., 1--13()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Simple Imperative Polymor phism

ANDREW K. WRIGHT * wright@cs.rice.edu
Department of Computer Science, Rice University, Houston, TX 77251-1892

Editor: lan A. Mason

Abstract. This paper describes a simple extension of the Hindley-Milner polymorphic type discipline to
call-by-value languages that incorporate imperative features like references, exceptions, and continuations. This
extension sacrifices the ability to type every purely functional expression that is typable in the Hindley-Milner
system. In return, it assigns the same type to functional and imperative implementationsof the same abstraction.
Hencewith amodule system that separates specificationsfrom implementations, imperativefeatures can befreely
used to implement polymorphic specifications. A study of a number of ML programs shows that the inability to
type al Hindley-Milner typable expressions seldom impacts realistic programs. Furthermore, most programsthat
are rendered untypable by the new system can be easily repaired.

K eywords: Continuations, functional programming, polymorphism, references, state

1. Polymorphism, Imperative Features, and Modules

The Hindley-Milner polymorphic type discipline[7], [12] is an elegant and flexible type
system for functiona programming languages. Many call-by-value languages include
imperative features like references, exceptions, and continuations that facilitate concise
and efficient programs. Severa solutionsto integrating i mperative features with Hindley-
Milner polymorphism in call-by-value languages have been devised [1], [3], [4], [8], [9],
[11], [17], [18], [19]. These solutions range in complexity from Tofte' s relatively smple
method that Standard ML adopted to Talpin’'s sophisticated system that infers types,
regions, and effects. All of these solutionsassign typesto all purely functional expressions
that are typable by the Hindley-Milner system (henceforth called HM-typabl e expressions).
However, they assign different typesto imperative and functiona polymorphic procedures
that implement the same mathematical abstraction.

For example, in Standard ML [14] we may define a polymorphic procedure that sorts
lists of any kind, given an ordering function for elements:

val sort = fn less => fn list => ... sort...
A functional implementation of this procedure hastype:
Va. (o — o — bool) — (« list) — (o list)

in the ordinary Hindley-Milner type system. An imperativeimplementation of sor t that
places elements of thelist in atemporary reference cell or array may be more efficient or

*

This research was supported in part by the United States Department of Defense under a National Defense
Science and Engineering Graduate Fellowship.

more concise. But such an imperativeversion of sor t hasthe following imperative types
in Tofte's system [18], MacQueen’s system [1], and Leroy’s system [9], [11]:

Vea. (cv — v — bool) — (o list) — (<o list) (Tofte)
Va2 (a? — o — bool) — (a? list) — (o list) (MacQueen)
YaLMNP. (o & a2 bool) 2 (a list) 2 (« list) (Leroy)

with {as M, (aiaﬁbool)DP}

In each case, the extra annotations in the procedure’s type reveal the use of imperative
featuresin itsimplementation.

Revealing theimperative nature of aprocedurein itstype has serious consequenceswitha
modul e system that separates specifications from implementations. Imperative procedures
cannot be supplied as implementations for functional polymorphic specifications. In
Standard ML, the following signature specifies the interface to a sorting modul e;

signature SORT = sig
val sort : Va.(a— a— bool) — («a list) — (« list)
end

Only afunctiona versionof sor t can be supplied as animplementation for thissignature.
Animperativeversion of sort cannot be used because it does not have the correct type.
Consequently, specifications that are to be implemented by imperative procedures must
use the imperative type. The extra annotations in imperative types clutter specifications.
Imperative types also restrict the applicability of procedures in ways that are peculiar to
the type system and difficult for programmers to predict.

We present a simple solution to typing imperative features that sacrifices the ability
to type adl HM-typable expressions. In return, our solution assigns the same types to
imperative and functional implementations of the same abstraction. This enables modules
implementing polymorphic specifications to freely use imperative features. Based on a
study of over 250,000 lines of ML code, we present empirical evidence that our type
system seldom rejectsrealistic ML programs because of itsinability to typeall HM-typable
expressions. Furthermore, when a program is rejected for this reason, simple syntactic
changes like n-expansion usually suffice to restore typability.

The next section outlines the difficulty with incorporating imperative features in a
Hindley-Milner type system and di scusses previous solutions. We assume some familiarity
with ordinary Hindley-Milner typing. Section 3 presents our solutionand studiesitsimpact
on redistic programs. The fourth section discusses related work.

2. Polymorphism and References

We use references (i.e., pointers) to illustrate the difficulty with typing imperative features
inaHindley-Milner setting, and Standard ML for examples. Our discussion appliesequally
well to exceptions and continuations.

In acall-by-value functional language without imperative features, we may explain the
polymorphic | et-expression:

let val 2 = ¢; in e, end Q)
as an abbreviation for the expansion:

(e1; eafz/er]) 2

wherees[2/e;] isthecapture-avoiding substitutionof ¢; forfree« ine; [15]. Semanticdly,
expressions (1) and (2) are equivaent. In the expansion, the first subexpression e; is
evaluated and discarded to ensure that the expansi on divergeswhen thel et-expression does.
Expressions (1) and (2) aso have the same type. The expansion mimics polymorphism
by replicating subexpression e;. Each occurrence of e; in the expansion may be assigned
a different type. The Hindley-Milner type system mimics typing |et-expressions as their
expansions without requiring atype checker to expand |et-expressions.

This ssimple explanation of polymorphism fails in a language with imperative features
because a let-expression and its expansion may not be semantically equivalent. For
example, e; may create a reference cell that is shared at uses of # in e;. The expansion
will not capture this sharing. The following expression:

let val x = (ref 1) in x :=2; !'x end
isnot equiva ent to the expansion:
((ref 1); (ref 1) :=2; I(ref 1))

In the let-expression, subexpression (ref 1) alocates a reference cell containing 1.
Subexpression X : = 2 replaces the contents of that cell with 2, and ! X extracts the
cel’s contents and returns 2. The expansion, on the other hand, creates three distinct
reference cellsand returns 1.

Ignoring this semantic difference when typing reference cells leads to trouble. A naive
attempt to introduce references merely addsr ef , !, and : = as primitive procedures with
the foll owing polymorphic types:

ref : Va.a — (aref)
! c Ya. (aref) =«
1= Yo (aref) — o — unit

But consider the following well-known counter-exampl e:

let val ¢ =ref (fn x => x) (39)
in ¢ :=(fn x => 1+x); (3b)

Ic true (3¢0)
end (3d)

With these types for the reference cell operators, subexpression ref (fn x => x)

inline(3a) hastype (8 — /) ref for any type 3. Generalizing /3, we obtain the polymorphic
type V5. (8 —) ref for €. Line (3b) assigns the occurrence of C type (int — int) ref.
Thistypeis avalid instance of C’s polymorphic type obtained by instantiating 5 to int.

Line (3c) assigns the occurrence of C type (bool — bool) ref, again a valid instance of
C’ s polymorphic type. Hence the let-expression as awhole is typable. But evauating this
expression leads to the type error 1+t r ue. This naive attempt to type reference cellsis
unsound.

In the above example, generalizing 5 is incorrect because 3 appears in the type of
reference cell € that is shared throughout the let-expression’ sbody. If 5 isnot generdized,
all occurrences of ¢ will be forced to have the same type. Since thisisimpossible, the
expression will be rejected. But not all uses of reference cellsin a let-expression prevent
generdization. If alet-expression is semantically equivalent to the expansion indicated
above (2), then generaization can occur as usual. The following imperative function
reversesalistin linear time[18]:

let val fastrev = fn list => 4
let val left =ref list and right = ref []
inwhile !left <> [] do
(right := hd(!left) :: !'right;
left :=tl(!left));
I'right
end
in
Referencecells| ef t andri ght havetype 3 list ref but each useof f ast r ev inthe
outer |let-expression’s body allocates new cells. Hence 5 can be generalized by the outer
let-expression to yield the polymorphic type V3. (3 list) — (3 list) for f ast rev.

In genera, some type variables that appear in the types of reference cells may be
generaized by a let-expression and some may not. Exactly which type variables can
be generalized is undecidable. A sound solution to typing reference cells must avoid
generalizing type variables that appear in the types of shared reference cells.

2.1. Conservative solutions

The solutions devised to date [1], [3], [4], [8], [9], [11], [17], [18], [19] are conservative
extensions of the Hindley-Milner type system. That is, they assign typesto all HM-typable
expressions. Conservative solutions require determining whether and to what degree a
let-expression’ shinding usesimperativefeatures. Hence these sol utionsrecord information
about uses of imperative featuresin an expression’ stype.

Sandard ML: Standard ML adopts Tofte's solution [18]. This solution assigns type
Voar. .o — (caref) tother ef operator where_« isanimperativetypevariable. Imperative
type variables indicate values that may be placed in reference cells. Imperativeness is
contagious: whenever avaueisstored in areference cell, any variablesin thevaue stype
become imperative. Imperative variables are only generali zed by |et-expressions when the
binding has a syntactic shape which guarantees that it creates no new reference cells. In
Standard ML thef ast r ev function defined above has type V_ov. (v list) — (o list).

Weak Types: A system proposed by MacQueen has been used by Standard ML of New
Jersey for severa years [1]. Two approximationsto it have recently been formalized by

Hoang, Mitchell, and Viswanathan [8] and Greiner [4]. These methods extend Tofte's
method by assigning weakness numbers to type variables. The weakness of atypevariable
indicates how many arguments must be supplied to a curried procedure before it allocates
a reference containing that type variable. For example, an imperative implementation of
sort (from Section 1) hastypeVa?. (a? — a? — bool) — (a? list) — (a” list). This
procedure must be applied to two arguments beforeit allocates a cell containing ava ue of
type «. Wesk types allow partia applications of imperative polymorphic procedures that
arergjected by Tofte's system.

Closure Typing: Leroy and Weis [9], [11] observed that it is only necessary to prohibit
generdization of type variables that appear in the types of cellsreachable after the binding
has been evaluated (i.e., cells that would not be reclaimed by garbage collection at this
point). As cells may be reachable through the free identifiers of closures, their system
recordsthetypesof the freeidentifiersof aprocedureinthe procedure stype. Thereforean

imperativeimplementationof sor t hastypeVo LM N P. (« Lo bool) X (o list) £

(alist) Wth {as M, (o = o 2 bool) > P}. Although Leroy’s origina closure
typing system [11] did not type all HM-typable expressions, his dissertation [9] corrects
thisoversight.

Damas: Damas proposed one of the earliest systemsfor typing references[3]. Hissystem
assigns both atype and a set A to each expression. The set A isafiniteset of the types of
cellsthat may be allocated by evaluating the expression. Polymorphic procedure types are
augmented by asimilar set A on the outermost arrow that indicates the types of cells the
procedure may allocate when it is applied. Hence an imperative version of sor t hastype
Va. (o — a — bool) — (« list) 2 (o list) where A = {a}.

Effects: Several systems for typing references based on effect inference have been
proposed. A system proposed by the author extends Damas's system to attach effect
sets (A) to al function type arrows [19]. This system assigns the type Vacsa63. (o 2
a 2 bool) 2 (a list) "2 (« list) to an imperative version of sort. A more
sophisticated system devised by Tapin and Jouvelot infers types, effects, and effect
regions for expressions[17].

3. A Simple Solution

In conservative solutions, the need toidentify uses of imperativefeaturesin an expression’s
type stems from a desire to admit all HM-typable expressions. To assign the same typesto
imperative and functional implementations of the same abstraction, we must sacrifice this
ability.

3.1. Limiting polymorphism to values

Our solution limits polymorphismto | et-expressionswhere the bindingis a syntactic value.
That is, the expression:

let val z=e¢; in e, end

assigns a polymorphic type to = only if ¢; is a syntactic value. If ¢; isnot avalue, all
uses of x in e; must have the same type. The precise definition of syntactic value is
flexible. For ML, we take syntactic values to be constants, variables, A-expressions, and
constructors applied to values. (The r ef operator is not considered a constructor for this
purpose.) Since the evaluation of a syntactic value cannot cause any side effects, it is
safe to generdize type variables in the same manner as the Hindley-Milner system when
e1 isa syntactic value. Since the determination of when to generalize depends solely on
the syntactic shape of ¢; and not on itstype, no special annotations are required in types.
Imperative and functional implementations of the same abstraction have the same type.

References, exceptions, and continuations fit smoothly into this framework. The
operators for references have the polymorphic types:

ref : Va.a — (aref)
! c Ya. (aref) =«
= Yo (aref) — o — unit

Since an application of r ef is not a value, expressions that create reference cells
are not generalized. Counter-example (3) from Section 2 is correctly rejected. As
A-expressions are vaues, references can be freely used in procedure bodies without
inhibiting polymorphism. Thef ast r ev function (4) from Section 2 has the polymorphic
typeVo. (« list) — (o list).

A soundtypesystemfor continuationsmust not alow continuationsto be polymorphic[6],
[20]. That is, in an expression like:

let val x =callcc (fn k => ...)
in

X must not be assigned a polymorphic type. (Consider the explanation of |et-expressions
as abbreviations. The expansion replicates subexpression cal | cc (fn k => ..))
throughout the let-expression’s body and hence has a different meaning from the let-
expression.) With polymorphism limited to values, Standard ML of New Jersey’s
cal | cc operator can be assigned the polymorphic type Va.(a cont — a) — a.
Identifier X in the example above is not assigned a polymorphic type because the
expression cal I cc (fn k => ...) isnot avaue Similarly, exception types do
not need any special restrictions.

We can establish soundness for our solution by showing that it is isomorphic to a
restriction of Tofte's solution. Recal that Toft€'s system has both imperative and
applicative type variables and two rules for let-expressions. The rule for non-expansive
bindings (i.e., syntactic values) generalizes both kinds of type variables. The rule for
expansive bindings (i.e., non-values) generalizes only applicative type variables. If we
remove applicative type variables from the system so that all types must use imperative
type variables, the rule for expansive bindings will never generdize any type variables.
Hence removing applicativetypevariablesfrom Tofte' s system yieldsa system isomorphic
to ours.! The existing proofs of type soundnessfor Tofte' s system [18], [20] establish type
soundness for ours.

We can easily establish that our system possesses a type inference agorithm which
finds principal types [2]. The agorithm is the ordinary Hindley-Milner type inference
algorithm run after a simple trandation. The trandation merely expands a let-expression
let val =z = ¢ in e; end where ¢; isnot a syntactic value to the equivalent
expression ((fn z => e3) ;). Thetrandation preventsthetypeinferenceal gorithm
from assigning a polymorphic typeto x.

3.2. Possible consequences

With polymorphism limited to values, some non-value expressions that have polymorphic
typesin the Hindley-Milner system are no longer polymorphic. There are three cases: ex-
pressionsthat never return, expressionsthat compute polymorphic procedures (as opposed
to A-expressionsthat just are procedures), and expressionsthat compute polymorphic data
structures. We examine each in turn.

3.2.1. Expressionsthat never return

Expressionsthat never return arise in functiona programs only as divergent computations.
In a language with exceptions and continuations, expressions that signal exceptions and
throw to continuationsal so do not return. Such expressions seldom appear in let-expression
bindings because they yield no useful value. Hence not assigning polymorphic types to
these expressions impacts few redlistic programs. Nevertheless, we can extend our type
system to accommodate some of these expressions. Many common expressions that never
return have type «. It is safe to generalize such atypeto Ve. o« regardless of whether the
expression isavaue (provided that « is not free in the type environment, of course).

3.2.2. Expressions that compute polymor phic procedures

When alet-expression’ s binding computes a polymorphic procedure, the computation may
be purely functional or may exercise imperative features. Suppose the computation is
functional, as in the following example:

let val f = (fn x => x)(fny =>y)
in f 1; f true end

With Hindley-Milner typing, this expression is typable because the identity procedure f
has polymorphic type Va. o« — «. But with polymorphism limited to values, f is not
assigned a polymorphic type. Since the body uses f with two different types, the above
expression is not typable. Functional computations of polymorphic procedures typically
arise inrealistic ML code as uses of the compose operator O or as partia applications of
curried procedures like map.

When the computation of a polymorphic procedure is functional, we can easily restore
polymorphism by n-expanding the binding, as with the example above:

let val f =fn z = (fn x = xX)(fny = y)z
in f 1; f true end

Since the bindingis now avalue, f is assigned polymorphictype Va. o — «. Some care
is needed in n-expanding bindings because this transformation can affect the algorithmic
behavior of the program. The polymorphic procedure is now recomputed each time it is
used.

Suppose the computation of a polymorphic procedure exercises imperative features.
Then n-expansion may not be possible without atering the semantics of the program.
For example, the following procedure mk Count F takes a procedure f as argument and
constructs a procedure f 2 that behaves like f but also counts the number of times it is
called:

val nkCountF = fn f =>
let val x =ref O

val f2 =fnz => (x :=1x + 1, f 2)
in counter := X;
f2

end

Theinteger reference cell X that countscallstof 2 isexported by assignment to the global
varidblecount er . When mk Count F isapplied to a polymorphic procedure like map:

val map2 = nkCount F map

the resulting procedure map2 is not polymorphic because mkCount F map is not a
value. Restoring polymorphism by n-expansion does not work because it causes a new
counter to be alocated each time map?2 is applied. If map2 must be polymorphic,
potentially awkward global changes to the program are requi red. Leroy gives severa other
examples whereit may be desirableto use imperativefeaturesin computing a polymorphic
procedure[10].

3.2.3. Expressions that compute polymor phic data structures

Expressions that compute polymorphic data structures also require globa program mod-
ifications to restore polymorphism, whether the computation is functiona or imperative.
For example, the foll owing expression computes the polymorphic empty list:

val enpty = (fn x => x) []

The Hindley-Milner system assigns the polymorphic type Yo. (o list) to enpt y. But
with polymorphism limited to values, enpt y cannot be assigned a polymorphic type.
Furthermore, there is no analog to n-expansion that can be used to restore polymorphism
to polymorphic data structures even when the computation is functional .

3.3. Practical impact

Limiting polymorphismto valuesispractical only if the inability to compute polymorphic
procedures and data structures seldom impacts real programs. To determine how often this
problem might arise, we modified Standard ML of New Jersey to use our type system. We
gathered an extensive collection of ML programs and compiled them with the modified
compiler (see Table 1). We found that most ML programs either satisfy the restriction of
polymorphismto values already, or they can be modified to do so with afew n-expansions.
In other words:

1. Realistic ML code seldom computes polymorphic procedures or data structures.
Furthermore,

2. When polymorphic procedures are computed, the computation is almost always
functional.

The only non-functional computations of polymorphic procedures we found were severa
uses in the New Jersey compiler of the unsafe procedure ¢ _f unct i on that performs
dynamic linking. The only computations of polymorphic data structures we found were
a construction of the polymorphic empty vector in the Edinburgh ML Library and two
congtructions of polymorphic eventsin eXene. All were ssimple to fix. In no case did the
modifications cause any detectable difference in performance.

Reppy’s Concurrent ML implementation [16] illustrates the benefit of assigning the
same types to functional and imperative procedures. Concurrent ML makes extensive
use of Standard ML of New Jersey’s first-class continuations to implement threads.
To avoid assigning weak types to several of Concurrent ML's procedures, Reppy’s
implementation uses aversion of cal | cc withtypeVa. (o cont — o) — «. Thistype
for cal | cc isunsafein the New Jersey compiler’ s wesk type system; the correct typeis
Val. (ol cont — o') — ol. Reppy justifiesthe use of the unsafe typefor cal | cc by a
manua proof of type soundnessfor Concurrent ML. However, with polymorphism limited
to values, Yo. (o cont — o) — « isthe correct type for cal | cc. The troublesome
procedures are automatically assigned the desired polymorphic types and no separate
soundness proof is necessary.

3.4. Integration with Standard ML’s modules

In the following structure (implementation modul €):

structure Foo = struct
val flatten = map hd
end

theapplication map hd hastype (« list list) — (o list). With polymorphism limited to
values, « isnot generalized and is free in the type of the structure. Standard ML does not
allow the type of a structure to contain free type variables, hence thiscode s rejected.? A

10

Table 1. Practical impact of limiting polymorphism to values

Program Sizein Lines FeaturesUsed ChangesRequired
References
Exceptions
Continuations

Standard ML of 62,100 REC 4 p-expansions
New Jersey (version 93) 4 castsin unsafe bootstrap code
SML/NJ Library 6,400 REC none
ML Yacc 7,300 REC 2 p-expansions

2 p-expansionsin generated code
ML Lex 1,300 REC none
ML Twig 2,200 RE none
ML Info 100 E none
Source Group (version 3.0) 8,100 REC none
Concurrent ML 3,000 REC 1 n-expansion
(John Reppy) added never for eXene
eXene X window toolkit 20,200 RE 6 n-expansions
(Reppy and Gansner) 1(choose []) changedto never

1 declaration moved
Edinburgh ML Library 15,400 RE 1 n-expansion

1(vector []) changedto#|]
ML Kit Interpreter 38,000 RE 5 n-expansions
|sabelle Theorem Prover 18,600 RE 2 p-expansions
(version 92)
Hol90 Theorem Prover 83,100 RE 4 p-expansions
(version 90.5)
Lazy Streams 200 REC none
(Thomas Breuel)
Version Arrays 100 RE none
(Thomas Breuel)
Doubly Linked Lists 400 RE 2 p-expansions
(Olin Shivers)
3d Wireframe Graphics 2,200 RE none
(Olin Shivers)
Hilbert 500 R 1 type declaration
(Thomas Y an)
Grobner Basis 1,000 RE 3 p-expansions

(Thomas Y an)

11

structure like this one must be fixed by n-expansionif f | at t en isto have polymorphic
type. Alternatively, a type constraint can be used to instantiate the free type variable if
f I at t en isneeded for only one specific type:

structure Foo = struct
val flatten : int list list -> int |ist
= map hd
end

Existing ML code frequently combines structures with a signature that constrains the
types of their definitions:

signature FOO = sig
val flatten : int list list ->int |ist
end

structure Foo : FOO = struct
val flatten = map hd
end

The signature congtraint ‘‘: FQOO’ constrains f | at t en to have a type with no free
type variables. Unfortunately, Standard ML till insists that st r uct ur e Foo have
aclosed type before it is constrained to match si gnat ur e FOO. Rather than force
programmers to add redundant type constraints to such structures, we permit free type
variables of astructureto be defined by a signature constraint (or functor result constraint).
Intheabsence of asignatureconstraint, structureswithfreetypevariablesare till rejected.>

4, Reated Work

Severa authors[5], [10] have suggested using call-by-name semantics for |et-expressions
in order to combine imperative features and polymorphism. That is, in the expression:

let val z=e¢; in e, end

the subexpression e; isnot evaluated until it isneeded, and it is re-evaluated at each use of
x ines. Adapting thissolutionto ML wouldinvolveintroducing two syntactically different
forms of let-expressions: a polymorphic call-by-name form, and a non-polymorphic call-
by-valueform. Whilethissolutionwould all ow imperative proceduresto have polymorphic
types, it would drastically dter the cal-by-value nature of ML. When call-by-name let-
expressions are desired, they can be ssimulated in our call-by-value system by introducing
dummy abstractions and applications. The expression:

let val = =fn _ => ¢ in efz/(z ())] end

smulatesl et name = = e; in e; end,wherees[z/(x ())] denotesthesub-
stitutionof (= ()) forfreexines.

12

5. Conclusion

Limiting polymorphism to values yields a simple type system that smoothly incorporates
imperative features. The restriction of polymorphism to values is seldom a hindrance in
realistic programs. In return, this restriction enables functiona and imperative implemen-
tations of the same abstraction to be assigned the same types.

A patch for Standard ML of New Jersey (Version 0.93) that limitspolymorphismtovalues
and eliminates weak types is available by anonymous FTPfrom cs. ri ce. edu infile
public/wight/vsm .93.tar.Z. Therdated filevsm . t ool s describes
the required changes for important tools like ML Y acc and Concurrent ML.

Acknowledgments

| am indebted to Bruce Duba and the referees for their comments and suggestions. | thank
Thomas Breuel, Olin Shivers, and Thomas Y an for contributed programs.

Notes

This observation is dueto Stefan Kahrs.
See rules 100-102 of the Definition [14] and the footnote on page 55 of the Commentary [13].

This extension to ML’ s modul e system appearsto be sound [Bob Harper, personal communication, February
1993]. It may be possible to allow free type variables even in the absence of a signature constraint, but we
have not investigated this more flexible extension.

References

=

‘*Standard ML of New Jersey release notes (version 0.93),”” AT&T Bell Laboratories (November 1993).

2. Damas, L. M. M. Principal Type Schemes for Functional Programs, In Proceedings of the 9th Annual
ACM Symposiumon Principles of Programming Languages (January 1982) 207--212.

3. Damas, L. M. M. Type Assignment in Programming Languages, PhD thesis, University of Edinburgh
(1985).

4. Greiner, J. ‘*Standard ML weak polymorphism can be sound,”” Technical Report CMU-CS-93-160R,
Carnegie Mellon University (September 1993).

5. Harper, R. and M. Lillibridge. ** Explicit polymorphism and CPS conversion,”’ In Conference Record of
the 20th Annual ACM Symposiumon Principles of Programming Languages (January 1993) 206--219.

6. Harper,R., B.F. Duba, and D. MacQueen."‘ Typing first-class continuationsin ML,"” Journal of Functional
Programming 3, 4 (October 1993), 465--484.

7. Hindley, R. ** The principal type-scheme of an object in combinatory logic,”” Transactionsof the American
Mathematical Society, 146 (December 1969) 29--60.

8. Hoang, M., J. Mitchell, and R. Viswanathan. ‘‘ Standard ML-NJ weak polymorphism and imperative
constructs,”’ In Proceedings of the Eighth Annual Symposium on Logic in Computer Science (June 1993)
15--25.

9. Leroy, X. Typage polymorphed’ un langage algorithmique, PhD thesis, L’ Universite Paris 7 (1992).

10. Leroy, X. ‘*‘Polymorphism by name for references and continuations,”’ In Conference Record of the 20th
Annual ACM Symposiumon Principles of Programming Languages (January 1993) 220--231.

11. Leroy, X. and P. Weis. ‘* Polymorphic type inference and assignment,’’ In Proceedings of the 18th Annual

Symposiumon Principles of Programming Languages (January 1991) 291--302.

12.

13.
14.

15.

16.

17.

18.

19.

20.

13

Milner, R. ** A theory of type polymorphismin programming,’’ Journal of Computer and System Sciences,
17 (1978) 348--375.

Milner, R. and M. Tofte. Commentary on Sandard ML, MIT Press, Cambridge, M assachusetts (1991).
Milner, R., M. Tofte, and R. Harper. The Definition of Standard ML, MIT Press, Cambridge, M assachusetts
(1990).

Ohori, A. “*A simple semantics for ML polymorphism,”” In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture (September 1989) 281--
292.

Reppy, J. H. Higher-order Concurrency, PhD thesis, Cornell University (1991).

Talpin, J.-P. and P. Jouvelot. ‘* The type and effect discipline,”’ In Proceedings of the Seventh Annual
Symposiumon Logic in Computer Science (June 1992) 162--173.

Tofte, M. ** Type inference for polymorphic references,”” Information and Computation, 89, 1 (November
1990) 1--34.

Wright, A. K. “* Typing references by effect inference,’” In Proceedings of the 4th European Symposium
on Programming, Springer-Verlag Lecture Notes in Computer Science 582 (1992) 473--491.

Wright, A. K. and M. Felleisen. **A Syntactic Approach to Type Soundness,”” Technical Report 91-160,
Rice University (April 1991). To appear in Information and Computation, 1994.

