
Towards a declarative and e�cient glass-box CLP languageRobert A. Kowalski Francesca Toni Gerhard WetzelDepartment of ComputingImperial College, London SW7 2BZ, UKfrak,ft,gw1g@doc.ic.ac.ukIntroductionThis short paper is a preliminary report on ongoing research and will focus on motivating a newdirection for Constraint Logic Programming (CLP). Using a non-trivial example, it will illustratethe advantages of the proposed glass-box CLP language, i.e. a language which allows the user tospecify how a program should handle and solve constraints instead of relying on a hidden constraintsolver, a black-box, to do this. In the language we suggest (see also [Ko92,Fu93,To94,We94]),knowledge about constraints is expressed by forward propagation rules (FPRs) of the formA1 ^ : : :^ Am ) B1 ^ : : :^ Bnwhere the Ai are conditions ensuring that the conclusions B1; : : : ; Bn hold. Disjunctions are allowedin goals, and FPRs may be used to propagate false into a disjunct, which can then be eliminated.Glass-box versus black-box approachCLP languages like CHIP ([VH89]) or other instances of the CLP(X) language family ([JaLa87])allow the user to write Prolog-style clauses containing (often only prede�ned) constraints, which arethen handed to a constraint solver { a black-box from the user's point of view. The user just statesthe constraints to de�ne a problem, while the constraint solver takes care of �nding a solution, usingthe methods supplied by its designers rather than by its users. Many examples are given in [VH89]for which this appears to be an acceptable approach, but there are other problems for which theblack-box approach seems to be unsatisfactory, where detailed problem speci�c knowledge guidingthe way to a solution has to be incorporated, i.e. where a glass-box approach is needed (see [Fr92]and [CaLa94] for similar arguments and examples). One such example, the job-shop schedulingproblem, is discussed in the next section.Job-shop scheduling as an example applicationIn a job-shop scheduling problem (JSSP) m machines and n jobs are given. A job consists of anumber of ordered tasks, each of which has to be executed on one of the m machines. A job mustnot use the same machine twice for di�erent tasks, and a machine can only process one task at atime. The goal is to minimise the makespan, which is de�ned as the time by which all jobs havebeen completely processed.For a task Ti, let r(i) be a variable denoting its actual starting time ("release date"), si be itscurrently known earliest possible starting time, fi be its currently known latest possible �nishingtime, and pi be its given processing time. There are then four classes of constraints in a JSSP:1. r(j) � r(i) + pi, if Ti and Tj are tasks in the same job and Tj has to be processed after Ti.2. (r(i) � r(j) + pj) _ (r(j) � r(i) + pi), if Ti and Tj are tasks in di�erent jobs which have tobe processed on the same machine.3. si � r(i) for all tasks Ti.4. r(i) + pi � fi for all tasks Ti. 1



A solution to a JSSP is an assignment of values to every r(i) such that 1.{4. are satis�ed. It is thedisjunctive nature of the second class of constraints which makes JSS an intractable and in factNP-complete problem. Due to the complexity of the problem, simply stating all the constraintsand handing them to an all-purpose theorem-prover with a built-in constraint solver is not feasible| unless the constraint solver has been adequately prepared. Whereas in a black-box approach thisrequires changing the compiler (or interpreter), a glass-box approach allows the user to incorporatemethods into the program, which reduce the number of splitting steps required before a solution isgenerated, and such methods may include algorithms from Operations Research (OR).The glass-box approach we propose is based on a theorem-proving framework where goals assumethe form of conjunctions of disjunctions. In the scheduling application, a part of an intermediategoal may look like this:[(r(2) � r(1)+ 2) _ (r(1) � r(2) + 3)] ^ (r(2) � 2) ^ (3 � r(1)) ^ : : :and the problem-solver is designed to replace goals by equivalent goals, replacing disjuncts byfalse whenever possible. In particular, goals can be unfolded by means of if-and-only-if de�nitionsand logically redundant information can be added by propagating with forward propagation rules(FPRs).In the scheduling application, if-and-only-if de�nitions of the formordered(I,J) $ 9 P ( proctime(J,P) ^ r(I) � r(J)+P ) _9 P ( proctime(I,P) ^ r(J) � r(I)+P )can be used to derive goals of the form above from goals of the form ordered(1,2) ^ (r(2) � 2)^ (3 � r(1)). Moreover, properties of � like transitivity andX � Y ^ Y > X ) falsecan be used as FPRs. These rules can be applied to add conjuncts inside single disjuncts in thegoals by using information local to the disjuncts as well as information global to all disjunctions. Inparticular, the addition of false to a disjunct is logically equivalent to eliminating it. By applyingthis propagation strategy to the goal above, r(1) � 5 �rst and then false are added to the seconddisjunct by propagating with the FPRs for � from r(1) � r(2) + 3 ^ (r(2) � 2) ^ (3 � r(1)).Therefore, such a disjunct can be eliminated, and splitting (i.e. distribution of conjunction overdisjunction) is not required. The same strategy, to eliminate disjuncts before splitting, is at thecore of e�cient OR approaches to a JSSP.FPRs are similar to the constraint handling rules (CHRs) proposed in [Fr92]. However, while in ourapproach FPRs are combined with if-and-only-if de�nitions, CHRs are embedded in a given hostlanguage such as Prolog. Moreover, while in our framework goals are conjunctions of disjunctions,in [Fr92] goals are conjunctions of atoms. As a consequence, it is not obvious how to simulatein the language suggested in [Fr92] the use of FPRs illustrated above, of eliminating disjuncts bypropagating global information locally to a disjunct.For the scheduling application, we can obtain other FPRs by analysing algorithms used in OR. Inthe rest of the paper, we will analyse the OR techniques proposed in [CaLa94], based on algorithmsdescribed in [ApCo91] and the literature referenced therein. [CaLa94] describes an e�cient programto solve a JSSP in a hybrid (declarative and procedural) language called LAURE. For obviousreasons, such as verifying programs relative to speci�cations, it is desirable to eliminate the non-logical elements of the LAURE program, e.g. destructive assignment, without losing too muche�ciency; the framework proposed here might be a way to achieve this.2



Logically, what makes the LAURE program e�cient is its use of task intervals. A task interval[Ti; Tj] is de�ned for every pair of tasks (Ti; Tj) which have to be processed on the same machine(note that Ti = Tj is allowed) as the set of all tasks Tk on the same machine whose earliest possiblestarting time sk is greater than or equal to that of Ti and whose latest possible �nishing time fk issmaller than or equal to that of Tj :[Ti; Tj] = fTk : sk � si ^ fk � fjgA task interval may be empty and is then inactive. The contents of each of the mn2 task intervalsare stored together with the sum p[Ti;Tj ] of the processing times of all its tasks in a matrix whichgives immediate access to an interval via either of its two de�ning tasks. This direct access is crucialwhen changes to the lower and upper bounds sk and fk are propagated by propagation rules whichare very similar in form to FPRs. For example, the edge �nding rule says that a task cannot bescheduled �rst among the tasks in a task interval, if this makes the sum of the processing timesin the interval greater than the gap between the latest possible �nishing and the earliest possiblestarting time:Tk 2 [Ti; Tj] ^ p[Ti;Tj] > fj � sk ) sk � minfsl + pl : Tl 2 [Ti; Tj]; l 6= kgTransforming this rule into a FPR is easy:task interval( Ti, Tj, Tasks, PSum ) ^ member( Tk, Tasks ) ^ proctime( Tj, Pj ) ^r(Tj)+Pj � Fj ^ r(Tk) � Sk ^ PSum > Fj-Sk ^ findmin(Tasks,Tk,NewS) ) r(Tk) � NewSIf applicable, the FPR generates a new lower bound for r(Tk). This can, but need not be tighterthan the old one, but by employing transitivity (possibly using further FPRs, cf. [To94]) only thetighter one is kept, although it will be useful to store the old value in, say, old s( Tk, Sk ) to accessit again later (see below).If the new lower bound for r(Tk) is tighter than the old one, some task intervals on the consideredmachine may change. There are four di�erent types of change: deactivating intervals, removing atask from an interval, creating new active intervals, and adding a task to an interval. For example,an interval [Ti; Tj] is deactivated if the earliest possible starting time of Ti is strictly greater thanthe latest possible �nishing time of Tj. All these changes can again be expressed in terms of FPRs,e.g. here is the one to deactivate an interval:old s( Ti, OldSi ) ^ r(Ti) � NewSi ^ OldSi <NewSi ^ task interval( Ti, Tj, Tasks, PSum ) ^proctime( Tj, Pj ) ^ r(Tj)+Pj � Fj ^ NewSi > Fj ) task interval( Ti, Tj, [], PSum )The formulation we suggest gives direct access to all stored data, i.e. to the task intervals andto the earliest possible starting and latest possible �nishing times. In the version of [CaLa94],all of these are updated by means of destructive assignment. It might be argued that the ruleabove can be implemented in a manner which simulates destructive assignment by making use ofan optimisation similar to tail recursion. Such an optimisation can be justi�ed by the connectiongraph procedure which eliminates used links and pure clauses (containing a literal without anylink), e.g. task interval( Ti, Tj, Tasks, P ) can be replaced by task interval( Ti, Tj, [], P )and thus deactivated because task interval( Ti, Tj, Tasks, P ) is no longer linked to any otherclauses in the program. To obtain the advantage of direct accessibility, a Prolog program or aProlog-based CLP implementation could store the data as a database of assertions and updatethem using assert and retract. 3



Related work and conclusionArguments against the black-box CLP approach have in part motivated the cc(FD) language de-scribed in [VHSaDe93]. cc(FD) allows more user-de�ned control over the search strategy; however,it still relies on a �xed built-in constraint solver. A cc(FD) program solved a 10 machines, 10 jobsJSS benchmark in 90 hours, which does not compare well with the 7 minutes needed by the OR al-gorithms of [ApCo91], which have been implemented in C. It is not clear how the cc(FD) approachcould incorporate OR techniques of the kind discussed in this paper to improve its e�ciency.[CaLa94] describes an e�cient program to solve a JSSP, whose performance is comparable withthose of OR algorithms. For example, it solves the 10�10 JSS benchmark in about 20 minutes.This program is implemented in a hybrid (procedural and declarative) glass-box CLP language.In this paper we have illustrated how it might be possible to encode the techniques suggested in[CaLa94] in a purely declarative glass-box CLP language.FPRs are similar both in syntax and semantics to the CHRs de�ned in [Fr92], but FPRs are usedin the context of if-and-only-if de�nitions, while CHRs are used with Prolog-style programs. Theexplicit representation of disjunctions in our approach is important, because it enables us to reducedisjuncts to false without splitting. This strategy seems to be built into many OR algorithms.It is not clear how Fr�uhwirth's CHR approach could achieve a similar behaviour without theimplementation of a meta-interpreter.To conclude, although there is already a rather large number of (C)LP languages, an e�cient glass-box language which is purely declarative, yet allows a procedural reading of its propagation rulesseems to have a great potential.AcknowledgementsThe �rst two authors were supported by the Fujitsu Research Laboratories and are grateful to KenSatoh and Fumihiro Maruyama for many helpful discussions.References[ApCo91] Applegate, D.; Cook, W.: A computational study of the job-shop scheduling problem,ORSA Journal on Computing 3 (1991) No. 2[CaLa94] Caseau, Y.; Laburthe, F.: Improved CLP Scheduling with Task Intervals, Proc. ofthe 11th ICLP, pp. 369-383, MIT Press 1994[Fr92] Fr�uhwirth, T.: Constraint Simpli�cation Rules, ECRC Technical Report 92-18, 1992[Fu93] Fung, T. H.: Theorem proving approach with constraint handling and its applicationson databases, MSc Thesis, Imperial College, London 1993[JaLa87] Ja�ar, J.; Lassez, J.-L.: Constraint Logic Programming, Proc. of the 14th ACM Symp.on the POPL 1987, pp. 111-119[Ko92] Kowalski, R. A.: A dual form of logic programming. Lecture Notes, Workshop inHonour of Jack Minker, University of Maryland, November 1992[To94] Toni, F.: A theorem-proving approach to job-shop scheduling, Imperial College 1994[VH89] Van Hentenryck, P.: Constraint Satisfaction in Logic Programming, MIT Press 1989[VHSaDe93] Van Hentenryck, P.; Saraswat, V.; Deville, Y.: Design, Implementation, and Eval-uation of the Constraint Language cc(FD), Brown University Technical Report No.CS-93-02, 1993[We94] Wetzel, G.: Scheduling in a New Constraint Logic Programming Framework, MScThesis, Imperial College 1994 4


