
ROBUST SOLUTIONS TO UNCERTAIN SEMIDEFINITE PROGRAMS�FRANCOIS OUSTRY , LAURENT EL GHAOUIy AND HERVÉ LEBRETECOLE NATIONALE SUPÉRIEURE DE TECHNIQUES AVANCÉES,32, BD. VICTOR, 75739 PARIS, FRANCE.INTERNET: (OUSTRY, ELGHAOUI, LEBRET)@ENSTA.FRAbstract. In this paper we consider semide�nite programs (SDPs) whose data depends on someunknown-but-bounded perturbation parameters. We seek �robust� solutions to such programs, that is,solutions which minimize the (worst-case) objective while satisfying the constraints for every possiblevalues of parameters within the given bounds. Assuming the data matrices are rational functionsof the perturbation parameters, we show how to formulate su�cient conditions for a robust solutionto exist, as SDPs. When the perturbation is �full�, our conditions are necessary and su�cient. Inthis case, we provide su�cient conditions which guarantee that the robust solution is unique, andcontinuous (Hölder-stable) with respect to the unperturbed problems' data. The approach can thusbe used to regularize ill-conditioned SDPs. We illustrate our results with examples taken from linearprogramming, maximum norm minimization, polynomial interpolation and integer programming.Key Words. convex optimisation, semide�nite programming, uncertainty, robustness, regulariza-tion.Notation. For a matrixX, kXk denotes the largest singular value. If X is square,X � 0 (resp. X > 0) means X is symmetric, and positive semide�nite (resp. de�nite).For X � 0, X1=2 denotes the symmetric square root of X. The notation Ip denotes thep � p identity matrix; the subscript is omitted when it can be inferred from context.1. Introduction. A semide�nite program (SDP) consists of minimizing a linearobjective under a linear matrix inequality (LMI) constraint, preciselyP0 : minimize cTx subject to F (x) = F0 + mXi=1 xiFi � 0(1)where c 2 Rm � f0g, and the symmetric matrices Fi = F Ti 2 Rn�n; i = 0; : : : ;mare given. SDPs are convex optimization problems and can be solved in polynomial-time with e.g. primal-dual interior-point methods [22, 33, 24, 17, 2]. SDPs include linearprograms and convex quadratically constrained quadratic programs, and arise in a widerange of engineering applications, see e.g. [10, 1, 33, 20].In the SDP (1), the �data� consists of the objective vector c and the matricesF0, . . . , Fm. In practice, this data is subject to uncertainty. An extensive body ofwork has concentrated on the sensitivity issue, in which the perturbations are assumedin�nitesimal, and regularity of optimal values and solution(s), as functions of the datamatrices, is studied. Recent references on sensitivity analysis include [28, 29, 8] forgeneral nonlinear programs, [31] for semiin�nite programs and [30] for semide�niteprograms.� Accepted for publication in SIAM J. Optimization, September 1997.y Author to whom correspondence should be sent.1



When the perturbation a�ecting the data of the problem is not necessarily small,a sensitivity analysis is not su�cient. For general optimisation problems, a whole �eldof study (stochastic programming) concentrates on the case when the perturbation isstochastic, with known statistics. One object of this �eld is to study the impact ofsay, a random objective on the distribution of optimal values (this problem is calledthe �distribution problem�). References relevant to this approach to the perturbationproblem include [13, 7, 27]. We are not aware of special references for general SDPswith randomly perturbed data, except for the last section of [28], some exercices in thecourse notes [11], and a section in the paper [21].The main objective of this paper is to quantify the e�ect on solutions of unknown-but-bounded, deterministic perturbation on problem data. In our framework, the per-turbation is not necessarily small, and we seek a solution that is �robust�, that is,remains feasible despite the allowable, not necessarily small, perturbation. Our aim isto obtain (approximate) robust solutions via SDP. Links between regularity of solutionsand robustness are of course expected. One of our side objectives is to clarify these linksto some extent. This paper extends results given in [14] for the least-squares problem.The approach developed here can be viewed as a special case of stochastic program-ming, in which the distribution of the perturbation is uniform.The ideas developed in this paper draw mainly from two sources: control theory,in which we have found the tools for robustness analysis [34, 15, 10], and some recentwork on sensitivity analysis of optimization problems due to Shapiro, Bonnans andCominetti [29, 8].Shortly after completion of our manuscript, we became aware of the ongoing workof Ben-Tal and Nemirovskii on the same subject. In [6], the authors apply similar ideasto a truss topology design problem, and derive very e�cient algorithms for solvingthe corresponding robustness problem. In [4], the general problem of tractability ofobtaining a robust solution is studied, and �tractable counterparts� of a large class ofuncertain SDPs is given. The case of robust linear programming, under quite generalassumptions on the perturbation bounds, is studied in detail in [5]. Our paper can beseen as a complement of [4], giving ways to cope with (non necessarily) tractable robustSDPs by means of upper bounds.The paper is divided as follows. Our problem is de�ned in �2. In �3, we show howto compute upper bounds on our problem via SDP. We give special attention to theso-called full perturbations case, for which our results are non conservative. In �4, weexamine sensitivity of the robust solutions in the full perturbations case. We provideconditions which guarantee that the robust solution is unique and a regular function ofthe data matrices. We then consider several interesting examples in �5, such as robustlinear programming, robust norm minimization and error-in-variables SDPs.2. Problem De�nition.2.1. Robust SDPs. Let F(x;�) be a symmetric matrix-valued function of twovariables x 2 Rm, � 2 Rp�q. In the sequel, we consider x as the decision variable,and we think of � as a perturbation. We assume that � is unknown-but-bounded.2



Precisely, we assume that � is known to belong to a given linear subspace D of Rp�q,and in addition, k�k � �, where � � 0 is given.In section 2.2, we will be more precise about the dependence of F on �.We de�ne the robust feasible set byX� = (x 2 Rm ����� for every � 2 D, k�k � �,F(x;�) is well-de�ned and F(x;�) � 0 ) :(2)Now let c(�) be a vector-valued rational function of the perturbation �, such thatc(0) = c. We consider the following min-max problemminimize max�2D; k�k�� c(�)Tx subject to x 2 X�:(3) From now on, we assume that the function c(�) is independent of � (in otherwords, the objective vector c not subject to perturbation). This is done with no loss ofgenerality: introduce a slack variable � and de�ne~x = " x� # ; ~c = " 01 # ; ~F(~x;�) = diag(F(x;�); �� c(�)Tx):Problem (3) can be formulated asminimize ~cT ~x subject to ~x 2 ~X�where ~X� is the robust feasible set corresponding to the function ~F.In the sequel, we thus consider a problem of the formP� : minimize cTx subject to x 2 X�(4)and refer to it as a Robust Semide�nite Problem (RSDP). In general, X� is not convex,and P� is not an SDP. Our aim is to �nd a convex, inner approximation of X� that isdescribed by a linear matrix inequality constraint. This inner approximation is thenused to �nd an upper bound on the optimal value of P�, by solving an SDP. In somecases, we can prove our results are non conservative, that is, as in the so-called �fullperturbation� case.We refer to the set X0 (resp. problem P0, i.e. (1)) as the nominal feasible set (resp.nominal SDP). We shall assume that the nominal SDP is feasible, that is, X0 6= ;. Ofcourse, the robust feasible set X� may become empty for some � > 0; we return to thisquestion later.2.2. Linear-fractional representation. In this paper, we restrict our attentionto functions F that are given by a �linear-fractional representation� (LFR):F(x;�) = F (x) + L�(I �D�)�1R(x) +R(x)T (I ��TDT )�1�TLT ;(5)where F (x) is de�ned in (1), R(�) is an a�ne mapping taking values in Rq�n, L 2 Rn�pand D 2 Rq�p are given matrices. Together, the mappings F (�), R(�), the matrices3



L;D, the subspace D and the scalar � consitute our perturbation model for the nominalSDP (1).The above class of models seem quite specialized. In fact, these models can be usedin a wide variety of situations, for example in the case when the (matrix) coe�cientsFi in P0 are rational functions of the perturbation. The representation Lemma, givenbelow, and also the examples of section 5, illustrate this point.A constructive proof of the following result can be found in [35].Lemma 2.1. For any rational matrix function M : Rk ! Rn�c, with no singular-ities at the origin, there exist nonnegative integers r1; : : : ; rk, and matrices M 2 Rn�c,L 2 Rn�N , R 2 RN�c, D 2 RN�N , with N = r1 + : : : + rk, such that M has thefollowing Linear-Fractional Representation (LFR): For all � where M is de�ned,M(�) =M + L�(I �D�)�1R; where � = diag (�1Ir1; : : : ; �kIrk) :(6)Using the LFR lemma, we may devise LFR models for SDPs where a perturbationvector � 2 Rk enters rationnally in the coe�cient matrices. The resulting set D ofperturbation matrices � is then a set of diagonal matrices of repeated elements, asin (6). Componentwise bounds on the vector �, such as j�ji � �, i = 1; : : : ; k, translateinto a norm-bound k�k � � on the corresponding matrix �.2.3. A special case. We distinguish a special case for which exact (non conser-vative) results can be obtained via SDP. This is when F(x;�) is block-diagonal, eachblock being independently perturbed, precisely, whenF(x;�) = diag(F1(x;�1); : : : ;FL(x;�L));(7)where each Fi(x;�i) assumes the form (5) for appropriate Li; Ri;Di, with �i 2 Rpi�pi,i = 1; : : : ; L, and D consists of block-diagonal matrices of the formD = n� = diag(�1; : : : ;�L); ��� �i 2 Rpi�qio :We refer to this situation as the block-full perturbation case. When L = 1, we speak ofthe full perturbation case. As seen later, all results given for L = 1 can be generalizedto the case L > 1.3. Robust solutions for SDPs. Unless otherwise speci�ed, we �x � > 0.3.1. Full perturbations case. In this section, we consider the full perturbationscase, that is, D = Rp�q. We assume kDk < ��1, which is a necessary and su�cientcondition for F(x;�) to be well-de�ned for every x 2 Rm and � 2 Rp�q, k�k � �.The following lemma is a simple corollary of a classic result on quadratic inequalitiesreferred to as the S-procedure [10]. Its proof is detailed in e.g. [14].Lemma 3.1. Let F = F T , L;R, D be real matrices of appropriate size. We havedet(I �D�) 6= 0 andF + L�(I �D�)�1R+RT (I �D�)�T�TLT � 0(8) 4



for every �, k�k � 1, if and only if kDk < 1 and there exist a scalar � such that" F � �LLT RT � �LDTR� �DLT � (I �DDT ) # � 0:(9) A direct application of the above lemma shows that, in the full perturbations case,the RSDP (4) is an SDP.Theorem 3.1. When D = Rp�q, the RSDP (4) and a corresponding solution xcan be computed by solving the SDP in variables x; �minimize cTx subject to " F (x)� �LLT R(x)T � �LDTR(x)� �DLT � (��2I �DDT ) # � 0:(10)Special barrier functions adapted to a conic formulation of the problem can be devised,and yield an interior-point algorithm that has the same complexity as the nominalproblem, see [22].We may de�ne themaximum allowable perturbation level, which is the largest numer�max such that X� 6= ; for every �, 0 � � � �max (note �max > 0 since X0 6= ;).Computing �max is a (quasi-convex) generalized eigenvalue minimization problem [22, 9]:minimize � subject to " F (x)� �LLT R(x)T � �LDTR(x)� �DLT � (�I �DDT ) # � 0:Remark: The above exact results are readily generalized to the block-full pertur-bation case (L > 1), as de�ned in �2.2.3.2. Structured case. We now turn to the general case (D is now an arbitrarylinear subspace). In this section, we associate to D the following linear subspaceB �= n(S; T;G) 2 Rp�p �Rq�q �Rq�p ���S� = �T; G� = ��TGT for every � 2 Do :(11)As shown in [14], a general instance of problem (4) is NP-hard. Therefore, welook for upper bounds on its optimal value. The following lemma is a generalization oflemma 3.1, that traces back to [15]. Its proof is detailed in e.g. [14].Lemma 3.2. Let F = F T , L;R, D be real matrices of appropriate size. Let D asubspace of Rp�q, and denote by B the set of matrices associated to D as in (11). Wehave det(I �D�) 6= 0 andF + L�(I �D�)�1R +RT (I �D�)�T�TLT > 0(12)for every � 2 D, k�k � 1, if there exist a triple (S; T;G) 2 B such that S > 0, T > 0,and " F � LSLT RT � LSDT + LGR �DSL �GLT T �GDT +DG �DSDT # > 0:(13) 5



Using lemma 3.2, we obtain the following result.Theorem 3.2. An upper bound on the RSDP (4) and a corresponding solution xcan be computed by solving the SDP in variables x; S; T;Ginf cTx subject to (S; T;G) 2 B; S > 0; T > 0;" F (x)� LSLT R(x)T � LSDT + LGR(x)�DSL �GLT ��2T �GDT +DG �DSDT # > 0:Note that when the perturbation is full, the variable G is zero and S; T are of theform �Ip, �Iq respectively, for some � � 0. We then recover the exact results of �3.1.As before, we may de�ne the maximum allowable perturbation level, which is thelargest numer �max such that X� 6= ; for every �, 0 � � � �max. Computing a lowerbound on this number is a (quasi-convex) generalized eigenvalue minimization problem:inf � subject to (S; T;G) 2 B; S > 0; T > 0;" F (x)� LSLT R(x)T � LSDT + LGR(x)�DSL �GLT �T �GDT +DG �DSDT # > 0:(14)4. Unicity and Regularity of Robust Solutions. In this section, we deriveunicity and regularity results for the RSDP in the case of full perturbations. As before,we �rst take L = 1 (one block), that is, D = Rp�q. The results of this section remainvalid in the general case L > 1 (several blocks).We �x �, 0 < � < �max. For simplicity of notation (and without loss of generality)we take � = 1 (and thus, �max > 1). For well-posedness reasons, we must assumekDk < 1. We make the further assumption that D = 0 (in other words, F(x;�) isa�ne in �). In �4.5, we show how the case D 6= 0 can be treated.For full perturbations and D = 0, the RSDP is the SDPminimize cTx subject to " F (x)� �LLT R(x)TR(x) �I # � 0:(15)4.1. Hypotheses. We assume that the SDP (15) (with D = 0) satis�es the fol-lowing hypotheses:H1: The Slater condition holds, that is, the problem is strictly feasible.H2: The problem is inf-compact, meaning that any unbounded sequence (xk) offeasible points (if any) produces an unbounded sequence of objectives. Anequivalent condition is that the Slater condition holds for the dual problem [26,p.317,Thm.30.4].H3: (a) The nullspace of the matrix �R0 + mXi=1 xiRiis independent of (�; x) 6= (0; 0), and not equal to the whole space.6



(c) For every x, " LTR(x) # is full column-rank.Hypotheses H1-2 ensure in particular the existence of optimal points for problem (15)and its dual. Hypothesis H3(a)-(b) are di�cult to check in general, but can be some-times easily tested in practical examples, as seen in �5. We note that H3(a) impliesthat R(x) 6= 0 for every x.Hypothesis H1 is equivalent to Robinson's condition [25], which can be expressedin terms of F(x; � ) = " F (x)� �LLT R(x)TR(x) �I # :Robinson's condition is stated in [25] as the existence of x0 2 Rm, �0 2 R such that0 2 int �F(x0; �0) + dF(x0; �0)Rm+1 � S+n+q� ;where dF is the di�erential of F , and S+n+q is the set of positive semide�nite matricesof order n+ q. The equivalence between H1 and Robinson's assumption is not true ingeneral. Here, this equivalence stems from the fact that the problem is convex and thatthe cone S+n+q has non empty interior.Remark: Hypothesis H1 holds if and only if it holds for the nominal problem (1)(recall our assumption �max > 1). Also, hypothesisH2 implies L 6= 0 (otherwise, wecan let � ! 1 without a�ecting the objective value). If H2 holds for the nominalproblem and L 6= 0, then H2 holds for the RSDP (15).4.2. An equivalent nonlinear program. Let xopt; �opt be optimal for (15). Hy-pothesis H3(a) ensures that any � that is feasible for (15) is nonzero (otherwise, R(x)would be zero for some x). We thus have �opt > 0.We introduce some notation: for x 2 Rm, Z 2 Rn�n, � > 0 and � 2 R, de�ned = " c0 # ; y = " x� # ; Y = diag(Z; �);G(y) = F (x)� �LLT � 1� R(x)TR(x); G(y) = diag(G(y); � � :99�opt);L(y; Y ) = dTy �TrY G(y):Using Schur complements, and using �opt > 0, we obtain that problem (15) can berewritten as minimize dTy subject to G(y) � 0;(16)and that yopt = [xTopt �opt]T is optimal for (16). Our aim is �rst to prove that theso-called quadratic growth condition [8] holds at yopt for problem (16). Then, we willapply the results of [8] to obtain unicity and regularity theorems.7



4.3. Checking the quadratic growth condition. Following [8], we say thatthe quadratic growth condition (QGC) holds at yopt if there exists a scalar � > 0 suchthat, for every feasible y,dTy � dTyopt + �ky � yoptk2 + o(ky � yoptk2)Roughly speaking, this condition guarantees that yopt is not on a facet on the boundaryof the feasible set.De�ne the set of dual variables associated with yopt byY(yopt) = (Y = diag(Z; �) ����� Y � 0; TrY @G@yi (yopt) = di; i = 1; : : : ;m+ 1) :The following result is a direct consequence of a general result due to Bonnans,Cominetti and Shapiro [8]. Roughly speaking, this result states that, if an optimiza-tion problem satis�es Robinson's condition and has an optimal point, and if a certain�curvature� condition is satis�ed, then the QGC holds at that point.Theorem 4.1. With the notations above, if H1-2 hold, and if9 Y 2 Y(yopt) such that r2yyL(yopt; Y ) > 0(17)then problem (16) sati�es the QGC.The following theorem is proven in appendix A.Theorem 4.2. If H1-3 hold, problem (15) satis�es the quadratic growth conditionat every optimal point yopt. Consequently, there exist a unique solution to the SDP (15).Remark: Note that the QGC is satis�ed independent of the objective vector. Thismeans that the boundary of the feasible set is strictly convex (it contains no facets).4.4. Regularity results. In problem (15), the data consists of the matrices L,and Fi, Ri, i = 0; : : : ;m. We seek to examine the sensitivity of the problem with respectto small variations in Fi, Li and Ri.In this section, we consider matrices L(u), Ri(u) and Fi(u), i = 0; : : : ;m that arefunctions of class C1 of a (small) parameter vector u. De�neF (x; u) = F0(u) + mXi=1 xiFi(u); R(x; u) = R0(u) + mXi=1 xiRi(u):We denote by P(u) the corresponding problem (15), where F (�),R(�) and L are replacedby F (�; u), R(�; u) and L(u). We assume that F (�; 0) = F (�), R(�; 0) = R(�) and L(0) =L, so that P(0) is (15).We �rst note that, in the vicinity of u = 0, problem P(u) satis�es the hypothesesH1-2 if P(0) does. In this case, for every � > 0 we may de�ne the set S�(u) of �-suboptimal points of P(u):S�(u) = nx ��� x is feasible for P(u) and cTx � v(u) + �o ;8



where v(u) is the optimal value of P(u).Recall that, if P0 satis�es hypotheses H1-H2, the optimal value v(u) is continuous,and even directionnally di�erentiable, at u = 0 [30, Thm. 5.1]. With the QGC in force,and using [29, Thm.4.1], we can give quite complete regularity results for the robustsolutions.Theorem 4.3. If hypotheses H1-3 hold for P(0), then for every � = O(u), thereexists a 
 > 0 and a neighborhood V of u = 0 such that for every u 2 V and x 2 S�(u),we have kx� x(0)k � 
kuk1=2:(18)WhenH1-3 hold for P(0), the above theorem states that every (su�ciently) subop-timal solution to P(0) is Hölder-stable (with coe�cient 1=2). This is true in particularfor any optimal solution of P(u) (that is, for � = 0). The fact that the theorem remainstrue for � > 0 guarantees regularity of numerical solutions to the RSDP. The main con-sequence is that even if the nominal SDP is ill-conditioned (with respect to variationsin the Fi's), the RSDP becomes well-conditioned for every � > 0.Now assume � 6= 1. We seek to examine the behavior of problem (10) (with D = 0)when the uncertainty level � for 0 < � < �max varies. This is a special case of theproblem examined above, with u = �, F (�; u) = F (�), R(�; u) = R(�), L(u) = �L.Corollary 4.1. For every �, 0 < � < �max, the solution to (10) (with D = 0) isunique and satis�es the regularity results (written with u = �) of theorem 4.3.Remark: The results of this section are all valid in the block-full perturbationcase (L > 1), as de�ned in �2.2. Of course, the conditions given in H3 should beunderstood block-wise.4.5. Case D 6= 0. When D 6= 0, we can get back to the case D = 0 as follows.Recall we have kDk < 1 in order to ensure that F(x;�) is everywhere de�ned on D.With this assumption, we can de�ne for x 2 Rm and � > 0~L = L(I �DTD)�1=2;~R(x) = (I �DDT )�1=2R(x);~F (x) = F (x)� LDT (I �DDT )�1R(x)�R(x)T (I �DDT )�1LT ;~G(y) = ~F (x)� � ~L~LT � 1� ~R(x)T ~R(x)Using Schur complements, we have for every x and � > 0,~G(y) � 0 if and only if " F (x)� �LLT R(x)T � �LDTR(x)� �DLT � (I �DDT ) # � 0:Hypothesis H3 holds for ~L; ~R(�) if and only if it holds for L;R(�). We can then followthe steps detailed previously.Corollary 4.2. If the SDP (10) (with � = 1) satis�es H1-3 and if kDk < 1, theresults of theorem 4.3 hold. 9



5. Examples.5.1. Unstructured perturbations. AssumeF(x;�) = F (x) + �0 +�T0 + mXi=1 xi(�i +�Ti );(19)where � = [�0 : : :�m]. This case corresponds to (5), withL = I; R(x) = " 1x #
 I; D = 0; D = Rn�nm:(20)Using lemma 3.2, we obtain that problem (4) is equivalent to the SDPminimize cTx subject to 24 F (x)� �I h 1 xT i
 �Ih 1 xT iT 
 �I �I 35 � 0:(21)It turns out that we may get rid of the variable � and get back to a convex problemof the same size as that of the unperturbed problem (1). To see this, �rst note thatevery feasible variable � in problem (21) is strictly positive. Use Schur complements torewrite the matrix inequality in (21) asF (x) �  � + �21 + kxk2� ! I; � > 0:Minimizing (over variable � ) the scalar in the left-hand side of the above inequalityshows that the RSDP (1) is equivalent tominimize cTx subject to F (x) � 2�qkxk2 + 1 � I:(22)Formulation (22) is more advantageous than (21), since (22) involves a (convex) matrixinequality constraint of same size as the original problem. As noted before, specialbarrier functions can be devised for this problem, and yield an interior-point algorithmthat has the same complexity as the original problem, see [22].We note that, with the above choice for L;R, hypothesis H3 holds, which yieldsthe following result.Theorem 5.1. The optimal value of the RSDP (21) can be computed by solvingthe convex problem (22). If (22) satis�es hypotheses H1-2, then for every � > 0, thesolution is unique and satis�es the regularity conditions of theorem 4.3.Remark: A su�cient condition for hypotheses H1-2 to hold for (22) is that theyhold for the nominal problem. A more restrictive su�cient condition is that thenominal feasible set X0 is non empty and bounded, and � < �max.10



5.2. Robust center of a linear matrix inequality. In this section, for � > 0,we consider the SDP (22) and corresponding feasible (convex) set X�. We assume thatX0 is non empty and bounded, and that P0 is strictly feasible. Then, for every �,0 < � < �max, X� is non empty and bounded, and we can de�ne a (unique) solutionx(�) to the strictly convex problem (22).In view of corollary 4.1, x(�) is a continuous function of � in ]0 �max[. Since (X�) isa decreasing family of bounded sets, we may de�nex� = lim�!�max x(�)(23)Note that x� is independent on the objective vector c.Thus, to the matrix inequalityF (x) � 0, we may associate the robust center, de�nedby (23). The robust center has the property to be the most tolerant (with respect tounstructured perturbation) among the feasible points.An example is depicted in Fig. 1. The nominal feasible set X0 is described by alinear matrix inequality F (x) � 0, where F is a 5 � 5 matrix. For various values of�, we seek to minimize x2. The dashed lines correspond to the optimal objectives.As � increases, we observe the robust feasible sets shrink. A crucial property of theserobust sets is that they do not posess any straight faces, as observed in the �gure. For� = �max ' 5, the robust feasible set is a singleton (in this example, x? = 0). When� = 0, the optimal solution is not unique, and not continuous with respect to changes inthe coe�cient matrices Fi, i = 0; 1; 2 (although the optimal value is continuous). Sincethe sets X� become strictly convex as soon as � > 0, the resulting robust solutions arecontinuous.
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Fig. 1. Nominal and robust solutions of an SDP, with a 5� 5 matrix F (x). Here �max = 5.5.3. Robust linear programs. An interesting special case arises with LinearProgramming (LP). Consider the LPminimize cTx subject to aTi x � bi; i = 1; : : : ; L:11



Assume that the ai's and bi's are subject to unstructured perturbations. The perturbedvalue of [aTi bi]T is [aTi bi]T +�i, where k�ik2 � �, i = 1; : : : ; L. We seek a robust solutionto our problem, wich is a special case of the block-full perturbation case referred toin �2.2, with F given by (7), andFi(x;�i) = aTi x� bi + 2[xT � 1]�i; i = 1; : : : ; L;where �i = �i=2, and D the set of diagonal, L� L matrices. The robust LP isminimize cTx subject to aTi x� �qkxk22 + 1 � bi; i = 1; : : : ; L:(24)The above program is readily written as an SDP, by introducing slack variables. In fact,the robust LP is second-order cone program (SOCP), for which e�cient special-purposeinterior-point methods are available [22, 18, 21].We note that hypothesis H3 holds block-wise. This yields the following result.Theorem 5.2. The optimal value of the robust LP can be computed by solving theconvex problem (24). If the latter satis�es hypotheses H1-2, then for every �, 0 < � <�max, the solution is unique and satis�es the regularity conditions of theorem 4.3.In [5], robust linear programming is studied in detail. For a wide class of pertur-bation models, where the data of every linear constraint vary in an ellipsoid, explicitrobust solutions are constructed using convex (second-order cone) programs (SOCP).Reference [21] also provides examples of robust linear programs solved via SOCP.5.4. Robust eigenvalue minimization. Consider the case when the nominalproblem consists of minimizing the largest eigenvalue of a matrix-valued function F (x):minimize �max(F (x)):(25)When F (�) is subject to unstructured perturbations (as de�ned in �5.1), the robustversion of the problem isminimize �+ 2�qkxk2 + 1 subject to �I � F (x);or equivalently minimize �max(F (x)) + 2�qkxk2 + 1:(26)Let � > 0. When written in an SDP form, the above problem satis�es the hy-potheses H1-3. From theorem 4.3 we obtain that the solution is unique. If we considerthat the data of the above problem consists of the matrices Fi, i = 0; : : : ;m, then weknow that the corresponding solution is Hölder stable (with coe�cient 1=2). Since theproblem is unconstrained, we can use a result of Shapiro [29, Thm.3.1], by which weconclude that the solution is actually Lipschitz stable (inequality (18) holds with theexponent 1=2 replaced by 1). Finally, using the results from Attouch [3], we can showthat computing the solution for � ! 0 amounts to select the minimum norm solutionamong the solutions of the nominal problem.12



Theorem 5.3. The optimal value of the min-max problem (25) can be computedby solving the convex problem (26). For every � > 0, the solution is unique and isLipschitz stable with respect to perturbations in Fi, i = 0; : : : ;m. When � ! 0, thesolution converges to the minimum norm solution of the nominal problem (25).Remark: In this case, the RSDP is a regularized version of the nominal SDP, whichbelongs to the class of Tikhonov regularizations [32]. The regularization parameteris 2�, and is chosen according to some a priori information on uncertainty associatedwith the nominal problem's data. Taking � close to zero can be used as a selectionprocedure, for choosing a particular (minimum norm, regular) solution among the(non necessarily unique and/or regular) solutions of the nominal problem.Problem (26) is particularly suitable to the recent so-called U -Newton algorithmsfor solving problem (25). These methods, described in [19, 23], require that the Hessianof the �smooth part� (the so-called U -Hessian) of the objective of (25) to be positive-de�nite. For general mappings F (�), this property is not guaranteed. However, whenlooking at the robust problem (26), we see that the modi�ed U -Hessian is guaranteedto be positive-de�nite for every x and � > 0. This indicates that the RSDP approachmay be used to devise robust algorithms for solving SDPs.5.5. Robust second-order cone programs. A second-order cone program (SOCP)is a problem of the formminimize cTxsubject to kCix+ dik � eTi x+ fi; i = 1; : : : ; L;(27)where Ci 2 Rni�m, di 2 Rni, ei 2 Rm, fi 2 R, i = 1; : : : ; L. SOCP can be formulatedas SDPs, but special-purpose, more e�cient algorithms can be devised for them, see [22,4, 21].Assuming that Ci; di; ei; fi are subject to linear�or even rational�uncertainty, wemay formulate corresponding RSDP, as an SDP. This SDP can be written as an SOCPif the uncertainty is unstructured, and a�ects each constraint independently.The subject of robust SOCP is explored in [4] in detail. Explicit SDPs that yieldrobust counterpart to SOCPs non conservatively are given, for a wide class of uncer-tainty structures. In some cases, albeit not all, the robust counterpart is itself an SOCP.In [14, 12], the special case of least squares problems with uncertainty in the data isstudied at length.5.6. Robust maximum norm minimization. Several engineering problemstake the form minimize kH(x)k(28)where H(x) = H0 + mXi=1 xiHi;13



and Hi, i = 1; : : : ;m are given p� q matrices. A well-known instance of this problem isthe linear least-squares problem, with H(x) = Ax� b. Another example is a minimalnorm extension problem for an Hankel operator studied in [16], in which H0 is a given(arbitrary) n � n Hankel matrix, and Hi, i = 1; : : : ;m, is the n � n Hankel matrixassociated with the polynomial 1=zi. In practice, the matrices Hi, i = 0; : : : ;m aresubject to perturbation, which motivates a study of the robust version of problem (28).Note that the least-squares case is extensively studied in [14].Consider the full perturbation case, which occurs when each Hi is perturbed inde-pendently in a linear manner. Precisely, consider the matrix-valued functionH(x;�) = H0 +�0 + mXi=1 xi(Hi +�i);where � = [�0 : : :�m]. For a given � > 0, we address the min-max problemminx maxk�k�� kH(x;�)k(29)This problem is a RSDP for which we can get exact results using SDP. Indeed, for everyx 2 Rm and � � 0, the property maxk�k�� kH(x;�)k � �is equivalent to F(x; �;�) � 0 for every �, k�k � �, whereF(x; �;�) = F (x; �) + L�R(x) +R(x)T�TLT ;where F (x; �) = " �I H(x)H(x)T �I # ; L = " I0 # ; R(x) = " 0 " 1x #
 I # :We thus write problem (29) as (4), where the perturbation set D is Rp�q.Applying theorem 3.2, we obtain that the RSDP above is equivalent to the SDP (15)(with D = 0). As in �5.1, we may get rid of the variable � , and obtain the equivalentformulation minimize kH(x)k+ �qkxk2 + 1:(30)This RSDP satis�es hypotheses H1-3, so we conclude that the results of theorem 4.3hold. As in robust eigenvalue minimization, we can get improved results using [29, 3,Thm.3.1].Theorem 5.4. The optimal value of the min-max problem (29) can be computedby solving the convex problem (30). For every � > 0, the solution is unique and isLipschitz stable with respect to perturbations in Hi, i = 0; : : : ;m. When � ! 0, thesolution converges to the minimum norm solution of the nominal problem (28).14



Remark: As for the RSDP arising in robust eigenvalue minimisation, the robustminimum normminimization probem is a regularized version of the nominal problem,which belongs to the class of Tikhonov regularizations.We now consider the general case when each matrix Hi in (28) is perturbed ina structured manner. To be speci�c, we concentrate on the minimal norm extensionproblem mentioned above.In practice, the matrix H0 is obtained from measurement, and is thus subject toerror. We may assume that this matrix is constructed from a n�1 vector h0(�) = h0+�,where � is unknown-but-bounded. The perturbed matrix H0 is of the formH0(�) = H0 + L�R;where L;R are given matrices (the exact form of which we do not detail), and� 2 D = fdiag(�1I1; : : : ; �nIn) j �i 2 R; i = 1; : : : ; ng :(In the above, each �i corresponds to the uncertainty associated with the i-th antidiag-onal of H0.) We address the min-max problemminimize max�2D; k�k�� kH(x) + L�Rk(31)where � � 0 is given.This problem is amenable to the robustness analysis technique. De�ningS �= ndiag(S1; : : : ; Sn) ��� Si 2 Ri�i; i = 1; : : : ; no ;we obtain the following result.Theorem 5.5. An upper bound on the objective value of the min-max problem (31)can be computed by solving the SDP in variables x; S;G:inf � subject to S = ST ; G = �GT 2 S; 264 �I � LSLT H(x) LGH(x)T �I �RGTLT �RT S 375 > 0:5.7. Polynomial interpolation. This example is one taken from [14], that canbe formulated as RSDP with rational dependence. For given integers n � 1, k, we seeka polynomial of degree n � 1 p(t) = x1 + : : : + xntn�1 that interpolates given points(ai; bi), i = 1; : : : ; k, that is p(ai) = bi; i = 1; : : : ; k:If we assume that (ai; bi) are known exactly, we obtain a linear equation in the unknownx, with a Vandermonde structure:2664 1 a1 : : : an�11... ... ...1 ak : : : an�1k 37752664 x1...xn 3775 = 2664 b1...bn 3775 ;15



which can be solved via standard least-squares techniques.Now assume that the interpolation points are not known exactly. For instance, wemay assume that the bi's are known, while the ai's are parameter-dependent:ai(�) = ai + �i; i = 1; : : : ; k;where the �i's are unknown-but-bounded: j�ij � �, i = 1; : : : ; k, where � � 0 is given.We seek a robust interpolant, that is, solution x that minimizesmaxk�k1�� kA(�)x� bk;(32)where A(�) = 2664 1 a1(�) : : : a1(�)n�1... ... ...1 ak(�) : : : ak(�)n�1 3775 :The above problem is a RSDP. Indeed, it can be shown thath A(�) b i = h A(0) b i+ L�(I �D�)�1R;where L = kMi=1 h 1 ai : : : an�2i i ; R = 2664 R1...Rk 3775 ; D = kMi=1Di; � = kMi=1 �iIn�1:and, for each i, i = 1; : : : ; k,Ri = 2666664 0 1 ai : : : an�2i... . . . . . . . . . ...... . . . . . . ai0 : : : : : : 0 1 3777775 2 R(n�1)�n;Di = 2666664 0 1 ai : : : an�3i... . . . . . . . . . ...... . . . . . . ai0 : : : : : : 0 1 3777775 2 R(n�1)�(n�1):(Note that det(I � D�) 6= 0, since D is stricly upper triangular.) With the abovenotation, if we de�ne F(x;�) as in (5), then problem (32) can be formulated as theRSDP (4).With the approach described in this paper, one can compute an upper bound forthe minimizing value of (32), and a corresponding suboptimal x. We do not know ifthe problem can be solved exactly in polynomial-time, e.g. using SDP. We conjecture(as the reviewers of this paper did ) that the answer is no. To motivate this claim, notethat the solution to the problem of computing (32) for arbitrary a�ne functions A isalready NP-hard [14]. 16



5.8. Error-in-Variables RSDPs. In many SDPs that arise in engineering, thevariable x represents physical parameters that can be implemented with �nite absoluteprecision only. A typical example is integer programming, where integer solutions to(linear) programs are sought. These problems (which are equivalent to integer program-ming) are NP-hard. We now show that we may �nd upper bounds on these problemsusing robustness analysis.Consider for instance the problem of �nding a solution x to the feasiblity SDP�nd x integer such that F (x) � 0:(33)Now, consider the robust SDP maximize � subject to�I � F0 + mXi=1(xi +�xi)Fi for every �x, k�xk1 � 1=2.(34)Assume there exist a feasible pair (xfeas; �) to the above problem, with � � 0. Byconstruction, xfeas satis�es F (xfeas) � 0. Furthermore, any vector x chosen such thatkx�xfeask1 � 1=2 is guaranteed to satisfy F (x) � 0. This is true in particular for xint,the integer closest to xfeas. Thus, if we know a positive lower bound �, and correspondingfeasible point for problem (34), then we can compute an integer solution to our originalproblem.Finding a lower bound for (34) and associated feasible point can be done as follows.For i, 1 � i � m, de�ne Fi = 2LiRi, where Li; RTi 2 Rn�ri , ri = RankFi. LetL = h L1 : : : Lm i ; R = 2664 R1...Rm 3775 and D = (� = mMi=1 �xiIri; �xi 2 R) :Problem (34) can be formulated asmaximize � subject to �I � F (x) + L�R +RT�TLTfor every � 2 D, k�k � 1=2.(35)The above is a special instance of the structured problem examined in �3.2. De�neS �= ndiag(S1; : : : ; Sm) ��� Si 2 Rri�ri; i = 1; : : : ; no ;Theorem 5.6. A su�cent condition for an integer solution to the feasibility SDP(33) is that the constraints� � 0; S = ST 2 S; G = �GT 2 S; " F (x)� �I � LSLT 12RT + LG12R�GLT S # > 0are feasible. If xfeas is feasible for the above constraints, then any integer vector closestto xfeas (in the maximum norm sense) is feasible for (33).17



6. Conclusions. In this paper, we considered semide�nite programs subject touncertainty. Assuming the latter is unknown-but-bounded, we have provided su�cientconditions that guarantee �robust� solutions to exist, via SDPs. Under some conditions(detailed in �4), the robust solution is unique, and not surprisingly, stable. The methodcan then be used to regularize possibly ill-conditioned problems. For some perturbationstructures (as for unstructured perturbations), the conditions are also necessary. Thatis, there is no conservatism induced by the method.The paper raises several open questions.In our description, we have considered the problem of robustifying the primal SDP,thereby obtaining upper bounds on a SDP subject to uncertainty. The dual point ofview should be very interesting. One might be interested in applying the approachto the dual problem instead. Does this lead lower bounds on the perturbed problem?Also, in some cases, the RSDP approach leads to a unique (and stable) primal solution.May we obtain a unique solution to the dual problem, by robustifying the latter? (Thiswould lead to analycity of the primal solution, see [30]).As seen in �5.2 the notion of robust center has certainly connections with the well-known analytic center; is the latter related to some robustness characterization?It seems that the RSDP method could be useful for deriving fast and robust (sta-ble) algorithms for solving SDPs (see �5.4), especially in connection with maximumeigenvalue minimization.Finally, as said in section 2.2 (lemma 2.1), an SDP with coe�cient matrices de-pending rationnaly on a perturbation vector can always be represented by an LFRmodel. Now, this LFR model is not unique. However, the results given here (for exam-ple, theorem 3.2) hinge on a particular linear-fractional representation for a perturbedSDP. Hence the question: are our results independent of the chosen representation? Wepartially answer this di�cult question in appendix B.Acknowledgements. This paper has bene�ted from many stimulating discus-sions with several colleagues, in particular, Aharon Ben-Tal, Stephen Boyd, ArkadiiNemirovskii, Michael Overton and Lieven Vandenberghe. Last but not least, the au-thors would like to thank the Editor and Reviewers for their very helpful comments forrevising the paper. REFERENCES[1] F. Alizadeh, Interior point methods in semide�nite programming with applications to combina-torial optimization, SIAM J. Optimization, 5 (1995), pp. 13�51.[2] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, Primal-dual interior-point methodsfor semide�nite programming: Convergence rates, stability and numerical results, Tech. Rep.721, NYU Computer Science Dept, May 1996.[3] H. Attouch, Viscosity solutions of optimization problems, Tech. Rep. 07, Dept des SciencesMathématiques, Université Montpellier 2, France, 1994.[4] A. Ben-Tal and A. Nemirovski, Robust convex programming, Tech. Rep. 1/95, OptimizationLaboratory, Faculty of Industrial Engineering and Management, Technion, Israel Institute ofTechnology, Technion City, Haifa 32000, Israel, 1995.18
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By summation, we have��(�; �) = 2�opt (R(�) �R(0))T (R(�) �R(0)) + 2 �2� 3optR(xopt)TR(xopt)� �� 2opt �R(xopt)T (R(�) �R(0)) + (R(�) �R(0))TR(xopt)�= �2� 3optR(xopt)TR(xopt) + 1�optRTR + 1�opt (R(�) �R(0))T (R(�) �R(0));where R = R(�) �R(0) � ��optR(xopt). We obtain �nally�(�; �) = 1�optTrZRTR+ �2� 3optTrZR(xopt)TR(xopt)+ 1�optTrZ(R(�) �R(0))T (R(�) �R(0)):If �(�; �) = 0, then � = 0 (from TrR(xopt)TR(xopt)Z > 0), and thus TrZRTR = 0with R = R(�) � R(0). Since Z � 0, this means that every column of Z1=2 belongsto the nullspace of R(�) � R(0). Assume now � 6= 0. By hypothesis H3(a), we obtainthat every column of Z1=2 also belongs to the nullspace of R(xopt), which contradictsTrR(xopt)TR(xopt)Z > 0. We conclude thatr2yyL is positive-de�nite at (yopt; Y ). Thus,problem (15) satis�es the QCG.B. Invariance with respect to LFR model. In this section, we show that thesu�cient conditions obtained in this paper are, in some sense, independent of the LFRmodel used to describe the perturbation structure.Consider a function F taking values in the set of symmetric matrices having anLFR such as (5). This function can be written in a more symmetric formF(�) = F + ~L ~�(I �D ~�)�1 ~LT(37)where we have dropped the dependence on x for convenience, and~L = h L RT i ; ~D = " 0 DTD 0 # ; ~� = " 0 ��T 0 # :It is easy to check that, if an invertible matrix Z satis�es the relation Z ~�ZT = ~� forevery � 2 D, then F(�) = F + (~LZ) ~�(I � (ZT ~DZ) ~�)�1(~LZ)T :In other words, the �scaled� triple (F; (~LZ); (ZT ~DZ)) can be used to represent F insteadof F; ~L; ~D in (37). By spanning valid scaling matrices Z, we span a subset of all LFRmodels that describe F.A valid scaling matrix Z can be constructed as follows. Let (S; T;G) 2 B, andde�ne Z = " T�1=2 00 S1=2 # " I G0 I # :21



It turns out that such a Z satis�es the relation Z ~�ZT = ~� for every � 2 D.Using the above facts, we can show that if condition (13) is true for the originalLFR model F;L;R;D with appropriate S; T;G, then it is also true for the scaled LFRobtained using any scaling matrix Z such as above, for appropriate matrices ~S, ~G, ~T .That is, the condition is independent of the scaling Z.In this sense, the conditions we obtained are independent of the LFR used torepresent the perturbation structure.
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