Towards a declarative and efficient glass-box CLP language

Robert A. Kowalski Francesca Toni Gerhard Wetzel
Department of Computing
Imperial College, London SW7 2BZ, UK
{rak,ft,gwl}@doc.ic.ac.uk

Introduction

This short paper is a preliminary report on ongoing research and will focus on motivating a new
direction for Constraint Logic Programming (CLP). Using a non-trivial example, it will illustrate
the advantages of the proposed glass-box CLP language, i.e. a language which allows the user to
specify how a program should handle and solve constraints instead of relying on a hidden constraint
solver, a black-box, to do this. In the language we suggest (see also [K092,Fu93,To94,We94]),
knowledge about constraints is expressed by forward propagation rules (FPRs) of the form

AAN.ONAL,=>BIAN...ANB,

where the A; are conditions ensuring that the conclusions By, ..., B, hold. Disjunctions are allowed
in goals, and FPRs may be used to propagate false into a disjunct, which can then be eliminated.

Glass-box versus black-box approach

CLP languages like CHIP ([VHS89]) or other instances of the CLP(X) language family ([JaLa87])
allow the user to write Prolog-style clauses containing (often only predefined) constraints, which are
then handed to a constraint solver — a black-box from the user’s point of view. The user just states
the constraints to define a problem, while the constraint solver takes care of finding a solution, using
the methods supplied by its designers rather than by its users. Many examples are given in [VH89]
for which this appears to be an acceptable approach, but there are other problems for which the
black-box approach seems to be unsatisfactory, where detailed problem specific knowledge guiding
the way to a solution has to be incorporated, i.e. where a glass-box approach is needed (see [Fr92]
and [CaLa94] for similar arguments and examples). One such example, the job-shop scheduling
problem, is discussed in the next section.

Job-shop scheduling as an example application

In a job-shop scheduling problem (JSSP) m machines and n jobs are given. A job consists of a
number of ordered tasks, each of which has to be executed on one of the m machines. A job must
not use the same machine twice for different tasks, and a machine can only process one task at a
time. The goal is to minimise the makespan, which is defined as the time by which all jobs have
been completely processed.

For a task 7}, let r(¢) be a variable denoting its actual starting time ("release date”), s; be its
currently known earliest possible starting time, f; be its currently known latest possible finishing
time, and p; be its given processing time. There are then four classes of constraints in a JSSP:

1. r(j) > r(t) 4 pi, if T; and T} are tasks in the same job and 7; has to be processed after T;.

2. (r(e) > r(j)+pj) vV (r(j) > (i) + pi), if T; and T; are tasks in different jobs which have to
be processed on the same machine.

3. s; < r(2) for all tasks T;.
4. r(i) 4 p; < f; for all tasks T;.

A solution to a JSSP is an assignment of values to every r(¢) such that 1.-4. are satisfied. It is the
disjunctive nature of the second class of constraints which makes JSS an intractable and in fact
NP-complete problem. Due to the complexity of the problem, simply stating all the constraints
and handing them to an all-purpose theorem-prover with a built-in constraint solver is not feasible
— unless the constraint solver has been adequately prepared. Whereas in a black-box approach this
requires changing the compiler (or interpreter), a glass-box approach allows the user to incorporate
methods into the program, which reduce the number of splitting steps required before a solution is
generated, and such methods may include algorithms from Operations Research (OR).

The glass-box approach we propose is based on a theorem-proving framework where goals assume
the form of conjunctions of disjunctions. In the scheduling application, a part of an intermediate
goal may look like this:

[(r(2)>r(1)+2) vV (r(1)>7r(2)+3)] A (r(2)>2) A (3>7(1)) A ...

and the problem-solver is designed to replace goals by equivalent goals, replacing disjuncts by
false whenever possible. In particular, goals can be unfolded by means of if-and-only-if definitions
and logically redundant information can be added by propagating with forward propagation rules

(FPRs).
In the scheduling application, if-and-only-if definitions of the form

ordered(I,J) «— d P (proctime(J,P) A r(I) > r(I)+P) V
3 P (proctime(I,P) A r(J) > r(I)+P)

can be used to derive goals of the form above from goals of the form ordered(1,2) A (x(2) > 2)
A (3 > r(1)). Moreover, properties of > like transitivity and

X>Y ANY >X = false

can be used as FPRs. These rules can be applied to add conjuncts inside single disjuncts in the
goals by using information local to the disjuncts as well as information global to all disjunctions. In
particular, the addition of false to a disjunct is logically equivalent to eliminating it. By applying
this propagation strategy to the goal above, (1) > 5 first and then false are added to the second
disjunct by propagating with the FPRs for > from »(1) > 7(2)+3 A (#(2) > 2) A (3 > r(1)).
Therefore, such a disjunct can be eliminated, and splitting (i.e. distribution of conjunction over
disjunction) is not required. The same strategy, to eliminate disjuncts before splitting, is at the
core of efficient OR approaches to a JSSP.

FPRs are similar to the constraint handling rules (CHRs) proposed in [Fr92]. However, while in our
approach FPRs are combined with if-and-only-if definitions, CHRs are embedded in a given host
language such as Prolog. Moreover, while in our framework goals are conjunctions of disjunctions,
in [Fr92] goals are conjunctions of atoms. As a consequence, it is not obvious how to simulate
in the language suggested in [Fr92] the use of FPRs illustrated above, of eliminating disjuncts by
propagating global information locally to a disjunct.

For the scheduling application, we can obtain other FPRs by analysing algorithms used in OR. In
the rest of the paper, we will analyse the OR techniques proposed in [CaLa94], based on algorithms
described in [ApCo91] and the literature referenced therein. [Cala94] describes an efficient program
to solve a JSSP in a hybrid (declarative and procedural) language called LAURE. For obvious
reasons, such as verifying programs relative to specifications, it is desirable to eliminate the non-
logical elements of the LAURLE program, e.g. destructive assignment, without losing too much
efficiency; the framework proposed here might be a way to achieve this.

2

Logically, what makes the LAURE program efficient is its use of task intervals. A task interval
[T;,T;] is defined for every pair of tasks (17;,7};) which have to be processed on the same machine
(note that 7; = T} is allowed) as the set of all tasks 7% on the same machine whose earliest possible
starting time s is greater than or equal to that of T; and whose latest possible finishing time fy is
smaller than or equal to that of 77:

(15, T5] = {1k s > si A fe < fi}

A task interval may be empty and is then inactive. The contents of each of the mn? task intervals
are stored together with the sum pir, 7] of the processing times of all its tasks in a matrix which
gives immediate access to an interval via either of its two defining tasks. This direct access is crucial
when changes to the lower and upper bounds s and f; are propagated by propagation rules which
are very similar in form to FPRs. For example, the edge finding rule says that a task cannot be
scheduled first among the tasks in a task interval, if this makes the sum of the processing times
in the interval greater than the gap between the latest possible finishing and the earliest possible
starting time:

T, € [TZ,T]] A pTi 141 > f]' — S8 = Sp > min{sl + py 2T € [TZ‘,T]'],Z 7£ k}
Transforming this rule into a FPR is easy:

task_interval(T;, T;, Tasks, PSum) A member(Ty, Tasks) A proctime(T;, Py) A

r(T;)+P; < F; N r(Tg) > Sp A PSum > F;j-S; A findmin(Tasks,Ty,NewS) = r(Ty) > NewS

If applicable, the FPR generates a new lower bound for r(7%). This can, but need not be tighter
than the old one, but by employing transitivity (possibly using further FPRs, cf. [To94]) only the
tighter one is kept, although it will be useful to store the old value in, say, o1d_s(Ty, Sp) to access
it again later (see below).

If the new lower bound for 7(7%) is tighter than the old one, some task intervals on the considered
machine may change. There are four different types of change: deactivating intervals, removing a
task from an interval, creating new active intervals, and adding a task to an interval. For example,
an interval [1;,7T;] is deactivated if the earliest possible starting time of 7} is strictly greater than
the latest possible finishing time of 7';. All these changes can again be expressed in terms of FPRs,
e.g. here is the one to deactivate an interval:

old_s(T;, 01dS;) A r(T;) > NewS; A 01dS; <NewS; A task_interval(T;, T;, Tasks, PSum) A

proctime(T;, P;) A r(T]’)+P]’ < F; A DNewsS; > F; = task_interval(T;, T;, [1, PSum)

The formulation we suggest gives direct access to all stored data, i.e. to the task intervals and
to the earliest possible starting and latest possible finishing times. In the version of [Cal.a94],
all of these are updated by means of destructive assignment. It might be argued that the rule
above can be implemented in a manner which simulates destructive assignment by making use of
an optimisation similar to tail recursion. Such an optimisation can be justified by the connection
graph procedure which eliminates used links and pure clauses (containing a literal without any
link), e.g. task_interval(T;, T;, Tasks, P) can be replaced by task_interval(T;, T;, O, P)
and thus deactivated because task_interval(T;, T;, Tasks, P) is no longer linked to any other
clauses in the program. To obtain the advantage of direct accessibility, a Prolog program or a
Prolog-based CLP implementation could store the data as a database of assertions and update
them using assert and retract.

Related work and conclusion

Arguments against the black-box CLP approach have in part motivated the cc(FD) language de-
scribed in [VHSaDe93]. cc(FD) allows more user-defined control over the search strategy; however,
it still relies on a fixed built-in constraint solver. A cc(FD) program solved a 10 machines, 10 jobs
JSS benchmark in 90 hours, which does not compare well with the 7 minutes needed by the OR al-
gorithms of [ApCo091], which have been implemented in C. It is not clear how the cc(FD) approach
could incorporate OR techniques of the kind discussed in this paper to improve its efficiency.

[Cal.a94] describes an efficient program to solve a JSSP, whose performance is comparable with
those of OR algorithms. For example, it solves the 10x10 JSS benchmark in about 20 minutes.
This program is implemented in a hybrid (procedural and declarative) glass-box CLP language.
In this paper we have illustrated how it might be possible to encode the techniques suggested in
[Cal.a94] in a purely declarative glass-box CLP language.

FPRs are similar both in syntax and semantics to the CHRs defined in [Fr92], but FPRs are used
in the context of if-and-only-if definitions, while CHRs are used with Prolog-style programs. The
explicit representation of disjunctions in our approach is important, because it enables us to reduce
disjuncts to false without splitting. This strategy seems to be built into many OR algorithms.
It is not clear how Frihwirth’s CHR approach could achieve a similar behaviour without the
implementation of a meta-interpreter.

To conclude, although there is already a rather large number of (C)LP languages, an efficient glass-
box language which is purely declarative, yet allows a procedural reading of its propagation rules
seems to have a great potential.

Acknowledgements

The first two authors were supported by the Fujitsu Research Laboratories and are grateful to Ken
Satoh and Fumihiro Maruyama for many helpful discussions.

References

[ApCo91] Applegate, D.; Cook, W.: A computational study of the job-shop scheduling problem,
ORSA Journal on Computing 3 (1991) No. 2

[Cal.a94] Caseau, Y.; Laburthe, F.: Improved CLP Scheduling with Task Intervals, Proc. of
the 11" ICLP, pp. 369-383, MIT Press 1994

[Fr92] Frihwirth, T.: Constraint Simplification Rules, ECRC Technical Report 92-18, 1992

[Fu93] Fung, T. H.: Theorem proving approach with constraint handling and its applications
on databases, MSc Thesis, Imperial College, London 1993

[JaLa87] Jaffar, J.; Lassez, J.-L.: Constraint Logic Programming, Proc. of the 14" ACM Symp.
on the POPL 1987, pp. 111-119

[K092] Kowalski, R. A.: A dual form of logic programming. Lecture Notes, Workshop in
Honour of Jack Minker, University of Maryland, November 1992

[To94] Toni, F.: A theorem-proving approach to job-shop scheduling, Imperial College 1994

[VH89] Van Hentenryck, P.: Constraint Satisfaction in Logic Programming, MIT Press 1989

[VHSaDe93] Van Hentenryck, P.; Saraswat, V.; Deville, Y.: Design, Implementation, and Eval-
uation of the Constraint Language cc(FD), Brown University Technical Report No.
(CS-93-02, 1993

[We94] Wetzel, G.: Scheduling in a New Constraint Logic Programming Framework, MSc
Thesis, Imperial College 1994

