
Improvement in a Lazy Context:An Operational Theory for Call-By-NeedAndrew MoranOregon Graduate InstituteandDavid SandsChalmers University of Te
hnologyThe standard implementation te
hnique for lazy fun
tional languages is
all-by-need, whi
h en-sures that an argument to a fun
tion in any given
all is evaluated at most on
e. A signi�
antproblem with
all-by-need is that it is diÆ
ult | even for
ompiler writers | to predi
t the e�e
tsof program transformations. The traditional theories for lazy fun
tional languages are based on
all-by-name models, and o�er no help in determining whi
h transformations do indeed optimizea program.We present an operational theory for
all-by-need, based upon an improvement ordering onprograms: M is improved by N if in all program-
ontexts C, when C[M ℄ terminates then C[N ℄terminates at least as
heaply.We show that this improvement relation satis�es a \
ontext lemma", and supports a ri
h in-equational theory, subsuming the
all-by-need lambda
al
uli of Ariola et al. [Ariola et al. 1995℄.The redu
tion-based
all-by-need
al
uli are inadequate as a theory of lazy-program transforma-tion sin
e they only permit transformations whi
h speed up programs by at most a
onstant fa
tor(a
laim we substantiate); we go beyond the various redu
tion-based
al
uli for
all-by-need byproviding powerful proof rules for re
ursion, in
luding synta
ti

ontinuity | the basis of �xed-point-indu
tion style reasoning, and an improvement theorem, suitable for arguing the
orre
tnessand safety of re
ursion-based program transformations.
1. INTRODUCTIONCall-by-need optimises
all-by-name by ensuring that when evaluating a given fun
-tion appli
ation, arguments are evaluated at most on
e. All serious
ompilers forlazy fun
tional languages implement
all-by-need evaluation. Lazy fun
tional lan-guages are believed to be well-suited to high-level program transformations, andsome state-of-the-art
ompilers take advantage of this by applying a myriad oftransformations and analyses during
ompilation [Peyton Jones and Santos 1998℄.However, it is notoriously diÆ
ult, even for those with extremely solid intuitionsName: Andrew MoranAÆliation: Department of Computer S
ien
e and Engineering, Oregon Graduate Institute ofS
ien
e and Te
hnologyAddress: moran�
se.ogi.eduName: David SandsAÆliation: Department of Computing S
ien
e, Chalmers University of Te
hnology and Universityof G�oteborgAddress: dave�
s.
halmers.se

2 � A. K. Moran and D. Sandsabout
all-by-need, to predi
t the e�e
ts of a program transformation on the run-ning time. Sin
e traditional theories for lazy languages are based upon
all-by-name models, they give no assuran
e that a given transformation doesn't lead toan asymptoti
 slow-down.Call-by-need Cal
uli. The
all-by-need lambda
al
uli [Ariola et al. 1995; Ariolaand Felleisen 1997; Maraist et al. 1998℄ o�er a solution to some of these problems.By permitting fewer equations than
all-by-name, these
al
uli enable term-levelreasoning without ignoring the key implementation issues underpinning
all-by-need. However, they do have some serious limitations. All of the equations inthe
al
uli are, by de�nition, symmetri
. This means that
ertain useful lo
altransformations
annot be present. In fa
t, the
all-by-need
al
uli are limited totransformations whi
h
hange running-times by at most a
onstant-fa
tor (see se
-tion 7), independent of the
ontext in whi
h the programs are used. Even withinthe
on�nes of
onstant-fa
tor transformations there are signi�
ant short
omings,sin
e none of the
al
uli have proof rules for re
ursion; we believe that, as a
onse-quen
e, almost no interesting equivalen
es between re
ursive programs | su
h asthe fusion of re
ursive fun
tions (e.g. via deforestation) |
an be justi�ed in the
al
uli.Our Approa
h. We aim to go beyond these limitations by re�ning the notionof observational approximation between terms, and by establishing algebrai
 laws(
ontaining the laws of the
all-by-need
al
uli as theorems) and re
ursion prin
i-ples for that approximation relation. A key result of [Ariola et al. 1995℄ is that thestandard observational equivalen
e and approximation relations, in whi
h one onlyobserves termination,
annot distinguish
all-by-need evaluation from
all-by-name.To obtain an operational theory whi
h retains the
omputational distin
tions be-tween name and need, we also observe the
ost of evaluation, in terms of a high-levelmodel of
omputation steps. Our observational approximation relation, improve-ment, is de�ned with respe
t to a �xed operational semanti
s by saying that: Mis improved by N if in all program-
ontexts C, when C[M ℄ terminates then C[N ℄terminates at least as fast.Summary of Results. We develop an operational theory for a
all-by-need lambda
al
ulus with re
ursive lets,
onstru
tors, and
ase expressions. The theory is basedupon an abstra
t ma
hine semanti
s for
all-by-need, and is
ost-sensitive, andtherefore re
e
ts the
omputational distin
tions between
all-by-name and
all-by-need. We show that the improvement relation has a ri
h inequational theory,validating the redu
tion rules of the
all-by-need
al
uli. Most importantly, it sup-ports powerful indu
tion prin
iples for re
ursive programs. Some spe
i�
 originalresults are:|A
ontext lemma for
all-by-need, meaning we
an establish improvement by
onsidering just
omputation in a restri
ted
lass of
ontexts, the evaluation
ontexts;|A ri
h inequational theory, the ti
k algebra, whi
h subsumes the
all-by-need
al
uli;|A synta
ti

ontinuity property whi
h
hara
terises improvement of a re
ursivefun
tion in terms of its �nite unwindings, and forms the basis of �xed-point

An Operational Theory for Call-By-Need � 3indu
tion style proofs, and|Two powerful proof te
hniques, the improvement theorem and improvement in-du
tion, whi
h are parti
ularly well-suited to inferring the
orre
tness and safetyof re
ursion-based program transformations whi
h pro
eed by lo
al improve-ments.|A general method for establishing laws, properties, and proof rules whi
h gener-alises the
ontext lemma, known as open uniform
omputation.Overview. The paper may be split into two separate parts. The �rst half presentsthe operational theory and
ontains all of the major results, mostly stated withoutproof. The se
ond half presents the te
hni
al ma
hinery behind those results, andproves them.We begin the �rst half of the paper with a dis
ussion of related work in se
tion 2.Se
tion 3 then presents the operational semanti
s (Sestoft's \mark 1" abstra
tma
hine for laziness). A dis
ussion of the
omplexity of
omputation follows inse
tion 4, where we show that the number of heap a

esses during a
omputationis a reasonable measure of
ost. This is used as the basis for a
ontextual de�nitionof improvement and
ost equivalen
e, and the
ontext lemma is stated.The inequational theory, known as the ti
k algebra, is then presented in se
tion 6,and the relative power of the algebra and the
all-by-need
al
uli is dis
ussed inse
tion 7. Synta
ti

ontinuity is presented in se
tion 8 and used to show thatan unwinding �xed-point
ombinator is improved (up to a
onstant fa
tor) by aknot-tying �xed-point
ombinator. We also present a synta
ti
 variant of �xed-point fusion for
all-by-need, whi
h
an be established via synta
ti

ontinuity. Theimprovement theorem is introdu
ed in se
tion 9, along with improvement indu
tionand examples of their use. A more substantial example is presented in se
tion 10.The se
ond half of the paper is
ontained in se
tion 11. We generalise the notionof program
ontexts to
on�gurations, and extend redu
tion to open
on�guration
ontexts. This allows us to establish open uniform
omputation, a general te
hniqueused to prove not only the
ontext lemma, but also many of the more diÆ
ultalgebrai
 laws, and the various indu
tion rules.Finally, se
tion 12
on
ludes, and we dis
uss of future avenues of resear
h.2. RELATED WORKImprovement theory and the improvement theorem were originally developed inthe
all-by-name setting [Sands 1991; Sands 1996℄, and generalised to a variety of
all-by-name and
all-by-value languages in [Sands 1997℄. Whether this programme
ould be
arried out in a
all-by-need setting has long been an open question. Aninspiration whi
h gave us
on�den
e in the possibility of a tra
table improvementtheory for
all-by-need is the
all-by-need lambda
al
ulus presented by Ariola andFelleisen, and Maraist, Odersky and Wadler [Ariola et al. 1995; Ariola and Felleisen1997; Maraist et al. 1998℄. For us, the signi�
an
e of the
all-by-need
al
uli is thatthey are based on redu
tion (and hen
e equations) between terms in the sour
elanguage (see �gure 7), rather than, say, term-graphs, abstra
t-ma
hine
on�gura-tions, or terms plus expli
it substitutions. The redu
tion rules are
on
uent, andenjoy a deterministi
 notion of standard redu
tion. Related
on
epts appear inother approa
hes, in parti
ular in the study of so-
alled optimal redu
tions e.g.,

4 � A. K. Moran and D. Sands[Field 1990; Maranget 1991; Yoshida 1993℄.One limitation of the original work by Ariola et al. is in the treatment of re
ursive
y
les ; na��ve extension of the
al
uli to deal with re
ursive lets leads to a loss of
on
uen
e [Je�rey 1993; Ariola and Klop 1997℄. The original
all-by-need
al
ulus
onsiders re
ursive lets only brie
y. To re
over
on
uen
e, one
an simply disallowredu
tions under
y
les, as in e.g., [Benaissa et al. 1996; Niehren 1996℄. Ariolaand Blom give a full study of
y
li
 re
ursion in [Ariola and Blom 1997; Ariolaand Blom 1998℄, and show that an approximation to
on
uen
e
an be obtained byequating terms with the same in�nite normal-form. Their �Æshare
al
ulus
an beseen as the natural su

essor to the
all-by-need
al
uli.In general, redu
tion
al
uli appear to be a good vehi
le for exploring the lan-guage design spa
e with regard to
all-by-need-like features. Rose's work e.g. [Rose1996; Benaissa et al. 1996℄ exempli�es this approa
h in an elegant
ombination ofexpli
it substitution and
ombinatory redu
tion systems. Our view is
omplemen-tary to the rewriting approa
hes: on
e a parti
ular operational semanti
s (redu
tionstrategy) has been �xed, one
an go beyond the
on�nes of the
al
uli by developingan operational theory.Apart from the rewriting-based approa
hes, there have been a few attempts togive a high-level semanti
s to
all-by-need e.g. [Josephs 1989; Je�rey 1994; Seamanand Purushothaman Iyer 1996; Laun
hbury 1993; Sestoft 1997℄. Laun
hbury's nat-ural semanti
s, and Sestoft's abstra
t ma
hine(s) have been adopted by a number ofresear
hers as the formal de�nition of
all-by-need e.g. [Turner et al. 1995; Hughesand Moran 1995; Sansom and Peyton Jones 1997; Gustavsson 1998℄. Sin
e it ap-pears to be a non-
ontroversial
hoi
e, we adopt Sestoft's ma
hine | essentiallya Krivine-ma
hine [Curien 1991℄ with updating of the heap | as the operationalmodel underpinning our theory. As others have observed (e.g. [Pitts 1997a℄), work-ing with an abstra
t ma
hine rather than an indu
tive semanti
s also has bene�tsin proofs about
omputations (examples of this may be found in se
tion 11).The te
hniques used in this paper, open uniform
omputation in parti
ular, haveproven quite robust. They have been applied su

essfully to a non-deterministi

all-by-need language [Moran et al. 1999℄, and in the development of an algebrafor showing when transformations are spa
e-safe optimisations in the presen
e ofsharing [Gustavsson and Sands 1999℄.
3. THE OPERATIONAL SEMANTICSOur language is an untyped lambda
al
ulus with re
ursive lets, stru
tured data,and
ase expressions. We work with a restri
ted syntax in whi
h arguments to

An Operational Theory for Call-By-Need � 5fun
tions (in
luding
onstru
tors) are always variables:x; y; z 2 Var
 2 ConL;M;N ::= xj �x:Mj M xj let f~x = ~Mg in Nj
 ~xj
ase M of f
i ~xi � NigV;W ::= �x:Mj
 ~xThe synta
ti
 restri
tion is now rather standard, following its use in
ore languageof the Glasgow Haskell
ompiler, e.g., [Peyton Jones et al. 1996; Peyton Jones andSantos 1998℄, and in [Laun
hbury 1993; Sestoft 1997℄.All
onstru
tors have a �xed arity, and are assumed to be saturated. By
 ~xwe mean
 x1 � � � xn. The only values are lambda expressions and fully-applied
onstru
tors. Throughout, x; y; z, and w will range over variables,
 over
onstru
tornames, and V and W over values. We will writelet f~x = ~Mg in Nas a shorthand for let fx1 = M1; : : : ; xn = Mng in Nwhere the ~x are distin
t, the order of bindings is not synta
ti
ally signi�
ant, andthe ~x are
onsidered bound in N and the ~M (so our lets are re
ursive). Similarlywe write
ase M of f
i ~xi � Nigfor
ase M of f
1 ~x1 � N1j � � � j
m ~xm � Nmg:where ea
h ~xi is a ve
tor of distin
t variables, and the
i are distin
t
onstru
tors.In addition, we will sometimes write alts as an abbreviation for
ase alternativesf
i ~xi � Nig.For examples, working with a restri
ted syntax
an be
umbersome, so it issometimes useful to lift the restri
tion. Where we do this it should be taken thatMN � let fx = Ng in M x; x freshwhenever N is not a variable. Similarly for
onstru
tor expressions.The only kind of substitution that we
onsider is variable for variable, with �ranging over su
h substitutions. The simultaneous substitution of one ve
tor ofvariables for another will be writtenM [~y=~x℄, where the ~x are assumed to be distin
t(but the ~y need not be).3.1 The Abstra
t Ma
hineThe semanti
s presented in this se
tion is essentially Sestoft's \mark 1" abstra
tma
hine for laziness [Sestoft 1997℄. In that paper, he proves his abstra
t ma
hine

6 � A. K. Moran and D. Sandsh�fx = Mg; x; S i ! h�; M; #x : S i (Lookup)h�; V; #x : S i ! h�fx = V g; V; S i (Update)h�; M x; S i ! h�; M; x : S i (Unwind)h�; �x:M; y : S i ! h�; M [y=x℄; S i (Subst)h�;
ase M of alts; S i ! h�; M; alts : S i (Case)h�;
j ~y; f
i ~xi � Nig : S i ! h�; Nj [~y=~xj ℄; S i (Bran
h)h�; let f~x = ~Mg in N; S i ! h�f~x = ~Mg; N; S i ~x dom(�; S) (Letre
)Fig. 1. The abstra
t ma
hine semanti
s for
all-by-need.semanti
s sound and
omplete with respe
t to Laun
hbury's natural semanti
s, andwe will not repeat those proofs here.Transitions are over
on�gurations
onsisting of a heap,
ontaining bindings, theexpression
urrently being evaluated, and a sta
k. The heap is a partial fun
tionfrom variables to terms, and denoted in an identi
al manner to a
olle
tion of let-bindings. The sta
k may
ontain variables (the arguments to appli
ations),
asealternatives, or update markers denoted by #x for some variable x. Update markersensure that a binding to x will be re
reated in the heap with the result of the
urrentevaluation; this is how sharing is maintained in the semanti
s.We write h�; M; S i for the abstra
t ma
hine
on�guration with heap �, ex-pression M , and sta
k S. We denote the empty heap by ;, and the addition of agroup of bindings ~x = ~M to a heap � by juxtaposition: �f~x = ~Mg. The sta
kwritten b : S will denote the a sta
k S with b pushed on the top. The empty sta
kis denoted by �, and the
on
atenation of two sta
ks S and T by ST (where S ison top of T).We will refer to the set of variables bound by � as dom�, and to the set ofvariables marked for update in a sta
k S as domS. Update markers should bethought of as binding o

urren
es of variables. A
on�guration is well-formed ifdom� and domS are disjoint. We write dom(�; S) for their union. For a
on�gura-tion h�; M; S i to be
losed, any free variables in �, M , and S must be
ontainedin dom(�; S). For sets of variables P and Q we will write P Q to mean that Pand Q are disjoint, i.e., P \Q = ;. The free variables of a term M will be denotedFV (M); for a ve
tor of terms ~M , we will write FV (~M).The abstra
t ma
hine semanti
s is presented in �gure 3.1; we impli
itly restri
tthe de�nition to well-formed
on�gurations. There are seven rules, whi
h
angrouped as follows. Rules (Lookup) and (Update)
on
ern evaluation of variables.To begin evaluation of x, we remove the binding x = M from the heap and startevaluating M , with x, marked for update, pushed onto the sta
k. Rule (Update)applies when this evaluation is �nished, and we may update the heap with the newbinding for x.Rules (Unwind) and (Subst)
on
ern fun
tion appli
ation: rule (Unwind) pushesan argument onto the sta
k while the fun
tion is being evaluated; on
e a lambdaexpression has been obtained, rule (Subst) retrieves the argument from the sta
kand substitutes it into the body of that lambda expression.

An Operational Theory for Call-By-Need � 7Rules (Case) and (Bran
h) govern the evaluation of
ase expressions. Rule(Case) initiates evaluation of the
ase expression, with the
ase alternatives pushedonto the sta
k. Rule (Bran
h) uses the result of this evaluation to
hoose one ofthe bran
hes of the
ase, performing substitution of the
onstru
tor's argumentsfor the bran
h's pattern variables.Lastly, rule (Letre
) adds a set of bindings to the heap. The side
ondition ensuresthat no inadvertent name
apture o

urs, and
an always be satis�ed by a lo
al�-
onversion.3.2 Relating Terms and Con�gurationsWe
an translate between
on�gurations to terms straightforwardly, by indu
tionover the sta
k: transh ;; M; � i =Mtransh f~x = ~Mg; N; � i = let f~x = ~Mg in Ntransh�; M; x : S i = transh�; M x; S itransh�; M; #x : S i = transh�fx =Mg; x; S itransh�; M; alts : S i = transh�;
ase M of alts ; S iThe operational semanti
s tells us how to translate terms into
on�gurations. Inthe following lemma, C is a program
ontext
ontaining zero or more holes. C[M ℄denotes the insertion of M into those holes, yielding another term. (Contexts willbe introdu
ed in more detail in se
tion 5.)Lemma 3.1. (Translation) For all �, C, S, there exists k > 0 su
h that forany M , h ;; transh�; C[M ℄; S i; � i !k h�; C[M ℄; S i:Proof. Simple indu
tion on the size of S. 23.3 Convergen
eAn operational theory relies upon having a useful notion of an observable, that is,a property of
losed progams whi
h may be observed. The simplest observable istermination, or
onvergen
e.Definition 1. (Convergen
e) For
losed
on�gurations h�; M; S i,h�; M; S i+n def= 9�; V:h�; M; S i !n h�; V; � i;h�; M; S i+ def= 9n:h�; M; S i+n;h�; M; S i+6n def= 9m:h�; M; S i+m ^ m 6 n:Closed
on�gurations whi
h do not
onverge are of three types: they either redu
einde�nitely, get stu
k be
ause of a type error, or get stu
k be
ause of a bla
k-hole (aself-dependent expression as in let x = x in x). All non-
onverging
on�gurationswill be semanti
ally identi�ed.We will also write M+, M+n and M+6n, identifying
losed M with the initial
on�guration h ;; M; � i.

8 � A. K. Moran and D. Sands4. COMPLEXITY OF COMPUTATIONThe
ost of
omputation is what distinguishes
all-by-name from
all-by-need. Ourstrategy for building an operational theory whi
h respe
ts this distin
tion is to ob-serve this
ost when
omparing terms. Before developing this theory, the questionwhi
h remains is how one should measure
ost. In an attempt to predi
t a
tualrunning times, one might assign implementation spe
i�

onstants to ea
h abstra
tma
hine step. Even if this were possible (we are doubtful, sin
e most
ompil-ers perform a myriad of optimisations), it would lead to a very �ne-grained andimplementation-spe
i�
 theory. Instead we work with a more abstra
t measure of
ost, and aim for a non implementation-spe
i�
 theory.In an earlier version of this work [Moran and Sands 1999; Moran and Sands 1998℄for simpli
ity we
hose simply to
ount the number of abstra
t ma
hine steps as ourmeasure. It would be unrealisti
 to assume that abstra
t ma
hine steps
ould revealinformation about a
tual running times, given that we are working with su
h a high-level ma
hine. For whatever
ost measure we
hoose, the bottom line is whetherit is suÆ
ient to des
ribe the
omplexity of
omputation. In other words, themeasure should be within a
onstant fa
tor of \a
tual
ost". A reasonable questionis whether ea
h step of the abstra
t ma
hine
an be
onsidered implementable in
onstant time; we defer dis
ussion of this point to appendix A.We now move to an even leaner notion of
ost than abstra
t ma
hine steps. Theaim is to make the notion of
ost as simple as possible, but without sa
ri�
ingour bottom line | namely that the measure of
ost should be within a program-size dependent
onstant fa
tor of running-time. It is suÆ
ient to measure
ost interms of the number of times the lookup rule is applied. This
laim is proven inappendix A.Let us now de�ne the
ost of
omputation.Definition 2. For
losed
on�gurations h�; M; S i,h�; M; S i#n def= h�; M; S i+ with n o

urren
es of (Lookup)h�; M; S i#6n def= 9m:h�; M; S i#m ^ m 6 n:As with +, we will identify
losed M with the initial
on�guration h ;; M; � i,writing M#n, and M#6n.To demonstrate the soundness of our
ost measure, we argue that(1) the number of abstra
t-ma
hine steps is within a program-size dependent
on-stant fa
tor of a
tual running time of an implementation based on the abstra
tma
hine, and(2) the number of lookup steps is within a program-size-spe
i�

onstant fa
tor ofthe number of abstra
t ma
hine steps.The former is dis
ussed in appendix A, and the latter is formalised in the followingtheorem, the proof of whi
h may be found in the same appendix.Theorem 4.1. For all s > 0, there exists a linear fun
tion f su
h that for all
losed terms M of size s, M#m =) M+6f(m):

An Operational Theory for Call-By-Need � 9This justi�es the use of the number of lookups as a measure of
ost. We
an nowde�ne improvement, whi
h will be based on this measure.5. IMPROVEMENTThe starting point for an operational theory is usually an approximation and anequivalen
e de�ned in terms of program
ontexts. Program
ontexts are generallyintrodu
ed as \programs with holes", the intention being that an expression is to be\plugged into" all of the holes in the
ontext. The
entral idea is that to
omparethe behaviour of two terms one should
ompare their behaviour in all program
ontexts.We will use
ontexts of the following form:C;D ::= [�℄j xj �x:Cj Cxj let f~x = ~Dg in Cj
 ~xj
ase C of f
i ~xi � DigV;W ::= �x:Cj
 ~x:Our
ontexts may
ontain zero or more o

urren
es of the hole, and as usual theoperation of �lling a hole with a term
an
ause variables in that term to be
ome
aptured.We de�ne observational approximation and equivalen
e via
ontexts in the stan-dard way [Abramsky and Ong 1993℄.Definition 3. (Observational Approximation) We say that M observa-tionally approximates N , written M �� N , if for all C su
h that C[M ℄ and C[N ℄are
losed, C[M ℄+ =) C[N ℄+:We say thatM andN are observationally equivalent, writtenM �= N , whenM �� Nand N ��M .We know that �=
oin
ides with its
all-by-name
ounterpart, so this tells usnothing new. We need to in
orporate more intensional information if we are tobuild an operational theory that retains the distin
tion between name and need.Sin
e
all-by-need may be thought of as an optimisation of
all-by-name, a naturalintensional property to
ompare is how many redu
tion steps are required for ter-mination. However, theorem 4.1tells us that
ounting lookups is in fa
t suÆ
ient.Re
all that we will write M#nto mean that M
onverges with a
ost of n, where n is the number of lookups thato

ur during the evaluation of M .Definition 4. (Improvement) We say that M is improved by N , written

10 � A. K. Moran and D. SandsM B� N , if for all C su
h that C[M ℄ and C[N ℄ are
losed,C[M ℄#n =) C[N ℄#6n:We say that M and N are
ost equivalent, written M CB� N , when M B� N andN B�M .This de�nition su�ers from the same problem as any
ontextual de�nition: toprove that two terms are related requires one to examine their behaviour in all
on-texts. For this reason, it is
ommon to seek to prove a
ontext lemma [Milner 1977℄for an operational semanti
s: one tries to show that to prove M observationallyapproximates N , one only need
ompare their behaviour with respe
t to a moretra
table set of
ontexts.We have established the following
ontext lemma for
all-by-need:Lemma 5.1. (Context Lemma) For all terms M and N , if for all �; S, andn, su
h that h�; M; S i and h�; N; S i are
losed,h�; M; S i#n =) h�; N; S i#6nthen M B� N .It says that we need only
onsider
on�guration
ontexts of the form h�; [�℄; S iwhere the hole [�℄ appears only on
e. This
orresponds exa
tly to a subset of term
ontexts
alled evaluation
ontexts, in whi
h the hole is the subje
t of evaluation.We shall make this
orresponden
e pre
ise in the se
tion 6.2.Note that the
ontext lemma applies to open termsM and N . It is more
ommonto restri
t one's attention to
losed terms, and then show that the preorder inquestion is
losed under (general) substitution.5.1 Strong ImprovementThe improvement relation, like the notion of operational approximation whi
h itre�nes, also in
reases the termination of programs, so if M B� N then N may alsoterminate \more often" than M . In the
ontext of
ompiler optimisations it isnatural to ask for a stronger notion of improvement whi
h does not permit any
hange in termination behaviour.Definition 5. (Strong Improvement) We say that M is strongly improvedby N , written M Q N , if M B� N ^N ��M:M is strongly improved byN if it is improved byN , andN has identi
al terminationbehaviour (note that we need only have N ��M in the de�nition sin
eM B� N =)M �� N).For simpli
ity of presentation we emphasise improvement rather than strong im-provement. However, almost all the laws and proof rules presented in subsequentse
tions also hold for strong improvement, notable ex
eptions being the \stri
tnesslaws"
on
erning
, the divergent term. The synta
ti

ontinuity proof prin
iple issound for strong improvement, but degenerates to a trivial rule.The following Hasse-diagram illustrates the relationships between the variousapproximations and equivalen
es introdu
ed in this se
tion:

An Operational Theory for Call-By-Need � 11�� �
��

��
��

??
??

??A�
��

��
��

??
??

??
?

��
��

��
��

�

??
??

??C�
??

??
??

�=
��

��
��

�

??
??

??
?

B�
��

��
��P

??
??

??
Q

��
��

��CB�The diagram is a \-semi-latti
e of relations on terms. In other words, the greatestlower bound of any two relations in the diagram is equal to their set-interse
tion.6. THE TICK ALGEBRAConsider the following improvement:let fx = V g in x B� let fx = V g in V (�)Clearly, for any � and S:h�; let fx = V g in x; S i ! h�fx = V g; x; S i! h�; V; #x : S i! h�fx = V g; V; S iand h�; let fx = V g in V; S i ! h�fx = V g; V; S iso (�) follows from the
ontext lemma. But we
an say more: let fx = V g in xalways takes exa
tly two more steps to
onverge than let fx = V g in V . Moreimportantly, one of those two steps is always a lookup, in
urring
ost.If we had some synta
ti
 way of introdu
ing
ost to the right-hand side, (�)
ould be written as a
ost equivalen
e, whi
h would be preferable, sin
e it is a moreinformative statement. This motivates the introdu
tion of the \ti
k", written X,whi
h we will use to add a unit of
ost to a
omputation. Now we
an write (�) aslet fx = V g in x CB� Xlet fx = V g in VWe introdu
e the ti
k as a new synta
ti

onstru
t1, with the following transitionrule: h�; XM; S i ! h�; M; S i (Ti
k)1In earlier work, the ti
k was de�ned within the language. To do so here, we
ould introdu
e aspurious indire
tion, i.e. XM would be de�ned by let fx = Mg in x. However, this needlessly
ompli
ates proofs, sin
e it
hanges the heap.

12 � A. K. Moran and D. Sandswith the further stipulation that we
ount o

urren
es of both (Lookup) and the(Ti
k) transitions when
al
ulating the
ost of a
ompuation.By de�nition, X adds one unit to the
ost of evaluating M without otherwise
hanging its behaviour. Note that:M+ () XM+M#n () XM#n+1We will write kXM to mean thatM has been slowed down by k ti
ks. The followinginferen
e rule and axiom, known
olle
tively as \ti
k elimination" are
ru
ial whenestablishing improvement or
ost equivalen
e.XM B� XNM B� N XM B�M (X-elim)Their validity follows from the de�nition of B�.We
an easily prove a number of improvements and
ost equivalen
es moduloti
k, and we present a sele
tion of the more useful ones in the following se
tions.Throughout, we will follow the standard
onvention that all bound variables in thestatement of a law are distin
t, and that they are disjoint from the free variables.Together with (X-elim), the laws presented in �gures 2, 3, 4, 5, and �gure 6 areknown
olle
tively as the ti
k algebra.6.1 Beta LawsThe �rst set of laws, presented in �gure 2, are important in that they allow us tomimi
 evaluation within the algebra. (�) is the familiar law for
all-by-need betaredu
tion; (
ase-�) is the analogous law for
ase expressions. To see the validity of(�), note that, for all � and Sh�; (�y:M)x; S i ! h�; �y:M; x : S i! h�; M [x=y℄; S iSin
e (�y:M)x always redu
es to M [x=y℄ in two zero
ost steps, irrespe
tive of �and S, the
ontext lemma tells us that they are
ost equivalent. Many of the lawsin this se
tion are this easily established.In (value-�), one may repla
e o

urren
es of a variable, whi
h is bound to somevalue V , with XV . The ti
k re
e
ts the fa
t that by repla
ing x with its value, weare short-
ir
uiting a lookup step.(var -�) is a version of (value-�) where x is instead bound to another variable z. Itis an improvement only, be
ause the speedup a
hieved
an vary. It
an be reversedif we
ompensate for the indire
tion, as in (var -abs). (var -subst) and (var -expand)are slight variations on (var -�) and (var -abs), respe
tively, that allow us to repla
ex with z even in argument positions (not allowed in (var -�) due to the use of
ontexts). The proofs of validity of (value-�), (var -�), (var -abs), (var -subst) and(var -expand) rely upon general te
hniques that are outlined in se
tion 11.There are also two derived beta laws,
orresponding to unrestri
ted versions of(�) and (
ase-�). We
an derive the following
ost equivalen
e:(�x:M)N CB� let fx = Ng in M (�0)

An Operational Theory for Call-By-Need � 13Laws of the Ti
k AlgebraThroughout, we follow the standard
onvention that all bound variables in the statement of a laware distin
t, and that they are disjoint from the free variables.(�x:M) y CB� M [y=x℄ (�)
ase
j ~y of f
i ~xi �Mig CB� Mj [~y=~xj ℄ (
ase-�)let fx = V; ~y = ~D[x℄g in C[x℄ CB� let fx = V; ~y = ~D[XV ℄g in C[XV ℄ (value-�)let fx = z; ~y = ~D[x℄g in C[x℄ B� let fx = z; ~y = ~D[z℄g in C[z℄ (var -�)Xlet fx = z; ~y = ~D[z℄g in C[z℄ B� let fx = z; ~y = ~D[x℄g in C[x℄ (var -abs)let fx = z; ~y = ~M[x=w℄g in N [x=w℄ B� let fx = z; ~y = ~M [z=w℄g in N [z=w℄ (var -subst)Xlet fx = z; ~y = ~M [z=w℄g in N [z=w℄ B� let fx = z; ~y = ~M [x=w℄g in N [x=w℄ (var -expand)Fig. 2. Beta laws for
all-by-need.E[XM ℄ CB� XE[M ℄ (X-E)E[
ase M of fpat i � Nig℄ CB�
ase M of fpat i � E[Ni℄g (
ase-E)E[let f~x = ~Mg in N ℄ CB� let f~x = ~Mg in E[N ℄ (let-E)let fx = Mg in E[x℄ CB� E[XM ℄; if x =2 FV (M;E) (inline-E)Fig. 3. Laws for evaluation
ontexts.let f~x = ~Mg in N CB� N; if ~x FV (N) (g
)let f~x = ~Lg in let f~y = ~Mg in N CB� let f~x = ~L; ~y = ~Mg in N (let-
atten)let fx = let f~y = ~L; ~z = ~Mg in Ng in N 0 CB� let fx = let f~z = ~Mg in N; ~y = ~Lg in N 0(let-let)C[let f~y = ~V g in M ℄ CB� let f~y = ~V g in C[M ℄ (let-
oat-val)let f~x = ~V �1; ~y = ~V �2; ~z = ~Mg in N CB� let f~x = ~V �2�3; ~z = ~M�3g in N�3;�1 = [~y=~w℄; �2 = [~x=~w℄; �3 = [~x=~y℄; (value-
opy)Fig. 4. Laws for dealing with lets.
 B� M (
)M B�
; i� M �=
 (imp-
)M �=
; i� M B� XM (diverge)let fx =
; ~y = ~D[x℄g in C[x℄ CB� let fx =
; ~y = ~D[
℄g in C[
℄ (
-�)C[let fy =
g in M ℄ CB� let fy =
g in C[M ℄ (let-
oat-
)C[XM ℄ B� XC[M ℄; if C is stri
t (X-
oat)Fig. 5. Laws for
 and stri
tness.let fx = M;~y = ~D[XM ℄g in C[XM ℄ B� let fx = M;~y = ~D[x℄g in C[x℄ (�-expand)Fig. 6. Beta expansion
onje
ture.

14 � A. K. Moran and D. SandswhereN is not a variable. There is a similar derived law for general
ase expressions.6.2 Laws for Evaluation ContextsAn evaluation
ontext is a
ontext in whi
h the hole is the target of evaluation; inother words, evaluation
annot pro
eed until the hole is �lled. Evaluation
ontextshave the following form: E ::= Aj let f~x = ~Mg in Aj let f~y = ~M;x0 = A0[x1℄;x1 = A1[x2℄;� � �xn = Angin A[x0℄A ::= [�℄j Axj
ase A of f
i ~xi �Mig:E ranges over evaluation
ontexts, and A over what we
all appli
ative
ontexts.Our evaluation
ontexts are stri
tly
ontained in those mentioned in Ariola andFelleisen's letre
 extension [Ariola and Felleisen 1997℄ of the
all-by-need
al
ulus:there they allow E to appear anywhere we have an A. Our \
attened" de�ni-tion
orresponds exa
tly to
on�guration
ontexts (with a single hole) of the formh�; [�℄; S i, as made pre
ise by the following lemma, where �E is the set of allevaluation
ontexts.Lemma 6.1. �E = ftransh�; [�℄; S i j all �; Sg.The two laws in �gure 3 are very useful indeed: they allow us to move
ases andlets in and out of evaluation
ontexts. A
ommon motif in proofs using the ti
kalgebra is the use of (
ase-E) and (let-E) to expose the sub-term of interest. Theirvalidity follows easily from a simple lemma (presented in se
tion 11).(X-E) allows us to move ti
ks in and out of evaluation
ontexts. It follows bya simple use of the
ontext lemma and the properties of the (Ti
k) transition.Another useful law is (inline-E), whi
h allows us to inline x if it is used but on
ein an evaluation
ontext. It follows by similar reasoning to (X-E).6.3 Con
erning LetsSome of the laws that allow us to manipulate lets are presented in �gure 4. Law(g
)
orresponds to garbage
olle
tion: it allows us to add or remove super
uousbindings. Laws (let-
atten) and (let-let) allow bindings to move a
ross ea
h other,and law (let-
oat-val)
on
erns the movement of value bindings in and out of general
ontexts (i.e. in
luding a
ross �s); along with (let-
oat) below, it forms the essen
eof the full-laziness transformation, as noted in [Peyton Jones et al. 1996℄). The lastlaw, (value-
opy) says that if we have two
opies of a strongly-
onne
ted
omponentof the heap (
omposed solely of values), then we may remove one of them, providedwe perform some renaming.

An Operational Theory for Call-By-Need � 15Note that in, for example, the (let-let) axiom, the variable
onvention ensuresthat the ~z do not o

ur free in the ~L; in (let -
oat-val), the
onvention guaranteesthat x is not free in the ~V .All of the let laws ex
ept (value-
opy) follow via similar arguments to that for(�) above. (value-
opy) requires the use of the same general te
hniques needed tojustify the more
omplex � laws (proof in se
tion 11).6.4 Divergen
e and Stri
tnessLet
 denote any
losed term whi
h does not
onverge. For example, the \bla
k-hole" term, let x = x in x, would suÆ
e as a de�nition for
. The �rst three laws in�gure 5
on
ern
 and its relationship with B�. (
-�) and (let-
oat-
) are similarto (value-�) and (let-
oat-val) ex
ept that
 is used in pla
e of a value. All ofthese laws follow in a straightforward manner from the
ontext lemma and the fa
tthat
all-by-name termination behaviour is preserved in the
all-by-need theory.We say that a
ontext C is stri
t if and only if C[
℄ �=
. Given this de�nition, we
an
oat ti
ks out of any stri
t
ontext, as stated by (X-
oat). The proof followsby the same te
hniques used to prove (value-�).It turns out that this ti
k
oating property
an be used as a
hara
terisation ofstri
tness: for all C, if C[Xx℄ B� XC[x℄, x fresh, then C is stri
t. This follows sin
e,by
ongruen
e, let x =
 in C[Xx℄ B� let x =
 in XC[x℄whi
h implies, by (
-�), and (g
), that C[X
℄ B� XC[
℄. But sin
e X
 CB�
, by (
)and (imp-
), C[
℄ B� XC[
℄. Therefore, by (diverge), C[
℄ �=
.6.5 Beta Expansion: A Conje
tureIn analogy to (value-�), we have (�-expand) where values are repla
ed by generalterms:let fx = M;~y = ~D[XM ℄g in C[XM ℄ B� let fx = M;~y = ~D[x℄g in C[x℄ (�-expand)The intuition here is that the rule undoes a
all-by-name
omputation step (a beta-redu
tion). This is an improvement providing we
an pay for the potential gainthat the
omputation step might have made | whi
h is at most one ti
k at ea
ho

urren
e of the variable whi
h is unfolded.Unfortunately we la
k a satisfa
tory proof for (�-expand). The
ontext lemmaseems inadequate to establish this property. This seems to be linked to the fa
tthat the axiom embodies the essential di�eren
e between
all-by-name and
all-by-need evaluation, and thus it may be possible to adapt te
hniques based onredex-marking [Maraist et al. 1998℄. However, while we believe the
onje
ture tobe an improvement as regards speed, it
an lead to asymptoti
 worsening of spa
ebehaviour [Gustavsson and Sands 1999℄.The
onje
ture
an be used to \tie the knot" when deriving
y
li
 programs.This possible sin
e we allow x to o

ur free in M . See the last step of the proof ofproposition 8.4 for an example of the use of (�-expand) in this
ontext.

16 � A. K. Moran and D. Sands(�x:M)N =need let x = N in M (let-I)let x = V in C[x℄ =need let x = V in C[V ℄ (let-V)(let x = L in M)N =need let x = L in M N (let-C)let y = (let x = L in M) in N =need let x = L in let y = M in N (let-A)Fig. 7. Axioms of the
all-by-need
al
ulus of Ariola et al..Using the
onje
ture, we
an also establish the following:X(�x:let f~y = ~L; ~z = ~Mg in N) B� let f~y = ~Lg in �x:let f~z = ~Mg in N(let-
oat)whi
h
on
erns moving non-value bindings out of �s (where the variable
onventionensures that x does not o

ur free in the ~L). As noted above, this is an essentialpart of the full-laziness transformation. Another
onsequen
e of the
onje
ture isstandard
ommon sub-expression elimination:XC[XM ℄ B� let fx = Mg in C[x℄ (
se)Again, the
onvention ensures that any free variables of M are not
aptured by
ontext C.7. RELATING THE TICK ALGEBRA AND THE CALCULIWe reprodu
e the axioms of the
all-by-need
al
ulus of [Ariola et al. 1995℄, in�gure 72.The laws
olle
ted in �gures 2, 3, and 4 subsume the
all-by-need lambda
al
uli(in both
ases minus the symmetry law): ea
h
al
ulus rewrite rule of the formL! R turns out to be an outright improvement, i.e. L B� R.In fa
t, with the ex
eption of (let-V), they are
ost equivalen
es, so we
an reversethe improvement also. As for (let-V), we
an reverse the improvement modulo ti
k.In other words, there exists an R0, obtained from R by inserting ti
ks, su
h thatR0 B� L. This fa
t will enable us to prove that any two terms related by these
al
uli
ompute within a
onstant fa
tor of ea
h other in any program
ontext. Thus thebest (worst) speedup (resp. slowdown) program obtainable in these
al
uli is linear.First it is natural to generalise the idea of improvement modulo ti
ks.Definition 6. (Improvement within a Constant Fa
tor) We say thatM is improved by N within a
onstant fa
tor, written M B� N , if there exists a ksu
h that for all C su
h that C[M ℄ and C[N ℄ are
losed,C[M ℄#n =) C[N ℄#6k(n+1):So M B� N means that N is never more than a
onstant fa
tor slower than M (butit might still be faster by a non-
onstant fa
tor). Note that the
onstant fa
tor isindependent of the
ontext of use.It
an be seen that B� is a pre
ongruen
e relation (to show transitivity requires asmall
al
ulation) and
learly
ontains the improvement relation.2In the original paper V ranges over variables as well as values. In addition, Ariola and Felleisen[Ariola and Felleisen 1997℄ restri
t C in (let-V) to be evaluation
ontexts.

An Operational Theory for Call-By-Need � 17Now we
onsider a spe
ial
ase of B�, namely programs whi
h only di�er by ti
ks.Let M X! N mean that N
an be obtained from M by removing some ti
ks (fromanywhere within the term), and M X� N mean that there exists an L su
h thatM X! L and N X! L. Clearly X! is a pre
ongruen
e and X� is a
ongruen
e.Lemma 7.1. M X� N =) M B� N .Proof. (Sket
h) Clearly X! � B�, so it suÆ
es to show that M X! N =) N B�M .First show that the nesting of ti
ks in a
on�guration never in
reases as
omputationpro
eeds (easy to see sin
e the rules never substitute terms for variables). Then letk be the maximum nesting of ti
ks in M , and show by indu
tion on the length ofthe
omputation that C[N ℄+n implies C[N ℄+k(n+1) (strengthening this statementto
on�gurations). 2With this lemma we
an establish the following:Theorem 7.2. For all terms N and M (of our restri
ted syntax) if M =need Nthen M B� N .Proof. (Sket
h) By indu
tion on the proof of M =need N . The base
ase requiresus to show that the (oriented) equations are
ontained inB�. This follows easily sin
ethey are all either improvements or improvements modulo ti
k. In the indu
tive
ases, the
ongruen
e and transitivity rules follow from the indu
tive hypothesissin
e B� is a pre
ongruen
e. The only diÆ
ult
ase is symmetry. It will be suÆ
ientto prove that reversed equations are
ontained in B�. For ea
h equation L =need Rwe have from the laws of the ti
k algebra either that R B� L, or, in the
ase of(let-V), an R0 su
h that R0 X! R and R0 B� L. By lemma 7.1 we know that R B� R0,so R B� L follows from the fa
t that B� � B� and transitivity of B�. 2Corollary 7.3. The
all-by-need
al
ulus of [Ariola et al. 1995℄
annot improve(or worsen) a program by more than a
onstant fa
tor.We are
on�dent that this result
an be extended to Ariola and Blom's sharing
al
ulus �Æshare [Ariola and Blom 1997℄ sin
e almost all the rules are representedmore or less dire
tly in the
olle
tion of improvement laws. It is interesting tonote that we assembled our
olle
tion of laws \by need",
onsidering what wasrequired to ta
kle a number of examples, and it was en
ouraging to �nd that wehad already
overed almost all of Ariola and Blom's rules. As it stands however, our(value-
opy)
ost equivalen
e is not as expressive as Ariola and Blom's value-
opyrule.3 We believe that Ariola and Blom's value-
opy rule is a
ost equivalen
e, buttheir formulation of the rule is rather indire
t, so it is not obvious to us how toprove this.8. SYNTACTIC CONTINUITYWe wish to say something meaningful about re
ursive fun
tions with this theory,and a natural starting point is to attempt to mimi
 the �xed-point indu
tion S
ott-style denotational semanti
s. Examples of this kind of operational analogue to3Thanks to Stefan Blom for providing an example, and to Zena Ariola for pointing out an errorin the use of an earlier formulation of our value-
opy rule.

18 � A. K. Moran and D. SandsS
ott indu
tion for other languages may be found in e.g., [Pitts 1997b; Smith 1991;Mason et al. 1996; Sands 1997; Lassen 1998℄; we present the �rst su
h result for a
all-by-need semanti
s.We will use the following me
hanism to des
ribe the synta
ti
 unwindings of are
ursive fun
tion. In the de�nition, the fi are distin
t, new variables.Definition 7. f 0= V def= f0 =
;f n+1= V def= f n= V; fn+1 = V [fn=f ℄:Then, for an f de�ned by let ff = V g in f , we de�ne the nth unwinding aslet ff n= V g in fn. If we expand the de�nition of f n= V , we see that this is reallylet ff0 =
;f1 = V [f0=f ℄;� � �fn = V [fn�1=f ℄gin fn:Note that we have restri
ted our attention to those f whose de�ning body is avalue; this unwinding tri
k would not work for general
y
les (sin
e loss of sharingwould render the exer
ise pointless). To extend the method to
y
les would requiresome extension to the language, but this would lead to the problem of showing thatthe extension is
onservative with respe
t to the improvement relation.The point is that the fun
tions let ff n= V g in fn
ompletely
hara
terise thebehaviour of let ff = V g in f . This is the essen
e of S
ott indu
tion. Themain property that justi�es this is a synta
ti
 notion of
ontinuity, whi
h says thatlet ff = V g in f is the least upper bound of
hain flet ff n= V g in fngn>0 andthat any M whi
h uses f preserves this property.We �rst show that flet ff n= V g in M [fn=f ℄gn>0 does indeed form a
hain withrespe
t to B�, and that let ff = V g in M is an upper bound of that
hain.Lemma 8.1. 8n: let ff n= V g in M [fn=f ℄B� let ff n+1= V g in M [fn+1=f ℄B� let ff = V g in M:Proof. We prove only the se
ond improvement, that for all n,let ff n= V g in M [fn=f ℄ B� let ff = V g in M:The �rst follows by a similar argument. We pro
eed by indu
tion on n. The base
ase follows easily by (g
) and the
 laws, and the indu
tive
ase follows by this

An Operational Theory for Call-By-Need � 19
al
ulation:let ff n= V; fn+1 = V [fn=f ℄g in M [fn+1=f ℄CB� let ff n= V g in let ffn+1 = V [fn=f ℄g in M [fn+1=f ℄ (let-let)� let ff n= V g in let fg = V [fn=f ℄g in M [g=f ℄ (renaming)B� let ff = V g in let fg = V [f=f ℄g in M [g=f ℄ (I.H.)CB� let ff = V; g = V g in M [g=f ℄ (let-let)CB� let ff = V g in M (value-
opy); (g
) 2To establish synta
ti

ontinuity, we will need the following lemma (see se
tion 11for the proof). It says that if let ff = V g in M
onverges then there must existsome unwinding that does so with the same
ost.Lemma 8.2. (Unwinding) For all �; S, and n,h�; let ff = V g in M; S i#n =) 9m:h�; let ff m= V g in M [fm=f ℄; S i#n:Theorem 8.3. (Synta
ti
 Continuity) The following is a sound proof rule:8n:let ff n= V g in M [fn=f ℄ B� Nlet ff = V g in M B� NProof. Assume h�; let ff = V g in M; S i#n. Then by the Unwinding lemma,there exists some m su
h that h�; let ff m= V g in M [fm=f ℄; S i#n. By the premise,we have that h�; N; S i#6n, and the result follows by the
ontext lemma. 2Synta
ti

ontinuity is also valid for mutually re
ursive fun
tions. This proof rule issound for strong improvement, but note that the base
ase of the premise requiresthat N be
ontextually equivalent to
. This tends to limit the appli
ability of thestrong improvement version of synta
ti

ontinuity.As an example of the use of synta
ti

ontinuity, we show that an unwinding �xed-point
ombinator is improved within a
onstant fa
tor by a \knot-tying" �xed-point
ombinator.Proposition 8.4. If (�-expand) is valid, thenlet re
 = (�f:let x = re
 f in f x) in re
 B� let �x = (�f:let x = f x in x) in �x :Proof. Let V = �f:let x = re
 f in Xf x, and abbreviate V [re
n=re
℄ by Vn. Wewill show that for all n, let re
 n= V in re
n B� X�f:let x = f x in x. Then the resultwill then follow by synta
ti

ontinuity, sin
eX�f:let x = f x in xCB� let �x = (�f:let x = f x in x)in X�f:let x = f x in x (g
)CB� let �x = (�f:let x = f x in x) in �x (value-�)

20 � A. K. Moran and D. Sandslet re
 n= V; re
n+1 = Vn in re
n+1CB� let re
 n= V; re
n+1 = Vn in XVn (value-�)CB� let re
 n= V in X�f:let x = re
n f in Xf x (g
); (defn. of Vn)CB� X�f:let re
 n= V; x = re
n f in Xf x (let-
oat-val); (let-
oat-
)CB� X�f:let x = (let re
 n= V in re
n) f in Xf x (let-let); (let-E)B� X�f:let x = (X�g:let y = g y in y) f in Xf x (I.H.); (renaming)CB� X�f:let x = Xlet y = f y in y in Xf x (�)CB� X�f:let x = Xy; y = f y in Xf x (let-let)B� X�f:let x = y; y = f y in Xf y (X-elim); (var-subst)CB� X�f:let x = f x in Xf x (g
); (renaming)B� X�f:let x = f x in x (�-expand)Fig. 8. The indu
tive
ase for proposition 8.4.We pro
eed via indu
tion on n. The base
ase follows trivially by (imp-
) and (
)sin
e let re
0 =
 in re
0 �=
, and the indu
tive
ase follows by the derivation in�gure 8. We have B� and not B� be
ause we use a slightly slower version of re
. 2The
onverse of the proposition is false, sin
e the knot-tying �xed-point
ombi-nator
an give asymptoti
ally better programs.We
an also use synta
ti

ontinuity to establish the following proof rule, whi
his a synta
ti
,
all-by-need version of what is
alled �xed-point fusion in [Meijeret al. 1991℄. In the statement, V and W range over value
ontexts.Theorem 8.5. (Improvement Fusion) If C is stri
t, and C[V[x℄℄ B� W[C[x℄℄where x =2 FV (V;W;C)[CV (V;W;C), then for all D su
h that x =2 FV (D)[CV (D),let fx = V[x℄g in D[C[x℄℄ B� let fx = W[x℄g in D[x℄:Proof. Assume C is stri
t, and that C[V[x℄℄ B� W[C[x℄℄. By synta
ti

ontinuity, itsuÆ
es to show, for all n and all D su
h that x =2 FV (D)[CV (D),let fx n= V[x℄g in D[C[xn℄℄ B� let fx = W[x℄g in D[x℄:The base
ase follows by this
al
ulation:let fx0 =
g in D[C[x0℄℄CB� let fx0 =
g in D[C[
℄℄ (
-�)CB� let fx0 =
g in D[
℄ (C stri
t)CB� D[
℄ (g
)CB� let fx = W[x℄g in D[
℄ (g
)B� let fx = W[x℄g in D[x℄ (
 B� x); (
ong:)

An Operational Theory for Call-By-Need � 21and the indu
tive
ase by this
al
ulation:let fx n+1= V[x℄g in D[C[xn+1℄℄CB� let fx n= V[x℄g in D[C[XV[xn℄℄℄ (value-�); (g
)CB� let fx n= V[x℄g in D[XC[V[xn℄℄℄ (C stri
t)B� let fx n= V[x℄g in D[XW[C[xn℄℄℄ (assumption)B� let fx = W[x℄g in D[XW[x℄℄ (I:H:)CB� let fx = W[x℄g in D[x℄ (value-�) 2Fixed-point fusion
an be used to establish a number of general fusion laws. It isalso
entral to Tullsen and Hudak's [Tullsen and Hudak 1998℄ approa
h to programtransformation in Haskell.9. THE IMPROVEMENT THEOREMIn this se
tion we introdu
e a se
ond key te
hnique for reasoning about re
ursion,the improvement theorem. In [Sands 1996℄ a
all-by-name improvement theoremwas introdu
ed as a means to prove the extensional
orre
tness of re
ursion-basedprogram transformations. In this se
tion we show how these results
arry over tothe
all-by-need setting.9.1 The Problem of TransformationsAs a motivation for the improvement theorem,
onsider the
orre
tness problemfor re
ursion-based program transformations su
h as unfold-fold ; the
orre
tness ofsu
h transformations does not follow from the simple fa
t that the basi
 transfor-mation steps are equivalen
es. To take a simple example to illustrate the problem,
onsider the following \transformation by equivalen
e-preserving steps". Start withthe re
ursive fun
tion repeat whi
h produ
es the \in�nite" list of its argument:repeat x = x : (repeat x)The following property
an be easily dedu
ed: repeat x �= tail(repeat x). Now sup-pose that we use this \lo
al equivalen
e" to transform the body of the fun
tion toobtain a new version of the fun
tion:repeat x = x : (tail (repeat x))This de�nition is not equivalent to the original, sin
e it
an never produ
e morethan �rst element in the list. How did equivalen
e-preserving lo
al steps produ
ea non-equivalent fun
tion? Analysing su
h transformations more
arefully we seethat while it is true thatM �= N =) let fx = Mg in L �= let fx = Ng in L (9.1)it is no longer the
ase when the transformation from M to N depends on there
ursive de�nition of x itself:let fx = Mg in M �= let fx = Mg in NY=) let fx = Mg in L �= let fx = Ng in L:

22 � A. K. Moran and D. SandsBut in order to reason about \interesting" program transformations (e.g. unfold-fold, re
ursion-based deforestation, partial evaluation with memoization), inferen
e(9.1) is simply not suÆ
ient.The improvement theorem
omes to the res
ue:let fx = Mg in M B� let fx = Mg in Nlet fx = Mg in L B� let fx = Ng in L (9.2)This is suÆ
ient to establish the
orre
tness of re
ursion-based transformationsby requiring | rather naturally | that the lo
al transformation steps are alsoimprovements. This was proved for an improvement theory based on
all-by-name,so the fa
t that the theorem gives \improved" programs as well as
orre
tness isnot
onsidered to be parti
ularly signi�
ant.A question left open was whether the improvement theorem holds for a
all-by-need improvement theory. We
an now supply the answer:Theorem 9.1. (Improvement Theorem) The following proof rule is sound:let ff = V g in V B� let ff = V g in Wlet ff = V g in N B� let ff = Wg in NThe inferen
e is also sound when B� is repla
ed throughout with CB� (the
ost equiv-alen
e theorem).The improvement theorem and the
ost equivalen
e theorem
an also be stated fora set of mutually re
ursive de�nitions. The proof of the theorem is in se
tion 11.Notation. In establishing a premise of the improvement theorem, in the
ontextof some re
ursive de
larations ~g = ~V , a derivation of the formlet f~g = ~V g in M1 B� let f~g = ~V g in M2B� let f~g = ~V g in M3 : : :will be written in the following abbreviated form:~g `M1 B�M2B�M3 : : :when the de
larations ~g are
lear from the
ontext. This is of
ourse of limited usewithout the following
ongruen
e rule:~g `M B� N~g ` C[M ℄ B� C[N ℄ (`-
ong)for all
ontexts C. It says that any improvement proven in the
ontext of somere
ursive de�nitions may be lifted to all
ontexts.The following example illustrates the use of the proof rule, whi
h shows that arepresentation of the standard lambda-
al
ulus �xed-point
ombinatorY = �f:f ((�x:f (xx))�x:f (xx))(suitably
onverted to the restri
ted syntax) is
ost equivalent to the non-
y
li
version re
 from proposition 8.4.

An Operational Theory for Call-By-Need � 23Proposition 9.2. let Y = �f:let d = �y:let z = y y in f zx = d din f xin YCB� let re
 = �f:let x = re
 f in f xin re
 :Proof. To use the
ost equivalen
e theorem, we are required to show thatlet Y = � � �in �f:let d = �y:let z = y y in f zx = d din f xCB� let Y = � � �in �f:let x = Y f in f xwhere re
 has been renamed (without loss of generality) to Y . Using the entailmentnotation, we need to show:Y ` �f:let d = �y:let z = y y in f zx = d din f xCB� �f:let x = Y f in f x:By
al
ulation, we have that:Y ` �f:let d = �y:let z = y y in f zx = d din f xCB� �f:let d = �y:let z = y y in f zx = Xlet z = d d in f zin f x (value-�); (�)CB� �f:let x = Xlet d = �y:let z = y y in f zz = d din f zin f x (let-let)CB� �f:let x = X(�g:let d = �y:let z = y y in g zz = d din g z) fin f x (�)CB� �f:let x = Y f in f x (value-�)Then the result follows by the
ost equivalen
e theorem. 2Improvement Theorem vs. Synta
ti
 Continuity. Suppose one wants to establishan improvement of the formlet ff = V g in N B� let ff = Wg in N:

24 � A. K. Moran and D. SandsIf the left-hand side is non-re
ursive (in f) then synta
ti

ontinuity is of no help,sin
e the unwindings (> 0) of the left-hand side will all be identi
al;
onversely,if the right-hand side is non re
ursive (in f) then the improvement theorem isnot immediately useful, sin
e proving the premise amounts to dire
tly proving the
on
lusion of the rule. There are, however, many examples whi
h
an be proved byboth methods. In these
ases the improvement theorem is often preferable sin
e itis more
al
ulational in style.9.2 Improvement Indu
tionFinally, we mention one last proof rule whi
h is
losely allied to the improvementtheorem (in the sense that a
losely-related rule
an be derived from the improve-ment theorem); this
orresponds to what we
alled improvement indu
tion in [Sands1997℄, where it was established for any
all-by-name or
all-by-value language withSOS rules �tting a
ertain synta
ti
 rule-format.Theorem 9.3. (Improvement Indu
tion) For any M , N , C, and substitu-tion �, the following proof rule is sound:~f `M B� XC[M�℄ ~f ` N CB� XC[N�℄~f `M B� NThe proof is quite straightforward, and is given in se
tion 11. A example of theproof te
hnique is provided in se
tion 10.10. AN EXAMPLE PROGRAM TRANSFORMATIONIn this se
tion we
onsider a larger example of a program transformation | anautomati
 method for eliminating
alls to the append fun
tion. The transfoma-tion is something of a
lassi
, and
an be viewed as an instan
e of the unfold-folds
heme [Burstall and Darlington 1977℄. The parti
ular me
hanisation des
ribedhere is based on [Wadler 1988℄. The example was used previously to illustrate theimprovement theorem for
all-by-name evaluation [Sands 1996℄. Here we show thatthe
orre
tness argument there
an be strengthened to en
ompass a guarantee of
all-by-need improvement.10.1 The Con
atenate VanishesThe basi
 idea is to eliminate o

urren
es of the list-
on
atenate fun
tion:(++) = �xs:�ys :
ase xs ofnil � ysh : t � h : (t++ ys);when it o

urs to the right of a fun
tion appli
ation, as in: f y1 : : : yn++ z. This isa
hieved by by de�ning and optimising a fun
tion f+ whi
h satis�esf+ y1 : : : yn z �= (f y1 : : : yn)++ z:We present the transformation in two phases: initialization, whi
h introdu
esan initial de�nition for f+, and transformation, whi
h applies a set of rewrites toterms in the s
ope of these de�nitions. Throughout we assume that the de�nitionof the append fun
tion is in s
ope. To ease the notation, we will o

asionally make

An Operational Theory for Call-By-Need � 25use of the synta
ti
 identity for general appli
ation from se
tion 3, and we will usean in�x form of append.Initialization. The target of the transformation is a fun
tion de�nition f =�x1 : : : �xn:M , for whi
h there is an o

urren
e of a term (f y1 : : : yn)++ z in theprogram. The initial step is to repla
e the de�nition by the pair:f = �x1 : : : �xn:f+x1 : : : xn nilf+ = �x1 : : : �xn:�z:M++ zTransformation. Apply the following rewrite rules, in any order, to all expressionsin the s
ope of the above de�nitions:let y = nil in C[y++x℄! let y = nil in C[x℄ (i)let w = x : y in C[w++ z℄! let w = x : y in C[x : (y++ z)℄ (ii)(x++ y)++ z ! x++(y++ z) (iii)(
ase M of fpat i � Nig)++ z !
ase M of fpat i � Ni++ zg (iv)(f z1 : : : zn)++ z ! f+ z1 : : : zn z (v)(f+ z1 : : : zn z)++ z0 ! f+ z1 : : : zn ; (z++ z0) (vi)(let ~x = ~M in N)++ z ! let ~x = ~M in N++ z (vii)10.2 An Example Appli
ationThe
lassi
 example of this transformation is the
onversion of a na��ve quadrati
time list reverse fun
tion into a linear time version. Suppose we have the de�nitionreverse = �xs:
ase xs ofnil � nilh : t � let z = [h ℄ in (reverse t)++ zThe expression (reverse t)++ z is a
andidate for the transformation, so initialisa-tion yields:reverse = �xs :reverse+ xs nilreverse+ = �xs :�z:0�
ase xs ofnil � nilh : t � let y = [h ℄ in (reverse t)++ y1A++ zNow we apply the transformation rules to the program. We will also use garbage
olle
tion to remove redundant bindings. The important part is the appli
ationto the
ase expression in the right hand side of the de�nition of reverse+. Thetransformation is presented in �gure 9.10.3 Corre
tnessWe have seen, with the standard reverse example, that the transformation
ana
hieve asymptoti
 program speedups. In the remainder of this se
tion we usethe improvement theory to prove that the method des
ribed
an never slow downprograms by more than a
onstant fa
tor.For the
orre
tness argument we make a simpli�
ation to the initialisation phase:we will not modify the de�nition of the original fun
tion f . The e�e
t of this

26 � A. K. Moran and D. Sands0�
ase xs ofnil � nilh : t � let y = [h ℄ in (reverse t)++ y1A++ z!
ase xs ofnil � nil++ zh : t � (let y = [h ℄ in (reverse t)++ y)++ z (iv)!
ase xs ofnil � zh : t � (let y = [h ℄ in (reverse t)++ y)++ z (i); (vii); (g
)!
ase xs ofnil � zh : t � let y = [h ℄ in reverse+ t (y++ z) (vii); (iii); (vi)!
ase xs ofnil � zh : t � let y = [h ℄ in reverse+ t (h : (nil++ z)) (ii)!
ase xs ofnil � zh : t � reverse+ t (h : z) (i); (g
)Fig. 9. Example transformation sequen
e.simpli�
ation is to
ause dupli
ated transformation work (and some dupli
ated
ode) in some examples | but is not otherwise signi�
ant. The reason for thissimpli�
ation is that repla
ing the body of f by f+x1 : : : xn nil is not sound in anuntyped language | sin
e it relies on the equality x = x++ nil. In a typed theoryit would be straightforward to establish that this is a weak
ost equivalen
e | buta typed theory is beyond the s
ope of the present arti
le.The ar
hite
ture of the proof is as follows. The introdu
tion of the new fun
tionis merely garbage-introdu
tion, so is patently sound. The remaining steps illustratethe use of:|basi
 laws to establish that the remaining laws are all improvements;|improvement indu
tion, to establish asso
iativity properties of append, and|the use of the above properties together with the improvement theorem to estab-lish the property of the transformation as a whole.10.4 Properties of AppendProposition 10.1.(++) ` let y = nil in C[y++x℄ CB� let y = nil in C[2Xx℄(++) ` let w = x : y in C[w++ z℄ CB� let w = x : y in C[2Xx : (y++ z)℄(++) ` (
ase M of fpat i � Nig)++ z CB�
ase M of fpat i � let y = Ni in y++ zg(++) ` (let ~x = ~M in N)++ z CB� let ~x = ~M in N ++ zProof. The proofs are routine
al
ulations. We present just the proof of the
ase

An Operational Theory for Call-By-Need � 27property:(++) ` (
ase M of fpat i � Nig)++ z� let y =
ase M of fpat i � Nig in y++ zCB� let y =
ase M of fpat i � Nig in X
ase y ofnil � zh : t � h : (t++ z) (value-�)CB�
ase M of fpat i � let y = Ni in X
ase y ofnil � zh : t � h : (t++ z)g (
ase-E)CB�
ase M of fpat i � let y = Ni in y++ zg (value-�) 2Append also satis�es asso
iativity properties, whi
h are established below.Proposition 10.2.(++); (++) ` (x++ y)++ z CB� x++(y++ z)where (++) = �xs :�ys :
ase xs ofnil � ysh : t � 2Xh : (t++ ys):Proof. We
al
ulate with the left and right-hand sides independently, and �nd a
ontext D su
h that x++(y++ z) CB� XD[x++(y++ z)℄and also that (x++ y)++ z CB� XD[(x++ y)++ z℄

28 � A. K. Moran and D. Sandsand the result then follows by improvement indu
tion.
(++); (++) ` (x++ y)++ z� let w = x++ y in w++ zCB� let w = X
ase x ofnil � yh : t � h : (t++ y)in w++ z (value-�); (var -�)CB� X
ase x ofnil � let w = y in w++ zh : t � let w = h : (t++ y) in w++ z prop. 10.1CB� X
ase x ofnil � Xw++ zh : t � let w = h : (t++ y) in w++ z (var -�); (g
)CB� X
ase x ofnil � Xw++ zh : t � 2Xh : (t++ y)++ z prop. 10.1; (let-let); (let-
atten)� X
ase x ofnil � Xw++ zh : x � 2Xh : (x++ y)++ z (renaming)
Thus we have found a
ontext D su
h that

(x++ y)++ z CB� XD[(x++ y)++ z℄
It just remains to show that

x++(y++ z) CB� XD[x++(y++ z)℄

An Operational Theory for Call-By-Need � 29(++); (++) ` x++(y++ z)� let r = y++ z in x++ rCB� let r = y++ z in X
ase x ofnil � rh : t � 2Xh : (t++ r) (value-�); (var -�)CB�
ase x ofnil � Xy++ zh : t � 2Xlet r = y++ z in h : (t++ r) (
ase-E); (inline-E); (g
)CB� X
ase x ofnil � Xw++ zh : t � 2Xlet r = y++ zs = t++ rin h : s (let-
atten)
CB� X
ase x ofnil � Xw++ zh : t � 2Xlet s = let r = y++ z in t++ rin h : s (let-let)� X
ase x ofnil � Xw++ zh : x � 2Xh : x++(y++ z) (renaming)Working note: Should use the basi
 properties of ap-pend from the proposition 2Corollary 10.3. (x++ y)++ z B� x++(y++ z)x++(y++ z) B� (x++ y)++ zThis follows by the obvious improvement/weak improvement relation between ++and ++. and shows that the asso
iativity property of append
annot, in itself,
hange the asymptoti
 time
omplexity of a program.10.4.1 The Transformation LawsProposition 10.4. The rewrite laws of the transformation are all improve-ments.Proof. Rules (i), (ii), (iv) and (vii) follow from proposition 10.1, and rule (iii)from
orollary 10.3. For (vi) we have:f; f+ ` (f z1 : : : zn)++ zCB� XM [~z=~x℄++ z (??); (??)CB� f+ z1 : : : zn z (??); (??)

30 � A. K. Moran and D. SandsAnd lastly for (vi) we have:(++); f+ ` (f+ z1 : : : zn z)++ z0CB� (XM [z1 : : : zn=~x℄++ z)++ z (??); (??)CB� XM [z1 : : : zn=~x℄++(z++ z0)
or. 10.3CB� f+ z1 : : : zn (z++ z0) (??)(??); (??) 2The main
orre
tness argument. The improvement property of the individualsteps is not the whole story, sin
e the de�nition of f+ itself needs to be transformed.Proposition 10.5. The transformation yields a program whi
h is an improve-ment on the original.Proof. Assume that the transformed (sub)program has the formlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N(This is without loss of generality sin
e by (value-�) we
an
oat in the de�nitionof append.) Now suppose that by applying the transformation rules we obtain:let ++ = : : :f = �x1 : : : �xn:M 0f+ = �x1 : : : �xn:�z:M 00in N 0for someM 0, M 00, and N 0. Sin
e the transformation rules are all improvements, weknow that:let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N 0:Now we also know thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M 0and thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M ++ z B� let ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin M 00:

An Operational Theory for Call-By-Need � 31Thus by the Improvement Theorem we
an
on
lude thatlet ++ = : : :f = �x1 : : : �xn:Mf+ = �x1 : : : �xn:�z:M++ zin N 0 B� let ++ = : : :f = �x1 : : : �xn:M 0f+ = �x1 : : : �xn:�z:M 00in N 0and by transitivity we are done. 211. PROOFS OF MAIN THEOREMSThis se
tion gives an outline of the te
hni
al development and proofs of the mainresults. Most proofs follow a dire
t style reasoning whi
h is reminis
ent of proofsabout fun
tional languages with e�e
ts by Mason and Tal
ott et al. [Mason andTal
ott 1991; Agha et al. 1997; Tal
ott 1998℄. In order to make this style of proofrigourous we generalise the abstra
t ma
hine semanti
s so that it works on
on�g-uration
ontexts |
on�gurations with holes. To ensure that transitions on
on�g-uration
ontexts are
onsistent with hole �lling one must work with a more generalrepresentation of
ontexts. One su
h approa
h is des
ribed in [Tal
ott 1998℄. Weuse an alternative approa
h to generalising
ontexts whi
h is due to Pitts [Pitts1994℄.11.1 Substituting ContextsFollowing Pitts [Pitts 1994℄, we use se
ond-order syntax to represent (and gener-alise) the traditional de�nition of
ontexts given in se
tion 5. We give a fullerdes
ription in [Sands 1998a℄; other examples of their use are to be found in [Lassen1998; Moran 1998℄. The idea is that instead of holes [�℄ we use se
ond-order vari-ables, ranged over by �, applied to some ve
tor of variables. The syntax of gener-alised
ontexts is: C;D ::= � � ~xj xj �x:Cj Cxj
 ~xj let f~x = ~Dg in Cj
ase C of f
i ~xi � Dig:V and W will range over value
ontexts, � and � over heap
ontexts, and S andT over sta
k
ontexts. Ea
h \hole variable" � has a �xed arity, and ranges overmeta-abstra
tions of the form (~x)M where the length of ~x is the arity of �. Inthe meta-abstra
tion (~x)M , the variables ~x are bound in M . Hole-�lling is nowa general non-
apturing substitution: [(~x)M=�℄. The e�e
t of a substitution isas expe
ted (remembering that the ~x are
onsidered bound in (~x)M). Coupledwith the meta-abstra
tion is of
ourse meta-appli
ation, written � � ~x. We restri
tappli
ation of � to variables so that hole-�lling
annot violate the restri
tion onsyntax. In the de�nition of substitution we make the following identi�
ation:(~x)M � ~y �M [~y=~x℄:

32 � A. K. Moran and D. SandsThis de�nition of
ontext generalises the usual de�nition sin
e we
an represent atraditional
ontext C by C[� �~x℄ where ~x is a ve
tor of the
apture-variables of C;�lling C with a term M is then represented by (C[� � ~x℄)[(~x)M=�℄.Example. The traditional
ontextlet x = [�℄ in �y:[�℄
an be represented by let x = � �(x; y) in �y:� �(x; y):Filling the hole with the term x y is represented by:(let x = � �(x; y) in �y:� �(x; y))[(x; y) x y=�℄� let z = (x; y) x y �(z; y) in �w:(x; y) x y �(x;w)� let z = z y in �w:xwwhi
h is �-equivalent to what we would have obtained by the usual hole-�lling with
apture. Note that the generalised representation permits
ontexts to be identi�edup to �-
onversion.Hen
eforth we work only with generalised
ontexts. We will write C[(~x)M ℄ tomean C[(~x)M=�℄ when C
ontains just a single hole variable �. We assume that thearities of hole variables are always respe
ted.We impli
itly generalise our de�nitions of improvement to work with generalised
ontexts. This is not quite identi
al to the earlier de�nition sin
e with generalised
ontexts, when pla
ing a term in a hole we obtain a substitution instan
e of theterm. This means in parti
ular that improvement is now
losed under substitu-tion (variable-for-variable) by de�nition | a useful property. This di�eren
e is arelatively minor te
hni
ality whi
h we will gloss over in this se
tion.11.2 Open Uniform ComputationThe basis of our proofs will be to
ompute with
on�gurations
ontaining holes andfree variables. Thanks to the
apture-free representation of
ontexts, this meansthat normal redu
tion
an be extended to
ontexts with ease. See [Sands 1998a℄ fora thorough treatment of generalised
ontexts and how they support generalisationof indu
tive de�nitions over terms.Firstly, in order to �ll the holes in a
on�guration we need to identify
on�gura-tions up to renaming of the heap variables (re
alling that update-markers on thesta
k are also binding o

urren
es of heap variables).We ta
itly extend the operational semanti
s to open
on�gurations with holes.Note that holes
an only o

ur in the sta
k within the bran
hes of
ase alterna-tives. In what follows, � will range over substitutions
omposed of variable forvariable substitutions and substitutions of the form [(~xi)Mi=�i℄, and � range over
on�guration
ontexts.We have the following key property.Lemma 11.1. (Extension) If h�; C; S i !k h�; D; T i then(i) for all �0 and S0 su
h that h�0�; C; SS0 i is well-formed, h�0�; C; SS0 i !kh�0�; D; TS0 i.

An Operational Theory for Call-By-Need � 33(ii) for all �, h�; C; S i� !k h�; D; T i�.Proof. (i) follows by inspe
tion of possible open redu
tions over
on�guration
ontexts. (ii) amounts to the standard substitution lemma; see [Sands 1998a℄ for ageneral argument. 2The following open uniform
omputation property is
entral. It allows us toevaluate open
on�guration
ontexts until either the
omputation is �nished, or we�nd ourselves in an \interesting"
ase.Lemma 11.2. (Open Uniform Computation) If well-formed and well-typed
on�guration
ontext h�; C; S i !k �9, then � has one of the following forms:(i) h�; V; � i,(ii) h�; �i � ~y; T i, for some hole �i, or(iii) h�; x; T i, x 2 FV (�;C;S).Proof. Assume h�; C; S i !k � 9. We
onsider the redu
tion of h�; C; S iand pro
eed by indu
tion on k with
ases on the stru
ture of C. We show threeillustrative
ases only. The others are similar.C � �i � ~y. This is a type (ii)
ontext, so we are done.C � x. Sin
e we have termination, x must be bound in either � or is free inFV (�;C;S) (sin
e if it was bound in S, h�; C; S i would diverge). In the former
ase, � � �fx = Dg. By (Lookup), h�fx = Dg; x; S i redu
es to h�; D; #x :S i. By the indu
tive hypothesis, we know that h�; D; #x : S i redu
es to a
on�guration
ontext of type (i), (ii), or (iii), and therefore h�fx = Dg; x; S i doesalso, as required. In the latter
ase, h�; x; S i is a type (iii)
ontext, and we aredone.C � V. There are four sub-
ases, depending upon the stru
ture of S; we
onsideronly the
ase when S � x : T. Sin
e h�; C; S i is well-typed, V � �y:D, and by(Subst), h�; �y:D; x : T i redu
es to h�; D[x=y℄; T i. The indu
tive hypothesisapplies, and the result follows as above. 2Uniform redu
tions are
learly also uniform in
ost: if � !kn �0, then for all M ,�[(~x)M ℄!kn �0[(~x)M ℄.11.3 TranslationWe
an extend the de�nition of trans to
over open
on�gurations and
on�guration
ontexts, and
an therefore extend translation thus:Lemma 11.3. (Translation) For all D;�;C;S su
h that D � transh�; C; S i,there exists n > 0 su
h that h ;; D; � i !n h�; C; S i.Proof. Simple indu
tion on S. 211.4 Proof: the Context LemmaThe proof of the
ontext lemma relies upon two lemmas, the latter of whi
h is themost
omplex.Lemma 11.4. M B� N if and only if for all � and n, �[(~x)M ℄#n =) �[(~x)N ℄#6n.

34 � A. K. Moran and D. SandsProof. (Sket
h) ((). Trivial; let � = h ;; C; � i.()). By a simple lexi
ographi
 indu
tion on n and the length of transitionsequen
es, using translation. 2Lemma 11.5. If for all �; S, and nh�; (~x)M � ~y; S i#n =) h�; (~x)N � ~y; S i#6nthen for all � and n, �[(~x)M ℄#n =) �[(~x)N ℄#6n, where ~x � FV (M;N).Proof. Assume the premise and suppose �[(~x)M ℄#n in k
omputation steps. Wepro
eed via lexi
ographi
 indu
tion on (n; k). By open uniform
omputation, �redu
es in k0 > 0 steps with
ost n0 to one of:(1) h�; V; � i; (2) h�; � � ~y; S i:(There are only two possibilities sin
e � is
losed.) In
ase (1), we are done. In
ase (2), we have �[(~x)N ℄!k0n0 h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i: (11.1)By open uniform
omputation, h�; M [~y=~x℄; S i redu
es in k1 > 0 steps with
ostn1 to one of: (2.1) h�; W; � i; (2.2) h�; � �~z; T i:(Again, there are only two possibilities sin
e h�; M [~y=~x℄; S i is
losed.) In
ase (2.1),we have that h�[(~x)N ℄; (~x)M � ~y; S[(~x)N ℄ i redu
es in k1 steps to h�[(~x)N ℄; W[(~x)N ℄; � iwith
ost n1 = n� n0, soh�[(~x)N ℄; M [~y=~x℄; S[(~x)N ℄ i#6n�n0=) h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i#6n�n0 (ass.)=) �[(~x)N ℄#6n (11.1)as required. In
ase (2.2), we know that k1 > 0, sin
e M [~y=~x℄ 6� � �~z. We haveh�[(~x)M ℄; (~x)M � ~y; S[(~x)M ℄ i !k1n1 h�[(~x)M ℄; (~x)M � ~z; T[(~x)M ℄ iand h�[(~x)M ℄; (~x)M � ~z; T[(~x)M ℄ i#n�n0�n1 : (11.2)Furthermore,h�[(~x)N ℄; (~x)M � ~y; S[(~x)N ℄ i !k1n1 h�[(~x)N ℄; (~x)N �~z; T[(~x)N ℄ i (11.3)Therefore h�[(~x)M ℄; M [~z=~x℄; T[(~x)M ℄ i#n�n0�n1 (11.2)=) h�[(~x)N ℄; M [~z=~x℄; T[(~x)N ℄ i#6n�n0�n1 (I.H.)=) h�[(~x)N ℄; N [~z=~x℄; T[(~x)N ℄ i#6n�n0�n1 (ass.)=) h�[(~x)N ℄; M [~y=~x℄; S[(~x)N ℄ i#6n�n0 (11.3)=) h�[(~x)N ℄; N [~y=~x℄; S[(~x)N ℄ i#6n�n0 (ass.)=) �[(~x)N ℄#6n (11.1)

An Operational Theory for Call-By-Need � 35as required. 2The generalised statement of the
ontext lemma is:For all terms M and N , if8�; S; �; n:h�; M�; S i#n =) h�; N�; S i#6nthen M B� N .This follows from lemmas 11.4 and 11.5, and the fa
t that M� � (~x)M � ~y for� = [~y=~x℄.11.5 Validating the Ti
k AlgebraWe present proofs of the validity of (value-�) and (value-
opy), and sket
h a proofof the
orresponden
e between evaluation
ontexts and
on�guration
ontexts ofthe form h�; [�℄; S i. The proofs of the more
omplex laws (e.g. (var -�), (var -abs),(var -subst), and (X-
oat)) have a similar stru
ture to that for (value-�), ex
eptthey require more use of open uniform
omputation.11.5.1 Proof: (value-�). Re
all (value-�):let fx = V; ~y = ~D[x℄g in C[x℄ CB� let fx = V; ~y = ~D[XV ℄g in C[XV ℄:Let W � XV throughout. It suÆ
es to show8�;S: h�[x℄fx = V g; C[x℄; S[x℄ i#n () h�[W ℄fx = V g; C[W ℄; S[W ℄ i#nwhere x =2 dom(�;S), and the only hole is [�℄, a non-
apturing hole. We prove theforward dire
tion only; the reverse dire
tion is similar.Suppose h�[x℄fx = V g; C[x℄; S[x℄ i#n in k
omputation steps. We pro
eedby lexi
ographi
 indu
tion on (n; k). By open uniform
omputation, h�; C; S iredu
es in k0 > 0 steps with
ost n0 to one of(1) h�; V; � i; (2) h�; [�℄; T i; (3) h�; x; T i:In
ase (1), we are done. In
ase (2), by extension, (Lookup) and (Update), we haveh�[x℄fx = V g; C[x℄; S[x℄ i !k0n0 h�[x℄fx = V g; x; T[x℄ i!21 h�[x℄fx = V g; V; T[x℄ i;and by extension and the de�nition of W ,h�[W ℄fx = V g; C[W ℄; S[W ℄ i !k0n0 h�[W ℄fx = V g; W; T[W ℄ i!21 h�[W ℄fx = V g; V; T[W ℄ i:Sin
e h�[x℄fx = V g; V; T[x℄ i#n�(n0+1), by the indu
tive hypothesis we haveh�[W ℄fx = V g; V; T[W ℄ i#n�(n0+1), and the result follows.In
ase (3), we have h�[x℄fx = V g; V; T[x℄ i#n�(n0+1), as above. Furthermore,by extension, (Lookup) and (Update), we haveh�[W ℄fx = V g; C[W ℄; S[W ℄ i !k0n0 h�[W ℄fx = V g; x; T[W ℄ i!21 h�[W ℄fx = V g; V; T[W ℄ i:From the indu
tive hypothesis, we have h�[W ℄fx = V g; V; T[W ℄ i#n�(n0+1), andthe result follows.

36 � A. K. Moran and D. Sands11.5.2 Proof: (value-
opy). Re
all (value-
opy):let f~x = ~V �1; ~y = ~V �2; ~z = ~Mg in N CB� let f~x = ~V �2�3; ~z = ~M�3g in N�3;where �1 = [~y=~w℄, �2 = [~x=~w℄, and �3 = [~x=~y℄.It suÆ
es to show that for all �, S, and n,h�f~x = ~V �1; ~y = ~V �2g; N; S i#n () h�f~x = ~V �2�3g; N�3; S i#n:We show only the forward dire
tion. To show the reverse, we need only establishtermination, whi
h follows by the fa
t that
all-by-name and
all-by-need agree ontermination.Suppose h�f~x = ~V �1; ~y = ~V �2g; N; S i#n in k
omputation steps. We pro
eedvia lexi
ographi
 indu
tion on (n; k). Consider the (hole-less) open
on�guration
ontext h�; N; S i, in whi
h the ~x and ~y may appear free. By open uniform
omputation, this redu
es in k0 > 0 steps with
ost n0 to one of:(1) h�; W; � i; (2a) h�; xi; T i; (2b) h�; yi; T i:In
ase (1), we are done. In
ase (2a), by extension, (Lookup) and (Update), wehave h�f~x = ~V �1; ~y = ~V �2g; N; S i !k0n0 h�f~x = ~V �1; ~y = ~V �2g; xi; T i!21 h�f~x = ~V �1; ~y = ~V �2g; Vi�1; T i;and furthermore, h�f~x = ~V �1; ~y = ~V �2g; Vi�1; T i#n�(n0+1): (11.4)Similarly, by extension, (Lookup) and (Update), we have also thath�f~x = ~V �2�3g; N�3; S i !k0n0 h�f~x = ~V �2�3g; xi�3; T i!21 h�f~x = ~V �2�3g; Vi�2�3; T i:By elementary properties of substitution,Vi�1[~x=~y℄ � Vi[~x=~w℄[~x=~y℄;so the indu
tive hypothesis applies (with N � Vi�1), yielding the desired result.In
ase (2b), by extension, (Lookup) and (Update), we haveh�f~x = ~V �1; ~y = ~V �2g; N; S i !k0n0 h�f~x = ~V �1; ~y = ~V �2g; yi; T i!21 h�f~x = ~V �1; ~y = ~V �2g; Vi�2; T i;and furthermore, h�f~x = ~V �1; ~y = ~V �2g; Vi�2; T i#n�(n0+1): (11.5)Similarly, by extension, (Lookup) and (Update), we have also thath�f~x = ~V �2�3g; N�3; S i !k0n0 h�f~x = ~V �2�3g; yi�3; T i� h�f~x = ~V �2�3g; xi; T i!21 h�f~x = ~V �2�3g; Vi�2�3; T i:The indu
tive hypothesis applies (with N � Vi�2), yielding the desired result.

An Operational Theory for Call-By-Need � 3711.5.3 Proof: Lemma 6.1. Re
all the statement of lemma 6.1:�E = ftransh�; [�℄; S i j all �; Sg:So we need to show that:(i) 8�; S: 9E: transh�; [�℄; S i � E, and(ii) 8E: 9�; S: transh�; [�℄; S i � E.First note that �A (the set of all appli
ative
ontexts) is in 1-1
orresponden
e toupdate-marker free sta
ks, realised by the following isomorphism (writing [x℄ forthe singleton sta
k): [�℄Æ = �(Ax)Æ = AÆ[x℄(
ase A of alts)Æ = AÆalts(�)Æ takes �A into the set of update-marker free sta
ks. Its inverse is denoted by(�)� and satis�es the following equations:�� = [�℄(x : S)� = S�[[�℄x℄(alts : S)� = S�[
ase [�℄ of alts ℄It
an easily be shown that h�; A[C℄; S i !� h�; C; AÆS i and that transh�; A[C℄; S iis identi
al to transh�; C; AÆS i by indu
tion on the stru
ture of A.To show (i), we generalise the statement to show that for all � and S bothtransh�; A; S i and transh�fx0 = A0[x1℄; : : : ; xn = Ang; A[x0℄; S i are evaluation
ontexts. This pro
eeds by an easy indu
tion on the number of update markers inS.To show (ii), we pro
eed by
ase analysis on E, and produ
e a � and S in ea
h
ase. The diÆ
ult
ase is whenE � let f~y = ~M;x0 = A0[x1℄;x1 = A1[x2℄;� � �xn = Angin A[x0℄Here, we let � be f~y = ~Mg and let S beAÆn#xn � � �AÆ1#x1AÆ0#x0AÆ:The other
ases are similar.11.5.4 Proof: (
ase-E). The following lemma will be used to validate (
ase-E),(let-E) follows by similar reasoning. CV (E) denotes the
apture variables of E.Lemma 11.6. For all E, there exist �; T , su
h that dom(�; T) � CV (E) and8�; S:h�; E; S i !kn h��; [�℄; TS i, for some k and n.

38 � A. K. Moran and D. SandsProof. By lemma 6.1, there exist � and T su
h that transh�; [�℄; T i � E,so by translation h ;; E; � i !� h�; [�℄; T i, and thus by extension, provideddom(�; T) � CV (E), h�; E; S i !� h��; [�℄; TS i. 2Re
all the statement of (
ase-E):E[
ase M of fpat i � Nig℄ CB�
ase M of fpat i � E[Ni℄g:By the standard bound variable
onvention, we know that CV (E) CV (pat i) forall i, and that FV (M) BV (E), where BV (E) denotes the let-bound variables ofE.Assume wlog that for any �, we have thath�; M; � i !k0n0 h�0�;
j ~xj ; � i (11.6)where �0 is the same as � with some possible updates, and �
ontains any bindingsintrodu
ed during the evaluation. (This is valid sin
e otherwise (
ase-E) holdsva
uously as both sides would diverge; an empty sta
k is suÆ
ient by extension.)For any � and S, we have thath�; E[
ase M of fpat i � Nig℄; S i!kn h��;
ase M of fpat i � Nig; TS i lem. 11.6! h��; M; fpat i � Nig : TS i (Case)!k0n0 h�0�0�;
j ~xj ; fpat i � Nig : TS i (11.6); (ext.)! h�0�0�; Nj [~xj=~yj ℄; TS i (Bran
h)and h�;
ase M of fpat i � E[Ni℄g; S i! h�; M; fpat i � Nig : S i (Case)!k0n0 h�0�;
j ~xj ; fpat i � E[Ni℄g : S i (11.6); (ext.)! h�0�; E[Nj ℄[~xj=~yj ℄; S i (Bran
h)� h�0�; E[Nj [~xj=~yj ℄℄; S i CV (E) ~yj!kn h�0��; Nj [~xj=~yj ℄; TS i lem. 11.6Sin
e FV (M) BV (E), the evaluation of M
annot a�e
t any of the bindingsintrodu
ed by the evaluation E; in other words, �0 � �. Therefore, the resultfollows by the
ontext lemma.11.6 Congruen
e of EntailmentIn examples, we often want to perform
al
ulation in the
ontext of re
ursive de
-larations. A notation for this was introdu
ed in se
tion 9; a derivation of the formlet f~g = ~V g in M1 B� let f~g = ~V g in M2B� let f~g = ~V g in M3 : : :

An Operational Theory for Call-By-Need � 39was written: ~g `M1 B�M2B�M3 : : :when the de
larations ~g are
lear from the
ontext. We prove the following extensionof (`-
ong) to general
ontexts valid:~g `M B� N~g ` C[(~x)M ℄ B� C[(~x)N ℄ (`-
ong)for all
ontexts C su
h that ~x CV (C). As usual, ~x � FV (M;N).To prove the validity of this rule, we require some lemmata. This next lemma isused to prove lemma 11.8.Lemma 11.7. For all �; S, and nh�f~x = ~V ; ~y = ~V �g; M; S i#n () h��f~y = ~V �g; M�; S� i#n:where � = [y=x℄.Proof. (Sket
h) ()) Simple indu
tion on n, with
ases of the stru
ture of M .(() It is suÆ
ient to show that termination is implied. This is true for the
all-by-name theory, and therefore here also. 2To prove (`-
ong) and improvement theorem, we will need the following lemma.Lemma 11.8. If let f~x = ~V g in M B� let f~x = ~V g in N then for all � and S,h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6n:where ~x � FV (�; S).Proof. By the
ontext lemma and (Letre
), we have:let f~x = ~V g in M B� let f~x = ~V g in N() 8�; S:h�; let f~x = ~V g in M; S i#n =) h�; let f~x = ~V g in N; S i#6n() 8�; S; ~x FV (�; S); dom(�; S)h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6n:Letting � = [~y=~x℄, this implies that8�; S; ~x FV (�; S); ~x dom(�; S); ~y � FV (�; S):h�f~y = ~V �; ~x = ~V g; M; S i#n =) h�f~y = ~V �; ~x = ~V g; N; S i#6n:By lemma 11.7, this is equivalent to8�; S; ~x FV (�; S); ~x dom(�; S); ~y � FV (�; S):h��f~y = ~V �g; M�; S� i#n =) h��f~y = ~V �g; N�; S� i#6n() 8�; S; ~y � FV (�; S):h��f~y = ~V �g; M�; S� i#n =) h��f~y = ~V �g; N�; S� i#6n() 8�; S; ~x � FV (�; S):h�f~x = ~V g; M; S i#n =) h�f~x = ~V g; N; S i#6nwhere the last step follows by renaming. 2

40 � A. K. Moran and D. Sandslet f~x = ~V g in M B� let f~x = ~V g in N=) let f~x = ~V g in M�0 B� let f~x = ~V g in N�0 �0 = [z=y℄; z fresh=) let fz = Vi[z=xi℄g in let f~x = ~V g in M�0 B� let fz = Vi[z=xi℄g in let f~x = ~V g in N�0 (
ong.)=) let fz = Vi[z=xi℄; ~x = ~V g in M�0 B� let fz = Vi[z=xi℄; ~x = ~V g in N�0 (let-let)=) let f~x = ~V g in M�0�00 B� let f~x = ~V g in N�0�00 (g
); �00 = [xi=z℄Fig. 10. Cal
ulational portion of the proof of lemma 11.9.We will use this next lemma in the proof of (`-
ong).Lemma 11.9. Provided the ~V are
losed, and ~x dom�,let f~x = ~V g in M B� let f~x = ~V g in Nlet f~x = ~V g in M� B� let f~x = ~V g in N�Proof. It is suÆ
ient to show this for a single renaming [z=y℄, where y =2 dom�.Then the
ase when z =2 ~x follows from the fa
t that B� is
losed under variable forvariable substitution. So without loss of generality, let � = [xi=y℄. By the reasoningin �gure 10, we have thatlet f~x = ~V g in M B� let f~x = ~V g in N=) let f~x = ~V g in M�0�00 B� let f~x = ~V g in N�0�00But �0�00 = [z=y℄[xi=z℄ = [xi=y℄ = �, sin
e z was fresh, and we have the desiredresult. 2Moving to general
ontexts, to show (`-
ong), it will be suÆ
ient to prove, underassumption of the premise, that for all C with a single hole variable � and ~z su
hthat arity � = j~zj and ~z ~x,let f~x = ~V g in C[(~z)M ℄ B� let f~x = ~V g in C[(~z)N ℄:By the de�nition of B�, it will suÆ
e to show that for all � and S,h�[(~z)M ℄f~x = ~V g; C[(~z)M ℄; S[(~z)M ℄ i#n =)h�[(~z)N ℄f~x = ~V g; C[(~z)N ℄; S[(~z)N ℄ i#6n:Suppose h�[(~z)M ℄f~x = ~V g; C[(~z)M ℄; S[(~z)M ℄ i#n in k
omputation steps. Wepro
eed via lexi
ographi
 indu
tion on (n; k). Consider � = h�; C; S i. Clearly� !k0n0 �0 9, so by open uniform
omputation, �0 takes on one of the followingforms: (1) h�; V; � i; (2) h�; xi; T i; (3) h�; � � ~y; T i:In
ase (1), we are done. In
ase (2), by (Lookup) and (Update), we have thath�[(~z)M ℄f~x = ~V g; xi; T[(~z)M ℄ i !21 h�[(~z)M ℄f~x = ~V g; Vi; T[(~z)M ℄ i:

An Operational Theory for Call-By-Need � 41So by the indu
tive hypothesis,h�[(~z)N ℄f~x = ~V g; Vi; T[(~z)N ℄ i#6n�(n0+1)whi
h in turn, by (Lookup) and (Update), impliesh�[(~z)N ℄f~x = ~V g; xi; T[(~z)N ℄ i#6n�n0 :Then the desired result follows by open uniform
omputation.In
ase (3), we have thath�[(~z)M ℄f~x = ~V g; M [~y=~z℄; T[(~z)M ℄ i#n�n0 : (11.7)By lemma 11.9, the assumption implies thatlet f~x = ~V g in M [~y=~z℄ B� let f~x = ~V g in N [~y=~z℄whi
h in turn, by lemma 11.8 and (11.7), impliesh�[(~z)M ℄f~x = ~V g; N [~y=~z℄; T[(~z)M ℄ i#6n�n0 : (11.8)We are required to show insteadh�[(~z)N ℄f~x = ~V g; N [~y=~z℄; T[(~z)N ℄ i#6n�n0 :Consider h�; N [~y=~z℄; T i. By (11.8), this redu
es in k1 steps with
ost n1 to some�9. By open uniform
omputation, � has one of the following forms:(3.1)h�0; W; � i; (3.2)h�0; xi; T0 i; (3.3)h�0; � � ~w; T0 i:In
ase (3.1), we are done. In
ase (3.2), we appeal to
ase (2) above. In
ase (3.3),sin
e N [~y=~z℄ 6� � � ~w, k1 > 0, so the indu
tive hypothesis applies, and we haveh�0[(~z)N ℄f~x = ~V g; N [~w=~z℄; T0[(~z)N ℄ i#6n�n0�n1and the desired result follows by open uniform
omputation.11.7 Proof: the Unwinding LemmaTo prove the Unwinding lemma we will need the following lemma, whi
h we statewithout proof.Lemma 11.10. For all M;�; S; V and n,h�fx k= V g; M; S i#n =) h�fx k+1= V g; M�; S� i#nwhere � = [xk+1=xk℄ and fxigk+1i=0 FV (V).Re
all the statement of the Unwinding lemma:For all �; S, and n,h�; let ff = V g in M; S i#n =) 9m:h�; let ff m= V g in M [fm=f ℄; S i#n:It suÆ
es to prove that for all �, S, and n su
h that fxigni=0 FV (�; S),h�fx = V g; M; S i#n =) h��fx n= V g; M�; S� i#n

42 � A. K. Moran and D. Sandswhere � = [xn=x℄ (i.e. m = n). Suppose h�fx = V g; M; S i#n in k
omputa-tion steps. We pro
eed by lexi
ographi
 indu
tion on (n; k). By open uniform
omputation, h�; M; S i redu
es in k0 > 0 steps with
ost n0 to one of(1) h�; W; � i; (2) h�; x; T i:(Type (ii)
annot o

ur, sin
e there is no hole involved.) By extension, the
orre-sponding result holds for h�; M; S i�, and hen
e for h��; M�; S� i, sin
e xn isfree in h�; M; S i.Therefore, in
ase (1), by extension, h��fx = V g; M�; S� i redu
es in k0 steps(with
ost n0) to h��fx = V g; W�; � i and we are done, sin
e k0 = k and n0 = n.In
ase (2), by extension, (Lookup), and (Update),h��fx = V g; M�; S� i !k0n0h��fx = V g; xn; T� i!21h��fx = V g; V �; T� i:Similarly, h�fx = V g; M; S i redu
es in k0 + 2 steps (with
ost n0 + 1) toh�fx = V g; V; T i. By the indu
tive hypothesis, we know that h��0fx n0=V g; V �0; T�0 i#n0 where �0 = [xn0=x℄ and n0 = n � (n0 + 1). By repeated ap-pli
ation of lemma 11.10, we have that h��fx n= V g; V �; T� i#n0 and hen
eh��fx n= V g; M�; S� i#n as required.11.8 Proof: the Improvement TheoremWe prove the improvement theorem generalised to mutually-re
ursive de�nitions:The following proof rule is sound:8j 2 I: let ffi = Vigi2I in Vj B� let ffi = Vigi2I in Wjlet ffi = Vigi2I in N B� let ffi = Wigi2I in NBy the
ontext lemma it suÆ
es to show that for all �; S, and n,h�f~f = ~V g; N; S i#n =) h�f~f = ~Wg; N; S i#6n:Assume the premise, and suppose that h�f~f = ~V g; N; S i#n in k
omputationsteps. We pro
eed by lexi
ographi
 indu
tion on (n; k). By open uniform
ompu-tation, h�; N; S i redu
es in k0 > 0 steps, with
ost n0, to one of(1) h�; V; � i; (2) h�; fi; T i:In
ase (1), we have by extension that h�f~f = ~Wg; N; S i redu
es in k0 steps toh�f~f = ~Wg; V; � i and k0 = k and n0 = n, so we are done. In
ase (2),h�f~f = ~V g; N; S i !k0n0h�f~f = ~V g; fi; T i!21h�f~f = ~V g; Vi; T i (11.9)and h�f~f = ~Wg; N; S i !k0n0h�f~f = ~Wg; fi; T i!21h�f~f = ~Wg; Wi; T i (11.10)

An Operational Theory for Call-By-Need � 43so h�f~f = ~V g; Vi; T i#n�(n0+1) (11.9)=) h�f~f = ~V g; Wi; T i#6n�(n0+1) (ass., lem. 11.8)=) h�f~f = ~Wg; Wi; T i#6n�(n0+1) (I.H.)=) h�f~f = ~Wg; N; S i#6n: (11.10)11.9 Proof: Improvement Indu
tionWe prove instead the more general version, involving entailment:For any set of re
ursive de
larations ~f , terms M , N and substitution �, thefollowing proof rule is sound:~f `M B� XC[M�℄ ~f ` N CB� XC[N�℄~f `M B� NFurthermore, we generalise C[M�℄ to C[(~x)M ℄. By lemma 11.8, the premises implymore general statements. For example, the �rst premise implies8n;�; S: h�f~f = ~V g; M; S i#n =) h�f~f = ~V g; XC[(~x)M ℄; S i#6n (ass.(i))We will refer to the
orresponding generalisation of the se
ond premise as (ass.(ii)).We show instead the more general statement, that for all � and n,�[(~x)M ℄#n =) �[(~x)N ℄#6n:Suppose �[(~x)M ℄#n in k
omputation steps. We pro
eed by lexi
ographi
 indu
tionon (n; k). By open uniform
omputation, � redu
es in k0 > 0 to one of(1) h�; V; � i; (2) h�; � � ~y; T i:In
ase (1), we are done. In
ase (2), �rst note that, letting � = [~y=~x℄, (~x)M � ~y �M�, and C[(~x)M ℄� � C�[(~x)M ℄ sin
e ~x � FV (M), and similarly for N . Then wehave that �[(~x)N ℄!k0n0 h�[(~x)N ℄; N�; T[(~x)N ℄ i (11.11)and h�[(~x)M ℄; M�; T[(~x)M ℄ i#n�n0=) h�[(~x)M ℄; XC[(~x)M ℄�; T[(~x)M ℄ i#6n�n0 (ass.(i))=) h�[(~x)M ℄; C[(~x)M ℄�; T[(~x)M ℄ i#6n�(n0+1) (X)� h�[(~x)M ℄; C�[(~x)M ℄; T[(~x)M ℄ i#6n�(n0+1)=) h�[(~x)N ℄; C�[(~x)N ℄; T[(~x)N ℄ i#6n�(n0+1) (I.H.)� h�[(~x)N ℄; C[(~x)N ℄�; T[(~x)N ℄ i#6n�(n0+1)=) h�[(~x)N ℄; XC[(~x)N ℄�; T[(~x)N ℄ i#6n�n0 (X)() h�[(~x)N ℄; N�; T[(~x)N ℄ i#6n�n0 (ass.(ii))=) �[(~x)N ℄#6n: (11.11)

44 � A. K. Moran and D. Sands12. CONCLUSIONS AND FUTURE WORKWe have presented a ri
h operational theory for a
all-by-need based on an im-provement ordering on programs. The theory subsumes the (oriented)
all-by-needlambda
al
uli of Ariola et al. [Ariola et al. 1995℄. The most important extensionsare proof te
hniques for reasoning about re
ursion. Synta
ti

ontinuity allows us toprove properties of re
ursive programs via a kind of �xed-point indu
tion, withoutsa
ri�
ing information about intensional behaviour, like sharing. The improvementtheorem and improvement indu
tion are rules for re
ursion whi
h support more
al
ulational proofs. Both are parti
ularly useful in proving the safety of programtransformations.An obvious further appli
ation of the theory is to formalise arguments about therunning time of programs, following Sands' use of
all-by-name
ost equivalen
e forthis purpose [Sands 1995; Sands 1998b℄.Another dire
tion for future work would be to
onsider the time-safety of a larger-s
ale program transformation, su
h as deforestation [Wadler 1990℄. In su
h a trans-formation we must inevitably
onsider
onditions under whi
h we
an unfold fun
-tion
alls. It is straightforward to de�ne simple synta
ti

onditions on
ontextswhi
h guarantee thatlet f~x = ~Mg in C[~x℄ B� let f~x = ~Mg in C[~M ℄;but in the
ase where holes o

ur under �-abstra
tions a more global form of infor-mation is required: one needs to know that the lambda expression in question willnot be applied more than on
e. The type system of [Turner et al. 1995℄ providesjust su
h global information, so it would be interesting to prove that their system(and generalisations to full re
ursive lets [Gustavsson 1998℄) does indeed satisfythe desired improvement property above. We saw in se
tion 6.4 that the stri
tnessproperty of a
ontext
an be
hara
terised exa
tly byC[Xx℄ B� XC[x℄;where x is fresh. Could it be the
ase that the \used at most on
e" property mightbe semanti
ally
hara
terised by XC[x℄ B� C[Xx℄?A
knowledgements. We have bene�ted from numerous dis
ussions with J�orgenGustavsson on various aspe
ts of this work, and we would thank him in parti
ularfor his suggestions whi
h led to a simpli�
ation of the proof of the
ontext lemma.Thanks also to Koen Claessen, Keith Wansbrough, and the referees for their helpful
omments.REFERENCESAbramsky, S. and Ong, C.-H. L. 1993. Full abstra
tion in the lazy lambda
al
ulus.Information and Computation 105, 159{267.Agha, G. A., Mason, I. A., Smith, S. F., and Tal
ott, C. L. 1997. A foundation fora
tor
omputation. Journal of Fun
tional Programming 7, 1{72.Ariola, Z., Felleisen, M., Maraist, J., Odersky, M., and Wadler, P. 1995. A
all-by-need lambda
al
ulus. In Pro
. POPL'95, the 22nd ACM SIGPLAN-SIGACT Symposiumon Prin
iples of Programming Languages (Jan. 1995), pp. 233{246. ACM Press.Ariola, Z. M. and Blom, S. 1997. Cy
li
 lambda
al
uli. In Pro
. TACS'97 , Volume 1281of LNCS, pp. 77{106. Springer-Verlag.

An Operational Theory for Call-By-Need � 45Ariola, Z. M. and Blom, S. 1998. Lambda
al
uli plus letre
. Te
hni
al report, Dept.of Computer S
ien
e, University of Oregon. Extended version of [Ariola and Blom 1997℄;submitted for publi
ation.Ariola, Z. M. and Felleisen, M. 1997. The
all-by-need lambda
al
ulus. Journal ofFun
tional Programming 7, 3 (May), 265{301.Ariola, Z. M. and Klop, J. W. 1997. Lambda
al
ulus with expli
it re
ursion. Informationand Computation 139, 2, 154{233.Benaissa, Z.-E.-A., Les
anne, P., and Rose, K. H. 1996. Modeling sharing and re
ursionfor weak redu
tion strategies using expli
it substitution. In Pro
. PLILP'96, the 8th Inter-national Symposium on Programming Languages, Implementations, Logi
s, and Programs,Volume 1140 of LNCS, pp. 393{407. Springer-Verlag.Burstall, R. M. and Darlington, J. 1977. A transformational system for developingre
ursive programs. Journal of the ACM 24, 1 (Jan.), 44{67.Curien, P.-L. 1991. An abstra
t framework for environment ma
hines. Theoreti
al Com-puter S
ien
e 82, 2 (May), 389{402.Field, J. 1990. On laziness and optimality in lambda interpreters: Tools for spe
i�
ationand analysis. In Pro
. POPL'90, the 17th ACM SIGPLAN-SIGACT Symposium on Prin-
iples of Programming Languages (Jan. 1990), pp. 1{15. ACM Press.Gordon, A. D. and Pitts, A. M. Eds. 1998. Higher Order Operational Te
hniques inSemanti
s. Publi
ations of the Newton Institute. Cambridge University Press.Gustavsson, J. 1998. A type based sharing analysis for update avoidan
e and optimisa-tion. In Pro
. ICFP'98, the 3rd ACM SIGPLAN International Conferen
e on Fun
tionalProgramming (Sept. 1998), pp. 39{50.Gustavsson, J. and Sands, D. 1999. A foundation for spa
e-safe transformations of
all-by-need programs. In A. D. Gordon and A. Pitts Eds., Pro
. HOOTS III, the 3rd Workshopon Higher Order Operational Te
hniques in Semanti
s, Volume 26 of Ele
troni
 Notes inTheoreti
al Computer S
ien
e (1999). Elsevier S
ien
e Publishers B.V.Hughes, J. and Moran, A. K. 1995. Making
hoi
es lazily. In Pro
. FPCA'95, ACM Con-feren
e on Fun
tional Programming Languages and Computer Ar
hite
ture (June 1995),pp. 108{119. ACM Press.Jeffrey, A. 1993. A fully abstra
t semanti
s for
on
urrent graph redu
tion. Te
hni
alReport 93:12, S
hool of Cognitive and Computing S
ien
es, University of Sussex.Jeffrey, A. 1994. A fully abstra
t semanti
s for
on
urrent graph redu
tion. In Pro
.LICS'94, the 9th IEEE Symposium on Logi
 in Computer S
ien
e (July 1994), pp. 82{91.IEEE Computer So
iety Press.Josephs, M. B. 1989. The semanti
s of lazy fun
tional languages. Theoreti
al ComputerS
ien
e 68, 1 (O
t.), 105{111.Lassen, S. B. 1998. Relational Reasoning about Fun
tions and Nondeterminism. Ph. D.thesis, Department of Computer S
ien
e, University of Aarhus.Laun
hbury, J. 1993. A natural semanti
s for lazy evaluation. In Pro
. POPL'93, the20th ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages (Jan.1993), pp. 144{154. ACM Press.Maraist, J., Odersky, M., and Wadler, P. 1998. The
all by need lambda
al
ulus.Journal of Fun
tional Programming 8, 3 (May), 275{317.Maranget, L. 1991. Optimal derivations in weak lambda-
al
uli and in orthogonal termrewriting systems. In Pro
. POPL'91, the 18th ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages (Jan. 1991), pp. 255{269. ACM Press.Mason, I. and Tal
ott, C. 1991. Equivalen
e in fun
tional languages with e�e
ts. Journalof Fun
tional Programming 1, 3 (July), 287{327.Mason, I. A., Smith, S. F., and Tal
ott, C. L. 1996. From operational semanti
s todomain theory. Information and Computation 128, 1 (July), 26{47.Meijer, E., Fokkinga, M., and Paterson, R. 1991. Fun
tional programming with ba-nanas, lenses, envelopes and barbed wire. In J. Hughes Ed., Pro
. FPCA'91, ACM Con-feren
e on Fun
tional Programming Languages and Computer Ar
hite
ture, Volume 523

46 � A. K. Moran and D. Sandsof LNCS (Aug. 1991), pp. 124{144. Springer-Verlag.Milner, R. 1977. Fully abstra
t models of the typed �-
al
ulus. Theoreti
al ComputerS
ien
e 4, 1{22.Moran, A. K. 1998. Call-by-name, Call-by-need, and M
Carthy's Amb. Ph. D. thesis,Department of Computing S
ien
es, Chalmers University of Te
hnology, Sweden.Moran, A. K. and Sands, D. 1998. Improvement in a lazy
ontext: An operational theoryfor
all-by-need (extended version). Extended version of [Moran and Sands 1999℄.Moran, A. K. and Sands, D. 1999. Improvement in a lazy
ontext: An operational theoryfor
all-by-need. In Pro
. POPL'99, the 26th ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages (Jan. 1999). ACM Press.Moran, A. K., Sands, D., and Carlsson, M. 1999. Errati
 Fudgets: A semanti
 theoryfor an embedded
oordination language. In Coordination '99 , Volume 1594 of LNCS (April1999). Springer-Verlag.Niehren, J. 1996. Fun
tional
omputation as
on
urrent
omputation. In Pro
. POPL'96,the 23rd ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages(Jan. 1996), pp. 333{343. ACM Press.Peyton Jones, S. L., Partain, W., and Santos, A. 1996. Let-
oating: moving bindings togive faster programs. In Pro
. ICFP'96, the 1st ACM SIGPLAN International Conferen
eon Fun
tional Programming (May 1996), pp. 1{12. ACM Press.Peyton Jones, S. L. and Santos, A. 1998. A transformation-based optimiser for Haskell.S
ien
e of Computer Programming 32, 1{3, 3{47.Pitts, A. M. 1994. Some notes on indu
tive and
o-indu
tive te
hniques in the semanti
s offun
tional programs. Notes Series BRICS-NS-94-5 (De
.), BRICS, Department of ComputerS
ien
e, University of Aarhus.Pitts, A. M. 1997a. Operational semanti
s for program equivalen
e. Invited talk at MFPSXIII, the 13th Conferen
e on Mathemati
al Foundations of Programming Semanti
s, slidesavailable at http://www.
l.
am.a
.uk/users/ap/talks/ mfps97.ps.gz.Pitts, A. M. 1997b. Operationally-based theories of program equivalen
e. In P. Dybjerand A. M. Pitts Eds., Semanti
s and Logi
s of Computation, Publi
ations of the NewtonInstitute, pp. 241{298. Cambridge University Press.Rose, K. H. 1996. Operational Redu
tion Models for Fun
tional Programming Languages.Ph. D. thesis, DIKU, University of Copenhagen, Denmark. available as DIKU report 96/1.Sands, D. 1991. Operational theories of improvement in fun
tional languages (extendedabstra
t). In Pro
. 1991 Glasgow Fun
tional Programming Workshop, Workshops in Com-puting Series (Aug. 1991), pp. 298{311. Springer-Verlag.Sands, D. 1995. A na��ve time analysis and its theory of
ost equivalen
e. Journal of Logi
and Computation 5, 4, 495{541.Sands, D. 1996. Total
orre
tness by lo
al improvement in the transformation of fun
tionalprogram. ACM Transa
tions on Programming Languages and Systems (TOPLAS) 18, 2(Mar
h), 175{234.Sands, D. 1997. From SOS rules to proof prin
iples: An operational metatheory for fun
-tional languages. In Pro
. POPL'97, the 24th ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages (Jan. 1997). ACM Press.Sands, D. 1998a. Computing with
ontexts: A simple approa
h. In A. D. Gordon, A. M.Pitts, and C. L. Tal
ott Eds., Pro
. HOOTS II, the 2nd Workshop on Higher Order Op-erational Te
hniques in Semanti
s, Volume 10 of Ele
troni
 Notes in Theoreti
al ComputerS
ien
e (1998). Elsevier S
ien
e Publishers B.V. at http://www.elsevier.nl/
as/tree/store/t
s/free/non
as/p
/menu.htm.Sands, D. 1998b. Improvement theory and its appli
ations. Publi
ations of the NewtonInstitute, pp. 275{306. Cambridge University Press.Sansom, P. and Peyton Jones, S. L. 1997. Formally-based pro�ling for higher-order fun
tional languages. ACM Transa
tions on Programming Languages and Systems(TOPLAS) 19, 1 (Jan.), 334{385.

An Operational Theory for Call-By-Need � 47Seaman, J. and Purushothaman Iyer, S. 1996. An operational semanti
s of sharing inlazy evaluation. S
ien
e of Computer Programming 27, 3 (Nov.), 289{322.Sestoft, P. 1997. Deriving a lazy abstra
t ma
hine. Journal of Fun
tional Program-ming 7, 3 (May), 231{264.Smith, S. F. 1991. From operational to denotational semanti
s. In S. Brookes, M. Main,A. Melton, M. Mislove, and D. S
hmidt Eds., Pro
. MFPS VII, the 7th Conferen
eon Mathemati
al Foundations of Programming Semanti
s, Volume 598 of LNCS (Mar
h1991), pp. 54{76. Springer-Verlag.Tal
ott, C. L. 1998. Reasoning about fun
tions with e�e
ts. Publi
ations of the NewtonInstitute, pp. 347{390. Cambridge University Press.Tullsen, M. and Hudak, P. 1998. An intermediate meta-language for program transfor-mation. YALEU/DCS/RR 1154 (June), Yale University.Turner, D. N., Wadler, P., and Mossin, C. 1995. On
e upon a type. In Pro
. FPCA'95,ACM Conferen
e on Fun
tional Programming Languages and Computer Ar
hite
ture(June 1995), pp. 1{11. ACM Press.Wadler, P. 1988. The
on
atenate vanishes. Te
hni
al report, University of Glasgow (UK).appeared as a note on an FP ele
troni
 mailing list, De
ember 1987.Wadler, P. 1990. Deforestation: Transforming programs to eliminate trees. Theoreti
alComputer S
ien
e 73, 231{248.Yoshida, N. 1993. Optimal redu
tion in weak-lambda-
al
ulus with shared environments.In Pro
. FPCA'93, ACM Conferen
e on Fun
tional Programming Languages and Com-puter Ar
hite
ture (June 1993), pp. 243{254. ACM Press.APPENDIXA. LOOKUPS ARE ENOUGHIn this appendix we justify the use of
ounting lookups as our
ost measure, byproving theorem 4.1.Despite the relatively high-level nature of our abstra
t ma
hine, we argue (in-formally) that ea
h abstra
t ma
hine step
an be implemented by
onstant-timeoperations, where the
onstant depends on the size of the program to be exe
uted.4The following observation is
ru
ial to our argument:Proposition A.1. During the exe
ution of a given program, every term ap-pearing in an abstra
t ma
hine
on�guration is a substitution instan
e (variable forvariable) of some subterm of the original program.Proof. By inspe
tion of the rules. 2Given this, and assuming that the variable lookup operation is implemented in
onstant time, we wish to argue that every transition
an be implemented as a
onstant time operation. This would be straightforward to argue | but for rule(Letre
) whi
h requires a non-
onstant amount of variable renaming. Fortunately,Sestoft [Sestoft 1997℄ provides a slightly lower level variant of this ma
hine, in whi
hrenaming is
ompletely avoided by the use of environments. As Sestoft notes, the
orre
tness of this modi�
ation is
lear. It is also
lear that all of the rules
an beimplemented in
onstant time.4For a
tual implementations one may have be able to give mu
h more re�ned bound than simplyprogram size (e.g. the maximum number of free variables of any subexpression in the program).

48 � A. K. Moran and D. SandsWorking note: I'm still not
ompletely sure about this.One needs to argue that environment size is bounded byprogram size. I'm sure this is true, but I don't see whyright away.In order to prove theorem 4.1, whi
h says that just
ounting lookup steps issuÆ
ient to
apture
omputational
omplexity, we �rst introdu
e a size metri
 onterms, sta
ks and term-sta
k pairs:Definition 8. jxj = 1j
 ~xj = 1j�x:M j = jM j+ 1jM xj = jM j+ 2j
ase M of f
i ~xi � Nigj = jM j+ 1 + �i=ni=1 jNijjlet f~x = ~Mg in N j = jN j+ 1 + �i=ni=1 jMijj�j = 0jx : Sj = jSj+ 1j#x : Sj = jSj+ 1jf
i ~xi � Nig : Sj = jSj+�i=ni=1 jNijjM;Sj = jM j+ jSjWith the ex
eption of rule (Lookup), the
ombined term and sta
k size de
reasesstri
tly with ea
h abstra
t ma
hine transition, i.e. ifh�; M; S i ! h�0; N; T ithen jM;Sj > jN;T j. (Letre
) adds a group of bindings to the heap, and thusde
reases the metri
 by an amount dependent upon the size of the bindings madeplus 1; the others de
rease it by exa
tly 1. (Lookup) is the ex
eption: the metri
 isin
reased by an amount equal to the size of the term to be evaluated.Re
all the statement of theorem 4.1:For all s > 0, there exists a linear fun
tion f su
h that for all
losedterms M of size s, M#m =) M+6f(m):Proof. Consider some M of size s whi
h
onverges in n steps to some �nal state

An Operational Theory for Call-By-Need � 49h�; V; � i . We partition the transition sequen
e thus:h ;; M; � i � h�0; M0; S0 i!k0 h�0; N0; T0 i !# h�1; M1; S1 i!k1 h�1; N1; T1 i !# h�2; M2; S2 i� � �!km�1 h�m�1; Nm�1; Tm�1 i !# h�m; Mm; Sm i!km h�m; Nm; Tm i� h�; V; � iwhere m is the total number of instan
es of rule (Lookup) (marked by a #). Weknow the following fa
ts ki 6 jMi; Sij � jNi; Tij (A.1)jMij 6 jM j (A.2)jMi+1; Si+1j � jNi; Tij = jMi+1j (A.3)jMi; Sij 6 ijM j (A.4)(A.1) follows sin
e there are ki non-(Lookup) transitions in moving from h�i; Mi; Si ito h�i; Ni; Ti i, and ea
h transition de
reases the metri
 by at least one. (A.2)follows from the fa
t any term arising during the evaluation of M must be a sub-stitution instan
e of a sub-term of M , and therefore smaller than M . Sin
e it is(Lookup) that takes h�i; Ni; Ti i to h�i+1; Mi+1; Si+1 i, the di�eren
e in size isexa
tly jMi+1j, yielding (A.3). As for (A.4), we argue as follows. Sin
e only lookups
an in
rease the size of the term-sta
k pair, and sin
e the in
rease is bounded byjM j, we
on
lude that jMi; Sij
annot be larger than ijM j.
Working note: Where do we use (A.4)?

50 � A. K. Moran and D. Sands�i=mi=0 ki 6 �i=mi=0 jMi; Sij � jNi; Tij (A.1)= jM0; S0j � jN0; T0j+jM1; S1j � jN1; T1j+� � �jMm; Smj � jNm; Tmj= jM0; S0j+jM1; S1j � jN0; T0j+jM2; S2j � jN1; T1j+� � �jMm; Smj � jNm�1; Tm�1j+� jNm; Tmj= jM0; S0j+�i=m�1i=0 jMi+1; Si+1j � jNi; Tij� jNm; Tmj6 jM0; S0j+�i=m�1i=0 jMi+1j (A.3)6 jM j+mjM j (A.2);M �M0; S0 � �Now n = m+�i=mi=0 ki6 m+ jM j+mjM j= m+ (m+ 1)s:This is linear in m, so we are done. 2To summarise, we have argued that(1) the number abstra
t-ma
hine steps is within a program-size dependent
on-stant fa
tor of a
tual running time of an implementation based on the abstra
tma
hine, and(2) the number of lookup steps is within a program-size dependent
onstant fa
torof the number of abstra
t ma
hine steps.This demonstrates the soundness of using the number of lookups as a measure of
ost.

