the linewidth in NMR experiments or motion blur. The observed images are now de�nedby yij;n = MXm=1 KXk=�K KXl=�Kwnmekl;nxi�k;j�l;m + �ij;n= ŷij;n + �ij;n (34)
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Fig. 7. The hidden images learnt when the 256 \3"s are assumed to be made from alinear ombination of 64 non-negative latent images. The learnt images are loalised(unlike the PCA omponents) and eah represents a part of a \3" with di�erentimages representing di�erent shapes of urves in di�erent positions

Fig. 8. Reonstrutions of the true digits using the 64 non-negative images. Herewe an see that the parts based representation is able to model a variety of shapesof \3" and we an see that a set of 64 latent images is able to represent the dataset of 256 handwritten \3"s



14 James Miskin, David J. C. MaKaywhere w, x, � and y have the same de�nitions as the previous model and e is a setof loalised onvolution �lters (one for eah image) whih extend from �K to K ineah dimension. In evaluating this sum, it is assumed that xij;m is zero outside thede�ned extent of the image.The priors for this model are the same as for the previous model with theaddition of a prior for the onvolution �lters. The prior is similar to the prior forthe mixing parameters and respets the positivity of the �lter.p (ekl;n) = ��e exp (��eekl;n) ekl;n � 00 ekl;n < 0 (35)where �e is a sale parameter with the sale invariant priorp (ln �e) = 1: (36)We an now approximate the true posterior by the separable distributionq (�) =Yijm q (xij;m)�Ynm q (wnm)�Ykln q (ekl;n)� q (��) q (�w) q (�e) : (37)Again we do not assume a spei� form for the distributions in q (�). If we �ndthe optimal distributions we obtainq (�w) = �  �w;Xnm hwnmi ; NM! (38)q (�e) = �  �e;Xkln hekl;ni ; (2K + 1)2N! (39)q (��) = �  ��; 12Xijn 
(yij;n � ŷij;n)2� ; IJN2 ! (40)q (wnm) = 1Z(w)nm p (wnm) exp��12w(2)nm �wnm � w(1)nm�2� (41)q (ekl;n) = 1Z(e)kl;n p (ekl;n) exp��12e(2)kl;n �ekl;n � e(1)kl;n�2� (42)q (xij;m) = 1Z(x)ij;m p (xij;m) exp��12x(2)ij;m �xij;m � x(1)ij;m�2� (43)where we have de�nedw(2)nm = 1h��iXij �(hekl;ni hxi�k;j�l;mi)2
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e2kl;n� 
x2i�k;j�l;m�� hekl;ni2 hxi�k;j�l;mi2�# (44)w(1)nmw(2)nm = h��iXij "Xkl hekl;ni hxi�k;j�l;mi yij;n� Xk1l1k2l2 Xm0 6=m hwnm0ek1l1;nek2l2;nxi�k1;j�l1;mxi�k2;j�l2;m0 i#(45)e(2)kl;n = 1h��iXij " Xm hwnmi hxi�k;j�l;mi!2+Xm �
w2nm� 
x2i�k;j�l;m�� hwnmi2 hxi�k;j�l;mi2�# (46)e(1)kl;ne(2)kl;n = 1h��iXij "Xm hwnmi hxi�k;j�l;mi yij;n� Xm1m2 Xk2l2 6=kl hwnm1wnm2ek2l2;nxi�k;j�l;m1xi�k2;j�l2;m2i# (47)x(2)ij;m = 1h��i Xi0j0n 
w2nm� 
e2i0�i;j0�j;n� (48)x(1)ij;mx(2)ij;m = h��iXi2j2n [hwnmi hei2�i;j2�j;ni yi2j2;n� Xm2k2l2 6=mi2�ij2�j hwnmwnm2ei2�ij2�j;nek2l2;nxi2�k;j2�l;m2i# :(49)The posterior distributions an be trained iteratively by performing repeatedline minimisations as for the Separation of Images model.3.1 ExamplesFigure 9 shows the results of using the Ensemble Learning algorithm to reonstrutthe hidden image and the blurring �lter from a single observed image. In eah asethe reonstruted �lter mathes the true �lter. The reonstruted images math thetrue hidden images.Figure 10 shows the results of using the Ensemble Learning algorithm to re-onstrut the hidden images and the blurring �lters from a set of blurred images(the images are the same as those used in Fig. 2, but with added blurring). In eahase the reonstruted �lter mathes the true �lter. The reonstruted images alsomath the true hidden images.
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Fig. 9. Demonstration of the deonvolution of two blurred images. In eah test thesame image was blurred by a di�erent �lter. The reonstruted �lters math thetrue �lters. The reonstruted images are lose to the hidden images. [Dilbert imageCopyright 1997 United Feature Syndiate, In., used with permission.℄
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Hidden Images

Hidden Blurs Observed Images Reconstructed Blurs

Reconstructed Images

Fig. 10. Demonstration of the deonvolution of multiple images. The soure imageswere mixed and then blurred by a set of loalised blur �lters. The reonstrutedimages math the soure images showing that the orret mixing matrix and blur-ring �lters were learnt. [Dilbert image Copyright 1997 United Feature Syndiate,In., used with permission.℄



18 James Miskin, David J. C. MaKayFigure 11 shows how the histograms of intensity ompare for the hidden images,the observed images and the reovered images. As with the pure mixing ase, theobserved images are muh less sparse than the true hidden images. The hoie ofa sparse prior for the images helps to fore a set of sparse reonstruted soureimages to be found.
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Fig. 11. Histograms of the intensities of the pixels in the multiple blurred images.The �rst plot shows the true images, here we an see that the images are quantisedgrey-sale images. The seond plot shows the plot for the observed images, as thereis a mixing of the quantised levels, the observations are no longer quantised. Thethird plot shows the histogram for the reonstruted soure images4 ConlusionFreeform Ensemble Learning allows for tratable solutions to blind inverse probems.Approximating the true posterior by a more tratable separable distribution meansthat the blind inverse problem an be redued to a funtion minimisation problem.Consequently the inverse need not be performed by resorting to an MCMC sampler.A side e�et of using a separable approximating posterior distribution is thatorrelations between the latent variables in the true posterior distribution are lost.On the other hand the �tting proess uses distributions over possible values for allof the parameters, unlike Maximum Likelihood methods whih �nd a point estimatefor the latent variables and onsequently an su�er from over-�tting to the data.Use of Ensemble Learning allows the number of hidden images to be inferredby minimising the ost funtion (or equivalently maximising the bound on theevidene) with respet to the number of hidden images.The results show that the algorithm is able to deonvolve and separate noisymixtures of images. The results also show that the algorithm an be used to obtaina parts based representation of images.For hidden images that have an intrinsi orrelation, the images ould be mod-elled by a set of independent pixels (as in the model desribed above) onvolvedwith another unknown blurring �lter. The extra �lter ould be learnt in a similarway to the �lter in this model and may improve separation of images that haveintrinsi orrelations.
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