
, , 1--13 ()
c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Simple Imperative PolymorphismANDREW K. WRIGHT * wright@cs.rice.edu
Department of Computer Science, Rice University, Houston, TX 77251-1892

Editor: Ian A. Mason

Abstract. This paper describes a simple extension of the Hindley-Milner polymorphic type discipline to
call-by-value languages that incorporate imperative features like references, exceptions, and continuations. This
extension sacrifices the ability to type every purely functional expression that is typable in the Hindley-Milner
system. In return, it assigns the same type to functional and imperative implementations of the same abstraction.
Hence with a module system that separates specifications from implementations, imperative features can be freely
used to implement polymorphic specifications. A study of a number of ML programs shows that the inability to
type all Hindley-Milner typable expressions seldom impacts realistic programs. Furthermore, most programs that
are rendered untypable by the new system can be easily repaired.

Keywords: Continuations, functional programming, polymorphism, references, state

1. Polymorphism, Imperative Features, and Modules

The Hindley-Milner polymorphic type discipline [7], [12] is an elegant and flexible type
system for functional programming languages. Many call-by-value languages include
imperative features like references, exceptions, and continuations that facilitate concise
and efficient programs. Several solutions to integrating imperative features with Hindley-
Milner polymorphism in call-by-value languages have been devised [1], [3], [4], [8], [9],
[11], [17], [18], [19]. These solutions range in complexity from Tofte’s relatively simple
method that Standard ML adopted to Talpin’s sophisticated system that infers types,
regions, and effects. All of these solutions assign types to all purely functional expressions
that are typable by the Hindley-Milner system (henceforth called HM-typable expressions).
However, they assign different types to imperative and functional polymorphic procedures
that implement the same mathematical abstraction.

For example, in Standard ML [14] we may define a polymorphic procedure that sorts
lists of any kind, given an ordering function for elements:

val sort = fn less => fn list => : : : sort : : :
A functional implementation of this procedure has type:8�: (�! �! bool)! (� list)! (� list)
in the ordinary Hindley-Milner type system. An imperative implementation of sort that
places elements of the list in a temporary reference cell or array may be more efficient or

* This research was supported in part by the United States Department of Defense under a National Defense
Science and Engineering Graduate Fellowship.

2

more concise. But such an imperative version of sort has the following imperative types
in Tofte’s system [18], MacQueen’s system [1], and Leroy’s system [9], [11]:8 �: (�! �! bool) ! (� list) ! (� list) (Tofte)8�2: (�2 ! �2 ! bool)! (�2 list) ! (�2 list) (MacQueen)8�LMNP: (� L! � M! bool) N! (� list) P! (� list) (Leroy)

with f� . M; (� L! � M! bool) . Pg
In each case, the extra annotations in the procedure’s type reveal the use of imperative
features in its implementation.

Revealing the imperative nature of a procedure in its type has serious consequences with a
module system that separates specifications from implementations. Imperative procedures
cannot be supplied as implementations for functional polymorphic specifications. In
Standard ML, the following signature specifies the interface to a sorting module:

signature SORT = sig
val sort : 8�: (�! �! bool)! (� list)! (� list)

end

Only a functional version of sort can be supplied as an implementation for this signature.
An imperative version of sort cannot be used because it does not have the correct type.
Consequently, specifications that are to be implemented by imperative procedures must
use the imperative type. The extra annotations in imperative types clutter specifications.
Imperative types also restrict the applicability of procedures in ways that are peculiar to
the type system and difficult for programmers to predict.

We present a simple solution to typing imperative features that sacrifices the ability
to type all HM-typable expressions. In return, our solution assigns the same types to
imperative and functional implementations of the same abstraction. This enables modules
implementing polymorphic specifications to freely use imperative features. Based on a
study of over 250,000 lines of ML code, we present empirical evidence that our type
system seldom rejects realistic ML programs because of its inability to type all HM-typable
expressions. Furthermore, when a program is rejected for this reason, simple syntactic
changes like �-expansion usually suffice to restore typability.

The next section outlines the difficulty with incorporating imperative features in a
Hindley-Milner type system and discusses previous solutions. We assume some familiarity
with ordinary Hindley-Milner typing. Section 3 presents our solution and studies its impact
on realistic programs. The fourth section discusses related work.

2. Polymorphism and References

We use references (i.e., pointers) to illustrate the difficulty with typing imperative features
in a Hindley-Milner setting, and Standard ML for examples. Our discussion applies equally
well to exceptions and continuations.

In a call-by-value functional language without imperative features, we may explain the
polymorphic let-expression:

3

let val x = e1 in e2 end (1)

as an abbreviation for the expansion:

(e1; e2[x=e1]) (2)

where e2[x=e1] is the capture-avoiding substitutionof e1 for free x in e2 [15]. Semantically,
expressions (1) and (2) are equivalent. In the expansion, the first subexpression e1 is
evaluated and discarded to ensure that the expansion diverges when the let-expression does.
Expressions (1) and (2) also have the same type. The expansion mimics polymorphism
by replicating subexpression e1. Each occurrence of e1 in the expansion may be assigned
a different type. The Hindley-Milner type system mimics typing let-expressions as their
expansions without requiring a type checker to expand let-expressions.

This simple explanation of polymorphism fails in a language with imperative features
because a let-expression and its expansion may not be semantically equivalent. For
example, e1 may create a reference cell that is shared at uses of x in e2. The expansion
will not capture this sharing. The following expression:

let val x = (ref 1) in x := 2; !x end

is not equivalent to the expansion:

((ref 1); (ref 1) := 2; !(ref 1))

In the let-expression, subexpression (ref 1) allocates a reference cell containing 1.
Subexpression x := 2 replaces the contents of that cell with 2, and !x extracts the
cell’s contents and returns 2. The expansion, on the other hand, creates three distinct
reference cells and returns 1.

Ignoring this semantic difference when typing reference cells leads to trouble. A naive
attempt to introduce references merely adds ref, !, and := as primitive procedures with
the following polymorphic types:

ref : 8�: �! (� ref)
! : 8�: (� ref) ! �
:= : 8�: (� ref) ! �! unit

But consider the following well-known counter-example:

let val c = ref (fn x => x) (3a)
in c := (fn x => 1+x); (3b)

!c true (3c)
end (3d)

With these types for the reference cell operators, subexpression ref (fn x => x)
in line (3a) has type (� ! �)ref for any type �. Generalizing �, we obtain the polymorphic
type 8�: (� ! �) ref for c. Line (3b) assigns the occurrence of c type (int ! int) ref .
This type is a valid instance of c’s polymorphic type obtained by instantiating � to int.

4

Line (3c) assigns the occurrence of c type (bool ! bool) ref , again a valid instance of
c’s polymorphic type. Hence the let-expression as a whole is typable. But evaluating this
expression leads to the type error 1+true. This naive attempt to type reference cells is
unsound.

In the above example, generalizing � is incorrect because � appears in the type of
reference cell c that is shared throughout the let-expression’s body. If � is not generalized,
all occurrences of c will be forced to have the same type. Since this is impossible, the
expression will be rejected. But not all uses of reference cells in a let-expression prevent
generalization. If a let-expression is semantically equivalent to the expansion indicated
above (2), then generalization can occur as usual. The following imperative function
reverses a list in linear time [18]:

let val fastrev = fn list => (4)
let val left = ref list and right = ref []

in while !left <> [] do
(right := hd(!left) :: !right;
left := tl(!left));

!right
end

in : : :
Reference cells left and right have type � list ref but each use of fastrev in the
outer let-expression’s body allocates new cells. Hence � can be generalized by the outer
let-expression to yield the polymorphic type 8�: (� list) ! (� list) for fastrev.

In general, some type variables that appear in the types of reference cells may be
generalized by a let-expression and some may not. Exactly which type variables can
be generalized is undecidable. A sound solution to typing reference cells must avoid
generalizing type variables that appear in the types of shared reference cells.

2.1. Conservative solutions

The solutions devised to date [1], [3], [4], [8], [9], [11], [17], [18], [19] are conservative
extensions of the Hindley-Milner type system. That is, they assign types to all HM-typable
expressions. Conservative solutions require determining whether and to what degree a
let-expression’s binding uses imperative features. Hence these solutions record information
about uses of imperative features in an expression’s type.

Standard ML: Standard ML adopts Tofte’s solution [18]. This solution assigns type8 �: �! (�ref) to theref operator where � is an imperative type variable. Imperative
type variables indicate values that may be placed in reference cells. Imperativeness is
contagious: whenever a value is stored in a reference cell, any variables in the value’s type
become imperative. Imperative variables are only generalized by let-expressions when the
binding has a syntactic shape which guarantees that it creates no new reference cells. In
Standard ML the fastrev function defined above has type 8 �: (� list) ! (� list).

Weak Types: A system proposed by MacQueen has been used by Standard ML of New
Jersey for several years [1]. Two approximations to it have recently been formalized by

5

Hoang, Mitchell, and Viswanathan [8] and Greiner [4]. These methods extend Tofte’s
method by assigning weakness numbers to type variables. The weakness of a type variable
indicates how many arguments must be supplied to a curried procedure before it allocates
a reference containing that type variable. For example, an imperative implementation of
sort (from Section 1) has type 8�2: (�2 ! �2 ! bool) ! (�2 list) ! (�2 list): This
procedure must be applied to two arguments before it allocates a cell containing a value of
type �. Weak types allow partial applications of imperative polymorphic procedures that
are rejected by Tofte’s system.

Closure Typing: Leroy and Weis [9], [11] observed that it is only necessary to prohibit
generalization of type variables that appear in the types of cells reachable after the binding
has been evaluated (i.e., cells that would not be reclaimed by garbage collection at this
point). As cells may be reachable through the free identifiers of closures, their system
records the types of the free identifiers of a procedure in the procedure’s type. Therefore an

imperative implementation of sort has type 8�LMNP: (� L! � M! bool) N! (� list) P!(� list) with f� . M; (� L! � M! bool) . Pg. Although Leroy’s original closure
typing system [11] did not type all HM-typable expressions, his dissertation [9] corrects
this oversight.

Damas: Damas proposed one of the earliest systems for typing references [3]. His system
assigns both a type and a set � to each expression. The set � is a finite set of the types of
cells that may be allocated by evaluating the expression. Polymorphic procedure types are
augmented by a similar set � on the outermost arrow that indicates the types of cells the
procedure may allocate when it is applied. Hence an imperative version of sort has type8�: (�! �! bool) ! (� list) �! (� list) where � = f�g.

Effects: Several systems for typing references based on effect inference have been
proposed. A system proposed by the author extends Damas’s system to attach effect
sets (�) to all function type arrows [19]. This system assigns the type 8�&1&2&3: (� &1!� &2! bool) &3! (� list) �&1&2&3�! (� list) to an imperative version of sort. A more
sophisticated system devised by Talpin and Jouvelot infers types, effects, and effect
regions for expressions [17].

3. A Simple Solution

In conservative solutions, the need to identify uses of imperative features in an expression’s
type stems from a desire to admit all HM-typable expressions. To assign the same types to
imperative and functional implementations of the same abstraction, we must sacrifice this
ability.

3.1. Limiting polymorphism to values

Our solution limits polymorphism to let-expressions where the binding is a syntactic value.
That is, the expression:

let val x = e1 in e2 end

6

assigns a polymorphic type to x only if e1 is a syntactic value. If e1 is not a value, all
uses of x in e2 must have the same type. The precise definition of syntactic value is
flexible. For ML, we take syntactic values to be constants, variables, �-expressions, and
constructors applied to values. (The ref operator is not considered a constructor for this
purpose.) Since the evaluation of a syntactic value cannot cause any side effects, it is
safe to generalize type variables in the same manner as the Hindley-Milner system whene1 is a syntactic value. Since the determination of when to generalize depends solely on
the syntactic shape of e1 and not on its type, no special annotations are required in types.
Imperative and functional implementations of the same abstraction have the same type.

References, exceptions, and continuations fit smoothly into this framework. The
operators for references have the polymorphic types:

ref : 8�: �! (� ref)
! : 8�: (� ref) ! �
:= : 8�: (� ref) ! �! unit

Since an application of ref is not a value, expressions that create reference cells
are not generalized. Counter-example (3) from Section 2 is correctly rejected. As�-expressions are values, references can be freely used in procedure bodies without
inhibitingpolymorphism. The fastrev function (4) from Section 2 has the polymorphic
type 8�: (� list) ! (� list).

A sound type system for continuations must not allow continuations to be polymorphic [6],
[20]. That is, in an expression like:

let val x = callcc (fn k => : : :)
in : : :

x must not be assigned a polymorphic type. (Consider the explanation of let-expressions
as abbreviations. The expansion replicates subexpression callcc (fn k => : : :)
throughout the let-expression’s body and hence has a different meaning from the let-
expression.) With polymorphism limited to values, Standard ML of New Jersey’s
callcc operator can be assigned the polymorphic type 8�: (� cont ! �) ! �.
Identifier x in the example above is not assigned a polymorphic type because the
expression callcc (fn k => : : :) is not a value. Similarly, exception types do
not need any special restrictions.

We can establish soundness for our solution by showing that it is isomorphic to a
restriction of Tofte’s solution. Recall that Tofte’s system has both imperative and
applicative type variables and two rules for let-expressions. The rule for non-expansive
bindings (i.e., syntactic values) generalizes both kinds of type variables. The rule for
expansive bindings (i.e., non-values) generalizes only applicative type variables. If we
remove applicative type variables from the system so that all types must use imperative
type variables, the rule for expansive bindings will never generalize any type variables.
Hence removing applicative type variables from Tofte’s system yields a system isomorphic
to ours.1 The existing proofs of type soundness for Tofte’s system [18], [20] establish type
soundness for ours.

7

We can easily establish that our system possesses a type inference algorithm which
finds principal types [2]. The algorithm is the ordinary Hindley-Milner type inference
algorithm run after a simple translation. The translation merely expands a let-expression
let val x = e1 in e2 end where e1 is not a syntactic value to the equivalent
expression ((fn x => e2) e1). The translation prevents the type inference algorithm
from assigning a polymorphic type to x.

3.2. Possible consequences

With polymorphism limited to values, some non-value expressions that have polymorphic
types in the Hindley-Milner system are no longer polymorphic. There are three cases: ex-
pressions that never return, expressions that compute polymorphic procedures (as opposed
to �-expressions that just are procedures), and expressions that compute polymorphic data
structures. We examine each in turn.

3.2.1. Expressions that never return

Expressions that never return arise in functional programs only as divergent computations.
In a language with exceptions and continuations, expressions that signal exceptions and
throw to continuations also do not return. Such expressions seldom appear in let-expression
bindings because they yield no useful value. Hence not assigning polymorphic types to
these expressions impacts few realistic programs. Nevertheless, we can extend our type
system to accommodate some of these expressions. Many common expressions that never
return have type �. It is safe to generalize such a type to 8�: � regardless of whether the
expression is a value (provided that � is not free in the type environment, of course).

3.2.2. Expressions that compute polymorphic procedures

When a let-expression’s binding computes a polymorphic procedure, the computation may
be purely functional or may exercise imperative features. Suppose the computation is
functional, as in the following example:

let val f = (fn x => x)(fn y => y)
in f 1; f true end

With Hindley-Milner typing, this expression is typable because the identity procedure f
has polymorphic type 8�: � ! �. But with polymorphism limited to values, f is not
assigned a polymorphic type. Since the body uses f with two different types, the above
expression is not typable. Functional computations of polymorphic procedures typically
arise in realistic ML code as uses of the compose operator o or as partial applications of
curried procedures like map.

When the computation of a polymorphic procedure is functional, we can easily restore
polymorphism by �-expanding the binding, as with the example above:

8

let val f = fn z => (fn x => x)(fn y => y)z
in f 1; f true end

Since the binding is now a value, f is assigned polymorphic type 8�: �! �. Some care
is needed in �-expanding bindings because this transformation can affect the algorithmic
behavior of the program. The polymorphic procedure is now recomputed each time it is
used.

Suppose the computation of a polymorphic procedure exercises imperative features.
Then �-expansion may not be possible without altering the semantics of the program.
For example, the following procedure mkCountF takes a procedure f as argument and
constructs a procedure f2 that behaves like f but also counts the number of times it is
called:

val mkCountF = fn f =>
let val x = ref 0

val f2 = fn z => (x := !x + 1; f z)
in counter := x;

f2
end

The integer reference cell x that counts calls to f2 is exported by assignment to the global
variable counter. When mkCountF is applied to a polymorphic procedure like map:

val map2 = mkCountF map

the resulting procedure map2 is not polymorphic because mkCountF map is not a
value. Restoring polymorphism by �-expansion does not work because it causes a new
counter to be allocated each time map2 is applied. If map2 must be polymorphic,
potentially awkward global changes to the program are required. Leroy gives several other
examples where it may be desirable to use imperative features in computing a polymorphic
procedure [10].

3.2.3. Expressions that compute polymorphic data structures

Expressions that compute polymorphic data structures also require global program mod-
ifications to restore polymorphism, whether the computation is functional or imperative.
For example, the following expression computes the polymorphic empty list:

val empty = (fn x => x) []

The Hindley-Milner system assigns the polymorphic type 8�: (� list) to empty. But
with polymorphism limited to values, empty cannot be assigned a polymorphic type.
Furthermore, there is no analog to �-expansion that can be used to restore polymorphism
to polymorphic data structures even when the computation is functional.

9

3.3. Practical impact

Limiting polymorphism to values is practical only if the inability to compute polymorphic
procedures and data structures seldom impacts real programs. To determine how often this
problem might arise, we modified Standard ML of New Jersey to use our type system. We
gathered an extensive collection of ML programs and compiled them with the modified
compiler (see Table 1). We found that most ML programs either satisfy the restriction of
polymorphism to values already, or they can be modified to do so with a few �-expansions.
In other words:

1. Realistic ML code seldom computes polymorphic procedures or data structures.
Furthermore,

2. When polymorphic procedures are computed, the computation is almost always
functional.

The only non-functional computations of polymorphic procedures we found were several
uses in the New Jersey compiler of the unsafe procedure c function that performs
dynamic linking. The only computations of polymorphic data structures we found were
a construction of the polymorphic empty vector in the Edinburgh ML Library and two
constructions of polymorphic events in eXene. All were simple to fix. In no case did the
modifications cause any detectable difference in performance.

Reppy’s Concurrent ML implementation [16] illustrates the benefit of assigning the
same types to functional and imperative procedures. Concurrent ML makes extensive
use of Standard ML of New Jersey’s first-class continuations to implement threads.
To avoid assigning weak types to several of Concurrent ML’s procedures, Reppy’s
implementation uses a version of callcc with type 8�: (� cont ! �) ! �. This type
for callcc is unsafe in the New Jersey compiler’s weak type system; the correct type is8�1: (�1 cont ! �1) ! �1. Reppy justifies the use of the unsafe type for callcc by a
manual proof of type soundness for Concurrent ML. However, with polymorphism limited
to values, 8�: (� cont ! �) ! � is the correct type for callcc. The troublesome
procedures are automatically assigned the desired polymorphic types and no separate
soundness proof is necessary.

3.4. Integration with Standard ML’s modules

In the following structure (implementation module):

structure Foo = struct
val flatten = map hd

end

the application map hd has type (� list list)! (� list). With polymorphism limited to
values, � is not generalized and is free in the type of the structure. Standard ML does not
allow the type of a structure to contain free type variables, hence this code is rejected.2 A

10

Table 1. Practical impact of limiting polymorphism to values

Program Size in Lines Features Used Changes Required
References

Exceptions
Continuations

Standard ML of 62,100 R E C 4 �-expansions
New Jersey (version 93) 4 casts in unsafe bootstrap code

SML/NJ Library 6,400 R E C none

ML Yacc 7,300 R E C 2 �-expansions
2 �-expansions in generated code

ML Lex 1,300 R E C none

ML Twig 2,200 R E none

ML Info 100 E none

Source Group (version 3.0) 8,100 R E C none

Concurrent ML 3,000 R E C 1 �-expansion
(John Reppy) added never for eXene

eXene X window toolkit 20,200 R E 6 �-expansions
(Reppy and Gansner) 1 (choose []) changed to never

1 declaration moved

Edinburgh ML Library 15,400 R E 1 �-expansion
1 (vector []) changed to #[]

ML Kit Interpreter 38,000 R E 5 �-expansions

Isabelle Theorem Prover 18,600 R E 2 �-expansions
(version 92)

Hol90 Theorem Prover 83,100 R E 4 �-expansions
(version 90.5)

Lazy Streams 200 R E C none
(Thomas Breuel)

Version Arrays 100 R E none
(Thomas Breuel)

Doubly Linked Lists 400 R E 2 �-expansions
(Olin Shivers)

3d Wireframe Graphics 2,200 R E none
(Olin Shivers)

Hilbert 500 R 1 type declaration
(Thomas Yan)

Grobner Basis 1,000 R E 3 �-expansions
(Thomas Yan)

11

structure like this one must be fixed by �-expansion if flatten is to have polymorphic
type. Alternatively, a type constraint can be used to instantiate the free type variable if
flatten is needed for only one specific type:

structure Foo = struct
val flatten : int list list -> int list

= map hd
end

Existing ML code frequently combines structures with a signature that constrains the
types of their definitions:

signature FOO = sig
val flatten : int list list -> int list

end

structure Foo : FOO = struct
val flatten = map hd

end

The signature constraint ‘‘: FOO’’ constrains flatten to have a type with no free
type variables. Unfortunately, Standard ML still insists that structure Foo have
a closed type before it is constrained to match signature FOO. Rather than force
programmers to add redundant type constraints to such structures, we permit free type
variables of a structure to be defined by a signature constraint (or functor result constraint).
In the absence of a signature constraint, structures with free type variables are still rejected.3
4. Related Work

Several authors [5], [10] have suggested using call-by-name semantics for let-expressions
in order to combine imperative features and polymorphism. That is, in the expression:

let val x = e1 in e2 end

the subexpression e1 is not evaluated until it is needed, and it is re-evaluated at each use ofx in e2. Adapting this solution to ML would involve introducing two syntactically different
forms of let-expressions: a polymorphic call-by-name form, and a non-polymorphic call-
by-value form. While this solutionwould allow imperative procedures to have polymorphic
types, it would drastically alter the call-by-value nature of ML. When call-by-name let-
expressions are desired, they can be simulated in our call-by-value system by introducing
dummy abstractions and applications. The expression:

let val x = fn => e1 in e2[x=(x ())] end
simulates let name x = e1 in e2 end, where e2[x=(x ())] denotes the sub-
stitution of (x ()) for free x in e2.

12

5. Conclusion

Limiting polymorphism to values yields a simple type system that smoothly incorporates
imperative features. The restriction of polymorphism to values is seldom a hindrance in
realistic programs. In return, this restriction enables functional and imperative implemen-
tations of the same abstraction to be assigned the same types.

A patch for Standard ML of New Jersey (Version 0.93) that limits polymorphismto values
and eliminates weak types is available by anonymous FTP from cs.rice.edu in file
public/wright/vsml.93.tar.Z . The related file vsml.tools describes
the required changes for important tools like ML Yacc and Concurrent ML.

Acknowledgments

I am indebted to Bruce Duba and the referees for their comments and suggestions. I thank
Thomas Breuel, Olin Shivers, and Thomas Yan for contributed programs.

Notes

1. This observation is due to Stefan Kahrs.

2. See rules 100-102 of the Definition [14] and the footnote on page 55 of the Commentary [13].

3. This extension to ML’s module system appears to be sound [Bob Harper, personal communication, February
1993]. It may be possible to allow free type variables even in the absence of a signature constraint, but we
have not investigated this more flexible extension.

References

1. ‘‘Standard ML of New Jersey release notes (version 0.93),’’ AT&T Bell Laboratories (November 1993).
2. Damas, L. M. M. Principal Type Schemes for Functional Programs, In Proceedings of the 9th Annual

ACM Symposium on Principles of Programming Languages (January 1982) 207--212.
3. Damas, L. M. M. Type Assignment in Programming Languages, PhD thesis, University of Edinburgh

(1985).
4. Greiner, J. ‘‘Standard ML weak polymorphism can be sound,’’ Technical Report CMU-CS-93-160R,

Carnegie Mellon University (September 1993).
5. Harper, R. and M. Lillibridge. ‘‘Explicit polymorphism and CPS conversion,’’ In Conference Record of

the 20th Annual ACM Symposium on Principles of Programming Languages (January 1993) 206--219.
6. Harper, R., B. F. Duba, and D. MacQueen. ‘‘Typing first-class continuations in ML,’’ Journalof Functional

Programming 3, 4 (October 1993), 465--484.
7. Hindley, R. ‘‘The principal type-scheme of an object in combinatory logic,’’ Transactions of the American

Mathematical Society, 146 (December 1969) 29--60.
8. Hoang, M., J. Mitchell, and R. Viswanathan. ‘‘Standard ML-NJ weak polymorphism and imperative

constructs,’’ In Proceedings of the Eighth Annual Symposium on Logic in Computer Science (June 1993)
15--25.

9. Leroy, X. Typage polymorphe d’un langage algorithmique, PhD thesis, L’Universite Paris 7 (1992).
10. Leroy, X. ‘‘Polymorphism by name for references and continuations,’’ In Conference Record of the 20th

Annual ACM Symposium on Principles of Programming Languages (January 1993) 220--231.
11. Leroy, X. and P. Weis. ‘‘Polymorphic type inference and assignment,’’ In Proceedings of the 18th Annual

Symposium on Principles of Programming Languages (January 1991) 291--302.

13

12. Milner, R. ‘‘A theory of type polymorphism in programming,’’ Journal of Computer and System Sciences,
17 (1978) 348--375.

13. Milner, R. and M. Tofte. Commentary on Standard ML, MIT Press, Cambridge, Massachusetts (1991).
14. Milner, R., M. Tofte, and R. Harper. The Definition of Standard ML, MIT Press, Cambridge, Massachusetts

(1990).
15. Ohori, A. ‘‘A simple semantics for ML polymorphism,’’ In Proceedings of the Fourth International

Conference on Functional Programming Languages and Computer Architecture (September 1989) 281--
292.

16. Reppy, J. H. Higher-order Concurrency, PhD thesis, Cornell University (1991).
17. Talpin, J.-P. and P. Jouvelot. ‘‘The type and effect discipline,’’ In Proceedings of the Seventh Annual

Symposium on Logic in Computer Science (June 1992) 162--173.
18. Tofte, M. ‘‘Type inference for polymorphic references,’’ Information and Computation, 89, 1 (November

1990) 1--34.
19. Wright, A. K. ‘‘Typing references by effect inference,’’ In Proceedings of the 4th European Symposium

on Programming, Springer-Verlag Lecture Notes in Computer Science 582 (1992) 473--491.
20. Wright, A. K. and M. Felleisen. ‘‘A Syntactic Approach to Type Soundness,’’ Technical Report 91-160,

Rice University (April 1991). To appear in Information and Computation, 1994.

