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Abstract

Reducing the power dissipation of parallel multipliers is important in the design of digital signal
processing systems. In many of these systems, the products of parallel multipliers are rounded to
avoid growth in word size. The power dissipation and area of rounded parallel multipliers can be
significantly reduced by a technique known as truncated multiplication. With this technique, the
least significant columns of the multiplication matriz are not used. Instead, the carries generated by
these columns are estimated. This estimate is added with the most significant columns to produce the
rounded product. This paper presents the design and implementation of parallel truncated multipliers.
Simulations indicate that truncated parallel multipliers dissipate between 29 and 40 percent less power
than standard parallel multipliers for operand sizes of 16 and 32 bits.

1: Introduction

High-speed parallel multipliers are fundamental building blocks in digital signal processing sys-
tems [1]. In many cases, parallel multipliers contribute significantly to the overall power dissipation
of these systems [2]. As transistor counts, clock frequencies, and the desire for portability increase,
so does the need for low-power parallel multipliers.

Parallel multipliers are typically implemented as either array multipliers [3], [4] or tree multipliers
[5] - [7]- For both types of parallel multipliers, Booth-encoding can be employed to reduce the number
of partial products [8], [9]. Estimates given in [10] - [12] indicate that array multipliers dissipate
more power than tree multipliers and that Booth-encoded multipliers dissipate more power than
multipliers that are not Booth-encoded.

Various techniques have been developed to reduce the power dissipation of parallel multipliers.
Several of these techniques reduce power dissipation by eliminating spurious transitions [13] - [15].
Other research has focused on developing novel multiplier architectures and sign-extension tech-
niques to reduce power dissipation and improve performance [16] - [19]. Another approach is to
develop low-power 3-2 counters and 4-2 compressors, which are key components in parallel multipli-
ers [20] - [22]. Although each of these techniques helps reduce power dissipation, further reductions
will be needed for future digital signal processing systems.

This paper examines reductions in power dissipation that can be achieved through the use of
truncated multiplication. Sections 2 gives an overview of truncated multipliers, and Section 3 dis-
cusses their implementation. Section 4 compares the power dissipation, delay, and area of truncated
multipliers to standard parallel multipliers. Section 5 gives conclusions.



2: Truncated multipliers

In the discussion to follow, it is assumed that an unsigned n-bit multiplicand A is multiplied by
an unsigned n-bit multiplier B to produce an unsigned 2n-bit product P. For fractional numbers,
the values for A, B, and P are
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The multiplication matrix for P = A x B is shown in Figure 1la. For most high-speed applications,
parallel multipliers are used to produce the product.

In many computer systems, the 2n-bit products produced by the parallel multipliers are rounded
to n bits to avoid growth in word size. As presented in [23] - [26], truncated multiplication provides
an efficient method for reducing the hardware requirements of rounded parallel multipliers. With
truncated multiplication, only the n 4+ k most significant columns of the multiplication matrix are
used to compute the product. The error produced by omitting the n — k least significant columns
and rounding the final result to n bits is estimated, and this estimate is added with the n + k£ most
significant columns to produce the rounded product. Although this leads to additional error in the
rounded product, various techniques have been developed to help limit this error.

With the Constant Correction Truncated Multiplier presented in [24], a constant is added to
columns n — 1 to n — k of the multiplication matrix. The constant helps compensate for the error
introduced by omitting the n — k least significant columns (called reduction error), and the error
due to rounding the product to n bits (called rounding error). The expected value of the sum of
these error Ejyiq) is computed by assuming that each bit in A, B and P has an equal probability of

being one or zero. As described in [24], this gives
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The constant Ctyrq is obtained by rounding — Ejytq; to n + k fractional bits, such that

round(2"* Eiopar) 5
2n+k ( )
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where round(z) indicates that x is rounded to the nearest integer. The multiplication matrix for a
truncated multiplier that uses this method is shown in Figure 1b.

In [26], the Variable Correction Truncated Multiplier is introduced. With this type of multiplier,
the values of the partial product bits in column n — k — 1 are used to estimate the error due to
leaving off the n — k least significant columns. This is accomplished by adding the partial products
bits in column n — k — 1 to column n — k. To compensate for the rounding error that occurs when
truncating the products bits in columns n — 1 to n — k, a rounding constant, C,.,yunaq, is added to
the multiplication matrix. Since each product bit has an equal probability of being one or zero and
the rounding constant cannot go beyond column n — k, the value used for C,.,ynq 18

Crouna = 27" 1(1 — 27 F+1) (4)

which corresponds to the additive inverse of the expected value of the rounding error, truncated
after column n — k. The correction constant is added by putting ones in columns n — 2 to n — k, as
shown in Figure 1c.

Compared to Constant Correction Truncated Multipliers, Variable Correction Truncated Multi-
pliers have less average, mean square and maximum error for given values of n and k, but require
more hardware. As discussed in [27], array multipliers can be implemented more efficiently as Vari-
able Correction Truncated Multipliers and tree multipliers can be implemented more efficiently as
Constant Correction Truncated Multipliers.
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Figure 1. Multiplication Matrices



3: Truncated multiplier implementations

Figure 2a shows the block diagram of a standard 8 by 8 array multiplier. The cells along each
diagonal in the array multiplier correspond to a column in the multiplication matrix. In this
diagram, a modified half adder (MHA) cell consists of an AND gate and a half adder. The AND
gate generates a partial product bit, and the half adder adds the generated partial product bit and a
partial product bit from the previous row to produce a sum bit and a carry bit. Similarly, a modified
full adder (MFA) consists of an AND gate, which generates a partial product bit, and a full adder
which adds the partial product bit and the sum and carry bits from the previous row. The bottom
row of adders produces the most significant half of the product. To improve performance, this row
of adders is sometimes replaced by a fast n-bit carry-propagate adder. An n by n array multiplier
requires n?> AND gates, n half adders, and n? — 2n full adders.

The Variable Correction Truncated Multiplication method provides an efficient method for re-
ducing the power dissipation and hardware requirements of rounded array multipliers. With this
method, the diagonals that produce the ¢ = n — k least significant product bits are eliminated. To
compensate for this, the AND gates that generate the partial products for column ¢ — 1 are used
as inputs to the modified adders in column ¢. Since the k remaining modified full adders on the
right-hand-side of the array do not need to produce product bits, they are replaced by modified
reduced full adders (RFAs), which produce a carry, but do not produce a sum. To add the constant
that corrects for rounding error, k — 1 of the MHAs in the second row of the array are changed to
modified specialized half adders (SHAs). SHAs are equivalent to MFAs that have an input set to
one [7]. Array multipliers that use this method require ¢(¢ — 1) /2 fewer AND gates, (¢t — 1)(t — 2)/2
fewer full adders, and (¢ — 1) fewer half adders than standard array multipliers [26].

Figure 2b shows the block diagram of a 8 by 8 array multiplier that uses the Variable Correction
Truncated Multiplication method. For this multiplier, n = 8, £ = 2, and ¢t = 6, which results in a
hardware savings of 15 AND gates, 10 full adders, and 5 half adders. The two MFAs on the right-
hand-side of the array are replaced by RFAs. The rounding correction constant C,gyng = 0.25 x 278,
is added by changing one of the MHAS in the second row to a SHA. For this example, only one MHA
is modified since Croung = 0.25 x 27® has a single ’1’. This multiplier has a maximum absolute
error of approximately 0.723 x 278, In comparison, an 8 by 8 rounded multiplier has a maximum
absolute error of 0.5 x 278,
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Figure 2. 8 by 8 Array Multipliers.
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(a) Standard Dadda Tree Multiplier (b) Truncated Dadda Tree Multiplier

Figure 3. 8 by 8 Dadda Tree Multipliers.

With tree multipliers, the bits of the multiplicand and multiplier are ANDed to generate an n
word by n bit partial product matrix. After this, half adders and full adders are used to reduce the
partial product matrix to two rows, which are summed using a carry-propagate adder. Figure 3a
shows the dot diagram of an 8 by 8 tree multiplier that uses Dadda’s method of partial product
reduction [6]. In this figure, each partial product is represented by a dot, the outputs of each full
adder are represented by two dots connected by a plain diagonal line, and the outputs of a half
adder are represented by two dots connected by crossed diagonal line. An n by n multiplier that
uses Dadda’s method of partial product reduction requires n? AND gates to generate the partial
products, n? — 4n + 3 full adders and n — 1 half adders to reduce the partial products, and a
(2n — 2)-bit carry-propagate adder to produce the product [7].

Tree multipliers can be efficiently implemented using the Constant Correction Truncated Multi-
plier method. The hardware saved with truncated Dadda tree multipliers is ¢(¢ + 1)/2 AND gates
and (¢ — 1)(¢t — 2)/2 full adders. The number of half adders saved is between 1 and ¢, and depends
on the values of n and k. The size of the carry-propagate adder is reduced by t — 1 bits, and
the k least significant adders in the carry-propagate adder do not need to produce sum bits. To
add the correction constant, m of the half adders are changed to specialized half adders, where m
corresponds to the number of ones in Cyytq;. Similar hardware savings can be achieved by multiplier
trees that use other methods for reducing the partial product, such as Wallace tree multipliers [5]
or multipliers that use compressors or higher order counters [28], [29], [30].

Figure 3b shows the dot diagram of an 8 by 8 truncated Dadda multiplier, which uses the
Constant Correction Truncated Multiplication method [24]. For this multiplier, n = 8 and k = 3,
so the ¢t = 5 least significant columns of the dot diagram are eliminated. The correction constant
Chotal = 0.625 x 278 is added by changing the two circled half adders to specialized half adders. This
multiplier has a maximum absolute error of approximately 0.754 x 28, Compared to a standard 8
by 8 Dadda multiplier, this multiplier requires 15 fewer AND gates, 6 fewer full adders, 2 fewer half
adders, and 4 fewer bits in the carry-propagate adder.



4: Power, delay, and area estimates

Previous research on truncated multipliers has focused on reducing their error and hardware
requirements [23] - [26]. Reductions in power dissipation achieved by truncated multiplication,
however, have not yet been explored. These reductions in power dissipation come as a direct
consequence of the reductions in hardware and area obtained by truncated multipliers.

Power, delay, and area estimates were made to compare standard parallel multipliers and trun-
cated parallel multipliers. For these estimates, the array multipliers use a ripple carry adder for
the final addition, whereas the tree multipliers use a carry lookahead adder. The truncated array
multipliers use the Variable Correction Truncated Multiplication method [26] and the truncated
tree multipliers use the Constant Correction Truncated Multiplication method [24]. All multipliers
were implemented using a 0.25 micron CMOS standard cell library, which uses four levels of metal.
The nominal operating voltage for the library is 2.5 Volts at 25° C. The estimates given in this
section were simulated with a worst-case condition of 2.3 Volts at 125° C.

Perl scripts were used to generate Module Compiler Language (MCL) code for each of the multi-
pliers. MCL is a proprietary hardware description language in the Synopsys Module Compiler. The
Module Compiler (MC) tool was then used to map the MCL code into the specific library. MC was
also used to implement the final adders for the tree multipliers. The output of MC was a synthe-
sizable verilog description, mapped to the targeted library. The verilog netlists were optimized for
power using the PowerCompiler tool from Synopsys. The truncated multipliers were optimized first,
with the constraints sets to minimize the power consumed, at the expense of timing and area. The
standard multipliers were then constrained to meet the timing through the corresponding truncated
multiplier, and then optimized for power. Layouts for the multipliers were generated by using the
Apollo Place and Route tool from Avant!. The utilization factor and optimization iterations were
held constant for all generated layouts.

Table 1 gives normalized, pre-layout delay, area, and power dissipation estimates for standard
and truncated multipliers with operand sizes of 8, 16, and 32 bits. The ratios of the truncated
multiplier estimates to the standard multiplier estimates are also given. The values for k£ are chosen
to limit the maximum absolute error to one unit in the last place (i.e., 27™). Each pre-layout
estimate is normalized by dividing it by the corresponding pre-layout estimate for a standard 16-bit
array multiplier, which has a worst-case delay of 22.2 ns, an area of 5,317 grid units, and an average
power dissipation of 15.8 mW. The pre-layout simulations used extracted cell description, which
contained parasitic capacitors and diodes. The routing between the cells was assumed to be ideal
(i.e., no routing capacitance).

Table 2 gives normalized, post-layout delay, area, and power dissipation estimates for standard
and truncated multipliers with operand sizes of 16 and 32 bits. Each post-layout estimate is normal-
ized by dividing it by the corresponding post-layout estimate for a standard 16-bit array multiplier,
which has a worst-case delay of 20.7 ns, an area of 0.92 mm?, and an average power dissipation of
15.5 mW. The post-layout simulation used extracted netlists for the entire design. The parasitics
were extracted for the cells and the routing between the cells. The parasitic capacitors included
coupling capacitors between signals. The normalized post-layout power estimates differed from the
corresponding pre-layout estimates by less than 5%.

Based on the post-layout estimates, the 16-bit and 32-bit truncated array multipliers dissipate
29% and 40% less power and require 32% and 37% less area than equivalent standard array multipli-
ers. The 16-bit and 32-bit truncated tree multipliers dissipate 31% and 36% percent less power and
require 27% and 36% less area than equivalent standard tree multipliers. As expected, the reduc-
tions in area and power dissipation from truncated multiplication are fairly close. This is because
the area and the power dissipation are proportional to the amount of hardware used to implement
the multiplier. The delays for the truncated multipliers varied from 9% less than to 5% more than
equivalent standard multipliers. The difference in delays is primarily due to tradeoffs made by the
synthesis tool when optimizing for power. The simulations also indicate that tree multipliers have
significantly less power dissipation and delay than array multipliers, yet require only a small amount
of additional area.



Multiplier Delay Area Power
n | k | Type | Stan. | Trun. | Ratio | Stan. | Trun. | Ratio | Stan. | Trun. | Ratio
8 | 2 | Array | 0.52 0.54 1.04 0.23 0.18 0.77 0.21 0.18 0.88
8 | 3| Tree | 0.43 | 0.44 1.02 | 0.25 | 0.21 0.86 | 0.18 | 0.16 0.86
16 | 3 | Array | 1.00 1.02 1.02 1.00 0.69 0.69 1.00 0.71 0.71
16 | 4 | Tree | 0.71 | 0.61 0.87 | 1.05 | 0.76 0.72 | 0.64 | 0.45 0.70
32 | 4 | Array | 1.98 1.91 0.97 | 4.09 | 2.58 0.63 | 4.01 2.36 0.59
32 | 5| Tree | 090 | 0.95 1.05 | 420 | 2.71 0.64 | 1.87 | 1.19 0.64

Table 1. Normalized Pre-Layout Multiplier Estimates.
Multiplier Delay Area Power

n | k | Type | Stan. | Trun. | Ratio | Stan. | Trun. | Ratio | Stan. | Trun. | Ratio
16 | 3 | Array | 1.00 1.05 1.05 1.00 | 0.68 0.68 1.00 | 0.71 0.71
16 | 4 | Tree | 0.64 | 0.58 0.91 1.02 | 0.75 0.73 | 0.67 | 0.46 0.69
4
5

32 Array | 2.04 2.00 0.98 3.93 247 0.63 3.99 247 0.60
32 Tree 0.92 0.88 0.95 4.07 2.60 0.64 1.93 1.23 0.64

Table 2. Normalized Post-Layout Multiplier Estimates.

The multiplier power dissipations were estimated using PowerMill, a dynamic simulator provided
by the Epic Technology Group of Synopsys. The simulator accepts a transistor level netlist, along
with parasitic resistors, capacitors, and diodes. The stimuli to the simulator were pseudo-random,
time-based vectors. The 8-bit and 16-bit multipliers were simulated for 50,000 ns, and the 32-
bit multipliers were simulated for 25,000 ns. The actual number of vectors used to simulate each
multiplier is computed by dividing the simulation time by the delay of the multiplier.

The multiplier delays were estimated using the PrimeTime tool from Synopsys. PrimeTime is
a cell-based static timing tool. The pre-layout numbers were generated using wire load models
provided as part of the library. The post-layout numbers were generated by back-annotating the
routing delays to PrimeTime.

5: Conclusions

Truncated multiplication provides an efficient method for reducing the power dissipation and area
of rounded parallel multipliers. Post-layout simulations indicate that truncated parallel multipliers
dissipate between 29 and 40 percent less power than standard parallel multipliers for operand sizes
of 16 and 32 bits. As the operand size increases, the relative reduction in power dissipation and area
also increases. The techniques presented in this paper can also be applied to two’s complement mul-
tipliers, Booth-encoded multipliers, and multipliers that use higher-order counters and compressors.
Other methods for reducing power dissipation can be applied to truncated multipliers to further
improve their power dissipation.
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