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Abstract

We show the existence of e�ective bandwidths for multi-
class Markov uids and other types of sources that are
used to model ATM tra�c. More precisely, we show that
when such sources share a bu�er with deterministic service
rate, a constraint on the tail of the bu�er occupancy dis-
tribution is a linear constraint on the number of sources.
That is, for a small loss probability one can assume that
each source transmits at a �xed rate called its e�ective
bandwidth. When tra�c parameters are known, e�ective
bandwidths can be calculated and may be used to obtain
a circuit-switched style call acceptance and routing algo-
rithm for ATM networks. The important feature of the ef-
fective bandwidth of a source is that it is a characteristic of
that source and the acceptable loss probability only. Thus,
the e�ective bandwidth of a source does not depend on
the number of sources sharing the bu�er nor on the model
parameters of other types of sources sharing the bu�er.

1 Introduction

E�ective bandwidths have been discovered for certain traf-
�c models and certain performance criteria (see [17],[13],
[12],[4],[18],[3]). For example, consider a bu�er of in�nite
size with service rate c cells/s. Assume that the bu�ers
sources and bu�er occupancy are in steady state. Let X
be the number of cells in the bu�er found by a typical
arriving cell. Suppose that

PfX > Bg � e�B� (1)

must be satis�ed (the performance criterion). Suppose fur-
ther that there are Nj independent on-o� Markov uids [1]
of type j (j = 1; 2; :::;K) sharing the bu�er. There ex-
ist functions �j that depend only on the parameters of a
type j source and �, such that the constraint (1) holds for
B� >> 1 if and only if

KX
j=1

Nj�j � c:

We call �j the e�ective bandwidth of an on-o� Markov uid
of type j (see [12] and [13] for proofs of this result and nu-
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merical examples that explore the accuracy of the e�ective
bandwidth approach).
In general, e�ective bandwidths depend on both the traf-

�c/bu�er models and the performance criterion. Kelly [17]
�nds e�ective bandwidths for GI/G/1 queues under (1) and
for M/G/1 queues with the performance criterion taken to
be the bu�er utilization (fraction of time X 6= 0) or mean
workload (EX < B). Courcoubetis and Walrand [4] �nd
e�ective bandwidths for stationary Gaussian sources under
(1). Recently, Elwalid and Mitra [8] have also obtained ef-
fective bandwidth results for the case of continuous-time
Markovian sources under (1) (c.f., Sections 3.3 and 3.4 and
the Conclusions). The open question answered in this note
is the existence of e�ective bandwidths for more general
source models under (1).
We start by heuristically deriving an expression for

PfX > Bg for general source models. Consider an in�nite
bu�er with service rate c shared by Ni sources of type i,
i = 1; :::;K. All the sources are assumed independent.
For all Mi greater than the average rate of cells produced
by a source of type i, assume that the probability that a
source of type i produces MiT cells over a period of time
of length T is approximately exp(�THi(Mi)) where Hi is
convex and non-negative (this is assumption is motivated
by the theory of large deviations and is discussed below).
This approximation is sharpest for T >> 1.
By independence, the probability that, for j = 1; :::; Ni,

the jth source of type i produces �jT cells over time T is
about

exp

0
@�T NiX

j=1

Hi(�j)

1
A :

Consequently, the probability that all sources of type i pro-
duce a total of NiMiT cells over large time T is about

X
�:
P

�j=NiMi

exp

0
@�T NiX

j=1

Hi(�j)

1
A

where � = (�1; :::; �Ni
). Indeed, each choice of � such thatP

�j = NiMi is one particular way for NiMiT cells to get
produced. This sum of exponentials can be approximated
by the largest term (originally an argument of Laplace):

X
�:
P

�j=NiMi

exp

0
@�T NiX

j=1

Hi(�j)

1
A

1



� exp

0
@� inf

�:
P

�j=NiMi

T

NiX
j=1

Hi(�j)

1
A

= exp (�TNiHi(Mi))

where the last equality is due to the convexity ofHi. There-
fore, by independence, the probability that, for i = 1; :::;K,
the sources of type i produce NiMiT over time T is about

exp

 
�T

KX
i=1

NiHi(Mi)

!
:

Thus, the probability that, starting from an empty bu�er,
the sources of type i produce cells at rate NiMi until the
bu�er occupancy exceeds B is

exp

�
�B

P
NiHi(Mi)P
NiMi � c

�
:

Indeed T = B=(
P
NiMi � c) is the time the bu�er occu-

pancy takes to reach B when the aggregate cell arrival rate
is
P
NiMi. By the argument of Laplace, the probability

that the bu�er occupancy, starting from empty, reaches B
before it returns to empty is about

exp

 
�B infP

NiMi >c

P
NiHi(Mi)P
NiMi � c

!
� PfX > Bg: (2)

Given the e�ective bandwidths of a bu�er's sources, one
can determine its spare capacity to accept more calls at
any time. For instance, say we want to determine if a
call of type j can be accommodated (i.e., constraint (1) is
preserved) in a bu�er that is currently being used by Ni

calls of type i, i = 1; :::;K. If �j(�) < c �
PK

i=1Ni�i(�)
then the call can be accommodated, else it cannot. See, for
example, [10], [13],[14], and [19] for further discussion on
how e�ective bandwidths can be used for network resource
management.
This note is organized as follows. In Section 2, we show

the existence of e�ective bandwidths in the multiclass case
when the sources satisfy certain conditions. In Section 3,
we give expressions for the e�ective bandwidths of Markov-
modulated Poisson processes, Markov-modulated uids (or
just \Markov uids"), and discrete-time Markov sources.
Finally, conclusions are drawn in Section 4.

2 General E�ective Bandwidths

We now show the existence of e�ective bandwidths. First,
some assumptions on the sources are made, then e�ective
bandwidths are de�ned by considering the single source
case, and �nally the multiclass case is considered.
Consider an in�nite bu�er with deterministic service rate

c cells/s, shared by Ni independent sources of type i, i =
1; :::;K. Denote by [�; �] the scalar product. Let �i 2 (0;1]
(respectively i 2 [0;1)) denote the maximum (respec-
tively minimum) possible cell arrival rate of a type i source.

Let i 2 (0;1) be the average arrival rate of a type i
source. We assume that

N 2 C := fN 2 ZK+ : [N;�] > c and [N; ] < cg

where Z+ = f0; 1; 2; :::g,  = (1; :::; K) and
� := (�1; :::;�K). Let M = (M1; :::;MK).
Motivated by equation (2), we take the measure of con-

gestion in the bu�er to be

exp(�BI(N; c) + o(B)) (3)

where

I(N; c) := inf
M2A(N;c)

PK

i=1NiHi(Mi)

[N;M ]� c

and A(N; c) := fM 2 RK
+ : i < Mi < �i 8i and

[N;M ] > cg (c.f., equation (5) for the de�nition of the
Hi). Thus, when B� >> 1, the constraint (4) is

I(N; c) � �: (4)

Assume that the sources are stationary and ergodic. Con-
sider a single source of type i. Let the number of arrivals
of this type i source in the time interval [0; t] be Ai(t). As-
sume that Ai satis�es the conditions of the G�artner-Ellis
theorem [11],[6],[2]. That is, assume that the asymptotic
log moment generating function of Ai,

hi(�) := lim
t!1

1

t
log E exp (Ai(t)�)

exists and is �nite for all real �, and that hi is di�eren-
tiable. We can directly verify that hi is convex, positive
and increasing for � > 0.
By the G�artner-Ellis theorem, Hi is the Legendre trans-

form of hi:

Hi(Mi) := sup
�2R

f�Mi � hi(�)g: (5)

We can directly verify that Hi is non-negative, convex and
di�erentiable, Hi(i) = 0, and Hi(M ) =1 for all M > �i
or M < i. We also assume that Hi is strictly convex on
the interval (i;�i).
Consider the case of a single source of type i. For � > 0,

de�ne �i(�) to be the value of a such that

Ii(a) := inf
Mi2Ai(a)

Hi(Mi)

Mi � a
= �

where Ai(a) := fMi : a < Mi < �ig. Thus, �i(�) =
I�1i (�) can be interpreted as the rate at which to serve a
single source of type i so that the constraint (4) is satis�ed.
We call �i the e�ective bandwidth of the type i tra�c. The
following theorem gives us a more manageable form for �i.
Lemma 1: Under the above conditions, for all � > 0,

�i(�) =
hi(�)

�
:
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Proof: Since Hi and hi are convex conjugates, hi(�) =
supMfM� �Hi(M )g. It then follows from the di�erentia-
bility of Hi and hi and the strict convexity of Hi that

hi(�) = �H0�1
i (�) �Hi(H

0�1
i (�)): (6)

De�ne the function gi(M ) := M � Hi(M )=H 0
i(M ). From

the strict convexity of Hi it follows that gi is strictly in-
creasing on (i;�i). Thus we can de�ne g�1i as the in-
verse of gi; i.e., for a 2 (i;�i), g

�1
i (a) is the solution

of the equation a = M � Hi(M )=H0
i(M ). Since H0 > 0

on (i;�i), g
�1
i (a) > a so that g�1i (a) 2 Ai(a). Thus,

Ii(a) = H0
i(g

�1
i (a)) and, in conjunction with equation (6),

we have that I�1i (�) = hi(�)=� as desired. �
With this lemma, the following \e�ective bandwidth"

theorem for multiclass sources is immediate by indepen-
dence.
Theorem 1: Assume that the arrival processes Ai all

satisfy the conditions of the G�artner-Ellis theorem and that
the Hi are all strictly convex. For any � > 0 and N 2 C,

I(N; c) � � ,
X

Ni�i(�) � c:

Proof: Let h be the log moment generating function for
the aggregate arrival process. Clearly

h(�) =
X

Nihi(�):

Let the inverse of I(N; �) be I�1N . Thus, by the argument
in the lemma above,

I�1N (�) =
h(�)

�
=

P
Nihi(�)

�
=
X

Ni�i(�)

as desired. �
This theorem shows that under weak conditions on the

arrival processes, e�ective bandwidths exist for the mea-
sure of congestion (3). The large deviations approach used
is a uni�ed framework to handle bu�er sources modeled in
di�erent ways as we shall see in the next section.

3 Models of ATM Bu�er Sources

We now consider several models of bu�er sources used to
characterize bursty ATM tra�c. In each case, an expres-
sion for the e�ective bandwidth is found.

3.1 Constant Rate and Memoryless Sources

For sources with a constant arrival rate of R cells/s, A(t) =
Rt for t > 0. Thus, h(�) = R�, H(R) = 0 and H(M ) =1
for all M 6= R. Therefore, the hypothesis of Theorem 1
is satis�ed and the e�ective bandwidth of this source is
�(�) = R. Note that, in the notation of Section 2,  = � =
R for a constant rate source.
For memoryless (Poisson) sources with intensity R cells/s,

h(t) = R(e� � 1). Thus, H(M ) = M log(M=R) �M + R.
So, the hypothesis of Theorem 1 is satis�ed and the e�ec-
tive bandwidth of this source is �(�) = R(e� � 1)=�. Note
that  = 0 and � =1 for a Poisson source.

3.2 Discrete-Time Markov Sources

We call a bu�er source a \discrete-time" Markov source if
there is a discrete-time Markov chain Zn and a real con-
stant R such that the number of arrivals to the bu�er in
interval of (continuous) time (nR�1; (n+1)R�1) is a func-
tion of Zn. We take the state space of Z to be 1; 2; :::;m
and we let Q be its irreducible and aperiodic transition
probability matrix. Let �i be the number of cells that ar-
rive in the interval (nR�1; (n + 1)R�1) when Zn = i. We
assume 0 � �i � �i+1 <1 for all i = 1; :::;m� 1. There-
fore, in the notation of Section 2,  = R�1, � = R�m, and
 := R

P
i �i�i where � is the invariant of Q: �Q = �.

By an argument using the backward equation and Perron-
Frobenius theory [3],

h(�) = R log
�
�(e��Q)

�
(7)

where � = diag(�1; :::;�m), and �(F ) is the spectral radius
of the matrix F .
h is di�erentiable (and analytic) as a consequence of per-

turbation theory of matrices (see [2], p. 190-191) and,
therefore, satis�es the conditions of the G�artner-Ellis the-
orem. In Section 2, we established that h is convex. A
simple consequence of Lemma 3.4 in [16] is that either h is
a�ne or strictly convex.
h(0) = 0 implies that the a�ne case is the constant rate

source of Section 3.1. If h is strictly convex, by direct
calculation starting from equation (5), we get that H0 =
h0�1. Thus H0 is strictly increasing which implies that H
is strictly convex as well. So, the hypothesis of Theorem
1 is satis�ed, and the e�ective bandwidth of this source is
�(�) = h(�)=�. This source is a special case of an example
2.3 in [3] wherein the rates �i are random.

3.2.1 Two-State Discrete-TimeMarkov Source Ex-

ample

If the Markov chain considered is of the two state (m = 2)
type, then by direct calculation,

h(�) = R log

�
1

2

�
a(�) +

p
a2(�) + 4b(�)

��

where

a(�) = Q1;1e
��1 + Q2;2e

��2

and

b(�) = e�(�1+�2)(1�Q1;1 � Q2;2):

3.3 Markov Fluids

A source is called a Markov uid if its time-derivative is
a function of a continuous-time Markov chain on a �nite
state space. As for the discrete-time Markov sources above,
we let 1; :::;m be the state space and Q be the irreducible
transition ratematrix of the Markov uid's time-derivative.
Let �i be the arrival rate of cells when the time-derivative

3



of the Markov uid is in state i. We make the same assump-
tion on the parameters �i that we made in the discrete-time
Markov source case.
By an argument similar to that for discrete-time Markov

sources (see the Appendix below),

h(�) = �(Q+ ��)

where � is de�ned above and �(F ) is the largest real eigen-
value of the matrix F . The same argument used for discrete-
time Markov sources veri�es that the hypothesis of Theo-
rem 1 is satis�ed.

3.3.1 Two-State Markov Fluids Example

If the Markov uid considered is of the two state (m = 2)
type, then by direct calculation,

h(�) =
1

2

�
�a(�) +

p
a2(�)� 4b(�)

�
where

a(�) = Q1;2 +Q2;1 � �(�2 � �1)

and

b(�) = �2�2�1 � �(Q1;2�2 + Q2;1�1):

This is the e�ective bandwidth result in [12],[13].

3.4 Markov-Modulated Poisson Process

A source to a bu�er is called a Markov-modulated Poisson
process (MMPP) if the cell arrivals are Poisson with inten-
sity �, where � is a function of a continuous-time Markov
chain. We assume that the space �1; :::;�m of intensities
satis�es the conditions of the previous examples and that
the transition rate matrix Q is irreducible.
By an argument similar to that for discrete-time Markov

sources (again, see the Appendix below),

h(�) = �(Q+ (e� � 1)�)

and the hypothesis of Theorem 1 is satis�ed.

4 Conclusions

E�ective bandwidth results for the continuous-time Marko-
vian sources of Sections 3.3 and 3.4 were also obtained in
[8] using spectral decomposition methods [21],[9]. They
found the same e�ective bandwidth formulas and estab-
lish equation (2) for bu�ers with multiclass Markov uid
sources and bu�ers with multiclass MMPP sources. The
e�ective bandwidth results in Section 2 (using the large de-
viations approach) are more general than those of [8] and
our measure of congestion (equation (3)) allows us to han-
dle a bu�er with sources modeled in di�erent ways (e.g.,
a bu�er with two sources: one modeled as a Markov uid
and the other as a MMPP). Recently, in [5], equation (2)
was established for the stationary Lindley bu�er process

(discrete time) and they �nd an e�ective bandwidth result
for a bu�er using a simple \randomized priority" processor
sharing rule [20].
In summary, we have shown the existence of e�ective

bandwidths for a large class of sources commonly used to
model ATM tra�c. Given the e�ective bandwidths of a
bu�er's sources (i.e., the functions �i for the bu�er of Sec-
tion 2), one can determine its spare capacity to accept more

calls, c �
PK

i=1Ni�i(�), which can be an integral part of
network resource management [13],[14],[19].
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Appendix: Backward Equation

Approach to Evaluate the E�ective

Bandwidth for Markovian Sources

For the Markov uid source of Section 3.3, let A(s; t) be the
number of arrivals in the interval (s; t), x be the irreducible
modulating Markov chain with rate matrix Q and invariant
distribution �, and  j(�; t) = E[exp(�A(0; t))jx(0) = j].
The claim is that

h(�) := lim
t!1

t�1 logE exp(�A(0; t))

= �(Q+ ��):

To show this, we begin with a standard backward equa-
tion argument: for positive � << 1,

 j(�; t) = E
�
E[e�A(0;t)jx(�)] jx(0) = j

�
(8)

=
X
i

 i(�; t� �)e�Q(j; i)e���j + o(�): (9)

Since exp(�Q)(j; i) = (I + �Q)(j; i)+ o(�) and exp(���j) =
1 + ���j + o(�), we get, after a little rearrangement,

 j(�; t) �  j(�; t � �)

�
=

 j(�; t � �)(Q(j; j) + ��j) +X
i6=j

 i(�; t� �)Q(j; i) +O(�):

Letting �! 0, we get

@

@t
 j(�; t) =  j(�; t)(Q(j; j) + ��j) +

X
i6=j

 i(�; t)Q(j; i):

In matrix form this equation is

@

@t
	(�; t) = (Q+ ��)	(�; t)

where 	T (�; t) = ( 1(�; t); :::;  m(�; t)). Thus,

	(�; t) = exp((Q+ ��)t)1

where 1 = 	(�; 0) is a column of 1's.
Therefore,

h(�) = lim
t!1

1

t
log
�
�T exp((Q+ ��)t)1

�
:

First note that exp(Q + ��) is a nonnegative matrix (see
[15], Exercise 6.5.4e and Theorems 6.2.9(g) and 6.2.38).
Choose a large enough such that aI +Q+ �� � 0. This is
possible since Qi;j � 0 for all i 6= j. Thus, exp(Q+ ��) =
exp(aI + Q + ��) exp(�aI) � e�a exp(aI + Q + ��) �
0: Because of the irreducibility assumption, we can use
the same Perron-Frobenius argument in [3] on the matrix
exp(Q+��) to obtain h(�) = log(�(exp(Q+��))). The re-
sult then follows from �(exp(F )) = exp(�(F )), where �(F )
is the largest eigenvalue of F .
For the case of the MMPP source of Section 3.4, we use

the fact that if � is a Poisson random variable with mean
��j, then E exp(��) = exp(��j(e

� � 1)). So, the above
argument will give us the formula for h in Section 3.4 by
simply substituting the expression \exp(��j(e� � 1))" for
\exp(���j)" in equation (9) above.
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