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Abstract

We show the existence of effective bandwidths for multi-
class Markov fluids and other types of sources that are
used to model ATM traffic. More precisely, we show that
when such sources share a buffer with deterministic service
rate, a constraint on the tail of the buffer occupancy dis-
tribution is a linear constraint on the number of sources.
That is, for a small loss probability one can assume that
each source transmits at a fixed rate called its effective
bandwidth. When traffic parameters are known, effective
bandwidths can be calculated and may be used to obtain
a circuit-switched style call acceptance and routing algo-
rithm for ATM networks. The important feature of the ef-
fective bandwidth of a source is that it is a characteristic of
that source and the acceptable loss probability only. Thus,
the effective bandwidth of a source does not depend on
the number of sources sharing the buffer nor on the model
parameters of other types of sources sharing the buffer.

1 Introduction

Effective bandwidths have been discovered for certain traf-
fic models and certain performance criteria (see [17],[13],
[12],(4],[18],[3]). For example, consider a buffer of infinite
size with service rate ¢ cells/s. Assume that the buffers
sources and buffer occupancy are in steady state. Let X
be the number of cells in the buffer found by a typical
arriving cell. Suppose that

P{X >B} < &% (1)

must be satisfied (the performance criterion). Suppose fur-
ther that there are N; independent on-off Markov fluids [1]
of type 7 (7 = 1,2,..., K) sharing the buffer. There ex-
ist functions o; that depend only on the parameters of a
type j source and &, such that the constraint (1) holds for
Bé >> 1 if and only if

K
ZNJ'O(]' S C.
j=1

We call a; the effective bandwidth of an on-off Markov fluid
of type j (see [12] and [13] for proofs of this result and nu-
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merical examples that explore the accuracy of the effective
bandwidth approach).

In general, effective bandwidths depend on both the traf-
fic/buffer models and the performance criterion. Kelly [17]
finds effective bandwidths for GI/G/1 queues under (1) and
for M/G/1 queues with the performance criterion taken to
be the buffer utilization (fraction of time X # 0) or mean
workload (EX < B). Courcoubetis and Walrand [4] find
effective bandwidths for stationary Gaussian sources under
(1). Recently, Elwalid and Mitra [8] have also obtained ef-
fective bandwidth results for the case of continuous-time
Markovian sources under (1) (c.f., Sections 3.3 and 3.4 and
the Conclusions). The open question answered in this note
is the existence of effective bandwidths for more general
source models under (1).

We start by heuristically deriving an expression for
P{X > B} for general source models. Consider an infinite
buffer with service rate ¢ shared by N; sources of type 1,
i = 1,..., K. All the sources are assumed independent.
For all M, greater than the average rate of cells produced
by a source of type i, assume that the probability that a
source of type ¢ produces M;T cells over a period of time
of length T is approximately exp(<T H;(M;)) where H; is
convex and non-negative (this is assumption is motivated
by the theory of large deviations and is discussed below).
This approximation is sharpest for 7' >> 1.

By independence, the probability that, for 7 = 1, ..., N;,
the jth source of type ¢ produces u;T cells over time T is
about

N;
exp | <1 Z H;(pj)

7j=1

Consequently, the probability that all sources of type ¢ pro-
duce a total of N; M;T cells over large time T is about

N;
E exp C}TZH,’(M]')
;L:E pi=N;M; j=1

where g = (g1, ..., pn;). Indeed, each choice of p such that
>~ pj = N;M; is one particular way for N; M;T cells to get
produced. This sum of exponentials can be approximated
by the largest term (originally an argument of Laplace):

2.

;L:E pi=N;M;

N;
exp | <1 Z Hi(pj)

7j=1



N;
~exp | & inf T Hi(ps)
py o pg=NsM; Jz:; !
= exp (C}TN,H,(M,))

where the last equality is due to the convexity of H;. There-
fore, by independence, the probability that, for: = 1,..., K,
the sources of type ¢ produce N; M;T over time T is about

exp (@TZN,»H,»(M,»)) :

=1

Thus, the probability that, starting from an empty buffer,
the sources of type 7 produce cells at rate N;M; until the
buffer occupancy exceeds B is

> NiHi(M;)
exp <C>BEN,M, <:>c> .
Indeed T = B/(}. N;M; <¢) is the time the buffer occu-
pancy takes to reach B when the aggregate cell arrival rate
is >, N;M;. By the argument of Laplace, the probability
that the buffer occupancy, starting from empty, reaches B
before it returns to empty is about

i o NH(M)

s S @c) ~P{X > B}. (2)

exp (@B

Given the effective bandwidths of a buffer’s sources, one
can determine its spare capacity to accept more calls at
any time. For instance, say we want to determine if a
call of type 5 can be accommodated (i.e., constraint (1) is
preserved) in a buffer that is currently being used by N;
calls of type 3, ¢ = 1,..., K. If a;(6) < c@Elel Nia;(6)
then the call can be accommodated, else it cannot. See, for
example, [10], [13],[14], and [19] for further discussion on
how effective bandwidths can be used for network resource
management.

This note is organized as follows. In Section 2, we show
the existence of effective bandwidths in the multiclass case
when the sources satisfy certain conditions. In Section 3,
we give expressions for the effective bandwidths of Markov-
modulated Poisson processes, Markov-modulated fluids (or
Jjust “Markov fluids”), and discrete-time Markov sources.
Finally, conclusions are drawn in Section 4.

2 General Effective Bandwidths

We now show the existence of effective bandwidths. First,
some assumptions on the sources are made, then effective
bandwidths are defined by considering the single source
case, and finally the multiclass case is considered.
Consider an infinite buffer with deterministic service rate
¢ cells/s, shared by N; independent sources of type 7, i =
1,..., K. Denote by [, -] the scalar product. Let , ; € (0, co]
(respectively 5; € [0,00)) denote the maximum (respec-
tively minimum) possible cell arrival rate of a type ¢ source.

Let ¥, € (0,00) be the average arrival rate of a type
source. We assume that
N € C:={NeZ¥ : [N,,] > c and [N,7] < ¢}
where Z, = {0,1,2,...},¥ = (71,..-,7x) and
y = (, Ly eeeyy K)- Let M = (Ml, ...,MK).

Motivated by equation (2), we take the measure of con-
gestion in the buffer to be

exp(<BI(N,c) + o(B)) (3)
where

K
> iy NiHi(M;)

I(N = inf
(W,¢) A [N, M] ¢

MeA(N,c)

and A(N,c) := {M € Rf Y. < M; < ,; ¥Yi and
[N,M] > ¢} (c.f., equation (5) for the definition of the
H,). Thus, when B§ >> 1, the constraint (4) is

I(N,c) > 6. (4)

Assume that the sources are stationary and ergodic. Con-
sider a single source of type . Let the number of arrivals
of this type ¢ source in the time interval [0,¢] be A4;(¢). As-
sume that A; satisfies the conditions of the Gartner-Ellis
theorem [11],[6],[2]. That is, assume that the asymptotic
log moment generating function of 4;,

lim
t— oo

hi(8) = %logEexp (4;(2)8)
exists and is finite for all real §, and that h; is differen-
tiable. We can directly verify that h; is convex, positive
and increasing for § > 0.

By the Gartner-Ellis theorem, H; is the Legendre trans-
form of h;:

H;,(M;) = sup{6M; <h;(é)}. (5)

SeER

We can directly verify that H, is non-negative, convex and
differentiable, H;(¥;) = 0, and H;(M) = oo forall M >, ;
or M < v;. We also assume that H; is sirictly convex on
the interval (v;,, 4)-

Consider the case of a single source of type . For § > 0,
define a;(6) to be the value of a such that

inf _— =
M;eAi(a) M; &a

Ii(a) :=
where A;(a) := {M; a < M; < ,;}. Thus, a;(6) =
Ii_1(6) can be interpreted as the rate at which to serve a
single source of type 7 so that the constraint (4) is satisfied.
We call «; the effective bandwidth of the type 7 traffic. The
following theorem gives us a more manageable form for ;.
Lemma 1: Under the above conditions, for all § > 0,

hi(8)

a,(&) = 5



Proof: Since H; and h; are convex conjugates, h;(8)
supy{Mé < H,(M)}. It then follows from the differentia-
bility of H; and h; and the strict convexity of H; that

h() = SHIT\6) SH(H(6)). (6)

Define the function ¢;(M) := M < H;(M)/H}(M). From
the strict convexity of H; it follows that ¢; is strictly in-
creasing on (vi,, ;). Thus we can define g; ' as the in-
verse of g;; i.e., for a € (%;,,:), g; “(a) is the solution
of the equation a = M < H;(M)/H!(M). Since H' > 0
on (%;,,:), 9; (a) > a so that g;'(a) € A;(a). Thus,
I;(a) = H!(g; '(a)) and, in conjunction with equation (6),
we have that Ii_1(6) = h;(6)/6 as desired. &

With this lemma, the following “effective bandwidth”
theorem for multiclass sources is immediate by indepen-
dence.

Theorem 1: Assume that the arrival processes A; all
satisfy the conditions of the Gartner-Ellis theorem and that
the H; are all strictly convex. For any 6 > 0 and N € C,

I(Nye)>6 & ) N(s) <ec.

Proof: Let h be the log moment generating function for
the aggregate arrival process. Clearly

hE) = > Nihi(6).

Let the inverse of I(N,-) be IK,l. Thus, by the argument
in the lemma above,

as desired. &

This theorem shows that under weak conditions on the
arrival processes, effective bandwidths exist for the mea-
sure of congestion (3). The large deviations approach used
is a unified framework to handle buffer sources modeled in
different ways as we shall see in the next section.

3 Models of ATM Buffer Sources

We now consider several models of buffer sources used to
characterize bursty ATM traffic. In each case, an expres-
sion for the effective bandwidth is found.

3.1 Constant Rate and Memoryless Sources

For sources with a constant arrival rate of R cells/s, A(?)
Rt for ¢t > 0. Thus, h(6) = RS, H(R) =0 and H(M) = oo
for all M # R. Therefore, the hypothesis of Theorem 1
is satisfied and the effective bandwidth of this source is
a(6) = R. Note that, in the notation of Section 2,y =,
R for a constant rate source.

For memoryless (Poisson) sources with intensity R cells/s,
h(t) = R(e® <1). Thus, H(M) = Mlog(M/R) <M + R.
So, the hypothesis of Theorem 1 is satisfied and the effec-
tive bandwidth of this source is a(§) = R(e’ <1)/6. Note
that ¥ = 0 and , = oo for a Poisson source.

3.2 Discrete-Time Markov Sources

We call a buffer source a “discrete-time” Markov source if
there is a discrete-time Markov chain Z,, and a real con-
stant R such that the number of arrivals to the buffer in
interval of (continuous) time (RR~!,(n+1)R™1!) is a func-
tion of Z,. We take the state space of Z to be 1,2,...,m
and we let @ be its irreducible and aperiodic transition
probability matrix. Let A; be the number of cells that ar-
rive in the interval (nR™!,(n + 1)R™!) when Z, = i. We
assume 0 < A; < A;pq < oo forall i =1,...,m&1. There-
fore, in the notation of Section 2, ¥ = RA;,, = RA,,, and
¥:= R}, miA; where 7 is the invariant of Q: 7Q = 7.

By an argument using the backward equation and Perron-
Frobenius theory [3],

h(§) = Rlog[p(e**Q)] (7)

where A = diag(Aq, ..., Am), and p(F) is the spectral radius
of the matrix F.

h is differentiable (and analytic) as a consequence of per-
turbation theory of matrices (see [2], p. 190-191) and,
therefore, satisfies the conditions of the Gartner-Ellis the-
orem. In Section 2, we established that h is convex. A
simple consequence of Lemma 3.4 in [16] is that either h is
affine or strictly convex.

h(0) = 0 implies that the affine case is the constant rate
source of Section 3.1. If h is strictly convex, by direct
calculation starting from equation (5), we get that H’
h'~1. Thus H' is strictly increasing which implies that H
is strictly convex as well. So, the hypothesis of Theorem
1 is satisfied, and the effective bandwidth of this source is
a(6) = h(6)/6. This source is a special case of an example
2.3 in [3] wherein the rates A; are random.

Two-State Discrete-Time Markov Source Ex-
ample

3.2.1

If the Markov chain considered is of the two state (m
type, then by direct calculation,

h(6) = Rlog B (a(6)+ a2(6)+4b(6))]
where
a(6) = Q1M + Qq e’
and
b(6) = 66(A1+A2)(1 Q1,1 @Qz,z)-

3.3 Markov Fluids

A source is called a Markov fluid if its time-derivative is
a function of a continuous-time Markov chain on a finite
state space. As for the discrete-time Markov sources above,
we let 1,...,m be the state space and @) be the irreducible
transition rate matrix of the Markov fluid’s time-derivative.
Let A; be the arrival rate of cells when the time-derivative



of the Markov fluid is in state :. We make the same assump-
tion on the parameters A; that we made in the discrete-time
Markov source case.

By an argument similar to that for discrete-time Markov
sources (see the Appendix below),

1(Q + 8A)

where A is defined above and pu(F') is the largest real eigen-
value of the matrix . The same argument used for discrete-
time Markov sources verifies that the hypothesis of Theo-
rem 1 is satisfied.

h(s) =

3.3.1 Two-State Markov Fluids Example

If the Markov fluid considered is of the two state (m = 2)
type, then by direct calculation,

h(§) = %(@a(&)—l— a2(8) =45(6) )

where

a(6) = Q12+ Q21 6(A2 &A1)

and
b(&) = 62A2A1 C}(S(QLQAQ + Q2,1A1)-

This is the effective bandwidth result in [12],[13].

3.4 Markov-Modulated Poisson Process

A source to a buffer is called a Markov-modulated Poisson
process (MMPP) if the cell arrivals are Poisson with inten-
sity A, where A is a function of a continuous-time Markov
chain. We assume that the space A, ..., A, of intensities
satisfies the conditions of the previous examples and that
the transition rate matrix @ is irreducible.

By an argument similar to that for discrete-time Markov
sources (again, see the Appendix below),

#(@Q + (¢ =1)A)

and the hypothesis of Theorem 1 is satisfied.

h(s) =

4 Conclusions

Effective bandwidth results for the continuous-time Marko-
vian sources of Sections 3.3 and 3.4 were also obtained in
[8] using spectral decomposition methods [21],[9]. They
found the same effective bandwidth formulas and estab-
lish equation (2) for buffers with multiclass Markov fluid
sources and buffers with multiclass MMPP sources. The
effective bandwidth results in Section 2 (using the large de-
viations approach) are more general than those of [8] and
our measure of congestion (equation (3)) allows us to han-
dle a buffer with sources modeled in different ways (e.g.,
a buffer with two sources: one modeled as a Markov fluid
and the other as a MMPP). Recently, in [5], equation (2)
was established for the stationary Lindley buffer process

(discrete time) and they find an effective bandwidth result
for a buffer using a simple “randomized priority” processor
sharing rule [20].

In summary, we have shown the existence of effective
bandwidths for a large class of sources commonly used to
model ATM traffic. Given the effective bandwidths of a
buffer’s sources (i.e., the functions «; for the buffer of Sec-
tion 2), one can determine its spare capacity to accept more
calls, ¢ @Elel N;a;(6), which can be an integral part of
network resource management [13],[14],[19)].
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Appendix: Backward Equation
Approach to Evaluate the Effective
Bandwidth for Markovian Sources
For the Markov fluid source of Section 3.3, let A(s, ) be the
number of arrivals in the interval (s,t),  be the irreducible
modulating Markov chain with rate matrix ¢ and invariant

distribution =, and ;(6,t) = E[exp(6A(0,¢))|x(0) = j].
The claim is that

h(6) = tli)m t~!log Eexp(64(0,1))
= (@ +8h).

To show this, we begin with a standard backward equa-
tion argument: for positive € << 1,

460 = B(BEMO9%()] 20)=5)  (8)
= Z1/)i(6,t¢>e)eEQ(j, i)eEMj +o(e). (9)

Since exp(eQ)(7,%) = (I + €Q)(7,7) + o(€) and exp(ebA;) =
14 €bA; + o(€), we get, after a little rearrangement,

;i (6,t) ©;(8,t <) _
"/’j(‘sat C>€)(Q(J? J) + 6AJ) +

D wi(6,t <€)Q(, i) + O(e).
2]

Letting € — 0, we get

SH6.0) = H(6.0QU.) +88) + 3 #6920

In matrix form this equation is

246 -

P (Q+6M)¥(5,1)

where U7 (6,t) = (¥1(6,1), ..., ¥m(6,t)). Thus,

T(6,t) = exp((@+EA))1
where 1 = ¥(6,0) is a column of 1’s.
Therefore,
1
h(§) = Jlim ~log (7T exp((Q + 6A))1) .

First note that exp(Q + 6A) is a nonnegative matrix (see
[15], Exercise 6.5.4e and Theorems 6.2.9(g) and 6.2.38).
Choose a large enough such that al + Q + éA > 0. This is
possible since @; ; > 0 for all ¢ # j. Thus, exp(Q + 6A) =
exp(al + Q + 6A)exp(<al) > e *exp(al + Q + 8A) >
0. Because of the irreducibility assumption, we can use
the same Perron-Frobenius argument in [3] on the matrix
exp(Q+6A) to obtain h(6) = log(p(exp(Q+8A))). The re-
sult then follows from p(exp(F)) = exp(u(F')), where p(F)
is the largest eigenvalue of F'.

For the case of the MMPP source of Section 3.4, we use
the fact that if £ is a Poisson random variable with mean
€Aj, then Eexp(6¢) = exp(eA;(ef ©1)). So, the above
argument will give us the formula for h in Section 3.4 by
simply substituting the expression “exp(eA;(e® <1))” for
“exp(edA;)” in equation (9) above.



