Tracking Morphological and Semantic Co-occurrences in Spontaneous Dialogues

Mark Seligma
Université Joseph Fourier
GETA, CLIPS, IMAG-campus, BP 53
385, rue de la Bibliothque
38041 Grenoble Cedex 9, France
seligma@cefnetcom

Jan Alexandesson
Gaman Reseach hstitute d Conputer Sciace,
DFKI GmbH
Stuhlsat zenasweg 3
66 123 Saartriicken, Germary
jan.alexandeson@ifki.de

Kristiina Jkinen
Flanders Laguage Valky
Sint Krispijnstrat 7
8900 lgper, Belgium
Kristiina. J&kinen@flv.be

Abstract

In the processing of spontaneous language, in-
formation concerning discourse-level co-
occurrences of words or morphemes — rela-
tively long-term predictions on the scale oi/se
eral utterances — may help to reduce perplexity
in speech recognition, facilitate lexical disam-
biguation, and contribute to topic tracking. This
working paper describes a new set of facilities
for tracking lexical co-occurrences. The major
innovation is the use of semantic smoothing: we
track co-occurrences of semantic tokens assoc
ated with words or morphs in addition to co-
occurrences of the words or morphs themselves.
Such smoothing offers an approach to the prob-
lem of data sparseness: it is possible to retrieve
reasonable semantically-mediated associations
for morphs not in the training corpus. We report
on preliminary experiments with a corpus of
morphologically-tagged transcripts of 16 sponta-
neous Japanese dialogues concerning direction-
finding and hotel arrangements. We close with
discussion of lexical disambiguation and topic
tracking as they relate to co-occurrence net-
works.

1 Introduction

In the processing of spontaneous language, predictions at
the morphological or lexical level can be useful in several
ways. First, they can aid speech recognition: to weigh rec-
ognition candidates appropriately, it is crucial to know
which morphological or lexical items are most likely, given
the words recently seen in a discourse. Second, lexieal pr
dictions can facilitate lexical disambiguation: to distinguish
the meanings of an ambiguous word lbank for instance,

it is helpful to know which meaning is most predictable,
given the words and meanings recently seen in a discourse.
Both uses of lexical prediction can be seen as aspects of
topic tracking.

The classical mechanism for lexical prediction is the use of
N-gram statistics for the surface forms of the relevanit lex
cal items. For the purposes of speech recognition and dis-
ambiguation in spontaneous language, however, thts tec
nigue is unsatisfactory in two respects.

First, the range of predictions is too short, as predictions are
usually made over a distance of no more than five words
[Church, 1990]. To support bottom-up recognition and

analysis of noisy material containing gaps and fragments,
longer-rang predictions are needed as well. Long-range pre-



dictions should have the advantage of being stronger th@sounded by pauses or significant morphemes such as con-
very short-range predictions, since predicting what willjunctions, hesitations, postpositions, etc. Windowsi€o
come “soon” is in general easier than predicting what wilbosed of several successive minimal segments can then be
come next; and they should require less data, since examecognized: let Si be the current segment and N be time nu
ples of occurrence “soon” will be found more often in & co ber of additional segments in the window as it extends to the
pus than examples of consecutive occurrence. right. N = 2 would, for instance, give a window three seg-
ments long with Si as its first segment. Then if a given word
Second, data for spontaneous language is often too sparsestomorpheme M1 occurs (at least once) in the initigl se
support accurate and consistent predictions based on theent, Si, we attempt to predict the other words or mor-
surface items alone. A biased corpus may, for instance, iphemes which will co-occur (at least once) anywhere in the
dicate a strong association betwed®mrs andstreet yet fail to ~ window.
associatear andstreet even though this association would
be intuitively expected and potentially useful. Specifically, a conditional probability Q can be defined as
follows: Q(M1, M2) = P(M2 element of Si U Si+1 U Si+2
To obtain predictions at longer range than N-grams statistics. Si+N | M1 element of Si), where M1, M2 ... are mor-
can provide, we might consider stochastic grammars [Blackhemes, S1, S2 ... are minimal segments, and N is the width
et al, 1993]. However, these predict only within utterancesof window in segments. Q is thus the conditional probability
while our interest extends to predictions on the scalewf sethat M2 is an element of the union of segments Si, Si+1,
eral utterances. We might also consider discourse-oriente8i+2, and so on up to Si+N, given that M1 is an element of
mechanisms such as centering and global focusing mode$.
[Grosz and Sidner, 1986], [Walket al., 1992]; but in fact
these are not designed to predict the lexical items that wilf N = 0, the window is asingle segnent. In this case,Q

be seen a bit later in the dialogue.

Instead, we proposeto permit the flexible definition of
windowsi n a transcriked corpus within which oo
occurrences of morphological or lexical dements can be
examinal. In this respect, our goproah is similar to that
of eg. [Faret ad Gau, D98].

With respect to the problem of data parseess, howerer,
our approach is, as far as we know, wunpreedened. In
addition to standard statisticalsmoot hing procedures ,we
propose new techni quesfor semanticsm oothi ng:we track
co-occurenes of sematic tokens as®ciated with words
or morphs in additionto co-occurenes of the words or
marphs themelves. The bendits of this smoothing tech-
nique appear espeially in the possibility of retrieving
reasondle manti caly-medi atedassaiations for morphs
not in a training oconps.

In Section2, we describeour definitions of segmentsand
windows and the statistical gopoach which follows from
them. In Section3, we descibe the pontaneous corpus
used in our preliminay experiments. Section 4 presats
our semantic smoothingappoach, the cental innovation
of the current work. Section 5 evaluatesaur ealy ex-
peimentalresults.Section 6 is reseved for discussiorof
lexical disambigation andtopic trakking as it relatesto
co-occurene neworks. We conclude in Section 7 by
outlining our plans for further experi meation.

2 Segmentsand Windows

We first permit the investigator to define minimal segment

indicates the probability that M2 co-occurs in segmat
Si, given that M1 occus there. If nis greaterthan 1, Q
is the probaility that M2 will be found in any of the
window's several segmats. (Thus, while Q usually pre-
dicts M2 later in awindow, M2 may som etines precede
M1 if it ocairs in window-initial segmentSi.) Both the
s@ment definition and the numbe of segmats in awin-
dow can be ajusted to vary the range over which o-
occurrence pedictions are attguhed.

3 Corpus and Early Experiments

For initial experiments, we used a morphologically-tagged
corpus of 16 spontaneous Japanese dialogues concerning
direction-finding and hotel arrangements [Loken-Kim and
Yato, 1993]. We collected common-noun/common-noun,
common-noun/verb, verb/common-noun, and verb/verb
conditional probabilities in a three-segment window (n = 2).
Conditional probability Q is computed among all morph
pairs for these classes and stored to a database; pairs scoring
below a threshold (0.1 for the initial experiments) wee di
carded. We also compute and store the mutual information
for each morph pair, using the standard definition as in
[Fano, 1961].

Fast queries of the database are then enabled. A central
function is GET-MORPH-WINDOW-MATES, which pr

vides all the window mates for a specified morph which
belong to a specified class and have scores above a specified
threshold for the specified co-occurrence measure
(conditional probability or mutual information).

S

within the corpus: these may be utterances, sections



The intent i_s to use;uch queries in reall t.ime to spport  GET-MORPH-WINDOW-MATES-VIA-CATS. It permits
bottom-up, islanddriven speech recoqition and analy- filtering, so that morphs are output only if they belong to a
sis. To supprt the establishmentof islard centersfor  gesired morphological class and are mediated by cats whose

such pasing, we alsocollect informationon exh arpus .4 gceurrence likelihood is above a specified threshold.
morphin isolatim: its hit count and the segmeats it ap-

Eg:\nlga i|rt]s au';g;rln?,rgga;rlggd)m?y pro?t?lglgézar?geaﬁ] Thesaurus categories are normally arranged in a type hierar-
ary given sgment, etc. On@ island hypotheses have chy. _Ip .the Kadokawa thesauru;, there are four levels of
been establis hecbased on this foundation, m-occurrence  SPecificity: “725a” (posts-or-stations), mentioned above,
predictionsw ill come into play for island extesion.  belongs to a more general category “725” (stations-and-
Global information concerning morphs is as o recorded, harbors), which in turn belongs to “72” (institutions), which
showing that our presat 16-dialogue corpus,in which a  belongs to “7” (society). Accordingly, we need not restrict
minimal segment has been ddined as a single utterae,  co-occurrence investigation to cats at the level given by the
contains 1743 segments;is 19250 morphs long; has 949 thesaurus. Instead, knowing that “725a” occurred in a seg-
different morphs; and has a morph unigram entry of  ment Si, we can infer that all of its ancestor cats occurred

6.8982. there as well; and can seek and record semantic co-
4 S tics thi occurrences at every level of specificity. This has been
emantic omoothing done; and GET-MORPH-WINDOW-MATES-VIA-CATS

It was suggested that sparse data should be somewhat légs a parameter permitting specification of the desired level
problematic for long-range than for short-range predictionspf semantic smoothing. The more abstract the level of
Still, there is never quite enough data; so abstraction, @moothing, the broader the resulting group of semantically-
smoothing, of the data will remain desirable. As a statisticamediated morpheme co-occurrences.
smoothing measure, we support the use of standard tech-
niques [Nadas, 1985] for smoothing both conditionabpro The most desirable level for semantic smoothing is a matter
ability and mutual information. We make no commitment tofor future experimentation. However, we can anticipate a
any particular technique, however. general preference for the most specific predictionsl-avai
able: we would resort to semantic smoothing only when no
In addition, we enable semantic smoothing in an innovativenorph-specific co-occurrences could be predicted at a cer-
way. Thesaurus categories €atsfor short — are sought tain threshold, and would resort to more abstract semantic
for each corpus morph (and stored in a corpus-specific cusmoothing only when more specific smoothing failed. Thus
tomized thesaurus for fast access). The common-e&un we provide a function GET-MORPH-WINDOW-MATES-
(station), for instance, has among others the cat label “725MOST-SPECIFIC with this behavior. Its value for robus
(representing a semantic class of posts-or-stations) in theess appears especially in cases when the input is a morph
standard Kadokawa Japanese thesaurus [Ohno andrHamavhich did not occur in the training corpus. Without seman-
ish, 1981]. tic-smoothing-in-case-of-need, the attempt to make co-
occurrence predictions would certainly fail; but with this
Equipped with such information, we can study the co{possibility, reasonable predictions can often be made. An
occurrence within windows of cats as well as morphs. Foentry for the new morph is sought dynamically in the rele-
example, using n = 2, GET-CAT-WINDOW-MATES finds vant thesaurus; any cats thus found are checked for likely
36 cats co-occurring with “725a”, one of the cats associatee-occurring cats; and morphs associated with these cats in
with eki (station), with a conditional probability Q greater the training corpus can be delivered as output. For instance,
than 0.10, including “459a”sewa taking-care-of or look- kuruma “car, auto”, does not appear in our corpuswHo
ing-after), “216a” penkoy transfer), and “315b"qri, get-  ever, the Kadokawa thesaurus does list this morph with
ting-off). Since we have prepared an indexed reverseudhesacodes “997” (vehicles) and “985” (wheels), yielding a wide
rus for our corpus, we can quickly find the corpus morphgange of associated verbs from our corpus, includkog
which have these cat labels, respectivelju, “look”, ~ “go”, tuku “arrive”, and 44 others; and of common-nouns,
miery, “can see, visible”magary “turn”; andoriru, “get including shibasy “city bus”, ikikata “(street) directions”,
off”. The resulting morphs are related to the input maekh and 52 others. For each morph retrieved in this way, the
via semantic rather than morph-specific co-occurrencezonditional probability of the mediating cat co-occurrence
They thus form a broader, smoothed group. can be recovered.

This semantic smoothing procedure — morph to related Evaluation
calts, cc:jats to ﬁo—occrl:rrmé; category window-mates, cats iye are presently reporting the implementation of facilities
related morphs — has been encapsulated in the functiQfended to enable many experiments concerning merph



logical and morpho-semantic co-occurrence; the axper
ments themselves remain for the future. Nevertheless, sonfemong the morph co-occurrences with the highest counts,
indication of the basic usability of the data is in order. some clearly reflect grammatical patterns. For exantue,
and gozaare associated (141 times) because both elements
Tools have been provided for comparing two corpora withare politeness markers characteristic of agents’ speech when
respect to any of the fields in the records relating to morphgddressing customers. Other co-occurrences apparently re-
morph co-occurrences, cats, or cat co-occurrences. Usirfiect a common topic (see further below), as for the pair
these, we treated 15 of our dialogues as a training corpudeguchi(“exit”) and densha“train”), with 40 hits.
and the one remaining dialogue as a test corpus. We co
pared the two corpora in terms of unigram probabilities fo6 ~ Discussion: Disambiguation, Topics
morphs, and in terms of conditional probabilities for morph
co-occurrences. (In both cases, statistically unsmoothed/e have mentioned two possible uses of lexical prediction:
scores were used for simplicity of interpretation.) to constrain speech recognition, perhaps in an island-driven
style; and to facilitate lexical disambiguation. Having a
Considering all morphological classes, we found 898 differready sketched an approach to the first application area, we
ent morphs in the training corpus and 365 in the test. 314ill do likewise for the second. We will then turn to more
morphs were found in both corpora; so our training corpugieneral discussion of topic tracking and its relation to co-
of 15 dialogues covered 314 out of 365 morphs in the testccurrence studies. Finally, we will assess several problems
dialogue, or about 86 percent. Table 1 compares the corporalated to co-occurrence networks, disambiguation, and
for 25 shared common-nouns. Morphs are listed in order dbpic tracking.
least difference between corpora. While most common-
nouns occurred too rarely over both corpora to allow reaco-occurrence and Lexical Disambiguation. A weighted
sonable comparison of probabilities, even in this subset of @>-occurrence between morphemes or lexemes can be
small corpus there were several which did give combinegliewed as an association between these items; so the set of
counts in the thirties or forties, and for these the closeness ob-occurrences which CO-OC discovers can be viewed as
probability scores between corpora seems encouraging. R@i associative or semantic network. Spreading activation
sults for verbs were comparable. within such networks is often proposed as a method of lex
cal disambiguation. (For example, if the concepNEY has
As to morph co-occurrences, we found 5162 co-occurrenckeen observed, then the lexical itbiaink has the meaning
pairs above a conditional probability threshold of 0.10 in theclosest toMONEY in the network: "savings institution" rather
training corpus and 1552 in the test. Since 509 pairs odhan "edge of river", etc.)
curred in both corpora, the training corpus covered 509 out
of 1552, or 33 percent, of the test corpus. That is, one thirdSchiitze, 1998] and [Kikui, 1999] have employed co-
of the morph co-occurrences with conditional probabilitiesoccurrence networks for lexical disambiguation in this way
above 0.10 in the test corpus were anticipated by the-trai — the first in the context of information retrieval, and the
ing corpus. second in the service of machine translation. Their ap-
proaches differ from ours in two principal respects: (1) in
This coverage seems respectable, considering that thiefining windows within which to seek co-occurrences, they
training corpus was small and that neither statistical nodo not segment the corpus into utterances, pause units, etc.
semantic smoothing was used. More important than coveas we do, but instead simply count running words; and (2)
age, however, is the presence of numerous pairs for whidhey do not attempt semantic smoothing as we do.
good co-occurrence predictions were obtained. Such predic-
tions differ from those made using n-grams in that they nee@o-occurrence and Topic. We now turn as promised to
not be chained, and thus need not cover the input to be ugke study of topic, since this kroad field embaces both
ful: if consistently good co-occurrence predictions can bespeechr ecoguition and lexical disambiguationgplica-
recognized, they can be exploited selectively. tions & oo-occurence statistics.

Table 2 shows pair comparisons for the 35 pairs which odn one sense, the notion of topic is implicit whenever the
curred most often, taking the sum of counts in both corporattempt is made to predict upcoming words based on words
Pairs are ordered by least difference between corpora, sdready seen. One could plausibly claim, after all, that
that the best predictions appear first. Again, agreemerknowledge about typical word or sense groupiisg&nowl-
seems encouraging for pairs occurring often enough to atdge about topics. Thus topic tracking would be implicit in
low meaningful comparison. The figures obtained for catsany use of co-occurrence networks to support speeclg—+eco
and cat co-occurrences are comparable. nition or lexical disambiguation.



Weerd interpret the first two clusters as “bombing by ter-
But of course one can also attempt to recognize and trackrists”, “bombing in a war”. The interpretation of the third
topics explicitly. For example, in a corpus of conversationsluster is left unclear, but we might venture to characterize it
ranging from street directions to hotel reservations, we caas “the aftermath of bombing”.
try to explicitly mark the shift between the first and second
topic. If the boundary can be reliably recognized, computawhen using co-occurrence networks to attempt automatic
tional resources specialized for specific topics — fomexa discovery of explicit topics, researchers need not always
ple, specialized sub-grammars — can be brought to bear. seek clusters or nebulae within the networks themselves.

Another approach is proposed by [Ferret and Grau, 1998],
CO-0C'’s co-occurrence networks might indeed be utilizedvho use such networks only to guide the segmentation of
in this way: topic boundaries can be hypothesized at spart®rpora, as suggested above. They then identify the most
within a dialogue where relatively few co-occurrence presignificant words within segments — those which proved
dictions are fulfilled. (Compare e.g. [Morris and Hirst, most relevant to segmentation — and establish thesenas te
1991], [Hearst, 1994], [Nomoto and Nitta, 1994], ortative topic word groups. An iterative merging of tentative
[Kozima and Furugori, 1994].) groups yields final topic word groupings.

There is also the possibility of explicitly recognizing topics Problemsand Issues. In any attempt to interpret groupings
as sub-networks or clusters within an associative networlvithin co-occurrence networks as topics, some difficulties
like CO-OC'’s. The aim would be to formalize the above-are to be expected. A particular problem is raised by am-
mentioned intuition that knowledge about typical word orbiguous words which participate in more than one otherwise
sense groupings knowledge about topics. Individualgeo  unrelated topic. Do they make their several topics overlap,
ics might then be imagined as nebulae, in which words othus inappropriately bringing into proximity words which
concepts are the stars. Topic transitions would be seen abould remain distant? For instance, assume that English
movement of activation from one nebula, or group ofuaeb bankis closely associated withoneyon one hand, and with
lae, to another. Since there can in theory be groups withinver on the other. Now thahoneyandriver have been
groups, such analyses might support efforts to explicithdragged close together by their mutual association with
track movement among topics and sub-topics, e.g. using tréank are they henceforward to be considered topic-mates?
diagrams as in [Jokinen and Tanaka, 1998]. Clearly not; rather, since they themselves rarely co-occur,
we haveprima faciaevidence that two separate topics are
Visualization of topics as groupings within semanti¢-ne involved, and thabank can belongs to both of themepr
works may also inform the design of human interfacescisely because it is in fact polysemous. We might then con-
[Veling and van der Weerd, 1999] present an interestingider the creation of two separate tokens for the word, say
application of this approach to information retrieval. (Thebank andbank,. Of course, the evidence for the topis-di
paper is also valuable for its straightforward yet effectivetinction will be strengthened if many other words also inde-
techniques for topologically analyzing co-occurrencé ne pendently support it (e.gnterest rate, etc. on one hand and
works in order to seek meaningful groupings within them.}oat, shore etc. on the other hand).
In online searches, most queries contain few words. Since
these are often ambiguous, many unusable hits are oftdn the effort to avoid spurious interpretation of co-
returned. The proposed remedy is to discover topical wordccurrence networks, it may also prove helpful to work with
groupings in which the query words participate, so thsat u associations among concepts or semantic tokens, rather than
ers can select among them. More constrained queries carclusively among lexical elements. For instance, assume
then be automatically composed. For instance, the quethat instead of the lexical pairs just discussethrieybank
word satellite is found to belong to the word clusters and (pank river), the following pairs of semantic tokens
(programming entertainment and (ocket, orbit, space = were under examination:CURRENCY, FINANCIAL-
NASA. No labels are presently assigned to the groups, butisTITuTION) and GEOGRAPHICAL-LOCATION, BODY -OF
the first group might be hand-labeled aseaevISION topic ~ WATER). In this case, the ambiguity of the surface iteank
and the second asSPACEFLIGHTtopic, each with its own would be invisible, and there would be no problematic
meaning ofsatellite. memberships in multiple clusters. As explained, CO-OC
does seek just such semantic associations, on multiple levels
Topical groupings based upon co-occurrence statistics caf abstraction. (In fact, the program creates not one but se
helpfully constrain information retrieval even when noidex eral co-occurrence networks: one network for literal surface
cal ambiguity is at issue. For instance, the query vbordb  elements and additional networks at each level of semantic
yields the groupingsitfjured, explosioninjuries), (soldiers, abstraction.)
wounded officers), and fospital). Veling and van der



On the other hand, it must be granted that the tracking of c®We have briefly discussed several possible applications of
occurrences among semantic tokens brings its own problenas-occurrence networks, with special interest in speech rec-
with ambiguity. During a CO-OC run, a thesaurus wilfjsu ognition, lexical disambiguation, and topic tracking.
gest multiple semantic tokens for polysemous lexical items.
And so, for e.g.bank which semantic token should we To date, we have implemented all of the necessary programs
track: FINANCIAL -INSTITUTION (for the money sense) or for experimentation with the Japanese corpus described
GEOGRAPHICAL-LOCATION (for the river sense)? If we must above, and have undertaken the proof-of-concept experi-
solve this sort of ambiguity before we can use the resultingnents reported here. We can now complete and extend our
network to disambiguate (or define topics), do we not face avork in two directions.
vicious circularity?
First, we must apply our techniques to larger corpora-n o
Three solutions to this last difficulty are under considerader to more fully evaluate their reliability. We are especially
tion: interested to determine the corpus size at which our predic-
tions become stable. The approach we have in mind is
O We can ignore the problem, hoping that when the cosimilar to that of [Reithinger, 1995].
occurrence network is used, good associations will out-
vote the bad ones: that is, that the associations of no®econdly, we plan to extend our experiments to languages
ambiguous topic-mate words and tokens will eve other than Japanese. English and German are of particular
whelm the ambiguous associations. interest. We anticipate that only a moderate effort will be
required to adapt our programs to accommodate new the-
0 We can select topic labels by hand for the corpus ofauri and new corpora.
interest. An efficient interface, similar to that for a
spell-checker, could make this selection tolerably effi-R efer ences
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Table 1: Training and test corpora compared: 25 shared common-nouns

MORPH Q1 Q2 DIFFNC COUNT1 COUNT2 SUMMED
COUNT

ato [hira.] 4.0E-4 4.0E-4 0.0 7 1 8
kinpen 4.0E-4 4.0E-4 0.0 7 1 8
toko 4,0E-4 4.0E-4 0.0 6 1 7
jitaku 4,0E-4 4,0E-4 0.0 6 1 7
ato [kanji] 4.0E-4 4.0E-4 0.0 6 1 7
nanika 4.0E-4 4.0E-4 0.0 6 1 7
deguchi 0.0024 0.0025 1.0E-4 41 6 47
shibasu 7.0E-4 8.0E-4 1.0E-4 11 2 13
houmen 5.0E-4 4.0E-4 1.0E-4 8 1 9
gamen 3.0E-4 4,0E-4 1.0E-4 5 1 6
atari 3.0E-4 4.0E-4 1.0E-4 5 1 6
atari 3.0E-4 4.0E-4 1.0E-4 5 1 6
konkai 3.0E-4 4.0E-4 1.0E-4 5 1 6

i 0.0023 0.0025 2.0E-4 39 6 45
basu 0.0018 0.0016 2.0E-4 31 4 35
hidarite 0.001 0.0012 2.0E-4 16 3 19
tatemono 0.001 8.0E-4 2.0E-4 16 2 18
ue 2.0E-4 4.0E-4 2.0E-4 4 1 5
yuugata 2.0E-4 4.0E-4 2.0E-4 4 1 5
furonto 2.0E-4 4.0E-4 2.0E-4 4 1 5
naname 2.0E-4 4.0E-4 2.0E-4 4 1 5
ichi 2.0E-4 4,0E-4 2.0E-4 3 1 4
shita 2.0E-4 4.0E-4 2.0E-4 3 1 4
katachi 2.0E-4 4.0E-4 2.0E-4 3 1 4
T 2.0E-4 4.0E-4 2.0E-4 3 1 4




Table 2: The 35 most frequent pairs over both corpora

MORPH1 | POS MORPH2 | POS Q1 Q2 DIFFNC COUNT1 | COUNT2 | SUM
michi C-NOUN [ i C-NOUN | 1.0 1.0 0.0 21 1 22
noritsu VERB densha C-NOUN | 1.0 1.0 0.0 7 1 8
me C-NOUN | mae C-NOUN | 1.0 1.0 0.0 5 2 I
jitaku C-NOUN | bango C-NOUN | 1.0 1.0 0.0 6 1 7
wakari C-NOUN | na VERB 1.0 1.0 0.0 4 2 6
gamen C-NOUN | chizu C-NOUN | 1.0 1.0 0.0 5 1 6
furonto C-NOUN | you C-NOUN | 1.0 1.0 0.0 4 1 5
furonto C-NOUN | namae C-NOUN | 1.0 1.0 0.0 4 1 5
meda VERB waka VERB 1.0 1.0 0.0 3 1 4
meda VERB tatemono | C-NOUN | 1.0 1.0 0.0 3 1 4
T C-NOUN | mie VERB 1.0 1.0 0.0 3 1 4
T C-NOUN | maga VERB 1.0 1.0 0.0 3 1 4
T C-NOUN | aru VERB 1.0 1.0 0.0 3 1 4
T C-NOUN | michi C-NOUN | 1.0 1.0 0.0 3 1 4
T C-NOUN | hidari C-NOUN | 1.0 1.0 0.0 3 1 4
T C-NOUN [ ji C-NOUN | 1.0 1.0 0.0 3 1 4
T C-NOUN | hou C-NOUN | 1.0 1.0 0.0 3 1 4
kae VERB chizu C-NOUN | 1.0 1.0 0.0 1 2 3
ke VERB ] VERB 1.0 1.0 0.0 2 1 3
konkousu | C-NOUN | deguchi C-NOUN | 1.0 1.0 0.0 1 1 2
ikutsu C-NOUN | basutel C-NOUN | 1.0 1.0 0.0 1 1 2
gakkal C-NOUN | oshie VERB 1.0 1.0 0.0 1 1 2
gakkai C-NOUN | basho C-NOUN | 1.0 1.0 0.0 1 1 2
yoru C-NOUN | shingaru | C-NOUN | 1.0 1.0 0.0 1 1 2
ma VERB ka VERB 0.2024 0.202 4.0E-4 25 5 30
i VERB de VERB 0.1683 0.1688 5.0E-4 77 6 83
namae C-NOUN | you C-NOUN | 0.2537 0.2532 5.0E-4 20 4 24
oshie VERB hou C-NOUN | 0.3354 0.3361 7.0E-4 24 3 27
hou C-NOUN | goza VERB 0.198 0.2 0.002 131 10 141
deguchi C-NOUN | na VERB 0.2 0.202 0.002 35 5 40
deguchi C-NOUN | densha C-NOUN | 0.2 0.202 0.002 35 5 40
you C-NOUN | furonto C-NOUN | 0.3333 0.3361 0.0028 12 3 15
de VERB shoumen | C-NOUN | 0.1749 0.1688 0.0061 69 6 75
de VERB i C-NOUN | 0.1749 0.1688 0.0061 69 6 75
hidari C-NOUN | aru VERB 0.5 0.5063 0.0063 26 2 28




