
Improvement in a Lazy Context:An Operational Theory for Call-By-NeedAndrew MoranOregon Graduate InstituteandDavid SandsChalmers University of TehnologyThe standard implementation tehnique for lazy funtional languages is all-by-need, whih en-sures that an argument to a funtion in any given all is evaluated at most one. A signi�antproblem with all-by-need is that it is diÆult | even for ompiler writers | to predit the e�etsof program transformations. The traditional theories for lazy funtional languages are based onall-by-name models, and o�er no help in determining whih transformations do indeed optimizea program.We present an operational theory for all-by-need, based upon an improvement ordering onprograms: M is improved by N if in all program-ontexts C, when C[M ℄ terminates then C[N ℄terminates at least as heaply.We show that this improvement relation satis�es a \ontext lemma", and supports a rih in-equational theory, subsuming the all-by-need lambda aluli of Ariola et al. [Ariola et al. 1995℄.The redution-based all-by-need aluli are inadequate as a theory of lazy-program transforma-tion sine they only permit transformations whih speed up programs by at most a onstant fator(a laim we substantiate); we go beyond the various redution-based aluli for all-by-need byproviding powerful proof rules for reursion, inluding syntati ontinuity | the basis of �xed-point-indution style reasoning, and an improvement theorem, suitable for arguing the orretnessand safety of reursion-based program transformations.
1. INTRODUCTIONCall-by-need optimises all-by-name by ensuring that when evaluating a given fun-tion appliation, arguments are evaluated at most one. All serious ompilers forlazy funtional languages implement all-by-need evaluation. Lazy funtional lan-guages are believed to be well-suited to high-level program transformations, andsome state-of-the-art ompilers take advantage of this by applying a myriad oftransformations and analyses during ompilation [Peyton Jones and Santos 1998℄.However, it is notoriously diÆult, even for those with extremely solid intuitionsName: Andrew MoranAÆliation: Department of Computer Siene and Engineering, Oregon Graduate Institute ofSiene and TehnologyAddress: moran�se.ogi.eduName: David SandsAÆliation: Department of Computing Siene, Chalmers University of Tehnology and Universityof G�oteborgAddress: dave�s.halmers.se



2 � A. K. Moran and D. Sandsabout all-by-need, to predit the e�ets of a program transformation on the run-ning time. Sine traditional theories for lazy languages are based upon all-by-name models, they give no assurane that a given transformation doesn't lead toan asymptoti slow-down.Call-by-need Caluli. The all-by-need lambda aluli [Ariola et al. 1995; Ariolaand Felleisen 1997; Maraist et al. 1998℄ o�er a solution to some of these problems.By permitting fewer equations than all-by-name, these aluli enable term-levelreasoning without ignoring the key implementation issues underpinning all-by-need. However, they do have some serious limitations. All of the equations inthe aluli are, by de�nition, symmetri. This means that ertain useful loaltransformations annot be present. In fat, the all-by-need aluli are limited totransformations whih hange running-times by at most a onstant-fator (see se-tion 7), independent of the ontext in whih the programs are used. Even withinthe on�nes of onstant-fator transformations there are signi�ant shortomings,sine none of the aluli have proof rules for reursion; we believe that, as a onse-quene, almost no interesting equivalenes between reursive programs | suh asthe fusion of reursive funtions (e.g. via deforestation) | an be justi�ed in thealuli.Our Approah. We aim to go beyond these limitations by re�ning the notionof observational approximation between terms, and by establishing algebrai laws(ontaining the laws of the all-by-need aluli as theorems) and reursion prini-ples for that approximation relation. A key result of [Ariola et al. 1995℄ is that thestandard observational equivalene and approximation relations, in whih one onlyobserves termination, annot distinguish all-by-need evaluation from all-by-name.To obtain an operational theory whih retains the omputational distintions be-tween name and need, we also observe the ost of evaluation, in terms of a high-levelmodel of omputation steps. Our observational approximation relation, improve-ment, is de�ned with respet to a �xed operational semantis by saying that: Mis improved by N if in all program-ontexts C, when C[M ℄ terminates then C[N ℄terminates at least as fast.Summary of Results. We develop an operational theory for a all-by-need lambdaalulus with reursive lets, onstrutors, and ase expressions. The theory is basedupon an abstrat mahine semantis for all-by-need, and is ost-sensitive, andtherefore reets the omputational distintions between all-by-name and all-by-need. We show that the improvement relation has a rih inequational theory,validating the redution rules of the all-by-need aluli. Most importantly, it sup-ports powerful indution priniples for reursive programs. Some spei� originalresults are:|A ontext lemma for all-by-need, meaning we an establish improvement byonsidering just omputation in a restrited lass of ontexts, the evaluationontexts;|A rih inequational theory, the tik algebra, whih subsumes the all-by-needaluli;|A syntati ontinuity property whih haraterises improvement of a reursivefuntion in terms of its �nite unwindings, and forms the basis of �xed-point



An Operational Theory for Call-By-Need � 3indution style proofs, and|Two powerful proof tehniques, the improvement theorem and improvement in-dution, whih are partiularly well-suited to inferring the orretness and safetyof reursion-based program transformations whih proeed by loal improve-ments.|A general method for establishing laws, properties, and proof rules whih gener-alises the ontext lemma, known as open uniform omputation.Overview. The paper may be split into two separate parts. The �rst half presentsthe operational theory and ontains all of the major results, mostly stated withoutproof. The seond half presents the tehnial mahinery behind those results, andproves them.We begin the �rst half of the paper with a disussion of related work in setion 2.Setion 3 then presents the operational semantis (Sestoft's \mark 1" abstratmahine for laziness). A disussion of the omplexity of omputation follows insetion 4, where we show that the number of heap aesses during a omputationis a reasonable measure of ost. This is used as the basis for a ontextual de�nitionof improvement and ost equivalene, and the ontext lemma is stated.The inequational theory, known as the tik algebra, is then presented in setion 6,and the relative power of the algebra and the all-by-need aluli is disussed insetion 7. Syntati ontinuity is presented in setion 8 and used to show thatan unwinding �xed-point ombinator is improved (up to a onstant fator) by aknot-tying �xed-point ombinator. We also present a syntati variant of �xed-point fusion for all-by-need, whih an be established via syntati ontinuity. Theimprovement theorem is introdued in setion 9, along with improvement indutionand examples of their use. A more substantial example is presented in setion 10.The seond half of the paper is ontained in setion 11. We generalise the notionof program ontexts to on�gurations, and extend redution to open on�gurationontexts. This allows us to establish open uniform omputation, a general tehniqueused to prove not only the ontext lemma, but also many of the more diÆultalgebrai laws, and the various indution rules.Finally, setion 12 onludes, and we disuss of future avenues of researh.2. RELATED WORKImprovement theory and the improvement theorem were originally developed inthe all-by-name setting [Sands 1991; Sands 1996℄, and generalised to a variety ofall-by-name and all-by-value languages in [Sands 1997℄. Whether this programmeould be arried out in a all-by-need setting has long been an open question. Aninspiration whih gave us on�dene in the possibility of a tratable improvementtheory for all-by-need is the all-by-need lambda alulus presented by Ariola andFelleisen, and Maraist, Odersky and Wadler [Ariola et al. 1995; Ariola and Felleisen1997; Maraist et al. 1998℄. For us, the signi�ane of the all-by-need aluli is thatthey are based on redution (and hene equations) between terms in the sourelanguage (see �gure 7), rather than, say, term-graphs, abstrat-mahine on�gura-tions, or terms plus expliit substitutions. The redution rules are onuent, andenjoy a deterministi notion of standard redution. Related onepts appear inother approahes, in partiular in the study of so-alled optimal redutions e.g.,



4 � A. K. Moran and D. Sands[Field 1990; Maranget 1991; Yoshida 1993℄.One limitation of the original work by Ariola et al. is in the treatment of reursiveyles ; na��ve extension of the aluli to deal with reursive lets leads to a loss ofonuene [Je�rey 1993; Ariola and Klop 1997℄. The original all-by-need alulusonsiders reursive lets only briey. To reover onuene, one an simply disallowredutions under yles, as in e.g., [Benaissa et al. 1996; Niehren 1996℄. Ariolaand Blom give a full study of yli reursion in [Ariola and Blom 1997; Ariolaand Blom 1998℄, and show that an approximation to onuene an be obtained byequating terms with the same in�nite normal-form. Their �Æshare alulus an beseen as the natural suessor to the all-by-need aluli.In general, redution aluli appear to be a good vehile for exploring the lan-guage design spae with regard to all-by-need-like features. Rose's work e.g. [Rose1996; Benaissa et al. 1996℄ exempli�es this approah in an elegant ombination ofexpliit substitution and ombinatory redution systems. Our view is omplemen-tary to the rewriting approahes: one a partiular operational semantis (redutionstrategy) has been �xed, one an go beyond the on�nes of the aluli by developingan operational theory.Apart from the rewriting-based approahes, there have been a few attempts togive a high-level semantis to all-by-need e.g. [Josephs 1989; Je�rey 1994; Seamanand Purushothaman Iyer 1996; Launhbury 1993; Sestoft 1997℄. Launhbury's nat-ural semantis, and Sestoft's abstrat mahine(s) have been adopted by a number ofresearhers as the formal de�nition of all-by-need e.g. [Turner et al. 1995; Hughesand Moran 1995; Sansom and Peyton Jones 1997; Gustavsson 1998℄. Sine it ap-pears to be a non-ontroversial hoie, we adopt Sestoft's mahine | essentiallya Krivine-mahine [Curien 1991℄ with updating of the heap | as the operationalmodel underpinning our theory. As others have observed (e.g. [Pitts 1997a℄), work-ing with an abstrat mahine rather than an indutive semantis also has bene�tsin proofs about omputations (examples of this may be found in setion 11).The tehniques used in this paper, open uniform omputation in partiular, haveproven quite robust. They have been applied suessfully to a non-deterministiall-by-need language [Moran et al. 1999℄, and in the development of an algebrafor showing when transformations are spae-safe optimisations in the presene ofsharing [Gustavsson and Sands 1999℄.
3. THE OPERATIONAL SEMANTICSOur language is an untyped lambda alulus with reursive lets, strutured data,and ase expressions. We work with a restrited syntax in whih arguments to



An Operational Theory for Call-By-Need � 5funtions (inluding onstrutors) are always variables:x; y; z 2 Var 2 ConL;M;N ::= xj �x:Mj M xj let f~x = ~Mg in Nj  ~xj ase M of fi ~xi � NigV;W ::= �x:Mj  ~xThe syntati restrition is now rather standard, following its use in ore languageof the Glasgow Haskell ompiler, e.g., [Peyton Jones et al. 1996; Peyton Jones andSantos 1998℄, and in [Launhbury 1993; Sestoft 1997℄.All onstrutors have a �xed arity, and are assumed to be saturated. By  ~xwe mean  x1 � � � xn. The only values are lambda expressions and fully-appliedonstrutors. Throughout, x; y; z, and w will range over variables,  over onstrutornames, and V and W over values. We will writelet f~x = ~Mg in Nas a shorthand for let fx1 = M1; : : : ; xn = Mng in Nwhere the ~x are distint, the order of bindings is not syntatially signi�ant, andthe ~x are onsidered bound in N and the ~M (so our lets are reursive). Similarlywe write ase M of fi ~xi � Nigfor ase M of f1 ~x1 � N1j � � � jm ~xm � Nmg:where eah ~xi is a vetor of distint variables, and the i are distint onstrutors.In addition, we will sometimes write alts as an abbreviation for ase alternativesfi ~xi � Nig.For examples, working with a restrited syntax an be umbersome, so it issometimes useful to lift the restrition. Where we do this it should be taken thatMN � let fx = Ng in M x; x freshwhenever N is not a variable. Similarly for onstrutor expressions.The only kind of substitution that we onsider is variable for variable, with �ranging over suh substitutions. The simultaneous substitution of one vetor ofvariables for another will be writtenM [~y=~x℄, where the ~x are assumed to be distint(but the ~y need not be).3.1 The Abstrat MahineThe semantis presented in this setion is essentially Sestoft's \mark 1" abstratmahine for laziness [Sestoft 1997℄. In that paper, he proves his abstrat mahine



6 � A. K. Moran and D. Sandsh�fx = Mg; x; S i ! h�; M; #x : S i (Lookup)h�; V; #x : S i ! h�fx = V g; V; S i (Update)h�; M x; S i ! h�; M; x : S i (Unwind)h�; �x:M; y : S i ! h�; M [y=x℄; S i (Subst)h�; ase M of alts; S i ! h�; M; alts : S i (Case)h�; j ~y; fi ~xi � Nig : S i ! h�; Nj [~y=~xj ℄; S i (Branh)h�; let f~x = ~Mg in N; S i ! h�f~x = ~Mg; N; S i ~x  dom(�; S) (Letre)Fig. 1. The abstrat mahine semantis for all-by-need.semantis sound and omplete with respet to Launhbury's natural semantis, andwe will not repeat those proofs here.Transitions are over on�gurations onsisting of a heap, ontaining bindings, theexpression urrently being evaluated, and a stak. The heap is a partial funtionfrom variables to terms, and denoted in an idential manner to a olletion of let-bindings. The stak may ontain variables (the arguments to appliations), asealternatives, or update markers denoted by #x for some variable x. Update markersensure that a binding to x will be rereated in the heap with the result of the urrentevaluation; this is how sharing is maintained in the semantis.We write h�; M; S i for the abstrat mahine on�guration with heap �, ex-pression M , and stak S. We denote the empty heap by ;, and the addition of agroup of bindings ~x = ~M to a heap � by juxtaposition: �f~x = ~Mg. The stakwritten b : S will denote the a stak S with b pushed on the top. The empty stakis denoted by �, and the onatenation of two staks S and T by ST (where S ison top of T ).We will refer to the set of variables bound by � as dom�, and to the set ofvariables marked for update in a stak S as domS. Update markers should bethought of as binding ourrenes of variables. A on�guration is well-formed ifdom� and domS are disjoint. We write dom(�; S) for their union. For a on�gura-tion h�; M; S i to be losed, any free variables in �, M , and S must be ontainedin dom(�; S). For sets of variables P and Q we will write P  Q to mean that Pand Q are disjoint, i.e., P \Q = ;. The free variables of a term M will be denotedFV (M); for a vetor of terms ~M , we will write FV ( ~M).The abstrat mahine semantis is presented in �gure 3.1; we impliitly restritthe de�nition to well-formed on�gurations. There are seven rules, whih angrouped as follows. Rules (Lookup) and (Update) onern evaluation of variables.To begin evaluation of x, we remove the binding x = M from the heap and startevaluating M , with x, marked for update, pushed onto the stak. Rule (Update)applies when this evaluation is �nished, and we may update the heap with the newbinding for x.Rules (Unwind) and (Subst) onern funtion appliation: rule (Unwind) pushesan argument onto the stak while the funtion is being evaluated; one a lambdaexpression has been obtained, rule (Subst) retrieves the argument from the stakand substitutes it into the body of that lambda expression.



An Operational Theory for Call-By-Need � 7Rules (Case) and (Branh) govern the evaluation of ase expressions. Rule(Case) initiates evaluation of the ase expression, with the ase alternatives pushedonto the stak. Rule (Branh) uses the result of this evaluation to hoose one ofthe branhes of the ase, performing substitution of the onstrutor's argumentsfor the branh's pattern variables.Lastly, rule (Letre) adds a set of bindings to the heap. The side ondition ensuresthat no inadvertent name apture ours, and an always be satis�ed by a loal�-onversion.3.2 Relating Terms and Con�gurationsWe an translate between on�gurations to terms straightforwardly, by indutionover the stak: transh ;; M; � i =Mtransh f~x = ~Mg; N; � i = let f~x = ~Mg in Ntransh�; M; x : S i = transh�; M x; S itransh�; M; #x : S i = transh�fx =Mg; x; S itransh�; M; alts : S i = transh�; ase M of alts ; S iThe operational semantis tells us how to translate terms into on�gurations. Inthe following lemma, C is a program ontext ontaining zero or more holes. C[M ℄denotes the insertion of M into those holes, yielding another term. (Contexts willbe introdued in more detail in setion 5.)Lemma 3.1. (Translation) For all �, C, S, there exists k > 0 suh that forany M , h ;; transh�; C[M ℄; S i; � i !k h�; C[M ℄; S i:Proof. Simple indution on the size of S. 23.3 ConvergeneAn operational theory relies upon having a useful notion of an observable, that is,a property of losed progams whih may be observed. The simplest observable istermination, or onvergene.Definition 1. (Convergene) For losed on�gurations h�; M; S i,h�; M; S i+n def= 9�; V:h�; M; S i !n h�; V; � i;h�; M; S i+ def= 9n:h�; M; S i+n;h�; M; S i+6n def= 9m:h�; M; S i+m ^ m 6 n:Closed on�gurations whih do not onverge are of three types: they either redueinde�nitely, get stuk beause of a type error, or get stuk beause of a blak-hole (aself-dependent expression as in let x = x in x). All non-onverging on�gurationswill be semantially identi�ed.We will also write M+, M+n and M+6n, identifying losed M with the initialon�guration h ;; M; � i.



8 � A. K. Moran and D. Sands4. COMPLEXITY OF COMPUTATIONThe ost of omputation is what distinguishes all-by-name from all-by-need. Ourstrategy for building an operational theory whih respets this distintion is to ob-serve this ost when omparing terms. Before developing this theory, the questionwhih remains is how one should measure ost. In an attempt to predit atualrunning times, one might assign implementation spei� onstants to eah abstratmahine step. Even if this were possible (we are doubtful, sine most ompil-ers perform a myriad of optimisations), it would lead to a very �ne-grained andimplementation-spei� theory. Instead we work with a more abstrat measure ofost, and aim for a non implementation-spei� theory.In an earlier version of this work [Moran and Sands 1999; Moran and Sands 1998℄for simpliity we hose simply to ount the number of abstrat mahine steps as ourmeasure. It would be unrealisti to assume that abstrat mahine steps ould revealinformation about atual running times, given that we are working with suh a high-level mahine. For whatever ost measure we hoose, the bottom line is whetherit is suÆient to desribe the omplexity of omputation. In other words, themeasure should be within a onstant fator of \atual ost". A reasonable questionis whether eah step of the abstrat mahine an be onsidered implementable inonstant time; we defer disussion of this point to appendix A.We now move to an even leaner notion of ost than abstrat mahine steps. Theaim is to make the notion of ost as simple as possible, but without sari�ingour bottom line | namely that the measure of ost should be within a program-size dependent onstant fator of running-time. It is suÆient to measure ost interms of the number of times the lookup rule is applied. This laim is proven inappendix A.Let us now de�ne the ost of omputation.Definition 2. For losed on�gurations h�; M; S i,h�; M; S i#n def= h�; M; S i+ with n ourrenes of (Lookup)h�; M; S i#6n def= 9m:h�; M; S i#m ^ m 6 n:As with +, we will identify losed M with the initial on�guration h ;; M; � i,writing M#n, and M#6n.To demonstrate the soundness of our ost measure, we argue that(1) the number of abstrat-mahine steps is within a program-size dependent on-stant fator of atual running time of an implementation based on the abstratmahine, and(2) the number of lookup steps is within a program-size-spei� onstant fator ofthe number of abstrat mahine steps.The former is disussed in appendix A, and the latter is formalised in the followingtheorem, the proof of whih may be found in the same appendix.Theorem 4.1. For all s > 0, there exists a linear funtion f suh that for alllosed terms M of size s, M#m =) M+6f(m):



An Operational Theory for Call-By-Need � 9This justi�es the use of the number of lookups as a measure of ost. We an nowde�ne improvement, whih will be based on this measure.5. IMPROVEMENTThe starting point for an operational theory is usually an approximation and anequivalene de�ned in terms of program ontexts. Program ontexts are generallyintrodued as \programs with holes", the intention being that an expression is to be\plugged into" all of the holes in the ontext. The entral idea is that to omparethe behaviour of two terms one should ompare their behaviour in all programontexts.We will use ontexts of the following form:C;D ::= [�℄j xj �x:Cj Cxj let f~x = ~Dg in Cj  ~xj ase C of fi ~xi � DigV;W ::= �x:Cj  ~x:Our ontexts may ontain zero or more ourrenes of the hole, and as usual theoperation of �lling a hole with a term an ause variables in that term to beomeaptured.We de�ne observational approximation and equivalene via ontexts in the stan-dard way [Abramsky and Ong 1993℄.Definition 3. (Observational Approximation) We say that M observa-tionally approximates N , written M �� N , if for all C suh that C[M ℄ and C[N ℄are losed, C[M ℄+ =) C[N ℄+:We say thatM andN are observationally equivalent, writtenM �= N , whenM �� Nand N ��M .We know that �= oinides with its all-by-name ounterpart, so this tells usnothing new. We need to inorporate more intensional information if we are tobuild an operational theory that retains the distintion between name and need.Sine all-by-need may be thought of as an optimisation of all-by-name, a naturalintensional property to ompare is how many redution steps are required for ter-mination. However, theorem 4.1tells us that ounting lookups is in fat suÆient.Reall that we will write M#nto mean that M onverges with a ost of n, where n is the number of lookups thatour during the evaluation of M .Definition 4. (Improvement) We say that M is improved by N , written



10 � A. K. Moran and D. SandsM B� N , if for all C suh that C[M ℄ and C[N ℄ are losed,C[M ℄#n =) C[N ℄#6n:We say that M and N are ost equivalent, written M CB� N , when M B� N andN B�M .This de�nition su�ers from the same problem as any ontextual de�nition: toprove that two terms are related requires one to examine their behaviour in all on-texts. For this reason, it is ommon to seek to prove a ontext lemma [Milner 1977℄for an operational semantis: one tries to show that to prove M observationallyapproximates N , one only need ompare their behaviour with respet to a moretratable set of ontexts.We have established the following ontext lemma for all-by-need:Lemma 5.1. (Context Lemma) For all terms M and N , if for all �; S, andn, suh that h�; M; S i and h�; N; S i are losed,h�; M; S i#n =) h�; N; S i#6nthen M B� N .It says that we need only onsider on�guration ontexts of the form h�; [�℄; S iwhere the hole [�℄ appears only one. This orresponds exatly to a subset of termontexts alled evaluation ontexts, in whih the hole is the subjet of evaluation.We shall make this orrespondene preise in the setion 6.2.Note that the ontext lemma applies to open termsM and N . It is more ommonto restrit one's attention to losed terms, and then show that the preorder inquestion is losed under (general) substitution.5.1 Strong ImprovementThe improvement relation, like the notion of operational approximation whih itre�nes, also inreases the termination of programs, so if M B� N then N may alsoterminate \more often" than M . In the ontext of ompiler optimisations it isnatural to ask for a stronger notion of improvement whih does not permit anyhange in termination behaviour.Definition 5. (Strong Improvement) We say that M is strongly improvedby N , written M Q N , if M B� N ^N ��M:M is strongly improved byN if it is improved byN , andN has idential terminationbehaviour (note that we need only have N ��M in the de�nition sineM B� N =)M �� N).For simpliity of presentation we emphasise improvement rather than strong im-provement. However, almost all the laws and proof rules presented in subsequentsetions also hold for strong improvement, notable exeptions being the \stritnesslaws" onerning 
, the divergent term. The syntati ontinuity proof priniple issound for strong improvement, but degenerates to a trivial rule.The following Hasse-diagram illustrates the relationships between the variousapproximations and equivalenes introdued in this setion:
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��CB�The diagram is a \-semi-lattie of relations on terms. In other words, the greatestlower bound of any two relations in the diagram is equal to their set-intersetion.6. THE TICK ALGEBRAConsider the following improvement:let fx = V g in x B� let fx = V g in V (�)Clearly, for any � and S:h�; let fx = V g in x; S i ! h�fx = V g; x; S i! h�; V; #x : S i! h�fx = V g; V; S iand h�; let fx = V g in V; S i ! h�fx = V g; V; S iso (�) follows from the ontext lemma. But we an say more: let fx = V g in xalways takes exatly two more steps to onverge than let fx = V g in V . Moreimportantly, one of those two steps is always a lookup, inurring ost.If we had some syntati way of introduing ost to the right-hand side, (�)ould be written as a ost equivalene, whih would be preferable, sine it is a moreinformative statement. This motivates the introdution of the \tik", written X,whih we will use to add a unit of ost to a omputation. Now we an write (�) aslet fx = V g in x CB� Xlet fx = V g in VWe introdue the tik as a new syntati onstrut1, with the following transitionrule: h�; XM; S i ! h�; M; S i (Tik )1In earlier work, the tik was de�ned within the language. To do so here, we ould introdue aspurious indiretion, i.e. XM would be de�ned by let fx = Mg in x. However, this needlesslyompliates proofs, sine it hanges the heap.



12 � A. K. Moran and D. Sandswith the further stipulation that we ount ourrenes of both (Lookup) and the(Tik ) transitions when alulating the ost of a ompuation.By de�nition, X adds one unit to the ost of evaluating M without otherwisehanging its behaviour. Note that:M+ () XM+M#n () XM#n+1We will write kXM to mean thatM has been slowed down by k tiks. The followinginferene rule and axiom, known olletively as \tik elimination" are ruial whenestablishing improvement or ost equivalene.XM B� XNM B� N XM B�M (X-elim)Their validity follows from the de�nition of B�.We an easily prove a number of improvements and ost equivalenes modulotik, and we present a seletion of the more useful ones in the following setions.Throughout, we will follow the standard onvention that all bound variables in thestatement of a law are distint, and that they are disjoint from the free variables.Together with (X-elim), the laws presented in �gures 2, 3, 4, 5, and �gure 6 areknown olletively as the tik algebra.6.1 Beta LawsThe �rst set of laws, presented in �gure 2, are important in that they allow us tomimi evaluation within the algebra. (�) is the familiar law for all-by-need betaredution; (ase-�) is the analogous law for ase expressions. To see the validity of(�), note that, for all � and Sh�; (�y:M)x; S i ! h�; �y:M; x : S i! h�; M [x=y℄; S iSine (�y:M)x always redues to M [x=y℄ in two zero ost steps, irrespetive of �and S, the ontext lemma tells us that they are ost equivalent. Many of the lawsin this setion are this easily established.In (value-�), one may replae ourrenes of a variable, whih is bound to somevalue V , with XV . The tik reets the fat that by replaing x with its value, weare short-iruiting a lookup step.(var -�) is a version of (value-�) where x is instead bound to another variable z. Itis an improvement only, beause the speedup ahieved an vary. It an be reversedif we ompensate for the indiretion, as in (var -abs). (var -subst) and (var -expand)are slight variations on (var -�) and (var -abs), respetively, that allow us to replaex with z even in argument positions (not allowed in (var -�) due to the use ofontexts). The proofs of validity of (value-�), (var -�), (var -abs), (var -subst) and(var -expand) rely upon general tehniques that are outlined in setion 11.There are also two derived beta laws, orresponding to unrestrited versions of(�) and (ase-�). We an derive the following ost equivalene:(�x:M)N CB� let fx = Ng in M (�0)



An Operational Theory for Call-By-Need � 13Laws of the Tik AlgebraThroughout, we follow the standard onvention that all bound variables in the statement of a laware distint, and that they are disjoint from the free variables.(�x:M) y CB� M [y=x℄ (�)ase j ~y of fi ~xi �Mig CB� Mj [~y=~xj ℄ (ase-�)let fx = V; ~y = ~D[x℄g in C[x℄ CB� let fx = V; ~y = ~D[XV ℄g in C[XV ℄ (value-�)let fx = z; ~y = ~D[x℄g in C[x℄ B� let fx = z; ~y = ~D[z℄g in C[z℄ (var -�)Xlet fx = z; ~y = ~D[z℄g in C[z℄ B� let fx = z; ~y = ~D[x℄g in C[x℄ (var -abs)let fx = z; ~y = ~M[x=w℄g in N [x=w℄ B� let fx = z; ~y = ~M [z=w℄g in N [z=w℄ (var -subst)Xlet fx = z; ~y = ~M [z=w℄g in N [z=w℄ B� let fx = z; ~y = ~M [x=w℄g in N [x=w℄ (var -expand)Fig. 2. Beta laws for all-by-need.E[XM ℄ CB� XE[M ℄ (X-E)E[ase M of fpat i � Nig℄ CB� ase M of fpat i � E[Ni℄g (ase-E)E[let f~x = ~Mg in N ℄ CB� let f~x = ~Mg in E[N ℄ (let-E)let fx = Mg in E[x℄ CB� E[XM ℄; if x =2 FV (M;E) (inline-E)Fig. 3. Laws for evaluation ontexts.let f~x = ~Mg in N CB� N; if ~x  FV (N) (g)let f~x = ~Lg in let f~y = ~Mg in N CB� let f~x = ~L; ~y = ~Mg in N (let-atten)let fx = let f~y = ~L; ~z = ~Mg in Ng in N 0 CB� let fx = let f~z = ~Mg in N; ~y = ~Lg in N 0(let-let)C[let f~y = ~V g in M ℄ CB� let f~y = ~V g in C[M ℄ (let-oat-val)let f~x = ~V �1; ~y = ~V �2; ~z = ~Mg in N CB� let f~x = ~V �2�3; ~z = ~M�3g in N�3;�1 = [~y=~w℄; �2 = [~x=~w℄; �3 = [~x=~y℄; (value-opy)Fig. 4. Laws for dealing with lets.
 B� M (
)M B� 
; i� M �= 
 (imp-
)M �= 
; i� M B� XM (diverge)let fx = 
; ~y = ~D[x℄g in C[x℄ CB� let fx = 
; ~y = ~D[
℄g in C[
℄ (
-�)C[let fy = 
g in M ℄ CB� let fy = 
g in C[M ℄ (let-oat-
)C[XM ℄ B� XC[M ℄; if C is strit (X-oat)Fig. 5. Laws for 
 and stritness.let fx = M;~y = ~D[XM ℄g in C[XM ℄ B� let fx = M;~y = ~D[x℄g in C[x℄ (�-expand)Fig. 6. Beta expansion onjeture.



14 � A. K. Moran and D. SandswhereN is not a variable. There is a similar derived law for general ase expressions.6.2 Laws for Evaluation ContextsAn evaluation ontext is a ontext in whih the hole is the target of evaluation; inother words, evaluation annot proeed until the hole is �lled. Evaluation ontextshave the following form: E ::= Aj let f~x = ~Mg in Aj let f~y = ~M;x0 = A0[x1℄;x1 = A1[x2℄;� � �xn = Angin A[x0℄A ::= [�℄j Axj ase A of fi ~xi �Mig:E ranges over evaluation ontexts, and A over what we all appliative ontexts.Our evaluation ontexts are stritly ontained in those mentioned in Ariola andFelleisen's letre extension [Ariola and Felleisen 1997℄ of the all-by-need alulus:there they allow E to appear anywhere we have an A. Our \attened" de�ni-tion orresponds exatly to on�guration ontexts (with a single hole) of the formh�; [�℄; S i, as made preise by the following lemma, where �E is the set of allevaluation ontexts.Lemma 6.1. �E = ftransh�; [�℄; S i j all �; Sg.The two laws in �gure 3 are very useful indeed: they allow us to move ases andlets in and out of evaluation ontexts. A ommon motif in proofs using the tikalgebra is the use of (ase-E) and (let-E) to expose the sub-term of interest. Theirvalidity follows easily from a simple lemma (presented in setion 11).(X-E) allows us to move tiks in and out of evaluation ontexts. It follows bya simple use of the ontext lemma and the properties of the (Tik ) transition.Another useful law is (inline-E), whih allows us to inline x if it is used but onein an evaluation ontext. It follows by similar reasoning to (X-E).6.3 Conerning LetsSome of the laws that allow us to manipulate lets are presented in �gure 4. Law(g) orresponds to garbage olletion: it allows us to add or remove superuousbindings. Laws (let-atten) and (let-let) allow bindings to move aross eah other,and law (let-oat-val) onerns the movement of value bindings in and out of generalontexts (i.e. inluding aross �s); along with (let-oat) below, it forms the esseneof the full-laziness transformation, as noted in [Peyton Jones et al. 1996℄). The lastlaw, (value-opy) says that if we have two opies of a strongly-onneted omponentof the heap (omposed solely of values), then we may remove one of them, providedwe perform some renaming.



An Operational Theory for Call-By-Need � 15Note that in, for example, the (let-let) axiom, the variable onvention ensuresthat the ~z do not our free in the ~L; in (let -oat-val), the onvention guaranteesthat x is not free in the ~V .All of the let laws exept (value-opy) follow via similar arguments to that for(�) above. (value-opy) requires the use of the same general tehniques needed tojustify the more omplex � laws (proof in setion 11).6.4 Divergene and StritnessLet 
 denote any losed term whih does not onverge. For example, the \blak-hole" term, let x = x in x, would suÆe as a de�nition for 
. The �rst three laws in�gure 5 onern 
 and its relationship with B�. (
-�) and (let-oat-
) are similarto (value-�) and (let-oat-val) exept that 
 is used in plae of a value. All ofthese laws follow in a straightforward manner from the ontext lemma and the fatthat all-by-name termination behaviour is preserved in the all-by-need theory.We say that a ontext C is strit if and only if C[
℄ �= 
. Given this de�nition, wean oat tiks out of any strit ontext, as stated by (X-oat). The proof followsby the same tehniques used to prove (value-�).It turns out that this tik oating property an be used as a haraterisation ofstritness: for all C, if C[Xx℄ B� XC[x℄, x fresh, then C is strit. This follows sine,by ongruene, let x = 
 in C[Xx℄ B� let x = 
 in XC[x℄whih implies, by (
-�), and (g), that C[X
℄ B� XC[
℄. But sine X
 CB� 
, by (
)and (imp-
), C[
℄ B� XC[
℄. Therefore, by (diverge), C[
℄ �= 
.6.5 Beta Expansion: A ConjetureIn analogy to (value-�), we have (�-expand) where values are replaed by generalterms:let fx = M;~y = ~D[XM ℄g in C[XM ℄ B� let fx = M;~y = ~D[x℄g in C[x℄ (�-expand )The intuition here is that the rule undoes a all-by-name omputation step (a beta-redution). This is an improvement providing we an pay for the potential gainthat the omputation step might have made | whih is at most one tik at eahourrene of the variable whih is unfolded.Unfortunately we lak a satisfatory proof for (�-expand). The ontext lemmaseems inadequate to establish this property. This seems to be linked to the fatthat the axiom embodies the essential di�erene between all-by-name and all-by-need evaluation, and thus it may be possible to adapt tehniques based onredex-marking [Maraist et al. 1998℄. However, while we believe the onjeture tobe an improvement as regards speed, it an lead to asymptoti worsening of spaebehaviour [Gustavsson and Sands 1999℄.The onjeture an be used to \tie the knot" when deriving yli programs.This possible sine we allow x to our free in M . See the last step of the proof ofproposition 8.4 for an example of the use of (�-expand) in this ontext.



16 � A. K. Moran and D. Sands(�x:M)N =need let x = N in M (let-I )let x = V in C[x℄ =need let x = V in C[V ℄ (let-V )(let x = L in M)N =need let x = L in M N (let-C )let y = (let x = L in M) in N =need let x = L in let y = M in N (let-A)Fig. 7. Axioms of the all-by-need alulus of Ariola et al..Using the onjeture, we an also establish the following:X(�x:let f~y = ~L; ~z = ~Mg in N) B� let f~y = ~Lg in �x:let f~z = ~Mg in N(let-oat)whih onerns moving non-value bindings out of �s (where the variable onventionensures that x does not our free in the ~L). As noted above, this is an essentialpart of the full-laziness transformation. Another onsequene of the onjeture isstandard ommon sub-expression elimination:XC[XM ℄ B� let fx = Mg in C[x℄ (se)Again, the onvention ensures that any free variables of M are not aptured byontext C.7. RELATING THE TICK ALGEBRA AND THE CALCULIWe reprodue the axioms of the all-by-need alulus of [Ariola et al. 1995℄, in�gure 72.The laws olleted in �gures 2, 3, and 4 subsume the all-by-need lambda aluli(in both ases minus the symmetry law): eah alulus rewrite rule of the formL! R turns out to be an outright improvement, i.e. L B� R.In fat, with the exeption of (let-V ), they are ost equivalenes, so we an reversethe improvement also. As for (let-V ), we an reverse the improvement modulo tik.In other words, there exists an R0, obtained from R by inserting tiks, suh thatR0 B� L. This fat will enable us to prove that any two terms related by these aluliompute within a onstant fator of eah other in any program ontext. Thus thebest (worst) speedup (resp. slowdown) program obtainable in these aluli is linear.First it is natural to generalise the idea of improvement modulo tiks.Definition 6. (Improvement within a Constant Fator) We say thatM is improved by N within a onstant fator, written M B� N , if there exists a ksuh that for all C suh that C[M ℄ and C[N ℄ are losed,C[M ℄#n =) C[N ℄#6k(n+1):So M B� N means that N is never more than a onstant fator slower than M (butit might still be faster by a non-onstant fator). Note that the onstant fator isindependent of the ontext of use.It an be seen that B� is a preongruene relation (to show transitivity requires asmall alulation) and learly ontains the improvement relation.2In the original paper V ranges over variables as well as values. In addition, Ariola and Felleisen[Ariola and Felleisen 1997℄ restrit C in (let-V ) to be evaluation ontexts.



An Operational Theory for Call-By-Need � 17Now we onsider a speial ase of B�, namely programs whih only di�er by tiks.Let M X! N mean that N an be obtained from M by removing some tiks (fromanywhere within the term), and M X� N mean that there exists an L suh thatM X! L and N X! L. Clearly X! is a preongruene and X� is a ongruene.Lemma 7.1. M X� N =) M B� N .Proof. (Sketh) Clearly X! � B�, so it suÆes to show that M X! N =) N B�M .First show that the nesting of tiks in a on�guration never inreases as omputationproeeds (easy to see sine the rules never substitute terms for variables). Then letk be the maximum nesting of tiks in M , and show by indution on the length ofthe omputation that C[N ℄+n implies C[N ℄+k(n+1) (strengthening this statementto on�gurations). 2With this lemma we an establish the following:Theorem 7.2. For all terms N and M (of our restrited syntax) if M =need Nthen M B� N .Proof. (Sketh) By indution on the proof of M =need N . The base ase requiresus to show that the (oriented) equations are ontained inB�. This follows easily sinethey are all either improvements or improvements modulo tik. In the indutiveases, the ongruene and transitivity rules follow from the indutive hypothesissine B� is a preongruene. The only diÆult ase is symmetry. It will be suÆientto prove that reversed equations are ontained in B�. For eah equation L =need Rwe have from the laws of the tik algebra either that R B� L, or, in the ase of(let-V ), an R0 suh that R0 X! R and R0 B� L. By lemma 7.1 we know that R B� R0,so R B� L follows from the fat that B� � B� and transitivity of B�. 2Corollary 7.3. The all-by-need alulus of [Ariola et al. 1995℄ annot improve(or worsen) a program by more than a onstant fator.We are on�dent that this result an be extended to Ariola and Blom's sharingalulus �Æshare [Ariola and Blom 1997℄ sine almost all the rules are representedmore or less diretly in the olletion of improvement laws. It is interesting tonote that we assembled our olletion of laws \by need", onsidering what wasrequired to takle a number of examples, and it was enouraging to �nd that wehad already overed almost all of Ariola and Blom's rules. As it stands however, our(value-opy) ost equivalene is not as expressive as Ariola and Blom's value-opyrule.3 We believe that Ariola and Blom's value-opy rule is a ost equivalene, buttheir formulation of the rule is rather indiret, so it is not obvious to us how toprove this.8. SYNTACTIC CONTINUITYWe wish to say something meaningful about reursive funtions with this theory,and a natural starting point is to attempt to mimi the �xed-point indution Sott-style denotational semantis. Examples of this kind of operational analogue to3Thanks to Stefan Blom for providing an example, and to Zena Ariola for pointing out an errorin the use of an earlier formulation of our value-opy rule.



18 � A. K. Moran and D. SandsSott indution for other languages may be found in e.g., [Pitts 1997b; Smith 1991;Mason et al. 1996; Sands 1997; Lassen 1998℄; we present the �rst suh result for aall-by-need semantis.We will use the following mehanism to desribe the syntati unwindings of areursive funtion. In the de�nition, the fi are distint, new variables.Definition 7. f 0= V def= f0 = 
;f n+1= V def= f n= V; fn+1 = V [fn=f ℄:Then, for an f de�ned by let ff = V g in f , we de�ne the nth unwinding aslet ff n= V g in fn. If we expand the de�nition of f n= V , we see that this is reallylet ff0 = 
;f1 = V [f0=f ℄;� � �fn = V [fn�1=f ℄gin fn:Note that we have restrited our attention to those f whose de�ning body is avalue; this unwinding trik would not work for general yles (sine loss of sharingwould render the exerise pointless). To extend the method to yles would requiresome extension to the language, but this would lead to the problem of showing thatthe extension is onservative with respet to the improvement relation.The point is that the funtions let ff n= V g in fn ompletely haraterise thebehaviour of let ff = V g in f . This is the essene of Sott indution. Themain property that justi�es this is a syntati notion of ontinuity, whih says thatlet ff = V g in f is the least upper bound of hain flet ff n= V g in fngn>0 andthat any M whih uses f preserves this property.We �rst show that flet ff n= V g in M [fn=f ℄gn>0 does indeed form a hain withrespet to B�, and that let ff = V g in M is an upper bound of that hain.Lemma 8.1. 8n: let ff n= V g in M [fn=f ℄B� let ff n+1= V g in M [fn+1=f ℄B� let ff = V g in M:Proof. We prove only the seond improvement, that for all n,let ff n= V g in M [fn=f ℄ B� let ff = V g in M:The �rst follows by a similar argument. We proeed by indution on n. The basease follows easily by (g) and the 
 laws, and the indutive ase follows by this



An Operational Theory for Call-By-Need � 19alulation:let ff n= V; fn+1 = V [fn=f ℄g in M [fn+1=f ℄CB� let ff n= V g in let ffn+1 = V [fn=f ℄g in M [fn+1=f ℄ (let-let)� let ff n= V g in let fg = V [fn=f ℄g in M [g=f ℄ (renaming)B� let ff = V g in let fg = V [f=f ℄g in M [g=f ℄ (I.H.)CB� let ff = V; g = V g in M [g=f ℄ (let-let)CB� let ff = V g in M (value-opy); (g) 2To establish syntati ontinuity, we will need the following lemma (see setion 11for the proof). It says that if let ff = V g in M onverges then there must existsome unwinding that does so with the same ost.Lemma 8.2. (Unwinding) For all �; S, and n,h�; let ff = V g in M; S i#n =) 9m:h�; let ff m= V g in M [fm=f ℄; S i#n:Theorem 8.3. (Syntati Continuity) The following is a sound proof rule:8n:let ff n= V g in M [fn=f ℄ B� Nlet ff = V g in M B� NProof. Assume h�; let ff = V g in M; S i#n. Then by the Unwinding lemma,there exists some m suh that h�; let ff m= V g in M [fm=f ℄; S i#n. By the premise,we have that h�; N; S i#6n, and the result follows by the ontext lemma. 2Syntati ontinuity is also valid for mutually reursive funtions. This proof rule issound for strong improvement, but note that the base ase of the premise requiresthat N be ontextually equivalent to 
. This tends to limit the appliability of thestrong improvement version of syntati ontinuity.As an example of the use of syntati ontinuity, we show that an unwinding �xed-point ombinator is improved within a onstant fator by a \knot-tying" �xed-pointombinator.Proposition 8.4. If (�-expand) is valid, thenlet re = (�f:let x = re f in f x) in re B� let �x = (�f:let x = f x in x) in �x :Proof. Let V = �f:let x = re f in Xf x, and abbreviate V [ren=re℄ by Vn. Wewill show that for all n, let re n= V in ren B� X�f:let x = f x in x. Then the resultwill then follow by syntati ontinuity, sineX�f:let x = f x in xCB� let �x = (�f:let x = f x in x)in X�f:let x = f x in x (g)CB� let �x = (�f:let x = f x in x) in �x (value-�)



20 � A. K. Moran and D. Sandslet re n= V; ren+1 = Vn in ren+1CB� let re n= V; ren+1 = Vn in XVn (value-�)CB� let re n= V in X�f:let x = ren f in Xf x (g); (defn. of Vn)CB� X�f:let re n= V; x = ren f in Xf x (let-oat-val); (let-oat-
)CB� X�f:let x = (let re n= V in ren) f in Xf x (let-let); (let-E)B� X�f:let x = (X�g:let y = g y in y) f in Xf x (I.H.); (renaming)CB� X�f:let x = Xlet y = f y in y in Xf x (�)CB� X�f:let x = Xy; y = f y in Xf x (let-let)B� X�f:let x = y; y = f y in Xf y (X-elim); (var-subst)CB� X�f:let x = f x in Xf x (g); (renaming)B� X�f:let x = f x in x (�-expand)Fig. 8. The indutive ase for proposition 8.4.We proeed via indution on n. The base ase follows trivially by (imp-
) and (
)sine let re0 = 
 in re0 �= 
, and the indutive ase follows by the derivation in�gure 8. We have B� and not B� beause we use a slightly slower version of re. 2The onverse of the proposition is false, sine the knot-tying �xed-point ombi-nator an give asymptotially better programs.We an also use syntati ontinuity to establish the following proof rule, whihis a syntati, all-by-need version of what is alled �xed-point fusion in [Meijeret al. 1991℄. In the statement, V and W range over value ontexts.Theorem 8.5. (Improvement Fusion) If C is strit, and C[V[x℄℄ B� W[C[x℄℄where x =2 FV (V;W;C)[CV (V;W;C), then for all D suh that x =2 FV (D)[CV (D),let fx = V[x℄g in D[C[x℄℄ B� let fx = W[x℄g in D[x℄:Proof. Assume C is strit, and that C[V[x℄℄ B� W[C[x℄℄. By syntati ontinuity, itsuÆes to show, for all n and all D suh that x =2 FV (D)[CV (D),let fx n= V[x℄g in D[C[xn℄℄ B� let fx = W[x℄g in D[x℄:The base ase follows by this alulation:let fx0 = 
g in D[C[x0℄℄CB� let fx0 = 
g in D[C[
℄℄ (
-�)CB� let fx0 = 
g in D[
℄ (C strit)CB� D[
℄ (g)CB� let fx = W[x℄g in D[
℄ (g)B� let fx = W[x℄g in D[x℄ (
 B� x); (ong:)



An Operational Theory for Call-By-Need � 21and the indutive ase by this alulation:let fx n+1= V[x℄g in D[C[xn+1℄℄CB� let fx n= V[x℄g in D[C[XV[xn℄℄℄ (value-�); (g)CB� let fx n= V[x℄g in D[XC[V[xn℄℄℄ (C strit)B� let fx n= V[x℄g in D[XW[C[xn℄℄℄ (assumption)B� let fx = W[x℄g in D[XW[x℄℄ (I:H:)CB� let fx = W[x℄g in D[x℄ (value-�) 2Fixed-point fusion an be used to establish a number of general fusion laws. It isalso entral to Tullsen and Hudak's [Tullsen and Hudak 1998℄ approah to programtransformation in Haskell.9. THE IMPROVEMENT THEOREMIn this setion we introdue a seond key tehnique for reasoning about reursion,the improvement theorem. In [Sands 1996℄ a all-by-name improvement theoremwas introdued as a means to prove the extensional orretness of reursion-basedprogram transformations. In this setion we show how these results arry over tothe all-by-need setting.9.1 The Problem of TransformationsAs a motivation for the improvement theorem, onsider the orretness problemfor reursion-based program transformations suh as unfold-fold ; the orretness ofsuh transformations does not follow from the simple fat that the basi transfor-mation steps are equivalenes. To take a simple example to illustrate the problem,onsider the following \transformation by equivalene-preserving steps". Start withthe reursive funtion repeat whih produes the \in�nite" list of its argument:repeat x = x : (repeat x)The following property an be easily dedued: repeat x �= tail(repeat x). Now sup-pose that we use this \loal equivalene" to transform the body of the funtion toobtain a new version of the funtion:repeat x = x : (tail (repeat x))This de�nition is not equivalent to the original, sine it an never produe morethan �rst element in the list. How did equivalene-preserving loal steps produea non-equivalent funtion? Analysing suh transformations more arefully we seethat while it is true thatM �= N =) let fx = Mg in L �= let fx = Ng in L (9.1)it is no longer the ase when the transformation from M to N depends on thereursive de�nition of x itself:let fx = Mg in M �= let fx = Mg in NY=) let fx = Mg in L �= let fx = Ng in L:



22 � A. K. Moran and D. SandsBut in order to reason about \interesting" program transformations (e.g. unfold-fold, reursion-based deforestation, partial evaluation with memoization), inferene(9.1) is simply not suÆient.The improvement theorem omes to the resue:let fx = Mg in M B� let fx = Mg in Nlet fx = Mg in L B� let fx = Ng in L (9.2)This is suÆient to establish the orretness of reursion-based transformationsby requiring | rather naturally | that the loal transformation steps are alsoimprovements. This was proved for an improvement theory based on all-by-name,so the fat that the theorem gives \improved" programs as well as orretness isnot onsidered to be partiularly signi�ant.A question left open was whether the improvement theorem holds for a all-by-need improvement theory. We an now supply the answer:Theorem 9.1. (Improvement Theorem) The following proof rule is sound:let ff = V g in V B� let ff = V g in Wlet ff = V g in N B� let ff = Wg in NThe inferene is also sound when B� is replaed throughout with CB� (the ost equiv-alene theorem).The improvement theorem and the ost equivalene theorem an also be stated fora set of mutually reursive de�nitions. The proof of the theorem is in setion 11.Notation. In establishing a premise of the improvement theorem, in the ontextof some reursive delarations ~g = ~V , a derivation of the formlet f~g = ~V g in M1 B� let f~g = ~V g in M2B� let f~g = ~V g in M3 : : :will be written in the following abbreviated form:~g `M1 B�M2B�M3 : : :when the delarations ~g are lear from the ontext. This is of ourse of limited usewithout the following ongruene rule:~g `M B� N~g ` C[M ℄ B� C[N ℄ (`-ong)for all ontexts C. It says that any improvement proven in the ontext of somereursive de�nitions may be lifted to all ontexts.The following example illustrates the use of the proof rule, whih shows that arepresentation of the standard lambda-alulus �xed-point ombinatorY = �f:f ((�x:f (xx))�x:f (xx))(suitably onverted to the restrited syntax) is ost equivalent to the non-yliversion re from proposition 8.4.



An Operational Theory for Call-By-Need � 23Proposition 9.2. let Y = �f:let d = �y:let z = y y in f zx = d din f xin YCB� let re = �f:let x = re f in f xin re :Proof. To use the ost equivalene theorem, we are required to show thatlet Y = � � �in �f:let d = �y:let z = y y in f zx = d din f xCB� let Y = � � �in �f:let x = Y f in f xwhere re has been renamed (without loss of generality) to Y . Using the entailmentnotation, we need to show:Y ` �f:let d = �y:let z = y y in f zx = d din f xCB� �f:let x = Y f in f x:By alulation, we have that:Y ` �f:let d = �y:let z = y y in f zx = d din f xCB� �f:let d = �y:let z = y y in f zx = Xlet z = d d in f zin f x (value-�); (�)CB� �f:let x = Xlet d = �y:let z = y y in f zz = d din f zin f x (let-let)CB� �f:let x = X(�g:let d = �y:let z = y y in g zz = d din g z) fin f x (�)CB� �f:let x = Y f in f x (value-�)Then the result follows by the ost equivalene theorem. 2Improvement Theorem vs. Syntati Continuity. Suppose one wants to establishan improvement of the formlet ff = V g in N B� let ff = Wg in N:



24 � A. K. Moran and D. SandsIf the left-hand side is non-reursive (in f) then syntati ontinuity is of no help,sine the unwindings (> 0) of the left-hand side will all be idential; onversely,if the right-hand side is non reursive (in f) then the improvement theorem isnot immediately useful, sine proving the premise amounts to diretly proving theonlusion of the rule. There are, however, many examples whih an be proved byboth methods. In these ases the improvement theorem is often preferable sine itis more alulational in style.9.2 Improvement IndutionFinally, we mention one last proof rule whih is losely allied to the improvementtheorem (in the sense that a losely-related rule an be derived from the improve-ment theorem); this orresponds to what we alled improvement indution in [Sands1997℄, where it was established for any all-by-name or all-by-value language withSOS rules �tting a ertain syntati rule-format.Theorem 9.3. (Improvement Indution) For any M , N , C, and substitu-tion �, the following proof rule is sound:~f `M B� XC[M�℄ ~f ` N CB� XC[N�℄~f `M B� NThe proof is quite straightforward, and is given in setion 11. A example of theproof tehnique is provided in setion 10.10. AN EXAMPLE PROGRAM TRANSFORMATIONIn this setion we onsider a larger example of a program transformation | anautomati method for eliminating alls to the append funtion. The transfoma-tion is something of a lassi, and an be viewed as an instane of the unfold-foldsheme [Burstall and Darlington 1977℄. The partiular mehanisation desribedhere is based on [Wadler 1988℄. The example was used previously to illustrate theimprovement theorem for all-by-name evaluation [Sands 1996℄. Here we show thatthe orretness argument there an be strengthened to enompass a guarantee ofall-by-need improvement.10.1 The Conatenate VanishesThe basi idea is to eliminate ourrenes of the list-onatenate funtion:(++) = �xs:�ys :ase xs ofnil � ysh : t � h : (t++ ys);when it ours to the right of a funtion appliation, as in: f y1 : : : yn++ z. This isahieved by by de�ning and optimising a funtion f+ whih satis�esf+ y1 : : : yn z �= (f y1 : : : yn)++ z:We present the transformation in two phases: initialization, whih introduesan initial de�nition for f+, and transformation, whih applies a set of rewrites toterms in the sope of these de�nitions. Throughout we assume that the de�nitionof the append funtion is in sope. To ease the notation, we will oasionally make



An Operational Theory for Call-By-Need � 25use of the syntati identity for general appliation from setion 3, and we will usean in�x form of append.Initialization. The target of the transformation is a funtion de�nition f =�x1 : : : �xn:M , for whih there is an ourrene of a term (f y1 : : : yn)++ z in theprogram. The initial step is to replae the de�nition by the pair:f = �x1 : : : �xn:f+x1 : : : xn nilf+ = �x1 : : : �xn:�z:M++ zTransformation. Apply the following rewrite rules, in any order, to all expressionsin the sope of the above de�nitions:let y = nil in C[y++x℄! let y = nil in C[x℄ (i)let w = x : y in C[w++ z℄! let w = x : y in C[x : (y++ z)℄ (ii)(x++ y)++ z ! x++(y++ z) (iii)(ase M of fpat i � Nig)++ z ! ase M of fpat i � Ni++ zg (iv)(f z1 : : : zn)++ z ! f+ z1 : : : zn z (v)(f+ z1 : : : zn z)++ z0 ! f+ z1 : : : zn ; (z++ z0) (vi)(let ~x = ~M in N)++ z ! let ~x = ~M in N++ z (vii)10.2 An Example AppliationThe lassi example of this transformation is the onversion of a na��ve quadratitime list reverse funtion into a linear time version. Suppose we have the de�nitionreverse = �xs:ase xs ofnil � nilh : t � let z = [h ℄ in (reverse t)++ zThe expression (reverse t)++ z is a andidate for the transformation, so initialisa-tion yields:reverse = �xs :reverse+ xs nilreverse+ = �xs :�z:0�ase xs ofnil � nilh : t � let y = [h ℄ in (reverse t)++ y1A++ zNow we apply the transformation rules to the program. We will also use garbageolletion to remove redundant bindings. The important part is the appliationto the ase expression in the right hand side of the de�nition of reverse+. Thetransformation is presented in �gure 9.10.3 CorretnessWe have seen, with the standard reverse example, that the transformation anahieve asymptoti program speedups. In the remainder of this setion we usethe improvement theory to prove that the method desribed an never slow downprograms by more than a onstant fator.For the orretness argument we make a simpli�ation to the initialisation phase:we will not modify the de�nition of the original funtion f . The e�et of this



26 � A. K. Moran and D. Sands0�ase xs ofnil � nilh : t � let y = [h ℄ in (reverse t)++ y1A++ z! ase xs ofnil � nil++ zh : t � (let y = [h ℄ in (reverse t)++ y)++ z (iv)! ase xs ofnil � zh : t � (let y = [h ℄ in (reverse t)++ y)++ z (i); (vii); (g)! ase xs ofnil � zh : t � let y = [h ℄ in reverse+ t (y++ z) (vii); (iii); (vi)! ase xs ofnil � zh : t � let y = [h ℄ in reverse+ t (h : (nil++ z)) (ii)! ase xs ofnil � zh : t � reverse+ t (h : z) (i); (g)Fig. 9. Example transformation sequene.simpli�ation is to ause dupliated transformation work (and some dupliatedode) in some examples | but is not otherwise signi�ant. The reason for thissimpli�ation is that replaing the body of f by f+x1 : : : xn nil is not sound in anuntyped language | sine it relies on the equality x = x++ nil. In a typed theoryit would be straightforward to establish that this is a weak ost equivalene | buta typed theory is beyond the sope of the present artile.The arhiteture of the proof is as follows. The introdution of the new funtionis merely garbage-introdution, so is patently sound. The remaining steps illustratethe use of:|basi laws to establish that the remaining laws are all improvements;|improvement indution, to establish assoiativity properties of append, and|the use of the above properties together with the improvement theorem to estab-lish the property of the transformation as a whole.10.4 Properties of AppendProposition 10.1.(++) ` let y = nil in C[y++x℄ CB� let y = nil in C[2Xx℄(++) ` let w = x : y in C[w++ z℄ CB� let w = x : y in C[2Xx : (y++ z)℄(++) ` (ase M of fpat i � Nig)++ z CB� ase M of fpat i � let y = Ni in y++ zg(++) ` (let ~x = ~M in N)++ z CB� let ~x = ~M in N ++ zProof. The proofs are routine alulations. We present just the proof of the ase



An Operational Theory for Call-By-Need � 27property:(++) ` (ase M of fpat i � Nig)++ z� let y = ase M of fpat i � Nig in y++ zCB� let y = ase M of fpat i � Nig in Xase y ofnil � zh : t � h : (t++ z) (value-�)CB� ase M of fpat i � let y = Ni in Xase y ofnil � zh : t � h : (t++ z)g (ase-E)CB� ase M of fpat i � let y = Ni in y++ zg (value-�) 2Append also satis�es assoiativity properties, whih are established below.Proposition 10.2.(++); (++) ` (x++ y)++ z CB� x++(y++ z)where (++) = �xs :�ys :ase xs ofnil � ysh : t � 2Xh : (t++ ys):Proof. We alulate with the left and right-hand sides independently, and �nd aontext D suh that x++(y++ z) CB� XD[x++(y++ z)℄and also that (x++ y)++ z CB� XD[(x++ y)++ z℄



28 � A. K. Moran and D. Sandsand the result then follows by improvement indution.
(++); (++) ` (x++ y)++ z� let w = x++ y in w++ zCB� let w = Xase x ofnil � yh : t � h : (t++ y)in w++ z (value-�); (var -�)CB� Xase x ofnil � let w = y in w++ zh : t � let w = h : (t++ y) in w++ z prop. 10.1CB� Xase x ofnil � Xw++ zh : t � let w = h : (t++ y) in w++ z (var -�); (g)CB� Xase x ofnil � Xw++ zh : t � 2Xh : (t++ y)++ z prop. 10.1; (let-let); (let-atten)� Xase x ofnil � Xw++ zh : x � 2Xh : (x++ y)++ z (renaming)
Thus we have found a ontext D suh that

(x++ y)++ z CB� XD[(x++ y)++ z℄
It just remains to show that

x++(y++ z) CB� XD[x++(y++ z)℄



An Operational Theory for Call-By-Need � 29(++); (++) ` x++(y++ z)� let r = y++ z in x++ rCB� let r = y++ z in Xase x ofnil � rh : t � 2Xh : (t++ r) (value-�); (var -�)CB� ase x ofnil � Xy++ zh : t � 2Xlet r = y++ z in h : (t++ r) (ase-E); (inline-E); (g)CB� Xase x ofnil � Xw++ zh : t � 2Xlet r = y++ zs = t++ rin h : s (let-atten)
CB� Xase x ofnil � Xw++ zh : t � 2Xlet s = let r = y++ z in t++ rin h : s (let-let)� Xase x ofnil � Xw++ zh : x � 2Xh : x++(y++ z) (renaming)Working note: Should use the basi properties of ap-pend from the proposition 2Corollary 10.3. (x++ y)++ z B� x++(y++ z)x++(y++ z) B� (x++ y)++ zThis follows by the obvious improvement/weak improvement relation between ++and ++. and shows that the assoiativity property of append annot, in itself,hange the asymptoti time omplexity of a program.10.4.1 The Transformation LawsProposition 10.4. The rewrite laws of the transformation are all improve-ments.Proof. Rules (i), (ii), (iv) and (vii) follow from proposition 10.1, and rule (iii)from orollary 10.3. For (vi) we have:f; f+ ` (f z1 : : : zn)++ zCB� XM [~z=~x℄++ z (??); (??)CB� f+ z1 : : : zn z (??); (??)



30 � A. K. Moran and D. SandsAnd lastly for (vi) we have:(++); f+ ` (f+ z1 : : : zn z)++ z0CB� (XM [z1 : : : zn=~x℄++ z)++ z (??); (??)CB� XM [z1 : : : zn=~x℄++(z++ z0) or. 10.3CB� f+ z1 : : : zn (z++ z0) (??)(??); (??) 2The main orretness argument. The improvement property of the individualsteps is not the whole story, sine the de�nition of f+ itself needs to be transformed.Proposition 10.5. The transformation yields a program whih is an improve-ment on the original.Proof. Assume that the transformed (sub)program has the formlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N(This is without loss of generality sine by (value-�) we an oat in the de�nitionof append.) Now suppose that by applying the transformation rules we obtain:let ++ = : : :f = �x1 : : : �xn:M 0f+ = �x1 : : : �xn:�z:M 00in N 0for someM 0, M 00, and N 0. Sine the transformation rules are all improvements, weknow that:let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N 0:Now we also know thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M 0and thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M ++ z B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M 00:



An Operational Theory for Call-By-Need � 31Thus by the Improvement Theorem we an onlude thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N 0 B� let ++ = : : :f = �x1 : : : �xn:M 0f+ = �x1 : : : �xn:�z:M 00in N 0and by transitivity we are done. 211. PROOFS OF MAIN THEOREMSThis setion gives an outline of the tehnial development and proofs of the mainresults. Most proofs follow a diret style reasoning whih is reminisent of proofsabout funtional languages with e�ets by Mason and Talott et al. [Mason andTalott 1991; Agha et al. 1997; Talott 1998℄. In order to make this style of proofrigourous we generalise the abstrat mahine semantis so that it works on on�g-uration ontexts | on�gurations with holes. To ensure that transitions on on�g-uration ontexts are onsistent with hole �lling one must work with a more generalrepresentation of ontexts. One suh approah is desribed in [Talott 1998℄. Weuse an alternative approah to generalising ontexts whih is due to Pitts [Pitts1994℄.11.1 Substituting ContextsFollowing Pitts [Pitts 1994℄, we use seond-order syntax to represent (and gener-alise) the traditional de�nition of ontexts given in setion 5. We give a fullerdesription in [Sands 1998a℄; other examples of their use are to be found in [Lassen1998; Moran 1998℄. The idea is that instead of holes [�℄ we use seond-order vari-ables, ranged over by �, applied to some vetor of variables. The syntax of gener-alised ontexts is: C;D ::= � � ~xj xj �x:Cj Cxj  ~xj let f~x = ~Dg in Cj ase C of fi ~xi � Dig:V and W will range over value ontexts, � and � over heap ontexts, and S andT over stak ontexts. Eah \hole variable" � has a �xed arity, and ranges overmeta-abstrations of the form (~x)M where the length of ~x is the arity of �. Inthe meta-abstration (~x)M , the variables ~x are bound in M . Hole-�lling is nowa general non-apturing substitution: [(~x)M=�℄. The e�et of a substitution isas expeted (remembering that the ~x are onsidered bound in (~x)M). Coupledwith the meta-abstration is of ourse meta-appliation, written � � ~x. We restritappliation of � to variables so that hole-�lling annot violate the restrition onsyntax. In the de�nition of substitution we make the following identi�ation:(~x)M � ~y �M [~y=~x℄:



32 � A. K. Moran and D. SandsThis de�nition of ontext generalises the usual de�nition sine we an represent atraditional ontext C by C[� �~x℄ where ~x is a vetor of the apture-variables of C;�lling C with a term M is then represented by (C[� � ~x℄)[(~x)M=�℄.Example. The traditional ontextlet x = [�℄ in �y:[�℄an be represented by let x = � �(x; y) in �y:� �(x; y):Filling the hole with the term x y is represented by:(let x = � �(x; y) in �y:� �(x; y))[(x; y) x y=�℄� let z = (x; y) x y �(z; y) in �w:(x; y) x y �(x;w)� let z = z y in �w:xwwhih is �-equivalent to what we would have obtained by the usual hole-�lling withapture. Note that the generalised representation permits ontexts to be identi�edup to �-onversion.Heneforth we work only with generalised ontexts. We will write C[(~x)M ℄ tomean C[(~x)M=�℄ when C ontains just a single hole variable �. We assume that thearities of hole variables are always respeted.We impliitly generalise our de�nitions of improvement to work with generalisedontexts. This is not quite idential to the earlier de�nition sine with generalisedontexts, when plaing a term in a hole we obtain a substitution instane of theterm. This means in partiular that improvement is now losed under substitu-tion (variable-for-variable) by de�nition | a useful property. This di�erene is arelatively minor tehniality whih we will gloss over in this setion.11.2 Open Uniform ComputationThe basis of our proofs will be to ompute with on�gurations ontaining holes andfree variables. Thanks to the apture-free representation of ontexts, this meansthat normal redution an be extended to ontexts with ease. See [Sands 1998a℄ fora thorough treatment of generalised ontexts and how they support generalisationof indutive de�nitions over terms.Firstly, in order to �ll the holes in a on�guration we need to identify on�gura-tions up to renaming of the heap variables (realling that update-markers on thestak are also binding ourrenes of heap variables).We taitly extend the operational semantis to open on�gurations with holes.Note that holes an only our in the stak within the branhes of ase alterna-tives. In what follows, � will range over substitutions omposed of variable forvariable substitutions and substitutions of the form [(~xi)Mi=�i℄, and � range overon�guration ontexts.We have the following key property.Lemma 11.1. (Extension) If h�; C; S i !k h�; D; T i then(i) for all �0 and S0 suh that h�0�; C; SS0 i is well-formed, h�0�; C; SS0 i !kh�0�; D; TS0 i.



An Operational Theory for Call-By-Need � 33(ii) for all �, h�; C; S i� !k h�; D; T i�.Proof. (i) follows by inspetion of possible open redutions over on�gurationontexts. (ii) amounts to the standard substitution lemma; see [Sands 1998a℄ for ageneral argument. 2The following open uniform omputation property is entral. It allows us toevaluate open on�guration ontexts until either the omputation is �nished, or we�nd ourselves in an \interesting" ase.Lemma 11.2. (Open Uniform Computation) If well-formed and well-typedon�guration ontext h�; C; S i !k �9, then � has one of the following forms:(i) h�; V; � i,(ii) h�; �i � ~y; T i, for some hole �i, or(iii) h�; x; T i, x 2 FV (�;C;S).Proof. Assume h�; C; S i !k � 9. We onsider the redution of h�; C; S iand proeed by indution on k with ases on the struture of C. We show threeillustrative ases only. The others are similar.C � �i � ~y. This is a type (ii) ontext, so we are done.C � x. Sine we have termination, x must be bound in either � or is free inFV (�;C;S) (sine if it was bound in S, h�; C; S i would diverge). In the formerase, � � �fx = Dg. By (Lookup), h�fx = Dg; x; S i redues to h�; D; #x :S i. By the indutive hypothesis, we know that h�; D; #x : S i redues to aon�guration ontext of type (i), (ii), or (iii), and therefore h�fx = Dg; x; S i doesalso, as required. In the latter ase, h�; x; S i is a type (iii) ontext, and we aredone.C � V. There are four sub-ases, depending upon the struture of S; we onsideronly the ase when S � x : T. Sine h�; C; S i is well-typed, V � �y:D, and by(Subst), h�; �y:D; x : T i redues to h�; D[x=y℄; T i. The indutive hypothesisapplies, and the result follows as above. 2Uniform redutions are learly also uniform in ost: if � !kn �0, then for all M ,�[(~x)M ℄!kn �0[(~x)M ℄.11.3 TranslationWe an extend the de�nition of trans to over open on�gurations and on�gurationontexts, and an therefore extend translation thus:Lemma 11.3. (Translation) For all D;�;C;S suh that D � transh�; C; S i,there exists n > 0 suh that h ;; D; � i !n h�; C; S i.Proof. Simple indution on S. 211.4 Proof: the Context LemmaThe proof of the ontext lemma relies upon two lemmas, the latter of whih is themost omplex.Lemma 11.4. M B� N if and only if for all � and n, �[(~x)M ℄#n =) �[(~x)N ℄#6n.



34 � A. K. Moran and D. SandsProof. (Sketh) ((). Trivial; let � = h ;; C; � i.()). By a simple lexiographi indution on n and the length of transitionsequenes, using translation. 2Lemma 11.5. If for all �; S, and nh�; (~x)M � ~y; S i#n =) h�; (~x)N � ~y; S i#6nthen for all � and n, �[(~x)M ℄#n =) �[(~x)N ℄#6n, where ~x � FV (M;N).Proof. Assume the premise and suppose �[(~x)M ℄#n in k omputation steps. Weproeed via lexiographi indution on (n; k). By open uniform omputation, �redues in k0 > 0 steps with ost n0 to one of:(1) h�; V; � i; (2) h�; � � ~y; S i:(There are only two possibilities sine � is losed.) In ase (1), we are done. Inase (2), we have �[(~x)N ℄!k0n0 h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i: (11.1)By open uniform omputation, h�; M [~y=~x℄; S i redues in k1 > 0 steps with ostn1 to one of: (2.1) h�; W; � i; (2.2) h�; � �~z; T i:(Again, there are only two possibilities sine h�; M [~y=~x℄; S i is losed.) In ase (2.1),we have that h�[(~x)N ℄; (~x)M � ~y; S[(~x)N ℄ i redues in k1 steps to h�[(~x)N ℄; W[(~x)N ℄; � iwith ost n1 = n� n0, soh�[(~x)N ℄; M [~y=~x℄; S[(~x)N ℄ i#6n�n0=) h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i#6n�n0 (ass.)=) �[(~x)N ℄#6n (11.1)as required. In ase (2.2), we know that k1 > 0, sine M [~y=~x℄ 6� � �~z. We haveh�[(~x)M ℄; (~x)M � ~y; S[(~x)M ℄ i !k1n1 h�[(~x)M ℄; (~x)M � ~z; T[(~x)M ℄ iand h�[(~x)M ℄; (~x)M � ~z; T[(~x)M ℄ i#n�n0�n1 : (11.2)Furthermore,h�[(~x)N ℄; (~x)M � ~y; S[(~x)N ℄ i !k1n1 h�[(~x)N ℄; (~x)N �~z; T[(~x)N ℄ i (11.3)Therefore h�[(~x)M ℄; M [~z=~x℄; T[(~x)M ℄ i#n�n0�n1 (11.2)=) h�[(~x)N ℄; M [~z=~x℄; T[(~x)N ℄ i#6n�n0�n1 (I.H.)=) h�[(~x)N ℄; N [~z=~x℄; T[(~x)N ℄ i#6n�n0�n1 (ass.)=) h�[(~x)N ℄; M [~y=~x℄; S[(~x)N ℄ i#6n�n0 (11.3)=) h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i#6n�n0 (ass.)=) �[(~x)N ℄#6n (11.1)



An Operational Theory for Call-By-Need � 35as required. 2The generalised statement of the ontext lemma is:For all terms M and N , if8�; S; �; n:h�; M�; S i#n =) h�; N�; S i#6nthen M B� N .This follows from lemmas 11.4 and 11.5, and the fat that M� � (~x)M � ~y for� = [~y=~x℄.11.5 Validating the Tik AlgebraWe present proofs of the validity of (value-�) and (value-opy), and sketh a proofof the orrespondene between evaluation ontexts and on�guration ontexts ofthe form h�; [�℄; S i. The proofs of the more omplex laws (e.g. (var -�), (var -abs),(var -subst), and (X-oat)) have a similar struture to that for (value-�), exeptthey require more use of open uniform omputation.11.5.1 Proof: (value-�). Reall (value-�):let fx = V; ~y = ~D[x℄g in C[x℄ CB� let fx = V; ~y = ~D[XV ℄g in C[XV ℄:Let W � XV throughout. It suÆes to show8�;S: h�[x℄fx = V g; C[x℄; S[x℄ i#n () h�[W ℄fx = V g; C[W ℄; S[W ℄ i#nwhere x =2 dom(�;S), and the only hole is [�℄, a non-apturing hole. We prove theforward diretion only; the reverse diretion is similar.Suppose h�[x℄fx = V g; C[x℄; S[x℄ i#n in k omputation steps. We proeedby lexiographi indution on (n; k). By open uniform omputation, h�; C; S iredues in k0 > 0 steps with ost n0 to one of(1) h�; V; � i; (2) h�; [�℄; T i; (3) h�; x; T i:In ase (1), we are done. In ase (2), by extension, (Lookup) and (Update), we haveh�[x℄fx = V g; C[x℄; S[x℄ i !k0n0 h�[x℄fx = V g; x; T[x℄ i!21 h�[x℄fx = V g; V; T[x℄ i;and by extension and the de�nition of W ,h�[W ℄fx = V g; C[W ℄; S[W ℄ i !k0n0 h�[W ℄fx = V g; W; T[W ℄ i!21 h�[W ℄fx = V g; V; T[W ℄ i:Sine h�[x℄fx = V g; V; T[x℄ i#n�(n0+1), by the indutive hypothesis we haveh�[W ℄fx = V g; V; T[W ℄ i#n�(n0+1), and the result follows.In ase (3), we have h�[x℄fx = V g; V; T[x℄ i#n�(n0+1), as above. Furthermore,by extension, (Lookup) and (Update), we haveh�[W ℄fx = V g; C[W ℄; S[W ℄ i !k0n0 h�[W ℄fx = V g; x; T[W ℄ i!21 h�[W ℄fx = V g; V; T[W ℄ i:From the indutive hypothesis, we have h�[W ℄fx = V g; V; T[W ℄ i#n�(n0+1), andthe result follows.



36 � A. K. Moran and D. Sands11.5.2 Proof: (value-opy). Reall (value-opy):let f~x = ~V �1; ~y = ~V �2; ~z = ~Mg in N CB� let f~x = ~V �2�3; ~z = ~M�3g in N�3;where �1 = [~y=~w℄, �2 = [~x=~w℄, and �3 = [~x=~y℄.It suÆes to show that for all �, S, and n,h�f~x = ~V �1; ~y = ~V �2g; N; S i#n () h�f~x = ~V �2�3g; N�3; S i#n:We show only the forward diretion. To show the reverse, we need only establishtermination, whih follows by the fat that all-by-name and all-by-need agree ontermination.Suppose h�f~x = ~V �1; ~y = ~V �2g; N; S i#n in k omputation steps. We proeedvia lexiographi indution on (n; k). Consider the (hole-less) open on�gurationontext h�; N; S i, in whih the ~x and ~y may appear free. By open uniformomputation, this redues in k0 > 0 steps with ost n0 to one of:(1) h�; W; � i; (2a) h�; xi; T i; (2b) h�; yi; T i:In ase (1), we are done. In ase (2a), by extension, (Lookup) and (Update), wehave h�f~x = ~V �1; ~y = ~V �2g; N; S i !k0n0 h�f~x = ~V �1; ~y = ~V �2g; xi; T i!21 h�f~x = ~V �1; ~y = ~V �2g; Vi�1; T i;and furthermore, h�f~x = ~V �1; ~y = ~V �2g; Vi�1; T i#n�(n0+1): (11.4)Similarly, by extension, (Lookup) and (Update), we have also thath�f~x = ~V �2�3g; N�3; S i !k0n0 h�f~x = ~V �2�3g; xi�3; T i!21 h�f~x = ~V �2�3g; Vi�2�3; T i:By elementary properties of substitution,Vi�1[~x=~y℄ � Vi[~x=~w℄[~x=~y℄;so the indutive hypothesis applies (with N � Vi�1), yielding the desired result.In ase (2b), by extension, (Lookup) and (Update), we haveh�f~x = ~V �1; ~y = ~V �2g; N; S i !k0n0 h�f~x = ~V �1; ~y = ~V �2g; yi; T i!21 h�f~x = ~V �1; ~y = ~V �2g; Vi�2; T i;and furthermore, h�f~x = ~V �1; ~y = ~V �2g; Vi�2; T i#n�(n0+1): (11.5)Similarly, by extension, (Lookup) and (Update), we have also thath�f~x = ~V �2�3g; N�3; S i !k0n0 h�f~x = ~V �2�3g; yi�3; T i� h�f~x = ~V �2�3g; xi; T i!21 h�f~x = ~V �2�3g; Vi�2�3; T i:The indutive hypothesis applies (with N � Vi�2), yielding the desired result.



An Operational Theory for Call-By-Need � 3711.5.3 Proof: Lemma 6.1. Reall the statement of lemma 6.1:�E = ftransh�; [�℄; S i j all �; Sg:So we need to show that:(i) 8�; S: 9E: transh�; [�℄; S i � E, and(ii) 8E: 9�; S: transh�; [�℄; S i � E.First note that �A (the set of all appliative ontexts) is in 1-1 orrespondene toupdate-marker free staks, realised by the following isomorphism (writing [x℄ forthe singleton stak): [�℄Æ = �(Ax)Æ = AÆ[x℄(ase A of alts)Æ = AÆalts(�)Æ takes �A into the set of update-marker free staks. Its inverse is denoted by(�)� and satis�es the following equations:�� = [�℄(x : S)� = S�[[�℄x℄(alts : S)� = S�[ase [�℄ of alts ℄It an easily be shown that h�; A[C℄; S i !� h�; C; AÆS i and that transh�; A[C℄; S iis idential to transh�; C; AÆS i by indution on the struture of A.To show (i), we generalise the statement to show that for all � and S bothtransh�; A; S i and transh�fx0 = A0[x1℄; : : : ; xn = Ang; A[x0℄; S i are evaluationontexts. This proeeds by an easy indution on the number of update markers inS.To show (ii), we proeed by ase analysis on E, and produe a � and S in eahase. The diÆult ase is whenE � let f~y = ~M;x0 = A0[x1℄;x1 = A1[x2℄;� � �xn = Angin A[x0℄Here, we let � be f~y = ~Mg and let S beAÆn#xn � � �AÆ1#x1AÆ0#x0AÆ:The other ases are similar.11.5.4 Proof: (ase-E). The following lemma will be used to validate (ase-E),(let-E) follows by similar reasoning. CV (E) denotes the apture variables of E.Lemma 11.6. For all E, there exist �; T , suh that dom(�; T ) � CV (E) and8�; S:h�; E; S i !kn h��; [�℄; TS i, for some k and n.



38 � A. K. Moran and D. SandsProof. By lemma 6.1, there exist � and T suh that transh�; [�℄; T i � E,so by translation h ;; E; � i !� h�; [�℄; T i, and thus by extension, provideddom(�; T ) � CV (E), h�; E; S i !� h��; [�℄; TS i. 2Reall the statement of (ase-E):E[ase M of fpat i � Nig℄ CB� ase M of fpat i � E[Ni℄g:By the standard bound variable onvention, we know that CV (E)  CV (pat i) forall i, and that FV (M)  BV (E), where BV (E) denotes the let-bound variables ofE.Assume wlog that for any �, we have thath�; M; � i !k0n0 h�0�; j ~xj ; � i (11.6)where �0 is the same as � with some possible updates, and � ontains any bindingsintrodued during the evaluation. (This is valid sine otherwise (ase-E) holdsvauously as both sides would diverge; an empty stak is suÆient by extension.)For any � and S, we have thath�; E[ase M of fpat i � Nig℄; S i!kn h��; ase M of fpat i � Nig; TS i lem. 11.6! h��; M; fpat i � Nig : TS i (Case)!k0n0 h�0�0�; j ~xj ; fpat i � Nig : TS i (11.6); (ext.)! h�0�0�; Nj [~xj=~yj ℄; TS i (Branh)and h�; ase M of fpat i � E[Ni℄g; S i! h�; M; fpat i � Nig : S i (Case)!k0n0 h�0�; j ~xj ; fpat i � E[Ni℄g : S i (11.6); (ext.)! h�0�; E[Nj ℄[~xj=~yj ℄; S i (Branh)� h�0�; E[Nj [~xj=~yj ℄℄; S i CV (E)  ~yj!kn h�0��; Nj [~xj=~yj ℄; TS i lem. 11.6Sine FV (M)  BV (E), the evaluation of M annot a�et any of the bindingsintrodued by the evaluation E; in other words, �0 � �. Therefore, the resultfollows by the ontext lemma.11.6 Congruene of EntailmentIn examples, we often want to perform alulation in the ontext of reursive de-larations. A notation for this was introdued in setion 9; a derivation of the formlet f~g = ~V g in M1 B� let f~g = ~V g in M2B� let f~g = ~V g in M3 : : :



An Operational Theory for Call-By-Need � 39was written: ~g `M1 B�M2B�M3 : : :when the delarations ~g are lear from the ontext. We prove the following extensionof (`-ong) to general ontexts valid:~g `M B� N~g ` C[(~x)M ℄ B� C[(~x)N ℄ (`-ong)for all ontexts C suh that ~x  CV (C). As usual, ~x � FV (M;N).To prove the validity of this rule, we require some lemmata. This next lemma isused to prove lemma 11.8.Lemma 11.7. For all �; S, and nh�f~x = ~V ; ~y = ~V �g; M; S i#n () h��f~y = ~V �g; M�; S� i#n:where � = [y=x℄.Proof. (Sketh) ()) Simple indution on n, with ases of the struture of M .(() It is suÆient to show that termination is implied. This is true for the all-by-name theory, and therefore here also. 2To prove (`-ong) and improvement theorem, we will need the following lemma.Lemma 11.8. If let f~x = ~V g in M B� let f~x = ~V g in N then for all � and S,h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6n:where ~x � FV (�; S).Proof. By the ontext lemma and (Letre), we have:let f~x = ~V g in M B� let f~x = ~V g in N() 8�; S:h�; let f~x = ~V g in M; S i#n =) h�; let f~x = ~V g in N; S i#6n() 8�; S; ~x  FV (�; S); dom(�; S)h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6n:Letting � = [~y=~x℄, this implies that8�; S; ~x  FV (�; S); ~x  dom(�; S); ~y � FV (�; S):h�f~y = ~V �; ~x = ~V g; M; S i#n =) h�f~y = ~V �; ~x = ~V g; N; S i#6n:By lemma 11.7, this is equivalent to8�; S; ~x  FV (�; S); ~x  dom(�; S); ~y � FV (�; S):h��f~y = ~V �g; M�; S� i#n =) h��f~y = ~V �g; N�; S� i#6n() 8�; S; ~y � FV (�; S):h��f~y = ~V �g; M�; S� i#n =) h��f~y = ~V �g; N�; S� i#6n() 8�; S; ~x � FV (�; S):h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6nwhere the last step follows by renaming. 2



40 � A. K. Moran and D. Sandslet f~x = ~V g in M B� let f~x = ~V g in N=) let f~x = ~V g in M�0 B� let f~x = ~V g in N�0 �0 = [z=y℄; z fresh=) let fz = Vi[z=xi℄g in let f~x = ~V g in M�0 B� let fz = Vi[z=xi℄g in let f~x = ~V g in N�0 (ong.)=) let fz = Vi[z=xi℄; ~x = ~V g in M�0 B� let fz = Vi[z=xi℄; ~x = ~V g in N�0 (let-let)=) let f~x = ~V g in M�0�00 B� let f~x = ~V g in N�0�00 (g); �00 = [xi=z℄Fig. 10. Calulational portion of the proof of lemma 11.9.We will use this next lemma in the proof of (`-ong).Lemma 11.9. Provided the ~V are losed, and ~x  dom�,let f~x = ~V g in M B� let f~x = ~V g in Nlet f~x = ~V g in M� B� let f~x = ~V g in N�Proof. It is suÆient to show this for a single renaming [z=y℄, where y =2 dom�.Then the ase when z =2 ~x follows from the fat that B� is losed under variable forvariable substitution. So without loss of generality, let � = [xi=y℄. By the reasoningin �gure 10, we have thatlet f~x = ~V g in M B� let f~x = ~V g in N=) let f~x = ~V g in M�0�00 B� let f~x = ~V g in N�0�00But �0�00 = [z=y℄[xi=z℄ = [xi=y℄ = �, sine z was fresh, and we have the desiredresult. 2Moving to general ontexts, to show (`-ong), it will be suÆient to prove, underassumption of the premise, that for all C with a single hole variable � and ~z suhthat arity � = j~zj and ~z  ~x,let f~x = ~V g in C[(~z)M ℄ B� let f~x = ~V g in C[(~z)N ℄:By the de�nition of B�, it will suÆe to show that for all � and S,h�[(~z)M ℄f~x = ~V g; C[(~z)M ℄; S[(~z)M ℄ i#n =)h�[(~z)N ℄f~x = ~V g; C[(~z)N ℄; S[(~z)N ℄ i#6n:Suppose h�[(~z)M ℄f~x = ~V g; C[(~z)M ℄; S[(~z)M ℄ i#n in k omputation steps. Weproeed via lexiographi indution on (n; k). Consider � = h�; C; S i. Clearly� !k0n0 �0 9, so by open uniform omputation, �0 takes on one of the followingforms: (1) h�; V; � i; (2) h�; xi; T i; (3) h�; � � ~y; T i:In ase (1), we are done. In ase (2), by (Lookup) and (Update), we have thath�[(~z)M ℄f~x = ~V g; xi; T[(~z)M ℄ i !21 h�[(~z)M ℄f~x = ~V g; Vi; T[(~z)M ℄ i:



An Operational Theory for Call-By-Need � 41So by the indutive hypothesis,h�[(~z)N ℄f~x = ~V g; Vi; T[(~z)N ℄ i#6n�(n0+1)whih in turn, by (Lookup) and (Update), impliesh�[(~z)N ℄f~x = ~V g; xi; T[(~z)N ℄ i#6n�n0 :Then the desired result follows by open uniform omputation.In ase (3), we have thath�[(~z)M ℄f~x = ~V g; M [~y=~z℄; T[(~z)M ℄ i#n�n0 : (11.7)By lemma 11.9, the assumption implies thatlet f~x = ~V g in M [~y=~z℄ B� let f~x = ~V g in N [~y=~z℄whih in turn, by lemma 11.8 and (11.7), impliesh�[(~z)M ℄f~x = ~V g; N [~y=~z℄; T[(~z)M ℄ i#6n�n0 : (11.8)We are required to show insteadh�[(~z)N ℄f~x = ~V g; N [~y=~z℄; T[(~z)N ℄ i#6n�n0 :Consider h�; N [~y=~z℄; T i. By (11.8), this redues in k1 steps with ost n1 to some�9. By open uniform omputation, � has one of the following forms:(3.1)h�0; W; � i; (3.2)h�0; xi; T0 i; (3.3)h�0; � � ~w; T0 i:In ase (3.1), we are done. In ase (3.2), we appeal to ase (2) above. In ase (3.3),sine N [~y=~z℄ 6� � � ~w, k1 > 0, so the indutive hypothesis applies, and we haveh�0[(~z)N ℄f~x = ~V g; N [~w=~z℄; T0[(~z)N ℄ i#6n�n0�n1and the desired result follows by open uniform omputation.11.7 Proof: the Unwinding LemmaTo prove the Unwinding lemma we will need the following lemma, whih we statewithout proof.Lemma 11.10. For all M;�; S; V and n,h�fx k= V g; M; S i#n =) h�fx k+1= V g; M�; S� i#nwhere � = [xk+1=xk℄ and fxigk+1i=0  FV (V ).Reall the statement of the Unwinding lemma:For all �; S, and n,h�; let ff = V g in M; S i#n =) 9m:h�; let ff m= V g in M [fm=f ℄; S i#n:It suÆes to prove that for all �, S, and n suh that fxigni=0  FV (�; S),h�fx = V g; M; S i#n =) h��fx n= V g; M�; S� i#n



42 � A. K. Moran and D. Sandswhere � = [xn=x℄ (i.e. m = n). Suppose h�fx = V g; M; S i#n in k omputa-tion steps. We proeed by lexiographi indution on (n; k). By open uniformomputation, h�; M; S i redues in k0 > 0 steps with ost n0 to one of(1) h�; W; � i; (2) h�; x; T i:(Type (ii) annot our, sine there is no hole involved.) By extension, the orre-sponding result holds for h�; M; S i�, and hene for h��; M�; S� i, sine xn isfree in h�; M; S i.Therefore, in ase (1), by extension, h��fx = V g; M�; S� i redues in k0 steps(with ost n0) to h��fx = V g; W�; � i and we are done, sine k0 = k and n0 = n.In ase (2), by extension, (Lookup), and (Update),h��fx = V g; M�; S� i !k0n0h��fx = V g; xn; T� i!21h��fx = V g; V �; T� i:Similarly, h�fx = V g; M; S i redues in k0 + 2 steps (with ost n0 + 1) toh�fx = V g; V; T i. By the indutive hypothesis, we know that h��0fx n0=V g; V �0; T�0 i#n0 where �0 = [xn0=x℄ and n0 = n � (n0 + 1). By repeated ap-pliation of lemma 11.10, we have that h��fx n= V g; V �; T� i#n0 and heneh��fx n= V g; M�; S� i#n as required.11.8 Proof: the Improvement TheoremWe prove the improvement theorem generalised to mutually-reursive de�nitions:The following proof rule is sound:8j 2 I: let ffi = Vigi2I in Vj B� let ffi = Vigi2I in Wjlet ffi = Vigi2I in N B� let ffi = Wigi2I in NBy the ontext lemma it suÆes to show that for all �; S, and n,h�f~f = ~V g; N; S i#n =) h�f~f = ~Wg; N; S i#6n:Assume the premise, and suppose that h�f~f = ~V g; N; S i#n in k omputationsteps. We proeed by lexiographi indution on (n; k). By open uniform ompu-tation, h�; N; S i redues in k0 > 0 steps, with ost n0, to one of(1) h�; V; � i; (2) h�; fi; T i:In ase (1), we have by extension that h�f~f = ~Wg; N; S i redues in k0 steps toh�f~f = ~Wg; V; � i and k0 = k and n0 = n, so we are done. In ase (2),h�f~f = ~V g; N; S i !k0n0h�f~f = ~V g; fi; T i!21h�f~f = ~V g; Vi; T i (11.9)and h�f~f = ~Wg; N; S i !k0n0h�f~f = ~Wg; fi; T i!21h�f~f = ~Wg; Wi; T i (11.10)



An Operational Theory for Call-By-Need � 43so h�f~f = ~V g; Vi; T i#n�(n0+1) (11.9)=) h�f~f = ~V g; Wi; T i#6n�(n0+1) (ass., lem. 11.8)=) h�f~f = ~Wg; Wi; T i#6n�(n0+1) (I.H.)=) h�f~f = ~Wg; N; S i#6n: (11.10)11.9 Proof: Improvement IndutionWe prove instead the more general version, involving entailment:For any set of reursive delarations ~f , terms M , N and substitution �, thefollowing proof rule is sound:~f `M B� XC[M�℄ ~f ` N CB� XC[N�℄~f `M B� NFurthermore, we generalise C[M�℄ to C[(~x)M ℄. By lemma 11.8, the premises implymore general statements. For example, the �rst premise implies8n;�; S: h�f~f = ~V g; M; S i#n =) h�f~f = ~V g; XC[(~x)M ℄; S i#6n (ass.(i))We will refer to the orresponding generalisation of the seond premise as (ass.(ii)).We show instead the more general statement, that for all � and n,�[(~x)M ℄#n =) �[(~x)N ℄#6n:Suppose �[(~x)M ℄#n in k omputation steps. We proeed by lexiographi indutionon (n; k). By open uniform omputation, � redues in k0 > 0 to one of(1) h�; V; � i; (2) h�; � � ~y; T i:In ase (1), we are done. In ase (2), �rst note that, letting � = [~y=~x℄, (~x)M � ~y �M�, and C[(~x)M ℄� � C�[(~x)M ℄ sine ~x � FV (M), and similarly for N . Then wehave that �[(~x)N ℄!k0n0 h�[(~x)N ℄; N�; T[(~x)N ℄ i (11.11)and h�[(~x)M ℄; M�; T[(~x)M ℄ i#n�n0=) h�[(~x)M ℄; XC[(~x)M ℄�; T[(~x)M ℄ i#6n�n0 (ass.(i))=) h�[(~x)M ℄; C[(~x)M ℄�; T[(~x)M ℄ i#6n�(n0+1) (X)� h�[(~x)M ℄; C�[(~x)M ℄; T[(~x)M ℄ i#6n�(n0+1)=) h�[(~x)N ℄; C�[(~x)N ℄; T[(~x)N ℄ i#6n�(n0+1) (I.H.)� h�[(~x)N ℄; C[(~x)N ℄�; T[(~x)N ℄ i#6n�(n0+1)=) h�[(~x)N ℄; XC[(~x)N ℄�; T[(~x)N ℄ i#6n�n0 (X)() h�[(~x)N ℄; N�; T[(~x)N ℄ i#6n�n0 (ass.(ii))=) �[(~x)N ℄#6n: (11.11)



44 � A. K. Moran and D. Sands12. CONCLUSIONS AND FUTURE WORKWe have presented a rih operational theory for a all-by-need based on an im-provement ordering on programs. The theory subsumes the (oriented) all-by-needlambda aluli of Ariola et al. [Ariola et al. 1995℄. The most important extensionsare proof tehniques for reasoning about reursion. Syntati ontinuity allows us toprove properties of reursive programs via a kind of �xed-point indution, withoutsari�ing information about intensional behaviour, like sharing. The improvementtheorem and improvement indution are rules for reursion whih support morealulational proofs. Both are partiularly useful in proving the safety of programtransformations.An obvious further appliation of the theory is to formalise arguments about therunning time of programs, following Sands' use of all-by-name ost equivalene forthis purpose [Sands 1995; Sands 1998b℄.Another diretion for future work would be to onsider the time-safety of a larger-sale program transformation, suh as deforestation [Wadler 1990℄. In suh a trans-formation we must inevitably onsider onditions under whih we an unfold fun-tion alls. It is straightforward to de�ne simple syntati onditions on ontextswhih guarantee thatlet f~x = ~Mg in C[~x℄ B� let f~x = ~Mg in C[ ~M ℄;but in the ase where holes our under �-abstrations a more global form of infor-mation is required: one needs to know that the lambda expression in question willnot be applied more than one. The type system of [Turner et al. 1995℄ providesjust suh global information, so it would be interesting to prove that their system(and generalisations to full reursive lets [Gustavsson 1998℄) does indeed satisfythe desired improvement property above. We saw in setion 6.4 that the stritnessproperty of a ontext an be haraterised exatly byC[Xx℄ B� XC[x℄;where x is fresh. Could it be the ase that the \used at most one" property mightbe semantially haraterised by XC[x℄ B� C[Xx℄?Aknowledgements. We have bene�ted from numerous disussions with J�orgenGustavsson on various aspets of this work, and we would thank him in partiularfor his suggestions whih led to a simpli�ation of the proof of the ontext lemma.Thanks also to Koen Claessen, Keith Wansbrough, and the referees for their helpfulomments.REFERENCESAbramsky, S. and Ong, C.-H. L. 1993. Full abstration in the lazy lambda alulus.Information and Computation 105, 159{267.Agha, G. A., Mason, I. A., Smith, S. F., and Talott, C. L. 1997. A foundation forator omputation. Journal of Funtional Programming 7, 1{72.Ariola, Z., Felleisen, M., Maraist, J., Odersky, M., and Wadler, P. 1995. A all-by-need lambda alulus. In Pro. POPL'95, the 22nd ACM SIGPLAN-SIGACT Symposiumon Priniples of Programming Languages (Jan. 1995), pp. 233{246. ACM Press.Ariola, Z. M. and Blom, S. 1997. Cyli lambda aluli. In Pro. TACS'97 , Volume 1281of LNCS, pp. 77{106. Springer-Verlag.
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48 � A. K. Moran and D. SandsWorking note: I'm still not ompletely sure about this.One needs to argue that environment size is bounded byprogram size. I'm sure this is true, but I don't see whyright away.In order to prove theorem 4.1, whih says that just ounting lookup steps issuÆient to apture omputational omplexity, we �rst introdue a size metri onterms, staks and term-stak pairs:Definition 8. jxj = 1j ~xj = 1j�x:M j = jM j+ 1jM xj = jM j+ 2jase M of fi ~xi � Nigj = jM j+ 1 + �i=ni=1 jNijjlet f~x = ~Mg in N j = jN j+ 1 + �i=ni=1 jMijj�j = 0jx : Sj = jSj+ 1j#x : Sj = jSj+ 1jfi ~xi � Nig : Sj = jSj+�i=ni=1 jNijjM;Sj = jM j+ jSjWith the exeption of rule (Lookup), the ombined term and stak size dereasesstritly with eah abstrat mahine transition, i.e. ifh�; M; S i ! h�0; N; T ithen jM;Sj > jN;T j. (Letre) adds a group of bindings to the heap, and thusdereases the metri by an amount dependent upon the size of the bindings madeplus 1; the others derease it by exatly 1. (Lookup) is the exeption: the metri isinreased by an amount equal to the size of the term to be evaluated.Reall the statement of theorem 4.1:For all s > 0, there exists a linear funtion f suh that for all losedterms M of size s, M#m =) M+6f(m):Proof. Consider some M of size s whih onverges in n steps to some �nal state



An Operational Theory for Call-By-Need � 49h�; V; � i . We partition the transition sequene thus:h ;; M; � i � h�0; M0; S0 i!k0 h�0; N0; T0 i !# h�1; M1; S1 i!k1 h�1; N1; T1 i !# h�2; M2; S2 i� � �!km�1 h�m�1; Nm�1; Tm�1 i !# h�m; Mm; Sm i!km h�m; Nm; Tm i� h�; V; � iwhere m is the total number of instanes of rule (Lookup) (marked by a #). Weknow the following fats ki 6 jMi; Sij � jNi; Tij (A.1)jMij 6 jM j (A.2)jMi+1; Si+1j � jNi; Tij = jMi+1j (A.3)jMi; Sij 6 ijM j (A.4)(A.1) follows sine there are ki non-(Lookup) transitions in moving from h�i; Mi; Si ito h�i; Ni; Ti i, and eah transition dereases the metri by at least one. (A.2)follows from the fat any term arising during the evaluation of M must be a sub-stitution instane of a sub-term of M , and therefore smaller than M . Sine it is(Lookup) that takes h�i; Ni; Ti i to h�i+1; Mi+1; Si+1 i, the di�erene in size isexatly jMi+1j, yielding (A.3). As for (A.4), we argue as follows. Sine only lookupsan inrease the size of the term-stak pair, and sine the inrease is bounded byjM j, we onlude that jMi; Sij annot be larger than ijM j.
Working note: Where do we use (A.4)?



50 � A. K. Moran and D. Sands�i=mi=0 ki 6 �i=mi=0 jMi; Sij � jNi; Tij (A.1)= jM0; S0j � jN0; T0j+jM1; S1j � jN1; T1j+� � �jMm; Smj � jNm; Tmj= jM0; S0j+jM1; S1j � jN0; T0j+jM2; S2j � jN1; T1j+� � �jMm; Smj � jNm�1; Tm�1j+� jNm; Tmj= jM0; S0j+�i=m�1i=0 jMi+1; Si+1j � jNi; Tij� jNm; Tmj6 jM0; S0j+�i=m�1i=0 jMi+1j (A.3)6 jM j+mjM j (A.2);M �M0; S0 � �Now n = m+�i=mi=0 ki6 m+ jM j+mjM j= m+ (m+ 1)s:This is linear in m, so we are done. 2To summarise, we have argued that(1) the number abstrat-mahine steps is within a program-size dependent on-stant fator of atual running time of an implementation based on the abstratmahine, and(2) the number of lookup steps is within a program-size dependent onstant fatorof the number of abstrat mahine steps.This demonstrates the soundness of using the number of lookups as a measure ofost.


