
GPU Methods for Real-Time
Haptic Interaction with 3D Fluids

Meng Yang∗†, Jingwan Lu‡†, Alla Safonova†, and Katherine J. Kuchenbecker§
∗Microsoft Corporation, Redmond, WA, USA

†Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
‡Computer Science and Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong

§Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA

Abstract—Real-time haptic rendering of three-dimensional
fluid flow will improve the interactivity and realism of appli-
cations ranging from video games to surgical simulators, but it
remains a challenging undertaking due to its high computational
cost. Humans are very familiar with the look and feel of real
fluids, so successful interactive simulations need to obey the
mathematical relationships of fluid dynamics with high spatial
resolution and fast temporal response. In this work we propose
an innovative GPU-based approach that enables real-time haptic
rendering of high-resolution 3D Navier-Stokes fluids. We show
that moving the vast majority of the computation to the GPU
allows for the simulation of touchable fluids at resolutions and
frame rates that are significantly higher than any other recent
real-time methods without a need for pre-computations. Based on
our proposed approach, we build a haptic and graphic rendering
system that allows users to interact with 3D virtual smoke in real
time through the Novint Falcon, a commercial haptic interface.

I. INTRODUCTION

The computer graphics community has long been interested
in creating virtual worlds where users can interact with syn-
thetic entities as though they were real. To produce graphical
feedback that looks authentic, interactive applications for
entertainment and education increasingly rely on physically-
based simulation to create sophisticated virtual worlds with
realistic physical phenomena. Such simulations can go be-
yond visual feedback by also providing haptic (touch-based)
feedback to the user, typically by monitoring user move-
ments, detecting virtual object interactions, and computing
and applying the appropriate haptic responses in real time
[1]. Note that here we are concerned with kinesthetic (force)
feedback, as opposed to tactile (cutaneous) feedback, though
both are possible; our focus stems primarily from the wide
availability of commercial force feedback devices, which allow
for point-force interactions between the user and the computer
and are adaptable to a variety of applications. The ability to
touch virtual objects and experience interaction forces directly
is known to increase the user’s sense of presence and also
improves the user’s ability to perform manual tasks in virtual
environments, e.g., [2].

Within the domain of physically-based simulation, we be-
lieve there is a great need for accurate real-time graphic and
haptic rendering of three-dimensional fluid flow. A system that
lets users see and feel the response of liquids and gases will
find application in video games as well as high-fidelity surgical
simulators; effects like smoke and blood flow will enhance

Fig. 1. The user grasps the handle of the Novint Falcon to move the spherical
object and feel the forces it experiences in the fluid.

the quality of the simulation and allow virtual environments
to deliver more realistic feedback to the user. However, such
simulations are usually computationally expensive, and there-
fore it is important for a physics engine to strike a balance
between precision and performance. In the case of interactive
applications with haptic feedback, performance becomes even
more critical as haptic rendering requires a significantly higher
frame rate than real-time graphical display to generate smooth
force output [3].

Real-time haptic rendering of physically-based 3D fluids
remains a challenging problem today primarily because of
limitations on Central Processing Unit (CPU) hardware. The
highly parallel structure of the Graphics Processing Unit
(GPU) has demonstrated much more powerful performance
than general-purpose CPUs for a range of complex algorithms.
Inspired by Crane’s GPU-based implementation of real-time
3D Navier-Stokes fluids [4], we propose an innovative GPU-
based parallel computing model for fluid interaction forces,
and we build a system that enables real-time haptic rendering
of high resolution 3D Navier-Stokes fluids. We show that
moving both the fluid simulation and the interaction force
computation to the GPU allows us to simulate touchable fluids
at resolutions and frame rates that are significantly higher than
any other recent real-time haptics methods [5]–[7], without
requiring any pre-computations. Our sample simulation lets
the user move a virtual sphere inside a 3D fluid flow by
maneuvering the handle of a commercial haptic device, as
shown in Figure 1; the user feels an amplified version of the

force one would feel when touching real smoke in this way.
The major contributions of this research are as follows:

• We demonstrate the feasibility of haptic interaction
with 3D fluid flow for high resolution grids (up to
100×100×100) at interactive rates without involving pre-
computation.

• We devise a novel technique for computing the 3D forces
of interaction between a mobile virtual object and a high
resolution fluid simulation on the GPU.

• We establish an efficient pipeline that combines previous
work on GPU-based fluid simulation with our hardware-
accelerated method for haptic force computation.

II. RELATED WORK

Many research teams have previously studied the topic
of real-time fluid simulation for graphics, culminating in
Stam’s 2D real-time fluid simulation method [8]. Baxter and
Lin were the first to augment this type of interactive fluid
simulation with force feedback that enables the user to feel
the fluid’s response to the imposed object motion [5]. Their
force computation method is derived from the fundamental
mechanics principles of an incompressible Navier-Stokes fluid
to ensure physical correctness of the rendered result. Bax-
ter and Lin adapted their haptic display approach to build
a drawing application that allows users to feel the forces
that occur between the virtual brush and the liquid paint.
However, their application is based on 2D fluid simulation
and haptic rendering, which limits its broad usefulness. They
state that extension to 3D is prohibitively difficult because
“the computational cost of the fluid simulation places an
especially restrictive limitation on 3D grid size” [5]. Our
GPU-based 3D simulation system addresses this bottleneck by
significantly reducing the time required for fluid simulation
and force computation, providing the possibility of realistic
haptic interaction in 3D space.

More recently, Dobashi et al. used partial offline pre-
computation to achieve haptic simulation of a fishing rod and a
kayak paddle each interacting with water [6]; for example, they
pre-calculate the feedback force that the user should feel when
the kayak paddle moves into different parts of the water at
different velocities. This approach can be used effectively for
large-scale simulation, but it has high memory requirements.
Furthermore, this approach cannot be quickly reconfigured
to provide real-time haptic rendering of a variety of high-
resolution 3D fluids interacting with a variety of different
virtual object at high frame rates. In contrast to this prior
work, we aim for general-purpose real-time graphic and haptic
rendering of high-resolution fluids on a personal computer.

Mora and Lee extend Baxter and Lin’s 2D fluid simulation
work by adding a spring-mass deformable surface to achieve
a 3D look and feel [7]. Although their method achieves haptic
rendering of 3D fluids at interactive rates, the fluid force
computation is still done on the CPU in 2D (with a maximum
spatial resolution of 15 × 15), so the fluid itself cannot
generate forces in the depth direction. It is also important

to consider whether treating the fluid surface as a spring-
mass system is physically accurate. In contrast, our technique
conducts fluid simulation and force computation in 3D space
with acceleration from parallel reduction on the GPU; this
combination enables a physically accurate fluid to be presented
to the user at interactive rates both on the screen and through
a haptic interface.

Crane et al. [4] provide a GPU-based 3D implementation of
Stam’s semi-Lagrangian implicit solver for the Navier-Stokes
equation [9]. By taking advantage of the data-level parallelism
of the GPU [10], we adapt this architecture’s efficient frame-
work for real-time interactive simulation of 3D fluids at the
high spatial and temporal resolutions that are required for
compelling graphic and haptic feedback. Compared with other
GPU-based simulations of 3D fluids, such as [11], [12], ours
is unique in its focus on interactivity and force computation.
The following sections explain our approach in detail and
present the performance results we have been able to achieve
by applying it to the simulation of physics-based smoke.

III. PIPELINE OVERVIEW

We target a simulation system that allows users to not only
see but also feel virtual fluids. In particular, the user moves
an impedance-type haptic device (which can measure hand
motion and apply force in response) to control the position
of a virtual object in the simulation environment. This object
interacts with 3D fluids by displacing volume and applying an
external force to the fluid, as seen in Figure 2. The haptic
device simultaneously sends the force experienced by the
virtual object in the fluid back to the user. Throughout the
interaction, the user can feel the fluid’s response as forces
from the device handle and can simultaneously see the fluid’s
overall motion on the screen. Figure 1 demonstrates how a user

Fig. 2. Captured sequence of our simulation. Notice how the solid object
interacts with the 3D smoke by displacing volume and applying an external
force to the fluid.

GPU Display

CPU Haptic Device

Render (55Hz)

Virtual object positionFeedback force
(55Hz)

Compute

Feedback force (1kHz)

Grip position

Fig. 3. System Diagram. The input data flow is marked with arrows in red,
and the output data flow is in green. The listed output data rates were achieved
for a fluid simulation with a resolution of 70 × 70 × 70.

grasps the handle of the Novint Falcon to move the spherical
object and feel the forces it experiences in the fluid.

Figure 3 illustrates a diagram of our system. A high-speed
thread on the CPU reads positions from the haptic device,
transforms them to virtual object positions, and passes them
to the GPU. The GPU is responsible for handling the fluid
simulation update and the force computation, and for rendering
the results of the simulation graphically to the display. Upon
completion of each computational cycle (frame), the CPU
copies the feedback force from the GPU and stores it to
a shared memory location, from which the haptic thread
constantly reads in order to deliver a smoothed feedback force
to the user.

Our fluid simulation model is extended from Crane’s GPU-
based implementation of Stam’s semi-Lagrangian method for
solving the Navier-Stokes equation [4]. In particular, we treat
the fluid grid as a set of 3D textures and rasterize them through
Vertex and Geometry shaders for quick access to neighboring
cells. Density and velocity advection, pressure computation,
vorticity confinement and external force update are all handled
through the Pixel Shader.

IV. ALGORITHM DETAILS

The motion of the grip of the haptic device is scaled into our
virtual work space and directly mapped onto the movement of
the virtual object. As it moves, this object interacts with the
3D fluid by displacing volume and applying an external force
to the fluid. The surrounding fluid, in return, exerts a net force
and torque onto the virtual object. A smoothed version of this
interaction force and torque is rendered by the haptic device
and experienced by the user.

The algorithm generally can be separated into four parts: 1)
texture preparation, 2) fluid simulation, 3) force computation
and read-back, and 4) force smoothing. The following sections
will explain these major steps in detail.

A. Texture Preparation

The CPU manages communication with the haptic device,
reading its position at a rate of 1000 Hz and steadily passing
this three-element vector to the GPU. When ready, the GPU
takes the most recent position measurement and object dimen-
sion information to prepare a 3D texture that marks the type
of each of the grid cells. This 3D texture will be used later

Outside

Boundary

Surrounding

Boundary

Inside

Actual Boundary

Fig. 4. Illustration of the texture preparation step for a spherical object.
The example shown here represents a single slice of the inside-outside 3D
texture that differentiates the four types of cells. The surrounding cells directly
contribute to the force exerted on the virtual object by the fluid.

Texture A: Fluid Pressure

Masking Extracting Integrating

Texture B: Surrounding Cells

Fig. 5. Use of the inside-outside texture as a mask to identify surrounding
cells and extract their pressures, which contribute to the force exerted on the
virtual object. Each of the textures shown here represents a single slice of the
corresponding 3D texture.

for identifying and extracting the quantities that contribute to
the force exerted on the virtual object.

We follow Crane’s steps [4] to create the inside-outside
3D texture that describes whether a grid cell is 1) inside, 2)
on the boundary of, or 3) outside the obstacle. In addition,
we introduce a new type of 4) surrounding cells which lie
immediately outside the obstacle boundary by one grid unit.
Because they share at least one face with a boundary cell,
these surrounding cells are the ones that directly interact with
the object. Figure 4 illustrates a single slice of the 3D texture
that differentiates the four cell types defined above. The new
type of surrounding cells will serve as a mask that lets us
identify the layer of fluid cells with direct contribution to the
force exerted on the virtual object, as depicted in Figure 5.
We can categorize all the cells in a single pass on the pixel
shader. Individual cell-type values are assigned and stored in
the alpha channel of the inside-outside texture.

B. Fluid Simulation

The GPU then updates the voxelized fluid simulation using
a semi-Lagrangian approach to implicitly solving the Navier-
Stokes equation, largely following Crane’s GPU-based im-
plementation [4]. This process includes density and velocity
advection, pressure computation, vorticity confinement, and
displacement of fluid by the manipulated object.

C. Force Computation

After updating the simulation, the GPU estimates the force
of the interaction between the virtual object and the fluid. As
in [5], the net force and torque acting on a closed object inside
incompressible viscous fluid can be expressed by the following
equations:

F =
∫

S

σ · ndA (1)

τ =
∫

S

r × σ · ndA (2)

where σ is the stress tensor and r is the vector from the
object’s center to the point of contact with the fluid.

Let P = σ(x) · n be the force per unit area acting on a
given point with normal n in the fluid. For 3D fluids, the
vector components of P can be expressed as:

Px = −pnx + μ

(
2

∂ux

∂x
nx +

(
∂ux

∂y
+

∂uy

∂x

)
ny +

(
∂ux

∂z
+

∂uz

∂x

)
nz

)
(3)

Py = −pny + μ

(
2

∂uy

∂y
ny +

(
∂uy

∂x
+

∂ux

∂y

)
nx +

(
∂uy

∂z
+

∂uz

∂y

)
nz

)
(4)

Pz = −pnz + μ

(
2

∂uz

∂z
nz +

(
∂uz

∂x
+

∂ux

∂z

)
nx +

(
∂uz

∂y
+

∂uy

∂z

)
ny

)
(5)

where p is the fluid pressure at a given point and µ is the
fluid’s dynamic viscosity. For our grid-based simulation, we
need to express equations (3), (4) and (5) in discretized form.
Our simulation grid is uniformly sampled (with Δx increment)
along all three axes. After approximating ∂u

∂x at grid point i as
∂u
∂x ≈ ui+1/2−ui−1/2

Δx [13] and grouping similar terms we get:

Pi = −pni +
µ

Δx
(2(ui+1/2 − ui−1/2)ni+

(ui+1/2 − ui−1/2 + uj+1/2 − uj−1/2)nj+
(ui+1/2 − ui−1/2 + uk+1/2 − uk−1/2)nk) (6)

Pj = −pnj +
µ

Δx
(2(uj+1/2 − uj−1/2)nj+

(uj+1/2 − uj−1/2 + ui+1/2 − ui−1/2)ni+
(uj+1/2 − uj−1/2 + uk+1/2 − uk−1/2)nk) (7)

Pk = −pnk +
µ

Δx
(2(uk+1/2 − uk−1/2)nk+

(uk+1/2 − uk−1/2 + ui+1/2 − ui−1/2)ni+
(uk+1/2 − uk−1/2 + uj+1/2 − uj−1/2)nj) (8)

If the fluid is inviscid (not viscous), we can drop the
terms that are multiplied by the dynamic viscosity constant
µ. Equations (6), (7) and (8) are then simplified to:

(Pi, Pj , Pk) = −p(ni, nj , nc) (9)

For torque computation, we can derive the discretized form
of Equation 2 similarly to the above. We can now compute
the total force acting on an object by summing the pressures
acting on all cells on the object’s boundary:

Fi,j,k = Δx2(Pi, Pj , Pk) (10)

F =
∑
i,j,k

Fi,j,k (11)

After the advection step of the Navier-Stokes solver, all
the fluid properties have been advected and stored in their
respective textures, as described in [4]. Given the inside-
outside texture prepared and the pressure texture TP properly
updated by the advection step, we can locate the surrounding
fluid cells (the outer gray strip in Figure 4) and retrieve each
cell’s corresponding pressure p, as demonstrated in Figure 5.
The inside-outside texture TIO serves as a mask to identify
and extract pressure from surrounding cells.

We apply Equations (9) through (11) to compute the accu-
mulated force F exerted on the object. For all surrounding fluid
cells, the exerted force Fi,j,k can be computed in parallel on a
pixel shader in a single rendering pass. The individual Fi,j,k is
then written in a new 3D texture TF of the same dimension as
the grid at the corresponding position (i, j, k). The resulting
texture TF contains force vectors Fi,j,k of all surrounding
cells, representing all the individual force components being
applied to the object simultaneously. Computing the integral
force F exerted along the boundary surface involves only
summing up all values currently stored in the newly created
texture TF as in Equation (11).

In each simulation cycle, to integrate all the force values
stored in the 3D texture TF , a CPU-based linear scan approach
would have to read back the entire 3D texture from the GPU.
Although TF contains only a fraction of non-zero values if
the volume of the obstacle is small relative to the entire grid,
the CPU-based approach still needs to loop through the entire
texture to add up the values one by one, hence requiring
O(N3) running time for an N×N×N grid. The texture read-
back and the brute-force linear integration are the potential
bottleneck for performance in this CPU-based approach to
force computation.

A GPU-based approach, however, can be optimized to
O(logN) passes via parallel reduction for 3D textures on
the GPU. Figure 6 illustrates the basic idea of 3D parallel
reduction [10]. Starting from a 4 × 4 × 4 three-dimensional
texture, the first pass will calculate the sum over eight 2×2×2
subgroups of elements in 2×2×2 individual kernels which re-
duces the problem from 4×4×4 to 2×2×2. This is recursively
repeated until the problem is reduced to the final scalar texture,
yielding a logarithmic number of iterations. Moreover, upon
completion of parallel reduction, the integral force is stored
at position (0, 0, 0) of texture TF and only this single value
needs to be read back from the GPU, which is a potential
speed-up for the simulation. The CPU copies this force vector
into shared memory that is accessible by the haptic thread. In
general, such memory read-back operations can cause signifi-
cant delays and slow down the entire pipeline [14]. Although
our approach already significantly reduces the GPU read-back
through parallel reduction during the force integration process,
it is still crucial to choose the most optimal type of memory
based on the specific nature of each individual operation. A
performance comparison of these CPU-based and GPU-based
force computation approaches is provided in Section V.

The overall force computation process is as follows:
1) Use the inside/outside texture as mask to extract the

1 1 1 1

1 1 1 1

1 1 1 1

8 8

8 8
64

1 1 1 1

1 1 1 1

Fig. 6. The concept of GPU-based parallel reduction on 3D textures.

pressure of surrounding cells along the obstacle bound-
ary in parallel.

2) Calculate the force component for each individual sur-
rounding cell and store it into a 3D texture TF at
corresponding position in parallel.

3) Sum up all the values in texture TF to compute the
integral force via parallel reduction on 3D textures.

4) Have the CPU perform a single read-back from the GPU
to acquire the resulting integral force.

Because Step 1 and 2 above can be processed together on
the pixel shader in a single pass in parallel for all grid cells,
the combined running time for force computation is O(1) +
O(log N) passes. An additional benefit of this approach is that
it requires just one read-back, thereby minimizing the effect
of the data transfer delay from the GPU to the CPU.

D. Force Smoothing

Since real-time fluid simulation is quite computationally
expensive (even on the GPU), we are able to achieve inter-
active update rates within the range of 20 to 75 frames per
second (FPS), with computational grids generally between
30 × 30 × 30 and 100 × 100 × 100 cells. These rates are
slower than the 1 kHz rate that is typically desired for smooth
and natural haptic rendering, but the force information can
still be used to create an interactive haptic experience for
the user. Generally, it is undesirable to use a force filter for
smoothing the haptic interaction between rigid objects, due to
the high energy change at the transition between contact and
non-contact states. However, as also found by Baxter and Lin
[5], a force filter is acceptable and necessary for fluid haptic
interactions, because such smoothing is able to eliminate the
vibrations and force artifacts caused by the relatively low
frequency of the haptic force update.

We use a discrete-time low-pass filter on the raw force
values to send smoothed haptic feedback commands to the
haptic interface at a rate of 1 kHz. To achieve a better user
experience, we further modify the filter to eliminate high
impulse forces that exceed a certain threshold and also to
allow its bandwidth to be adjustable based on the simulation’s
current frame rate.

V. PERFORMANCE AND DISCUSSION

Our simulation is implemented in DirectX10, and its perfor-
mance is benchmarked on an nVidia 8800 GT graphics card
with 512MB DDR3 memory and an Intel Q6600 CPU with

0 0.25 0.5 0
0.25

0.5
0

0.25

0.5

Y Axis
X Axis

Z
 A

xi
s

Fig. 7. Sample user motion (blue dots) with the computed interaction force
(red lines). The smoke is issuing from a source at the top left corner with an
initial velocity toward the bottom right corner; this directed fluid flow causes
strong haptic forces that pull the user toward the bottom right corner as well.

80

70

60

50

40

30

20

10

0
806040200 100 120

Fig. 8. A comparison on overall performance between CPU and GPU based
methods for force computation.

2GB DDR2 memory. The motions and forces for a sample
interaction with a 3D smoke simulation are shown in Figure 7.

Our GPU-based simulation achieves 20 FPS to 75 FPS for
simulation grids that range from 25×25×25 to 100×100×100.
The overall trade-off between update rate and grid resolution
is presented in Figure 8. These results indicate that force
computation is significantly faster on the GPU than it is on
the CPU.

We are interested not only in the simulation’s overall perfor-
mance but also particularly in the speedup we obtain perform-
ing the force calculation on the GPU. We apply the same fluid
simulation and alter the way the force is computed in order
to achieve an equitable comparison. Figure 9 illustrates this
aspect of the CPU-GPU comparison, breaking down in more
details the individual costs of fluid simulation and force com-
putation respectively. Computing the integral force on the CPU
is nearly as expensive as the GPU-based fluid simulation itself.
By moving the force computation to the GPU, we distribute
the majority of the computational cost on fluid simulation. This
result matches our theoretical analysis, where the GPU-based
method requires O(1)+O(log N) passes via parallel reduction
on 3D textures, while the CPU-based brute-force method runs
in O(N3) for an N×N×N grid. Notice in Figure 9 that as the

80
70
60
50
40
30
20
10
0

90

5045403225 60 70 80 90 100

Fig. 9. A comparison on overall performance between CPU- and GPU-based
methods for force computation with detailed breakdowns.

800

700

600

500

400

300

200

100

0

900

105555 155 205 255 305

Fig. 10. A comparison between CPU-and GPU-based methods of computing
the integral force alone. As the size of the simulation grid increases, computing
the force integral on the CPU becomes a more severe bottleneck.

size of the simulation grid increases, computing the integral
force on the CPU becomes an increasingly severe bottleneck.
We further compare the performance of computing the integral
force alone in Figure 10.

A comparison of overall performance between our GPU-
based method and other recent real-time methods is shown in
Table 1; these data reflect differences in algorithmic efficiency
as well as variations in the computational hardware on which
each was implemented. When considered in this context, the
first benefit of our GPU-based approach is that it allows real-
time haptic rendering of three-dimensional fluids with high
physical accuracy. Second, it allows the haptic interaction to
run at significantly higher resolutions than previous methods,
while still maintaining an adequate frame rate.

VI. CONCLUSION AND FUTURE WORK

Physically based fluid simulation by solving the Navier-
Stokes equations requires a heavy computational workload.
At present, most work on haptic fluid simulation is done on
the CPU, which either is slow, is limited to low-resolution
fluid grids, or requires substantive pre-computation. In this
paper, we proposed techniques that move the vast majority of
the time-consuming computation involved in real-time haptic
rendering of 3D fluids from the CPU onto the GPU, and we
managed to achieve a desirable performance at high resolution.
We combined the 3D Navier-Stokes fluid simulation with 3D
force computation to achieve real-time graphical rendering and

TABLE I
PERFORMANCE COMPARISON

Implementation Fluid Size FPS
Baxter’s 2D [5] 64 × 64 60
Mora’s 2D+ [7] 15 × 15(×15) 30

Our GPU-Based [this paper] 70 × 70 × 70 55

haptic rendering without pre-computation.
However, our current model for maintaining physical accu-

racy is still through an implicit method, which has a limited
number of steps to converge when computing the distribution
of pressure across the fluid. Furthermore, our voxelization-
based method discretizes and maps the solid virtual object
onto grid cells. Therefore it is not suitable for handling objects
that are small relative to the fluid resolution, or that have
fine details. Moreover, our current haptic rendering quality,
similar to the previous work of [5], is limited by the fluid
simulation update rate; though the grid sizes demonstrated here
feel very good, exceptionally high fluid grid resolution may
result in force feedback that feels rough and unnatural. In the
future, in addition to addressing the issues listed above, we will
seek to further optimize the GPU-based computations, further
investigate and improve our force computation model, and
apply this multi-modal simulation method to a wide variety
of fluids and virtual objects.

REFERENCES

[1] S. J. Biggs and M. A. Srinivasan, “Haptic interfaces,” in Handbook of
Virtual Environments: Design, Implementation, and Applications, ser.
Human Factors and Ergonomics, K. Stanney, Ed. Lawrence Erlbaum
Associates, 2002, ch. 5, pp. 93–115.

[2] C. R. Wagner and R. D. Howe, “Mechanisms of performance enhance-
ment with force feedback,” in Proc. IEEE Joint Eurohaptics Conference
and Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, Mar. 2005, pp. 21–29.

[3] V. Hayward, O. R. Astley, M. Cruz-Hernandez, D. Grant, and G. Robles-
De-La-Torre, “Haptic interfaces and devices,” Sensor Review, vol. 24,
no. 1, pp. 16–29, 2004.

[4] K. Crane, I. Llamas, and S. Tariq, “Real-time simulation and rendering
of 3D fluids,” in GPU Gems 3, August 2007.

[5] W. Baxter and M. C. Lin, “Haptic interaction with fluid media,” in GI
’04: Proceedings of Graphics Interface 2004, 2004.

[6] Y. Dobashi, M. Sato, S. Hasegawa, T. Yamamoto, M. Kato, and
T. Nishita, “A fluid resistance map method for real-time haptic inter-
action with fluids,” in VRST ’06, 2006.

[7] J. Mora and W.-S. Lee, “Real-time 3D fluid interaction with a haptic user
interface,” in Proceedings of IEEE Symposium on 3D User Interfaces
2008, March 2008.

[8] J. Stam, “Stable fluids,” in SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1999,
pp. 121–128.

[9] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,”
in SIGGRAPH ’01: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM, 2001, pp. 15–22.

[10] D. Goddeke, “GPGPU reduction tutorial,” GPGPU.org, 2006.
[11] W. Li, X. Wei, and A. Kaufman, “Implementing Lattice Boltzmann

computation on graphics hardware,” The Visual Computer, vol. 19, no.
7–8, pp. 444–456, December 2003.

[12] Y. Liu, X. Liu, and E. Wu, “Real-time 3D fluid simulation on GPU
with complex obstacles,” in Proc. IEEE Pacific Conference on Computer
Graphics and Applications, October 2004, pp. 247–256.

[13] R. Bridson, R. Fedkiw, and M. Muller-Fischer, “Fluid simulation:
Siggraph 2006 course notes,” in SIGGRAPH ’06: ACM SIGGRAPH
2006 Courses. New York, NY, USA: ACM, 2006, pp. 1–87.

[14] D. Blythe, “The Direct3D 10 system,” in SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Papers. New York, NY, USA: ACM, 2006, pp. 724–734.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

