
THE PROBABILITY THAT THE NUMBER OF POINTS ON ANELLIPTIC CURVE OVER A FINITE FIELD IS PRIMESTEVEN GALBRAITH AND JAMES MCKEEAbstrat. The paper gives a formula for the probability that a randomlyhosen ellipti urve over a �nite �eld has a prime number of points. Twoheuristi arguments in support of the formula are given as well as experimentalevidene.The paper also gives a formula for the probability that a randomly hosenellipti urve over a �nite �eld has kq points where k is a small number andwhere q is a prime. 1. IntrodutionCryptographi and omputational appliations have reently motivated the studyof several questions in the theory of ellipti urves over �nite �elds. For instane,the analysis of the ellipti urve fatoring method leads to estimates ([7℄, [8℄) forthe probability that the number of points on an ellipti urve is smooth.In this paper, motivated by the use of ellipti urves in publi key ryptosystems,we onsider the \opposite" problem. More spei�ally, we ask the question: Whatis the probability that a randomly hosen ellipti urve over Fp has kq points, wherek is small and q is prime? Initially we take p to be prime. The minor modi�ationsneeded to deal with arbitrary �nite �elds are onsidered later.Koblitz [5℄ has onsidered the analogous problem when the ellipti urve E is�xed and where it is the prime p whih varies. The paper [5℄ gives a onjeturalformula that the number of primes p � n suh that #E(Fp ) is prime is asymptotito CEn=(logn)2 (where CE is an expliitly given onstant depending on E).To make our question preise, we need to speify what we mean by k being small,and also what we mean by a randomly hosen ellipti urve. The �rst point is easilydealt with: we �x K and onsider k � K, allowing p to tend to in�nity.Regarding the seond point, we use the Weierstrass model (in the ase p > 3)for ellipti urves: E : y2 = x3 + ax+ b; 4a3 + 27b2 6= 0 :Then whenever we refer to \the probability that an ellipti urve over Fp hasproperty P", we shall mean \the probability that the ellipti urve de�ned byy2 = x3 + ax+ b over Fp has property P , given that (a; b) is uniformly distributedin F2p � f(a; b) : 4a3 + 27b2 = 0g".1991 Mathematis Subjet Classi�ation. 11G20.The �rst author thanks the EPSRC for support.1



2 STEVEN GALBRAITH AND JAMES MCKEEThe e�et of using this model is to ount eah isomorphism lass of urves withweight inversely proportional to the size of the automorphism group. All lassesare given equal weight, exept for those with j-invariant either 0 or 1728.We an now state our onjetured answer to the above question, isolating �rstthe speial ase of a prime number of points.Conjeture A. Let P1 be the probability that a number within 2pp of p + 1 isprime. Then the probability that an ellipti urve over Fp has a prime number ofpoints is asymptoti to pP1 as p!1, wherep = 23Yl>2�1� 1(l � 1)2� Yljp�1; l>2�1 + 1(l + 1)(l� 2)� :Here the produts are over all primes l satisfying the stated onditions.Remarks1. Note thatQl>2 �1� 1(l�1)2� � 0:6601618 is the Hardy-Littlewood twin-primesonstant.2. P1 an be approximated by14pp Z p+1+2ppp+1�2pp dtlog t � 1log p :Part of the diÆulty of the problem is that we do not know enough aboutprimes in short intervals to say how good an approximation this is.3. If all numbers of points between p + 1 � 2pp and p + 1 + 2pp were equallylikely, then we would have p = 1. The expression given for p lies betweenabout 0:44 and 0:62, indiating the phenomenon that prime numbers of pointsare disfavoured.Conjeture A is interesting in itself, regardless of ryptographi appliations. Weshall give two heuristi derivations of this same formula, in some detail. We shallalso provide experimental evidene whih lends strong support to the onjeture.We also briey indiate the neessary modi�ations to generalise this to:Conjeture B. For k = 1; 2; 3; : : : ; let Pk be the probability that a number within2pp of p+1 is of the form kq, with q a prime. Then the probability that an elliptiurve over Fp has k times a prime for its number of points is asymptoti to pfkPkas p ! 1, where p is as in Conjeture A, and fk is a rational number, de�nedbelow, depending only on k and gd(k; p � 1). For �xed p, fk is a multipliativefuntion of k. For a prime power lt (t � 1), we haveflt = lt �r(lt)� r(lt+1)�1� r(l) ;where r(lt) = 8><>: 1lt�1(l�1) if q 6� 1 (mod lu)lv+1+lv�1lt+v�1(l2�1) if q � 1 (mod lu)



THE PROBABILITY THAT THE NUMBER OF POINTS IS PRIME 3where u = dt=2e, v = bt=2.Remarks1. Pk an be approximated by14kpp Z (p+1+2pp)=k(p+1�2pp)=k dtlog t � 1k(log p� log k) :2. The following table gives values of fk for some small prime powers k, and forprime k. k fk1 12 3/23 16/15 if p � 1 (mod 3)2 if p � 2 (mod 3)4 5/2 if p � 1 (mod 4)2 if p � 3 (mod 4)5 96/95 if p � 1 (mod 5)4/3 if p 6� 1 (mod 5)8 9/4 if p � 1 (mod 4)3 if p � 3 (mod 4)9 22/15 if p � 1 (mod 9)7/5 if p � 4; 7 (mod 9)2 if p � 2 (mod 3)16 11/4 if p � 1 (mod 8)3 if p 6� 1 (mod 8)prime l 1 + 1=(l3 � l2 � l) if p � 1 (mod l)(l � 1)=(l� 2) if p 6� 1 (mod l)3. Let Qk denote the probability that an ellipti urve over Fp has kq points forsome prime q. Then Conjeture A reads:Q1 � pP1; as p!1 ;and Conjeture B reads:Qk � pfkPk; as p!1 :



4 STEVEN GALBRAITH AND JAMES MCKEE2. Numerial evideneEvidene for Conjeture Ap P1 p pP1 Q11009 0.15748 0.56389 0.08880 0.093661019 0.14173 0.44011 0.06238 0.0726210007 0.10723 0.44011 0.04719 0.0476210009 0.10723 0.55016 0.05900 0.06025100003 0.08538 0.56389 0.04814 0.04889100043 0.08379 0.44011 0.03688 0.03883199999 0.07714 0.55048 0.04246 0.0433910000019 0.06238 0.45121 0.02815 0.0276610000079 0.06218 0.44506 0.02769 0.0270810000537 0.06174 0.56923 0.03515 0.03497500000003 0.05042 0.44038 0.02221 0.02215500000009 0.05042 0.44011 0.02219 0.02213500000041 0.05045 0.58070 0.02929 0.02925500000069 0.05046 0.44019 0.02221 0.02206500000071 0.05046 0.58070 0.02930 0.0293410000000019 0.04330 0.44014 0.01906 0.0190010000000033 0.04330 0.55729 0.02413 0.0240810000000061 0.04330 0.46456 0.02011 0.0200910000000069 0.04330 0.55014 0.02382 0.0237810000000097 0.04329 0.44012 0.01905 0.0190310000000121 0.04330 0.46915 0.02031 0.0203710000000147 0.04330 0.55013 0.02382 0.0238410000000259 0.04334 0.44011 0.01907 0.0190510000000469 0.04333 0.44011 0.01907 0.0190810000001251 0.04334 0.58083 0.02517 0.0251210000001551 0.04333 0.60073 0.02603 0.0260810000050061 0.04335 0.60568 0.02626 0.0262610223473261 0.04281 0.60930 0.02609 0.02607The agreement between the �nal two olumns, for primes above 10000, is striking.The last six examples ontrast two primes p with p� 1 twie a prime, followed byfour primes p with p� 1 having small prime fators (making p larger).



THE PROBABILITY THAT THE NUMBER OF POINTS IS PRIME 5Evidene for Conjeture BFor a few primes, in varying ongruene lasses modulo small primes, we om-puted Pk and Qk for a range of small k.Example 1: p = 500000071, p = 0:5807.k Pk fk pfkPk Qk1 0.05046 1 0.02930 0.029342 0.02547 3/2 0.02218 0.022073 0.01747 16/15 0.01082 0.010774 0.01336 2 0.01552 0.015475 0.01093 96/95 0.00642 0.006486 0.00928 8/5 0.00862 0.008647 0.00814 6/5 0.00567 0.005638 0.00708 3 0.01233 0.012369 0.00621 7/5 0.00504 0.0050010 0.00560 144/95 0.00493 0.00488Example 2: p = 10000000019, p = 0:44014.k Pk fk pfkPk Qk1 0.04330 1 0.01906 0.019002 0.02244 3/2 0.01482 0.014803 0.01516 2 0.01334 0.013424 0.01155 2 0.01016 0.010155 0.00929 4/3 0.00545 0.005446 0.00784 3 0.01036 0.010377 0.00674 6/5 0.00356 0.003528 0.00607 3 0.00802 0.008049 0.00524 2 0.00461 0.0046310 0.00479 2 0.00422 0.00419Example 3: p = 10000000033, p = 0:55729.k Pk fk pfkPk Qk1 0.04330 1 0.02413 0.024082 0.02244 3/2 0.01876 0.018673 0.01516 16/15 0.00901 0.009044 0.01155 5/2 0.01609 0.016185 0.00929 4/3 0.00691 0.006876 0.00784 8/5 0.00700 0.007057 0.00674 6/5 0.00451 0.004468 0.00607 9/4 0.00761 0.007559 0.00524 7/5 0.00409 0.0041110 0.00479 2 0.00534 0.00530



6 STEVEN GALBRAITH AND JAMES MCKEEExample 4: p = 10000000061, p = 0:46456.k Pk fk pfkPk Qk1 0.04330 1 0.02011 0.020092 0.02244 3/2 0.01564 0.015663 0.01516 2 0.01409 0.014154 0.01155 5/2 0.01341 0.013465 0.00929 96/95 0.00436 0.004356 0.00784 3 0.01093 0.010967 0.00674 6/5 0.00376 0.003758 0.00607 9/4 0.00635 0.006349 0.00524 2 0.00487 0.0048610 0.00479 144/95 0.00337 0.00337Example 5: p = 10000000069, p = 0:55014.k Pk fk pfkPk Qk1 0.04330 1 0.02382 0.023782 0.02244 3/2 0.01852 0.018513 0.01516 16/15 0.00890 0.008914 0.01155 5/2 0.01588 0.016035 0.00929 4/3 0.00682 0.006796 0.00784 8/5 0.00691 0.006877 0.00674 6/5 0.00445 0.004418 0.00607 9/4 0.00752 0.007489 0.00524 7/5 0.00404 0.0040310 0.00479 2 0.00527 0.00523Example 6: p = 10000000097, p = 0:44012.k Pk fk pfkPk Qk1 0.04329 1 0.01905 0.019032 0.02244 3/2 0.01481 0.014873 0.01516 2 0.01334 0.013354 0.01155 5/2 0.01271 0.012755 0.00929 4/3 0.00545 0.005446 0.00784 3 0.01035 0.010357 0.00674 6/5 0.00356 0.003538 0.00607 9/4 0.00601 0.005999 0.00524 2 0.00461 0.0046010 0.00479 2 0.00422 0.00419(Compare with example 2, for whih the value of p is almost idential. The twoprimes are in di�erent ongruene lasses mod 4, and the only signi�ant di�erenebetween the two tables is in the rows for k = 4 and k = 8.)



THE PROBABILITY THAT THE NUMBER OF POINTS IS PRIME 7Example 7: p = 10000000121, p = 0:46915.k Pk fk pfkPk Qk1 0.04330 1 0.02031 0.020372 0.02243 3/2 0.01579 0.015783 0.01516 2 0.01422 0.014294 0.01155 5/2 0.01354 0.013585 0.00929 96/95 0.00441 0.004416 0.00784 3 0.01103 0.011017 0.00674 6/5 0.00379 0.003778 0.00607 9/4 0.00641 0.006389 0.00524 2 0.00492 0.0049310 0.00479 144/95 0.00341 0.00340Example 8: p = 10000000147, p = 0:55013.k Pk fk pfkPk Qk1 0.04330 1 0.02382 0.023842 0.02243 3/2 0.01851 0.018623 0.01516 16/15 0.00890 0.008904 0.01155 2 0.01271 0.012685 0.00929 4/3 0.00682 0.006846 0.00784 8/5 0.00690 0.006897 0.00674 6/5 0.00445 0.004388 0.00607 3 0.01003 0.009979 0.00524 7/5 0.00404 0.0040210 0.00479 2 0.00527 0.00521Again the agreement between the last two olumns, over a wide variety of valuesof p and fk, provides support for the Conjeture.3. First derivation of Conjeture AGiven t with jtj < 2pp, the probability that an ellipti urve over Fp has exatlyp+ 1� t points is H(t2 � 4p)=2p ;whereH(�) is the Kroneker/Hurwitz lass number, ounting all equivalene lassesof binary quadrati forms with disriminant �, with forms proportional to x2 + y2being ounted with weight 1=2, and forms proportional to x2+xy+y2 being ountedwith weight 1=3. We have the analyti lass number formulaH(t2 � 4p) = p4p� t2� Yl (�1� � t2 � 4pl �� l��1  3(l)) :Here, as ever, the produt is over primes l, and � t2�4pl � is the Legendre/Kronekersymbol. The funtion  3(l) is the ontribution to MKee's  2(l) (see [8℄) from the



8 STEVEN GALBRAITH AND JAMES MCKEEprime l: if m is maximal suh that both (i) l2mjt2 � 4p, and (ii) (t2 � 4p)=l2m � 0or 1 (mod 4), then 3(l) = l � l�ml � 1 ; ll � 1 ; l � 2=(lm + lm�1)l � 1aording as � (t2�4p)=l2ml � is 0, 1 or �1.Our plan is to onsider the average value of eah fator�1� � t2 � 4pl �� l��1  3(l) ;�rst over all t, and then over all t suh that p+ 1� t is prime. By averaging over\all t", we shall mean all t between 1 and lr, where we shall let r tend to in�nity.We make three assumptions:(i) averaging over all t, in the above sense, gives a value whih is asymptotiallythe same as if we average over jtj < 2pp;(ii) the average value of Ql��1� � t2�4pl �. l��1  3(l)� is the produt of theaverage values of eah fator �1� � t2�4pl �. l��1  3(l);(iii) the average of �1� � t2�4pl �. l��1  3(l) over all t suh that p + 1 � t isprime equals the average over all t suh that gd(l; p+ 1� t) = 1.The reasonableness of these assumptions is reeted in the goodness of �t ofthe model to the numerial data in the previous setion. The �rst assumption isreasonable if l is small ompared to pp, and is false if l is too large, but the produtformula for H(t2� 4p) is dominated by the relatively small primes. Indeed for thisreason we an safely exlude l = p from the ensuing disussion, and always thinkof l as small ompared to pp. The seond assumption asserts the independene ofdistint primes. The third assumption laims that the prime l annot distinguishbetween primes and numbers whih are prime to l.The purpose of omputing �rst the average over all t is twofold: it enompassesmost of the hard work for the ase of interest, and it provides a omforting hekthat the average is 1 for eah l, lending support to assumption (ii).We reall the harater sum (see, for example, exerise 8 of hapter 5 in [4℄)lXt=1 � t2 � 4pl � = �1if l does not divide 4p. This tells us how many times the Legendre symbol is 1or �1, given that it is zero for 1 + �pl � values of t (mod l). The prime 2 requiresspeial treatment, as usual. Note that sine p is odd, t2�4p � 5 (mod 8) whenevert is odd, so that � t2�4p2 � = �1 whenever t is odd.



THE PROBABILITY THAT THE NUMBER OF POINTS IS PRIME 9Case 1: l odd, �pl � = �1Euler fator, Probability of having Expeted value of  3(l),�1� � t2�4pl �. l��1 this Euler fator given this Euler fator�1� 1l ��1 (l � 1)=2l 1�1 + 1l ��1 (l + 1)=2l 11 0 Not appliableThis is the simplest ase, for  3(l) is always 1, and the average of�1� � t2�4pl �. l��1  3(l) over all t isl � 12l (1� 1=l)�1 + l + 12l (1 + 1=l)�1 = 1 :Case 2: l odd, �pl � = +1Euler fator Probability of having Expeted value of  3(l),this Euler fator given this Euler fator�1� 1l ��1 (l � 3)=2l 1�1 + 1l ��1 (l � 1)=2l 11 2=l l2=(l2 � 1)For the two values of t (mod l) for whih l divides t2�4p, the Euler fator is 1, butthe  3 ontribution is non-trivial, on average. Given ljt2 � 4p, we have lrkt2 � 4pwith probability (l�1)=lr (assuming that t runs between 1 and ls with s!1). Letm be maximal suh that l2mjt2�4p: m = br=2. If r is odd, then � (t2�4p)=l2ml � = 0.If r is even, then � (t2�4p)=l2ml � = �1, with eah sign being equally likely. Addingover all r (splitting into r = 2s� 1 and r = 2s), the average value of  3(l), giventhat ljt2 � 4p, is(l � 1) 1Xs=1� l � l�(s�1)l2s�1(l � 1) + 12l2s � ll � 1 + l � 2=(ls + ls�1)l � 1 �� = l2=(l2 � 1) ;after summing the series.Finally, for this ase, we ompute the average value of�1� � t2�4pl �. l��1  3(l) for suh l, averaging over all t:l � 12l � ll + 1 + l � 32l � ll � 1 + 2l � l2l2 � 1 = 1 :Case 3: l = 2Euler fator Probability of having Expeted value of  3(l),this Euler fator given this Euler fator2 0 Not appliable2/3 1/2 11 1/2 4/3There are three subases, aording as p � 3 (mod 4), p � 5 (mod 8), or p � 1(mod 8). This last is the most diÆult, so we go through the details, leaving theother ases as exerises.



10 STEVEN GALBRAITH AND JAMES MCKEESuppose, then, that p � 1 (mod 8). The only �gure that needs explanation isthe \4/3" when t is even. If t � 0 (mod 4), then  3(2) = 1: we annot remove afator of 4 from the disriminant. If t � 2 (mod 4), then t2 � 4p � 0 (mod 32),and 2rkt2 � 4p with probability 16=2r (r � 5). If r is odd, then with m as in thede�nition of  3 we havem = (r � 3)=2; � (t2 � 4p)=22m2 � = 0 :If r is even, then the pair (m;� (t2�4p)=22m2 �) takes values (r=2 � 1; 0), (r=2; 1),(r=2;�1) with probabilities 1/2, 1/4, 1/4 respetively. Hene, summing over allr � 5, splitting into r = 2s and r = 2s�1, we get that the expeted value of  3(2),onditional on t being even, is12 �1+12 1Xs=3� 1622s�1 (2� 2�(s�2)) + 162s �12(2� 2�(s�1)) + 14 � 2 + 14(2� 13:2s�1 )�� ;whih sums to 4/3.The ases p � 5 (mod 8) and p � 3 (mod 4) also yield 4/3, but muh moresimply, with no in�nite sums.Averaging �1� � t2�4pl �. l��1  3(l) over all t we get12 � 23 � 1 + 12 � 1 � 43 = 1 :Now we move to averaging over p+ 1� t 6� 0 (mod l).The hard work is done: we simply delete one value of t (mod l) from the abovetables.Case 1: l odd, �pl � = �1Euler fator Probability of having Expeted value of  3(l),this Euler fator given this Euler fator�1� 1l ��1 (l � 3)=2(l� 1) 1�1 + 1l ��1 (l + 1)=2(l� 1) 11 0 Not appliableThe average value of �1� � t2�4pl �. l��1  3(l) isl � 32(l � 1) � (1� 1=l)�1 + l + 12(l� 1) � (1 + 1=l)�1 = 1� 1(l � 1)2 :Case 2: l odd, �pl � = 1, l 6 jp� 1Euler fator Probability of having Expeted value of  3(l),this Euler fator given this Euler fator�1� 1l ��1 (l � 5)=2(l� 1) 1�1 + 1l ��1 1=2 11 2=(l� 1) l2=(l2 � 1)



THE PROBABILITY THAT THE NUMBER OF POINTS IS PRIME 11The average value of �1� � t2�4pl �. l��1  3(l) isl � 52(l � 1) � (1� 1=l)�1 + 12 � (1 + 1=l)�1 + 2l � 1 � l2l2 � 1 = 1� 1(l � 1)2 ;as in Case 1.Case 3: l odd, l j p� 1Euler fator Probability of having Expeted value of  3(l),this Euler fator given this Euler fator�1� 1l ��1 (l � 3)=2(l� 1) 1�1 + 1l ��1 1=2 11 1=(l� 1) l2=(l2 � 1)The average value of �1� � t2�4pl �. l��1  3(l) isl � 32(l � 1) � (1� 1=l)�1 + 12 � (1 + 1=l)�1 + 1l � 1 � l2l2 � 1 = 1� 1(l � 1)2(l + 1) :Case 4: l = 2Merifully this is trivial when we ondition on p+ 1� t 6� 0 (mod 2):�1� � t2�4p2 �. 2��1  3(2) is always 2=3.Multiplying over all primes l, we get our expression for p:p = 23Yl>2�1� 1(l � 1)2� Yljp�1; l>2�1 + 1(l + 1)(l� 2)� :4. Seond derivation of Conjeture AConsider the following non-equality:P1 6= Yl�pp�1� 1l� :Indeed Mertens' theorem (Theorem 429 in [2℄) tells us that Ql�pp �1� 1l � �2e�= log p as p!1, where  is Euler's onstant, whereas one expets that P1 �1= log p. If we replae 1 � 1=l by the probability that the number of points on anellipti urve over Fp is not divisible by l, then we would get another non-equality:Q1 6= Yl6 jp�1; l�pp�1� 1l � 1� Yljp�1�1� ll2 � 1� :where the fators 1� 1=(l � 1) and 1� l=(l2 � 1) ome from Proposition (1.14) of[7℄, ignoring the error terms.Assuming that these two non-equalities are \equally inorret" asymptotially,whih is by no means implausible, their ratio should give us p. And it does!This provides a muh quiker way of deriving the formula for p, albeit a lesshonest one.



12 STEVEN GALBRAITH AND JAMES MCKEE5. Derivation of Conjeture BWe shall use this seond heuristi method to derive Conjeture B. The sameresults ould presumably be reovered from the analyti lass number formula, butnot so quikly.Suppose that k = p�11 : : : p�mm , with p1, : : : , pm distint primes. Then, asymp-totially, Pk 6= mYi=1� 1p�ii � 1p�i+11 � Yl�pp; l62fp1;::: ;pmg�1� 1l � :For the analogous non-equality for ellipti urves, we need Howe's extension ofLenstra's probabilities to over all small divisors of the number of points (see [3℄):the probability that the number of points is divisible by lt tends to r(lt) (as de�nedin Conjeture B) as p!1. Hene our seond desired non-equality isQk 6= mYi=1 �r(p�ii )� r(p�i+1i )� Yl�pp; l62fp1;::: ;pmg (1� r(l)) :Comparing the ratio of these non-equalities with p gives the stated formula for fk.6. Arbitrary finite fieldsIn this setion we onsider ellipti urves over non-prime �nite �elds Fq . Notethat Howe's work is valid over any �nite �eld, of any harateristi, always ountinglasses of urves with weight inversely proportional to the size of the automorphismgroup. Hene our seond heuristi approah readily extends to this more generalsetting.The ase of most interest to ryptographers is when the �eld has 2n elements andwhen the ellipti urves under onsideration are non-supersingular. We give the fulldetails only for this ase. In this situation, the number of points is always even andso never prime. Nevertheless, it is still interesting to onsider the probability thatthe number of points is k times a prime for small even values k.All supersingular urves in harateristi 2 have j-invariant zero. We use thenormal form E : y2 + xy = x3 + ax2 + b; b 6= 0for ordinary ellipti urves over F2n (in this ase j(E) = 1=b). The probability weare studying is over uniformly distributed hoies (a; b) 2 F2n �F�2n . It follows thatthere are 2n+1 � 2 F2n -isomorphism lasses of ordinary ellipti urves over F2n .With p = 2n, we have that r(2t) = 1=2t�1, whih is preisely the probability thatan even number is divisible by 2t. For k odd, and t � 1, let P 02tk be the probabilitythat an even number within 2p2n of 2n + 1 is 2tk times a prime. Then we expetthat the probability that an ellipti urve over F2n has 2tk times a prime for its



THE PROBABILITY THAT THE NUMBER OF POINTS IS PRIME 13number of points will be asymptoti toP 02tkfkYl>2�1� 1(l � 1)2� Ylj2n�1�1 + 1(l + 1)(l � 2)� ;as n!1.We provide some experimental data to support this onjeture. In the tablesbelow, the olumn labelled Q02tk is the experimentally observed probability.Example 9: q = 227, q = 0:67679.2tk P 02tk fk qfkP 02tk Q02tk2 0.05558 1 0.03762 0.037934 0.03021 1 0.02044 0.020916 0.02037 2 0.02757 0.027268 0.01497 1 0.01014 0.0103010 0.01191 4/3 0.01075 0.0108412 0.00928 2 0.01472 0.0145814 0.00928 288/287 0.00630 0.0062216 0.00785 1 0.00531 0.0051118 0.00703 2 0.00952 0.00993Example 10: q = 228, q = 0:87289.2tk P 02tk fk qfkP 02tk Q02tk2 0.05499 1 0.04800 0.048054 0.02844 1 0.02483 0.025256 0.01877 16/15 0.01747 0.017338 0.01519 1 0.01327 0.0132810 0.01147 96/95 0.01012 0.0102312 0.00986 16/15 0.00918 0.0090414 0.00824 6/5 0.00863 0.0086416 0.00745 1 0.00650 0.0063518 0.00671 7/5 0.00820 0.00826We see that the results agree fairly losely with the theoretial predition.7. Appliation to CryptographyIn ryptography it is often desirable to use ellipti urves whih have been hosenat random, so that there an be no suspiion that any speial properties of the urveare being exploited. In this situation it is useful to know how many random urveswill need to be hosen, on average, until a urve with a prime (or \nearly prime")number of points is found. The results of this paper give a very preise estimate ofthis number: 1expeted number of urves = KXk=1Qk � p KXk=1 fkk(log p� log k) :



14 STEVEN GALBRAITH AND JAMES MCKEEIt is worth noting that the bene�ts of taking K > 1 are greater than they would beif the numbers of points were uniformly distributed, sine prime numbers of pointsare a little rarer than prime numbers. As an example, onsider p = 2200 + 235(the �rst 201-bit prime). The expeted number of random trials before �nding anellipti urve with a prime number of points is 291, while the expeted number oftrials for the ases K = 5; 10 and 20 is 127, 99 and 80 respetively.A omparison of the results of this paper with those of [5℄ shows that roughly thesame amount of work is needed to �nd an ellipti urve suitable for ryptographywhether we �x the �eld Fq and selet random E, or we �x E and vary the �eld.If one insists on seeking a prime number of points, then it helps a little to hoosep suh that p � 1 is divisible by some small primes, say p � 1 (mod 105), so thatp is larger. On the other hand, if a prime l divides p � 1, then fl is smaller, andwith K = 10 there is little variation in PKk=1Qk for primes of the same size.In ryptography there is some onern about the use of ellipti urves whoseendomorphism ring has small lass number, suh as those ellipti urves whih aregenerated using the CM method (see [1℄, [9℄, [6℄). This is one of the reasons why it isreommended that ellipti urves should be hosen at random. We will now indiatethat the lass numbers orresponding to the randomly hosen ellipti urves usedin ryptography are atually somewhat smaller than might be expeted.The analyti lass number formula shows that H(t2 � 4p) is roughly 1�p4p� t2with the orretion fator Ql�1 � ( t2�4pl )l�1��1 3(l). In Setion 3 we have givenan analysis of these orretion fators. Taking the asymptoti average over all tgives a fator of 1. However, over those t suh that the number of points is a primewe have seen that the orretion fator is the number p, whih lies in the range0:44 � p � 0:62 (and usually is loser to 0:44). Similarly, for urves whose numberof points is kq, the orretion fator is pfk.We give one example to illustrate this phenomenon. The table gives the expetedvalue of the lass number for a randomly hosen ellipti urve modulo 1010 + 19over those urves having kq points where 1 � k � K.K Expeted lass number1 251255 3821810 4637615 498811 77857This shows that the expeted lass number for urves with a prime number ofpoints is, over this �eld, about a third of the expeted value over all ellipti urves.From another point of view, these onsiderations show that ellipti urves withsmooth order are likely to have endomorphism rings of large lass number. This phe-nomenon has been noted previously as it explains why the ECM fatoring methodworks slightly better than might be expeted.
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