
Improvement in a Lazy Context:An Operational Theory for Call-By-NeedAndrew MoranOregon Graduate InstituteandDavid SandsChalmers University of Te
hnologyThe standard implementation te
hnique for lazy fun
tional languages is 
all-by-need, whi
h en-sures that an argument to a fun
tion in any given 
all is evaluated at most on
e. A signi�
antproblem with 
all-by-need is that it is diÆ
ult | even for 
ompiler writers | to predi
t the e�e
tsof program transformations. The traditional theories for lazy fun
tional languages are based on
all-by-name models, and o�er no help in determining whi
h transformations do indeed optimizea program.We present an operational theory for 
all-by-need, based upon an improvement ordering onprograms: M is improved by N if in all program-
ontexts C, when C[M ℄ terminates then C[N ℄terminates at least as 
heaply.We show that this improvement relation satis�es a \
ontext lemma", and supports a ri
h in-equational theory, subsuming the 
all-by-need lambda 
al
uli of Ariola et al. [Ariola et al. 1995℄.The redu
tion-based 
all-by-need 
al
uli are inadequate as a theory of lazy-program transforma-tion sin
e they only permit transformations whi
h speed up programs by at most a 
onstant fa
tor(a 
laim we substantiate); we go beyond the various redu
tion-based 
al
uli for 
all-by-need byproviding powerful proof rules for re
ursion, in
luding synta
ti
 
ontinuity | the basis of �xed-point-indu
tion style reasoning, and an improvement theorem, suitable for arguing the 
orre
tnessand safety of re
ursion-based program transformations.
1. INTRODUCTIONCall-by-need optimises 
all-by-name by ensuring that when evaluating a given fun
-tion appli
ation, arguments are evaluated at most on
e. All serious 
ompilers forlazy fun
tional languages implement 
all-by-need evaluation. Lazy fun
tional lan-guages are believed to be well-suited to high-level program transformations, andsome state-of-the-art 
ompilers take advantage of this by applying a myriad oftransformations and analyses during 
ompilation [Peyton Jones and Santos 1998℄.However, it is notoriously diÆ
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all-by-need, to predi
t the e�e
ts of a program transformation on the run-ning time. Sin
e traditional theories for lazy languages are based upon 
all-by-name models, they give no assuran
e that a given transformation doesn't lead toan asymptoti
 slow-down.Call-by-need Cal
uli. The 
all-by-need lambda 
al
uli [Ariola et al. 1995; Ariolaand Felleisen 1997; Maraist et al. 1998℄ o�er a solution to some of these problems.By permitting fewer equations than 
all-by-name, these 
al
uli enable term-levelreasoning without ignoring the key implementation issues underpinning 
all-by-need. However, they do have some serious limitations. All of the equations inthe 
al
uli are, by de�nition, symmetri
. This means that 
ertain useful lo
altransformations 
annot be present. In fa
t, the 
all-by-need 
al
uli are limited totransformations whi
h 
hange running-times by at most a 
onstant-fa
tor (see se
-tion 7), independent of the 
ontext in whi
h the programs are used. Even withinthe 
on�nes of 
onstant-fa
tor transformations there are signi�
ant short
omings,sin
e none of the 
al
uli have proof rules for re
ursion; we believe that, as a 
onse-quen
e, almost no interesting equivalen
es between re
ursive programs | su
h asthe fusion of re
ursive fun
tions (e.g. via deforestation) | 
an be justi�ed in the
al
uli.Our Approa
h. We aim to go beyond these limitations by re�ning the notionof observational approximation between terms, and by establishing algebrai
 laws(
ontaining the laws of the 
all-by-need 
al
uli as theorems) and re
ursion prin
i-ples for that approximation relation. A key result of [Ariola et al. 1995℄ is that thestandard observational equivalen
e and approximation relations, in whi
h one onlyobserves termination, 
annot distinguish 
all-by-need evaluation from 
all-by-name.To obtain an operational theory whi
h retains the 
omputational distin
tions be-tween name and need, we also observe the 
ost of evaluation, in terms of a high-levelmodel of 
omputation steps. Our observational approximation relation, improve-ment, is de�ned with respe
t to a �xed operational semanti
s by saying that: Mis improved by N if in all program-
ontexts C, when C[M ℄ terminates then C[N ℄terminates at least as fast.Summary of Results. We develop an operational theory for a 
all-by-need lambda
al
ulus with re
ursive lets, 
onstru
tors, and 
ase expressions. The theory is basedupon an abstra
t ma
hine semanti
s for 
all-by-need, and is 
ost-sensitive, andtherefore re
e
ts the 
omputational distin
tions between 
all-by-name and 
all-by-need. We show that the improvement relation has a ri
h inequational theory,validating the redu
tion rules of the 
all-by-need 
al
uli. Most importantly, it sup-ports powerful indu
tion prin
iples for re
ursive programs. Some spe
i�
 originalresults are:|A 
ontext lemma for 
all-by-need, meaning we 
an establish improvement by
onsidering just 
omputation in a restri
ted 
lass of 
ontexts, the evaluation
ontexts;|A ri
h inequational theory, the ti
k algebra, whi
h subsumes the 
all-by-need
al
uli;|A synta
ti
 
ontinuity property whi
h 
hara
terises improvement of a re
ursivefun
tion in terms of its �nite unwindings, and forms the basis of �xed-point
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tion style proofs, and|Two powerful proof te
hniques, the improvement theorem and improvement in-du
tion, whi
h are parti
ularly well-suited to inferring the 
orre
tness and safetyof re
ursion-based program transformations whi
h pro
eed by lo
al improve-ments.|A general method for establishing laws, properties, and proof rules whi
h gener-alises the 
ontext lemma, known as open uniform 
omputation.Overview. The paper may be split into two separate parts. The �rst half presentsthe operational theory and 
ontains all of the major results, mostly stated withoutproof. The se
ond half presents the te
hni
al ma
hinery behind those results, andproves them.We begin the �rst half of the paper with a dis
ussion of related work in se
tion 2.Se
tion 3 then presents the operational semanti
s (Sestoft's \mark 1" abstra
tma
hine for laziness). A dis
ussion of the 
omplexity of 
omputation follows inse
tion 4, where we show that the number of heap a

esses during a 
omputationis a reasonable measure of 
ost. This is used as the basis for a 
ontextual de�nitionof improvement and 
ost equivalen
e, and the 
ontext lemma is stated.The inequational theory, known as the ti
k algebra, is then presented in se
tion 6,and the relative power of the algebra and the 
all-by-need 
al
uli is dis
ussed inse
tion 7. Synta
ti
 
ontinuity is presented in se
tion 8 and used to show thatan unwinding �xed-point 
ombinator is improved (up to a 
onstant fa
tor) by aknot-tying �xed-point 
ombinator. We also present a synta
ti
 variant of �xed-point fusion for 
all-by-need, whi
h 
an be established via synta
ti
 
ontinuity. Theimprovement theorem is introdu
ed in se
tion 9, along with improvement indu
tionand examples of their use. A more substantial example is presented in se
tion 10.The se
ond half of the paper is 
ontained in se
tion 11. We generalise the notionof program 
ontexts to 
on�gurations, and extend redu
tion to open 
on�guration
ontexts. This allows us to establish open uniform 
omputation, a general te
hniqueused to prove not only the 
ontext lemma, but also many of the more diÆ
ultalgebrai
 laws, and the various indu
tion rules.Finally, se
tion 12 
on
ludes, and we dis
uss of future avenues of resear
h.2. RELATED WORKImprovement theory and the improvement theorem were originally developed inthe 
all-by-name setting [Sands 1991; Sands 1996℄, and generalised to a variety of
all-by-name and 
all-by-value languages in [Sands 1997℄. Whether this programme
ould be 
arried out in a 
all-by-need setting has long been an open question. Aninspiration whi
h gave us 
on�den
e in the possibility of a tra
table improvementtheory for 
all-by-need is the 
all-by-need lambda 
al
ulus presented by Ariola andFelleisen, and Maraist, Odersky and Wadler [Ariola et al. 1995; Ariola and Felleisen1997; Maraist et al. 1998℄. For us, the signi�
an
e of the 
all-by-need 
al
uli is thatthey are based on redu
tion (and hen
e equations) between terms in the sour
elanguage (see �gure 7), rather than, say, term-graphs, abstra
t-ma
hine 
on�gura-tions, or terms plus expli
it substitutions. The redu
tion rules are 
on
uent, andenjoy a deterministi
 notion of standard redu
tion. Related 
on
epts appear inother approa
hes, in parti
ular in the study of so-
alled optimal redu
tions e.g.,



4 � A. K. Moran and D. Sands[Field 1990; Maranget 1991; Yoshida 1993℄.One limitation of the original work by Ariola et al. is in the treatment of re
ursive
y
les ; na��ve extension of the 
al
uli to deal with re
ursive lets leads to a loss of
on
uen
e [Je�rey 1993; Ariola and Klop 1997℄. The original 
all-by-need 
al
ulus
onsiders re
ursive lets only brie
y. To re
over 
on
uen
e, one 
an simply disallowredu
tions under 
y
les, as in e.g., [Benaissa et al. 1996; Niehren 1996℄. Ariolaand Blom give a full study of 
y
li
 re
ursion in [Ariola and Blom 1997; Ariolaand Blom 1998℄, and show that an approximation to 
on
uen
e 
an be obtained byequating terms with the same in�nite normal-form. Their �Æshare 
al
ulus 
an beseen as the natural su

essor to the 
all-by-need 
al
uli.In general, redu
tion 
al
uli appear to be a good vehi
le for exploring the lan-guage design spa
e with regard to 
all-by-need-like features. Rose's work e.g. [Rose1996; Benaissa et al. 1996℄ exempli�es this approa
h in an elegant 
ombination ofexpli
it substitution and 
ombinatory redu
tion systems. Our view is 
omplemen-tary to the rewriting approa
hes: on
e a parti
ular operational semanti
s (redu
tionstrategy) has been �xed, one 
an go beyond the 
on�nes of the 
al
uli by developingan operational theory.Apart from the rewriting-based approa
hes, there have been a few attempts togive a high-level semanti
s to 
all-by-need e.g. [Josephs 1989; Je�rey 1994; Seamanand Purushothaman Iyer 1996; Laun
hbury 1993; Sestoft 1997℄. Laun
hbury's nat-ural semanti
s, and Sestoft's abstra
t ma
hine(s) have been adopted by a number ofresear
hers as the formal de�nition of 
all-by-need e.g. [Turner et al. 1995; Hughesand Moran 1995; Sansom and Peyton Jones 1997; Gustavsson 1998℄. Sin
e it ap-pears to be a non-
ontroversial 
hoi
e, we adopt Sestoft's ma
hine | essentiallya Krivine-ma
hine [Curien 1991℄ with updating of the heap | as the operationalmodel underpinning our theory. As others have observed (e.g. [Pitts 1997a℄), work-ing with an abstra
t ma
hine rather than an indu
tive semanti
s also has bene�tsin proofs about 
omputations (examples of this may be found in se
tion 11).The te
hniques used in this paper, open uniform 
omputation in parti
ular, haveproven quite robust. They have been applied su

essfully to a non-deterministi

all-by-need language [Moran et al. 1999℄, and in the development of an algebrafor showing when transformations are spa
e-safe optimisations in the presen
e ofsharing [Gustavsson and Sands 1999℄.
3. THE OPERATIONAL SEMANTICSOur language is an untyped lambda 
al
ulus with re
ursive lets, stru
tured data,and 
ase expressions. We work with a restri
ted syntax in whi
h arguments to
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tions (in
luding 
onstru
tors) are always variables:x; y; z 2 Var
 2 ConL;M;N ::= xj �x:Mj M xj let f~x = ~Mg in Nj 
 ~xj 
ase M of f
i ~xi � NigV;W ::= �x:Mj 
 ~xThe synta
ti
 restri
tion is now rather standard, following its use in 
ore languageof the Glasgow Haskell 
ompiler, e.g., [Peyton Jones et al. 1996; Peyton Jones andSantos 1998℄, and in [Laun
hbury 1993; Sestoft 1997℄.All 
onstru
tors have a �xed arity, and are assumed to be saturated. By 
 ~xwe mean 
 x1 � � � xn. The only values are lambda expressions and fully-applied
onstru
tors. Throughout, x; y; z, and w will range over variables, 
 over 
onstru
tornames, and V and W over values. We will writelet f~x = ~Mg in Nas a shorthand for let fx1 = M1; : : : ; xn = Mng in Nwhere the ~x are distin
t, the order of bindings is not synta
ti
ally signi�
ant, andthe ~x are 
onsidered bound in N and the ~M (so our lets are re
ursive). Similarlywe write 
ase M of f
i ~xi � Nigfor 
ase M of f
1 ~x1 � N1j � � � j
m ~xm � Nmg:where ea
h ~xi is a ve
tor of distin
t variables, and the 
i are distin
t 
onstru
tors.In addition, we will sometimes write alts as an abbreviation for 
ase alternativesf
i ~xi � Nig.For examples, working with a restri
ted syntax 
an be 
umbersome, so it issometimes useful to lift the restri
tion. Where we do this it should be taken thatMN � let fx = Ng in M x; x freshwhenever N is not a variable. Similarly for 
onstru
tor expressions.The only kind of substitution that we 
onsider is variable for variable, with �ranging over su
h substitutions. The simultaneous substitution of one ve
tor ofvariables for another will be writtenM [~y=~x℄, where the ~x are assumed to be distin
t(but the ~y need not be).3.1 The Abstra
t Ma
hineThe semanti
s presented in this se
tion is essentially Sestoft's \mark 1" abstra
tma
hine for laziness [Sestoft 1997℄. In that paper, he proves his abstra
t ma
hine



6 � A. K. Moran and D. Sandsh�fx = Mg; x; S i ! h�; M; #x : S i (Lookup)h�; V; #x : S i ! h�fx = V g; V; S i (Update)h�; M x; S i ! h�; M; x : S i (Unwind)h�; �x:M; y : S i ! h�; M [y=x℄; S i (Subst)h�; 
ase M of alts; S i ! h�; M; alts : S i (Case)h�; 
j ~y; f
i ~xi � Nig : S i ! h�; Nj [~y=~xj ℄; S i (Bran
h)h�; let f~x = ~Mg in N; S i ! h�f~x = ~Mg; N; S i ~x  dom(�; S) (Letre
)Fig. 1. The abstra
t ma
hine semanti
s for 
all-by-need.semanti
s sound and 
omplete with respe
t to Laun
hbury's natural semanti
s, andwe will not repeat those proofs here.Transitions are over 
on�gurations 
onsisting of a heap, 
ontaining bindings, theexpression 
urrently being evaluated, and a sta
k. The heap is a partial fun
tionfrom variables to terms, and denoted in an identi
al manner to a 
olle
tion of let-bindings. The sta
k may 
ontain variables (the arguments to appli
ations), 
asealternatives, or update markers denoted by #x for some variable x. Update markersensure that a binding to x will be re
reated in the heap with the result of the 
urrentevaluation; this is how sharing is maintained in the semanti
s.We write h�; M; S i for the abstra
t ma
hine 
on�guration with heap �, ex-pression M , and sta
k S. We denote the empty heap by ;, and the addition of agroup of bindings ~x = ~M to a heap � by juxtaposition: �f~x = ~Mg. The sta
kwritten b : S will denote the a sta
k S with b pushed on the top. The empty sta
kis denoted by �, and the 
on
atenation of two sta
ks S and T by ST (where S ison top of T ).We will refer to the set of variables bound by � as dom�, and to the set ofvariables marked for update in a sta
k S as domS. Update markers should bethought of as binding o

urren
es of variables. A 
on�guration is well-formed ifdom� and domS are disjoint. We write dom(�; S) for their union. For a 
on�gura-tion h�; M; S i to be 
losed, any free variables in �, M , and S must be 
ontainedin dom(�; S). For sets of variables P and Q we will write P  Q to mean that Pand Q are disjoint, i.e., P \Q = ;. The free variables of a term M will be denotedFV (M); for a ve
tor of terms ~M , we will write FV ( ~M).The abstra
t ma
hine semanti
s is presented in �gure 3.1; we impli
itly restri
tthe de�nition to well-formed 
on�gurations. There are seven rules, whi
h 
angrouped as follows. Rules (Lookup) and (Update) 
on
ern evaluation of variables.To begin evaluation of x, we remove the binding x = M from the heap and startevaluating M , with x, marked for update, pushed onto the sta
k. Rule (Update)applies when this evaluation is �nished, and we may update the heap with the newbinding for x.Rules (Unwind) and (Subst) 
on
ern fun
tion appli
ation: rule (Unwind) pushesan argument onto the sta
k while the fun
tion is being evaluated; on
e a lambdaexpression has been obtained, rule (Subst) retrieves the argument from the sta
kand substitutes it into the body of that lambda expression.
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h) govern the evaluation of 
ase expressions. Rule(Case) initiates evaluation of the 
ase expression, with the 
ase alternatives pushedonto the sta
k. Rule (Bran
h) uses the result of this evaluation to 
hoose one ofthe bran
hes of the 
ase, performing substitution of the 
onstru
tor's argumentsfor the bran
h's pattern variables.Lastly, rule (Letre
) adds a set of bindings to the heap. The side 
ondition ensuresthat no inadvertent name 
apture o

urs, and 
an always be satis�ed by a lo
al�-
onversion.3.2 Relating Terms and Con�gurationsWe 
an translate between 
on�gurations to terms straightforwardly, by indu
tionover the sta
k: transh ;; M; � i =Mtransh f~x = ~Mg; N; � i = let f~x = ~Mg in Ntransh�; M; x : S i = transh�; M x; S itransh�; M; #x : S i = transh�fx =Mg; x; S itransh�; M; alts : S i = transh�; 
ase M of alts ; S iThe operational semanti
s tells us how to translate terms into 
on�gurations. Inthe following lemma, C is a program 
ontext 
ontaining zero or more holes. C[M ℄denotes the insertion of M into those holes, yielding another term. (Contexts willbe introdu
ed in more detail in se
tion 5.)Lemma 3.1. (Translation) For all �, C, S, there exists k > 0 su
h that forany M , h ;; transh�; C[M ℄; S i; � i !k h�; C[M ℄; S i:Proof. Simple indu
tion on the size of S. 23.3 Convergen
eAn operational theory relies upon having a useful notion of an observable, that is,a property of 
losed progams whi
h may be observed. The simplest observable istermination, or 
onvergen
e.Definition 1. (Convergen
e) For 
losed 
on�gurations h�; M; S i,h�; M; S i+n def= 9�; V:h�; M; S i !n h�; V; � i;h�; M; S i+ def= 9n:h�; M; S i+n;h�; M; S i+6n def= 9m:h�; M; S i+m ^ m 6 n:Closed 
on�gurations whi
h do not 
onverge are of three types: they either redu
einde�nitely, get stu
k be
ause of a type error, or get stu
k be
ause of a bla
k-hole (aself-dependent expression as in let x = x in x). All non-
onverging 
on�gurationswill be semanti
ally identi�ed.We will also write M+, M+n and M+6n, identifying 
losed M with the initial
on�guration h ;; M; � i.



8 � A. K. Moran and D. Sands4. COMPLEXITY OF COMPUTATIONThe 
ost of 
omputation is what distinguishes 
all-by-name from 
all-by-need. Ourstrategy for building an operational theory whi
h respe
ts this distin
tion is to ob-serve this 
ost when 
omparing terms. Before developing this theory, the questionwhi
h remains is how one should measure 
ost. In an attempt to predi
t a
tualrunning times, one might assign implementation spe
i�
 
onstants to ea
h abstra
tma
hine step. Even if this were possible (we are doubtful, sin
e most 
ompil-ers perform a myriad of optimisations), it would lead to a very �ne-grained andimplementation-spe
i�
 theory. Instead we work with a more abstra
t measure of
ost, and aim for a non implementation-spe
i�
 theory.In an earlier version of this work [Moran and Sands 1999; Moran and Sands 1998℄for simpli
ity we 
hose simply to 
ount the number of abstra
t ma
hine steps as ourmeasure. It would be unrealisti
 to assume that abstra
t ma
hine steps 
ould revealinformation about a
tual running times, given that we are working with su
h a high-level ma
hine. For whatever 
ost measure we 
hoose, the bottom line is whetherit is suÆ
ient to des
ribe the 
omplexity of 
omputation. In other words, themeasure should be within a 
onstant fa
tor of \a
tual 
ost". A reasonable questionis whether ea
h step of the abstra
t ma
hine 
an be 
onsidered implementable in
onstant time; we defer dis
ussion of this point to appendix A.We now move to an even leaner notion of 
ost than abstra
t ma
hine steps. Theaim is to make the notion of 
ost as simple as possible, but without sa
ri�
ingour bottom line | namely that the measure of 
ost should be within a program-size dependent 
onstant fa
tor of running-time. It is suÆ
ient to measure 
ost interms of the number of times the lookup rule is applied. This 
laim is proven inappendix A.Let us now de�ne the 
ost of 
omputation.Definition 2. For 
losed 
on�gurations h�; M; S i,h�; M; S i#n def= h�; M; S i+ with n o

urren
es of (Lookup)h�; M; S i#6n def= 9m:h�; M; S i#m ^ m 6 n:As with +, we will identify 
losed M with the initial 
on�guration h ;; M; � i,writing M#n, and M#6n.To demonstrate the soundness of our 
ost measure, we argue that(1) the number of abstra
t-ma
hine steps is within a program-size dependent 
on-stant fa
tor of a
tual running time of an implementation based on the abstra
tma
hine, and(2) the number of lookup steps is within a program-size-spe
i�
 
onstant fa
tor ofthe number of abstra
t ma
hine steps.The former is dis
ussed in appendix A, and the latter is formalised in the followingtheorem, the proof of whi
h may be found in the same appendix.Theorem 4.1. For all s > 0, there exists a linear fun
tion f su
h that for all
losed terms M of size s, M#m =) M+6f(m):



An Operational Theory for Call-By-Need � 9This justi�es the use of the number of lookups as a measure of 
ost. We 
an nowde�ne improvement, whi
h will be based on this measure.5. IMPROVEMENTThe starting point for an operational theory is usually an approximation and anequivalen
e de�ned in terms of program 
ontexts. Program 
ontexts are generallyintrodu
ed as \programs with holes", the intention being that an expression is to be\plugged into" all of the holes in the 
ontext. The 
entral idea is that to 
omparethe behaviour of two terms one should 
ompare their behaviour in all program
ontexts.We will use 
ontexts of the following form:C;D ::= [�℄j xj �x:Cj Cxj let f~x = ~Dg in Cj 
 ~xj 
ase C of f
i ~xi � DigV;W ::= �x:Cj 
 ~x:Our 
ontexts may 
ontain zero or more o

urren
es of the hole, and as usual theoperation of �lling a hole with a term 
an 
ause variables in that term to be
ome
aptured.We de�ne observational approximation and equivalen
e via 
ontexts in the stan-dard way [Abramsky and Ong 1993℄.Definition 3. (Observational Approximation) We say that M observa-tionally approximates N , written M �� N , if for all C su
h that C[M ℄ and C[N ℄are 
losed, C[M ℄+ =) C[N ℄+:We say thatM andN are observationally equivalent, writtenM �= N , whenM �� Nand N ��M .We know that �= 
oin
ides with its 
all-by-name 
ounterpart, so this tells usnothing new. We need to in
orporate more intensional information if we are tobuild an operational theory that retains the distin
tion between name and need.Sin
e 
all-by-need may be thought of as an optimisation of 
all-by-name, a naturalintensional property to 
ompare is how many redu
tion steps are required for ter-mination. However, theorem 4.1tells us that 
ounting lookups is in fa
t suÆ
ient.Re
all that we will write M#nto mean that M 
onverges with a 
ost of n, where n is the number of lookups thato

ur during the evaluation of M .Definition 4. (Improvement) We say that M is improved by N , written
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h that C[M ℄ and C[N ℄ are 
losed,C[M ℄#n =) C[N ℄#6n:We say that M and N are 
ost equivalent, written M CB� N , when M B� N andN B�M .This de�nition su�ers from the same problem as any 
ontextual de�nition: toprove that two terms are related requires one to examine their behaviour in all 
on-texts. For this reason, it is 
ommon to seek to prove a 
ontext lemma [Milner 1977℄for an operational semanti
s: one tries to show that to prove M observationallyapproximates N , one only need 
ompare their behaviour with respe
t to a moretra
table set of 
ontexts.We have established the following 
ontext lemma for 
all-by-need:Lemma 5.1. (Context Lemma) For all terms M and N , if for all �; S, andn, su
h that h�; M; S i and h�; N; S i are 
losed,h�; M; S i#n =) h�; N; S i#6nthen M B� N .It says that we need only 
onsider 
on�guration 
ontexts of the form h�; [�℄; S iwhere the hole [�℄ appears only on
e. This 
orresponds exa
tly to a subset of term
ontexts 
alled evaluation 
ontexts, in whi
h the hole is the subje
t of evaluation.We shall make this 
orresponden
e pre
ise in the se
tion 6.2.Note that the 
ontext lemma applies to open termsM and N . It is more 
ommonto restri
t one's attention to 
losed terms, and then show that the preorder inquestion is 
losed under (general) substitution.5.1 Strong ImprovementThe improvement relation, like the notion of operational approximation whi
h itre�nes, also in
reases the termination of programs, so if M B� N then N may alsoterminate \more often" than M . In the 
ontext of 
ompiler optimisations it isnatural to ask for a stronger notion of improvement whi
h does not permit any
hange in termination behaviour.Definition 5. (Strong Improvement) We say that M is strongly improvedby N , written M Q N , if M B� N ^N ��M:M is strongly improved byN if it is improved byN , andN has identi
al terminationbehaviour (note that we need only have N ��M in the de�nition sin
eM B� N =)M �� N).For simpli
ity of presentation we emphasise improvement rather than strong im-provement. However, almost all the laws and proof rules presented in subsequentse
tions also hold for strong improvement, notable ex
eptions being the \stri
tnesslaws" 
on
erning 
, the divergent term. The synta
ti
 
ontinuity proof prin
iple issound for strong improvement, but degenerates to a trivial rule.The following Hasse-diagram illustrates the relationships between the variousapproximations and equivalen
es introdu
ed in this se
tion:
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e of relations on terms. In other words, the greatestlower bound of any two relations in the diagram is equal to their set-interse
tion.6. THE TICK ALGEBRAConsider the following improvement:let fx = V g in x B� let fx = V g in V (�)Clearly, for any � and S:h�; let fx = V g in x; S i ! h�fx = V g; x; S i! h�; V; #x : S i! h�fx = V g; V; S iand h�; let fx = V g in V; S i ! h�fx = V g; V; S iso (�) follows from the 
ontext lemma. But we 
an say more: let fx = V g in xalways takes exa
tly two more steps to 
onverge than let fx = V g in V . Moreimportantly, one of those two steps is always a lookup, in
urring 
ost.If we had some synta
ti
 way of introdu
ing 
ost to the right-hand side, (�)
ould be written as a 
ost equivalen
e, whi
h would be preferable, sin
e it is a moreinformative statement. This motivates the introdu
tion of the \ti
k", written X,whi
h we will use to add a unit of 
ost to a 
omputation. Now we 
an write (�) aslet fx = V g in x CB� Xlet fx = V g in VWe introdu
e the ti
k as a new synta
ti
 
onstru
t1, with the following transitionrule: h�; XM; S i ! h�; M; S i (Ti
k )1In earlier work, the ti
k was de�ned within the language. To do so here, we 
ould introdu
e aspurious indire
tion, i.e. XM would be de�ned by let fx = Mg in x. However, this needlessly
ompli
ates proofs, sin
e it 
hanges the heap.



12 � A. K. Moran and D. Sandswith the further stipulation that we 
ount o

urren
es of both (Lookup) and the(Ti
k ) transitions when 
al
ulating the 
ost of a 
ompuation.By de�nition, X adds one unit to the 
ost of evaluating M without otherwise
hanging its behaviour. Note that:M+ () XM+M#n () XM#n+1We will write kXM to mean thatM has been slowed down by k ti
ks. The followinginferen
e rule and axiom, known 
olle
tively as \ti
k elimination" are 
ru
ial whenestablishing improvement or 
ost equivalen
e.XM B� XNM B� N XM B�M (X-elim)Their validity follows from the de�nition of B�.We 
an easily prove a number of improvements and 
ost equivalen
es moduloti
k, and we present a sele
tion of the more useful ones in the following se
tions.Throughout, we will follow the standard 
onvention that all bound variables in thestatement of a law are distin
t, and that they are disjoint from the free variables.Together with (X-elim), the laws presented in �gures 2, 3, 4, 5, and �gure 6 areknown 
olle
tively as the ti
k algebra.6.1 Beta LawsThe �rst set of laws, presented in �gure 2, are important in that they allow us tomimi
 evaluation within the algebra. (�) is the familiar law for 
all-by-need betaredu
tion; (
ase-�) is the analogous law for 
ase expressions. To see the validity of(�), note that, for all � and Sh�; (�y:M)x; S i ! h�; �y:M; x : S i! h�; M [x=y℄; S iSin
e (�y:M)x always redu
es to M [x=y℄ in two zero 
ost steps, irrespe
tive of �and S, the 
ontext lemma tells us that they are 
ost equivalent. Many of the lawsin this se
tion are this easily established.In (value-�), one may repla
e o

urren
es of a variable, whi
h is bound to somevalue V , with XV . The ti
k re
e
ts the fa
t that by repla
ing x with its value, weare short-
ir
uiting a lookup step.(var -�) is a version of (value-�) where x is instead bound to another variable z. Itis an improvement only, be
ause the speedup a
hieved 
an vary. It 
an be reversedif we 
ompensate for the indire
tion, as in (var -abs). (var -subst) and (var -expand)are slight variations on (var -�) and (var -abs), respe
tively, that allow us to repla
ex with z even in argument positions (not allowed in (var -�) due to the use of
ontexts). The proofs of validity of (value-�), (var -�), (var -abs), (var -subst) and(var -expand) rely upon general te
hniques that are outlined in se
tion 11.There are also two derived beta laws, 
orresponding to unrestri
ted versions of(�) and (
ase-�). We 
an derive the following 
ost equivalen
e:(�x:M)N CB� let fx = Ng in M (�0)
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k AlgebraThroughout, we follow the standard 
onvention that all bound variables in the statement of a laware distin
t, and that they are disjoint from the free variables.(�x:M) y CB� M [y=x℄ (�)
ase 
j ~y of f
i ~xi �Mig CB� Mj [~y=~xj ℄ (
ase-�)let fx = V; ~y = ~D[x℄g in C[x℄ CB� let fx = V; ~y = ~D[XV ℄g in C[XV ℄ (value-�)let fx = z; ~y = ~D[x℄g in C[x℄ B� let fx = z; ~y = ~D[z℄g in C[z℄ (var -�)Xlet fx = z; ~y = ~D[z℄g in C[z℄ B� let fx = z; ~y = ~D[x℄g in C[x℄ (var -abs)let fx = z; ~y = ~M[x=w℄g in N [x=w℄ B� let fx = z; ~y = ~M [z=w℄g in N [z=w℄ (var -subst)Xlet fx = z; ~y = ~M [z=w℄g in N [z=w℄ B� let fx = z; ~y = ~M [x=w℄g in N [x=w℄ (var -expand)Fig. 2. Beta laws for 
all-by-need.E[XM ℄ CB� XE[M ℄ (X-E)E[
ase M of fpat i � Nig℄ CB� 
ase M of fpat i � E[Ni℄g (
ase-E)E[let f~x = ~Mg in N ℄ CB� let f~x = ~Mg in E[N ℄ (let-E)let fx = Mg in E[x℄ CB� E[XM ℄; if x =2 FV (M;E) (inline-E)Fig. 3. Laws for evaluation 
ontexts.let f~x = ~Mg in N CB� N; if ~x  FV (N) (g
)let f~x = ~Lg in let f~y = ~Mg in N CB� let f~x = ~L; ~y = ~Mg in N (let-
atten)let fx = let f~y = ~L; ~z = ~Mg in Ng in N 0 CB� let fx = let f~z = ~Mg in N; ~y = ~Lg in N 0(let-let)C[let f~y = ~V g in M ℄ CB� let f~y = ~V g in C[M ℄ (let-
oat-val)let f~x = ~V �1; ~y = ~V �2; ~z = ~Mg in N CB� let f~x = ~V �2�3; ~z = ~M�3g in N�3;�1 = [~y=~w℄; �2 = [~x=~w℄; �3 = [~x=~y℄; (value-
opy)Fig. 4. Laws for dealing with lets.
 B� M (
)M B� 
; i� M �= 
 (imp-
)M �= 
; i� M B� XM (diverge)let fx = 
; ~y = ~D[x℄g in C[x℄ CB� let fx = 
; ~y = ~D[
℄g in C[
℄ (
-�)C[let fy = 
g in M ℄ CB� let fy = 
g in C[M ℄ (let-
oat-
)C[XM ℄ B� XC[M ℄; if C is stri
t (X-
oat)Fig. 5. Laws for 
 and stri
tness.let fx = M;~y = ~D[XM ℄g in C[XM ℄ B� let fx = M;~y = ~D[x℄g in C[x℄ (�-expand)Fig. 6. Beta expansion 
onje
ture.



14 � A. K. Moran and D. SandswhereN is not a variable. There is a similar derived law for general 
ase expressions.6.2 Laws for Evaluation ContextsAn evaluation 
ontext is a 
ontext in whi
h the hole is the target of evaluation; inother words, evaluation 
annot pro
eed until the hole is �lled. Evaluation 
ontextshave the following form: E ::= Aj let f~x = ~Mg in Aj let f~y = ~M;x0 = A0[x1℄;x1 = A1[x2℄;� � �xn = Angin A[x0℄A ::= [�℄j Axj 
ase A of f
i ~xi �Mig:E ranges over evaluation 
ontexts, and A over what we 
all appli
ative 
ontexts.Our evaluation 
ontexts are stri
tly 
ontained in those mentioned in Ariola andFelleisen's letre
 extension [Ariola and Felleisen 1997℄ of the 
all-by-need 
al
ulus:there they allow E to appear anywhere we have an A. Our \
attened" de�ni-tion 
orresponds exa
tly to 
on�guration 
ontexts (with a single hole) of the formh�; [�℄; S i, as made pre
ise by the following lemma, where �E is the set of allevaluation 
ontexts.Lemma 6.1. �E = ftransh�; [�℄; S i j all �; Sg.The two laws in �gure 3 are very useful indeed: they allow us to move 
ases andlets in and out of evaluation 
ontexts. A 
ommon motif in proofs using the ti
kalgebra is the use of (
ase-E) and (let-E) to expose the sub-term of interest. Theirvalidity follows easily from a simple lemma (presented in se
tion 11).(X-E) allows us to move ti
ks in and out of evaluation 
ontexts. It follows bya simple use of the 
ontext lemma and the properties of the (Ti
k ) transition.Another useful law is (inline-E), whi
h allows us to inline x if it is used but on
ein an evaluation 
ontext. It follows by similar reasoning to (X-E).6.3 Con
erning LetsSome of the laws that allow us to manipulate lets are presented in �gure 4. Law(g
) 
orresponds to garbage 
olle
tion: it allows us to add or remove super
uousbindings. Laws (let-
atten) and (let-let) allow bindings to move a
ross ea
h other,and law (let-
oat-val) 
on
erns the movement of value bindings in and out of general
ontexts (i.e. in
luding a
ross �s); along with (let-
oat) below, it forms the essen
eof the full-laziness transformation, as noted in [Peyton Jones et al. 1996℄). The lastlaw, (value-
opy) says that if we have two 
opies of a strongly-
onne
ted 
omponentof the heap (
omposed solely of values), then we may remove one of them, providedwe perform some renaming.



An Operational Theory for Call-By-Need � 15Note that in, for example, the (let-let) axiom, the variable 
onvention ensuresthat the ~z do not o

ur free in the ~L; in (let -
oat-val), the 
onvention guaranteesthat x is not free in the ~V .All of the let laws ex
ept (value-
opy) follow via similar arguments to that for(�) above. (value-
opy) requires the use of the same general te
hniques needed tojustify the more 
omplex � laws (proof in se
tion 11).6.4 Divergen
e and Stri
tnessLet 
 denote any 
losed term whi
h does not 
onverge. For example, the \bla
k-hole" term, let x = x in x, would suÆ
e as a de�nition for 
. The �rst three laws in�gure 5 
on
ern 
 and its relationship with B�. (
-�) and (let-
oat-
) are similarto (value-�) and (let-
oat-val) ex
ept that 
 is used in pla
e of a value. All ofthese laws follow in a straightforward manner from the 
ontext lemma and the fa
tthat 
all-by-name termination behaviour is preserved in the 
all-by-need theory.We say that a 
ontext C is stri
t if and only if C[
℄ �= 
. Given this de�nition, we
an 
oat ti
ks out of any stri
t 
ontext, as stated by (X-
oat). The proof followsby the same te
hniques used to prove (value-�).It turns out that this ti
k 
oating property 
an be used as a 
hara
terisation ofstri
tness: for all C, if C[Xx℄ B� XC[x℄, x fresh, then C is stri
t. This follows sin
e,by 
ongruen
e, let x = 
 in C[Xx℄ B� let x = 
 in XC[x℄whi
h implies, by (
-�), and (g
), that C[X
℄ B� XC[
℄. But sin
e X
 CB� 
, by (
)and (imp-
), C[
℄ B� XC[
℄. Therefore, by (diverge), C[
℄ �= 
.6.5 Beta Expansion: A Conje
tureIn analogy to (value-�), we have (�-expand) where values are repla
ed by generalterms:let fx = M;~y = ~D[XM ℄g in C[XM ℄ B� let fx = M;~y = ~D[x℄g in C[x℄ (�-expand )The intuition here is that the rule undoes a 
all-by-name 
omputation step (a beta-redu
tion). This is an improvement providing we 
an pay for the potential gainthat the 
omputation step might have made | whi
h is at most one ti
k at ea
ho

urren
e of the variable whi
h is unfolded.Unfortunately we la
k a satisfa
tory proof for (�-expand). The 
ontext lemmaseems inadequate to establish this property. This seems to be linked to the fa
tthat the axiom embodies the essential di�eren
e between 
all-by-name and 
all-by-need evaluation, and thus it may be possible to adapt te
hniques based onredex-marking [Maraist et al. 1998℄. However, while we believe the 
onje
ture tobe an improvement as regards speed, it 
an lead to asymptoti
 worsening of spa
ebehaviour [Gustavsson and Sands 1999℄.The 
onje
ture 
an be used to \tie the knot" when deriving 
y
li
 programs.This possible sin
e we allow x to o

ur free in M . See the last step of the proof ofproposition 8.4 for an example of the use of (�-expand) in this 
ontext.



16 � A. K. Moran and D. Sands(�x:M)N =need let x = N in M (let-I )let x = V in C[x℄ =need let x = V in C[V ℄ (let-V )(let x = L in M)N =need let x = L in M N (let-C )let y = (let x = L in M) in N =need let x = L in let y = M in N (let-A)Fig. 7. Axioms of the 
all-by-need 
al
ulus of Ariola et al..Using the 
onje
ture, we 
an also establish the following:X(�x:let f~y = ~L; ~z = ~Mg in N) B� let f~y = ~Lg in �x:let f~z = ~Mg in N(let-
oat)whi
h 
on
erns moving non-value bindings out of �s (where the variable 
onventionensures that x does not o

ur free in the ~L). As noted above, this is an essentialpart of the full-laziness transformation. Another 
onsequen
e of the 
onje
ture isstandard 
ommon sub-expression elimination:XC[XM ℄ B� let fx = Mg in C[x℄ (
se)Again, the 
onvention ensures that any free variables of M are not 
aptured by
ontext C.7. RELATING THE TICK ALGEBRA AND THE CALCULIWe reprodu
e the axioms of the 
all-by-need 
al
ulus of [Ariola et al. 1995℄, in�gure 72.The laws 
olle
ted in �gures 2, 3, and 4 subsume the 
all-by-need lambda 
al
uli(in both 
ases minus the symmetry law): ea
h 
al
ulus rewrite rule of the formL! R turns out to be an outright improvement, i.e. L B� R.In fa
t, with the ex
eption of (let-V ), they are 
ost equivalen
es, so we 
an reversethe improvement also. As for (let-V ), we 
an reverse the improvement modulo ti
k.In other words, there exists an R0, obtained from R by inserting ti
ks, su
h thatR0 B� L. This fa
t will enable us to prove that any two terms related by these 
al
uli
ompute within a 
onstant fa
tor of ea
h other in any program 
ontext. Thus thebest (worst) speedup (resp. slowdown) program obtainable in these 
al
uli is linear.First it is natural to generalise the idea of improvement modulo ti
ks.Definition 6. (Improvement within a Constant Fa
tor) We say thatM is improved by N within a 
onstant fa
tor, written M B� N , if there exists a ksu
h that for all C su
h that C[M ℄ and C[N ℄ are 
losed,C[M ℄#n =) C[N ℄#6k(n+1):So M B� N means that N is never more than a 
onstant fa
tor slower than M (butit might still be faster by a non-
onstant fa
tor). Note that the 
onstant fa
tor isindependent of the 
ontext of use.It 
an be seen that B� is a pre
ongruen
e relation (to show transitivity requires asmall 
al
ulation) and 
learly 
ontains the improvement relation.2In the original paper V ranges over variables as well as values. In addition, Ariola and Felleisen[Ariola and Felleisen 1997℄ restri
t C in (let-V ) to be evaluation 
ontexts.
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onsider a spe
ial 
ase of B�, namely programs whi
h only di�er by ti
ks.Let M X! N mean that N 
an be obtained from M by removing some ti
ks (fromanywhere within the term), and M X� N mean that there exists an L su
h thatM X! L and N X! L. Clearly X! is a pre
ongruen
e and X� is a 
ongruen
e.Lemma 7.1. M X� N =) M B� N .Proof. (Sket
h) Clearly X! � B�, so it suÆ
es to show that M X! N =) N B�M .First show that the nesting of ti
ks in a 
on�guration never in
reases as 
omputationpro
eeds (easy to see sin
e the rules never substitute terms for variables). Then letk be the maximum nesting of ti
ks in M , and show by indu
tion on the length ofthe 
omputation that C[N ℄+n implies C[N ℄+k(n+1) (strengthening this statementto 
on�gurations). 2With this lemma we 
an establish the following:Theorem 7.2. For all terms N and M (of our restri
ted syntax) if M =need Nthen M B� N .Proof. (Sket
h) By indu
tion on the proof of M =need N . The base 
ase requiresus to show that the (oriented) equations are 
ontained inB�. This follows easily sin
ethey are all either improvements or improvements modulo ti
k. In the indu
tive
ases, the 
ongruen
e and transitivity rules follow from the indu
tive hypothesissin
e B� is a pre
ongruen
e. The only diÆ
ult 
ase is symmetry. It will be suÆ
ientto prove that reversed equations are 
ontained in B�. For ea
h equation L =need Rwe have from the laws of the ti
k algebra either that R B� L, or, in the 
ase of(let-V ), an R0 su
h that R0 X! R and R0 B� L. By lemma 7.1 we know that R B� R0,so R B� L follows from the fa
t that B� � B� and transitivity of B�. 2Corollary 7.3. The 
all-by-need 
al
ulus of [Ariola et al. 1995℄ 
annot improve(or worsen) a program by more than a 
onstant fa
tor.We are 
on�dent that this result 
an be extended to Ariola and Blom's sharing
al
ulus �Æshare [Ariola and Blom 1997℄ sin
e almost all the rules are representedmore or less dire
tly in the 
olle
tion of improvement laws. It is interesting tonote that we assembled our 
olle
tion of laws \by need", 
onsidering what wasrequired to ta
kle a number of examples, and it was en
ouraging to �nd that wehad already 
overed almost all of Ariola and Blom's rules. As it stands however, our(value-
opy) 
ost equivalen
e is not as expressive as Ariola and Blom's value-
opyrule.3 We believe that Ariola and Blom's value-
opy rule is a 
ost equivalen
e, buttheir formulation of the rule is rather indire
t, so it is not obvious to us how toprove this.8. SYNTACTIC CONTINUITYWe wish to say something meaningful about re
ursive fun
tions with this theory,and a natural starting point is to attempt to mimi
 the �xed-point indu
tion S
ott-style denotational semanti
s. Examples of this kind of operational analogue to3Thanks to Stefan Blom for providing an example, and to Zena Ariola for pointing out an errorin the use of an earlier formulation of our value-
opy rule.
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ott indu
tion for other languages may be found in e.g., [Pitts 1997b; Smith 1991;Mason et al. 1996; Sands 1997; Lassen 1998℄; we present the �rst su
h result for a
all-by-need semanti
s.We will use the following me
hanism to des
ribe the synta
ti
 unwindings of are
ursive fun
tion. In the de�nition, the fi are distin
t, new variables.Definition 7. f 0= V def= f0 = 
;f n+1= V def= f n= V; fn+1 = V [fn=f ℄:Then, for an f de�ned by let ff = V g in f , we de�ne the nth unwinding aslet ff n= V g in fn. If we expand the de�nition of f n= V , we see that this is reallylet ff0 = 
;f1 = V [f0=f ℄;� � �fn = V [fn�1=f ℄gin fn:Note that we have restri
ted our attention to those f whose de�ning body is avalue; this unwinding tri
k would not work for general 
y
les (sin
e loss of sharingwould render the exer
ise pointless). To extend the method to 
y
les would requiresome extension to the language, but this would lead to the problem of showing thatthe extension is 
onservative with respe
t to the improvement relation.The point is that the fun
tions let ff n= V g in fn 
ompletely 
hara
terise thebehaviour of let ff = V g in f . This is the essen
e of S
ott indu
tion. Themain property that justi�es this is a synta
ti
 notion of 
ontinuity, whi
h says thatlet ff = V g in f is the least upper bound of 
hain flet ff n= V g in fngn>0 andthat any M whi
h uses f preserves this property.We �rst show that flet ff n= V g in M [fn=f ℄gn>0 does indeed form a 
hain withrespe
t to B�, and that let ff = V g in M is an upper bound of that 
hain.Lemma 8.1. 8n: let ff n= V g in M [fn=f ℄B� let ff n+1= V g in M [fn+1=f ℄B� let ff = V g in M:Proof. We prove only the se
ond improvement, that for all n,let ff n= V g in M [fn=f ℄ B� let ff = V g in M:The �rst follows by a similar argument. We pro
eed by indu
tion on n. The base
ase follows easily by (g
) and the 
 laws, and the indu
tive 
ase follows by this
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al
ulation:let ff n= V; fn+1 = V [fn=f ℄g in M [fn+1=f ℄CB� let ff n= V g in let ffn+1 = V [fn=f ℄g in M [fn+1=f ℄ (let-let)� let ff n= V g in let fg = V [fn=f ℄g in M [g=f ℄ (renaming)B� let ff = V g in let fg = V [f=f ℄g in M [g=f ℄ (I.H.)CB� let ff = V; g = V g in M [g=f ℄ (let-let)CB� let ff = V g in M (value-
opy); (g
) 2To establish synta
ti
 
ontinuity, we will need the following lemma (see se
tion 11for the proof). It says that if let ff = V g in M 
onverges then there must existsome unwinding that does so with the same 
ost.Lemma 8.2. (Unwinding) For all �; S, and n,h�; let ff = V g in M; S i#n =) 9m:h�; let ff m= V g in M [fm=f ℄; S i#n:Theorem 8.3. (Synta
ti
 Continuity) The following is a sound proof rule:8n:let ff n= V g in M [fn=f ℄ B� Nlet ff = V g in M B� NProof. Assume h�; let ff = V g in M; S i#n. Then by the Unwinding lemma,there exists some m su
h that h�; let ff m= V g in M [fm=f ℄; S i#n. By the premise,we have that h�; N; S i#6n, and the result follows by the 
ontext lemma. 2Synta
ti
 
ontinuity is also valid for mutually re
ursive fun
tions. This proof rule issound for strong improvement, but note that the base 
ase of the premise requiresthat N be 
ontextually equivalent to 
. This tends to limit the appli
ability of thestrong improvement version of synta
ti
 
ontinuity.As an example of the use of synta
ti
 
ontinuity, we show that an unwinding �xed-point 
ombinator is improved within a 
onstant fa
tor by a \knot-tying" �xed-point
ombinator.Proposition 8.4. If (�-expand) is valid, thenlet re
 = (�f:let x = re
 f in f x) in re
 B� let �x = (�f:let x = f x in x) in �x :Proof. Let V = �f:let x = re
 f in Xf x, and abbreviate V [re
n=re
℄ by Vn. Wewill show that for all n, let re
 n= V in re
n B� X�f:let x = f x in x. Then the resultwill then follow by synta
ti
 
ontinuity, sin
eX�f:let x = f x in xCB� let �x = (�f:let x = f x in x)in X�f:let x = f x in x (g
)CB� let �x = (�f:let x = f x in x) in �x (value-�)
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 n= V; re
n+1 = Vn in re
n+1CB� let re
 n= V; re
n+1 = Vn in XVn (value-�)CB� let re
 n= V in X�f:let x = re
n f in Xf x (g
); (defn. of Vn)CB� X�f:let re
 n= V; x = re
n f in Xf x (let-
oat-val); (let-
oat-
)CB� X�f:let x = (let re
 n= V in re
n) f in Xf x (let-let); (let-E)B� X�f:let x = (X�g:let y = g y in y) f in Xf x (I.H.); (renaming)CB� X�f:let x = Xlet y = f y in y in Xf x (�)CB� X�f:let x = Xy; y = f y in Xf x (let-let)B� X�f:let x = y; y = f y in Xf y (X-elim); (var-subst)CB� X�f:let x = f x in Xf x (g
); (renaming)B� X�f:let x = f x in x (�-expand)Fig. 8. The indu
tive 
ase for proposition 8.4.We pro
eed via indu
tion on n. The base 
ase follows trivially by (imp-
) and (
)sin
e let re
0 = 
 in re
0 �= 
, and the indu
tive 
ase follows by the derivation in�gure 8. We have B� and not B� be
ause we use a slightly slower version of re
. 2The 
onverse of the proposition is false, sin
e the knot-tying �xed-point 
ombi-nator 
an give asymptoti
ally better programs.We 
an also use synta
ti
 
ontinuity to establish the following proof rule, whi
his a synta
ti
, 
all-by-need version of what is 
alled �xed-point fusion in [Meijeret al. 1991℄. In the statement, V and W range over value 
ontexts.Theorem 8.5. (Improvement Fusion) If C is stri
t, and C[V[x℄℄ B� W[C[x℄℄where x =2 FV (V;W;C)[CV (V;W;C), then for all D su
h that x =2 FV (D)[CV (D),let fx = V[x℄g in D[C[x℄℄ B� let fx = W[x℄g in D[x℄:Proof. Assume C is stri
t, and that C[V[x℄℄ B� W[C[x℄℄. By synta
ti
 
ontinuity, itsuÆ
es to show, for all n and all D su
h that x =2 FV (D)[CV (D),let fx n= V[x℄g in D[C[xn℄℄ B� let fx = W[x℄g in D[x℄:The base 
ase follows by this 
al
ulation:let fx0 = 
g in D[C[x0℄℄CB� let fx0 = 
g in D[C[
℄℄ (
-�)CB� let fx0 = 
g in D[
℄ (C stri
t)CB� D[
℄ (g
)CB� let fx = W[x℄g in D[
℄ (g
)B� let fx = W[x℄g in D[x℄ (
 B� x); (
ong:)
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tive 
ase by this 
al
ulation:let fx n+1= V[x℄g in D[C[xn+1℄℄CB� let fx n= V[x℄g in D[C[XV[xn℄℄℄ (value-�); (g
)CB� let fx n= V[x℄g in D[XC[V[xn℄℄℄ (C stri
t)B� let fx n= V[x℄g in D[XW[C[xn℄℄℄ (assumption)B� let fx = W[x℄g in D[XW[x℄℄ (I:H:)CB� let fx = W[x℄g in D[x℄ (value-�) 2Fixed-point fusion 
an be used to establish a number of general fusion laws. It isalso 
entral to Tullsen and Hudak's [Tullsen and Hudak 1998℄ approa
h to programtransformation in Haskell.9. THE IMPROVEMENT THEOREMIn this se
tion we introdu
e a se
ond key te
hnique for reasoning about re
ursion,the improvement theorem. In [Sands 1996℄ a 
all-by-name improvement theoremwas introdu
ed as a means to prove the extensional 
orre
tness of re
ursion-basedprogram transformations. In this se
tion we show how these results 
arry over tothe 
all-by-need setting.9.1 The Problem of TransformationsAs a motivation for the improvement theorem, 
onsider the 
orre
tness problemfor re
ursion-based program transformations su
h as unfold-fold ; the 
orre
tness ofsu
h transformations does not follow from the simple fa
t that the basi
 transfor-mation steps are equivalen
es. To take a simple example to illustrate the problem,
onsider the following \transformation by equivalen
e-preserving steps". Start withthe re
ursive fun
tion repeat whi
h produ
es the \in�nite" list of its argument:repeat x = x : (repeat x)The following property 
an be easily dedu
ed: repeat x �= tail(repeat x). Now sup-pose that we use this \lo
al equivalen
e" to transform the body of the fun
tion toobtain a new version of the fun
tion:repeat x = x : (tail (repeat x))This de�nition is not equivalent to the original, sin
e it 
an never produ
e morethan �rst element in the list. How did equivalen
e-preserving lo
al steps produ
ea non-equivalent fun
tion? Analysing su
h transformations more 
arefully we seethat while it is true thatM �= N =) let fx = Mg in L �= let fx = Ng in L (9.1)it is no longer the 
ase when the transformation from M to N depends on there
ursive de�nition of x itself:let fx = Mg in M �= let fx = Mg in NY=) let fx = Mg in L �= let fx = Ng in L:



22 � A. K. Moran and D. SandsBut in order to reason about \interesting" program transformations (e.g. unfold-fold, re
ursion-based deforestation, partial evaluation with memoization), inferen
e(9.1) is simply not suÆ
ient.The improvement theorem 
omes to the res
ue:let fx = Mg in M B� let fx = Mg in Nlet fx = Mg in L B� let fx = Ng in L (9.2)This is suÆ
ient to establish the 
orre
tness of re
ursion-based transformationsby requiring | rather naturally | that the lo
al transformation steps are alsoimprovements. This was proved for an improvement theory based on 
all-by-name,so the fa
t that the theorem gives \improved" programs as well as 
orre
tness isnot 
onsidered to be parti
ularly signi�
ant.A question left open was whether the improvement theorem holds for a 
all-by-need improvement theory. We 
an now supply the answer:Theorem 9.1. (Improvement Theorem) The following proof rule is sound:let ff = V g in V B� let ff = V g in Wlet ff = V g in N B� let ff = Wg in NThe inferen
e is also sound when B� is repla
ed throughout with CB� (the 
ost equiv-alen
e theorem).The improvement theorem and the 
ost equivalen
e theorem 
an also be stated fora set of mutually re
ursive de�nitions. The proof of the theorem is in se
tion 11.Notation. In establishing a premise of the improvement theorem, in the 
ontextof some re
ursive de
larations ~g = ~V , a derivation of the formlet f~g = ~V g in M1 B� let f~g = ~V g in M2B� let f~g = ~V g in M3 : : :will be written in the following abbreviated form:~g `M1 B�M2B�M3 : : :when the de
larations ~g are 
lear from the 
ontext. This is of 
ourse of limited usewithout the following 
ongruen
e rule:~g `M B� N~g ` C[M ℄ B� C[N ℄ (`-
ong)for all 
ontexts C. It says that any improvement proven in the 
ontext of somere
ursive de�nitions may be lifted to all 
ontexts.The following example illustrates the use of the proof rule, whi
h shows that arepresentation of the standard lambda-
al
ulus �xed-point 
ombinatorY = �f:f ((�x:f (xx))�x:f (xx))(suitably 
onverted to the restri
ted syntax) is 
ost equivalent to the non-
y
li
version re
 from proposition 8.4.



An Operational Theory for Call-By-Need � 23Proposition 9.2. let Y = �f:let d = �y:let z = y y in f zx = d din f xin YCB� let re
 = �f:let x = re
 f in f xin re
 :Proof. To use the 
ost equivalen
e theorem, we are required to show thatlet Y = � � �in �f:let d = �y:let z = y y in f zx = d din f xCB� let Y = � � �in �f:let x = Y f in f xwhere re
 has been renamed (without loss of generality) to Y . Using the entailmentnotation, we need to show:Y ` �f:let d = �y:let z = y y in f zx = d din f xCB� �f:let x = Y f in f x:By 
al
ulation, we have that:Y ` �f:let d = �y:let z = y y in f zx = d din f xCB� �f:let d = �y:let z = y y in f zx = Xlet z = d d in f zin f x (value-�); (�)CB� �f:let x = Xlet d = �y:let z = y y in f zz = d din f zin f x (let-let)CB� �f:let x = X(�g:let d = �y:let z = y y in g zz = d din g z) fin f x (�)CB� �f:let x = Y f in f x (value-�)Then the result follows by the 
ost equivalen
e theorem. 2Improvement Theorem vs. Synta
ti
 Continuity. Suppose one wants to establishan improvement of the formlet ff = V g in N B� let ff = Wg in N:
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ursive (in f) then synta
ti
 
ontinuity is of no help,sin
e the unwindings (> 0) of the left-hand side will all be identi
al; 
onversely,if the right-hand side is non re
ursive (in f) then the improvement theorem isnot immediately useful, sin
e proving the premise amounts to dire
tly proving the
on
lusion of the rule. There are, however, many examples whi
h 
an be proved byboth methods. In these 
ases the improvement theorem is often preferable sin
e itis more 
al
ulational in style.9.2 Improvement Indu
tionFinally, we mention one last proof rule whi
h is 
losely allied to the improvementtheorem (in the sense that a 
losely-related rule 
an be derived from the improve-ment theorem); this 
orresponds to what we 
alled improvement indu
tion in [Sands1997℄, where it was established for any 
all-by-name or 
all-by-value language withSOS rules �tting a 
ertain synta
ti
 rule-format.Theorem 9.3. (Improvement Indu
tion) For any M , N , C, and substitu-tion �, the following proof rule is sound:~f `M B� XC[M�℄ ~f ` N CB� XC[N�℄~f `M B� NThe proof is quite straightforward, and is given in se
tion 11. A example of theproof te
hnique is provided in se
tion 10.10. AN EXAMPLE PROGRAM TRANSFORMATIONIn this se
tion we 
onsider a larger example of a program transformation | anautomati
 method for eliminating 
alls to the append fun
tion. The transfoma-tion is something of a 
lassi
, and 
an be viewed as an instan
e of the unfold-folds
heme [Burstall and Darlington 1977℄. The parti
ular me
hanisation des
ribedhere is based on [Wadler 1988℄. The example was used previously to illustrate theimprovement theorem for 
all-by-name evaluation [Sands 1996℄. Here we show thatthe 
orre
tness argument there 
an be strengthened to en
ompass a guarantee of
all-by-need improvement.10.1 The Con
atenate VanishesThe basi
 idea is to eliminate o

urren
es of the list-
on
atenate fun
tion:(++) = �xs:�ys :
ase xs ofnil � ysh : t � h : (t++ ys);when it o

urs to the right of a fun
tion appli
ation, as in: f y1 : : : yn++ z. This isa
hieved by by de�ning and optimising a fun
tion f+ whi
h satis�esf+ y1 : : : yn z �= (f y1 : : : yn)++ z:We present the transformation in two phases: initialization, whi
h introdu
esan initial de�nition for f+, and transformation, whi
h applies a set of rewrites toterms in the s
ope of these de�nitions. Throughout we assume that the de�nitionof the append fun
tion is in s
ope. To ease the notation, we will o

asionally make
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ti
 identity for general appli
ation from se
tion 3, and we will usean in�x form of append.Initialization. The target of the transformation is a fun
tion de�nition f =�x1 : : : �xn:M , for whi
h there is an o

urren
e of a term (f y1 : : : yn)++ z in theprogram. The initial step is to repla
e the de�nition by the pair:f = �x1 : : : �xn:f+x1 : : : xn nilf+ = �x1 : : : �xn:�z:M++ zTransformation. Apply the following rewrite rules, in any order, to all expressionsin the s
ope of the above de�nitions:let y = nil in C[y++x℄! let y = nil in C[x℄ (i)let w = x : y in C[w++ z℄! let w = x : y in C[x : (y++ z)℄ (ii)(x++ y)++ z ! x++(y++ z) (iii)(
ase M of fpat i � Nig)++ z ! 
ase M of fpat i � Ni++ zg (iv)(f z1 : : : zn)++ z ! f+ z1 : : : zn z (v)(f+ z1 : : : zn z)++ z0 ! f+ z1 : : : zn ; (z++ z0) (vi)(let ~x = ~M in N)++ z ! let ~x = ~M in N++ z (vii)10.2 An Example Appli
ationThe 
lassi
 example of this transformation is the 
onversion of a na��ve quadrati
time list reverse fun
tion into a linear time version. Suppose we have the de�nitionreverse = �xs:
ase xs ofnil � nilh : t � let z = [h ℄ in (reverse t)++ zThe expression (reverse t)++ z is a 
andidate for the transformation, so initialisa-tion yields:reverse = �xs :reverse+ xs nilreverse+ = �xs :�z:0�
ase xs ofnil � nilh : t � let y = [h ℄ in (reverse t)++ y1A++ zNow we apply the transformation rules to the program. We will also use garbage
olle
tion to remove redundant bindings. The important part is the appli
ationto the 
ase expression in the right hand side of the de�nition of reverse+. Thetransformation is presented in �gure 9.10.3 Corre
tnessWe have seen, with the standard reverse example, that the transformation 
ana
hieve asymptoti
 program speedups. In the remainder of this se
tion we usethe improvement theory to prove that the method des
ribed 
an never slow downprograms by more than a 
onstant fa
tor.For the 
orre
tness argument we make a simpli�
ation to the initialisation phase:we will not modify the de�nition of the original fun
tion f . The e�e
t of this
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ase xs ofnil � nilh : t � let y = [h ℄ in (reverse t)++ y1A++ z! 
ase xs ofnil � nil++ zh : t � (let y = [h ℄ in (reverse t)++ y)++ z (iv)! 
ase xs ofnil � zh : t � (let y = [h ℄ in (reverse t)++ y)++ z (i); (vii); (g
)! 
ase xs ofnil � zh : t � let y = [h ℄ in reverse+ t (y++ z) (vii); (iii); (vi)! 
ase xs ofnil � zh : t � let y = [h ℄ in reverse+ t (h : (nil++ z)) (ii)! 
ase xs ofnil � zh : t � reverse+ t (h : z) (i); (g
)Fig. 9. Example transformation sequen
e.simpli�
ation is to 
ause dupli
ated transformation work (and some dupli
ated
ode) in some examples | but is not otherwise signi�
ant. The reason for thissimpli�
ation is that repla
ing the body of f by f+x1 : : : xn nil is not sound in anuntyped language | sin
e it relies on the equality x = x++ nil. In a typed theoryit would be straightforward to establish that this is a weak 
ost equivalen
e | buta typed theory is beyond the s
ope of the present arti
le.The ar
hite
ture of the proof is as follows. The introdu
tion of the new fun
tionis merely garbage-introdu
tion, so is patently sound. The remaining steps illustratethe use of:|basi
 laws to establish that the remaining laws are all improvements;|improvement indu
tion, to establish asso
iativity properties of append, and|the use of the above properties together with the improvement theorem to estab-lish the property of the transformation as a whole.10.4 Properties of AppendProposition 10.1.(++) ` let y = nil in C[y++x℄ CB� let y = nil in C[2Xx℄(++) ` let w = x : y in C[w++ z℄ CB� let w = x : y in C[2Xx : (y++ z)℄(++) ` (
ase M of fpat i � Nig)++ z CB� 
ase M of fpat i � let y = Ni in y++ zg(++) ` (let ~x = ~M in N)++ z CB� let ~x = ~M in N ++ zProof. The proofs are routine 
al
ulations. We present just the proof of the 
ase
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ase M of fpat i � Nig)++ z� let y = 
ase M of fpat i � Nig in y++ zCB� let y = 
ase M of fpat i � Nig in X
ase y ofnil � zh : t � h : (t++ z) (value-�)CB� 
ase M of fpat i � let y = Ni in X
ase y ofnil � zh : t � h : (t++ z)g (
ase-E)CB� 
ase M of fpat i � let y = Ni in y++ zg (value-�) 2Append also satis�es asso
iativity properties, whi
h are established below.Proposition 10.2.(++); (++) ` (x++ y)++ z CB� x++(y++ z)where (++) = �xs :�ys :
ase xs ofnil � ysh : t � 2Xh : (t++ ys):Proof. We 
al
ulate with the left and right-hand sides independently, and �nd a
ontext D su
h that x++(y++ z) CB� XD[x++(y++ z)℄and also that (x++ y)++ z CB� XD[(x++ y)++ z℄
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tion.
(++); (++) ` (x++ y)++ z� let w = x++ y in w++ zCB� let w = X
ase x ofnil � yh : t � h : (t++ y)in w++ z (value-�); (var -�)CB� X
ase x ofnil � let w = y in w++ zh : t � let w = h : (t++ y) in w++ z prop. 10.1CB� X
ase x ofnil � Xw++ zh : t � let w = h : (t++ y) in w++ z (var -�); (g
)CB� X
ase x ofnil � Xw++ zh : t � 2Xh : (t++ y)++ z prop. 10.1; (let-let); (let-
atten)� X
ase x ofnil � Xw++ zh : x � 2Xh : (x++ y)++ z (renaming)
Thus we have found a 
ontext D su
h that

(x++ y)++ z CB� XD[(x++ y)++ z℄
It just remains to show that

x++(y++ z) CB� XD[x++(y++ z)℄



An Operational Theory for Call-By-Need � 29(++); (++) ` x++(y++ z)� let r = y++ z in x++ rCB� let r = y++ z in X
ase x ofnil � rh : t � 2Xh : (t++ r) (value-�); (var -�)CB� 
ase x ofnil � Xy++ zh : t � 2Xlet r = y++ z in h : (t++ r) (
ase-E); (inline-E); (g
)CB� X
ase x ofnil � Xw++ zh : t � 2Xlet r = y++ zs = t++ rin h : s (let-
atten)
CB� X
ase x ofnil � Xw++ zh : t � 2Xlet s = let r = y++ z in t++ rin h : s (let-let)� X
ase x ofnil � Xw++ zh : x � 2Xh : x++(y++ z) (renaming)Working note: Should use the basi
 properties of ap-pend from the proposition 2Corollary 10.3. (x++ y)++ z B� x++(y++ z)x++(y++ z) B� (x++ y)++ zThis follows by the obvious improvement/weak improvement relation between ++and ++. and shows that the asso
iativity property of append 
annot, in itself,
hange the asymptoti
 time 
omplexity of a program.10.4.1 The Transformation LawsProposition 10.4. The rewrite laws of the transformation are all improve-ments.Proof. Rules (i), (ii), (iv) and (vii) follow from proposition 10.1, and rule (iii)from 
orollary 10.3. For (vi) we have:f; f+ ` (f z1 : : : zn)++ zCB� XM [~z=~x℄++ z (??); (??)CB� f+ z1 : : : zn z (??); (??)



30 � A. K. Moran and D. SandsAnd lastly for (vi) we have:(++); f+ ` (f+ z1 : : : zn z)++ z0CB� (XM [z1 : : : zn=~x℄++ z)++ z (??); (??)CB� XM [z1 : : : zn=~x℄++(z++ z0) 
or. 10.3CB� f+ z1 : : : zn (z++ z0) (??)(??); (??) 2The main 
orre
tness argument. The improvement property of the individualsteps is not the whole story, sin
e the de�nition of f+ itself needs to be transformed.Proposition 10.5. The transformation yields a program whi
h is an improve-ment on the original.Proof. Assume that the transformed (sub)program has the formlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N(This is without loss of generality sin
e by (value-�) we 
an 
oat in the de�nitionof append.) Now suppose that by applying the transformation rules we obtain:let ++ = : : :f = �x1 : : : �xn:M 0f+ = �x1 : : : �xn:�z:M 00in N 0for someM 0, M 00, and N 0. Sin
e the transformation rules are all improvements, weknow that:let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N 0:Now we also know thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M 0and thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M ++ z B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M 00:
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an 
on
lude thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N 0 B� let ++ = : : :f = �x1 : : : �xn:M 0f+ = �x1 : : : �xn:�z:M 00in N 0and by transitivity we are done. 211. PROOFS OF MAIN THEOREMSThis se
tion gives an outline of the te
hni
al development and proofs of the mainresults. Most proofs follow a dire
t style reasoning whi
h is reminis
ent of proofsabout fun
tional languages with e�e
ts by Mason and Tal
ott et al. [Mason andTal
ott 1991; Agha et al. 1997; Tal
ott 1998℄. In order to make this style of proofrigourous we generalise the abstra
t ma
hine semanti
s so that it works on 
on�g-uration 
ontexts | 
on�gurations with holes. To ensure that transitions on 
on�g-uration 
ontexts are 
onsistent with hole �lling one must work with a more generalrepresentation of 
ontexts. One su
h approa
h is des
ribed in [Tal
ott 1998℄. Weuse an alternative approa
h to generalising 
ontexts whi
h is due to Pitts [Pitts1994℄.11.1 Substituting ContextsFollowing Pitts [Pitts 1994℄, we use se
ond-order syntax to represent (and gener-alise) the traditional de�nition of 
ontexts given in se
tion 5. We give a fullerdes
ription in [Sands 1998a℄; other examples of their use are to be found in [Lassen1998; Moran 1998℄. The idea is that instead of holes [�℄ we use se
ond-order vari-ables, ranged over by �, applied to some ve
tor of variables. The syntax of gener-alised 
ontexts is: C;D ::= � � ~xj xj �x:Cj Cxj 
 ~xj let f~x = ~Dg in Cj 
ase C of f
i ~xi � Dig:V and W will range over value 
ontexts, � and � over heap 
ontexts, and S andT over sta
k 
ontexts. Ea
h \hole variable" � has a �xed arity, and ranges overmeta-abstra
tions of the form (~x)M where the length of ~x is the arity of �. Inthe meta-abstra
tion (~x)M , the variables ~x are bound in M . Hole-�lling is nowa general non-
apturing substitution: [(~x)M=�℄. The e�e
t of a substitution isas expe
ted (remembering that the ~x are 
onsidered bound in (~x)M). Coupledwith the meta-abstra
tion is of 
ourse meta-appli
ation, written � � ~x. We restri
tappli
ation of � to variables so that hole-�lling 
annot violate the restri
tion onsyntax. In the de�nition of substitution we make the following identi�
ation:(~x)M � ~y �M [~y=~x℄:



32 � A. K. Moran and D. SandsThis de�nition of 
ontext generalises the usual de�nition sin
e we 
an represent atraditional 
ontext C by C[� �~x℄ where ~x is a ve
tor of the 
apture-variables of C;�lling C with a term M is then represented by (C[� � ~x℄)[(~x)M=�℄.Example. The traditional 
ontextlet x = [�℄ in �y:[�℄
an be represented by let x = � �(x; y) in �y:� �(x; y):Filling the hole with the term x y is represented by:(let x = � �(x; y) in �y:� �(x; y))[(x; y) x y=�℄� let z = (x; y) x y �(z; y) in �w:(x; y) x y �(x;w)� let z = z y in �w:xwwhi
h is �-equivalent to what we would have obtained by the usual hole-�lling with
apture. Note that the generalised representation permits 
ontexts to be identi�edup to �-
onversion.Hen
eforth we work only with generalised 
ontexts. We will write C[(~x)M ℄ tomean C[(~x)M=�℄ when C 
ontains just a single hole variable �. We assume that thearities of hole variables are always respe
ted.We impli
itly generalise our de�nitions of improvement to work with generalised
ontexts. This is not quite identi
al to the earlier de�nition sin
e with generalised
ontexts, when pla
ing a term in a hole we obtain a substitution instan
e of theterm. This means in parti
ular that improvement is now 
losed under substitu-tion (variable-for-variable) by de�nition | a useful property. This di�eren
e is arelatively minor te
hni
ality whi
h we will gloss over in this se
tion.11.2 Open Uniform ComputationThe basis of our proofs will be to 
ompute with 
on�gurations 
ontaining holes andfree variables. Thanks to the 
apture-free representation of 
ontexts, this meansthat normal redu
tion 
an be extended to 
ontexts with ease. See [Sands 1998a℄ fora thorough treatment of generalised 
ontexts and how they support generalisationof indu
tive de�nitions over terms.Firstly, in order to �ll the holes in a 
on�guration we need to identify 
on�gura-tions up to renaming of the heap variables (re
alling that update-markers on thesta
k are also binding o

urren
es of heap variables).We ta
itly extend the operational semanti
s to open 
on�gurations with holes.Note that holes 
an only o

ur in the sta
k within the bran
hes of 
ase alterna-tives. In what follows, � will range over substitutions 
omposed of variable forvariable substitutions and substitutions of the form [(~xi)Mi=�i℄, and � range over
on�guration 
ontexts.We have the following key property.Lemma 11.1. (Extension) If h�; C; S i !k h�; D; T i then(i) for all �0 and S0 su
h that h�0�; C; SS0 i is well-formed, h�0�; C; SS0 i !kh�0�; D; TS0 i.



An Operational Theory for Call-By-Need � 33(ii) for all �, h�; C; S i� !k h�; D; T i�.Proof. (i) follows by inspe
tion of possible open redu
tions over 
on�guration
ontexts. (ii) amounts to the standard substitution lemma; see [Sands 1998a℄ for ageneral argument. 2The following open uniform 
omputation property is 
entral. It allows us toevaluate open 
on�guration 
ontexts until either the 
omputation is �nished, or we�nd ourselves in an \interesting" 
ase.Lemma 11.2. (Open Uniform Computation) If well-formed and well-typed
on�guration 
ontext h�; C; S i !k �9, then � has one of the following forms:(i) h�; V; � i,(ii) h�; �i � ~y; T i, for some hole �i, or(iii) h�; x; T i, x 2 FV (�;C;S).Proof. Assume h�; C; S i !k � 9. We 
onsider the redu
tion of h�; C; S iand pro
eed by indu
tion on k with 
ases on the stru
ture of C. We show threeillustrative 
ases only. The others are similar.C � �i � ~y. This is a type (ii) 
ontext, so we are done.C � x. Sin
e we have termination, x must be bound in either � or is free inFV (�;C;S) (sin
e if it was bound in S, h�; C; S i would diverge). In the former
ase, � � �fx = Dg. By (Lookup), h�fx = Dg; x; S i redu
es to h�; D; #x :S i. By the indu
tive hypothesis, we know that h�; D; #x : S i redu
es to a
on�guration 
ontext of type (i), (ii), or (iii), and therefore h�fx = Dg; x; S i doesalso, as required. In the latter 
ase, h�; x; S i is a type (iii) 
ontext, and we aredone.C � V. There are four sub-
ases, depending upon the stru
ture of S; we 
onsideronly the 
ase when S � x : T. Sin
e h�; C; S i is well-typed, V � �y:D, and by(Subst), h�; �y:D; x : T i redu
es to h�; D[x=y℄; T i. The indu
tive hypothesisapplies, and the result follows as above. 2Uniform redu
tions are 
learly also uniform in 
ost: if � !kn �0, then for all M ,�[(~x)M ℄!kn �0[(~x)M ℄.11.3 TranslationWe 
an extend the de�nition of trans to 
over open 
on�gurations and 
on�guration
ontexts, and 
an therefore extend translation thus:Lemma 11.3. (Translation) For all D;�;C;S su
h that D � transh�; C; S i,there exists n > 0 su
h that h ;; D; � i !n h�; C; S i.Proof. Simple indu
tion on S. 211.4 Proof: the Context LemmaThe proof of the 
ontext lemma relies upon two lemmas, the latter of whi
h is themost 
omplex.Lemma 11.4. M B� N if and only if for all � and n, �[(~x)M ℄#n =) �[(~x)N ℄#6n.



34 � A. K. Moran and D. SandsProof. (Sket
h) ((). Trivial; let � = h ;; C; � i.()). By a simple lexi
ographi
 indu
tion on n and the length of transitionsequen
es, using translation. 2Lemma 11.5. If for all �; S, and nh�; (~x)M � ~y; S i#n =) h�; (~x)N � ~y; S i#6nthen for all � and n, �[(~x)M ℄#n =) �[(~x)N ℄#6n, where ~x � FV (M;N).Proof. Assume the premise and suppose �[(~x)M ℄#n in k 
omputation steps. Wepro
eed via lexi
ographi
 indu
tion on (n; k). By open uniform 
omputation, �redu
es in k0 > 0 steps with 
ost n0 to one of:(1) h�; V; � i; (2) h�; � � ~y; S i:(There are only two possibilities sin
e � is 
losed.) In 
ase (1), we are done. In
ase (2), we have �[(~x)N ℄!k0n0 h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i: (11.1)By open uniform 
omputation, h�; M [~y=~x℄; S i redu
es in k1 > 0 steps with 
ostn1 to one of: (2.1) h�; W; � i; (2.2) h�; � �~z; T i:(Again, there are only two possibilities sin
e h�; M [~y=~x℄; S i is 
losed.) In 
ase (2.1),we have that h�[(~x)N ℄; (~x)M � ~y; S[(~x)N ℄ i redu
es in k1 steps to h�[(~x)N ℄; W[(~x)N ℄; � iwith 
ost n1 = n� n0, soh�[(~x)N ℄; M [~y=~x℄; S[(~x)N ℄ i#6n�n0=) h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i#6n�n0 (ass.)=) �[(~x)N ℄#6n (11.1)as required. In 
ase (2.2), we know that k1 > 0, sin
e M [~y=~x℄ 6� � �~z. We haveh�[(~x)M ℄; (~x)M � ~y; S[(~x)M ℄ i !k1n1 h�[(~x)M ℄; (~x)M � ~z; T[(~x)M ℄ iand h�[(~x)M ℄; (~x)M � ~z; T[(~x)M ℄ i#n�n0�n1 : (11.2)Furthermore,h�[(~x)N ℄; (~x)M � ~y; S[(~x)N ℄ i !k1n1 h�[(~x)N ℄; (~x)N �~z; T[(~x)N ℄ i (11.3)Therefore h�[(~x)M ℄; M [~z=~x℄; T[(~x)M ℄ i#n�n0�n1 (11.2)=) h�[(~x)N ℄; M [~z=~x℄; T[(~x)N ℄ i#6n�n0�n1 (I.H.)=) h�[(~x)N ℄; N [~z=~x℄; T[(~x)N ℄ i#6n�n0�n1 (ass.)=) h�[(~x)N ℄; M [~y=~x℄; S[(~x)N ℄ i#6n�n0 (11.3)=) h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i#6n�n0 (ass.)=) �[(~x)N ℄#6n (11.1)



An Operational Theory for Call-By-Need � 35as required. 2The generalised statement of the 
ontext lemma is:For all terms M and N , if8�; S; �; n:h�; M�; S i#n =) h�; N�; S i#6nthen M B� N .This follows from lemmas 11.4 and 11.5, and the fa
t that M� � (~x)M � ~y for� = [~y=~x℄.11.5 Validating the Ti
k AlgebraWe present proofs of the validity of (value-�) and (value-
opy), and sket
h a proofof the 
orresponden
e between evaluation 
ontexts and 
on�guration 
ontexts ofthe form h�; [�℄; S i. The proofs of the more 
omplex laws (e.g. (var -�), (var -abs),(var -subst), and (X-
oat)) have a similar stru
ture to that for (value-�), ex
eptthey require more use of open uniform 
omputation.11.5.1 Proof: (value-�). Re
all (value-�):let fx = V; ~y = ~D[x℄g in C[x℄ CB� let fx = V; ~y = ~D[XV ℄g in C[XV ℄:Let W � XV throughout. It suÆ
es to show8�;S: h�[x℄fx = V g; C[x℄; S[x℄ i#n () h�[W ℄fx = V g; C[W ℄; S[W ℄ i#nwhere x =2 dom(�;S), and the only hole is [�℄, a non-
apturing hole. We prove theforward dire
tion only; the reverse dire
tion is similar.Suppose h�[x℄fx = V g; C[x℄; S[x℄ i#n in k 
omputation steps. We pro
eedby lexi
ographi
 indu
tion on (n; k). By open uniform 
omputation, h�; C; S iredu
es in k0 > 0 steps with 
ost n0 to one of(1) h�; V; � i; (2) h�; [�℄; T i; (3) h�; x; T i:In 
ase (1), we are done. In 
ase (2), by extension, (Lookup) and (Update), we haveh�[x℄fx = V g; C[x℄; S[x℄ i !k0n0 h�[x℄fx = V g; x; T[x℄ i!21 h�[x℄fx = V g; V; T[x℄ i;and by extension and the de�nition of W ,h�[W ℄fx = V g; C[W ℄; S[W ℄ i !k0n0 h�[W ℄fx = V g; W; T[W ℄ i!21 h�[W ℄fx = V g; V; T[W ℄ i:Sin
e h�[x℄fx = V g; V; T[x℄ i#n�(n0+1), by the indu
tive hypothesis we haveh�[W ℄fx = V g; V; T[W ℄ i#n�(n0+1), and the result follows.In 
ase (3), we have h�[x℄fx = V g; V; T[x℄ i#n�(n0+1), as above. Furthermore,by extension, (Lookup) and (Update), we haveh�[W ℄fx = V g; C[W ℄; S[W ℄ i !k0n0 h�[W ℄fx = V g; x; T[W ℄ i!21 h�[W ℄fx = V g; V; T[W ℄ i:From the indu
tive hypothesis, we have h�[W ℄fx = V g; V; T[W ℄ i#n�(n0+1), andthe result follows.



36 � A. K. Moran and D. Sands11.5.2 Proof: (value-
opy). Re
all (value-
opy):let f~x = ~V �1; ~y = ~V �2; ~z = ~Mg in N CB� let f~x = ~V �2�3; ~z = ~M�3g in N�3;where �1 = [~y=~w℄, �2 = [~x=~w℄, and �3 = [~x=~y℄.It suÆ
es to show that for all �, S, and n,h�f~x = ~V �1; ~y = ~V �2g; N; S i#n () h�f~x = ~V �2�3g; N�3; S i#n:We show only the forward dire
tion. To show the reverse, we need only establishtermination, whi
h follows by the fa
t that 
all-by-name and 
all-by-need agree ontermination.Suppose h�f~x = ~V �1; ~y = ~V �2g; N; S i#n in k 
omputation steps. We pro
eedvia lexi
ographi
 indu
tion on (n; k). Consider the (hole-less) open 
on�guration
ontext h�; N; S i, in whi
h the ~x and ~y may appear free. By open uniform
omputation, this redu
es in k0 > 0 steps with 
ost n0 to one of:(1) h�; W; � i; (2a) h�; xi; T i; (2b) h�; yi; T i:In 
ase (1), we are done. In 
ase (2a), by extension, (Lookup) and (Update), wehave h�f~x = ~V �1; ~y = ~V �2g; N; S i !k0n0 h�f~x = ~V �1; ~y = ~V �2g; xi; T i!21 h�f~x = ~V �1; ~y = ~V �2g; Vi�1; T i;and furthermore, h�f~x = ~V �1; ~y = ~V �2g; Vi�1; T i#n�(n0+1): (11.4)Similarly, by extension, (Lookup) and (Update), we have also thath�f~x = ~V �2�3g; N�3; S i !k0n0 h�f~x = ~V �2�3g; xi�3; T i!21 h�f~x = ~V �2�3g; Vi�2�3; T i:By elementary properties of substitution,Vi�1[~x=~y℄ � Vi[~x=~w℄[~x=~y℄;so the indu
tive hypothesis applies (with N � Vi�1), yielding the desired result.In 
ase (2b), by extension, (Lookup) and (Update), we haveh�f~x = ~V �1; ~y = ~V �2g; N; S i !k0n0 h�f~x = ~V �1; ~y = ~V �2g; yi; T i!21 h�f~x = ~V �1; ~y = ~V �2g; Vi�2; T i;and furthermore, h�f~x = ~V �1; ~y = ~V �2g; Vi�2; T i#n�(n0+1): (11.5)Similarly, by extension, (Lookup) and (Update), we have also thath�f~x = ~V �2�3g; N�3; S i !k0n0 h�f~x = ~V �2�3g; yi�3; T i� h�f~x = ~V �2�3g; xi; T i!21 h�f~x = ~V �2�3g; Vi�2�3; T i:The indu
tive hypothesis applies (with N � Vi�2), yielding the desired result.



An Operational Theory for Call-By-Need � 3711.5.3 Proof: Lemma 6.1. Re
all the statement of lemma 6.1:�E = ftransh�; [�℄; S i j all �; Sg:So we need to show that:(i) 8�; S: 9E: transh�; [�℄; S i � E, and(ii) 8E: 9�; S: transh�; [�℄; S i � E.First note that �A (the set of all appli
ative 
ontexts) is in 1-1 
orresponden
e toupdate-marker free sta
ks, realised by the following isomorphism (writing [x℄ forthe singleton sta
k): [�℄Æ = �(Ax)Æ = AÆ[x℄(
ase A of alts)Æ = AÆalts(�)Æ takes �A into the set of update-marker free sta
ks. Its inverse is denoted by(�)� and satis�es the following equations:�� = [�℄(x : S)� = S�[[�℄x℄(alts : S)� = S�[
ase [�℄ of alts ℄It 
an easily be shown that h�; A[C℄; S i !� h�; C; AÆS i and that transh�; A[C℄; S iis identi
al to transh�; C; AÆS i by indu
tion on the stru
ture of A.To show (i), we generalise the statement to show that for all � and S bothtransh�; A; S i and transh�fx0 = A0[x1℄; : : : ; xn = Ang; A[x0℄; S i are evaluation
ontexts. This pro
eeds by an easy indu
tion on the number of update markers inS.To show (ii), we pro
eed by 
ase analysis on E, and produ
e a � and S in ea
h
ase. The diÆ
ult 
ase is whenE � let f~y = ~M;x0 = A0[x1℄;x1 = A1[x2℄;� � �xn = Angin A[x0℄Here, we let � be f~y = ~Mg and let S beAÆn#xn � � �AÆ1#x1AÆ0#x0AÆ:The other 
ases are similar.11.5.4 Proof: (
ase-E). The following lemma will be used to validate (
ase-E),(let-E) follows by similar reasoning. CV (E) denotes the 
apture variables of E.Lemma 11.6. For all E, there exist �; T , su
h that dom(�; T ) � CV (E) and8�; S:h�; E; S i !kn h��; [�℄; TS i, for some k and n.



38 � A. K. Moran and D. SandsProof. By lemma 6.1, there exist � and T su
h that transh�; [�℄; T i � E,so by translation h ;; E; � i !� h�; [�℄; T i, and thus by extension, provideddom(�; T ) � CV (E), h�; E; S i !� h��; [�℄; TS i. 2Re
all the statement of (
ase-E):E[
ase M of fpat i � Nig℄ CB� 
ase M of fpat i � E[Ni℄g:By the standard bound variable 
onvention, we know that CV (E)  CV (pat i) forall i, and that FV (M)  BV (E), where BV (E) denotes the let-bound variables ofE.Assume wlog that for any �, we have thath�; M; � i !k0n0 h�0�; 
j ~xj ; � i (11.6)where �0 is the same as � with some possible updates, and � 
ontains any bindingsintrodu
ed during the evaluation. (This is valid sin
e otherwise (
ase-E) holdsva
uously as both sides would diverge; an empty sta
k is suÆ
ient by extension.)For any � and S, we have thath�; E[
ase M of fpat i � Nig℄; S i!kn h��; 
ase M of fpat i � Nig; TS i lem. 11.6! h��; M; fpat i � Nig : TS i (Case)!k0n0 h�0�0�; 
j ~xj ; fpat i � Nig : TS i (11.6); (ext.)! h�0�0�; Nj [~xj=~yj ℄; TS i (Bran
h)and h�; 
ase M of fpat i � E[Ni℄g; S i! h�; M; fpat i � Nig : S i (Case)!k0n0 h�0�; 
j ~xj ; fpat i � E[Ni℄g : S i (11.6); (ext.)! h�0�; E[Nj ℄[~xj=~yj ℄; S i (Bran
h)� h�0�; E[Nj [~xj=~yj ℄℄; S i CV (E)  ~yj!kn h�0��; Nj [~xj=~yj ℄; TS i lem. 11.6Sin
e FV (M)  BV (E), the evaluation of M 
annot a�e
t any of the bindingsintrodu
ed by the evaluation E; in other words, �0 � �. Therefore, the resultfollows by the 
ontext lemma.11.6 Congruen
e of EntailmentIn examples, we often want to perform 
al
ulation in the 
ontext of re
ursive de
-larations. A notation for this was introdu
ed in se
tion 9; a derivation of the formlet f~g = ~V g in M1 B� let f~g = ~V g in M2B� let f~g = ~V g in M3 : : :



An Operational Theory for Call-By-Need � 39was written: ~g `M1 B�M2B�M3 : : :when the de
larations ~g are 
lear from the 
ontext. We prove the following extensionof (`-
ong) to general 
ontexts valid:~g `M B� N~g ` C[(~x)M ℄ B� C[(~x)N ℄ (`-
ong)for all 
ontexts C su
h that ~x  CV (C). As usual, ~x � FV (M;N).To prove the validity of this rule, we require some lemmata. This next lemma isused to prove lemma 11.8.Lemma 11.7. For all �; S, and nh�f~x = ~V ; ~y = ~V �g; M; S i#n () h��f~y = ~V �g; M�; S� i#n:where � = [y=x℄.Proof. (Sket
h) ()) Simple indu
tion on n, with 
ases of the stru
ture of M .(() It is suÆ
ient to show that termination is implied. This is true for the 
all-by-name theory, and therefore here also. 2To prove (`-
ong) and improvement theorem, we will need the following lemma.Lemma 11.8. If let f~x = ~V g in M B� let f~x = ~V g in N then for all � and S,h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6n:where ~x � FV (�; S).Proof. By the 
ontext lemma and (Letre
), we have:let f~x = ~V g in M B� let f~x = ~V g in N() 8�; S:h�; let f~x = ~V g in M; S i#n =) h�; let f~x = ~V g in N; S i#6n() 8�; S; ~x  FV (�; S); dom(�; S)h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6n:Letting � = [~y=~x℄, this implies that8�; S; ~x  FV (�; S); ~x  dom(�; S); ~y � FV (�; S):h�f~y = ~V �; ~x = ~V g; M; S i#n =) h�f~y = ~V �; ~x = ~V g; N; S i#6n:By lemma 11.7, this is equivalent to8�; S; ~x  FV (�; S); ~x  dom(�; S); ~y � FV (�; S):h��f~y = ~V �g; M�; S� i#n =) h��f~y = ~V �g; N�; S� i#6n() 8�; S; ~y � FV (�; S):h��f~y = ~V �g; M�; S� i#n =) h��f~y = ~V �g; N�; S� i#6n() 8�; S; ~x � FV (�; S):h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6nwhere the last step follows by renaming. 2



40 � A. K. Moran and D. Sandslet f~x = ~V g in M B� let f~x = ~V g in N=) let f~x = ~V g in M�0 B� let f~x = ~V g in N�0 �0 = [z=y℄; z fresh=) let fz = Vi[z=xi℄g in let f~x = ~V g in M�0 B� let fz = Vi[z=xi℄g in let f~x = ~V g in N�0 (
ong.)=) let fz = Vi[z=xi℄; ~x = ~V g in M�0 B� let fz = Vi[z=xi℄; ~x = ~V g in N�0 (let-let)=) let f~x = ~V g in M�0�00 B� let f~x = ~V g in N�0�00 (g
); �00 = [xi=z℄Fig. 10. Cal
ulational portion of the proof of lemma 11.9.We will use this next lemma in the proof of (`-
ong).Lemma 11.9. Provided the ~V are 
losed, and ~x  dom�,let f~x = ~V g in M B� let f~x = ~V g in Nlet f~x = ~V g in M� B� let f~x = ~V g in N�Proof. It is suÆ
ient to show this for a single renaming [z=y℄, where y =2 dom�.Then the 
ase when z =2 ~x follows from the fa
t that B� is 
losed under variable forvariable substitution. So without loss of generality, let � = [xi=y℄. By the reasoningin �gure 10, we have thatlet f~x = ~V g in M B� let f~x = ~V g in N=) let f~x = ~V g in M�0�00 B� let f~x = ~V g in N�0�00But �0�00 = [z=y℄[xi=z℄ = [xi=y℄ = �, sin
e z was fresh, and we have the desiredresult. 2Moving to general 
ontexts, to show (`-
ong), it will be suÆ
ient to prove, underassumption of the premise, that for all C with a single hole variable � and ~z su
hthat arity � = j~zj and ~z  ~x,let f~x = ~V g in C[(~z)M ℄ B� let f~x = ~V g in C[(~z)N ℄:By the de�nition of B�, it will suÆ
e to show that for all � and S,h�[(~z)M ℄f~x = ~V g; C[(~z)M ℄; S[(~z)M ℄ i#n =)h�[(~z)N ℄f~x = ~V g; C[(~z)N ℄; S[(~z)N ℄ i#6n:Suppose h�[(~z)M ℄f~x = ~V g; C[(~z)M ℄; S[(~z)M ℄ i#n in k 
omputation steps. Wepro
eed via lexi
ographi
 indu
tion on (n; k). Consider � = h�; C; S i. Clearly� !k0n0 �0 9, so by open uniform 
omputation, �0 takes on one of the followingforms: (1) h�; V; � i; (2) h�; xi; T i; (3) h�; � � ~y; T i:In 
ase (1), we are done. In 
ase (2), by (Lookup) and (Update), we have thath�[(~z)M ℄f~x = ~V g; xi; T[(~z)M ℄ i !21 h�[(~z)M ℄f~x = ~V g; Vi; T[(~z)M ℄ i:
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tive hypothesis,h�[(~z)N ℄f~x = ~V g; Vi; T[(~z)N ℄ i#6n�(n0+1)whi
h in turn, by (Lookup) and (Update), impliesh�[(~z)N ℄f~x = ~V g; xi; T[(~z)N ℄ i#6n�n0 :Then the desired result follows by open uniform 
omputation.In 
ase (3), we have thath�[(~z)M ℄f~x = ~V g; M [~y=~z℄; T[(~z)M ℄ i#n�n0 : (11.7)By lemma 11.9, the assumption implies thatlet f~x = ~V g in M [~y=~z℄ B� let f~x = ~V g in N [~y=~z℄whi
h in turn, by lemma 11.8 and (11.7), impliesh�[(~z)M ℄f~x = ~V g; N [~y=~z℄; T[(~z)M ℄ i#6n�n0 : (11.8)We are required to show insteadh�[(~z)N ℄f~x = ~V g; N [~y=~z℄; T[(~z)N ℄ i#6n�n0 :Consider h�; N [~y=~z℄; T i. By (11.8), this redu
es in k1 steps with 
ost n1 to some�9. By open uniform 
omputation, � has one of the following forms:(3.1)h�0; W; � i; (3.2)h�0; xi; T0 i; (3.3)h�0; � � ~w; T0 i:In 
ase (3.1), we are done. In 
ase (3.2), we appeal to 
ase (2) above. In 
ase (3.3),sin
e N [~y=~z℄ 6� � � ~w, k1 > 0, so the indu
tive hypothesis applies, and we haveh�0[(~z)N ℄f~x = ~V g; N [~w=~z℄; T0[(~z)N ℄ i#6n�n0�n1and the desired result follows by open uniform 
omputation.11.7 Proof: the Unwinding LemmaTo prove the Unwinding lemma we will need the following lemma, whi
h we statewithout proof.Lemma 11.10. For all M;�; S; V and n,h�fx k= V g; M; S i#n =) h�fx k+1= V g; M�; S� i#nwhere � = [xk+1=xk℄ and fxigk+1i=0  FV (V ).Re
all the statement of the Unwinding lemma:For all �; S, and n,h�; let ff = V g in M; S i#n =) 9m:h�; let ff m= V g in M [fm=f ℄; S i#n:It suÆ
es to prove that for all �, S, and n su
h that fxigni=0  FV (�; S),h�fx = V g; M; S i#n =) h��fx n= V g; M�; S� i#n



42 � A. K. Moran and D. Sandswhere � = [xn=x℄ (i.e. m = n). Suppose h�fx = V g; M; S i#n in k 
omputa-tion steps. We pro
eed by lexi
ographi
 indu
tion on (n; k). By open uniform
omputation, h�; M; S i redu
es in k0 > 0 steps with 
ost n0 to one of(1) h�; W; � i; (2) h�; x; T i:(Type (ii) 
annot o

ur, sin
e there is no hole involved.) By extension, the 
orre-sponding result holds for h�; M; S i�, and hen
e for h��; M�; S� i, sin
e xn isfree in h�; M; S i.Therefore, in 
ase (1), by extension, h��fx = V g; M�; S� i redu
es in k0 steps(with 
ost n0) to h��fx = V g; W�; � i and we are done, sin
e k0 = k and n0 = n.In 
ase (2), by extension, (Lookup), and (Update),h��fx = V g; M�; S� i !k0n0h��fx = V g; xn; T� i!21h��fx = V g; V �; T� i:Similarly, h�fx = V g; M; S i redu
es in k0 + 2 steps (with 
ost n0 + 1) toh�fx = V g; V; T i. By the indu
tive hypothesis, we know that h��0fx n0=V g; V �0; T�0 i#n0 where �0 = [xn0=x℄ and n0 = n � (n0 + 1). By repeated ap-pli
ation of lemma 11.10, we have that h��fx n= V g; V �; T� i#n0 and hen
eh��fx n= V g; M�; S� i#n as required.11.8 Proof: the Improvement TheoremWe prove the improvement theorem generalised to mutually-re
ursive de�nitions:The following proof rule is sound:8j 2 I: let ffi = Vigi2I in Vj B� let ffi = Vigi2I in Wjlet ffi = Vigi2I in N B� let ffi = Wigi2I in NBy the 
ontext lemma it suÆ
es to show that for all �; S, and n,h�f~f = ~V g; N; S i#n =) h�f~f = ~Wg; N; S i#6n:Assume the premise, and suppose that h�f~f = ~V g; N; S i#n in k 
omputationsteps. We pro
eed by lexi
ographi
 indu
tion on (n; k). By open uniform 
ompu-tation, h�; N; S i redu
es in k0 > 0 steps, with 
ost n0, to one of(1) h�; V; � i; (2) h�; fi; T i:In 
ase (1), we have by extension that h�f~f = ~Wg; N; S i redu
es in k0 steps toh�f~f = ~Wg; V; � i and k0 = k and n0 = n, so we are done. In 
ase (2),h�f~f = ~V g; N; S i !k0n0h�f~f = ~V g; fi; T i!21h�f~f = ~V g; Vi; T i (11.9)and h�f~f = ~Wg; N; S i !k0n0h�f~f = ~Wg; fi; T i!21h�f~f = ~Wg; Wi; T i (11.10)



An Operational Theory for Call-By-Need � 43so h�f~f = ~V g; Vi; T i#n�(n0+1) (11.9)=) h�f~f = ~V g; Wi; T i#6n�(n0+1) (ass., lem. 11.8)=) h�f~f = ~Wg; Wi; T i#6n�(n0+1) (I.H.)=) h�f~f = ~Wg; N; S i#6n: (11.10)11.9 Proof: Improvement Indu
tionWe prove instead the more general version, involving entailment:For any set of re
ursive de
larations ~f , terms M , N and substitution �, thefollowing proof rule is sound:~f `M B� XC[M�℄ ~f ` N CB� XC[N�℄~f `M B� NFurthermore, we generalise C[M�℄ to C[(~x)M ℄. By lemma 11.8, the premises implymore general statements. For example, the �rst premise implies8n;�; S: h�f~f = ~V g; M; S i#n =) h�f~f = ~V g; XC[(~x)M ℄; S i#6n (ass.(i))We will refer to the 
orresponding generalisation of the se
ond premise as (ass.(ii)).We show instead the more general statement, that for all � and n,�[(~x)M ℄#n =) �[(~x)N ℄#6n:Suppose �[(~x)M ℄#n in k 
omputation steps. We pro
eed by lexi
ographi
 indu
tionon (n; k). By open uniform 
omputation, � redu
es in k0 > 0 to one of(1) h�; V; � i; (2) h�; � � ~y; T i:In 
ase (1), we are done. In 
ase (2), �rst note that, letting � = [~y=~x℄, (~x)M � ~y �M�, and C[(~x)M ℄� � C�[(~x)M ℄ sin
e ~x � FV (M), and similarly for N . Then wehave that �[(~x)N ℄!k0n0 h�[(~x)N ℄; N�; T[(~x)N ℄ i (11.11)and h�[(~x)M ℄; M�; T[(~x)M ℄ i#n�n0=) h�[(~x)M ℄; XC[(~x)M ℄�; T[(~x)M ℄ i#6n�n0 (ass.(i))=) h�[(~x)M ℄; C[(~x)M ℄�; T[(~x)M ℄ i#6n�(n0+1) (X)� h�[(~x)M ℄; C�[(~x)M ℄; T[(~x)M ℄ i#6n�(n0+1)=) h�[(~x)N ℄; C�[(~x)N ℄; T[(~x)N ℄ i#6n�(n0+1) (I.H.)� h�[(~x)N ℄; C[(~x)N ℄�; T[(~x)N ℄ i#6n�(n0+1)=) h�[(~x)N ℄; XC[(~x)N ℄�; T[(~x)N ℄ i#6n�n0 (X)() h�[(~x)N ℄; N�; T[(~x)N ℄ i#6n�n0 (ass.(ii))=) �[(~x)N ℄#6n: (11.11)



44 � A. K. Moran and D. Sands12. CONCLUSIONS AND FUTURE WORKWe have presented a ri
h operational theory for a 
all-by-need based on an im-provement ordering on programs. The theory subsumes the (oriented) 
all-by-needlambda 
al
uli of Ariola et al. [Ariola et al. 1995℄. The most important extensionsare proof te
hniques for reasoning about re
ursion. Synta
ti
 
ontinuity allows us toprove properties of re
ursive programs via a kind of �xed-point indu
tion, withoutsa
ri�
ing information about intensional behaviour, like sharing. The improvementtheorem and improvement indu
tion are rules for re
ursion whi
h support more
al
ulational proofs. Both are parti
ularly useful in proving the safety of programtransformations.An obvious further appli
ation of the theory is to formalise arguments about therunning time of programs, following Sands' use of 
all-by-name 
ost equivalen
e forthis purpose [Sands 1995; Sands 1998b℄.Another dire
tion for future work would be to 
onsider the time-safety of a larger-s
ale program transformation, su
h as deforestation [Wadler 1990℄. In su
h a trans-formation we must inevitably 
onsider 
onditions under whi
h we 
an unfold fun
-tion 
alls. It is straightforward to de�ne simple synta
ti
 
onditions on 
ontextswhi
h guarantee thatlet f~x = ~Mg in C[~x℄ B� let f~x = ~Mg in C[ ~M ℄;but in the 
ase where holes o

ur under �-abstra
tions a more global form of infor-mation is required: one needs to know that the lambda expression in question willnot be applied more than on
e. The type system of [Turner et al. 1995℄ providesjust su
h global information, so it would be interesting to prove that their system(and generalisations to full re
ursive lets [Gustavsson 1998℄) does indeed satisfythe desired improvement property above. We saw in se
tion 6.4 that the stri
tnessproperty of a 
ontext 
an be 
hara
terised exa
tly byC[Xx℄ B� XC[x℄;where x is fresh. Could it be the 
ase that the \used at most on
e" property mightbe semanti
ally 
hara
terised by XC[x℄ B� C[Xx℄?A
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ture (June 1993), pp. 243{254. ACM Press.APPENDIXA. LOOKUPS ARE ENOUGHIn this appendix we justify the use of 
ounting lookups as our 
ost measure, byproving theorem 4.1.Despite the relatively high-level nature of our abstra
t ma
hine, we argue (in-formally) that ea
h abstra
t ma
hine step 
an be implemented by 
onstant-timeoperations, where the 
onstant depends on the size of the program to be exe
uted.4The following observation is 
ru
ial to our argument:Proposition A.1. During the exe
ution of a given program, every term ap-pearing in an abstra
t ma
hine 
on�guration is a substitution instan
e (variable forvariable) of some subterm of the original program.Proof. By inspe
tion of the rules. 2Given this, and assuming that the variable lookup operation is implemented in
onstant time, we wish to argue that every transition 
an be implemented as a
onstant time operation. This would be straightforward to argue | but for rule(Letre
) whi
h requires a non-
onstant amount of variable renaming. Fortunately,Sestoft [Sestoft 1997℄ provides a slightly lower level variant of this ma
hine, in whi
hrenaming is 
ompletely avoided by the use of environments. As Sestoft notes, the
orre
tness of this modi�
ation is 
lear. It is also 
lear that all of the rules 
an beimplemented in 
onstant time.4For a
tual implementations one may have be able to give mu
h more re�ned bound than simplyprogram size (e.g. the maximum number of free variables of any subexpression in the program).



48 � A. K. Moran and D. SandsWorking note: I'm still not 
ompletely sure about this.One needs to argue that environment size is bounded byprogram size. I'm sure this is true, but I don't see whyright away.In order to prove theorem 4.1, whi
h says that just 
ounting lookup steps issuÆ
ient to 
apture 
omputational 
omplexity, we �rst introdu
e a size metri
 onterms, sta
ks and term-sta
k pairs:Definition 8. jxj = 1j
 ~xj = 1j�x:M j = jM j+ 1jM xj = jM j+ 2j
ase M of f
i ~xi � Nigj = jM j+ 1 + �i=ni=1 jNijjlet f~x = ~Mg in N j = jN j+ 1 + �i=ni=1 jMijj�j = 0jx : Sj = jSj+ 1j#x : Sj = jSj+ 1jf
i ~xi � Nig : Sj = jSj+�i=ni=1 jNijjM;Sj = jM j+ jSjWith the ex
eption of rule (Lookup), the 
ombined term and sta
k size de
reasesstri
tly with ea
h abstra
t ma
hine transition, i.e. ifh�; M; S i ! h�0; N; T ithen jM;Sj > jN;T j. (Letre
) adds a group of bindings to the heap, and thusde
reases the metri
 by an amount dependent upon the size of the bindings madeplus 1; the others de
rease it by exa
tly 1. (Lookup) is the ex
eption: the metri
 isin
reased by an amount equal to the size of the term to be evaluated.Re
all the statement of theorem 4.1:For all s > 0, there exists a linear fun
tion f su
h that for all 
losedterms M of size s, M#m =) M+6f(m):Proof. Consider some M of size s whi
h 
onverges in n steps to some �nal state



An Operational Theory for Call-By-Need � 49h�; V; � i . We partition the transition sequen
e thus:h ;; M; � i � h�0; M0; S0 i!k0 h�0; N0; T0 i !# h�1; M1; S1 i!k1 h�1; N1; T1 i !# h�2; M2; S2 i� � �!km�1 h�m�1; Nm�1; Tm�1 i !# h�m; Mm; Sm i!km h�m; Nm; Tm i� h�; V; � iwhere m is the total number of instan
es of rule (Lookup) (marked by a #). Weknow the following fa
ts ki 6 jMi; Sij � jNi; Tij (A.1)jMij 6 jM j (A.2)jMi+1; Si+1j � jNi; Tij = jMi+1j (A.3)jMi; Sij 6 ijM j (A.4)(A.1) follows sin
e there are ki non-(Lookup) transitions in moving from h�i; Mi; Si ito h�i; Ni; Ti i, and ea
h transition de
reases the metri
 by at least one. (A.2)follows from the fa
t any term arising during the evaluation of M must be a sub-stitution instan
e of a sub-term of M , and therefore smaller than M . Sin
e it is(Lookup) that takes h�i; Ni; Ti i to h�i+1; Mi+1; Si+1 i, the di�eren
e in size isexa
tly jMi+1j, yielding (A.3). As for (A.4), we argue as follows. Sin
e only lookups
an in
rease the size of the term-sta
k pair, and sin
e the in
rease is bounded byjM j, we 
on
lude that jMi; Sij 
annot be larger than ijM j.
Working note: Where do we use (A.4)?



50 � A. K. Moran and D. Sands�i=mi=0 ki 6 �i=mi=0 jMi; Sij � jNi; Tij (A.1)= jM0; S0j � jN0; T0j+jM1; S1j � jN1; T1j+� � �jMm; Smj � jNm; Tmj= jM0; S0j+jM1; S1j � jN0; T0j+jM2; S2j � jN1; T1j+� � �jMm; Smj � jNm�1; Tm�1j+� jNm; Tmj= jM0; S0j+�i=m�1i=0 jMi+1; Si+1j � jNi; Tij� jNm; Tmj6 jM0; S0j+�i=m�1i=0 jMi+1j (A.3)6 jM j+mjM j (A.2);M �M0; S0 � �Now n = m+�i=mi=0 ki6 m+ jM j+mjM j= m+ (m+ 1)s:This is linear in m, so we are done. 2To summarise, we have argued that(1) the number abstra
t-ma
hine steps is within a program-size dependent 
on-stant fa
tor of a
tual running time of an implementation based on the abstra
tma
hine, and(2) the number of lookup steps is within a program-size dependent 
onstant fa
torof the number of abstra
t ma
hine steps.This demonstrates the soundness of using the number of lookups as a measure of
ost.


