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The standard implementation technique for lazy functional languages is call-by-need, which en-
sures that an argument to a function in any given call is evaluated at most once. A significant
problem with call-by-need is that it is difficult — even for compiler writers — to predict the effects
of program transformations. The traditional theories for lazy functional languages are based on
call-by-name models, and offer no help in determining which transformations do indeed optimize
a program.

We present an operational theory for call-by-need, based upon an improvement ordering on
programs: M is improved by N if in all program-contexts C, when C[M] terminates then C[N]
terminates at least as cheaply.

We show that this improvement relation satisfies a “context lemma”, and supports a rich in-
equational theory, subsuming the call-by-need lambda calculi of Ariola et al. [Ariola et al. 1995].
The reduction-based call-by-need calculi are inadequate as a theory of lazy-program transforma-
tion since they only permit transformations which speed up programs by at most a constant factor
(a claim we substantiate); we go beyond the various reduction-based calculi for call-by-need by
providing powerful proof rules for recursion, including syntactic continuity — the basis of fixed-
point-induction style reasoning, and an improvement theorem, suitable for arguing the correctness
and safety of recursion-based program transformations.

1. INTRODUCTION

Call-by-need optimises call-by-name by ensuring that when evaluating a given func-
tion application, arguments are evaluated at most once. All serious compilers for
lazy functional languages implement call-by-need evaluation. Lazy functional lan-
guages are believed to be well-suited to high-level program transformations, and
some state-of-the-art compilers take advantage of this by applying a myriad of
transformations and analyses during compilation [Peyton Jones and Santos 1998].
However, it is notoriously difficult, even for those with extremely solid intuitions
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about call-by-need, to predict the effects of a program transformation on the run-
ning time. Since traditional theories for lazy languages are based upon call-by-
name models, they give no assurance that a given transformation doesn’t lead to
an asymptotic slow-down.

Call-by-need Calculi. The call-by-need lambda calculi [Ariola et al. 1995; Ariola
and Felleisen 1997; Maraist et al. 1998] offer a solution to some of these problems.
By permitting fewer equations than call-by-name, these calculi enable term-level
reasoning without ignoring the key implementation issues underpinning call-by-
need. However, they do have some serious limitations. All of the equations in
the calculi are, by definition, symmetric. This means that certain useful local
transformations cannot be present. In fact, the call-by-need calculi are limited to
transformations which change running-times by at most a constant-factor (see sec-
tion 7), independent of the context in which the programs are used. Even within
the confines of constant-factor transformations there are significant shortcomings,
since none of the calculi have proof rules for recursion; we believe that, as a conse-
quence, almost no interesting equivalences between recursive programs — such as
the fusion of recursive functions (e.g. via deforestation) — can be justified in the
calculi.

Our Approach. We aim to go beyond these limitations by refining the notion
of observational approximation between terms, and by establishing algebraic laws
(containing the laws of the call-by-need calculi as theorems) and recursion princi-
ples for that approximation relation. A key result of [Ariola et al. 1995] is that the
standard observational equivalence and approximation relations, in which one only
observes termination, cannot distinguish call-by-need evaluation from call-by-name.
To obtain an operational theory which retains the computational distinctions be-
tween name and need, we also observe the cost of evaluation, in terms of a high-level
model of computation steps. Our observational approximation relation, improve-
ment, is defined with respect to a fixed operational semantics by saying that: M
is improved by N if in all program-contexts C, when C[M] terminates then C[N]
terminates at least as fast.

Summary of Results. We develop an operational theory for a call-by-need lambda
calculus with recursive lets, constructors, and case expressions. The theory is based
upon an abstract machine semantics for call-by-need, and is cost-sensitive, and
therefore reflects the computational distinctions between call-by-name and call-
by-need. We show that the improvement relation has a rich inequational theory,
validating the reduction rules of the call-by-need calculi. Most importantly, it sup-
ports powerful induction principles for recursive programs. Some specific original
results are:

—A context lemma for call-by-need, meaning we can establish improvement by
considering just computation in a restricted class of contexts, the evaluation
contexts;

—A rich inequational theory, the tick algebra, which subsumes the call-by-need
calculi;

—A syntactic continuity property which characterises improvement of a recursive
function in terms of its finite unwindings, and forms the basis of fixed-point
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induction style proofs, and

—Two powerful proof techniques, the improvement theorem and improvement in-
duction, which are particularly well-suited to inferring the correctness and safety
of recursion-based program transformations which proceed by local improve-
ments.

—A general method for establishing laws, properties, and proof rules which gener-
alises the context lemma, known as open uniform computation.

Overview. The paper may be split into two separate parts. The first half presents
the operational theory and contains all of the major results, mostly stated without
proof. The second half presents the technical machinery behind those results, and
proves them.

We begin the first half of the paper with a discussion of related work in section 2.
Section 3 then presents the operational semantics (Sestoft’s “mark 1”7 abstract
machine for laziness). A discussion of the complexity of computation follows in
section 4, where we show that the number of heap accesses during a computation
is a reasonable measure of cost. This is used as the basis for a contextual definition
of improvement and cost equivalence, and the context lemma is stated.

The inequational theory, known as the tick algebra, is then presented in section 6,
and the relative power of the algebra and the call-by-need calculi is discussed in
section 7. Syntactic continuity is presented in section 8 and used to show that
an unwinding fixed-point combinator is improved (up to a constant factor) by a
knot-tying fixed-point combinator. We also present a syntactic variant of fixed-
point fusion for call-by-need, which can be established via syntactic continuity. The
improvement theorem is introduced in section 9, along with improvement induction
and examples of their use. A more substantial example is presented in section 10.

The second half of the paper is contained in section 11. We generalise the notion
of program contexts to configurations, and extend reduction to open configuration
contexts. This allows us to establish open uniform computation, a general technique
used to prove not only the context lemma, but also many of the more difficult
algebraic laws, and the various induction rules.

Finally, section 12 concludes, and we discuss of future avenues of research.

2. RELATED WORK

Improvement theory and the improvement theorem were originally developed in
the call-by-name setting [Sands 1991; Sands 1996], and generalised to a variety of
call-by-name and call-by-value languages in [Sands 1997]. Whether this programme
could be carried out in a call-by-need setting has long been an open question. An
ingpiration which gave us confidence in the possibility of a tractable improvement
theory for call-by-need is the call-by-need lambda calculus presented by Ariola and
Felleisen, and Maraist, Odersky and Wadler [Ariola et al. 1995; Ariola and Felleisen
1997; Maraist et al. 1998]. For us, the significance of the call-by-need calculi is that
they are based on reduction (and hence equations) between terms in the source
language (see figure 7), rather than, say, term-graphs, abstract-machine configura-
tions, or terms plus explicit substitutions. The reduction rules are confluent, and
enjoy a deterministic notion of standard reduction. Related concepts appear in
other approaches, in particular in the study of so-called optimal reductions e.g.,
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[Field 1990; Maranget 1991; Yoshida 1993].

One limitation of the original work by Ariola et al. is in the treatment of recursive
cycles; naive extension of the calculi to deal with recursive lets leads to a loss of
confluence [Jeffrey 1993; Ariola and Klop 1997]. The original call-by-need calculus
considers recursive lets only briefly. To recover confluence, one can simply disallow
reductions under cycles, as in e.g., [Benaissa et al. 1996; Niehren 1996]. Ariola
and Blom give a full study of cyclic recursion in [Ariola and Blom 1997; Ariola
and Blom 1998], and show that an approximation to confluence can be obtained by
equating terms with the same infinite normal-form. Their Aoguars calculus can be
seen as the natural successor to the call-by-need calculi.

In general, reduction calculi appear to be a good vehicle for exploring the lan-
guage design space with regard to call-by-need-like features. Rose’s work e.g. [Rose
1996; Benaissa et al. 1996] exemplifies this approach in an elegant combination of
explicit substitution and combinatory reduction systems. Our view is complemen-
tary to the rewriting approaches: once a particular operational semantics (reduction
strategy) has been fixed, one can go beyond the confines of the calculi by developing
an operational theory.

Apart from the rewriting-based approaches, there have been a few attempts to
give a high-level semantics to call-by-need e.g. [Josephs 1989; Jeffrey 1994; Seaman
and Purushothaman Iyer 1996; Launchbury 1993; Sestoft 1997]. Launchbury’s nat-
ural semantics, and Sestoft’s abstract machine(s) have been adopted by a number of
researchers as the formal definition of call-by-need e.g. [Turner et al. 1995; Hughes
and Moran 1995; Sansom and Peyton Jones 1997; Gustavsson 1998]. Since it ap-
pears to be a non-controversial choice, we adopt Sestoft’s machine — essentially
a Krivine-machine [Curien 1991] with updating of the heap — as the operational
model underpinning our theory. As others have observed (e.g. [Pitts 1997a]), work-
ing with an abstract machine rather than an inductive semantics also has benefits
in proofs about computations (examples of this may be found in section 11).

The techniques used in this paper, open uniform computation in particular, have
proven quite robust. They have been applied successfully to a non-deterministic
call-by-need language [Moran et al. 1999], and in the development of an algebra
for showing when transformations are space-safe optimisations in the presence of
sharing [Gustavsson and Sands 1999].

3. THE OPERATIONAL SEMANTICS

Our language is an untyped lambda calculus with recursive lets, structured data,
and case expressions. We work with a restricted syntax in which arguments to



An Operational Theory for Call-By-Need . 5

functions (including constructors) are always variables:

z,y,z € Var
c € Con
L,M,N :==x
| Az.M
| Mz
| let {Z#=M}in N
| ¢
| case M of {¢; Z; - N;}
VW = XM
| ¢
The syntactic restriction is now rather standard, following its use in core language
of the Glasgow Haskell compiler, e.g., [Peyton Jones et al. 1996; Peyton Jones and
Santos 1998], and in [Launchbury 1993; Sestoft 1997].

All constructors have a fixed arity, and are assumed to be saturated. By c¢Z
we mean cxy --- L. The only values are lambda expressions and fully-applied
constructors. Throughout, z,y, z, and w will range over variables, ¢ over constructor
names, and V and W over values. We will write

let {#=M}in N
as a shorthand for
let {1 = M,y,... , 2z, = M,} in N

where the ¥ are distinct, the order of bindings is not syntactically significant, and
the & are considered bound in N and the M (so our lets are recursive). Similarly
we write

case M of {c;%; - N;}
for
case M of {¢1 @1 = Ni|--|cm Tm = N}

where each #; is a vector of distinct variables, and the ¢; are distinct constructors.
In addition, we will sometimes write alts as an abbreviation for case alternatives
{Ci CEZ — z}

For examples, working with a restricted syntax can be cumbersome, so it is
sometimes useful to lift the restriction. Where we do this it should be taken that

MN=let{z=N}in Mz, =z fresh

whenever N is not a variable. Similarly for constructor expressions.

The only kind of substitution that we consider is wvariable for variable, with o
ranging over such substitutions. The simultaneous substitution of one vector of
variables for another will be written M[¥/z], where the # are assumed to be distinct
(but the ¥ need not be).

3.1 The Abstract Machine

The semantics presented in this section is essentially Sestoft’s “mark 1”7 abstract
machine for laziness [Sestoft 1997]. In that paper, he proves his abstract machine
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(T{x =M}, z, S) > (T, M, #x:S) (Lookup)

(D, V, #2:S) > (T{z =V}, V, S) (Update)

(P, Mz, S) - (T, M, z:S) (Unwind)

(T, de.M, y:S)— (T, M[Y,], S) (Subst)

(T, case M of alts, S) — (T, M, alts : S) (Case)
(T, ;7 {ei @ = Ni}: 8) = (T, Nyli,], S) (Branch)
(T, let {& =M} in N, S) - (D{F= M}, N, S) &4 dom(T,S) (Letrec)

Fig. 1. The abstract machine semantics for call-by-need.

semantics sound and complete with respect to Launchbury’s natural semantics, and
we will not repeat those proofs here.

Transitions are over configurations consisting of a heap, containing bindings, the
expression currently being evaluated, and a stack. The heap is a partial function
from variables to terms, and denoted in an identical manner to a collection of let-
bindings. The stack may contain variables (the arguments to applications), case
alternatives, or update markers denoted by #x for some variable . Update markers
ensure that a binding to = will be recreated in the heap with the result of the current
evaluation; this is how sharing is maintained in the semantics.

We write (I', M, S) for the abstract machine configuration with heap T, ex-
pression M, and stack S. We denote the empty heap by (), and the addition of a
group of bindings # = M to a heap T' by juxtaposition: T'{# = M} The stack
written b : S will denote the a stack S with b pushed on the top. The empty stack
is denoted by €, and the concatenation of two stacks S and T by ST (where S is
on top of T).

We will refer to the set of variables bound by I' as domT', and to the set of
variables marked for update in a stack S as dom S. Update markers should be
thought of as binding occurrences of variables. A configuration is well-formed if
domT and dom S are disjoint. We write dom(T', S) for their union. For a configura-
tion (T, M, S) to be closed, any free variables in I', M, and S must be contained
in dom(T", S). For sets of variables P and @ we will write P 4 @ to mean that P
and @ are disjoint, i.e., PN @Q = (). The free variables of a term M will be denoted
FV (M); for a vector of terms M, we will write FV (M).

The abstract machine semantics is presented in figure 3.1; we implicitly restrict
the definition to well-formed configurations. There are seven rules, which can
grouped as follows. Rules (Lookup) and (Update) concern evaluation of variables.
To begin evaluation of z, we remove the binding z = M from the heap and start
evaluating M, with z, marked for update, pushed onto the stack. Rule (Update)
applies when this evaluation is finished, and we may update the heap with the new
binding for z.

Rules (Unwind) and (Subst) concern function application: rule (Unwind) pushes
an argument onto the stack while the function is being evaluated; once a lambda
expression has been obtained, rule (Subst) retrieves the argument from the stack
and substitutes it into the body of that lambda expression.
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Rules (Case) and (Branch) govern the evaluation of case expressions. Rule
(Case) initiates evaluation of the case expression, with the case alternatives pushed
onto the stack. Rule (Branch) uses the result of this evaluation to choose one of
the branches of the case, performing substitution of the constructor’s arguments
for the branch’s pattern variables.

Lastly, rule (Letrec) adds a set of bindings to the heap. The side condition ensures
that no inadvertent name capture occurs, and can always be satisfied by a local
a-conversion.

3.2 Relating Terms and Configurations

We can translate between configurations to terms straightforwardly, by induction
over the stack:

trans(f, M, e) =M
trans({Z =M}, N, e)=let { =M} in N
trans(I', M, z:S) =trans(T', Mz, S)
trans(T', M, #x:S) =trans(T'{x = M}, z, S)
(T

The operational semantics tells us how to translate terms into configurations. In
the following lemma, C is a program context containing zero or more holes. C[M]
denotes the insertion of M into those holes, yielding another term. (Contexts will
be introduced in more detail in section 5.)

LeEMMA 3.1. (TRANSLATION) For all T, C, S, there exists k > 0 such that for
any M, ((, trans(T, C[M], S), €) =% (T, C[M], S).

PRrROOF. Simple induction on the size of S. a

3.3 Convergence

An operational theory relies upon having a useful notion of an observable, that is,
a property of closed progams which may be observed. The simplest observable is
termination, or convergence.

DEFINITION 1. (CONVERGENCE) For closed configurations (T, M, S),
(T, M, S)" = 3IA, VAT, M, S) =" (A, V, €)

(T, M, S)§ = 3n(T, M, S)I",
(T, M, S)JS" = Im (T, M, SYI™ A m < n.

Closed configurations which do not converge are of three types: they either reduce
indefinitely, get stuck because of a type error, or get stuck because of a black-hole (a
self-dependent expression as in let z = z in x). All non-converging configurations
will be semantically identified.

We will also write M}, M{" and M|<S", identifying closed M with the initial
configuration (0, M, €).
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4. COMPLEXITY OF COMPUTATION

The cost of computation is what distinguishes call-by-name from call-by-need. Our
strategy for building an operational theory which respects this distinction is to ob-
serve this cost when comparing terms. Before developing this theory, the question
which remains is how one should measure cost. In an attempt to predict actual
running times, one might assign implementation specific constants to each abstract
machine step. Even if this were possible (we are doubtful, since most compil-
ers perform a myriad of optimisations), it would lead to a very fine-grained and
implementation-specific theory. Instead we work with a more abstract measure of
cost, and aim for a non implementation-specific theory.

In an earlier version of this work [Moran and Sands 1999; Moran and Sands 1998]
for simplicity we chose simply to count the number of abstract machine steps as our
measure. It would be unrealistic to assume that abstract machine steps could reveal
information about actual running times, given that we are working with such a high-
level machine. For whatever cost measure we choose, the bottom line is whether
it is sufficient to describe the complezrity of computation. In other words, the
measure should be within a constant factor of “actual cost”. A reasonable question
is whether each step of the abstract machine can be considered implementable in
constant time; we defer discussion of this point to appendix A.

We now move to an even leaner notion of cost than abstract machine steps. The
aim is to make the notion of cost as simple as possible, but without sacrificing
our bottom line — namely that the measure of cost should be within a program-
size dependent constant factor of running-time. It is sufficient to measure cost in
terms of the number of times the lookup rule is applied. This claim is proven in
appendix A.

Let us now define the cost of computation.

DEFINITION 2. For closed configurations (T, M, S),

(T, M, S)|™ = (T, M, S)| with n occurrences of (Lookup)
(T, M, S)|S" = 3Im(T, M, S){™ A m < n.
As with |}, we will identify closed M with the initial configuration (@), M, €),
writing M |", and M [S™.
To demonstrate the soundness of our cost measure, we argue that
(1) the number of abstract-machine steps is within a program-size dependent con-

stant factor of actual running time of an implementation based on the abstract
machine, and

(2) the number of lookup steps is within a program-size-specific constant factor of
the number of abstract machine steps.

The former is discussed in appendix A, and the latter is formalised in the following
theorem, the proof of which may be found in the same appendix.

THEOREM 4.1. For all s > 0, there exists a linear function f such that for all
closed terms M of size s,

M™ = Mu<f(m)_
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This justifies the use of the number of lookups as a measure of cost. We can now
define improvement, which will be based on this measure.

5. IMPROVEMENT

The starting point for an operational theory is usually an approximation and an
equivalence defined in terms of program contexts. Program contexts are generally
introduced as “programs with holes”, the intention being that an expression is to be
“plugged into” all of the holes in the context. The central idea is that to compare
the behaviour of two terms one should compare their behaviour in all program
contexts.

We will use contexts of the following form:

C,D =]

let {Z=D}inC
c®
| case C of {c;#; - D;}
V, W= Az.C

| cZ.

|
|
| Cz
|
|

Our contexts may contain zero or more occurrences of the hole, and as usual the
operation of filling a hole with a term can cause variables in that term to become
captured.

We define observational approximation and equivalence via contexts in the stan-
dard way [Abramsky and Ong 1993].

DEFINITION 3. (OBSERVATIONAL APPROXIMATION) We say that M observa-
tionally approximates N, written M T N, if for all C such that C[M] and C[N]
are closed,

CIM]y = C[N]J.

We say that M and N are observationally equivalent, written M =2 N, when M C N
and N C M.

We know that = coincides with its call-by-name counterpart, so this tells us
nothing new. We need to incorporate more intensional information if we are to
build an operational theory that retains the distinction between name and need.
Since call-by-need may be thought of as an optimisation of call-by-name, a natural
intensional property to compare is how many reduction steps are required for ter-
mination. However, theorem 4.1tells us that counting lookups is in fact sufficient.
Recall that we will write

M"

to mean that M converges with a cost of n, where n is the number of lookups that
occur during the evaluation of M.

DEFINITION 4. (IMPROVEMENT) We say that M is improved by N, written
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M > N, if for all C such that C[M] and C[N] are closed,
C[M]{" = C[NJ{S™

We say that M and N are cost equivalent, written M < N, when M > N and
ND> M.

This definition suffers from the same problem as any contextual definition: to
prove that two terms are related requires one to examine their behaviour in all con-
texts. For this reason, it is common to seek to prove a context lemma [Milner 1977]
for an operational semantics: one tries to show that to prove M observationally
approximates N, one only need compare their behaviour with respect to a more
tractable set of contexts.

We have established the following context lemma for call-by-need:

LEMMA 5.1. (CONTEXT LEMMA) For all terms M and N, if for all T, S, and
n, such that (T';, M, S) and (T, N, S) are closed,

then M > N.

It says that we need only consider configuration contexts of the form (T, [], S)
where the hole [-] appears only once. This corresponds exactly to a subset of term
contexts called evaluation contexts, in which the hole is the subject of evaluation.
We shall make this correspondence precise in the section 6.2.

Note that the context lemma applies to open terms M and N. It is more common
to restrict one’s attention to closed terms, and then show that the preorder in
question is closed under (general) substitution.

5.1 Strong Improvement

The improvement relation, like the notion of operational approximation which it
refines, also increases the termination of programs, so if M > N then N may also
terminate “more often” than M. In the context of compiler optimisations it is
natural to ask for a stronger notion of improvement which does not permit any
change in termination behaviour.

DEFINITION 5. (STRONG IMPROVEMENT) We say that M is strongly improved
by N, written M > N, if

M>NANC M.

M is strongly improved by N if it is improved by N, and N has identical termination
behaviour (note that we need only have N T M in the definition since M > N =
ML N).

For simplicity of presentation we emphasise improvement rather than strong im-
provement. However, almost all the laws and proof rules presented in subsequent
sections also hold for strong improvement, notable exceptions being the “strictness
laws” concerning (2, the divergent term. The syntactic continuity proof principle is
sound for strong improvement, but degenerates to a trivial rule.

The following Hasse-diagram illustrates the relationships between the various
approximations and equivalences introduced in this section:
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The diagram is a N-semi-lattice of relations on terms. In other words, the greatest
lower bound of any two relations in the diagram is equal to their set-intersection.

6. THE TICK ALGEBRA

Consider the following improvement:
et { =V}inzDlet{=V}inV (%)
Clearly, for any I' and S:
(T, let {z =V}inz, S)y > (T{z =V}, =z, S)
= (T, V, #x:85)
S (M{z=V} V. 5)

and

(T, let {z=VYinV, §) = (C{z =V}, V, §)

so (x) follows from the context lemma. But we can say more: let {z = V} in z
always takes exactly two more steps to converge than let {x = V} in V. More
importantly, one of those two steps is always a lookup, incurring cost.

If we had some syntactic way of introducing cost to the right-hand side, (%)
could be written as a cost equivalence, which would be preferable, since it is a more
informative statement. This motivates the introduction of the “tick”, written v/,
which we will use to add a unit of cost to a computation. Now we can write (%) as

et {z=V}inz< let{z=V}inV
We introduce the tick as a new syntactic construct!, with the following transition

rule:
(T, "M, S) = (T, M, S) (Tick)
n earlier work, the tick was defined within the language. To do so here, we could introduce a

spurious indirection, i.e. ¥ M would be defined by let {z = M} in . However, this needlessly
complicates proofs, since it changes the heap.
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with the further stipulation that we count occurrences of both (Lookup) and the
(Tick) transitions when calculating the cost of a compuation.

By definition, v' adds one unit to the cost of evaluating M without otherwise
changing its behaviour. Note that:

M| < "M
M|" = M|

We will write ** M to mean that M has been slowed down by k ticks. The following
inference rule and axiom, known collectively as “tick elimination” are crucial when
establishing improvement or cost equivalence.

\/MB\/N

— = ‘M> M (v -elim)
M©>N ~

Their validity follows from the definition of [>.

We can easily prove a number of improvements and cost equivalences modulo
tick, and we present a selection of the more useful ones in the following sections.
Throughout, we will follow the standard convention that all bound variables in the
statement of a law are distinct, and that they are disjoint from the free variables.
Together with (v'-elim), the laws presented in figures 2, 3, 4, 5, and figure 6 are

known collectively as the tick algebra.

6.1 Beta Laws

The first set of laws, presented in figure 2, are important in that they allow us to
mimic evaluation within the algebra. (8) is the familiar law for call-by-need beta
reduction; (case-3) is the analogous law for case expressions. To see the validity of
(8), note that, for all T" and S

(D, A\y.M)z, S)y - ([, A\y.M, z:S)

Since (Ay.M)z always reduces to M[Z/y] in two zero cost steps, irrespective of '
and S, the context lemma tells us that they are cost equivalent. Many of the laws
in this section are this easily established.

In (value-f3), one may replace occurrences of a variable, which is bound to some
value V, with “V. The tick reflects the fact that by replacing x with its value, we
are short-circuiting a lookup step.

(var-B) is a version of (value-B) where z is instead bound to another variable z. It
is an improvement only, because the speedup achieved can vary. It can be reversed
if we compensate for the indirection, as in (var-abs). (var-subst) and (var-ezpand)
are slight variations on (var-8) and (var-abs), respectively, that allow us to replace
x with z even in argument positions (not allowed in (var-8) due to the use of
contexts). The proofs of validity of (value-3), (var-8), (var-abs), (var-subst) and
(var-expand) rely upon general techniques that are outlined in section 11.

There are also two derived beta laws, corresponding to unrestricted versions of
(B) and (case-f). We can derive the following cost equivalence:

(Az.M)N < let {=N}in M (8"
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Laws of the Tick Algebra

Throughout, we follow the standard convention that all bound variables in the statement of a law
are distinct, and that they are disjoint from the free variables.

(a.M)y & MY) (8)

case ¢; § of {c; & - M;} < M; [?7/5] (case-B)

let {z = V,7 = D[z]} in C[z] < > let {z=V,§= B[ V]} in C[“V] (value-B)

let {z = z,§ = D[z]} in C[z] >let {z =2,§= B[z]} in C[2] (var-B)

“let {& = z,§ = D[2]} in C[2] > let {& = 2,§ = D[]} in Cla] (var-abs)

let {o = 2.7 = N[5} in N[%] & let {o = 2,7 = M[2y]} in N[Zy] (var-subst)
“let {o = 2,5 = M[#y]} in N[2y] & let {o = 2,5 = M[a/,]} in N[thy]  (var-cspand)

Fig. 2. Beta laws for call-by-need.

E["M] & “E[M)] (v-E)
E[case M of {pat; - N;}] <> case M of {pat; - E[N;]} (case-E)
Ellet {# = M} in N] <> let {Z = M} in E[N] (let-E)
let {x =M} in E[z] © E['M], ifz¢FV(M,E) (inline-E)
Fig. 3. Laws for evaluation contexts.
let {#=M}in N <& N, ifZ4FV(N) (gc)
let {=L}inlet {f=M}inN B let {#=L,fj=M}inN (let-flatten)
let {z =let {f=1L,7=M}in N}in N' < let {z=let {#=NM}in N,j=L}in N’
(let-let)
Cllet {7 =V} in M] <> let {7 =V} in C[M] (let-float-val)

let {Z=Vo1,7=Voas,Z=M}in N < let {Z = Vor03,7= Mo3} in Nos,

o1 = [l o2 = [Fhgl, 03 = [Tg],  (value-copy)

Fig. 4. Laws for dealing with lets.

Q> M ()
MP>Q, iffM=2Q (imp-Q2)
M==Q, ifM>'M (diverge)
let {x = Q,§ = Dla]} in Clz] < let {z = Q,§ = D[N} in C[Q] (Q-8)
Cllet {y = Q} in M] < let {y = Q} in C[M] (let-float-Q)
C[¥M] > YC[M], ifC is strict (v'-float)
Fig. 5. Laws for Q and strictness.
let {& = M,§ = D[ M]} in C[“ M] > let {z = M,§ = D[z]} in Cz] (B-ezpand)

Fig. 6. Beta expansion conjecture.
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where N is not a variable. There is a similar derived law for general case expressions.

6.2 Laws for Evaluation Contexts

An evaluation context is a context in which the hole is the target of evaluation; in
other words, evaluation cannot proceed until the hole is filled. Evaluation contexts
have the following form:

E:=A
| let {Z=M}inA
| let {7 = M,
zo = Aoz1],
1 = Aqz2],
Ty, = Ap}
in Alzo]
A=
| Az

| case A of {c; % - M;}.

E ranges over evaluation contexts, and A over what we call applicative contexts.
Our evaluation contexts are strictly contained in those mentioned in Ariola and
Felleisen’s letrec extension [Ariola and Felleisen 1997] of the call-by-need calculus:
there they allow E to appear anywhere we have an A. Our “flattened” defini-
tion corresponds exactly to configuration contexts (with a single hole) of the form
(T, [], S), as made precise by the following lemma, where Ag is the set of all
evaluation contexts.

LEMMA 6.1. Ag = {trans(T, [], S) | all T, S}.

The two laws in figure 3 are very useful indeed: they allow us to move cases and
lets in and out of evaluation contexts. A common motif in proofs using the tick
algebra is the use of (case-E) and (let-E) to expose the sub-term of interest. Their
validity follows easily from a simple lemma (presented in section 11).

(v-E) allows us to move ticks in and out of evaluation contexts. It follows by
a simple use of the context lemma and the properties of the (Tick) transition.
Another useful law is (inline-E), which allows us to inline z if it is used but once

in an evaluation context. It follows by similar reasoning to (v'-E).

6.3 Concerning Lets

Some of the laws that allow us to manipulate lets are presented in figure 4. Law
(gc) corresponds to garbage collection: it allows us to add or remove superfluous
bindings. Laws (let-flatten) and (let-let) allow bindings to move across each other,
and law (let-float-val) concerns the movement of value bindings in and out of general
contexts (i.e. including across As); along with (let-float) below, it forms the essence
of the full-laziness transformation, as noted in [Peyton Jones et al. 1996]). The last
law, (value-copy) says that if we have two copies of a strongly-connected component
of the heap (composed solely of values), then we may remove one of them, provided
we perform some renaming.
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Note that in, for example, the (let-let) axiom, the variable convention ensures
that the 2" do not occur free in the E; in (let-float-val), the convention guarantees
that z is not free in the V.

All of the let laws except (value-copy) follow via similar arguments to that for
(8) above. (value-copy) requires the use of the same general techniques needed to
justify the more complex § laws (proof in section 11).

6.4 Divergence and Strictness

Let Q denote any closed term which does not converge. For example, the “black-
hole” term, let z = z in z, would suffice as a definition for Q. The first three laws in
figure 5 concern  and its relationship with &>. (Q-3) and (let-float-Q) are similar
to (value-B) and (let-float-val) except that Q is used in place of a value. All of
these laws follow in a straightforward manner from the context lemma and the fact
that call-by-name termination behaviour is preserved in the call-by-need theory.

We say that a context C is strict if and only if C[Q2] = Q. Given this definition, we
can float ticks out of any strict context, as stated by (v'-float). The proof follows
by the same techniques used to prove (value-(3).

It turns out that this tick floating property can be used as a characterisation of
strictness: for all C, if C["z] &> “Clz], z fresh, then C is strict. This follows since,
by congruence,

let 2 =Qin C["z] > let z = Q in “C[z]

which implies, by (2-3), and (gc), that C["Q] &> “C[Q]. But since " < Q, by (Q)
and (imp-Q), C[Q] > “C[Q]. Therefore, by (diverge), C[Q] = Q.

6.5 Beta Expansion: A Conjecture

In analogy to (value-3), we have (S-expand) where values are replaced by general
terms:

let {z = M,§=D["M]} in C[*M] > let {z = M,§ = D[z]} in C[z] (S-expand)

The intuition here is that the rule undoes a call-by-name computation step (a beta-
reduction). This is an improvement providing we can pay for the potential gain
that the computation step might have made — which is at most one tick at each
occurrence of the variable which is unfolded.

Unfortunately we lack a satisfactory proof for (3-expand). The context lemma
seems inadequate to establish this property. This seems to be linked to the fact
that the axiom embodies the essential difference between call-by-name and call-
by-need evaluation, and thus it may be possible to adapt techniques based on
redex-marking [Maraist et al. 1998]. However, while we believe the conjecture to
be an improvement as regards speed, it can lead to asymptotic worsening of space
behaviour [Gustavsson and Sands 1999].

The conjecture can be used to “tie the knot” when deriving cyclic programs.
This possible since we allow z to occur free in M. See the last step of the proof of
proposition 8.4 for an example of the use of (3-exzpand) in this context.
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(Az.M) N =xgep let 2 = N in M (let-I)

let z =V in Clz] =xgep let z = V in C[V] (let- V)

(let z =L in M)N =ygep let z =L in M N (let-C)
lety=(letz=Lin M)in N =xgpletz=Linlety= M in N (let-A)

Fig. 7. Axioms of the call-by-need calculus of Ariola et al..

Using the conjecture, we can also establish the following:

‘Ozlet {f=1L,2=M}in N)>let {f= L} in Az.let {Z= M} in N
(let-float)

which concerns moving non-value bindings out of As (where the variable convention
ensures that z does not occur free in the f) As noted above, this is an essential
part of the full-laziness transformation. Another consequence of the conjecture is
standard common sub-expression elimination:

YC["M] > let {z = M} in Clz] (cse)

Again, the convention ensures that any free variables of M are not captured by
context C.

7. RELATING THE TICK ALGEBRA AND THE CALCULI

We reproduce the axioms of the call-by-need calculus of [Ariola et al. 1995], in
figure 72.

The laws collected in figures 2, 3, and 4 subsume the call-by-need lambda calculi
(in both cases minus the symmetry law): each calculus rewrite rule of the form
L — R turns out to be an outright improvement, i.e. L > R.

In fact, with the exception of (let- V'), they are cost equivalences, so we can reverse
the improvement also. As for (let- V'), we can reverse the improvement modulo tick.
In other words, there exists an R', obtained from R by inserting ticks, such that
R' > L. This fact will enable us to prove that any two terms related by these calculi
compute within a constant factor of each other in any program context. Thus the
best (worst) speedup (resp. slowdown) program obtainable in these calculi is linear.

First it is natural to generalise the idea of improvement modulo ticks.

DEFINITION 6. (IMPROVEMENT WITHIN A CONSTANT FACTOR) We say that
M is improved by N within a constant factor, written M g N, if there exists a k
such that for all C such that C[M] and C[N] are closed,

C[M]}"» = C[N]|Sk(+1),

So M z N means that N is never more than a constant factor slower than M (but
it might still be faster by a non-constant factor). Note that the constant factor is
independent of the context of use.

It can be seen that g is a precongruence relation (to show transitivity requires a
small calculation) and clearly contains the improvement relation.

2Tn the original paper V ranges over variables as well as values. In addition, Ariola and Felleisen
[Ariola and Felleisen 1997] restrict C in (let- V') to be evaluation contexts.
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Now we consider a special case of g, namely programs which only differ by ticks.

Let M % N mean that N can be obtained from M by removing some ticks (from
anywhere within the term), and M < N mean that there exists an L such that
M 5 Land N 5 L. Clearly % is a precongruence and < is a congruence.

LEMMA 7.1. M X N — MEN.

PROOF. (Sketch) Clearly % C >, so it suffices to show that M > N = N R M.
First show that the nesting of ticks in a configuration never increases as computation
proceeds (easy to see since the rules never substitute terms for variables). Then let
k be the maximum nesting of ticks in M, and show by induction on the length of
the computation that C[N]|}” implies C[N]{}*("+1) (strengthening this statement
to configurations). m|

With this lemma we can establish the following:

THEOREM 7.2. For all terms N and M (of our restricted syntazx) if M =ygep N
then M g N.

PROOF. (Sketch) By induction on the proof of M =ygn N. The base case requires
us to show that the (oriented) equations are contained in g This follows easily since
they are all either improvements or improvements modulo tick. In the inductive
cases, the congruence and transitivity rules follow from the inductive hypothesis
since g is a precongruence. The only difficult case is symmetry. It will be sufficient

to prove that reversed equations are contained in 2. For each equation L =yzpp R

we have from the laws of the tick algebra either that R > L, or, in the case of
v

(let-V), an R' such that R' = R and R' > L. By lemma 7.1 we know that R & R’,
so R L follows from the fact that > C & and transitivity of £. |

COROLLARY 7.3. The call-by-need calculus of [Ariola et al. 1995] cannot improve
(or worsen) a program by more than a constant factor.

We are confident that this result can be extended to Ariola and Blom’s sharing
calculus Aosuare [Ariola and Blom 1997] since almost all the rules are represented
more or less directly in the collection of improvement laws. It is interesting to
note that we assembled our collection of laws “by need”, considering what was
required to tackle a number of examples, and it was encouraging to find that we
had already covered almost all of Ariola and Blom’s rules. As it stands however, our
(value-copy) cost equivalence is not as expressive as Ariola and Blom’s value-copy
rule.?> We believe that Ariola and Blom’s value-copy rule is a cost equivalence, but
their formulation of the rule is rather indirect, so it is not obvious to us how to
prove this.

8. SYNTACTIC CONTINUITY

We wish to say something meaningful about recursive functions with this theory,
and a natural starting point is to attempt to mimic the fixed-point induction Scott-
style denotational semantics. Examples of this kind of operational analogue to

3Thanks to Stefan Blom for providing an example, and to Zena Ariola for pointing out an error
in the use of an earlier formulation of our value-copy rule.
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Scott induction for other languages may be found in e.g., [Pitts 1997b; Smith 1991;
Mason et al. 1996; Sands 1997; Lassen 1998]; we present the first such result for a
call-by-need semantics.

We will use the following mechanism to describe the syntactic unwindings of a
recursive function. In the definition, the f; are distinct, new variables.

DEFINITION 7. f

Then, for an f defined by let {f = V} in f, we define the n'® unwinding as
let {f =V}in fn. If we expand the definition of f = V, we see that this is really

let {f(] = Q,
fi =V,
fn=VI[in1/f]}
in fn.

Note that we have restricted our attention to those f whose defining body is a
value; this unwinding trick would not work for general cycles (since loss of sharing
would render the exercise pointless). To extend the method to cycles would require
some extension to the language, but this would lead to the problem of showing that
the extension is conservative with respect to the improvement relation.

The point is that the functions let {f = V'} in f, completely characterise the
behaviour of let {f = V} in f. This is the essence of Scott induction. The
main property that justifies this is a syntactic notion of continuity, which says that
let {f = V}in f is the least upper bound of chain {let {f = V} in f,}n>0 and
that any M which uses f preserves this property.

We first show that {let {f = V} in M[fn/f]}n>0 does indeed form a chain with

respect to B>, and that let {f =V} in M is an upper bound of that chain.

LEMMA 8.1. Vn.let {f =V} in M[fn/f]
> let {f "= V}in M[fnt1/f]
>let {f =V} in M.
ProOF. We prove only the second improvement, that for all n,

let {f = V}in M[fo/f] > let {f =V} in M.

The first follows by a similar argument. We proceed by induction on n. The base
case follows easily by (gc) and the Q laws, and the inductive case follows by this
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calculation:

let {f =V, fos1 = V[f”/f]} in M[f"H/f]

< let {f = V}inlet {fns1 = V[Io/f]} in M[fnt1/y]
= let {f = V}inlet {g=V[fo/f]} in M[9/y]

(let-let)
(
let {f =V} in let {g=VI[f/f]} in M[9/y] (LH.)
(
(

renaming)

vV

< let {f=V,g=V}in M[9/f] let-let)
<slet {f=V}inM value-copy), (gc)

O

To establish syntactic continuity, we will need the following lemma (see section 11
for the proof). It says that if let {f = V'} in M converges then there must exist
some unwinding that does so with the same cost.

LEmMA 8.2. (UNWINDING) For allT, S, and n,
(T, let {f =V}in M, S)I" = 3m (T, let {f =V} in M[fw/f], S)I"™.
THEOREM 8.3. (SYNTACTIC CONTINUITY) The following is a sound proof rule:
Vnlet {f =V} in M[fo/f] & N
let {f=V}inM > N

ProOOF. Assume (T, let {f = V} in M, S)|™. Then by the Unwinding lemma,
there exists some m such that (T, let {f = V} in M[fm/f] S){". By the premise,

Y

we have that (T, N, S){S", and the result follows by the context lemma. a

Syntactic continuity is also valid for mutually recursive functions. This proof rule is
sound for strong improvement, but note that the base case of the premise requires
that IV be contextually equivalent to 2. This tends to limit the applicability of the
strong improvement version of syntactic continuity.

As an example of the use of syntactic continuity, we show that an unwinding fixed-
point combinator is improved within a constant factor by a “knot-tying” fixed-point
combinator.

PRrROPOSITION 8.4. If (B-expand) is valid, then
let rec = (Af.let x = rec f in fz) in rec g let fir = (\flet x = fx in ) in fiz.

PROOF. Let V = Af.let z = rec f in ¥ fz, and abbreviate V["Cn/po.] by V,,. We
will show that for all n, let rec = V in rec, > “Af.let 2 = fx in z. Then the result
will then follow by syntactic continuity, since
Mletz=fxinz
< let fit = (A\flet x = fzin x) (ge)
in“Afletz=fzinz

< let fit = (Afletz = fzinz)in fix (value-p3)
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let rec = V,recp+1 = Vi in recp41
< let rec = V,recnt+1 = Vi in 'V, value-f3)

<> let rec = V in Y Af.let x = recn fin ¥ fa gc), (defn. of Vy)

(
(
< )\ flet rec ZV,ze=recn fin " fx (let-float-val), (let-float-2)
< “Aflet z = (let rec = V in recy) f in ¥ fx (let-let), (let-E)
> “Afletz = (“Aglety=gyiny) finfa (I.H.), (renaming)
> Afletz="lety=fyinyin“fx (B)
> Afletz="y,y=fyin“fx (let-let)
> “Afletz=y,y=fyin“fy (v'-elim), (var-subst)
> “Afletz=fzin'fx (gc), (renaming)
> “Afletz=fzinz (B-expand)

Fig. 8. The inductive case for proposition 8.4.

We proceed via induction on n. The base case follows trivially by (imp-Q) and (Q2)
since let reco = Q in recy = 2, and the inductive case follows by the derivation in
figure 8. We have g and not > because we use a slightly slower version of rec. O

The converse of the proposition is false, since the knot-tying fixed-point combi-
nator can give asymptotically better programs.

We can also use syntactic continuity to establish the following proof rule, which
is a syntactic, call-by-need version of what is called fized-point fusion in [Meijer
et al. 1991]. In the statement, V and W range over value contexts.

THEOREM 8.5. (IMPROVEMENT FUSION) If C is strict, and C[V[z]] > W[C[z]]
where x ¢ FV (V,W,C)UCV (V,W,C), then for all D such that x ¢ FV (D) UCV (D),

let {z = V[z]} in D[C[z]] & let {z = W[z]} in D[z].

ProOOF. Assume C is strict, and that C[V[z]] > W[C[z]]. By syntactic continuity, it
suffices to show, for all n and all D such that z ¢ FV (D)uUCV (D),

let {z = V[z]} in D[C[z,]] & let {z = W[z]} in D[z].
The base case follows by this calculation:

let {zop = N} in D[C[xo]]
2 let {zo = } in DC[]] (
< let {zo = Q} in D[] (
< D[] (9¢)
< let {z = W[z]} in D[] (
let {z = W[z]} in D[z] (

aY
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and the inductive case by this calculation:
let {z "£' V[z]} in D[C[zns1]]
<> let {= = V[z]} in D[C[“V[z,]]]
<> let {z = V[z]} in D["C[V]z,]]]

(value-0), (gc)
(
let {z = V[z]} in D[*W[C][z,]] (assumption)
(LH
(

C strict)

let {z = W[z]} in D["W[z]] )
let {z = W[z]} in D[z] value-3)

0 v v

O

Fixed-point fusion can be used to establish a number of general fusion laws. It is
also central to Tullsen and Hudak’s [Tullsen and Hudak 1998] approach to program
transformation in Haskell.

9. THE IMPROVEMENT THEOREM

In this section we introduce a second key technique for reasoning about recursion,
the improvement theorem. In [Sands 1996] a call-by-name improvement theorem
was introduced as a means to prove the extensional correctness of recursion-based
program transformations. In this section we show how these results carry over to
the call-by-need setting.

9.1 The Problem of Transformations

As a motivation for the improvement theorem, consider the correctness problem
for recursion-based program transformations such as unfold-fold; the correctness of
such transformations does not follow from the simple fact that the basic transfor-
mation steps are equivalences. To take a simple example to illustrate the problem,
consider the following “transformation by equivalence-preserving steps”. Start with
the recursive function repeat which produces the “infinite” list of its argument:

repeat x = x : (repeat )

The following property can be easily deduced: repeat x = tail(repeat x). Now sup-
pose that we use this “local equivalence” to transform the body of the function to
obtain a new version of the function:

repeat x = x : (tail (repeat x))

This definition is not equivalent to the original, since it can never produce more
than first element in the list. How did equivalence-preserving local steps produce
a non-equivalent function? Analysing such transformations more carefully we see
that while it is true that

M2N = let{r=M}inL=let{z =N}inlL (9.1)

it is no longer the case when the transformation from M to N depends on the
recursive definition of z itself:

let {r =M} in M Xlet {r=M}inN
#=let {z=M}inL=let {x=N}inL.
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But in order to reason about “interesting” program transformations (e.g. unfold-
fold, recursion-based deforestation, partial evaluation with memoization), inference
(9.1) is simply not sufficient.

The improvement theorem comes to the rescue:

let {z =M} in MDlet {z =M}inN
let { =M} inLD>let {x =N}inL

(9.2)

This is sufficient to establish the correctness of recursion-based transformations
by requiring — rather naturally — that the local transformation steps are also
improvements. This was proved for an improvement theory based on call-by-name,
so the fact that the theorem gives “improved” programs as well as correctness is
not considered to be particularly significant.

A question left open was whether the improvement theorem holds for a call-by-
need improvement theory. We can now supply the answer:

THEOREM 9.1. (IMPROVEMENT THEOREM) The following proof rule is sound:
let {f=V}inVDlet{f=V}inW
let {f=V}inNDlet {f=W}inN

The inference is also sound when > is replaced throughout with <> (the cost equiv-
alence theorem,).

The improvement theorem and the cost equivalence theorem can also be stated for
a set of mutually recursive definitions. The proof of the theorem is in section 11.

Notation. In establishing a premise of the improvement theorem, in the context
of some recursive declarations § = V, a derivation of the form

let {7 =V}in M >let {F=V}in M,
>let {G=V}in Ms...
will be written in the following abbreviated form:
gF M, > M,
> Ms...

when the declarations § are clear from the context. This is of course of limited use
without the following congruence rule:

grM®>N
g+ C[M] % C[N]

(F-cong)

for all contexts C. It says that any improvement proven in the context of some
recursive definitions may be lifted to all contexts.

The following example illustrates the use of the proof rule, which shows that a
representation of the standard lambda-calculus fixed-point combinator

Y =M.f(Az.f (zz)) Az.f (x z))

(suitably converted to the restricted syntax) is cost equivalent to the non-cyclic
version rec from proposition 8.4.



An Operational Theory for Call-By-Need . 23

PROPOSITION 9.2.

let Y = Afletd= Ay.let z=yyin fz

r=dd
in fz
inY
< let rec = Af.let x = rec f in fx.
in rec

ProoF. To use the cost equivalence theorem, we are required to show that

let Y =---
inAfletd=MAylet z=yyin fz
xr=dd
in fx
SletYy =---

in \fletz =Y fin fzx

where rec has been renamed (without loss of generality) to Y. Using the entailment
notation, we need to show:

YFEAfletd=Ayletz=yyin fz
xr=dd
in fx
< Afletz=Y fin fux.

By calculation, we have that:

YEMletd=Myletz=yyin fz

x=dd
in fx
< Afletd=Aylet z=yyin fz (value-B), (B)
z="let z=ddin fz
in fx
<> Afletz="letd=Aylet z=yyin fz (let-let)
z=dd
in fz
in fx
<> Mletz =" "(N\gletd=Aylet z=yyingz (8)
z=dd
ingz)f
in fx
S Afletz=Y fin fz (value-3)
Then the result follows by the cost equivalence theorem. |

Improvement Theorem vs. Syntactic Continuity. Suppose one wants to establish
an improvement of the form

let {f=V}inNDlet{f=W}inN.
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If the left-hand side is non-recursive (in f) then syntactic continuity is of no help,
since the unwindings (> 0) of the left-hand side will all be identical; conversely,
if the right-hand side is non recursive (in f) then the improvement theorem is
not immediately useful, since proving the premise amounts to directly proving the
conclusion of the rule. There are, however, many examples which can be proved by
both methods. In these cases the improvement theorem is often preferable since it
is more calculational in style.

9.2 Improvement Induction

Finally, we mention one last proof rule which is closely allied to the improvement
theorem (in the sense that a closely-related rule can be derived from the improve-
ment theorem); this corresponds to what we called improvement induction in [Sands
1997], where it was established for any call-by-name or call-by-value language with
SOS rules fitting a certain syntactic rule-format.

THEOREM 9.3. (IMPROVEMENT INDUCTION) For any M, N, C, and substitu-
tion o, the following proof rule is sound:

fEMD>“C[Mo] f+ N < “C[No]
fEMD>N

The proof is quite straightforward, and is given in section 11. A example of the
proof technique is provided in section 10.

10. AN EXAMPLE PROGRAM TRANSFORMATION

In this section we consider a larger example of a program transformation — an
automatic method for eliminating calls to the append function. The transfoma-
tion is something of a classic, and can be viewed as an instance of the unfold-fold
scheme [Burstall and Darlington 1977]. The particular mechanisation described
here is based on [Wadler 1988]. The example was used previously to illustrate the
improvement theorem for call-by-name evaluation [Sands 1996]. Here we show that
the correctness argument there can be strengthened to encompass a guarantee of
call-by-need improvement.

10.1 The Concatenate Vanishes

The basic idea is to eliminate occurrences of the list-concatenate function:

(H) = Azs.\ys.case zs of
nil - ys

h:t—-h:(tH ys),

when it occurs to the right of a function application, as in: fy; ...y, H 2. This is
achieved by by defining and optimising a function f* which satisfies

o ynz=(fyryn) H 2

We present the transformation in two phases: initialization, which introduces
an initial definition for fT, and transformation, which applies a set of rewrites to
terms in the scope of these definitions. Throughout we assume that the definition
of the append function is in scope. To ease the notation, we will occasionally make
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use of the syntactic identity for general application from section 3, and we will use
an infix form of append.

Initialization. The target of the transformation is a function definition f =
Axy ... \x,. M, for which there is an occurrence of a term (f y1 ...y,) H 2 in the
program. The initial step is to replace the definition by the pair:

f=Axi... Xxp.fro ... xpnil
fr=Xzi... dzp 2. M H2

Transformation. Apply the following rewrite rules, in any order, to all expressions
in the scope of the above definitions:

let y = nil in Cly H z] — let y = nil in C[z] (i)
etw==x:yinClwHz]—=letw==z:yinClx: (yH 2)] (ii)

(@ Hy)Hz = zH(y+2) (iff)

(case M of {pat; > N;}) H z — case M of {pat, - N; H z} (iv)
(fzr...20) H2z—=fta1...2n2 (v)
(ftai...zp2) H2 = frar...zn, (2 H2) (vi)

(let =M in N)H2z—let#=Min N+H2z (vii)

10.2 An Example Application

The classic example of this transformation is the conversion of a naive quadratic
time list reverse function into a linear time version. Suppose we have the definition

reverse = \xs.case zs of
nil - nil
h:t-let z=[h]in (reverset) H z

The expression (reverset) H z is a candidate for the transformation, so initialisa-
tion yields:

reverse = Azs.reverse’ zs nil
case zs of
reverse” = Azs.\z. nil - nil +H 2z

h:t-lety=[h]in (reverset) Hy

Now we apply the transformation rules to the program. We will also use garbage
collection to remove redundant bindings. The important part is the application
to the case expression in the right hand side of the definition of reverse™. The
transformation is presented in figure 9.

10.3 Correctness

We have seen, with the standard reverse example, that the transformation can
achieve asymptotic program speedups. In the remainder of this section we use
the improvement theory to prove that the method described can never slow down
programs by more than a constant factor.

For the correctness argument we make a simplification to the initialisation phase:
we will not modify the definition of the original function f. The effect of this
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case zs of
nil = nil +H z
h:t—lety=[h]in (reverset) Hy
— case zs of (iv)

nil - nil {2
h:t— (let y=_[h]in (reverset) Hy)H z

— case zs of (i), (vii), (g¢)
nil -z

h:t—(lety=1[h]in (reverset) Hy) H 2

— case s of (vii), (iii), (vi)
nil -2
h:t—lety=7[h]in reversett(y -+ 2)

— case s of (ii)
nil -2
h:t—lety=[h]in reverset t(h: (nil 4+ 2))

— case s of (i), (ge)
nil -2
h:t— reverset t(h: z)

Fig. 9. Example transformation sequence.

simplification is to cause duplicated transformation work (and some duplicated
code) in some examples — but is not otherwise significant. The reason for this
simplification is that replacing the body of f by ftzi ...z, nil is not sound in an
untyped language — since it relies on the equality x = x + nil. In a typed theory
it would be straightforward to establish that this is a weak cost equivalence — but
a typed theory is beyond the scope of the present article.

The architecture of the proof is as follows. The introduction of the new function
is merely garbage-introduction, so is patently sound. The remaining steps illustrate
the use of:

—basic laws to establish that the remaining laws are all improvements;
—improvement induction, to establish associativity properties of append, and
—the use of the above properties together with the improvement theorem to estab-

lish the property of the transformation as a whole.

10.4 Properties of Append
ProrosiTioN 10.1.

(+H) F let y = nil in Cly H ] < let y = nil in C[* 2]
(H)Fletw==z:yinClwHz]<Tletw==a:yin C[*z: (yH 2)]
(H) - (case M of {pat; -~ N;}) H 2z <> case M of {pat; »let y = N; in y H 2}
(H) F (let #= M in N)—H—zglgleta‘:’:]ﬁin N +H =z

ProOOF. The proofs are routine calculations. We present just the proof of the case
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property:

(H) F (case M of {pat, > N;}) H =
= let y = case M of {pat; » N;} inyH =z

<> let y = case M of {pat; > N;} in “case y of (value-f3)
nil -z
h:t->h:({tH=z)
<> case M of {pat;, - let y = N; in “case y of (case-E)
nil -z
h:t-h:(t+H2)}
<> case M of {pat; » lety = N; in y H z} (value-3)
O

Append also satisfies associativity properties, which are established below.

ProrosiTION 10.2.

(+H), () F (= Hy) H 2z sz Hy+H2)

where (++) = Azs.\ys.case zs of
nil - ys
h:t->"h:(t+Hys).

ProOF. We calculate with the left and right-hand sides independently, and find a
context D such that

T H-(y H2) < "Dz H(y H 2)]

and also that

(zHy) H2 < "Dl(z Hy) H 2]
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and the result then follows by improvement induction.

(H), (H) F (= Hy) H=2
letw=2+Hyinw-Hz

< let w = “case z of (value-B), (var-3)
nil -y
h:t->h:({tHy)
inw-+H z
<> “case z of prop. 10.1

nil sletw=yinwH=z
h:t-letw=h:({tHy)inwHz

<> “case z of (var-p), (gc)
nil = ‘w-H 2
h:t-oletw=h:({tHy)inwHz

< “case x of prop. 10.1, (let-let), (let-flatten)
nil - ‘w-H =z
het—=>"h:({t+Hy)H=z

= Ycase x of (renaming)
nil - w-Hz

hix->*h:(zr+vy)H=z

Thus we have found a context D such that

(z+Hy) H 2 < "D[(z Hy) H 2]

It just remains to show that

zH(y H2) < Dz H(y H 2)]
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(H), (H) FzH(y H2)
Zletr=yHzinzHr

< let r =y H 2z in Ycase z of (value-B), (var-3)
nil —r
h:t-*h:({t+Hr)
<> case z of (case-L), (inline-E), (gc)
nil - y+Hz o
hit->*letr=y+Hzinh:(t+r)
< “case x of (let-flatten)

nil - ‘wHz
hit—="letr=y+H=z
s=tHr
inh:s
< “case x of (let-let)
nil - ‘wHz
hit—-*lets=letr=yHzintHr
inh:s
= Ycase  of (renaming)
nil - w-Hz2

heix—>"h:z+(@yH2)

Working note: Should use the basic properties of ap-
pend from the proposition

COROLLARY 10.3.

(zHy) Hz>zH(YyH=2)
TH(yH2) R (zHy) H=2

This follows by the obvious improvement/weak improvement relation between +H-
and +. and shows that the associativity property of append cannot, in itself,
change the asymptotic time complexity of a program.

10.4.1 The Transformation Laws

ProprosiTION 10.4. The rewrite laws of the transformation are all improve-
ments.

Proor. Rules (i), (ii), (iv) and (vii) follow from proposition 10.1, and rule (iii)
from corollary 10.3. For (vi) we have:
LIPE(Fa o z) Hz
T M[Fz + 2 (72),(72)

<tz 2n2 (77),(27)
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And lastly for (vi) we have:
(H). fTE(f a2 H 2

T (TM[#1-- - Zofg) H2) H 2 (77),(77)
< M2 Znfg] H (2 H 2 cor. 10.3
< fTz1.ozn (2 H2") (77)(?77),(77)

O

The main correctness argument. The improvement property of the individual
steps is not the whole story, since the definition of fT itself needs to be transformed.

ProrosiTioN 10.5. The transformation yields a program which is an improve-
ment on the original.

PROOF. Assume that the transformed (sub)program has the form

let H=...
ff=Xzi... Azp 2. M H 2
in N

(This is without loss of generality since by (value-8) we can float in the definition
of append.) Now suppose that by applying the transformation rules we obtain:

let H=...
f=Azy... Az, . M’
fr=Xai.. Az, 2. M"
in N

for some M', M", and N'. Since the transformation rules are all improvements, we
know that:

let H =... Plet H=...
f=Azy... Az M f=Azy... Az M
ff=Xzi... Az 2. M H-2 ff=Xzi... Az 2. M H-2
in N in N'.

Now we also know that

let H=... Blet H =...
f=Az1.. Az M f=Az1.. Az M
ff=Xai ... Az, 2. M H-2 ff=Xai ... Az, 2. M H2
in M in M’
and that
let H =... Plet H=...
f=Azy... Az M f=Azy... Az M

ff=Xzi... Az 2. M H2 ff=Xzi... Az 2. M H2
in M Hz in M".
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Thus by the Improvement Theorem we can conclude that

let H =... Dlet H=...
f=Axy... \z,.M f=Azy... \z,. M’
ff=Xzi... Az 2. M H2 fr=Xzi... Az 2. M"
in N/ in N/
and by transitivity we are done. |

11. PROOFS OF MAIN THEOREMS

This section gives an outline of the technical development and proofs of the main
results. Most proofs follow a direct style reasoning which is reminiscent of proofs
about functional languages with effects by Mason and Talcott et al. [Mason and
Talcott 1991; Agha et al. 1997; Talcott 1998]. In order to make this style of proof
rigourous we generalise the abstract machine semantics so that it works on config-
uration contexts — configurations with holes. To ensure that transitions on config-
uration contexts are consistent with hole filling one must work with a more general
representation of contexts. One such approach is described in [Talcott 1998]. We

use an alternative approach to generalising contexts which is due to Pitts [Pitts
1994].

11.1 Substituting Contexts

Following Pitts [Pitts 1994], we use second-order syntax to represent (and gener-
alise) the traditional definition of contexts given in section 5. We give a fuller
description in [Sands 1998a]; other examples of their use are to be found in [Lassen
1998; Moran 1998]. The idea is that instead of holes [-] we use second-order vari-
ables, ranged over by &, applied to some vector of variables. The syntax of gener-
alised contexts is:

C,D = ¢ &

| z
\
\
\
\
\

let {# =D} inC
case C of {¢;Z; - D;}.

VYV and W will range over value contexts, I and A over heap contexts, and S and
T over stack contexts. Each “hole variable” ¢ has a fixed arity, and ranges over
meta-abstractions of the form (#)M where the length of Z is the arity of £. In
the meta-abstraction (£)M, the variables Z are bound in M. Hole-filling is now
a general non-capturing substitution: [(f)M/f] The effect of a substitution is
as expected (remembering that the & are considered bound in (£)M). Coupled
with the meta-abstraction is of course meta-application, written & - Z. We restrict
application of £ to variables so that hole-filling cannot violate the restriction on
syntax. In the definition of substitution we make the following identification:

(&M - = M[Jz].
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This definition of context generalises the usual definition since we can represent a
traditional context C by C[¢-Z] where 7 is a vector of the capture-variables of C;
filling C with a term M is then represented by (C[¢ - :E’])[(f)M/f]

Ezample. The traditional context
let z =[] in Ay.[]
can be represented by

let 2 =& (z,y) in Ay.§(2,y).
Filling the hole with the term x y is represented by:

(let 2 = £-(z,y) in Ay -(x,)[(T:¥) TY/g]
=let 2= (z,y) zy-(2,y) in Aw.(z,y) 2y (z,w)
=letz=zyin \w.zw

which is a-equivalent to what we would have obtained by the usual hole-filling with
capture. Note that the generalised representation permits contexts to be identified
up to a-conversion.

Henceforth we work only with generalised contexts. We will write C[(Z)M] to
mean C[(f)M/g] when C contains just a single hole variable {. We assume that the
arities of hole variables are always respected.

We implicitly generalise our definitions of improvement to work with generalised
contexts. This is not quite identical to the earlier definition since with generalised
contexts, when placing a term in a hole we obtain a substitution instance of the
term. This means in particular that improvement is now closed under substitu-
tion (variable-for-variable) by definition — a useful property. This difference is a
relatively minor technicality which we will gloss over in this section.

11.2 Open Uniform Computation

The basis of our proofs will be to compute with configurations containing holes and
free variables. Thanks to the capture-free representation of contexts, this means
that normal reduction can be extended to contexts with ease. See [Sands 1998a] for
a thorough treatment of generalised contexts and how they support generalisation
of inductive definitions over terms.

Firstly, in order to fill the holes in a configuration we need to identify configura-
tions up to renaming of the heap variables (recalling that update-markers on the
stack are also binding occurrences of heap variables).

We tacitly extend the operational semantics to open configurations with holes.
Note that holes can only occur in the stack within the branches of case alterna-
tives. In what follows, # will range over substitutions composed of variable for
variable substitutions and substitutions of the form [(@)Mz/&], and ¥ range over
configuration contexts.

We have the following key property.

LEMMA 11.1. (EXTENsION) If ([, C, S) —=* (A, D, T) then

(i) for allT' and S' such that (T'T, C, SS') is well-formed, (['T, C, SS') —*
(A, D, TS").
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(ii) for all 0, (T, C, S)8 —* (A, D, T)6.

Proor. (i) follows by inspection of possible open reductions over configuration
contexts. (ii) amounts to the standard substitution lemma; see [Sands 1998a] for a
general argument. O

The following open uniform computation property is central. It allows us to
evaluate open configuration contexts until either the computation is finished, or we
find ourselves in an “interesting” case.

LeEmMMA 11.2. (OPEN UNIFORM COMPUTATION) If well-formed and well-typed
configuration context (I, C, S) =% ¥ -, then ¥ has one of the following forms:

(i) (A, V, €),
(1) (A, & -4, T), for some hole &;, or
(iii) (A, z, T), z € FV(T,C,9).

PROOF. Assume ([, C, S) = ¥ . We consider the reduction of (', C, S)
and proceed by induction on k with cases on the structure of C. We show three
illustrative cases only. The others are similar.

C =¢&; - y. This is a type (ii) context, so we are done.

C = z. Since we have termination, z must be bound in either I or is free in
FV (T,C,S) (since if it was bound in S, (I, C, S) would diverge). In the former
case, I = A{xz = D}. By (Lookup), (A{xz = D}, =, S) reduces to (A, D, #zx :
S). By the inductive hypothesis, we know that (A, D, #z : S) reduces to a
configuration context of type (i), (ii), or (iii), and therefore (A{z = D}, z, S) does
also, as required. In the latter case, (I, z, S) is a type (iii) context, and we are
done.

C = V. There are four sub-cases, depending upon the structure of S; we consider
only the case when S = x : T. Since (I, C, S) is well-typed, V = Ay.D, and by
(Subst), (', Ay.D, z : T) reduces to (I, D[Z/], T). The inductive hypothesis
applies, and the result follows as above. O

Uniform reductions are clearly also uniform in cost: if ¥ —* ¥’  then for all M,
Y[(Z)M] =y, ¥'[(F)M].
11.3 Translation

We can extend the definition of trans to cover open configurations and configuration
contexts, and can therefore extend translation thus:

LEMMA 11.3. (TRANSLATION) For all D,T,C,S such that D = trans([", C, S),
there exists n > 0 such that (§, D, €) =™ (I, C, S).

ProoOF. Simple induction on S. O

11.4 Proof: the Context Lemma

The proof of the context lemma relies upon two lemmas, the latter of which is the
most complex.

LEMMA 11.4. M > N if and only if for all ¥ andn, $[(Z)M]}" = T[(F)N]IS".
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PRrROOF. (Sketch) («). Trivial; let ¥ = (@, C, €).
(=). By a simple lexicographic induction on n and the length of transition
sequences, using translation. O

LemMA 11.5. If for all T, S, and n
(T, (F)M -, SI" = (T, (@)N g, )"
then for all ¥ and n, Y[(F)M]|" = Y[(Z)N]|S", where ¥ D FV (M, N).

PROOF. Assume the premise and suppose ¥[(Z)M]]}™ in k computation steps. We
proceed via lexicographic induction on (n,k). By open uniform computation, ¥
reduces in kg > 0 steps with cost ng to one of:

(1)<[r= V,E), (2)<[r:£:ljs>

(There are only two possibilities since ¥ is closed.) In case (1), we are done. In
case (2), we have

X[(#)N] =y (T(@N], N¥/z, S(@N]). (11.1)

By open uniform computation, ([, M[Zj/f], S) reduces in k; > 0 steps with cost
n1 to one of:

(2.1) (A, W, €),  (2.2) (, €2, T).

(Again, there are only two possibilities since (I, M[J/z], S) is closed.) In case (2.1),

we have that (T[(Z)N], (£)M -§, S[(¥)N]) reducesin k; steps to ( A[(Z)N], W[(Z)N], €)
with cost ny = n — ng, so

(TU@)N], MJz). S(Z)N])LS"

( [(@N], N [Tz, SI(F)N])LS"m (ass.)

T[(#)N]LS" (11.1)

as required. In case (2.2), we know that ky > 0, since M[J/z] # £ - Z. We have
(TI@)M], (#)M-F, S[(H)M]) =y (A[(@)M], (#)M -2, T[(T)M])

ni

and
(B[@)M], ()M -7, T[@)M])4" " ™. (11.2)
Furthermore,
(@], ()M -7, S[@N]) =5 (B[(@N], BN -7 T@N])  (113)
Therefore
(a[(@)M], M[Fg, T[(H)M]){"mo~™ (11.2)
= ([(F)N], M[Fz], T[(#N])4smo—™ (LH.)
= (A[(F)N], N[#z], T[(&)N])4s" o™ (ass.)
= (T[(#)N], M[J/z, S[(F)N])4s" " (11.3)
= (T[(@N], NJ/z, S[(&N])Ls" " (ass.)
= T[(#)N]IS" (11.1)
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as required. O

The generalised statement of the context lemma is:
For all terms M and N, if

VI, S,0,n(T, Mo, S)|® = (T, No, S)|S"

then M > N.
This follows from lemmas 11.4 and 11.5, and the fact that Mo = (Z)M - for

o = [Jz.
11.5 Validating the Tick Algebra

We present proofs of the validity of (value-3) and (value-copy), and sketch a proof
of the correspondence between evaluation contexts and configuration contexts of
the form (T, [-], S'). The proofs of the more complex laws (e.g. (var-p), (var-abs),

(var-subst), and (v'-float)) have a similar structure to that for (value-3), except
they require more use of open uniform computation.

11.5.1 Proof: (value-3). Recall (value-3):
let {z =V, = D[z]} in C[z] < let {& =V,7=D["V]}in C[*V].
Let W = “V throughout. It suffices to show
VI, S (Tlz{z =V}, Cla], Slz])l" < (F[WH{z =V}, CW], SIW])HL"

where ¢ dom(I", S), and the only hole is [-], a non-capturing hole. We prove the
forward direction only; the reverse direction is similar.

Suppose (T[z]{z = V}, Clz], S[z]){" in k computation steps. We proceed
by lexicographic induction on (n,k). By open uniform computation, (I, C, S)
reduces in kg > 0 steps with cost ng to one of

(1) <Aa V, €>7 (2) <A/ []7 -l]->, (3) <A7 T, -l]->
In case (1), we are done. In case (2), by extension, (Lookup) and (Update), we have
(Tlzl{z =V}, C[z], S[z]) =75 (Alz]{z =V}, , T[a])
=1 (bz{z =V}, V, Tlz]),
and by extension and the definition of W,
(TW{z =V}, CW], SIW]) = (bW l{z =V}, W, T[W])
=1 (AWH{z =V}, V, TIW]).
Since (A[z]{z = V}, V, T[z]){"~(e+t1) by the inductive hypothesis we have
(AW]{z =V}, V, T[W])}*~(m0+t1) "and the result follows.

In case (3), we have (Az]{z = V}, V, T[z]){" ("D as above. Furthermore,
by extension, (Lookup) and (Update), we have

(TWH{z =V}, CIW], SIW]) = (AW[{z =V}, z, TW])
=1 (AWH{z =V}, V, TIW]).

From the inductive hypothesis, we have (A[W]{z = V'}, V, T[W]){" (o+1) and
the result follows.
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11.5.2 Proof: (value-copy). Recall (value-copy):
let {f: VJl,g: ‘70'2,2?: M} in N < let {f: ‘7(720'3,2?: M0'3} in N0'3,
where o1 = [J/g], o2 = [T/g], and 03 = [f/g']
It suffices to show that for all ', S, and n,
(D{Z=Vo.,7=Vos}, N, S)|" <= (T{Z =Voy03}, Nog, S)|".

We show only the forward direction. To show the reverse, we need only establish
termination, which follows by the fact that call-by-name and call-by-need agree on
termination.

Suppose (I'{Z = ‘701,5 = ‘702}, N, S)}™ in k computation steps. We proceed
via lexicographic induction on (n, k). Consider the (hole-less) open configuration
context (', N, S), in which the # and ¢ may appear free. By open uniform
computation, this reduces in kg > 0 steps with cost ng to one of:

(1) <A= W= 6): (2a) <A: Li, T>v (2b) <A= Yis T)-

In case (1), we are done. In case (2a), by extension, (Lookup) and (Update), we
have

and furthermore,
(A{Z=Vo1,i]=Vos}, Vioy, T)|" (o+D), (11.4)
Similarly, by extension, (Lookup) and (Update), we have also that
(T{# = Vos03}, Nog, S) =k (A{# = Vosos}, 105, T)
—)% <A{f: ‘7020'3}, ‘/;020'3, T>
By elementary properties of substitution,
Vior[Flg] = Vil¥g]1 g,

so the inductive hypothesis applies (with N = V;01), yielding the desired result.
In case (2b), by extension, (Lookup) and (Update), we have

<F{f: ‘70’17:[7: I70_2}: N, S) _)ﬁ% <A{ﬂ?= 170-1727: ‘70'2}, Yis T>
_)% <A{f: ‘7017@7: ‘702}7 %02: T>,
and furthermore,
(A{Z =Voy,7=Vas}, Vioy, T)|" 0+, (11.5)
Similarly, by extension, (Lookup) and (Update), we have also that
(T{Z = Vor03}, No, S) =k (A{Z = Voso3}, yios, T)
= <A{f= 170'20'3}, Zi, T>
—)% <A{f: ‘7020'3}, ‘/;020'3, T>
The inductive hypothesis applies (with N = V;04), yielding the desired result.
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11.5.3 Proof: Lemma 6.1. Recall the statement of lemma 6.1:
Ag = {trans(T, [], S) |all T, S}.

So we need to show that:

(i) VvI,S.3E. trans(T, [], S) = E, and
(ii) VE. JI, S. trans(T, [], S) = L.
First note that A (the set of all applicative contexts) is in 1-1 correspondence to
update-marker free stacks, realised by the following isomorphism (writing [z] for
the singleton stack):
[°=e¢
(Az)° = A°[a]
(case A of alts)® = A°alts

(1)° takes A, into the set of update-marker free stacks. Its inverse is denoted by
(1)* and satisfies the following equations:

=1
(z:8)" = S°[[]]
(alts : S)* = S°®[case [-] of alts]

It can easily be shown that (T, A[C], S) —=* (I, C, A°S) and that trans( [, A[C], S)
is identical to trans([, C, A°S) by induction on the structure of A.

To show (i), we generalise the statement to show that for all T and S both
trans(T', A, S) and trans(T'{zg = Ag[z1],... ,2n = A,}, A[zo], S) are evaluation
contexts. This proceeds by an easy induction on the number of update markers in
S.

To show (ii), we proceed by case analysis on E, and produce a I and S in each
case. The difficult case is when

E=let {§= M,

zo = Molz1],
1 = Mzsa],
T, = Ap}

in Alzo]

Here, we let T be {77 = M} and let S be
A H#Hxy, - N HEIAGH A,
The other cases are similar.

11.5.4 Proof: (case-E). The following lemma will be used to validate (case-E),
(let-E) follows by similar reasoning. CV (E) denotes the capture variables of [E.

LEMMA 11.6. For all E, there exist A, T, such that dom(A,T) C CV(E) and
VI, SA(T, E, S) =k (TA, [], TS), for some k and n.
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PROOF. By lemma 6.1, there exist A and T such that trans(A, [], T') = E,
so by translation (0, E, €) —»* (A, [], T), and thus by extension, provided
dom(A,T) CCV(E), (T, E, S) =*(TA, [], TS). O

Recall the statement of (case-E):
Elcase M of {pat; - N;}] < case M of {pat; - E[N;]}.

By the standard bound variable convention, we know that CV (E) 4 CV (pat;) for
all 4, and that FV (M) 4 BV (E), where BV (E) denotes the let-bound variables of
E.

Assume wlog that for any T', we have that

(T, M, €) =5 ('O, ¢; &, €) (11.6)

where T" is the same as T’ with some possible updates, and © contains any bindings

introduced during the evaluation. (This is valid since otherwise (case-E) holds

vacuously as both sides would diverge; an empty stack is sufficient by extension.)
For any I' and S, we have that

(T, E[case M of {pat; > N;}], S)

—5 (TA, case M of {pat, = N;}, TS) lem. 11.6
— (LA, M, {pat; » N;}:TS) (Case)
—FA(T'A'O, ¢, &, {pat; > N;} : TS) (11.6), (ext.)
— (T'A'0, Nj[fj/g'j], TS) (Branch)

and

(T, case M of {pat, - E[N;]}, S)

3

= (T, M, {pat; > N;}:S) (Case)

-k (T'0, ¢; &, {pat; » E[N;]}: S) (11.6), (ext.)
- (I'0, E[N;][Tifg], S) (Branch)
=(I'0, E[N;[Fifz]], S) CV (E) ¢ 4
- (T'A0, N;[Tijg], TS) lem. 11.6

Since FV (M) 4 BV (E), the evaluation of M cannot affect any of the bindings
introduced by the evaluation E; in other words, A’ = A. Therefore, the result
follows by the context lemma.
11.6 Congruence of Entailment

In examples, we often want to perform calculation in the context of recursive dec-
larations. A notation for this was introduced in section 9; a derivation of the form

let {7 =V}in M, >let {F=V}in M,
>let {G=V}in Ms...
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was written:
g M & M,
> Ms...

when the declarations § are clear from the context. We prove the following extension
of (F-cong) to general contexts valid:

g
g+ Cl(@)M]

for all contexts C such that # 4 CV (C). As usual, # D FV (M, N).
To prove the validity of this rule, we require some lemmata. This next lemma is
used to prove lemma 11.8.

LEMMA 11.7. For allT,S, and n
(D{z=V,7=Vo}, M, S)|" < (To{j=Vo}, Mo, So)|".
where 0 = [Y/,].

(F-cong)

PROOF. (Sketch) (=) Simple induction on n, with cases of the structure of M.
(<) It is sufficient to show that termination is implied. This is true for the call-
by-name theory, and therefore here also. O

To prove (F-cong) and improvement theorem, we will need the following lemma.
LEMMA 11.8. Iflet {Z=V}in M > let {# =V} in N then for allT and S,
(T{z =V}, M, S)|" = (T{#=V}, N, §)|5".

where & D FV (T, S).
PROOF. By the context lemma and (Letrec), we have:
let {Z=V}in MD>let {F=V}in N
— VI,S(T, let {Z=V}in M, S)|" = (T, let {# =V} in N, S)|<"
& VI,S8,% 4 FV(T,S),4 dom(T, S)(T{Z =V}, M, $)|" = ([{# =V}, N, §)|5"
Letting o = [J/z], this implies that
VD, S, %4 FV(T,S), % dom(r,S),ng FV (T, S).
(T{fj=Vo,# =V}, M, S)|" = ([{f=Vo, =V}, N, S)|S"
By lemma 11.7, this is equivalent to
VI, S,Z 4 FV(T,S),# 4 dom(T,S),7 D FV (L, S).
(To{y = ‘70}, Mo, So)l" = (To{y = ‘70}, No, So)|s"
— VI,S,7 D FV([,S).(To{j=Vo}, Mo, So)|* = (To{ij=Vo}, No, So)|<"
— VI,S,ZDFV(T,9)(T{# =V}, M, S)|" = (I{Z=V}, N, S)|s"

where the last step follows by renaming. O
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let {Z=V}in MD>let {#=V}inN

— let {#=V}in Mo’ > let {#=V}in No' o' = [#}y], 2 fresh
= let {z=V;[¥y;]} in let {# =V} in Mo’ > let {z = V;[#,]} in let {# =V} in No' (cong.)

= let {z = V;[¥,],@ =V} in Mo’ > let {z =V;[?,],# =V} in No' (let-let)

— let {Z=V}in Mo'0" > let {#=V}in No'o" (gc),a" = [Ti/,]

Fig. 10. Calculational portion of the proof of lemma 11.9.

We will use this next lemma in the proof of (F-cong).
LEMMA 11.9. Provided the V are closed, and ¥ 4 domo,
let {Z=V}in MD>let {#=V}inN
let {Z=V}in Mo let {=V}in No

Proor. It is sufficient to show this for a single renaming [%/ ], where y ¢ domo.

Then the case when z ¢ # follows from the fact that I> is closed under variable for
variable substitution. So without loss of generality, let o = [Zi/y]. By the reasoning
in figure 10, we have that

let {F=V}in MD>let {F=V}inN
— let {# =V} in Mo'o" > let {Z#=V} in No'o"

But o'o" = [#|[%i/,] = [Tify] = o, since z was fresh, and we have the desired
result. a

Moving to general contexts, to show (-cong), it will be sufficient to prove, under
assumption of the premise, that for all C with a single hole variable £ and 2 such
that arity £ = |2] and 2’ 4 Z,

let {Z =V} in C[(2)M] > let {&# =V} in C[(2)N].
By the definition of I>, it will suffice to show that for all I and S,

—

(T(E)ME = T}, C(DM], S[(7)M])}" =
(T[(BN){E = 7}, C[BN], SN

Suppose (T[(H)M]{Z = V}, C[(Z)M], S[(£)M]){" in k computation steps. We
proceed via lexicographic induction on (n,k). Consider ¥ = (I, C, S). Clearly
¥ —)fl?] Y’ -, so by open uniform computation, ¥' takes on one of the following
forms:

(1) <A= V, 6): (2) <A= Li, —I]—>= ( ) < >

-4,
In case (1), we are done. In case (2), by (Lookup) and (Update), we have that
Vi,

T[(2)M]).

—

(B(H)MUE =TV}, 2, T(HM]) =3 (A(ME =V},
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So by the inductive hypothesis,
(M(H)N){E =V}, Vi, T[(Z)N])Sn=(not)
which in turn, by (Lookup) and (Update), implies
(A[(Z)N){# =V}, i, T[(Z)N] )7 "o,

Then the desired result follows by open uniform computation.
In case (3), we have that

(B{()MNE = T}, M, T((2)M])4m. (11.7)
By lemma 11.9, the assumption implies that
let {Z =V} in M[J/F > let {#=V}in NJ/
which in turn, by lemma 11.8 and (11.7), implies
(B[(HMNE = V}, NI, T[(2)M] )<, (11.8)
We are required to show instead
(B[N = V}, NI/, TI(Z)N] )<,

Consider (A, N[¥/3], T). By (11.8), this reduces in k; steps with cost n; to some
Y -». By open uniform computation, ¥ has one of the following forms:

(3.1)(2', W, €), (3.2)(8", z;, T'), (3.3)(&', €-F, T).

In case (3.1), we are done. In case (3.2), we appeal to case (2) above. In case (3.3),
since N[¥/7] Z & -, k; > 0, so the inductive hypothesis applies, and we have

(M[(HNUE =V}, N[9/4, T[(Z)N])4sn—romm
and the desired result follows by open uniform computation.

11.7 Proof: the Unwinding Lemma

To prove the Unwinding lemma we will need the following lemma, which we state
without proof.

LEMMA 11.10. For all M,T,S,V and n,
(T{z £V}, M, $)|" = (T{z"E' V}, Mo, So )"
where o = [Tk+1/p, ] and {z; ML LRV (V).

Recall the statement of the Unwinding lemma:
For allT,S, and n,

(T, let {f =V}in M, S)I" = Im(T, let {f ZV}in M[fm/f], S)I".
It suffices to prove that for all I', S, and n such that {z;}~, 4 FV (T, 5)

(T{z =V}, M, S)|" = (To{z =V}, Mo, So )"
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where 0 = [Zn/y] (i.e. m = n). Suppose (I'{x = V}, M, S)|™ in k computa-
tion steps. We proceed by lexicographic induction on (n,k). By open uniform
computation, (I';, M, S) reduces in kg > 0 steps with cost ng to one of

(1) (A, W, €),  (2) (A, z, T).

(Type (ii) cannot occur, since there is no hole involved.) By extension, the corre-
sponding result holds for (I', M, S)o, and hence for (I'o, Mo, So), since x,, is
free in (', M, S).
Therefore, in case (1), by extension, (['c{z =V}, Mo, So) reduces in kg steps
(with cost ng) to (Ac{z =V}, Wo, €) and we are done, since kg = k and ng = n.
In case (2), by extension, (Lookup), and (Update)

(Fo{x =V}, Mo, So) —)’fﬁ)(Aa{m =V}, zpn, To)
=3 (Ac{z =V}, Vo, To).

Similarly, (T'{x = V}, M, S) reduces in kg + 2 steps (with cost ng + 1) to
(A{z = V}, V, T). By the inductive hypothesis, we know that (Ac¢'{z =
V}, Vo', Ta')|™ where ¢/ = [Zn'/,] and n' = n — (ng + 1). By repeated ap-
plication of lemma 11.10, we have that (Ac{z = V}, Vo, Ta)inl and hence
(To{z £V}, Mo, So)l"™ as required.

11.8 Proof: the Improvement Theorem

We prove the improvement theorem generalised to mutually-recursive definitions:
The following proof rule is sound:

Vj € Llet {fi=Vi},c;inV; > let {fi = Vi},c, in W;
let {fi =Vi},c; in NBlet {fi = W;},c;in N

By the context lemma it suffices to show that for all T', .S, and n,
(T{f =V}, N, S)I" = (T{f =W}, N, S)|<".

Assume the premise, and suppose that (F{fz ‘7}, N, §){™ in k computation
steps. We proceed by lexicographic induction on (n, k). By open uniform compu-
tation, (I', N, S) reduces in kg > 0 steps, with cost ng, to one of

(1) <A: V: 6): (2) <A, fz T)-

In case (1), we have by extension that (T'{f = W}, N, S) reduces in ko steps to
(A{f =W}, V. €) and ko = k and ng = n, so we are done. In case (2)

Y

(T{f =V} N, S) =l (AMf=V}, fi, T)

SHUA{f =V}, W, T) (11.9)
and
<F{f: W}, N, S) _)I:L%<A{f: W}a .fla T>
SHA{f =W}, Wi, T) (11.10)
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SO
(A{f =V}, Vi, Ty (motD) (11.9)
= (A{f =V}, W;, T)JSn (notD) (ass., lem. 11.8)
= (A{f =W}, W;, T)|Sn—(no+D) (LH.)
(T{f =W}, N, §)Is". (11.10)

11.9 Proof: Improvement Induction

We prove instead the more general version, involving entailment:
For any set of recursive declarations f, terms M, N and substitution o, the
following proof rule is sound:

frMD>“C[Mo] f+ N < “C[No]
FEMD>N

Furthermore, we generalise C[M o] to C[(Z) M]. By lemma 11.8, the premises imply
more general statements. For example, the first premise implies

W, T,S. (T{f = V}, M, S)" = (D{f =V}, “C@M], SIS (ass.(0))

We will refer to the corresponding generalisation of the second premise as (ass.(ii)).
We show instead the more general statement, that for all ¥ and n,

T((#HMU" = T[@N.

Suppose ¥[(Z)M]}" in k computation steps. We proceed by lexicographic induction
on (n,k). By open uniform computation, ¥ reduces in kg > 0 to one of

(1) (A, V, €),  (2) (b, &7, T).

In case (1), we are done. In case (2), first note that, letting o = [¥/z], (Z)M -§ =
Mo, and C[(Z)M]o = Co[(Z)M] since Z D FV (M), and similarly for N. Then we
have that

Y[(#)N] =12 (B[(F)N], No, T[(#N]) (11.11)
and
(B[(Z)M], Mo, T[(Z)M])L"""

= (BD[(F)M], “C{(F)M]o, T[(&)M])|<"" (ass.(i))
= (B[(&)M], C[()M]o, T[(&)M])| S notD) (v)

= (A[(F)M], Co[(&)M], T[(F)M])}S" (mo+Y)

= (B[(&)N], Co[(&)N], T[(&)N])| <"~ (oth) (ILH.)
= (A[(F)N], C[(#)Nlo, T[(F)N])J$ (rot)

= (A[(&)N], “C[(Z)N]o, T[(&)N])"~ (v)
<= (A[(Z)N], No, T[(Z)N]){S""0 (ass.(ii))
= Y[(Z)N]{S". (11.11)
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12. CONCLUSIONS AND FUTURE WORK

We have presented a rich operational theory for a call-by-need based on an im-
provement ordering on programs. The theory subsumes the (oriented) call-by-need
lambda calculi of Ariola et al. [Ariola et al. 1995]. The most important extensions
are proof techniques for reasoning about recursion. Syntactic continuity allows us to
prove properties of recursive programs via a kind of fixed-point induction, without
sacrificing information about intensional behaviour, like sharing. The improvement
theorem and improvement induction are rules for recursion which support more
calculational proofs. Both are particularly useful in proving the safety of program
transformations.

An obvious further application of the theory is to formalise arguments about the
running time of programs, following Sands’ use of call-by-name cost equivalence for
this purpose [Sands 1995; Sands 1998b].

Another direction for future work would be to consider the time-safety of a larger-
scale program transformation, such as deforestation [Wadler 1990]. In such a trans-
formation we must inevitably consider conditions under which we can unfold func-
tion calls. It is straightforward to define simple syntactic conditions on contexts
which guarantee that

let {# = M} in C[Z] > let {# = M} in C[M],

but in the case where holes occur under A-abstractions a more global form of infor-
mation is required: one needs to know that the lambda expression in question will
not be applied more than once. The type system of [Turner et al. 1995] provides
just such global information, so it would be interesting to prove that their system
(and generalisations to full recursive lets [Gustavsson 1998]) does indeed satisfy
the desired improvement property above. We saw in section 6.4 that the strictness
property of a context can be characterised exactly by

Cl"z] & " C[a]

Y

where z is fresh. Could it be the case that the “used at most once” property might
be semantically characterised by *C[z] &> C[*z]?
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APPENDIX
A. LOOKUPS ARE ENOUGH

In this appendix we justify the use of counting lookups as our cost measure, by
proving theorem 4.1.

Despite the relatively high-level nature of our abstract machine, we argue (in-
formally) that each abstract machine step can be implemented by constant-time
operations, where the constant depends on the size of the program to be executed.

The following observation is crucial to our argument:

PROPOSITION A.l1. During the execution of a given program, every term ap-
pearing in an abstract machine configuration is a substitution instance (variable for
variable) of some subterm of the original program.

PROOF. By inspection of the rules. O

Given this, and assuming that the variable lookup operation is implemented in
constant time, we wish to argue that every transition can be implemented as a
constant time operation. This would be straightforward to argue — but for rule
(Letrec) which requires a non-constant amount of variable renaming. Fortunately,
Sestoft [Sestoft 1997] provides a slightly lower level variant of this machine, in which
renaming is completely avoided by the use of environments. As Sestoft notes, the
correctness of this modification is clear. It is also clear that all of the rules can be
implemented in constant time.

4For actual implementations one may have be able to give much more refined bound than simply
program size (e.g. the maximum number of free variables of any subexpression in the program).
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Working note: I'm still not completely sure about this.
One needs to argue that environment size is bounded by
program size. I'm sure this is true, but I don’t see why
right away.

In order to prove theorem 4.1, which says that just counting lookup steps is
sufficient to capture computational complexity, we first introduce a size metric on
terms, stacks and term-stack pairs:

DEFINITION 8.

|z =1

e =1
Az.M|=|M|+1
M z| = |M|+2

|case M of {¢; Z; - N;}| = |M|+ 1+ D=7V
let {#= M} in N| = |N|+ 1+ S=2( M)
e/ =0
lz: S| =|S|+1
|#xz: S| =|S|+1
[{ci @i > Ni} : S| = [S| + BiZ N

|M, S| = |M] + 5|

With the exception of rule (Lookup), the combined term and stack size decreases
strictly with each abstract machine transition, i.e. if

(T, M, S) = (I', N, T)
then |M,S| > |N,T|. (Letrec) adds a group of bindings to the heap, and thus
decreases the metric by an amount dependent upon the size of the bindings made
plus 1; the others decrease it by exactly 1. (Lookup) is the exception: the metric is

increased by an amount equal to the size of the term to be evaluated.
Recall the statement of theorem 4.1:

For all s > 0, there exists a linear function f such that for all closed
terms M of size s,

M|" = Muéf(m)_

Proor. Consider some M of size s which converges in n steps to some final state
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(A, V, €) . We partition the transition sequence thus:

<@, M: 6) E<F07 M07 SO>
_)ko <A07 NO: TO) _># <F1, Ml, Sl)
_)kl <A17 Nla Tl) _># <F2, MQ, SQ)

—fno <Am*1’ N1, Tm*1> —% <Fm: My, Sm>
—*m (A, Nowy Tn)
=(A, V,¢)

where m is the total number of instances of rule (Lookup) (marked by a #). We
know the following facts

ki < M, S5l — N3, T (A1)

|M;| < [ M| (A.2)

(M1, Sit1| — [Ny, Ti| = | M| (A.3)
|M;, Si| <i|M)| (A4)

(A.1) follows since there are k; non-(Lookup) transitions in moving from (T';, M;, S;)
to {(A;, N;, T;), and each transition decreases the metric by at least one. (A.2)

follows from the fact any term arising during the evaluation of M must be a sub-

stitution instance of a sub-term of M, and therefore smaller than M. Since it is

(Lookup) that takes (A;, N;, T;) to (Tiy1, M;t1, Sit1), the difference in size is

exactly |M;41], yielding (A.3). As for (A.4), we argue as follows. Since only lookups

can increase the size of the term-stack pair, and since the increase is bounded by

|M|, we conclude that |M;, S;| cannot be larger than i|M|.

Working note: Where do we use (A.4)7?
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S0k < TS0 M, Si| — |Ni, T (A1)
= | Mo, So| — |No, To| +
| My, S1| — |Nu, Th| +

| My, S|l = | Ny T |
= | Mo, So| +

| My, S1| — | No, To| +

| My, Sa| — [Ny, Th| +

|Mm7 Sm‘ - |Nm71: Tmfl‘ +

- ‘Nm:Tm‘
= | My, So| +
S0 Mg, Sia| — [Ni, T
- ‘Nme‘
< | Mo, Sol + =5 [ Mi | (A.3)
< | M|+ m|M]| (A2),M = My, Sqg = ¢
Now
n=m+ 2=k
<m+|M|+m|M|
=m+ (m+1)s.
This is linear in m, so we are done. O

To summarise, we have argued that

(1) the number abstract-machine steps is within a program-size dependent con-
stant factor of actual running time of an implementation based on the abstract
machine, and

(2) the number of lookup steps is within a program-size dependent constant factor
of the number of abstract machine steps.

This demonstrates the soundness of using the number of lookups as a measure of
cost.



