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ABSTRACT
One approach to learning from intractably large data sets
is to utilize all the training data by learning models on
tractably sized subsets of the data. The subsets of data may
be disjoint or partially overlapping. The individual learned
models may be combined into a single model or a voting
approach may be used to combine the classi�cations of a set
of models. An approach to learning models in parallel from
arbitrarily large training data sets and combining them into
a classi�er is described. The training sets are disjoint in
the work described here. A parallel implementation on the
DOE's ASCI Red parallel supercomputer is described. Re-
sults with data sets small enough to be handled by a single
processor show that data sets can be divided into a moder-
ate number of distinct subsets without degrading classi�er
accuracy. Speedup results are shown for a parallel imple-
mentation on the ASCI Red with data sets too large to be
handled on a single processor. Training sets of size 3 to 50
million examples are used to generate models on up to 64
processors to show how the learning process scales.

1. INTRODUCTION
There are now many areas in which very large data sets (mil-
lions and more training examples) may be acquired. Useful
classi�cation models may be derived from many of these
labeled data sets. Areas in which a tremendous amount
of data is available include visualization [1], phone fraud,
long distance telephone calling patterns, credit card fraud
[2], etc. The amount of data available for learning may be
much greater than the amount of memory available on a
single computer. There may be tens of millions of multi-
dimensional training vectors, for instance.

A visualization example where very large numbers of la-

beled examples may be created is the 3D high-resolution
physics data sets generated by simulation codes under the
DOE's Accelerated Strategic Computing Initiative (ASCI)
program [3, 4]. These simulations are replacing important
physical experiments, and so must be conducted in the most
exacting detail. But the very quality of that detail poses a
conundrum, for if a scientist wants to visualize the data at
the �nest resolution available, in order to catch important
and subtle details, they will not have time to look at all of
it, and so may not �nd all of the areas of interest. And vice
versa, of course; if they back o� and work at a resolution
that insures they will see the full extent of the data set, they
will miss small anomalies [5].

Thus it is necessary to make visualization tools smarter, to
let them begin to understand what in the data is of interest
to the user, so that they can navigate, as well as illustrate,
the data. One avenue is to invoke pattern recognition tech-
niques, using a visualization session as a supervised learning
session in which the user indicates by example, explicitly or
implicitly, what is interesting. This will require being able to
learn decision rules from very large data sets, which is chal-
lenging, as the data will not �t in memory and the amount
of time needed to sift the data in a serial fashion will be
exorbitant.

Given very large training data sets it has recently been sug-
gested [6] that building individual classi�ers on well chosen
subsets and then applying voting to classify new examples
will allow an accurate model to be built on a single com-
puter. Others have suggested that in very large data sets
many of the examples will be redundant [7, 8]. In the con-
text of the above work, the use of subsets or perhaps a single
well-chosen subset for training may be the right approach.

In this paper, we consider the case where either all the data
(of very large size) is necessary to learn an accurate model,
or the subset necessary to learn an accurate model is itself of
very large size. In our approach, learning is done in parallel.
Each processor learns a rule or decision tree model from its
own unique set of examples. Example sets may be disjoint,
the simplest case for partitioning the examples, or partially
overlapping. Disjoint subsets are used in the experiments
described in this paper.



A parallel implementation on the Department of Energy's
(DOE) ASCI Red parallel supercomputer is described. Ex-
periments show what kind of speedup can be expected from
learning models in parallel. Millions of training examples
were used in experiments, indicating that this approach scales
to very large data sets.

Experiments are performed on data sets from the UC Irvine
repository [9] to look at the accuracy of a model learned on
disjoint subsets of data versus a model learned on the com-
plete data set. The experiments show that a model learned
on disjoint subsets can achieve accuracy comparable to that
of a model learned on the complete data set.

The paper proceeds as follows. Section 2 describes the learn-
ing algorithms utilized in the experiments reported later and
provides a brief description of the ASCI Red supercomputer.
Section 3 describes an approach to learning in parallel from
very large data sets. Section 4 describes experiments with
learning from disjoint partitions of training data sets. Sec-
tion 5 describes parallel speedup and scale up experiments
on the ASCI Red. Finally, Section 6 summarizes results
presented in this paper.

2. LEARNING ALGORITHMS AND THE
ASCI RED

In the work reported here, two di�erent types of learning
algorithms are used, RIPPER [10] and V5. RIPPER is a
direct rule learner, which creates a set of rules directly from
training data. In the process of building a rule, RIPPER
breaks the training data set into a rule growing (learning)
set and a rule pruning (prune) set. RIPPER rules have the
assigned weight

P =
p� n

p+ n
; (1)

where p is the number of positive examples in the prune set
covered by the rule and n is the number of negative examples
in the prune set covered by the rule.

V5 is a modi�ed version of the decision tree learning algo-
rithm embodied in C4.5 release 8 [11, 12]. Release 8 has sig-
ni�cantly improved handling of continuous attributes, which
is important for large-scale visualization data sets which will
only have continuous attributes. V5 has been updated from
C4.5 in two ways. It has been ported to run on the ASCI
Red parallel supercomputer. It also allows for test results
from a validation set to be stored as a weight at the leaves
of the tree.

RIPPER and C4.5 provide roughly equivalent classi�cation
performance, with RIPPER a little better [10]. RIPPER is
considered a fast rule learning algorithm and is used in all
simulated parallel experiments reported here.

V5 is used in all experiments on the ASCI Red. Decision
trees may be signi�cantly faster in the classi�cation of un-
seen examples when compared with rule sets. In learning
from very large data sets, validation sets may be used to
weight the decision that the tree makes. The validation sets
themselves may be quite large and e�ciency in classifying
the examples in them may be important. Further, if one
wishes to classify millions or billions of test examples using

a vote of N classi�ers, the faster classi�cation of a decision
tree may be important.

2.1 ASCI Red
The DOE's ASCI Red machine [3] has 4,640 compute nodes,
each with 2 processors sharing 256MB of memory. The ma-
chine is capable of 3.15 Tera FLOPS. There are a total of
9,280 333 MHz Pentium III processors in a distributed mem-
ory architecture. The processors are connected in a mesh
architecture and run a version of the UNIX operating sys-
tem.

3. PARALLEL LEARNING ALGORITHM
The parallel learning system discussed here works as follows.
Each of N processors is provided a training set. The train-
ing sets can be disjoint or they may overlap. A learning
algorithm is applied by each processor to its training data
set. The resultant model is saved for later use by any other
processor. In this paper, the learning algorithm will either
be a variation of that used by C4.5 (V5) or it will be the
algorithm used by RIPPER.

To determine the class of an unseen example, the example is
applied to each of the N models, which results in N classi�-
cations. The classi�cations may be weighted or unweighted.
In the case of unweighted classi�cations, a majority vote is
taken to determine the class of the tested example. In the
case of weighted classi�cations, the sum of the weights is
obtained for each class and the example is assigned to the
class with the largest weight.

The advantage of our parallel learning algorithm is that it
allows each processor to work independently. No processor
depends on any other. Hence it is fully parallelizable, unlike
an approach such as pasting bites [6] or boosting [13, 14],
each of which requires that proceeding classi�ers be built on
training sets determined from already built classi�ers.

It is possible that a combiner or arbiter [15, 16, 2] could be
utilized with an appropriate training set to provide improved
accuracy. The cost would be one more sequential step in the
training process and a slightly more time-consuming testing
procedure.

4. ACCURACY EXPERIMENTS ON DIS-
JOINT TRAINING DATA

In the context of storage requirements, the most reason-
able approach to using an extremely large size data set for
parallel learning is to break it into disjoint subsets. Such
an approach may potentially reduce the accuracy of the re-
sulting classi�er in comparison with one that could be built
sequentially on the full training data set.

There are other ways in which the data could be given to
each processor for learning. One possibility would be to
give each processor a �xed size subset of the data that was
randomly chosen with replacement. Such an approach would
be in the spirit of bagging except that for very large training
data sets each subset could be a very small percentage of the
total data.

Fifteen data sets were chosen from the UC Irvine machine



learning repository [9] for use in the disjoint data set ex-
periments. The data sets are shown in Table 1. Some of
the larger data sets, which for the most part �t on a sin-
gle processor, are included. Some relatively small data sets
are also included to examine what happens in \worst-case"
scenarios in which relatively small data sets are subdivided
into disjoint subsets for training. We're interested in how
much parallelism can be exploited before accuracy becomes
lower than that obtained by training the same classi�er on
the full data set.

We used the relative accuracy shown below to compare our
approach with RIPPER [17]. The relative accuracy is de-
noted by

RA =
Ac � Fm

Ar � Fm
; (2)

where for a given training set Ac is the accuracy of the
classi�er being compared to RIPPER, Ar is the RIPPER
accuracy, and Fm is the fraction of the overall examples
which are comprised of the majority class (Fm 2 [0; 1]). The
relative accuracy attempts to measure how much better or
worse the classi�er being compared to RIPPER was when
compared with guessing that each example belongs to the
majority class. RIPPER assigns a \predictive value" (P)
to each learned rule. This value is used as a rule weight in
the experiments reported here. In a comparison with sev-
eral other approaches to voting with RIPPER, the above
approach was found to provide the best performance [17].

The classi�cation accuracy on a given data set for each clas-
si�er is the result of a 10-fold cross validation experiment.
For the simulated parallel experiments, the 90% used as
training data was split randomly across N processors with
each processor receiving an equal size partition.

Most of the data sets could be split across four or more
processors without a loss of classi�er accuracy based on the
result of a one tailed paired t-test (at the 0.05 level) using
RA. Table 1 shows the number of processors that could be
utilized on a given training data set before signi�cant loss of
accuracy occurs. In this case, \signi�cant loss" is considered
to be a relative accuracy < 0:98. In Table 1, it can be seen
that the page-blocks data set1 does not allow any partition-
ing and the reasonably large phoneme data set can only be
partitioned into two subsets before the relative accuracy is
less than RIPPER's. However, in general reasonably sized
disjoint partitions do not result in a reduction of relative
accuracy for the voting based classi�er.

In Figure 1 we show a graph of the accuracy of our voting
based classi�er vs. RIPPER for the satellite image data set.
For comparison purposes the default accuracy of guessing
that each unseen example belongs to the majority class is
shown on the graph. For this data set, up to 32 disjoint
partitions can be used to produce a classi�er of accuracy

1The page-blocks data set could not be split into even two
subsets before overall accuracy declined. This appears to be
because there are 3 very small classes (28, 88 and 115) when
compared with the majority class of 4913 examples. When
splitting the very small classes, the examples in them may
begin to appear to be noise when a classi�er is built on a
subset of examples with, for example, only 14 examples of
one class and 2400 of another.
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Figure 1: Results from learning on disjoint parti-
tions with the satellite image data set.
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Figure 2: Results from learning on disjoint parti-
tions with the spambase data set.

which is equivalent to that of RIPPER learning on the full
training data set. In Figure 2 we show a graph comparing
the spam email database performance of our parallelizable
voting approach and RIPPER learning on the full training
data set. In this case the performance from voting classi�ers
created on disjoint data sets becomes worse than RIPPER
after four processors are utilized.

5. SPEEDUP AND SCALABILITY
The data sets used in our experiments on the ASCI Red
were created by the synthetic data generator described in
[18, 19]. Each example consists of 7 continuous attributes
and may belong to one of two classes. The advantage of the
synthetic data generator is that we can generate arbitrarily
large training data sets. Results are reported on synthetic
training data sets ranging in size from 25,000 examples to
6,400,000 examples. Unless otherwise stated, all results are
an average over ten runs for each set of processors. We use
an average because, as will be shown, I/O times can vary
greatly depending on the load on the system. Since our jobs
run in batch mode, it is impossible to predict the I/O load
when the job is run.

The �rst experiment that we discuss is on a training set of
size 800,000 examples. Figure 3 shows time required to
run on the ASCI Red for from one to 32 processors. Ex-
periments are run with powers of two number of processors
(e.g. 2; 4; : : : ; 32; 64). The I/O times (including the time
required to write the resultant tree, the tree building time,
and the total time for learning to be completed) are shown.
Despite the fact that loading the data on the processors is
a one-time cost, and that there is no subsequent interpro-
cess communication, you can see that the I/O time steadily



Table 1: Summary of data sets used in RIPPER experiments.
Name of Description of Number of Class Acceptable
data set Examples Classes distribution partitions
cov-1 Randomized 5% of 29054 7 138, 475,869, 4
(covtype) forest cover 1026,1788,

type 10592, 14166
cov-2 Sequential 2nd 5% 29053 7 138, 475,869, 8
(covtype) of forest cover 1026,1788

type 10592, 14165
DNA- Exon/intron and 3186 3 765, 767 32
sequence intron/exon sequence 1654
Iris Iris plants 150 3 (50) x 3 8
letter Letter image 20000 26 (734 813)x 26 8

recognition data
mushroom Edible or 8124 2 3916, 4208 8

poisonous
optidigits Optical 5620 10 (554 572) x 10 16

recognition of
handwritten digits

page- Blocks of page layout 5473 5 28, 88, 115, 1
blocks of a document 329, 4913
pendigits Pen-based handwritten 10992 10 (1042 1056) x 10 8

digits
phoneme Real-time French and 5404 2 1586, 3818 2

Spanish recognition
Pima Pima-Indian 768 2 268, 500, 4

diabetes
satimage Satellite image 4435 7 415, 470, 479, 32

961, 1038, 1072
segment Image segmentation 2310 7 (330) x 7 4
shuttle Shuttle data set 43500 7 6, 11, 37,132, 32

2458, 6748,
34108

spambase Spam e-mail 4601 2 1813, 2788 4
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Figure 3: Experimental results learning from
800,000 generated examples using 2, 4, 8, 16, 32
and 64 ASCI Red processors.

increases and in fact becomes the dominant time. The tree
time is the time required for the slowest processor to �nish
building and pruning its tree on its training data set. The
overall time decreases to a minimum at 16 processors, which
results in a speedup of 14.5 times over sequential learning
on one ASCI Red processor.

In Figure 4 timing results are shown for 1.6 million examples
with learning done on from 2 to 64 processors. In this case,
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Figure 4: Experimental results from learning from
1,600,000 generated examples on a varying number
of ASCI Red processors (2, 4, 6, 8, 16, 32, 64).

learning could not be successfully done on 1 processor, due
to the size of the training set. If we project the time required
on one processor to be about 1.9 times that on two (and
thrashing would likely make it even more), the maximum
speedup is approximately 14 times when using 16 processors.

The overall I/O load can be highly variable depending upon
what other users are doing with the ASCI Red at any given
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Figure 5: Experimental results from learning with
25,000 examples on each of 64 processors. Each plot-
ted point is 1 of 10 trials.

time. An example of the variation in I/O times for 10 ex-
periments with 25,000 examples on each of 64 processors is
shown in Figure 5. For seven of the ten trials the I/O time
is approximately 100 seconds. For two trials it is approxi-
mately 400 seconds and for one trial it is over 1000 seconds.
In this example the average time required to complete learn-
ing is signi�cantly higher than the median time required. On
a dedicated machine, the lower I/O times would be obtained.
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Figure 6: Experimental results from learning on
50,000 generated examples per processor on a vary-
ing number of ASCI Red processors. On 64 proces-
sors there are 3.2 million examples used for learning.

The next three experiments are designed to show the scala-
bility of our parallel learning approach. In Figure 6, timings
for 50,000 training examples per processor for 1 to 64 pro-
cessors (at powers of two) are shown. In Figure 7, we show
timings for 100,000 training examples per processor. At 64
processors there were a total of 6,400,000 training examples.
In Figure 8, timings for 800,000 examples per processor; at
64 processors there were a total of 51,200,000 training ex-
amples. The points on this last graph are average times
over only 4 trials. The total time was a�ected mostly by
I/O which increases in an approximately linear way as the
number of processors is increased on the ASCI Red.

6. SUMMARY
The work reported here shows that a model may be learned
in parallel from disjoint subsets of extremely large data sets,
with resulting accuracy essentially equivalent to that of a
model learned sequentially on the complete data set. By
using overlapping subsets (in a manner similar to bagging),
it may be possible to get improved accuracy when learning
on extreme data sets. Such extreme data sets might be
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Figure 7: Experimental results from learning on
100,000 generated examples per processor on a vary-
ing number of ASCI Red processors from 1 to 64.
There are 6.4 million training examples with 64 pro-
cessors.
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Figure 8: Experimental results from learning on
800,000 generated examples per processor on a vary-
ing number of ASCI Red processors from 1 to 64.
There are 51,200,000 training examples with 64 pro-
cessors.

generated from large-scale visualization problems, where it
is important to learn the important regions for future visual
data analysis. The disjoint subsets studied here are simple
to produce, but potentially make learning more di�cult.

It is not clear what the exact limit is on the number of par-
allel processors which can be utilized on an individual data
set before classi�cation accuracy su�ers. It is possible that
the clever use of overlapping subsets of examples will allow
for more parallelism without a reduction in classi�cation ac-
curacy.

Our parallel implementation on the ASCI Red appears to
allow the train sets to be as large as the number of available
processors multiplied by the number of examples that �t
in each processor's memory without causing that processor
to thrash. Since there is no interprocessor communication
once the data is loaded on the processor, this same type of
learning implementation could be implemented on a set of
distributed workstations utilizing MPI calls [20], for exam-
ple. Our results suggest that the classi�cation performance
of a classi�er learned in parallel on the minimum number
processors necessary to �t all the examples into the main
memories of the processors will be equivalent to what would
be obtained if training was to be done on a single processor.
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