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Summary. In this chapter Ensemble Learning is applied to the problem of Blind
Source Separation and Deconvolution of images. It is assumed that the observed
images were constructed by mixing a set of images (consisting of independent iden-
tically distributed pixels), convolving the mixtures with unknown blurring filters
and then adding Gaussian noise.

Ensemble Learning is used to approximate the intractable posterior distribution
over the unknown images and unknown filters by a simpler separable distribution.
The mixture of Laplacians used for the source prior respects the positivity of the
image and favours sparse images. The model is trained by minimising the Kullback-
Leibler divergence between the true posterior distribution and the approximating
ensemble.

Unlike Maximum-Likelihood methods, increasing the number of hidden images
does not lead to overfitting the data and so the number of hidden images in the
observed data can be inferred.

The results show that the algorithm is able to deconvolve and separate the
images and correctly identify the number of hidden images.

1 Introduction

Previous work on Blind Source Deconvolution has focused mainly on the problem
of deconvolving sound samples. It is assumed that the observed sound samples
are temporally convolved versions of the true source samples. Blind Deconvolution
algorithms have fallen into two types, those where the inverse of the convolution
filter is learnt [1],[3] and those where the aim is to learn the filter itself [1].

When applying these ideas to the problem of deconvolving images two problems
become apparent. Firstly in many real data sets (for instance the images generated
by telescopes observing the sky or the power spectrum from a Nuclear Magnetic
Resonance (NMR) spectrometer) the pixel values correspond to intensities. So the
pixel values must be positive. The standard blind separation approaches of assum-
ing that the sources are distributed as —-- [3] or mixtures of Gaussians [2] lose this
positivity of the source images. Deconvolution without a positivity constraint leads
to reconstructed images that have areas of negative intensity corresponding to en-
ergy being sucked out of the detector. Lack of a positivity constraint explains why
an optimal linear filter is suboptimal for deconvolution. The derivation of the opti-
mal linear filter assumes that the source image consists of independent identically
distributed Gaussian pixels and so does not force positivity [4],[8].
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Another problem is that we know that the convolution filters must also be
positive (in the case of observing the sky the convolution filter corresponds to
blurring due to an imperfect telescope). Most algorithms that learn the inverses of
the filters do not take this into account, particularly since positivity is only true
of the convolution filter and not of the deconvolution filter. Those algorithms that
learn the convolution filter also have problems if they assume that the filter can be
inverted exactly, which is not necessarily the case since there may be zeros in the
power spectrum of the convolution filter which lead to poles in the power spectrum
of the deconvolution filter. Poles in the power spectrum of the deconvolution filter
would not be a problem if the observed image were noise free and there were no
numerical errors in the calculation but in real problems the inverse is ill conditioned.

It is possible to use MCMC sampling to solve blind inverse problems by sampling
from the true posterior density for the latent variables, [7]. Sampling methods have
the disadvantage that predictions can only be made by storing a set of samples or
by repeating the sampling process whenever samples are needed.

In this chapter we apply Ensemble Learning (as introduced in chapter 6) to
the problem of Blind Source Separation and Deconvolution. We apply Ensemble
Learning so as to fit the ideal posterior density by an approximation satisfying
the positivity constraints. The result of the training is a distribution (not a set of
samples from the distribution) and so further inferences can be made by evaluat-
ing expectations using this approximation. Ensemble Learning has previously been
applied to the Blind Source Separation problem where it was used to separate a
sample of speech into independent components [5].

We apply the image separation algorithm to the problem of finding a represen-
tation for a sub-set of the MNIST handwritten digit data base. We show that the
digit images can be represented by a smaller set of localised images representing
parts of the digits. Factorisation of data using a positive constraint on latent vari-
ables has previously been used to find a parts based representation for images of
faces and for text passages,[6].

2 Separation of Images

We will consider separating a linear mixture of hidden source images. The set of N
observed images (each of which are I by J pixels) are assumed to be given by

M
Yijn = E WnmTijm + Vijn
m=1
= Gijn + Vijm (1)

where w is an NV by M matrix, = is the set of M hidden images (each I by J pixels)
and v is some zero mean Gaussian noise.

The priors over the latent variables (w and ) must respect the positivity con-
straint. The prior for the matrix elements is a Laplacian

p (wnm) = {gw €xp (_wanm) :ﬁ:: i g (2)
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where (3, is a scale parameter with the scale invariant prior

p(InBy) = 1. 3)

The prior for the source pixels is a mixture of Laplacians

Nq 1 Tij m

To— exp (— Tijom > 0

p(zijn) = {OZ‘J” 5 0P (55) wigim 2 (4)
Tijm < 0

where the hyper-priors are

p(nbd,) =1 (5)

p ({ma}) x 8 zn:wafl 1_171',,. (6)

Figure 1 shows how a prior of this form favours sparse images, it should be noted
that the prior does not include any prior knowledge we may have about spatial
structure.
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Fig. 1. Example of the form of the source pixel prior density. The sum of Laplacians
can have a sharp peak at zero intensity and a long tail. Consequently the prior
favours sparse source images

If we assume that we observe the mixtures with additive Gaussian noise, then
the likelihood for the observed pixels is

p({yy Hod Aw},8.) = [T 9 (visns 915ns B, (7)

ij,m
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where G (a;b, c) is a Gaussian distribution over a with mean b and variance c. 3,
is the inverse variance of the Gaussian noise and is assigned the hyper-prior

p(nB;) =1 (8)

We now define the model A to be the variables M, {b.} and {7~} and O to
be the latent variables {z}, {w}, B, and (.. Using Bayes theorem, the posterior
density over the latent variables is

p({y} 16, H)p(©)

POk M) === 30

(9)

The process of making inferences involves finding expectations under this prob-
ability density (typically expectations of the latent variables themselves), which
is analytically intractable. As shown in chapter 6, we can approximate the true
posterior by a more tractable distribution, ¢ ({z},{w}, 8-, Bw), for which the ex-
pectations are tractable. We can do this by minimising the cost function

Cxr. =D (q(O)|lp(@{y}, H)) —Inp({y}H) —Inp({ba}) —Inp ({ma})

_ () In Clnp({n
~ [ 1O (o)) ()

- / |:ln alivl) +1n 2 (o) +Ind (Bo)

p({w}) p({=}) p(B-)

7 (Buw)

+in P (Bw)

—Inp({y}10,H)| dO —Inp({ba}) —Inp({ma}) .  (10)

It should be noted that because of the product form of the true posterior density,
the cost function can be written as a sum of simpler terms.

2.1 Learning the Ensemble

In order to simplify the posterior density, we choose to use a separable distribution
of the form

4(©) = [[ a@ism) x [] 0 (wam) x a(8) a (Bu)- (11)

We will not assume a specific form for these distributions, instead we will find the
set of functions that optimises the cost function (subject to the separable form and
the constraint that each distribution is normalised).
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We can update each distribution in turn, using current estimates for all of
the other distributions. To illustrate this, we can consider performing all of the
integrations in the cost function with the exception of the integration over (3,

Oxr, = / 4(Bu) [‘“q (Bu) 3" (0B — B ) + I B | B (12)

nm

where we have dropped all terms that are independent of 3, and (.) denotes the
expectation under the approximating ensemble. We now need to minimise this cost
function with respect to the distribution ¢ (3. ), subject to the constraint that q (8.)
is normalised.

0CKkr,
0q (Bw)

=In q (,Bw) - Z (lIl ,Bw - ,aw <“)nm)) + In ,aw +1+ )\w (13)

nm

where )\, is a Lagrange multiplier. Setting this derivative to zero, we find that the
optimum distribution for f3,, is

Ing(Bu) =Y [nBu = Bu (wam)] =B — 1= Ay (14)

nm

Therefore the optimal distribution is

qa(Bu) =T (ﬁ“,; Z (Wnm) NM> (15)

nm
where the I' distribution is

L

e v°a'"" exp (—ab). (16)

I' (a;b,c) =

Similarly we find that the optimal distribution for (3, is

a(p) =T (ﬁﬂ; 5 > (Wi — d13)?). %) . (1)

igjn

For the remaining parameters the optimal distributions are

1 1 :

q (Wnm) = Wp (Wnm ) €xp (7511)5,,2,2,, (wnm — wg%)z) (18)
1 1 1 2

4(@i5m) = o (@33m) exp (—5965,7?,” (2m = 1})) ) (19)

ij,m
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where {ZT(L"T’,L)} and {Zz(f)m} are the sets of normalising constants and we have
defined

w?) = (ﬂl—”> Z <Tf]m> (20)

2]

wimwin = (B2) > (wizm) | iim — Y (Wnmr) (@) (21)

ij m'#m

2 1 2
mz(j,)m = m Z <“’nm> (22)

2w = B> (wam) | Wign — Y (W) (@) | - (23)

n m'#m

The optimal distributions for w are products of Laplacians and Gaussians, so the
optimal distributions are rectified Gaussians (i.e. ¢ (Wnm ) is Gaussian for wpm > 0
and zero otherwise). Similarly the optimal distributions for x are mixtures of recti-
fied Gaussians. When evaluating the updates for the distributions, it is necessary to
evaluate the expectations of the form (wnm), <wim>, etc. These can be evaluated
using error functions.

The distributions can be trained by repeatedly updating each one in turn. But it
is important to note that while we have chosen the approximate ensemble such that
samples from the distributions are independent, the parameters of the distributions
are correlated and so optimisation by successive update of each distribution can be
slow to converge.

We can update all of the distributions in parallel by noting that the ensemble
can be parametrised by the vector

0= ({x(l)} , {logx@)} , {w(l)} , {log w(Q)} ,log ay,, log aa) (24)
where
Ay = Z (“)nm> 3 (25)

5 S (s — i3n)?) - (26)

igjn

ao

The current estimate of the ensemble can be parametrised by (7). We can then
define the vector 8°PY to be the ensemble formed from the optimal distributions
according to Eqns. 15, 17 and 20 23. A small step along the vector from 0 to
0P must reduce the cost function. Therefore the new ensemble can be defined to
be the minimum along the vector from 8 to PV
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If the distributions are independent, a single line minimisation will result in
convergence to the optimum distribution (since in this case (71 = 9P Alter-
natively if the distributions are not independent, successive line minimisations will
result in convergence to the optimum ensemble.

2.2 Learning the Model

We would also like to be able to infer the parameters of the prior on the source
pixels. We can do this by noting that the terms in the cost function relating to the
prior on the source pixels are

CkL

—Inp({ba}) —Inp({ma}) = D (np(wijm))

ij,m

—Inp({ba}) —Inp({ma})
1 Zij,m
_ Z / q (zij,m)In Z Ta ™ exp (fT) dzijm . (27)
13,m o
If the current parameters are {b,(;)} and {wéﬂ} and the updated parameter val-

ues are {b,(;ﬂ)} and {wéﬂ'l)}, then by application of Jensen’s inequality and

discarding constants, a bound on the cost function can be obtained

- 1 Tij,m
CkL < — Z /fa,i,j,m (zij,m)In |:7ré +1)b(T+1) exp < b(;7+1)>:| dzijm

ijm,a”

—tap ({07}) —tup ({=7V}) (28)

where

-1 =1 Tijm
fosigm (Tijm) = Z(TW“ b,(;) exp <— b,(;)

ij.m
1 2
X exp <§T(,2)m (T7m - T(;)m) > : (29)

The bound on the cost function can be optimised by setting the new parameters
for the prior to

Ly 1 iy L feigom (@im) deijm]
“ IJM + N,

b Zaigm L fosim (@ijm) ij.mdasjm] (31)

14+ 3 L favidom (@i,m) dijm]

(30)
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2.3 Example

Figure 2 shows the results of separating a mixture of three grey-scale Dilbert im-
ages [Dilbert image Copyright(©1997 United Feature Syndicate, Inc., used with
permission.]. The images were mixed with a random positive matrix and Gaussian
noise was added. The three columns of the figure show the true hidden images, the
noisy observations and the ensemble average for the reconstructed images. Three of
the reconstructed images match the hidden images. The other two images do not
contribute to the mixture. The elements in the w matrix corresponding to those
images are set to approximately zero. If we look at (22), the z® parameters tend
to zero as the elements of w tend to zero and so the posterior density for all of the
pixels in the blank images matches the prior density.

We can see that the posterior tends to the prior by looking at Fig. 3 where
the KL divergence between the posterior and prior source pixel densities for each
reconstructed image is plotted as a function of iteration. It can be seen that the
divergence tends to zero for two of the images which means that the posterior and
the prior are the same densities.

It might be useful to infer the number of source images that contribute to the
observation. In Maximum Likelihood methods, increasing the number of sources
cannot decrease the likelihood since the extra source images will model the noise
in the observations. Therefore the number of source images will be inferred to be
at least as large as the number of observed images.

The correct way to perform the inference of the number of sources is to perform
model selection, where each model corresponds to a different number of hidden
images. The cost function gives us a bound on the evidence for a model,

Inp({y}|H) > —Cxr. (32)

Therefore we can use Bayes theorem to evaluate the posterior probability of a given
model using

p Uiy} 1) p ()

(33)

If we choose a flat prior over the number of hidden images, the model that maximises
the posterior distribution is the model that maximises p ({y} |H ). We could assume
that this is the same as the model that maximises the bound on p ({y} |H) and so
the model to choose is the model that minimises Ckr,.

It may be too time consuming to train multiple models, one for each possible
number of images. A simpler method would be to remove source images from the
model that do not contribute to the observations, this will reduce the cost function
since we know that the KL divergence between the posterior and prior densities for
the source pixels and for the mixing matrix elements must be greater than zero.
Practically, we remove a source image if the KL divergence between the posterior
and prior densities drops to less than 1072 per pixel.

Figure 4 shows how the histograms of intensity compare for the hidden images,
the observed images and the recovered images. It should be noted that the recovered
images are much more sparse than the observed images.
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Fig. 2. Demonstration of the separation of a mixture of three images from a set
of five observed images. The left hand column shows the true hidden images. The
centre column shows the noisy mixtures of the hidden images. The right hand col-
umn shows the reconstructed source images. Three of the reconstructed images
match the true images, the remaining two images are uniform as their approxi-
mate posterior density, g (zij,m), i equivalent to the prior density. [Dilbert image
Copyright(©1997 United Feature Syndicate, Inc., used with permission.]
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Fig. 3. Variation of the KL divergence between the approximate posterior density
and the prior density for each of the reconstructed images. There are three stages to
training. During the first stage the source prior and q (3-) are not trained. During
the second stage ¢ (3-) is trained so the approximate posterior distributions become
sharper and the KL divergence increases. During the final stage the source prior
is updated so that it better fits the approximate posterior and the KL divergence
drops. For two of the images, the KL divergence tends to zero (that is the posterior
density tends to the prior density), these images are not required to be able to
reconstruct the observations

2.4 Parts-Based Image Decomposition

Positive constraints on latent pixels have previously been used to find a non-negative
factorisation of a set of face data, [6]. In that case it was found that the reconstructed
images corresponded to a parts-based decomposition of the face data into localised
features.

We can consider trying to find images in a set of natural images by using the
EL blind separation algorithm. Figure 5 shows the first 16 examples of handwritten
“3”s in the MNIST data set. Figure 6 shows the first 16 PCA components generated
from the first 256 “3”s in the MNIST data set. These components represent the
highest variance components of the data set, but it is not obvious visually what the
set of components represents.

The PCA components do not respect the known positivity of the images (the
digits range from white to black or zero ink to lots of ink). Therefore when the
PCA components are added together there is an interaction between positive and
negative regions in different components to give the positive digit images.
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Fig. 4. Histograms of the intensities of the pixels in the images. The first plot shows
the true images, here we can see that the images are quantised grey-scale images.
The second plot shows the plot for the observed images, as there is a mixing of the
quantised levels, the observations are no longer quantised. The third plot shows the
histogram for the reconstructed images. The reconstructed images do not match
the true images exactly because the ICA model has an invariance with respect to
rescaling each source image, but the reconstructed images are more sparse than the

observed images
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Fig. 5. The first 16 “3”s in the MNIST handwritten data set. The digits are stored
as 28x28 pixel grey scale images. Each digit has been preprocessed to center it in
the image and to deskew it
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Fig. 6. The first 16 PCA components from the first 256 “3”s in the MNIST data
set. Statistically these components correspond to the highest variance components
in the data set, but visually it is not obvious what these components represent

Instead we can consider enforcing positivity of the latent images. Applying the
Ensemble Learning algorithm to the set of 256 “3”s (assuming that there are 64
hidden images) leads to the decomposition shown in Fig. 7. Instead of the images
being based on corrections to a prototype “3” (asin the PCA case) the reconstructed
images are all localised and take the form of different shapes of curves, tails, etc.
Figure 8 shows the reconstructions of the digits in Fig. 5 using the learnt hidden
images. Therefore a parts based decomposition can give a good representation of
the data set.

The parts based representation could be used for image compression (by storing
images in terms of the parts required to construct them) or as a method of image
recognition (by training a set of models of different digits, “17s, “2”s, etc, a classifier
could be made by evaluating the posterior probability of each model for each trial
digit).

3 Deconvolution of Images

We can extend the model to include localised blurring of the images. The model for
blurring could be used to model the point spread function for a telescope, the line
width in NMR experiments or motion blur. The observed images are now defined
by

M K K
Yijm = E E E Wnm€kl,nTi—k,j—1,m T Vijn

m=1k=—KI=—K
= Gijn + Vijn (34)



Ensemble Learning for Blind Image Separation and Deconvolution

SN
LI I
NN
RN
Hr RN
L TR
]l P L
S S e

-]
-]
]
]
]
B
]
-]

13

Fig. 7. The hidden images learnt when the 256 “3”s are assumed to be made from a
linear combination of 64 non-negative latent images. The learnt images are localised
(unlike the PCA components) and each represents a part of a “3” with different

images representing different shapes of curves in different positions
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Fig. 8. Reconstructions of the true digits using the 64 non-negative images. Here
we can see that the parts based representation is able to model a variety of shapes
of “3” and we can see that a set of 64 latent images is able to represent the data

set of 256 handwritten “3”s
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where w, z, v and y have the same definitions as the previous model and e is a set
of localised convolution filters (one for each image) which extend from —K to K in
each dimension. In evaluating this sum, it is assumed that z;; ., is zero outside the
defined extent of the image.

The priors for this model are the same as for the previous model with the
addition of a prior for the convolution filters. The prior is similar to the prior for
the mixing parameters and respects the positivity of the filter.

_ J Beexp(=Peerin) erin >0
D (erin) = {0 ert,n <0 (35)

where (3. is a scale parameter with the scale invariant prior
p(ng) =1 (36)

We can now approximate the true posterior by the separable distribution

9(©) = [[a@ism) x [ 0 (wam) x [ a(ern) x a(B-)a(Bu)a(Be) . (37)

ijm kln

Again we do not assume a specific form for the distributions in ¢ (@). If we find
the optimal distributions we obtain

¢(Bu) =T (Bw; > (Wam), NM) (38)

nm

q¢(B) =T (Be; 3 ernn) (2K + 1>2N> (39)

kin

a(p) =T (Ba; 3 S (i = i) %) (40)

ijn

1 1 2

g (Wnm) = P (Wnm) exp (—gwfﬁn), (wam —wSh) ) (41)
1 1 (2 n )2

a(entn) = —p (entn) exp (Ee,i,?n (eran i) ) (42)
kl,n
1 1 (2 n\?

4(@i5m) = o (w33m) exp (—yiﬁm (2 =1} ) (43)
ij,m

where we have defined

wﬁl = <ﬁ1—0> Z [(<6kl,n> (ﬁifk,jfl,m>)2

ij
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+Z (<€iz,n> <$?—k,j—l,m> — (ert,n)’ (ﬁi—k,j—l,m)Q) (44)
kl
wihwion = (B:) > | D (entn) (@imkj—tom) Yiin
ij L ki

- E E (Wnm! €yt ,nCholy,nTizky,j—ly,mTi—ky j—lo,m' )

k1likoly m/#m

(45)
2 1 ’
Chin = 53 Z ij (Wam) (Fi k.5 t,m)
+Z (<11)Zm> <.77?,k,j,,,m> — (Wnm)? (mi,k,j,l,m)Z) (46)

m

1 2 1
€t il = B YD Wam) (@imkg-1,m) Yisin

ij

- Z Z (Wnmy Wims Choly ,nTi—k,j—l,m1 Tikg,j—la,ma) | (47)

mimso kolo#kl

1
Tz(yz)m = m Z <“)3Lm> <e?’7i,j’—j,n> (48)

i'jin
1 2
2w = (B) Y [(Wam) (€ia—isja—sn) Yinsom
izjan
- Z (wnmwnmg61'271']'27j,n€k212,nxisz,jgfl,mz)

mokalo#mio—ijo—j

(49)

The posterior distributions can be trained iteratively by performing repeated
line minimisations as for the Separation of Images model.

3.1 Examples

Figure 9 shows the results of using the Ensemble Learning algorithm to reconstruct
the hidden image and the blurring filter from a single observed image. In each case
the reconstructed filter matches the true filter. The reconstructed images match the
true hidden images.

Figure 10 shows the results of using the Ensemble Learning algorithm to re-
construct the hidden images and the blurring filters from a set of blurred images
(the images are the same as those used in Fig. 2, but with added blurring). In each
case the reconstructed filter matches the true filter. The reconstructed images also
match the true hidden images.
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Fig. 9. Demonstration of the deconvolution of two blurred images. In each test the
same image was blurred by a different filter. The reconstructed filters match the
true filters. The reconstructed images are close to the hidden images. [Dilbert image
Copyright(©1997 United Feature Syndicate, Inc., used with permission.]
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Fig. 10. Demonstration of the deconvolution of multiple images. The source images
were mixed and then blurred by a set of localised blur filters. The reconstructed
images match the source images showing that the correct mixing matrix and blur-
ring filters were learnt. [Dilbert image Copyright(©1997 United Feature Syndicate,
Inc., used with permission.]
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Figure 11 shows how the histograms of intensity compare for the hidden images,
the observed images and the recovered images. As with the pure mixing case, the
observed images are much less sparse than the true hidden images. The choice of
a sparse prior for the images helps to force a set of sparse reconstructed source
images to be found.
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Fig. 11. Histograms of the intensities of the pixels in the multiple blurred images.
The first plot shows the true images, here we can see that the images are quantised
grey-scale images. The second plot shows the plot for the observed images, as there
is a mixing of the quantised levels, the observations are no longer quantised. The
third plot shows the histogram for the reconstructed source images

4 Conclusion

Freeform Ensemble Learning allows for tractable solutions to blind inverse probems.
Approximating the true posterior by a more tractable separable distribution means
that the blind inverse problem can be reduced to a function minimisation problem.
Consequently the inverse need not be performed by resorting to an MCMC sampler.

A side effect of using a separable approximating posterior distribution is that
correlations between the latent variables in the true posterior distribution are lost.
On the other hand the fitting process uses distributions over possible values for all
of the parameters, unlike Maximum Likelihood methods which find a point estimate
for the latent variables and consequently can suffer from over-fitting to the data.

Use of Ensemble Learning allows the number of hidden images to be inferred
by minimising the cost function (or equivalently maximising the bound on the
evidence) with respect to the number of hidden images.

The results show that the algorithm is able to deconvolve and separate noisy
mixtures of images. The results also show that the algorithm can be used to obtain
a parts based representation of images.

For hidden images that have an intrinsic correlation, the images could be mod-
elled by a set of independent pixels (as in the model described above) convolved
with another unknown blurring filter. The extra filter could be learnt in a similar
way to the filter in this model and may improve separation of images that have
intrinsic correlations.
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