
Originally appeared at Supercomputing '91This expanded version appeared in Comm. of the ACM, August 1992The Omega Test: a fast and practical integerprogramming algorithm for dependence analysisWilliam PughDept. of Computer Science and Institute for Advanced Computer StudiesUniv. of Maryland, College Park, MD 20742pugh@cs.umd.edu, (301)-405-2705July 12, 1993AbstractThe Omega test is an integer programming algorithm that can determine whether a dependence existsbetween two array references, and if so, under what conditions. Conventional wisdom holds that integerprogramming techniques are far too expensive to be used for dependence analysis, except as a method oflast resort for situations that cannot be decided by simpler methods. We present evidence that suggests thiswisdom is wrong, and that the Omega test is competitive with approximate algorithms used in practice andsuitable for use in production compilers. Experiments suggest that, for almost all programs, the averagetime required by the Omega test to determine the direction vectors for an array pair is less than 500 �secson a 12 MIPS workstation.The Omega test is based on an extension of Fourier-Motzkin variable elimination (a linear programmingmethod) to integer programming, and has worst-case exponential time complexity. However, we show that formany situations in which other (polynomial) methods are accurate, the Omega test has low order polynomialtime complexity.The Omega test can be used to project integer programming problems onto a subset of the variables,rather than just deciding them. This has many applications, including accurately and e�ciently computingdependence direction and distance vectors.1 IntroductionA fundamental analysis step in an advanced optimizing compiler (as well as many other software tools) isdata dependence analysis for arrays: deciding if two references to an array can refer to the same elementand if so, under what conditions. This information is used to determine allowable program transformationsand optimizations. For example, we can determine that in the following program, no location of the arrayis both read and written. Once we also verify that no location is written more than once, we know that thewrites can be done in any order.for i = 1 to 100 dofor j = i to 100 doA[i, j+1] = A[100,j]There has been extensive study of methods for deciding array data dependences [All83, BC86, AK87,Ban88, Wol89, LYZ89, LY90, GKT91, MHL91]. Much of this work has focused on approximate methods1

that are guaranteed to be fast but only compute exact results in certain (commonly occurring) special cases.In other situations, approximate methods are conservative: they accurately report all actual dependences,but may report spurious dependences.Data dependency problems are equivalent to deciding whether there exists an integer solution to a set oflinear equalities and inequalities, a form of integer programming. The above problem would be formulatedas an integer programming problem shown below. In this example, iw and jw refer to the values of the loopvariables at the time the write is performed and ir and jr refer to the values of the loop variables at thetime the read is performed. 1 � iw � jw � 1001 � ir � jr � 100iw = 100jw + 1 = jrConventional wisdom holds that integer programming techniques are far too expensive to be used fordependence analysis, except as a method of last resort for situations that cannot be decided by simpler,special-case methods. We present evidence that suggests this wisdom is wrong. We describe the Omega test,which determines whether there is an integer solution to an arbitrary set of linear equalities and inequalities.We describe experiments that suggest that, for almost all programs, the average time required by the Omegatest to determine the direction vectors for an array pair is less than 500 �secs on a 12 MIPS workstation.We also found that the time required by the Omega test to analyze a problem is rarely more than twice thetime required to scan the array subscripts and loop bounds. This would indicate that the Omega test issuitable for use in production compilers.Conceptually, the Omega test combines new methods for eliminating equality constraints with an exten-sion of Fourier-Motzkin variable elimination to integer programming. At a more detailed level, the Omegatest also incorporates several implementation details (described in Section 2.4) that produce substantialspeed improvements in practice.Integer programming is a NP-Complete problem, and the Omega test has exponential worst-case timecomplexity. We show in Section 7 that in many situations in which other (polynomial) methods are accurate,the Omega test has low-order polynomial worst-case time complexity.Dependence analysis is often structured as a decision problem: tests simply answer yes or no. Compilersand other program restructuring tools need to know the data dependence direction vector [Wol82] and datadependence distance vector [KMC72, Mur71] that describes the relation between the iterations in which theconicting reads/writes occur. The data dependence distance vector describes the di�erences between thevalues of the common loop variables between the �rst and second access to the same array element. Forexample, in the following code fragment, the dependence distance of the ow dependence is (1,2):for i := 1 to n dofor j := 1 to m doA(i, j) := A(i-1, j-2)Sometimes, dependence distance is not constant. In these cases, the dependence direction vector describesthe possible combinations of signs of dependence distances.Determining dependence direction vectors may require an exponential number calls to a dependencetesting algorithm that only returns yes/no. To be competitive, a dependence analysis method must be ableto short-cut this enumeration process (e.g., see [BC86, GKT91]). In Section 4, we show how the Omega testcan be modi�ed to project integer programming problems onto a subset of the variables, rather than justdeciding them. With this in hand, we can e�ciently produce a set of constraints that precisely and conciselydescribes all possible dependency distance vectors. This information can be used directly in deciding thevalidity of program transformations, or standard direction and distance vectors can be quickly computedfrom it. These techniques are described in Section 5.1.2

2 The Omega testThe Omega test determines whether there is an integer solution to an arbitrary set of linear equalities andinequalities, referred to as a problem. The input to the Omega test is a set of linear equalities (P1�i�n aixi =c) and inequalities (P1�i�n aixi � c). To simplify our presentation (and our algorithms), we de�ne x0 = 1and useP0�i�n aixi = 0 andP0�i�n aixi � 0 as our standard representations, and we use V to denote theset of indices of the variables being manipulated (i.e., V = fi j 0 � i � ng).2.1 Normalizing (and tightening) constraintsThroughout this paper, we assume that any constraint we are manipulating has been normalized. A nor-malized constraint in one in which all the coe�cients are integers and the greatest common divisor of thecoe�cients (not including a0) is 1.If the initial constraints involve rational coe�cients, they can be scaled to obtain integer coe�cients.(the algorithms described here do not produce any non-integer coe�cients).To normalize a constraint, we compute the greatest common divisor g of the coe�cients a1; : : : ; an. Wethen divide all the coe�cients by g. If the constraint is an equality constraint and g does not evenly divide a0,the constraint is unsatis�able. If the constraint is an inequality constraint, we take the oor when dividinga0 by g (i.e., we replace a0 with ba0=gc).Taking oors in the constant term tightens the inequalities. If a problem P has rational but not integersolutions, tightening P may produce a problem without rational solutions, thus making it easier to determinethat P has no integer solutions.2.2 Equality constraintsGiven a problem involving equality and inequality constraints, we �rst eliminate all the equality constraints,producing a new problem of inequality constraints that has integer solutions if and only if the originalproblem had integer solutions. Of course, in the process we might decide that the problem has no integersolutions regardless of the inequality constraints.The Generalized GCD test [Banerjee88] can be used to eliminate integer equality constraints. However,we found the following approach better suited toward our needs, since it is somewhat simpler and moreappropriate for situations in which additional equalities may be added later.To eliminate the equality Pi2V aixi = 0, we �rst check if there exists a j 6= 0 such that jajj = 1. If so,we eliminate the constraint by solving for xj and substitute the result into all other constraints.Otherwise, let k be the index of the variable with the coe�cient that has the smallest absolute value(k 6= 0) and let m = jakj+ 1. We de�ne dmod as follows:a dmod b = a� bba=b+ 1=2cWe create a new variable � and produce the constraint:m� =Xi2V (ai dmod m)xiNote that ak dmod m = �sign(ak). We then solve this constraint for xkxk = �sign(ak)m� + Xi2V�fkg sign(ak)(ai dmod m)xiand substitute the result in all constraints. In the original constraint, this substitution produces:�jakjm� + Xi2V�fkg(ai + jakj(aidmodm))xi = 03

substitution resulting constraintsOriginal problem 7x+ 12y + 31z = 173x+ 5y + 14z = 71 � x � 40�50 � y � 50x = �8� � 4y � z � 1 �7� � 2y + 3z = 3�24� � 7y + 11z = 101 � �8� � 4y � z � 1 � 40�50 � y � 50y = � + 3� �3� � 2� + z = 1�31� � 21� + 11z = 101 � �1� 12� � 12� � z � 40�50 � � + 3� � 50z = 3� + 2� + 1 2� + � = �11 � �2� 15� � 14� � 40�50 � � + 3� � 50� = �2� � 1 1 � 12 + 13� � 40�50 � �3� 5� � 50after normalization 0 � � � 2Figure 1: Example of elimination of equality constraintsSince jakj = m � 1, this is equal to�jakjm� + Xi2V�fkg((ai � (aidmodm)) +m(aidmodm))xi = 0Since all terms are now divisible by m, normalizing the constraint produces:�jakj� + Xi2V�fkg((bai=m+ 12c + (aidmodm))xi = 0In the original constraint, the absolute value of the coe�cient of � is the same as the absolute valueof the original coe�cient of xk. For all other variables, the absolute value of coe�cients are reduced to atmost 2/3'rds of their previous value. Therefore, repeated applications of this rule will eventually force a unitcoe�cient to appear and allow us to eliminate the constraint.An application of these methods is shown in Figure 1.2.3 Inequality constraintsThe following process is used once all equality constraints have been eliminated. We �rst check to seeif any two inequality constraints directly contradict one another (e.g., the constraints 3x + 5y � 2 and3x + 5y � 0). If we �nd a contradiction, we report that the problem has no solutions. We can dealwith equality constraints more e�ciently than inequality constraints. Therefore, if we �nd a pair of tightinequalities (such as 6 � 3x+2y and 3x+2y � 6), we replace them with the appropriate equality constraintand revert to our methods for dealing with equality constraints. While checking for contradictory pairsof constraints, we also eliminate constraints that are made redundant by a single other constraint (e.g.,x+ 2y � 0 is made redundant by x+ 2y � 5).If the problem involves at most one variable and has passed the above tests, we report that it hasinteger solutions. Otherwise, we reduce the problem to one or more integer programming problems in fewerdimensions and repeat the above process, eventually getting to problems in one dimension.4

2.3.1 Detecting real solutions using Fourier-Motzkin variable eliminationFourier-Motzkin variable elimination [DE73] eliminates a variable from a linear programming problem. In-tuitively, Fourier-Motzkin variable elimination �nds the n� 1 dimensional shadow cast by an n dimensionalobject.Consider the dodecahedron in Figure 2a. We want to calculate the shadow of the dodecahedron whenit is projected along the z dimension onto the xy plane (as shown). This dodecahedron and its shadow caneach be speci�ed by a set of 12 constraints (Figure 2b).Consider two constraints on z: a lower bound � � bz and an upper bound az � � (where a and b arepositive integers). We can combine these constraints to get a� � abz � b�. The constraint a� � b� is theshadow of the intersection of these two constraints (shown visually in Figure 2c). By combining the shadowof the intersection of each pair of upper and lower bounds on z (Figures 2d and 2e), we obtain a set ofconstraints that de�nes the shadow of the original object.Since the shadow obtained this way describes real solutions, we refer to it as the real shadow of a setof constraints. If there are no integer points in the real shadow of a set of constraints, we know that thereare no integer solutions to the set of constraints.Note that the set of constraints we obtained includes many redundant constraints. Performing Fourier-Motzkin variable elimination can square the number of constraints and produce many redundant constraints.However, few loop nests have dodecahedrons for iteration spaces, and in practice the number of constraintsdoes not grow substantially. Attempting to determine which constraints are redundant so as to remove themfrom consideration is usually not cost-e�ective.2.3.2 Detecting integer solutions using Fourier-Motzkin variable eliminationThere may be integer grid points in the shadow of an object, even if the object itself contains no integerpoints (consider the shadow of a very thin object). Ideally, we would like to calculate the integer shadowof an object: a shadow such that for every integer point in the shadow, there is at least one correspondinginteger point in the object above it, and vis-versa. Unfortunately, we can't always do this. The integershadow of a convex region may not even be a convex region. However, we have developed new methods thatwork well in practice. Our approach can be (informally) visualized as �nding the shadow of a translucentobject: thicker parts of the object cast a darker shadow. If we de�ne dark shadows appropriately, we canguarantee that for every integer point in the dark shadow, there is an integer point in the object above it.As an example, we reconsider our previous example of the dodecahedron, although we squish the dodeca-hedron to illustrate the di�culty of �nding integer shadows. The squished dodecahendron is shown in Figure3a, and the integer points in the dodecahendron and its shadow are shown in Figures 3b and 3c. There areinteger points in the real shadow that have no integer point in the object above them. However, for everyinteger point in the dark shadow, there is an integer point in the object above it.The shadow is clearly dark below any part of the object that is at least one unit thick. However, sincethe coe�cients of the constraints are integers, we can determine a looser de�nition of dark that will stillguarantee that any integer point in the dark shadow has an integer point above it.To determine the dark shadow, consider the case in which there is an integer solution to a� � b�, butthere is no integer solution to a� � abz � b� (i.e., there is no multiple of ab between a� and b�). Note thata and b are positive integers. In this case, let i = b�=bc. Thenab i < a� � b� < ab (i+ 1)Since ab(i + 1) � b� � b, a� � abi � a and ab(i + 1) � abi = ab, b� � a� � ab � a � b. If b� � a� �ab � a � b + 1 = (a � 1)(b � 1), we know that there must be an integer solution to z. Therefore, the darkshadow of � � az and bz � � is: b�� a� � (a � 1)(b� 1)Note that if a = 1 or b = 1, the dark shadow and the real shadow are identical. If the dark and realshadow resulting from each combination of an upper and lower bound are identical, the projection is called5

an exact projection. This will happen, for example, if all of the coe�cients of z in lower bounds on z are1, or if all of the coe�cients of z in upper bounds on z are 1. For the problems that arise in dependenceanalysis, we can almost always �nd an exact projection.We now have a method for checking for the existence of integer solutions to a set of constraints:1. We �rst decide which variable to eliminate. We choose this variable so as to perform an exact projectionif possible, and to minimize the number of constraints resulting from the combination of upper andlower bounds. If we are forced to perform non-exact reductions, we choose a variable with coe�cientsas close to zero as possible.2. Calculate the real and dark shadows of the set of constraints along that dimension.3. If the real and dark shadows are identical, there are integer solutions to the original set of constraintsi� there are integer solutions to the shadow.4. Otherwise:(a) If there are no integer solutions to the real shadow, we know there are no integer solutions to theoriginal set of constraints.(b) If there are integer solutions to the dark shadow, we know there are integer solutions to the originalconstraints.(c) Otherwise, we know if an integer solution exists, it must be closely nestled between an upperbound and a lower bound. Therefore we consider a set of planes that are parallel to a lowerbound and close to a lower bound. Any integer solution closely nestled between an upper boundand a lower bound must lie on one of these planes.Computationally, we analyze the problem as follows:We know that if there exists an integer solution to the original set of constraints, there must exista pair of constraints � � az and bz � � on z such thatab� a � b � b�� a� � 0 ^ b� � abz � a�ab� a� b+ a� � abz � a�We check this by determining the largest coe�cient a of z in any upper bound on z, and, for eachlower bound bz � � on z, testing if there are integer solutions to the original problem combinedwith bz = � + i for each i such that (ab� a� b)=a � i � 0.While these steps are expensive and complicated, they rarely, if ever, need to be used in practice.2.3.3 An Omega test nightmareTo demonstrate (and show the limitations of) the techniques used, we illustrate the steps performed by theOmega test on an example designed to force the Omega test to work very hard for a small problem. Considerthe inequalities P : 27 � 11x+ 13y � 45�10 � 7x� 9y � 4There are no exact projections we can perform, and we would decide to eliminate x since the coe�cientsof x are (slightly) smaller. Figure 4a shows the constraints in the original problem, and the unnormalizedconstraints in the real and dark shadows. Since the real shadow has integer solutions but the dark shadowdoes not, we check if there are any integer solutions close to a lower bound. We do this by checking if theintersection of the original set of constraints and any one of the following constraints contains an integer6

point (this is shown graphically in Figure 4b). Since there are no such solutions, we know that no integersolutions exist. 7x = 9y � 10 + j 0 � j � b77�11�711 c = 511x = 27� 13y + j 0 � j � b121�11�1111 c = 9The steps performed in this example appear complicated and expensive. However, this example wasdesigned to be expensive to resolve. We do not expect situations this di�cult to arise frequently in practice.Also, although many steps are performed in this process, our implementation of the Omega test takes only4.5 milliseconds on a 12 MIPS workstation to perform them all.Worse nightmares are possible: on problems with only 2 variables and 3 constraints, the Omega test cantake time proportional to the absolute value of the coe�cients. While this is a frightening possibility, we donot expect these situations to arise frequently in practice.A decision on better methods for dealing with Omega test nightmares will have to wait until moreexperience is gained about the type of nightmares that occur in practice.2.4 Implementation DetailsIn implementing the Omega test we used several algorithmic ideas and tricks that substantially improvedour running time. We report some of those ideas here.Equalities and inequalities are represented as vectors of coe�cients. The Omega test is crafted so thatthe algorithms only need to deal with integers; no rational number representation scheme needs to be used.Once we have eliminated all the equality constraints from a problem, we check for any variables thathave no lower bounds or have no upper bounds. We refer to such variables as unbounded variables. Per-forming Fourier-Motzkin elimination on an unbounded variable simply deletes all the constraints involvingit. We delete all constraints involving unbounded variables and then check if that has produced additionalunbounded variables. We repeat this process until no unbounded variables remain.Next, we normalize all the constraints and assign hash keys and constraint keys to them. We only dothis to constraints that have been modi�ed since the last time they were normalized. The constraint keyof a constraint is a unique tag based on the coe�cients of the variables in the constraint; two constraintshave equal constraint keys if and only if they di�er only in their constant term. Constraint keys are bothnegative and positive, and the key of a constraint e1 is the negation of the key of a constraint e2 if and onlyif the coe�cients of the variables in e1 are the negation of the coe�cients of the variables in e2. We referto this as opposing keys and opposing constraints. Constraint keys are assigned to constraints in constantexpected time by recording in a hash table constraint keys previously assigned. We compute a hash keybased on the coe�cients of the constraint as an index into the hash table (hash keys are not guaranteed tobe unique). Our method for computing hash keys is designed so that opposing constraints have opposinghash keys, which makes it easy to assign them opposing constraint keys. As constraints are normalized, weenter them into a table based on their constraint key. This allows us to check for redundant, contradictoryor tight constraint pairs in constant time per constraint.In the process of normalizing constraints, we check to see if any constraints involvemore than one variable.After normalization, if we found no multi-variable constraints, we know the system must have solutions, andwe return immediately.Next, we examine the variables to decide which variable to eliminate. If we can perform an exactprojection, we perform the elimination in place (adding and deleting constraints from the current problem).Otherwise, we copy the constraints with zero coe�cients for the eliminated variable into two new problemdata structures (for the real shadow and for the dark) and then add the constraints produced by Fourier-Motzkin elimination. Since the constraints generated for the real and dark shadow di�er only in their constantterms, we can share much of the work in adding these constraints.7

3 Nonlinear subscriptsInteger programming dependence analysis methods allow us to properly handle symbolic constants [LT88,HP90] and some types of min and max functions in loop bounds [WT92] and conditional assignments [LC90].For example, even if we had no information about the value of n, we would like to be able to decide thatthere are no ow dependences in the following program:for i = 1 to n doa[i+n] = a[i]As previous authors have suggested, we can handle loop-invariant symbolic constants by adding them asadditional variables to the integer programming problem. For example, the above problem would generatethe following integer programming program (involving the variables i; i0 and n):1 � i; i0 � ni + n = i0We also can accommodate integer division and integer remainder operations, something that does notappear to have been previously recognized. Assume an expression e appears in a program that can beexpressed as e = � div m where m is a positive integer. To handle this, we de�ne a new variable �, addthe inequality constraints 0 � �� m� � m � 1 and use � as the value of e. Similarly, if e = � mod m wewould add the same inequality constraint but use ��m� as the value of e.4 Projection of Integer Programming ProblemsAs described in Section 2, the Omega test simply decides if there is a solution to an integer programmingproblem. In this section, we describe how to adapt the Omega test to allow it to be used for symbolicprojection. When used this way, the Omega test is given as input an integer programming program P anda designation of a set of protected variables bV � V . The Omega test projects P into one or more problemsinvolving only variables in bV that describe all the possible values of the variables in bV such that thereis an integer solution to P with those values. For example, projecting the integer programming problemf0 � a � 5; b < a � 5bg onto a produces the problem f2 � a � 5g.Actually, results of the projection process can be a little more complicated than just described. Theresults may not be in terms of the variables in bV . Instead, the results are given in terms of a set bV 0of not more than jbV j variables (possibly including new variables), along with methods for calculating theappropriate values for the values of bV from the values of bV 0. For example, if asked to project the integerprogramming problem fa = 10b+ 25c; a � 13g onto a, the Omega test will produce f� � 3; a = 5�g.The projection process may produce multiple problems. For example, projecting the problem f5b � a �6bg onto a produces: f20 � agf0 � �; a = 6�gf1 � �; a = 6� � 1gf2 � �; a = 6� � 2gf3 � �; a = 6� � 3g4.1 Changes to the Omega testThree of the changes required are simple, the other is not as simple. The quick changes are:� If the current problem P involves only protected variables, check if there are integer solutions of P andif so, report P as one projection. 8

� When performing an inexact Fourier-Motzkin elimination, project the dark shadow and the intersectionof the original constraints with all of the equality checks near the lower bounds. In other words, wemust project all of the subproblems where we would look for an integer solution, not stopping when aninteger solution is �rst veri�ed. This could be expensive if projecting a system involves many inexactprojections. We do not believe this will occur in practice for the problems arising from dependencyanalysis.� We never perform Fourier-Motzkin variable elimination on a protected variable. This could require usto perform a inexact projections in a situation where we could have performed an exact projection ifwe were not protecting certain variables.The not so simple change involves equalities. Given an equality constraintPi2V aixi = 0, let g be the gcdof the coe�cients of the non-protected variables. (we assume (as always) that the constraint is normalized).� If g = 0, the constraint involves only protected variables. We use our standard methods to eliminatethe constraint. This will result in the elimination of a protected variable. All substitutions performedin this process are recorded in a substitution log. These substitutions involve only protected variables.� If g = 1, we use our standard techniques (Section 2.2) to �nd a substitution involving only unprotectedvariables that simpli�es or eliminates the constraint.� If g > 1, we create a new protected variable �, add the constraint:g� =Xi2V (ai dmod g)xiEliminating this new constraint will transform the original constraint so that the gcd of the non-protected variables is 1 (after normalization).When we report a projection, any substitutions involving protected variables are translated back intoequality constraints.4.2 Projection with wildcardsAs a modi�cation of the approach described above, we could refuse to perform inexact reductions whileperforming projection. The advantage of this is that we only report one projected problem as our result.The disadvantage is that the projected problem has additional variables (that should be treated as wildcards)In the applications we have found for projection, we have found projection with wildcards to be moreuseful than producing multiple results.5 Using projectionThis projection technique can be used for several purposes. We describe some that have occurred to us.5.1 Dependence direction and distance vectorsOne problem with some dependence analysis methods is that they are only \yes/no" decision methods.In compilers and other program structuring tools, we need to know the data dependence direction vector[Wol82] and data dependence distance vector [KMC72, Mur71] describing the relation between the iterationsin which the conicting reads/writes occur. One way to determine dependence direction vectors is to make3L calls to a decision procedure (where L is the number of loops surrounding both references). In order tobe competitive, a dependence analysis method must be able to short-cut this enumeration (for example, see[BC86, GKT91]). 9

In our method, we take the integer programming problem for determining if any dependence existsbetween two references, and introduce a new variable for the dependence distance in each shared loop(along with the appropriate equality constraints to de�ne the value of the variable). We then project theproblem onto the dependence distance variables. The projected system may be a better way to describedependence conditions than dependence directions and distances; it accurately describes more informationthan is typically contained in dependence direction vectors (such as when a dependence distance is alwaysgreater than 5).Alternatively, we can use the projected set of constraints to determine e�ciently the dependence directionand distance vectors. We scan the dependences, and infer as much information as possible from constraintsinvolving a single dependence distance variable. We next unprotect any dependence distance variable thatis uncoupled or who's sign is completely determined. If coupled variables were unprotected, we project theproblem onto the protected variables and repeat this process. Otherwise, we choose one protected variableand generate the subproblems for two or three possible signs for the variable (negative, zero or positive),and recursively explore those.For example, the dependence distances for the following array pairfor j = 0 to 20 dofor i = max(-j,-10) to 0 dofor k = max(-j,-10)-i to -1 dofor l = 0 to 5 doa(l,i,j) = = a(l,k,i+j)simplify to:0 � �j � 10�i+�j � 10�i+ 2�j � 103�j + 2�i+�k � 202�j + 2�i+�k � 101 � �j +�i+ k1 � �j +�i�l = 0We �rst unprotect �l, and then consider sign(�j) = 0 and sign(�j) = 1. Considering sign(�j) = 0 gives:1 � �i � 10; 1 � �k +�i;�k+ 2�i � 10We would then unprotect �i (since we know sign(�i) = 1) and project the problem, obtaining �8 ��k � 8, which gives a direction vector of (=; <; �;=).Returning to consideration of sign(�j) = 1 produces:�8 � �i � 8�8 � �k � 8�8 � 2�k +�i�9 � �k +�i�k + 2�i � 8�k ��i � 17Recursively analyzing the possibilities for the sign of �i produces direction vectors of (<;>; �;=), (<;=; �;=) and (<;<; �;=). This example is the most di�cult example seen in our testing, requiring 2492 �secsto analyze. 10

5.2 Run-time checks and Compile-time assertionsBy projecting a problem onto the variables corresponding to symbolic constants that cannot be determinedat compile-time, we can produce a predicate that will allow us to determine at run-time if a particulardependence or dependence direction exists (as described by [KK91]). Alternatively, at compile time wecould ask the user if the predicate is true.5.3 Summarizing Array ReferencesIn interprocedural analysis, we need to characterize the portions of an array that may be a�ected by aprocedure call [Tri85, BK89, HK90, IJT91]. We can use the Omega test to obtain an accurate summary ofthe locations of an array that might be a�ected by a single assignment statement. We do this by settingup an integer programming problem involving variables for each array index and all loop variables andsymbolic constants, and adding appropriate constraints for the loop bounds, subscript expressions, and soon. Projecting this problem onto the variables for the array indices and the symbolic constants gives anaccurate summary of the locations of the array a�ected by the assignment statement. The summary is notlimited to convex polyhedron. The projected problem will have solutions only for those locations that canactually be changed. Details such as strides are accurately represented.The Omega test can easily be used to determine when two regions intersect. With more work, the Omegatest can be used to check if one region is a subset of another. It is unclear how to use the Omega test to mergea�ected regions; however, the Omega test could be used to convert exact a�ected regions into approximatea�ect regions (such as described by [BK89, HK90]) and then those regions could be merged.5.4 Determining Loop BoundsThe Omega test can be used to determine appropriate loop bounds when interchanging non-rectangularloops. This use of integer programming and projection to perform this is described by [AI91].6 PerformanceWe have implemented the Omega test in Wolfe's tiny tool [Wol91]. We handle min and max expressionsin loop bounds and symbolic constants, and compute exact sets of direction vectors (as opposed to thecompressed direction vectors normally generated by tiny). We applied this tool to the programs 1, 3, 4,5 and 7 of the NASA NAS benchmark suite and to all the tiny source �les distributed with tiny, (whichinclude Cholesky decomposition, LU decomposition, several versions of wavefront algorithms, and severalmore contrived examples), as well as several of our own test programs. Programs 2 and 6 of the NASbenchmark make extensive use of index arrays. Since we do not provide special treatment for index arrays,we decided that it would be misleading to include them. The analysis of array pairs that have di�erentconstant subscripts (e.g., a(4) and a(5)) are not included in the �gures reported here; those cases aredetected while scanning the subscripts (thus both avoiding the analysis time and the time required to scanthe loop bounds). Standard optimizations such as induction variable recognition and forward substitutionwere performed by hand. We did not compute input dependences (an input dependence is a dependencebetween two reads of the same location of an array) or dependences between array pairs that did not shareat least one common loop.We timed the Omega test on a Decstation 3100, a 12 MIPS workstation based on a MIPS R2000 CPU.Shown below are our results on the time per array pair required to analyze programs in the NASA NASbenchmark: 11

10025050010002000
50 75 100 150

analysistime(�secs)
copy time (�sec) simpleregular 33333 33 3333 333333 3333333333 3 33 333 33333 3333 33333 3333 333 33 3

convex 4
4 44 44 444 44 4

complex 1
11

Figure 2: Omega Test Performance
12

Program average time 95%-tile time#1: MXM 275 �secs 316 �secs#3: CHOLSKY 504 �secs 1024 �secs#4:BTRIX 250 �secs 367 �secs#5:GMTRY 191 �secs 534 �secs#7:VPENTA 129 �secs 204 �secsThe third program of the NAS benchmark (CHOLSKY) is substantially more complicated that almostall real-world FORTRAN code, involving loops nested four deep, triplely subscripted arrays and groups of 3coupled loop indices. We feel con�dent that it represents a good \worst-case example" for analyzing dustydeck FORTRAN code (excluding treatment of index arrays).Our results on individual array pairs from all programs tested are shown in Figure 2. Each point is thetiming result for a single array pair. To present the results in a somewhat machine independent fashion, theresults are plotted on a log/log graph of analysis time vs. copying time (the time required just to copy theproblem). All times were randomly perturbed by �1=2�sec to spread out overlapping points. The diagonallines are drawn at analysis time = 8 � copying time, 4 � copying time and 2 � copying time.The analysis time is the total time required to analyze the array pair, calculate the appropriate direc-tion vectors and add the dependences to dependence graph, excluding the time required to scan the arraysubscripts and loop bounds and build the constraints that describe the dependence between the array pairs.Across a range of test programs, we found the following break-down for how time was spent by theOmega test: about 1/2 the time was spent dealing with inequality constraints, about 1/4 of the time wasspent on dealing with equality constraints, and 1/4 of the time was spent examining projected constraintsto construct direction vectors. None of our test cases required inexact Fourier-Motzkin variable elimination.To analyze our results, the set of constraints describing the dependence distances for each array pair wereanalyzed to remove any redundant constraints (this is not cost-e�ective normally). Based on the simpli�edconstraints, each array pair was classi�ed as follows:simple Any case that does not involve coupled dependence distances.regular A case where dependence distances are coupled, but all inequality constraints have unit coe�cients(for example, f�i � 0;�i+�j > 0g).convex A case where the inequality constraints de�ne a convex region but at least one constraint has anon-unit coe�cient (for example, f0 � �j � 10; 0 � �i+�j � 10;�i+2�j � 10g { the last constraintmakes this non-regular).complex A case where the inequality constraints de�ne a non-convex region. We only encountered twosuch cases, one shown below and another one identical except that the lower bound of the i loop is 2.for i = 1 to 10 dofor j = 0 to 4 doa(i-j) = a(j)endforendforThe ow/anti dependence distances for the example above are all the distances that satisfy f�4 ��j � 4;�7 � �i��j;�i+�j � 10;�i � 9g except for f�i = 9;�j = 0g.Maydan, Hennessy and Lam [MHL91] use memoization to obtain better performance. Memoization couldbe added to the Omega test. However, the cost of computing a hash key and verifying a cache hit would beabout 2-4 times the copying cost for a problem, and therefore adding caching to the Omega test would notproduce signi�cant savings for typical, simple cases and may produce little or no overall speed improvement.We found that the cost of scanning array subscripts and loop bounds to build a dependence problem wastypically 2-4 times the copying cost for the problem. Thus, for many array pairs the cost of building the13

dependence problem was nearly as large or even larger than the time spent analyzing the resulting problem.We have not spent much e�ort trying to improve the performance of the code that builds dependenceproblems. However, it is di�cult to imagine building a dependence problem in much less than twice the timerequired to copy the problem. This suggests that for the majority of array pairs, using a dependence analysisalgorithm signi�cantly faster than the Omega test would not lead to signi�cant overall speed improvements.7 Polynomial time boundsWe �rst describe some general time bounds on parts of the Omega test, and then describe polynomial timebounds for cases where other polynomial time algorithms are accurate. In this section, we use m to denotethe number of constraints and n to denote the denote the number of variables.The time taken by the methods in Section 2.2 to eliminate one equality constraint is O(mn log jCj) worst-case time, where C is coe�cient with the largest absolute value in the constraint. This cost arises from thefact that we might have to apply the perform log jCj substitutions before we can eliminate the constraint,and performing a substitution takes O(nm) time.Eliminating unbound variables takes O(mnp) worst-case time, where p is the number of passes requiredto eliminate all the variables that become unbound. At least one variable is eliminated in each pass exceptthe last.Normalizing the constraints and checking for directly contradictory or redundant constraints requiresO(mn) expected time (the time bound is only expected, not worst-case, because hashing is used).Producing the subproblems resulting from Fourier-Motzkin variable elimination takes time proportionalto the size of the subproblems produced.7.1 Special casesDuring normalization, the Omega test checks to see if any variables are involved in constraints with othervariables. If not (and checking for contradictory constraint pairs has not produced a contradiction), weknow the problem has solutions and do not need to perform any additional computation. This applies i�the \Single Variable Per Constraint" (SVPC) test [MHL91] can be applied, which was found [MHL91] to beapplicable in 1/3 of the unique cases found in the Perfect Club Benchmark (a higher percentage if duplicatecases were considered separately).The \Acyclic Test" [MHL91] can be applied in exactly those cases that the Omega test can resolvejust by eliminating unbound variables and performing exact projections that do not increase the numberof constraints, a process that takes O(mn2) worst-case time. They found [MHL91] that this test could beapplied in over 1/4 of the unique cases encountered.The \Loop Residue" algorithm [Sho81] can be applied in just those cases where each constraint is of theform xi � xj + c, xi � c, or c � xi. In a set of constraints with this property, Fourier-Motzkin variableelimination is exact and preserves this property. On n variables, there can be at most n2 + n constraints ofthis form after eliminating redundant pairs. Thus, the Omega test will take O(n3) time to resolve a set ofconstraints that can be solved by the Loop Residue algorithm. Maydan, Hennessy and Lam [MHL91] foundthat the Loop Residue algorithm could be applied in 1/4 of the unique cases encountered in their study ofthe Perfect Club benchmark.Maydan, Hennessy and Lam found that 91% of the cases they encountered could be determined byconstant tests and Banerjee's Generalized GCD tests. Of the remaining 9% of the cases, they found thattheir SVPC, Acyclic or Loop Residue tests could be applied in 86% of the unique cases.The Delta test [GKT91] works by searching for dependence distances that can be easily determined, andthen propagating that information with the intent of making it possible to easily determine other dependencedistances precisely. In the cases where their algorithm can determine a dependence distance without the useof MIV tests, the Omega test also will determine it e�ciently (and in polynomial time) by a combinationof solving equality constraints, tightening inequality constraints and converting tight inequality constraints14

into equality constraints. Since the Omega test treats the dependence analysis problem as a single integerprogramming problem, it automatically achieves the propagation e�ects of the Delta test. Therefore, anydependence analysis problem that can be solved by the Delta test without resorting to exponential algorithmsor approximate methods (i.e., resorting to what they refer to as MIV tests) can be solved in polynomial timeby the Omega test.In their study of the RiCEPS, Perfect, SPEC benchmarks and LINPACK and EISPACK, they foundthat 97% percent of the cases could be solved without requiring the use of MIV tests.Since the Omega test can solve e�ectively and in (e�ective) polynomial time any problem that be solvedby any combination of the Single Variable Per Constraint test, the Acyclic test, the Loop Residue test andthe Delta test, we expect that it should be able to solve more problems exactly and e�ciently than any oneof them alone.8 Related work on Exact Dependence AnalysisThe Constraint-Matrix test [Wal88] makes use of the simplex algorithm modi�ed for integer programming.The Constraint-Matrix test can fail to terminate and it is not clear how e�ciently it works in practice.Lu and Chen describe [LC90] an integer programming algorithm for dependence analysis. However, theirmethod appears prohibitively expensive for use in a production compiler.Triolet [Tri85] used Fourier-Motzkin techniques for representing a�ected array regions in interproceduralanalysis. Triolet found Fourier-Motzkin techniques to be expensive (22 to 28 times longer than using simplermethods for representing a�ected array regions).Several implementations of Fourier-Motzkin variable elimination have been described for use in depen-dence analysis. The Power test described by Wolfe and Tseng [WT92] combines the Banerjee's GeneralizedGCD test, constraint tightening, and Fourier-Motzkin variable elimination. They take no special action whenperforming an inexact projection except to ag the result as possibly being conservative. Fourier-Motzkinelimination is used by Maydan, Hennessy and Lam [MHL91] if none of the other methods they use givean exact answer. They use back substitution to determine a sample solution. If the sample solution is notintegral, they suggest the use of branch and bound methods to verify or disprove the existence of integersolutions (they have not found the need to implement this thus far). Both Wolfe and Tseng [WT92] and May-dan, Hennessy and Lam [MHL91] suggest that due to the expense of Fourier-Motzkin variable elimination,simpler tests should be used instead in situations where they are known to be accurate.Ancourt and Irigoin [AI91] describe the use of Fourier-Motzkin variable elimination so as to determineloop bounds for iterating over an iteration space described by a set of linear inequalities (using projectionas described in Section 4). Their work has signi�cant overlaps with ours.When performing what is apparently an inexact projection, they �rst perform a more elaborate processto check if the projection is indeed inexact. They consider a concept similar to our dark shadow, exceptthey use force the di�erence between the upper and lower bounds to be at least (a � 1)b, as opposed to(a� 1)(b� 1). Since our de�nition is safe and makes the dark shadow larger, it is the preferred choice.They do not actually generate the dark shadow as a separate problem. Rather, they check to see if theconstraints in the dark shadow are redundant with respect to the real shadow. If they are, then the darkshadow and real shadow are identical, and the elimination is exact.If the projection is not exact, then they add pseudo-linear constraints to the real shadow to obtain theinteger shadow. These pseudo-linear constraints appear useful and appropriate for determining loop bounds.However, they are di�cult to use for determining the existence of integer solutions.Ancourt and Irigoin [AI91] do not give any performance data for their algorithm.A recent report [IJT91] on the PIPS project mentions that Fourier-Motzkin variable elimination is usedto analyze dependences (based on the work described in [AI91]). The methods used are not fully described,but the basic framework appears similar to that described in Section 5.1. It is not clear how the pseudo-linear constraints of [AI91] are handled. They point out that in many simple cases, Fourier-Motzkin variable15

elimination is fast and e�cient. They state that using integer programming techniques for dependenceanalysis incurs a very high cost (that is acceptable since PIPS is not a production system). They also statethat in their implementation dependence testing does not take a noticeable amount of time compared withthe whole parallelization process.9 Source code availabilityA C language implementation of the Omega test is freely available for anonymous ftp from ftp.cs.umd.eduin directory pub/omega. Files available include a stand-alone version of the Omega test and a version ofWolfe's tiny tool [Wol91] extended to use the Omega test.10 ConclusionsConservative dependence analysis methods may be e�cacious for the demands of vectorizing compilers.Transforming programs so as to make e�cient use of massively parallel SIMD computers is a much moredemanding task. Also, programs that have undergone transformations such as loop skewing and loop in-terchange present analysis problems substantially more di�cult than encountered in typical dusty-deckFORTRAN.Our studies have convinced us that the Omega test is a fast and practical method for performing datadependence analysis that is not only adequate for problems encountered in vectorizing FORTRAN code, butalso for the demands of more sophisticated program transformation tools.Performing projection of integer programming problems is an exciting concept. We have discussed howit can be used to determine e�ciently information about dependence direction and distance vectors, as wellfor several other uses. It can make it much easier to describe and build program analysis and transformationtools. For example, it can be used for determining loop bounds after loop interchange [AI91], and we havemade extensive use of it in work that considers loop transformations in a uniform manner [Pug91].11 AcknowledgementsThanks to everyone who gave me feedback on this work, especially Michael Wolfe and the anonymous refereewho provided detailed comments, as well as to my research group (Dave Wonnacott, Udayan Borkar andWayne Kelly). This work is supported by NSF grants CCR-8908900 and CCR-9157384 and a PackardFellowship.12 Author's BiographyDr. William Pugh received his Ph.D. from Cornell in 1988. He has done research in the areas of incrementalcomputation, randomized data structures, implementation of multiple inheritance, programming languagesfor hard real-time systems, and compilers for supercomputers. In 1991, he received a Presidential YoungInvestigator Award and a Packard Fellowship. Dr. Pugh is currently an assistant professor at the Universityof Maryland, College Park, in the Department of Computer Science and Institute for Advanced ComputerStudies.13 CR CategoriesD.3.4 Optimizing Compilers 16

References[AI91] Corinne Ancourt and Fran�cois Irigoin. Scanning polyhedra with do loops. In Proc. of the Third ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 39{50, April 1991.[AK87] J. R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM Transactionson Programming Languages and Systems, 9(4):491{542, October 1987.[All83] J. R. Allen. DependenceAnalysis for SubscriptedVariables and Its Application to Program Transformations.PhD thesis, Rice University, April 1983.[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Boston, MA, 1988.[BC86] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In Proceedings of theSIGPLAN '86 Symposium on Compiler Construction, Palo Alto, CA, July 1986.[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in parallelism en-hancing transformations. In SIGPLAN Conference on Programming Language Design and Implementation,'89, June 1989.[DE73] G.B. Dantzig and B.C. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial Theory(A), 14:288{297, 1973.[GKT91] G. Go�, Ken Kennedy, and Chau-Wen Tseng. Practical dependence testing. In ACM SIGPLAN'91Conference on Programming Language Design and Implementation, 1991.[HK90] Paul Havlak and Ken Kennedy. Experience with interprocedural analysis of array side e�ects. In Super-computing '90, 1990.[HP90] M. Haghighat and C. Polychronopoulos. Symbolic dependence analysis for high performance parallelizingcompilers. In Proceedings of the Third Workshop on Languages and Compilers for Parallel Computing,August 1990.[IJT91] Fran�cois Irigoin, Pierre Jouvelot, and R�emi Triolet. Semantical interprocedural parallelization: An overviewof the pips project. In Proc. of the 1991 International Conference on Supercomputing, pages 244{253, June1991.[KK91] D. Klappholz and X. Kong. Extending the Banerjee-Wolfe test to handle execution conditions. TechnicalReport 9101, Dept. of EE/CS, Stevens Institute of Technology, 1991.[KMC72] D. Kuck, Y. Muraoka, and S. Chen. On the number of operations simultaneously executable in FORTRAN-like programs and their resulting speedup. IEEE Transactions on Computers, 1972.[LC90] L. Lu and M. Chen. Subdomain dependence test for massive parallelism. In Proceedings of Supercomputing'90, New York, NY, November 1990.[LT88] A. Lichnewsky and F. Thomasset. Introducing symbolic problem solving techniques in the dependencetesting phases of a vectorizer. In Proceedings of the Second International Conference on Supercomputing,St. Malo, France, July 1988.[LY90] Z. Li and P. Yew. Some results on exact data dependence analysis. In D. Gelernter, A. Nicolau, andD. Padua, editors, Languages and Compilers for Parallel Computing. The MIT Press, 1990.[LYZ89] Z. Li, P. Yew, and C. Zhu. Data dependence analysis on multi-dimensional array references. In Proceedingsof the 1989 ACM International Conference on Supercomputing, June 1989.[MHL91] D. E. Maydan, J. L. Hennessy, and M. S. Lam. E�cient and exact data dependence analysis. In ACMSIGPLAN'91 Conference on Programming Language Design and Implementation, pages 1{14, June 1991.[Mur71] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. PhD thesis, Dept. of Computer Science,University of Illinois at Urbana-Champaign, February 1971.[Pug91] William Pugh. Uniform techniques for loop optimization. In 1991 International Conference on Supercom-puting, pages 341{352, Cologne, Germany, June 1991.[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769{779,October 1981.[Tri85] R. Triolet. Interprocedural analysis for program restructuring with Parafrase. CSRD Rpt. 538, Dept. ofComputer Science, University of Illinois at Urbana-Champaign, December 1985.17

[Wal88] D. Wallace. Dependence of multi-dimensional array references. In Proceedings of the Second InternationalConference on Supercomputing, St. Malo, France, July 1988.[Wol82] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, Dept. of Computer Science,University of Illinois at Urbana-Champaign, October 1982.[Wol89] Michael Wolfe. Optimizing Supercompilers for Supercomputers. Pitman Publishing, London, 1989.[Wol91] Michael Wolfe. The tiny loop restructuring research tool. In Proc of 1991 International Conference onParallel Processing, pages II{46 { II{53, 1991.[WT92] M. J. Wolfe and C. Tseng. The Power test for data dependence. IEEE Transactions on Parallel andDistributed Systems, 3(5):591{601, September 1992.

18

