
Ensemble Learning for Blind Image Separationand De
onvolutionJames Miskin and David J. C. Ma
Kay
Summary. In this 
hapter Ensemble Learning is applied to the problem of BlindSour
e Separation and De
onvolution of images. It is assumed that the observedimages were 
onstru
ted by mixing a set of images (
onsisting of independent iden-ti
ally distributed pixels), 
onvolving the mixtures with unknown blurring �ltersand then adding Gaussian noise.Ensemble Learning is used to approximate the intra
table posterior distributionover the unknown images and unknown �lters by a simpler separable distribution.The mixture of Lapla
ians used for the sour
e prior respe
ts the positivity of theimage and favours sparse images. The model is trained by minimising the Kullba
k-Leibler divergen
e between the true posterior distribution and the approximatingensemble.Unlike Maximum-Likelihood methods, in
reasing the number of hidden imagesdoes not lead to over�tting the data and so the number of hidden images in theobserved data 
an be inferred.The results show that the algorithm is able to de
onvolve and separate theimages and 
orre
tly identify the number of hidden images.1 Introdu
tionPrevious work on Blind Sour
e De
onvolution has fo
used mainly on the problemof de
onvolving sound samples. It is assumed that the observed sound samplesare temporally 
onvolved versions of the true sour
e samples. Blind De
onvolutionalgorithms have fallen into two types, those where the inverse of the 
onvolution�lter is learnt [1℄,[3℄ and those where the aim is to learn the �lter itself [1℄.When applying these ideas to the problem of de
onvolving images two problemsbe
ome apparent. Firstly in many real data sets (for instan
e the images generatedby teles
opes observing the sky or the power spe
trum from a Nu
lear Magneti
Resonan
e (NMR) spe
trometer) the pixel values 
orrespond to intensities. So thepixel values must be positive. The standard blind separation approa
hes of assum-ing that the sour
es are distributed as 1
osh [3℄ or mixtures of Gaussians [2℄ lose thispositivity of the sour
e images. De
onvolution without a positivity 
onstraint leadsto re
onstru
ted images that have areas of negative intensity 
orresponding to en-ergy being su
ked out of the dete
tor. La
k of a positivity 
onstraint explains whyan optimal linear �lter is suboptimal for de
onvolution. The derivation of the opti-mal linear �lter assumes that the sour
e image 
onsists of independent identi
allydistributed Gaussian pixels and so does not for
e positivity [4℄,[8℄.
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KayAnother problem is that we know that the 
onvolution �lters must also bepositive (in the 
ase of observing the sky the 
onvolution �lter 
orresponds toblurring due to an imperfe
t teles
ope). Most algorithms that learn the inverses ofthe �lters do not take this into a

ount, parti
ularly sin
e positivity is only trueof the 
onvolution �lter and not of the de
onvolution �lter. Those algorithms thatlearn the 
onvolution �lter also have problems if they assume that the �lter 
an beinverted exa
tly, whi
h is not ne
essarily the 
ase sin
e there may be zeros in thepower spe
trum of the 
onvolution �lter whi
h lead to poles in the power spe
trumof the de
onvolution �lter. Poles in the power spe
trum of the de
onvolution �lterwould not be a problem if the observed image were noise free and there were nonumeri
al errors in the 
al
ulation but in real problems the inverse is ill 
onditioned.It is possible to use MCMC sampling to solve blind inverse problems by samplingfrom the true posterior density for the latent variables, [7℄. Sampling methods havethe disadvantage that predi
tions 
an only be made by storing a set of samples orby repeating the sampling pro
ess whenever samples are needed.In this 
hapter we apply Ensemble Learning (as introdu
ed in 
hapter 6) tothe problem of Blind Sour
e Separation and De
onvolution. We apply EnsembleLearning so as to �t the ideal posterior density by an approximation satisfyingthe positivity 
onstraints. The result of the training is a distribution (not a set ofsamples from the distribution) and so further inferen
es 
an be made by evaluat-ing expe
tations using this approximation. Ensemble Learning has previously beenapplied to the Blind Sour
e Separation problem where it was used to separate asample of spee
h into independent 
omponents [5℄.We apply the image separation algorithm to the problem of �nding a represen-tation for a sub-set of the MNIST handwritten digit data base. We show that thedigit images 
an be represented by a smaller set of lo
alised images representingparts of the digits. Fa
torisation of data using a positive 
onstraint on latent vari-ables has previously been used to �nd a parts based representation for images offa
es and for text passages,[6℄.2 Separation of ImagesWe will 
onsider separating a linear mixture of hidden sour
e images. The set of Nobserved images (ea
h of whi
h are I by J pixels) are assumed to be given byyij;n = MXm=1wnmxij;m + �ij;n= ŷij;n + �ij;n (1)where w is an N by M matrix, x is the set of M hidden images (ea
h I by J pixels)and � is some zero mean Gaussian noise.The priors over the latent variables (w and x) must respe
t the positivity 
on-straint. The prior for the matrix elements is a Lapla
ianp (wnm) = ��w exp (��wwnm) wnm � 00 wnm < 0 (2)



Ensemble Learning for Blind Image Separation and De
onvolution 3where �w is a s
ale parameter with the s
ale invariant priorp (ln �w) = 1: (3)The prior for the sour
e pixels is a mixture of Lapla
iansp (xij;n) = �PN��=1 �� 1b� exp ��xij;mb� � xij;m � 00 xij;m < 0 (4)where the hyper-priors arep (ln b�) = 1 (5)p (f��g) / Æ N�X�=1 �� � 1! N�Y�=1�� : (6)Figure 1 shows how a prior of this form favours sparse images, it should be notedthat the prior does not in
lude any prior knowledge we may have about spatialstru
ture.
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e pixel prior density. The sum of Lapla
ians
an have a sharp peak at zero intensity and a long tail. Consequently the priorfavours sparse sour
e imagesIf we assume that we observe the mixtures with additive Gaussian noise, thenthe likelihood for the observed pixels isp (fyg jfxg ; fwg ; �� ) =Yij;n G �yij;n; ŷij;n; ��1� � (7)
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Kaywhere G (a; b; 
) is a Gaussian distribution over a with mean b and varian
e 
. ��is the inverse varian
e of the Gaussian noise and is assigned the hyper-priorp (ln ��) = 1: (8)We now de�ne the model H to be the variables M , fb�g and f��g and � tobe the latent variables fxg, fwg, �� and �w . Using Bayes theorem, the posteriordensity over the latent variables isp (� jfyg ;H ) = p (fyg j�;H ) p (�)p (fyg ;H) : (9)The pro
ess of making inferen
es involves �nding expe
tations under this prob-ability density (typi
ally expe
tations of the latent variables themselves), whi
his analyti
ally intra
table. As shown in 
hapter 6, we 
an approximate the trueposterior by a more tra
table distribution, q (fxg ; fwg ; ��; �w), for whi
h the ex-pe
tations are tra
table. We 
an do this by minimising the 
ost fun
tionCKL = D (q (�) jjp (� jfyg ;H ))� ln p (fyg jH )� ln p (fb�g)� ln p (f��g)= Z q(�) ln q(�)p (�; fyg jH )d� � ln p (fb�g)� ln p (f��g)= Z �ln q (fwg)p (fwg) + ln q (fxg)p (fxg) + ln q (��)p (��)+ ln q (�w)p (�w) � ln p (fyg j�;H )� d� � ln p (fb�g)� ln p (f��g) : (10)It should be noted that be
ause of the produ
t form of the true posterior density,the 
ost fun
tion 
an be written as a sum of simpler terms.2.1 Learning the EnsembleIn order to simplify the posterior density, we 
hoose to use a separable distributionof the formq (�) =Yijm q (xij;m)�Ynm q (wnm)� q (��) q (�w) : (11)We will not assume a spe
i�
 form for these distributions, instead we will �nd theset of fun
tions that optimises the 
ost fun
tion (subje
t to the separable form andthe 
onstraint that ea
h distribution is normalised).
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onvolution 5We 
an update ea
h distribution in turn, using 
urrent estimates for all ofthe other distributions. To illustrate this, we 
an 
onsider performing all of theintegrations in the 
ost fun
tion with the ex
eption of the integration over �wCKL = Z q (�w)"ln q (�w)�Xnm (ln �w � �w hwnmi) + ln�w# d�w (12)where we have dropped all terms that are independent of �w and h:i denotes theexpe
tation under the approximating ensemble. We now need to minimise this 
ostfun
tion with respe
t to the distribution q (�w), subje
t to the 
onstraint that q (�w)is normalised.�CKL�q (�w) = ln q (�w)�Xnm (ln �w � �w hwnmi) + ln�w + 1 + �w (13)where �w is a Lagrange multiplier. Setting this derivative to zero, we �nd that theoptimum distribution for �w isln q (�w) =Xnm [ln �w � �w hwnmi℄� ln �w � 1� �w: (14)Therefore the optimal distribution isq (�w) = �  �w ;Xnm hwnmi ; NM! (15)where the � distribution is� (a; b; 
) = 1� (
) b
a(
�1) exp (�ab) : (16)Similarly we �nd that the optimal distribution for �� isq (��) = �  ��; 12Xijn 
(yij;n � ŷij;n)2� ; IJN2 ! : (17)For the remaining parameters the optimal distributions areq (wnm) = 1Z(w)nm p (wnm) exp��12w(2)nm �wnm � w(1)nm�2� (18)q (xij;m) = 1Z(x)ij;m p (xij;m) exp��12x(2)ij;m �xij;m � x(1)ij;m�2� (19)
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Kaywhere nZ(w)nmo and nZ(x)ij;mo are the sets of normalising 
onstants and we havede�ned w(2)nm = 1h��iXij 
x2ij;m� (20)w(1)nmw(2)nm = h��iXij hxij;mi yij;n � Xm0 6=m hwnm0 i hxij;m0 i! (21)x(2)ij;m = 1h��iXn 
w2nm� (22)x(1)ij;mx(2)ij;m = h��iXn hwnmi yij;n � Xm0 6=m hwnm0 i hxij;m0i! : (23)The optimal distributions for w are produ
ts of Lapla
ians and Gaussians, so theoptimal distributions are re
ti�ed Gaussians (i.e. q (wnm) is Gaussian for wnm � 0and zero otherwise). Similarly the optimal distributions for x are mixtures of re
ti-�ed Gaussians. When evaluating the updates for the distributions, it is ne
essary toevaluate the expe
tations of the form hwnmi, 
w2nm�, et
. These 
an be evaluatedusing error fun
tions.The distributions 
an be trained by repeatedly updating ea
h one in turn. But itis important to note that while we have 
hosen the approximate ensemble su
h thatsamples from the distributions are independent, the parameters of the distributionsare 
orrelated and so optimisation by su

essive update of ea
h distribution 
an beslow to 
onverge.We 
an update all of the distributions in parallel by noting that the ensemble
an be parametrised by the ve
tor� = ��x(1)	 ;�log x(2)	 ;�w(1)	 ;�logw(2)	 ; log aw; log a�� (24)whereaw =Xnm hwnmi ; (25)a� = 12Xijn 
(yij;n � ŷij;n)2� : (26)The 
urrent estimate of the ensemble 
an be parametrised by �(�). We 
an thende�ne the ve
tor �(opt) to be the ensemble formed from the optimal distributionsa

ording to Eqns. 15, 17 and 20{ 23. A small step along the ve
tor from �(�) to�(opt) must redu
e the 
ost fun
tion. Therefore the new ensemble 
an be de�ned tobe the minimum along the ve
tor from �(�) to �(opt).
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onvolution 7If the distributions are independent, a single line minimisation will result in
onvergen
e to the optimum distribution (sin
e in this 
ase �(�+1) = �(opt)). Alter-natively if the distributions are not independent, su

essive line minimisations willresult in 
onvergen
e to the optimum ensemble.2.2 Learning the ModelWe would also like to be able to infer the parameters of the prior on the sour
epixels. We 
an do this by noting that the terms in the 
ost fun
tion relating to theprior on the sour
e pixels areCKL = � ln p (fb�g)� ln p (f��g)�Xij;m hln p (xij;m)i= � ln p (fb�g)� ln p (f��g)�Xij;m Z q (xij;m) lnX� �� 1b� exp��xij;mb� � dxij;m : (27)If the 
urrent parameters are nb(�)� o and n�(�)� o and the updated parameter val-ues are nb(�+1)� o and n�(�+1)� o, then by appli
ation of Jensen's inequality anddis
arding 
onstants, a bound on the 
ost fun
tion 
an be obtainedCKL � � Xij;m;� Z f�;i;j;m (xij;m) ln��(�+1)� 1b(�+1)� exp�� xij;mb(�+1)� �� dxij;m� ln p ��b(�+1)� 	�� ln p ���(�+1)� 	� (28)wheref�;i;j;m (xij;m) = 1Z(x)ij;m �(�)� 1b(�)� exp��xij;mb(�)� �� exp��12x(2)ij;m �xij;m � x(1)ij;m�2� : (29)The bound on the 
ost fun
tion 
an be optimised by setting the new parametersfor the prior to�(�+1)� = 1 +Pijm �R f�;i;j;m (xij;m) dxij;m�IJM +N� (30)b(�+1)� = Pijm �R f�;i;j;m (xij;m)xij;mdxij;m�1 +Pijm �R f�;i;j;m (xij;m) dxij;m� : (31)



8 James Miskin, David J. C. Ma
Kay2.3 ExampleFigure 2 shows the results of separating a mixture of three grey-s
ale Dilbert im-ages [Dilbert image Copyright 

1997 United Feature Syndi
ate, In
., used withpermission.℄. The images were mixed with a random positive matrix and Gaussiannoise was added. The three 
olumns of the �gure show the true hidden images, thenoisy observations and the ensemble average for the re
onstru
ted images. Three ofthe re
onstru
ted images mat
h the hidden images. The other two images do not
ontribute to the mixture. The elements in the w matrix 
orresponding to thoseimages are set to approximately zero. If we look at (22), the x(2) parameters tendto zero as the elements of w tend to zero and so the posterior density for all of thepixels in the blank images mat
hes the prior density.We 
an see that the posterior tends to the prior by looking at Fig. 3 wherethe KL divergen
e between the posterior and prior sour
e pixel densities for ea
hre
onstru
ted image is plotted as a fun
tion of iteration. It 
an be seen that thedivergen
e tends to zero for two of the images whi
h means that the posterior andthe prior are the same densities.It might be useful to infer the number of sour
e images that 
ontribute to theobservation. In Maximum Likelihood methods, in
reasing the number of sour
es
annot de
rease the likelihood sin
e the extra sour
e images will model the noisein the observations. Therefore the number of sour
e images will be inferred to beat least as large as the number of observed images.The 
orre
t way to perform the inferen
e of the number of sour
es is to performmodel sele
tion, where ea
h model 
orresponds to a di�erent number of hiddenimages. The 
ost fun
tion gives us a bound on the eviden
e for a model,ln p (fyg jH ) � �CKL: (32)Therefore we 
an use Bayes theorem to evaluate the posterior probability of a givenmodel usingp (H jfyg ) = p (fyg jH ) p (H)p (fyg) : (33)If we 
hoose a 
at prior over the number of hidden images, the model that maximisesthe posterior distribution is the model that maximises p (fyg jH ). We 
ould assumethat this is the same as the model that maximises the bound on p (fyg jH ) and sothe model to 
hoose is the model that minimises CKL.It may be too time 
onsuming to train multiple models, one for ea
h possiblenumber of images. A simpler method would be to remove sour
e images from themodel that do not 
ontribute to the observations, this will redu
e the 
ost fun
tionsin
e we know that the KL divergen
e between the posterior and prior densities forthe sour
e pixels and for the mixing matrix elements must be greater than zero.Pra
ti
ally, we remove a sour
e image if the KL divergen
e between the posteriorand prior densities drops to less than 10�3 per pixel.Figure 4 shows how the histograms of intensity 
ompare for the hidden images,the observed images and the re
overed images. It should be noted that the re
overedimages are mu
h more sparse than the observed images.
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Hidden Images

Observed Images Reconstructed ImagesFig. 2. Demonstration of the separation of a mixture of three images from a setof �ve observed images. The left hand 
olumn shows the true hidden images. The
entre 
olumn shows the noisy mixtures of the hidden images. The right hand 
ol-umn shows the re
onstru
ted sour
e images. Three of the re
onstru
ted imagesmat
h the true images, the remaining two images are uniform as their approxi-mate posterior density, q (xij;m), is equivalent to the prior density. [Dilbert imageCopyright 

1997 United Feature Syndi
ate, In
., used with permission.℄
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Fig. 3. Variation of the KL divergen
e between the approximate posterior densityand the prior density for ea
h of the re
onstru
ted images. There are three stages totraining. During the �rst stage the sour
e prior and q (��) are not trained. Duringthe se
ond stage q (��) is trained so the approximate posterior distributions be
omesharper and the KL divergen
e in
reases. During the �nal stage the sour
e prioris updated so that it better �ts the approximate posterior and the KL divergen
edrops. For two of the images, the KL divergen
e tends to zero (that is the posteriordensity tends to the prior density), these images are not required to be able tore
onstru
t the observations2.4 Parts-Based Image De
ompositionPositive 
onstraints on latent pixels have previously been used to �nd a non-negativefa
torisation of a set of fa
e data, [6℄. In that 
ase it was found that the re
onstru
tedimages 
orresponded to a parts-based de
omposition of the fa
e data into lo
alisedfeatures.We 
an 
onsider trying to �nd images in a set of natural images by using theEL blind separation algorithm. Figure 5 shows the �rst 16 examples of handwritten\3"s in the MNIST data set. Figure 6 shows the �rst 16 PCA 
omponents generatedfrom the �rst 256 \3"s in the MNIST data set. These 
omponents represent thehighest varian
e 
omponents of the data set, but it is not obvious visually what theset of 
omponents represents.The PCA 
omponents do not respe
t the known positivity of the images (thedigits range from white to bla
k or zero ink to lots of ink). Therefore when thePCA 
omponents are added together there is an intera
tion between positive andnegative regions in di�erent 
omponents to give the positive digit images.
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Fig. 4. Histograms of the intensities of the pixels in the images. The �rst plot showsthe true images, here we 
an see that the images are quantised grey-s
ale images.The se
ond plot shows the plot for the observed images, as there is a mixing of thequantised levels, the observations are no longer quantised. The third plot shows thehistogram for the re
onstru
ted images. The re
onstru
ted images do not mat
hthe true images exa
tly be
ause the ICA model has an invarian
e with respe
t tores
aling ea
h sour
e image, but the re
onstru
ted images are more sparse than theobserved images

Fig. 5. The �rst 16 \3"s in the MNIST handwritten data set. The digits are storedas 28x28 pixel grey s
ale images. Ea
h digit has been prepro
essed to 
enter it inthe image and to deskew it



12 James Miskin, David J. C. Ma
Kay

Fig. 6. The �rst 16 PCA 
omponents from the �rst 256 \3"s in the MNIST dataset. Statisti
ally these 
omponents 
orrespond to the highest varian
e 
omponentsin the data set, but visually it is not obvious what these 
omponents representInstead we 
an 
onsider enfor
ing positivity of the latent images. Applying theEnsemble Learning algorithm to the set of 256 \3"s (assuming that there are 64hidden images) leads to the de
omposition shown in Fig. 7. Instead of the imagesbeing based on 
orre
tions to a prototype \3" (as in the PCA 
ase) the re
onstru
tedimages are all lo
alised and take the form of di�erent shapes of 
urves, tails, et
.Figure 8 shows the re
onstru
tions of the digits in Fig. 5 using the learnt hiddenimages. Therefore a parts based de
omposition 
an give a good representation ofthe data set.The parts based representation 
ould be used for image 
ompression (by storingimages in terms of the parts required to 
onstru
t them) or as a method of imagere
ognition (by training a set of models of di�erent digits, \1"s, \2"s, et
, a 
lassi�er
ould be made by evaluating the posterior probability of ea
h model for ea
h trialdigit).3 De
onvolution of ImagesWe 
an extend the model to in
lude lo
alised blurring of the images. The model forblurring 
ould be used to model the point spread fun
tion for a teles
ope, the linewidth in NMR experiments or motion blur. The observed images are now de�nedby yij;n = MXm=1 KXk=�K KXl=�Kwnmekl;nxi�k;j�l;m + �ij;n= ŷij;n + �ij;n (34)
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Fig. 7. The hidden images learnt when the 256 \3"s are assumed to be made from alinear 
ombination of 64 non-negative latent images. The learnt images are lo
alised(unlike the PCA 
omponents) and ea
h represents a part of a \3" with di�erentimages representing di�erent shapes of 
urves in di�erent positions

Fig. 8. Re
onstru
tions of the true digits using the 64 non-negative images. Herewe 
an see that the parts based representation is able to model a variety of shapesof \3" and we 
an see that a set of 64 latent images is able to represent the dataset of 256 handwritten \3"s
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Kaywhere w, x, � and y have the same de�nitions as the previous model and e is a setof lo
alised 
onvolution �lters (one for ea
h image) whi
h extend from �K to K inea
h dimension. In evaluating this sum, it is assumed that xij;m is zero outside thede�ned extent of the image.The priors for this model are the same as for the previous model with theaddition of a prior for the 
onvolution �lters. The prior is similar to the prior forthe mixing parameters and respe
ts the positivity of the �lter.p (ekl;n) = ��e exp (��eekl;n) ekl;n � 00 ekl;n < 0 (35)where �e is a s
ale parameter with the s
ale invariant priorp (ln �e) = 1: (36)We 
an now approximate the true posterior by the separable distributionq (�) =Yijm q (xij;m)�Ynm q (wnm)�Ykln q (ekl;n)� q (��) q (�w) q (�e) : (37)Again we do not assume a spe
i�
 form for the distributions in q (�). If we �ndthe optimal distributions we obtainq (�w) = �  �w;Xnm hwnmi ; NM! (38)q (�e) = �  �e;Xkln hekl;ni ; (2K + 1)2N! (39)q (��) = �  ��; 12Xijn 
(yij;n � ŷij;n)2� ; IJN2 ! (40)q (wnm) = 1Z(w)nm p (wnm) exp��12w(2)nm �wnm � w(1)nm�2� (41)q (ekl;n) = 1Z(e)kl;n p (ekl;n) exp��12e(2)kl;n �ekl;n � e(1)kl;n�2� (42)q (xij;m) = 1Z(x)ij;m p (xij;m) exp��12x(2)ij;m �xij;m � x(1)ij;m�2� (43)where we have de�nedw(2)nm = 1h��iXij �(hekl;ni hxi�k;j�l;mi)2
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e2kl;n� 
x2i�k;j�l;m�� hekl;ni2 hxi�k;j�l;mi2�# (44)w(1)nmw(2)nm = h��iXij "Xkl hekl;ni hxi�k;j�l;mi yij;n� Xk1l1k2l2 Xm0 6=m hwnm0ek1l1;nek2l2;nxi�k1;j�l1;mxi�k2;j�l2;m0 i#(45)e(2)kl;n = 1h��iXij " Xm hwnmi hxi�k;j�l;mi!2+Xm �
w2nm� 
x2i�k;j�l;m�� hwnmi2 hxi�k;j�l;mi2�# (46)e(1)kl;ne(2)kl;n = 1h��iXij "Xm hwnmi hxi�k;j�l;mi yij;n� Xm1m2 Xk2l2 6=kl hwnm1wnm2ek2l2;nxi�k;j�l;m1xi�k2;j�l2;m2i# (47)x(2)ij;m = 1h��i Xi0j0n 
w2nm� 
e2i0�i;j0�j;n� (48)x(1)ij;mx(2)ij;m = h��iXi2j2n [hwnmi hei2�i;j2�j;ni yi2j2;n� Xm2k2l2 6=mi2�ij2�j hwnmwnm2ei2�ij2�j;nek2l2;nxi2�k;j2�l;m2i# :(49)The posterior distributions 
an be trained iteratively by performing repeatedline minimisations as for the Separation of Images model.3.1 ExamplesFigure 9 shows the results of using the Ensemble Learning algorithm to re
onstru
tthe hidden image and the blurring �lter from a single observed image. In ea
h 
asethe re
onstru
ted �lter mat
hes the true �lter. The re
onstru
ted images mat
h thetrue hidden images.Figure 10 shows the results of using the Ensemble Learning algorithm to re-
onstru
t the hidden images and the blurring �lters from a set of blurred images(the images are the same as those used in Fig. 2, but with added blurring). In ea
h
ase the re
onstru
ted �lter mat
hes the true �lter. The re
onstru
ted images alsomat
h the true hidden images.
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Fig. 9. Demonstration of the de
onvolution of two blurred images. In ea
h test thesame image was blurred by a di�erent �lter. The re
onstru
ted �lters mat
h thetrue �lters. The re
onstru
ted images are 
lose to the hidden images. [Dilbert imageCopyright 

1997 United Feature Syndi
ate, In
., used with permission.℄
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Hidden Images

Hidden Blurs Observed Images Reconstructed Blurs

Reconstructed Images

Fig. 10. Demonstration of the de
onvolution of multiple images. The sour
e imageswere mixed and then blurred by a set of lo
alised blur �lters. The re
onstru
tedimages mat
h the sour
e images showing that the 
orre
t mixing matrix and blur-ring �lters were learnt. [Dilbert image Copyright 

1997 United Feature Syndi
ate,In
., used with permission.℄



18 James Miskin, David J. C. Ma
KayFigure 11 shows how the histograms of intensity 
ompare for the hidden images,the observed images and the re
overed images. As with the pure mixing 
ase, theobserved images are mu
h less sparse than the true hidden images. The 
hoi
e ofa sparse prior for the images helps to for
e a set of sparse re
onstru
ted sour
eimages to be found.
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Fig. 11. Histograms of the intensities of the pixels in the multiple blurred images.The �rst plot shows the true images, here we 
an see that the images are quantisedgrey-s
ale images. The se
ond plot shows the plot for the observed images, as thereis a mixing of the quantised levels, the observations are no longer quantised. Thethird plot shows the histogram for the re
onstru
ted sour
e images4 Con
lusionFreeform Ensemble Learning allows for tra
table solutions to blind inverse probems.Approximating the true posterior by a more tra
table separable distribution meansthat the blind inverse problem 
an be redu
ed to a fun
tion minimisation problem.Consequently the inverse need not be performed by resorting to an MCMC sampler.A side e�e
t of using a separable approximating posterior distribution is that
orrelations between the latent variables in the true posterior distribution are lost.On the other hand the �tting pro
ess uses distributions over possible values for allof the parameters, unlike Maximum Likelihood methods whi
h �nd a point estimatefor the latent variables and 
onsequently 
an su�er from over-�tting to the data.Use of Ensemble Learning allows the number of hidden images to be inferredby minimising the 
ost fun
tion (or equivalently maximising the bound on theeviden
e) with respe
t to the number of hidden images.The results show that the algorithm is able to de
onvolve and separate noisymixtures of images. The results also show that the algorithm 
an be used to obtaina parts based representation of images.For hidden images that have an intrinsi
 
orrelation, the images 
ould be mod-elled by a set of independent pixels (as in the model des
ribed above) 
onvolvedwith another unknown blurring �lter. The extra �lter 
ould be learnt in a similarway to the �lter in this model and may improve separation of images that haveintrinsi
 
orrelations.
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