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2

Stochastic dynamics

In this chapter, we develop the basic tools for our study of dynamic crit-

ical phenomena. We introduce dynamic correlation, response, and relax-

ation functions, and explore their general features. In the linear response

regime, these quantities can be expressed in terms of equilibrium proper-

ties. A fluctuation-dissipation theorem then relates dynamic response and

correlation functions. Under more general non-equilibrium conditions, we

must resort to the theory of stochastic processes. The probability P1(x, t)

of finding a certain physical configuration x at time t is governed by a mas-

ter equation. On the level of such a ‘microscopic’ description, we discuss

the detailed-balance conditions which guarantee that P1(x, t) approaches

the probability distribution of an equilibrium statistical ensemble as t→ ∞.

Taking the continuum limit for the variable(s) x, we are led to the Kramers–

Moyal expansion, which often reduces to a Fokker–Planck equation. Three

important examples elucidate these concepts further, and also serve to intro-

duce some calculational methods; these are biased one-dimensional random

walks, a simple population dynamics model, and kinetic Ising systems. We

then venture towards a more ‘mesoscopic’ viewpoint which focuses on the

long-time dynamics of certain characteristic, ‘relevant’ quantities. Assuming

an appropriate separation of time scales, the remaining ‘fast’ degrees of free-

dom are treated as stochastic noise. As an introduction to these concepts,

the Langevin–Einstein theory of free Brownian motion is reviewed, and the

associated Fokker–Planck equation is solved explicitly. Our considerations

are then generalized to Brownian particles in an external potential, lead-

ing to the Smoluchowski equation for the probability distribution. At last,

some general properties of Langevin–type stochastic differential equations

are listed. Specifically, we note the sufficient conditions for the system to

asymptotically approach thermal equilibrium, among them Einstein’s rela-

tion for the relaxation constant and the strength of the thermal noise.

46



2.1 Dynamic response and correlation functions 47

2.1 Dynamic response and correlation functions

As yet, there exists no unifying description of systems far from thermal

equilibrium in terms of macroscopic thermodynamic variables akin to the

spectacularly successful statistical ensemble approach in the equilibrium the-

ory. For such inherently dynamical situations, we generally either need to

solve the complete set of microscopic equations of motion, which is rarely

feasible, or try and obtain an at least mesoscopic description through appro-

priate coarse-graining. However, the situation much improves in the linear

response regime, where an equilibrium system is only slightly perturbed by

a weak time-dependent potential. Macroscopic averages in the system then

deviate from their stationary values only linearly in the external field, and

the corresponding dynamic response functions are fully characterized by its

equilibrium properties. Moreover, the dynamic correlation functions and

susceptibilities are related through a fluctuation-dissipation theorem. Lin-

ear response theory thus sets the equilibrium baseline for the discussion of

dynamic correlations under more general non-equilibrium conditions. Since

our aim is to cover quantum critical phenomena as well, we employ the lan-

guage and formalism of quantum statistical mechanics in this section. In

fact, some derivations are actually facilitated in the quantum formalism.1

2.1.1 Dynamic correlation functions

In quantum statistical mechanics, ⟨A⟩ = Tr(ρA) denotes the ensemble av-

erage of an observable A with respect to a normalized density matrix (sta-

tistical operator) ρ =
∑

j pj |ψj⟩⟨ψj |, Tr ρ =
∑

j pj = 1. The orthonormal

quantum states |ψj⟩, ⟨ψi|ψj⟩ = δij , are subject to Schrödinger’s equation

with the system’s Hamiltonian H,

ih̄
∂|ψj(t)⟩
∂t

= H(t) |ψj(t)⟩ . (2.1)

We write its formal solution as |ψj(t)⟩ = U(t, t0)|ψj(t0)⟩, introducing the

unitary time evolution operator U(t, t0), U(t, t0)
† = U(t, t0)

−1. It obviously

satisfies the Schrödinger equation as well,

ih̄
∂U(t, t0)

∂t
= H(t)U(t, t0) , (2.2)

with the initial condition U(t0, t0) = 1. Thus, both the density matrix ρ(t)

and the average ⟨A(t)⟩ = Tr[ρ(t)A] are in general time-dependent quantities.

Alternatively, one may employ the Heisenberg picture with time-dependent

1 This section builds on the expositions in Chaikin and Lubensky (1995), Cowan (2005), Schwabl
(2008), and Van Vliet (2010).
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operators A(t) = U(t, t0)
†A(t0)U(t, t0). Using the cyclic invariance of the

trace, we then obtain ⟨A(t)⟩ = Tr[ρ(t0)A(t)]. For conservative systems with

a stationary Hamiltonian H, Eq. (2.2) is solved by U(t, t0) = e−iH(t−t0)/h̄,

and A(t) obeys Heisenberg’s equation of motion

dA(t)

dt
=
i

h̄

[
H,A(t)

]
+
∂A(t)

∂t
, (2.3)

where the last term stems from any explicit time dependence of the oper-

ator A in the Schrödinger representation, transformed into the Heisenberg

picture. We can now readily proceed to define a correlation function of two

observables A and B at different times t and t′:

CAB(t, t
′) = ⟨A(t)B(t′)⟩ = Tr

[
ρ(t0)A(t)B(t′)

]
. (2.4)

In classical statistical mechanics, ρ is to be interpreted as a phase space

trajectory density, and the trace becomes an integral over all generalized

coordinates and conjugate momenta. The commutator in Eq. (2.3) is to

be replaced with the Poisson bracket, i
h̄ [H,A] → {H,A}. In any case,

in thermal equilibrium ρ(H) becomes a function of the Hamiltonian only

(and perhaps additional conserved quantities), and therefore commutes with

U(t, 0) = e−iHt/h̄. Upon invoking the cyclic invariance of the trace once

again, we find (setting t0 = 0)

CAB(t, t
′) = Tr

(
ρ(H) eiHt/h̄Ae−iH(t−t′)/h̄B e−iHt′/h̄

)
= Tr

(
ρ(H) eiH(t−t′)/h̄Ae−iH(t−t′)/h̄B

)
= CAB(t− t′, 0)

= Tr
(
ρ(H)Ae−iH(t−t′)/h̄B eiH(t−t′)/h̄

)
= CAB(0, t

′ − t) . (2.5)

Consequently, upon defining the temporal Fourier transform via

A(t) =
1

2π

∫
A(ω) e−iωt dω , A(ω) =

∫
A(t) eiωt dt , (2.6)

we obtain ⟨
A(ω)B(ω′)

⟩
= CAB(ω) 2πδ(ω + ω′) , (2.7)

where CAB(ω) is the Fourier transform of CAB(t) = CAB(t, 0). The rela-

tion (2.7) is valid whenever time translation invariance holds. In this case,

obviously ⟨A(t)⟩ = ⟨A⟩ is independent of t, and ⟨A(ω)⟩ = ⟨A⟩ 2πδ(ω).
In the equilibrium canonical ensemble,

ρ(H) =
1

Z(T )
e−H/kBT , Z(T ) = Tr e−H/kBT , (2.8)
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we may write

CAB(t) =
1

Z(T )
Tr
(
e−H/kBT eiHt/h̄Ae−iHt/h̄B

)
(2.9)

=
1

Z(T )

∑
n,m

e−En/kBT ei(En−Em)t/h̄ ⟨n|A|m⟩⟨m|B|n⟩ ,

where we have inserted a complete set of energy eigenstates |n⟩ with eigen-

values En: H|n⟩ = En|n⟩,
∑

n |n⟩⟨n| = 1, and used the same basis for

performing the trace, TrA =
∑

n⟨n|A|n⟩. A Fourier transform then yields

the spectral representation

CAB(ω) =
2πh̄

Z(T )

∑
n,m

e−En/kBT ⟨n|A|m⟩⟨m|B|n⟩ δ(En − Em + h̄ω) . (2.10)

Upon exchanging the summation indices m ↔ n and exploiting the delta

function, we see that

CBA(−ω) = CAB(ω) e
−h̄ω/kBT . (2.11)

Scattering experiments directly probe dynamic correlation functions. For

example, in inelastic light scattering, the coherent scattering cross section

is proportional to Sc(q, ω), the Fourier transform of the normalized density-

density correlation function

Sc(q, t) =
1

N
⟨n(q, t)n(−q, 0)⟩ . (2.12)

Here, n(x, t) =
∑N

i=1 δ
(
x − xi(t)

)
denotes the density operator for an N -

particle system, and n(q, t) =
∫
n(x, t) e−iqxddx =

∑N
i=1 e

−iqxi(t) its spatial

Fourier transform. Eq. (2.11) now reads Sc(−q,−ω) = Sc(q, ω) e
−h̄ω/kBT and

has an immediate physical implication: The intensity of the ‘anti-Stokes’

emission lines (ω < 0) is suppressed by a temperature-dependent detailed-

balance factor as compared with the ‘Stokes’ absorption lines (ω > 0). In-

deed, as T → 0, the system is in the ground state, and no emission is possible

at all. In the classical limit kBT ≫ h̄ω, the absorption and emission line

strengths become equal. The equal-time correlation

Sc(q) = Sc(q, t = 0) =
1

N

⟨
|n(q, 0)|2

⟩
(2.13)

is called the static structure factor. Notice that Sc(q = 0, ω) = N 2πδ(ω).
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2.1.2 Dynamic susceptibilities and relaxation functions

Another means to investigate dynamic properties of a physical system is a

relaxation experiment. Such a situation may be described theoretically by

adding to the stationary Hamiltonian H0 a time-dependent term of the form

H ′(t) = −F (t)B, where the function F (t) denotes an external ‘force’ that

couples to the system via the Hermitean operator B = B†. This interaction

induces a deviation δA(t) = ⟨A(t)⟩ − ⟨A⟩0 of the ensemble average for the

observable A from its time-independent unperturbed value ⟨A⟩0, which is

determined by the equilibrium density matrix ρ(H0). This change can be

formally expanded in terms of powers of F (t),

δA(t) =

∫
χAB(t− t′)F (t′)dt′+

1

2

∫
χ
(2)
ABB(t− t

′, t− t′′)F (t′)F (t′′)dt′dt′′+ . . . ,
(2.14)

which defines the (linear) dynamic susceptibility (response function)

χAB(t− t′) =
δ⟨A(t)⟩
δF (t′)

∣∣∣∣
F=0

, (2.15)

and the (second-order) non-linear response function

χ
(2)
ABB(t− t′, t− t′′) =

δ2⟨A(t)⟩
δF (t′) δF (t′′)

∣∣∣∣
F=0

, (2.16)

respectively. Higher-order non-linear response functions, perhaps involving

couplings to additional operators, follow by means of straightforward gen-

eralization. The stationarity of H0 implies that the susceptibilities must be

functions of the time differences t− t′, t− t′′, etc. only.

It is important to realize that the dynamic response functions are fully

determined by the equilibrium properties of the system. For a weak field

F (t), we expect |δA(t)/⟨A⟩0| ≪ 1, and taking into account only the linear

response should provide an adequate description. If the external pertur-

bation is instantaneous, i.e., represented by a delta peak at time t = 0:

F (t) = Fδ(t), the linear response simply becomes δA(t) = 0 for t < 0, and

δA(t) = FχAB(t) for t ≥ 0, see Fig. 2.1(a). Generally, as a consequence of

causality (effects cannot precede their causes), the susceptibilities should be

proportional to the product of Heaviside step functions of their arguments,

χAB(t− t′) ∝ Θ(t− t′), χ(2)
ABB(t− t′, t− t′′) ∝ Θ(t− t′)Θ(t− t′′), and so forth.

Thus, we may write for the linear response

δA(t) =

∫ t

−∞
χAB(t− t′)F (t′) dt′ =

∫ ∞

0
χAB(s)F (t− s) ds , (2.17)

where s = t− t′. The convolution theorem yields for the Fourier transform
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0 t

A(t)

<A>

< >

0

0 t

<A(t)>

<A>0

F FAB(t) ABΦ (t)χ

(a) (b)

Fig. 2.1. Relaxation of the average ⟨A(t)⟩ towards its equilibrium value ⟨A⟩0: (a)
following an instantaneous perturbation F at t = 0, and (b) after switching off the
external field F at t = 0; the deviation from ⟨A⟩0 in these situations is given by the
dynamic response and Kubo relaxation functions, respectively.

of Eq. (2.14): ⟨A(ω)⟩ = ⟨A⟩0 2πδ(ω) + χAB(ω)F (ω) +O(F 2), or

χAB(ω) =

∫ ∞

0
χAB(t) e

iωt dt =
∂⟨A(ω)⟩
∂F (ω)

∣∣∣∣
F=0

. (2.18)

Hence, the Laplace transform of the dynamic susceptibility χAB(ω) directly

provides the response of the Fourier component ⟨A(ω)⟩ to the external per-

turbation at the same frequency.

Another typical situation is that a perturbation existing for all previous

times is switched off at t = 0, F (t) = F Θ(−t). The system’s linear response

may then be written as δA(t) = F ΦAB(t), see Fig. 2.1(b), which defines

Kubo’s relaxation function ΦAB(t). Comparison with Eq. (2.17) immediately

gives the relation

ΦAB(t) =

{ ∫∞
0 χAB(s) ds = χAB(ω = 0) t ≤ 0∫∞
t χAB(s) ds t > 0

. (2.19)

Thus, the Kubo relaxation function and linear dynamic susceptibility are by

no means independent quantities, but χAB(t) = −dΦAB/dt for t > 0, with

the boundary conditions ΦAB(t = 0) = χAB(ω = 0) and ΦAB(t → ∞) = 0.

Integration by parts then yields for the Laplace transform

ΦAB(ω) =

∫ ∞

0
ΦAB(t) e

iωt dt =
1

iω

[
χAB(ω)− χAB(ω = 0)

]
. (2.20)

It therefore suffices to discuss the properties of either the linear response

function χAB(ω) or the relaxation function ΦAB(ω) (see Probs. 2.1 and 2.2).

Let us now consider the analytic continuation of χAB(ω) to complex fre-

quencies z,

χAB(z) =

∫
χAB(t) e

izt dt . (2.21)
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0 Re

Im

z

z

ε+iω

zC

oo

Fig. 2.2. Integration contour C in the complex frequency plane for the derivation of
the Kramers–Kronig relations for the dynamic susceptibility χAB(z). The dashed
semicircle represents the required contour deformation as the frequency z = ω+ iε
approaches the real axis (ε ↓ 0).

Causality demands χAB(t) to vanish for t < 0. Therefore, χAB(z) has to

be analytic in the upper complex half-plane (Im z > 0). For any integration

contour C in the analytic region, Cauchy’s integral theorem states that

χAB(z) =
1

2πi

∫
C

χAB(z
′)

z′ − z
dz′ . (2.22)

We choose the integration contour as depicted in Fig. 2.2, and assume that

χAB(z) decays sufficiently fast as |z| ≫ 1 for the line integral along the

semicircle in the upper half-plane to vanish when its radius is pushed to

infinity. Eq. (2.22) then reduces to an integral over the entire real axis,

χAB(z) =
1

2πi

∫
χAB(ω

′)

ω′ − z
dω′ . (2.23)

Upon approaching real frequencies z = ω + iε, ε ↓ 0, we need to deform the

integration contour as indicated by the dashed path in Fig. 2.2. The integral

now becomes a sum of the Cauchy principal value and the contour integral

of the dashed infinitesimal semicircle, which contributes precisely one half

of the residue of the pole at ω′ = ω:

lim
ε↓0

χAB(ω + iε) =
1

2πi
P
∫
χAB(ω

′)

ω′ − ω
dω′ +

1

2
χAB(ω) ,

or

χAB(ω) =
1

iπ
P
∫
χAB(ω

′)

ω′ − ω
dω′ . (2.24)

The preceding limiting procedure is encoded in the formal identity

lim
ε↓0

1

x∓ iε
= P 1

x
± iπ δ(x) . (2.25)

Setting x = ω′ − ω, and inserting (2.25) into (2.23) directly results in
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Eq. (2.24). Separating into real and imaginary parts, we arrive at the

Kramers–Kronig relations

ReχAB(ω) =
1

π
P
∫

ImχAB(ω
′)

ω′ − ω
dω′ , (2.26)

ImχAB(ω) = − 1

π
P
∫

ReχAB(ω
′)

ω′ − ω
dω′ . (2.27)

As a consequence of causality, the real and imaginary parts of the dynamic

susceptibility χAB(ω) are intimately connected, and either can be computed

if the other happens to be known at all (real) frequencies.

2.1.3 Linear response and fluctuation-dissipation theorem

We now proceed to express the linear susceptibility in terms of a dynamic

correlation function. Within the framework of linear response, we merely

need to apply first-order time-dependent perturbation theory. The total

Hamiltonian is H(t) = H0 + H ′(t) = H0 − F (t)B, where we assume that

F (t) = 0 for t ≤ t0. As we presume to know the solution with the un-

perturbed stationary Hamiltonian H0, it is beneficial to transform to the

interaction representation via U(t, t0) = e−iH0(t−t0)/h̄ U ′(t, t0). By means of

Eq. (2.2), we see that U ′(t, t0) obeys the equation of motion

ih̄
∂U ′(t, t0)

∂t
= eiH0(t−t0)/h̄

[
ih̄
∂U(t, t0)

∂t
−H0 U(t, t0)

]
(2.28)

= eiH0(t−t0)/h̄H ′(t) e−iH0(t−t0)/h̄ U ′(t, t0) = H ′
I(t)U

′(t, t0) ,

where H ′
I(t) denotes the perturbing Hamiltonian in the interaction repre-

sentation. The equivalent integral equation

U ′(t, t0) = 1 +
1

ih̄

∫ t

t0
dt′ H ′

I(t
′)U ′(t′, t0) (2.29)

is readily solved iteratively,

U ′(t, t0) = 1+
1

ih̄

∫ t

t0
dt′H ′

I(t
′)+

1

(ih̄)2

∫ t

t0
dt′
∫ t′

t0
dt′′H ′

I(t
′)HI(t

′′) . . . . (2.30)

This expression may be nicely rewritten by means of a time-ordered product.

However, we just require the first-order contribution, which we insert into

⟨A(t)⟩ = Tr [ρ0(t0)A(t)] = Tr
[
ρ0(t0)U(t, t0)

†A(t0)U(t, t0)
]

= Tr
[
ρ0(t0) e

iH0(t−t0)/h̄A(t0) e
−iH0(t−t0)/h̄

]
+

1

ih̄

∫ t

t0
dt′Tr

(
ρ0(t0)

[
eiH0(t−t0)/h̄A(t0) e

−iH0(t−t0)/h̄ , H ′
I(t

′)
])
.
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The first term represents the unperturbed average ⟨A⟩0. For the second

term we recall Eq. (2.28), whereupon we arrive at

δA(t) =
i

h̄

∫ t

t0
dt′
⟨[
eiH0(t−t0)/h̄A(t0) e

−iH0(t−t0)/h̄ , (2.31)

eiH0(t′−t0)/h̄B(t0) e
−iH0(t′−t0)/h̄

]⟩
0
F (t′) .

To this order, the commutator is just [A(t), B(t′)]. Taking the limit t0 →
−∞, we at last find upon comparison with the definition in Eq. (2.14) that

the linear susceptibility is given by a retarded commutator,

χAB(t− t′) =
i

h̄

⟨
[A(t), B(t′)]

⟩
0
Θ(t− t′) , (2.32)

where the ensemble average is taken with respect to the equilibrium Hamil-

tonian H0 (we shall henceforth drop the index ‘0’).

This fundamental result contains the antisymmetric combination

χ′′
AB(t) =

1

2h̄

⟨
[A(t), B(0)]

⟩
=

1

2h̄

[
CAB(t)− CBA(−t)

]
= −χ′′

BA(−t) ,
(2.33)

whence χ′′
AB(ω) = −χ′′

BA(−ω). The relation (2.11) now yields the important

quantum-mechanical fluctuation-dissipation theorem (FDT)

χ′′
AB(ω) =

1

2h̄

(
1− e−h̄ω/kBT

)
CAB(ω) . (2.34)

In the classical limit h̄ω/kBT ≪ 1, we may expand the exponential to obtain

χ′′
AB(ω) =

ω

2kBT
CAB(ω) , (2.35)

χAB(t) = 2i χ′′
AB(t)Θ(t) = − Θ(t)

kBT

dCAB(t)

dt
. (2.36)

In order to compute its Fourier transform, we need the integral represen-

tation of the Heaviside step function,

Θ(t) = lim
ε↓0

∫
dω

2π

i e−iωt

ω + iε
. (2.37)

Indeed, for t > 0, convergence considerations enforce the closure of the

integration path in the lower complex frequency half-plane, and the residue

theorem yields Θ(t) = 1, while for t < 0, the contour is to be closed in the

upper half-plane where the integrand is analytic, and the integral vanishes.

By means of the convolution theorem then

χAB(ω) = lim
ε↓0

1

π

∫
χ′′
AB(ω

′)

ω′ − ω − iε
dω′ , (2.38)
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and upon inserting Eqs. (2.33) and (2.10), we arrive at the spectral repre-

sentation for the dynamic response function,

χAB(ω) = lim
ε↓0

1

Z(T )

∑
n,m

⟨n|A|m⟩⟨m|B|n⟩ e
−En/kBT − e−Em/kBT

Em − En − h̄(ω + iε)
. (2.39)

In the classical limit, Eq. (2.38) reads

χAB(ω) = lim
ε↓0

1

2πkBT

∫
ω′CAB(ω

′)

ω′ − ω − iε
dω′ , (2.40)

and the thermodynamic susceptibility becomes

χAB = χAB(ω = 0) =
1

kBT

∫
dω

2π
CAB(ω) =

CAB(t = 0)

kBT
=

⟨AB⟩
kBT

. (2.41)

Thus, we recover the classical fluctuation-response theorem, see Eq. (1.33).

Applying the identity (2.25) to Eq. (2.38), we furthermore obtain

χAB(ω) = χ′
AB(ω) + i χ′′

AB(ω) , (2.42)

where

χ′
AB(ω) =

1

π
P
∫
χ′′
AB(ω

′)

ω′ − ω
dω′ = χ′

BA(−ω) . (2.43)

If χ′′
AB(ω) is real, this just represents the decomposition into real and

imaginary parts and the Kramers–Kronig relation (2.26). This is certainly

true in the case B = A†. Notice that χ′
AA†(ω) and χ

′′
AA†(ω) are symmetric

and antisymmetric functions of ω, respectively. It is instructive to discuss

the case of a periodic external perturbation with F (t) = F cosωt. According

to Fermi’s golden rule of first-order time-dependent perturbation theory, the

transition rate (as t→ ∞) from energy eigenstates |n⟩ to |m⟩ is

Γn→m(ω) =
2π

h̄
F 2 |⟨m|A|n⟩|2

[
δ(Em−En−h̄ω)+δ(Em−En+h̄ω)

]
. (2.44)

For ω > 0, the two terms here correspond to absorption and emission of an

energy quantum h̄ω, respectively. In order to compute the total dissipated

power at frequency ω, we have to multiply with the energy transfer Em−En,

and sum over all possible initial and final states, weighted with the canonical

probability distribution for the initial states:

P (ω) =
∑
n,m

e−En/kBT

Z(T )
Γn→m(ω) (Em − En) = 2πωF 2 (2.45)

×
∑
n,m

e−En/kBT

Z(T )
|⟨m|A|n⟩|2

[
δ(Em − En − h̄ω)− δ(Em − En + h̄ω)

]
.
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Comparing with the spectral representation (2.10), we find

P (ω) =
ω

h̄
F 2
[
CAA†(ω)− CA†A(−ω)

]
= 2ωF 2 χ′′

AA†(ω) . (2.46)

Therefore, χ′′
AA†(ω) describes the dissipative response to an external per-

turbation at frequency ω, which explains the term fluctuation-dissipation

theorem for Eq. (2.34), while the real part of the dynamic susceptibility

χ′
AA†(ω) gives the reactive response. Inserting F (t) = F

2 (e
iωt + e−iωt) into

Eq. (2.17), separating χAA†(ω) into its real and imaginary parts, and ex-

ploiting their symmetries results in

δA(t) =
F

2

[
e−iωtχAA†(ω) + eiωtχAA†(−ω)

]
= F

[
cosωtχ′

AA†(ω) + sinωtχ′′
AA†(ω)

]
. (2.47)

Both the reactive and dissipative response occur at the applied frequency,

but the dissipative part acquires a phase shift of π
2 .

Finally, we take n derivatives of Eq. (2.33) with respect to time:

dnχ′′
AB(t)

dtn
=

∫
dω

2π
χ′′
AB(ω) (−iω)n e−iωt =

1

2h̄

⟨[
dnA(t)

dtn
, B(0)

]⟩
. (2.48)

Via Heisenberg’s equation of motion (2.3), the right-hand side can be recast

in terms of n commutators with the Hamiltonian H. Setting t = 0 yields

the sum rules ∫
dω

π
ωn χ′′

AB(ω) =
in

h̄

⟨[
dnA(t)

dtn
, B(0)

] ∣∣∣∣
t=0

⟩
=

1

h̄n+1

⟨[[
. . . [A,H], . . . , H

]
, B
]⟩

, (2.49)

which provide exact relations for the frequency moments of the dissipative

response (applications for the density response are treated in Prob. 2.3).

2.2 Stochastic processes

In situations far from thermal equilibrium, especially outside the linear re-

sponse regime, the probability distribution for a physical system’s accessible

microstates will in general be a non-trivial function of time t. With pre-

scribed time-independent boundary conditions, e.g., with a fixed particle

or energy current running through the system, one expects it to reach a

non-equilibrium stationary state, after a sufficiently long time has elapsed

since its preparation. The identification and characterization of the ensuing
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special stationary probability distributions and currents, as well as a quan-

titative description of the associated relaxation phenomena are among the

central research goals of current non-equilibrium statistical mechanics.

To this end, we could in principle take recourse to a fully microscopic

description, and solve the quantum-mechanical von-Neumann equation

∂ρ(t)

∂t
= − i

h̄

[
H, ρ

]
, (2.50)

which follows immediately from the definition of the density matrix ρ and

Schrödinger’s equation (2.1), or its classical counterpart, namely Liouville’s

equation for the phase space density,

∂ρ(t)

∂t
= −

{
H, ρ

}
, (2.51)

where the Poisson bracket replaces the quantum-mechanical commutator.

Notice that in both cases, the total time derivative (in the Heisenberg pic-

ture within the quantum framework) becomes dρ(t)/dt = 0: Classically, this

is just Liouville’s theorem, and corresponds to overall probability conserva-

tion. However, such a microscopic approach is rarely feasible in practice.

Instead, we may utilize our knowledge of the possible transitions between

the microstates, and apply the mathematical theory of stochastic processes.2

By means of coarse-graining, one might hope to subsequently arrive at equa-

tions for the time evolution of appropriate meso- or macroscopic variables.

2.2.1 Time-dependent probability distributions

Let us consider a random variable x, dependent on a real parameter t we

call ‘time’. We then refer to the ordered sequence {x(t1), x(t2), . . . , x(tn)},
with t1 ≤ t2 ≤ . . . ≤ tn, as a stochastic process (Fig. 2.3). Next we in-

troduce the n-point probability distribution Pn: The joint probability for

the random variable x to assume a value in the interval [x1, x1 + dx1] at

time t1, a value in the interval [x2, x2 + dx2] at time t2, etc., is given

by Pn(x1, t1;x2, t2; . . . ;xn, tn) dx1 . . . dxn. Its obvious properties are pos-

itivity: Pn(x1, t1;x2, t2; . . . ;xn, tn) ≥ 0, and Pn(. . . xi, ti; . . . ;xj , tj ; . . .) =

Pn(. . . xj , tj ; . . . ;xi, ti; . . .), i.e., the ordering of the arguments is irrelevant.

In addition, if we demand
∫
dx1P1(x1, t1) = 1 and prescribe the hierarchy

rule∫
dxn Pn(x1, t1; . . . ;xn−1, tn−1;xn, tn) = Pn−1(x1, t1; . . . ;xn−1, tn−1) ,

(2.52)

2 Van Kampen (1981); see also Van Vliet (2010).
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Fig. 2.3. A stochastic process as ordered time sequence of random variables {x(ti)}.

we ensure proper normalization for all n-point probability distributions,∫
dx1 . . .

∫
dxn Pn(x1, t1; . . . ;xn, tn) = 1 . (2.53)

Time-dependent averages, moments, and correlations are defined via

⟨x(t1) . . . x(tn)⟩ =
∫
dx1 . . .

∫
dxn Pn(x1, t1; . . . ;xn, tn)x1 . . . xn . (2.54)

We call a stochastic process stationary, if time translation invariance holds,

Pn(x1, t1 + τ ; . . . ;xn, tn + τ) = Pn(x1, t1; . . . ;xn, tn). Setting τ = −t1, we
note Pn(x1, t1;x2, t2; . . . ;xn, tn) = Pn(x1, 0;x2, t2− t1; . . . ;xn, tn− t1) in this

case, whence P1(x) and ⟨x⟩ become time-independent, while for the n-point

correlations ⟨x1(t1)x2(t2) . . . xn(tn)⟩ = ⟨x1(0)x2(t2 − t1) . . . xn(tn − t1)⟩.
Causal sequences can now be encoded through conditional probabilities.

Let Pm|k(xk+1, tk+1; . . . ;xk+m, tk+m|x1, t1; . . . ;xk, tk) dxk+1 . . . dxk+m indi-

cate the probability of finding x in the intervals [xk+1, xk+1 + dxk+1], . . . ,

[xk+m, xk+m+dxk+m] at the instances tk+1, . . . , tk+m, respectively, provided

it already appeared in [x1, x1+dx1], . . . , [xk, xk+dxk] at t1, . . . , tk. In terms

of the n-point distributions, the conditional probabilities become

Pm|k (xk+1, tk+1; . . . ;xk+m, tk+m|x1, t1; . . . ;xk, tk)

=
Pk+m(x1, t1; . . . ;xk+m, tk+m)

Pk(x1, t1; . . . ;xk, tk)
, (2.55)

and with Eq. (2.52) we obtain their normalization∫
dxk+1 . . . dxk+m Pm|k (xk+1, tk+1; . . . ;xk+m, tk+m|x1, t1; . . . ;xk, tk) = 1 .

(2.56)

If the first k outcomes {x1(t1), . . . , xk(tk)} do not influence the subsequent

events {xk+1(tk+1), . . . , xk+m(tk+m)}, i.e.,

Pm|k(xk+1, tk+1; . . . ;xk+m, tk+m|x1, t1; . . . ;xk, tk)
= Pm(xk+1, tk+1; . . . ;xk+m, tk+m) , (2.57)
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the event sequence xk+1, . . . , xk+m is said to be statistically independent of

the preceding x1, . . . , xk, and we infer

Pk+m(x1, t1; . . . ;xk+m, tk+m) (2.58)

= Pk(x1, t1; . . . ;xk, tk)Pm(xk+1, tk+1; . . . ;xk+m, tk+m) .

Thus, the random variables sets {x1, . . . , xk} and {xk+1, . . . , xk+m} are not

correlated. For a fully uncorrelated stochastic process, with no memory

at all to previous events, the n-point distribution factorizes completely,

Pn(x1, t1; . . . ;xn, tn) =
∏n

j=1 P1(xj , tj).

Markov chains represent another special situation: Here, the value xn of

the random variable x at time tn depends only on its values at the preceding

instant tn−1; i.e., there is short-term memory, but any recording of x wipes

out the effects of the entire earlier history. Mathematically, the Markovian

character means that

P1|n−1(xn, tn|x1, t1; . . . ;xn−1, tn−1) = P1|1(xn, tn|xn−1, tn−1) . (2.59)

It is intuitively clear that a Markov process is fully determined by the initial

configuration given by P1(x1, t1) and the sequence of intermediate transi-

tion probabilities P1|1(xj+1, tj+1|xj , tj). Indeed, using Eq. (2.55) and the

Markovian property, one readily proves

Pn(x1, t1; . . . ;xn, tn) = P1|1(xn, tn|xn−1, tn−1) (2.60)

×P1|1(xn−1, tn−1|xn−2, tn−2) . . . P1|1(x2, t2|x1, t1)P1(x1, t1) .

For example, for t ≤ t̄ ≤ t′ we can write

P2(x, t;x
′, t′) =

∫
dx̄ P3(x, t; x̄, t̄;x

′, t′)

=

∫
dx̄ P1|1(x

′, t′|x̄, t̄)P1|1(x̄, t̄|x, t)P1(x, t) ;

dividing with P1(x, t) then yields the Chapman–Kolmogorov equation

P1|1(x
′, t′|x, t) =

∫
dx̄ P1|1(x

′, t′|x̄, t̄)P1|1(x̄, t̄|x, t) . (2.61)

Its content is that the transition from x to x′ can be split into intermediate

steps x → x̄ and x̄ → x′, and the second transition is independent of the

origin of the first step. The associated probability is obtained by multiply-

ing the separate transition probabilities, and integrating over all possible

intermediate values x̄.

A Gaussian stochastic process is fully characterized by the second mo-

ments, Eq. (2.54) for n = 2, because all higher correlations factorize, com-

pare Eq. (1.104). One may then show that the factorization property of the
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increments ⟨[x(t+τ)−x(t)][x(t′+τ)−x(t′)]⟩ = ⟨x(t+τ)−x(t)⟩⟨x(t′+τ)−x(t′)⟩
for t ̸= t′ is equivalent to the Markovian character of the process (Prob. 2.4).

2.2.2 Master equation

Our goal is to construct an equation of motion for the single-time probability

distribution P1(x, t). To this end, we begin with the identity

P1(x, t
′) =

∫
dx′ P2(x

′, t;x, t′) =

∫
dx′ P1|1(x, t

′|x′, t)P1(x
′, t) . (2.62)

Setting t′ = t+ τ , we may now take the continuous-time limit:3

∂P1(x, t)

∂t
= lim

τ→0

P1(x, t+ τ)− P1(x, t)

τ
(2.63)

=

∫
dx′ P1(x

′, t) lim
τ→0

P1|1(x, t+ τ |x′, t)− P1|1(x, t|x′, t)
τ

.

For τ = 0, naturally P1|1(x, t|x′, t) = δ(x−x′), which indeed solves (2.62) for

t = t′. To first order in τ , we try the ansatz P1|1(x, t+ τ |x′, t) = A(τ)δ(x−
x′) + τ W (x′ → x, t), where W (x′ → x, t) represents the transition rate

from the random variable value x′ to x, which we henceforth also interpret

as states or configurations of a physical system, during the time interval

[t, t+ τ ]. From the normalization of P1|1 we infer 1 = A(τ) + τ
∫
dxW (x′ →

x, t) +O(τ2), whence to order τ :

P1|1(x, t+ τ |x′, t) =
[
1− τ

∫
dx̄W (x′ → x̄, t)

]
δ(x− x′) + τ W (x′ → x, t) .

(2.64)

Inserting into Eq. (2.63), and renaming integration variables, we finally ob-

tain the master equation

∂P1(x, t)

∂t
=

∫
dx′

[
P1(x

′, t)W (x′ → x, t)− P1(x, t)W (x→ x′, t)
]
. (2.65)

This fundamental temporal evolution equation balances gain and loss terms

for P1(x, t) owing to transitions from and to other states x′ ̸= x, respec-

tively. While the master equation (2.65) is valid for any stochastic process

in the continuous-time limit, a complete characterization of the kinetics re-

quires full knowledge of the generally time- and implicitly history-dependent

transition rates W (x→ x′, t).

Clearly, both positivity and normalization of P1(x, t) are preserved under

3 Notice that we have defined the time derivative via forward discretization here; we shall follow
this convention throughout this book.
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the time evolution (2.65); e.g.,

∂

∂t

∫
dxP1(x, t) = (2.66)∫
dx

∫
dx′

[
P1(x

′, t)W (x′ → x, t)− P1(x, t)W (x→ x′, t)
]
= 0

after exchanging integration variables in the second term. We may then

define the associated time-dependent entropy as

S(t) = −kB
⟨
lnP1(x, t)

⟩
= −kB

∫
dxP1(x, t) lnP1(x, t) , (2.67)

and obtain for its temporal evolution

∂S(t)

∂t
= −kB

∫
dx
[
lnP1(x, t) + 1

] ∂P1(x, t)

∂t

=
kB
2

∫
dx

∫
dx′

[
P1(x, t)W (x→ x′, t)− P1(x

′, t)W (x′ → x, t)
]

× ln
P1(x, t)

P1(x′, t)
= σ(t)− ⟨JS(x, t)⟩ . (2.68)

The expression in the second line follows after using Eq. (2.65) and sym-

metrizing. Eq. (2.68) introduces the net entropy flux to configuration x as

the average of

JS(x, t) = kB

∫
dx′W (x→ x′, t) ln

W (x→ x′, t)

W (x′ → x, t)
, (2.69)

and the non-negative entropy production rate

σ(t) =
kB
2

∫
dx

∫
dx′

[
P1(x, t)W (x→ x′, t)− P1(x

′, t)W (x′ → x, t)
]

× ln
P1(x, t)W (x→ x′, t)

P1(x′, t)W (x′ → x, t)
≥ 0 , (2.70)

where the final inequality is a consequence of the convexity of the logarithm

function: (x− x′)(lnx− lnx′) ≥ 0.

In the special case of time-independent transition rates, ∂W (x → x′)/∂t

= 0, one can show that there exists at least one stationary solution Pst(x)

with ∂Pst(x)/∂t = 0 (provided x is confined to a finite interval). Moreover,

if Pst(x) is unique, it is also stable and limt→∞ P1(x, t) = Pst(x). A sufficient

condition for the existence of such a stable stationary state can be read off

from the master equation (2.65), as well as Eqs. (2.68) and (2.70): Namely,

the ‘in’ and ‘out’ terms precisely balance each other for all pairs of states

x, x′, provided the transition rates fulfill the detailed balance relation

Pst(x
′)W (x′ → x) = Pst(x)W (x→ x′) . (2.71)
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Fig. 2.4. Kolmogorov’s condition for the existence of a detailed balance solution:
For any cycle, the products of forward and backward transition rates must be equal.

Notice that σ(t) = 0 if and only if (2.71) holds: The approach to the sta-

tionary solution Pst(x) represents an irreversible process which terminates

when P1(x, t) = Pst(x) for all states x. Yet in order to check the detailed

balance requirement (2.71), one already needs to know the stationary distri-

bution Pst(x). A criterion based on the complete set of transition rates only

is obviously preferable. In fact, a necessary and sufficient condition for the

existence of a detailed balance solution to the master equation (2.65) is that

for all possible cycles of arbitrary length N (Fig. 2.4), with not necessarily

distinct intermediate states {xi}, the forward and backward processes be

equally likely (Kolmogorov criterion),

W (x0 → x1)W (x1 → x2) . . .W (xN−1 → x0)

=W (x0 → xN−1) . . .W (x2 → x1)W (x1 → x0) . (2.72)

Markov processes are fully characterized by P1(x, t) and the transition

probability P1|1(x
′, t′|x, t). Inserting (2.64) with t′ = t+τ into the Chapman–

Kolmogorov equation (2.61) with initial state x0 at time t0 yields

∂P1|1(x, t|x0, t0)
∂t

=

∫
dx′

[
P1|1(x

′, t|x0, t0)W (x′ → x, t)

−P1|1(x, t|x0, t0)W (x→ x′, t)
]

(2.73)

(Prob. 2.5). Hence, for Markov processes, both P1(x, t) and P1|1(x, t|x0, t0)
obey an identical master equation, which therefore provides a complete de-

scription of the stochastic dynamics.

In the case of a finite number of discrete random variables {n}, the master

equation (2.65) can be written in matrix form,

∂Pn(t)

∂t
=
∑
n′

[
Pn′(t)Wn′→n(t)− Pn(t)Wn→n′(t)

]
= −

∑
n′

Lnn′(t)Pn′(t) . (2.74)
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If we collect the configuration probabilities Pn(t) in a state vector |P (t)⟩, this
reads in compact notation akin to an ‘imaginary-time’ Schrödinger equation

∂

∂t
|P (t)⟩ = −L(t) |P (t)⟩ , (2.75)

where the Liouville operator L(t), which generates the temporal evolution,

has the matrix elements

Lnn′(t) = −Wn′→n(t) + δnn′
∑
n̄

Wn→n̄(t) . (2.76)

Notice that
∑

n Lnn′(t) = 0, i.e., summing over the matrix elements of L(t) in
each column must yield zero. According to Eq. (2.74), this simply expresses

total probability conservation,
∑

n Pn(t) = 1 for all t. Formally, this can be

written as the inner product ⟨1|P (t)⟩ = 1 of the projection state vector ⟨1| =
(1, 1, . . . , 1) with |P (t)⟩. Upon integrating Eq. (2.75) over an infinitesimal

time step, we see again that conservation of probability implies ⟨1|L(t) =∑
n Lnn′(t) = 0.

When the transition rates and thus L are time-independent, Eq. (2.75) is

formally solved by

|P (t)⟩ = e−Lt |P (0)⟩ . (2.77)

This simply reflects that (2.74) represents a set of coupled first-order linear

differential equations with constant coefficients. The ansatz Pn(t) = e−λt φn

then leads to an eigenvalue problem L|α⟩ = λ(α)|α⟩, or explicitly∑
n′

Lnn′ φ
(α)
n′ = λ(α)φ(α)

n . (2.78)

But as in general the real matrix Lnn′ is not symmetric, these right eigenvec-

tors differ from the left eigenvectors, which are determined as the solutions

of ⟨β|L = λ(β)⟨β|, i.e., ∑
n′

ψ
(β)
n′ Ln′n = λ(β)ψ(β)

n . (2.79)

The eigenvectors form a bi-orthonormal set, ⟨β|α⟩ =
∑

n ψ
(β)
n φ

(α)
n = δαβ ,

and the matrix elements (2.76) may be written as Lnn′ =
∑

α λ
(α)φ

(α)
n ψ

(α)
n′ .

The eigenvalues λ(α) of the Liouville operator generally come in complex-

conjugate pairs with Reλ(α) ≥ 0, and determine the oscillatory and relax-

ational behavior of the general solution to Eq. (2.74),

Pn(t) =
∑
α

c(α)e−λ(α)tφ(α)
n . (2.80)
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Since ⟨1|L(t) = 0, there is always at least one left eigenstate with eigenvalue

0, representing the stationary state.

If detailed balance holds, i.e., Pn′Wn′→n = PnWn→n′ with the stationary

solution Pn = limt→∞ Pn(t), the time evolution matrix may be symmetrized,

L̃nn′ = L̃n′n =

{ ∑
n̄Wn→n̄ n = n′

−Wn′→n

√
Pn′/Pn = −Wn→n′

√
Pn/Pn′ n ̸= n′

.

(2.81)

For ϕ
(α)
n = φ

(α)
n /

√
Pn = ψ

(α)
n

√
Pn, both Eqs. (2.78) and (2.79) read∑

n′

L̃nn′ϕ
(α)
n′ = λ(α)ϕ(α)n , (2.82)

with real, positive eigenvalues λ(α) ≥ 0. The lowest non-zero eigenvalue λm
clearly dominates at sufficiently long times, when Pn(t) relaxes towards the

stationary solution, namely the eigenstate with zero eigenvalue.

We can construct PnN explicitly from any starting state Pn0 through a

sequence of intermediate states with non-vanishing transition rates,

PnN = PnN−1

WnN−1→nN

WnN→nN−1

= . . . = Pn0

N−1∏
j=0

Wnj→nj+1

Wnj+1→nj

.

Exploiting the condition (2.72), this becomes

PnN = Pn0

Wn0→nN

WnN→n0

, (2.83)

independent of the actual path n0 → . . . → nN . One may then introduce a

potential function Φn via

Pn =
1

Z
e−Φn , Z =

∑
n

e−Φn , (2.84)

and Eq. (2.83) becomes

ΦnN − Φn0 =
N−1∑
j=0

ln
Wnj+1→nj

Wnj→nj+1

= ln
WnN→n0

Wn0→nN

. (2.85)

We may identify the potential with an effective Hamiltonian (with energy

measured in units of some fixed temperature kBT ), and Z with the associ-

ated canonical partition function. Thus, a stochastic process satisfying the

detailed-balance condition may be viewed as describing a physical system

relaxing towards thermal equilibrium. However, when the transition rates

violate Eq. (2.72), there exists a non-vanishing probability current between

the different configurations, and the system is inherently out of equilibrium.



2.2 Stochastic processes 65

In the micro-canonical equilibrium ensemble, the system is held at fixed

total energy. But for all accessible microstates x on the energy shell micro-

reversibility should hold, i.e., W (x → x′) = W (x′ → x), compare Fermi’s

golden rule (2.44). The detailed-balance condition (2.71) then implies Pst(x)

= Pst(x
′), i.e., in thermal equilibrium the system will be found with equal

probability in any of the microstates compatible with the fixed total energy

constraint. In the canonical ensemble, the physical system described by a

Hamiltonian H(x) is in thermal contact with a heat bath, which provides a

constant temperature T . The associated stationary probabilities are given

by the canonical distribution (Boltzmann factors),

Pst(x) =
1

Z(T )
e−H(x)/kBT . (2.86)

Transition rates satisfying detailed balance must hence obey the condition

W (x→ x′)

W (x′ → x)
= e−[H(x′)−H(x)]/kBT . (2.87)

This is actually the microscopic kinetic background for the relation (2.11)

between the absorptive and emissive branch of dynamic correlation func-

tions, which led to the fluctuation-dissipation theorem (2.34).

A Monte Carlo computer simulation may be interpreted as a numerical so-

lution of a master equation. One first defines the possible states of a system,

e.g., for each site on a discrete lattice. Next certain rules, corresponding to

the transition rates, are established according to which the configurations

evolve. In order to measure physical quantities and correlations, one per-

forms ensemble averages, over many runs, and/or temporal averages. In the

master equation language, this information is encoded in the probabilities

P1(x, t). If one wants to ensure that the simulation eventually reaches a sta-

tionary state such that equilibrium properties can be accessed, the assigned

transition rates should satisfy detailed balance. For example, the widely

employed Metropolis algorithm uses the rates (in units of computer time)

W (x→ x′) = min
(
1, e−[H(x′)−H(x)]/kBT

)
. (2.88)

The move from configuration x to x′ is always performed if the associated

energy decreases, while such an update is done with a finite probability when

H(x′) > H(x), i.e., is exponentially suppressed for large energy differences.

2.2.3 Kramers–Moyal expansion, Fokker–Planck equation

In the following, we assume that the possible values of the random variables

x (characterizing a physical configuration) are in a continuous set. With



66 Stochastic dynamics

x′ = x− ξ and t′ = t+ τ , Eq. (2.62) becomes

P1(x, t+ τ) =

∫
dξ P1|1(x, t+ τ |x− ξ, t)P1(x− ξ, t) . (2.89)

Next, provided the transition probabilities from x − ξ to x are invariant

with respect to time translations, and therefore P1|1(x, t + τ |x − ξ, t) =

Ptr(x − ξ, ξ, τ) does not depend on the initial time t, we may expand with

respect to the small increment ξ:

P1(x, t+ τ) =

∫
dξ

(
Ptr(x, ξ, τ)P1(x, t)− ξ

∂

∂x

[
Ptr(x, ξ, τ)P1(x, t)

]
+ . . .+

(−ξ)k

k!

∂k

∂xk

[
Ptr(x, ξ, τ)P1(x, t)

]
+ . . .

)
.

Upon defining the following limit for the kth increment moment of the tran-

sition probability,

αk(x) = lim
τ→0

1

τ

∫
dξ ξkPtr(x, ξ, τ) , (2.90)

and noticing that
∫
dξ Ptr(x, ξ, τ) = 1, we arrive at the Kramers–Moyal ex-

pansion

∂P1(x, t)

∂t
= lim

τ→0

P1(x, t+ τ)− P1(x, t)

τ

=
∞∑
k=1

(−1)k

k!

∂k

∂xk

[
αk(x)P1(x, t)

]
. (2.91)

Specifically for Markov processes, starting from the Chapman–Kolmogorov

equation (2.61) and following the same procedure one readily derives a

Kramers–Moyal expansion for the transition probability P1|1(x, t|x0, t0) itself
(Prob. 2.5).

In many instances, only the first two moments contribute to the for-

mal expansion (2.91), and the remaining Kramers–Moyal coefficients vanish:

Whereas
∫
dξ ξ Ptr(x, ξ, τ) = τ α1(x) and

∫
dξ ξ2 Ptr(x, ξ, τ) = τ α2(x), in this

case
∫
dξ ξk Ptr(x, ξ, τ) = O(τ2), whence αk = 0 for k ≥ 3. Eq. (2.91) then

reduces to the Fokker–Planck equation

∂P1(x, t)

∂t
= − ∂J1(x, t)

∂x
= − ∂

∂x

[
α1(x)P1(x, t)

]
+

1

2

∂2

∂x2

[
α2(x)P1(x, t)

]
,

(2.92)

which has the form of a continuity equation for the probability density

P1(x, t), with the probability current

J1(x, t) = α1(x)P1(x, t)−
1

2

∂

∂x

[
α2(x)P1(x, t)

]
. (2.93)
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If the random variable x is a vector quantity, i.e., more than one label is

required to characterize the configuration, ∂/∂x is of course to be interpreted

as the divergence operation. The Kramers–Moyal coefficient α1(x) then

becomes a vector as well, and α2(x) a matrix (second-rank tensor). The

first and second contributions on the right-hand side of (2.92) are referred

to as the drift and diffusion terms, respectively (see also Sec. 2.3.1).

In fact, Pawula’s theorem states that for non-vanishing transition prob-

abilities Ptr(x, ξ, τ) > 0, the Kramers–Moyal expansion (2.91) may either

terminate after the first or second term, which then yields the Fokker–

Planck equation (2.92), or must contain infinitely many terms. In order

to prove this remarkable statement, we introduce the scalar product (f |g) =∫
dξ f(ξ)g(ξ)Ptr(x, ξ, τ), and exploit the associated generalized Schwarz in-

equality (f |g)2 ≤ (f |f) (g|g), i.e.,[∫
dξ f(ξ)g(ξ)Ptr(x, ξ, τ)

]2
≤
∫
dξ f(ξ)2 Ptr(x, ξ, τ)

×
∫
dξ g(ξ)2 Ptr(x, ξ, τ) . (2.94)

We assume αk ̸= 0, but all αk′ = 0 for k′ > k, and lead this assertion to

contradictions for k > 2. For k odd, we set f(ξ) = ξ(k+1)/2 and g(ξ) =

ξ(k−1)/2. Inserting into the inequality (2.94), dividing with τ2, and taking

τ → 0, we obtain for k ≥ 3: 0 < αk(x)
2 ≤ αk+1(x)αk−1(x). But then

αk+1 = 0 would imply αk = 0 as well, which contradicts our assumption. Yet

for k = 1, we find instead τ α1(x)
2 ≤ α2(x) = 0, perfectly compatible with

the limit τ → 0. For even k, on the other hand, the choices f(ξ) = ξ(k+2)/2

and g(ξ) = ξ(k−2)/2 similarly leads to 0 < αk(x)
2 ≤ αk+2(x)αk−2(x) = 0

for k ≥ 4, while for k = 2 merely τ α2(x)
2 ≤ α4(x). If the Kramers–Moyal

expansion does not terminate at k = 2, we observe that certainly all even

coefficients α2k ̸= 0, whereas some of the odd ones might vanish.

2.3 Three examples

This concludes our brief exposition of stochastic processes. In this sec-

tion, we discuss three hopefully instructive examples. Aside from providing

interesting physical applications and illustrations for the general concepts

introduced in Sec. 2.2, the important systems to be explored here closely

relate to the non-equilibrium chapters on driven diffusive (Chap. 11) and

reaction-diffusion systems (Chap. 9), and to the three subsequent chapters

on equilibrium critical dynamics.
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2.3.1 One-dimensional random walk and biased diffusion

As a first example, we consider a random walk on a one-dimensional chain

consisting of N discrete lattice sites j, with lattice constant a0. The possible

configurations of the system can be labeled by the walker’s position xj = ja0
at time t. After each time step of duration τ , the particle may either hop

to the right, with probability 0 ≤ p ≤ 1, or to the left, with probability

1 − p. The corresponding Markovian stochastic process is then defined by

specifying the non-vanishing time-independent transition rates. For 2 ≤
j ≤ N − 1, we have Wj→j+1 = p/τ and Wj→j−1 = (1 − p)/τ . At this

point, we need to specify the boundary conditions at the chain ends. For

periodic boundary conditions, upon identifying the sites N + 1 with 1 and

0 with N , these rules can simply be maintained for j = N and j = 1.

In the case of reflecting boundary conditions, we set W1→2 = p/τ , and

WN→N−1 = (1− p)/τ , while allowing no other transitions from sites 1 and

N . The associated master equation reads

∂Pj(t)

∂t
=

1

τ

[
pPj−1(t)− Pj(t) + (1− p)Pj+1(t)

]
, (2.95)

valid for all sites for periodic boundary conditions but only for 2 ≤ j ≤ N−1

for an open chain, in which case we must supplement Eqs. (2.95) with

∂P1(t)

∂t
=

1

τ

[
−pP1(t) + (1− p)P2(t)

]
,

∂PN (t)

∂t
=

1

τ

[
pPN−1(t)− (1− p)PN (t)

]
. (2.96)

The choice of boundary conditions turns out to be crucial if we seek sta-

tionary solutions Pj to (2.95) that satisfy detailed balance, i.e.,

pPj = (1− p)Pj+1 (2.97)

for all sites j and either set of boundary conditions. For the closed chain,

a detailed-balance solution thus exists only in the unbiased case with p =

1/2, when obviously Pj = 1/N , and independent random walkers become

uniformly distributed as t → ∞. Indeed, Kolmogorov’s criterion (2.72) is

clearly violated for a biased random walk with p ̸= 1/2 if we choose the cycle

to be the entire system: pN ̸= (1−p)N . The system is therefore genuinely out

of equilibrium, and in the stationary state, a macroscopic particle current

runs through the ring. In fact, the simple uniform probability distribution

Pj = 1/N satisfies Eq. (2.95). Yet for a proper characterization of this non-

equilibrium stochastic process one must also specify the uniform current

∝ (2p− 1)a0/τ .
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Pj

2 41 3 NN-1 j.5 . .

Fig. 2.5. Sketch of the stationary probability distribution for a one-dimensional
biased random walk with 0 < p < 1/2 and reflecting boundary conditions.

In the case of reflecting boundary conditions, on the other hand, the

normalization 1 =
∑N

j=1 Pj = P1
∑N−1

j=0 [p/(1− p)]j fixes (for p ̸= 1/2)

P1 =
1− 2p

(1− p) [1− pN/(1− p)N ]
, (2.98)

and thence all other Pj = [p/(1 − p)]j−1P1 through the geometric progres-

sion (2.97). This yields a stationary probability distribution that in the

continuum limit, corresponds to a barometric height formula for the parti-

cle density, as shown in Fig. 2.5. In the fully directed limit with p = 0 one

finds P1 = 1, Pj = 0 for 2 ≤ j ≤ N ; as expected, the particles then accumu-

late at the left boundary. In the unbiased case p = 1/2, we again recover the

flat distribution Pj = 1/N . In equilibrium statistical mechanics language,

these two extreme cases correspond, for a fixed bias potential U > 0, to zero

and infinite temperature, respectively: p = 1/(1 + eU/kBT ).

In order to take the continuum limit, we rewrite Eq. (2.95)

∂Pj(t)

∂t
=

1− 2p

2τ

[
Pj+1(t)−Pj−1(t)

]
+

1

2τ

[
Pj+1(t)−2Pj(t)+Pj−1(t)

]
, (2.99)

neglecting the boundaries. With xj = ja0, and letting the lattice constant

a0 → 0, we have Pj(t) → P1(x, t), and the two terms in square brackets

become 2a0 ∂P1(x, t)/∂x and a20 ∂
2P1(x, t)/∂x

2. Thus we directly obtain the

Fokker–Planck equation, which takes the form of a drift-diffusion equation:

∂P1(x, t)

∂t
= −v ∂P1(x, t)

∂x
+D

∂2P1(x, t)

∂x2
, (2.100)

and we may identify the constant Kramers–Moyal coefficients with the drift

velocity and diffusion constant,

v =
2a0
τ

(
p− 1

2

)
, D =

a20
2τ

. (2.101)
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Fig. 2.6. Sketch of the solution (2.104) to the continuum drift-diffusion equation.

For this Markov process, an identical Fokker–Planck equation holds for the

transition probabilities P1|1(x, t|x0, 0).
We proceed to solve the partial differential equation (2.100) for an in-

finite chain L = (N − 1)a0 → ∞, and initial particle location x0 = 0:

P1(x, t = 0) = δ(x) (which is also the proper initial condition for the tran-

sition probability). A Galilean transformation P1(x, t) = G(x − vt, t) elim-

inates the drift term, and the resulting pure diffusion equation for G(x, t)

reads in Fourier space

∂G(q, t)

∂t
= −Dq2G(q, t) + δ(t) (2.102)

for t ≥ 0, since G(q = 0, t) = Θ(t). Its solution is just the diffusion Green

function

G(q, t) = e−Dq2tΘ(t) . (2.103)

In coordinate space, this is a Gaussian as well, and we obtain at last

P1(x, t) = G(x− vt, t) =
1√
4πDt

e−(x−vt)2/4DtΘ(t) , (2.104)

see Fig. 2.6. Its first moments are ⟨x⟩ = vt and (∆x)2 = ⟨x(t)2⟩−⟨x⟩2 = 2Dt,

which is Fick’s diffusion law for the mean-square displacement. Since the

random hopping process is Markovian, the transition probability satisfies the

Fokker–Planck equation (2.100) as well. All higher moments factorize for the

ensuing Gaussian distribution (2.104), and are therefore at least of order t2,

which confirms that the Kramers–Moyal expansion indeed terminates after

the second term. Finally, with the aid of the Green function (2.104), the

solution for any arbitrary initial distribution P1(x, 0) can be constructed:

P1(x, t) =

∫
dx′G(x− x′ − vt, t)P1(x

′, 0) , (2.105)
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which of course is just Eq. (2.89), since we may identify G(x− x′ − vt, t) =

P1|1(x, t|x′, 0).

2.3.2 Population dynamics

Our second example represents a very simplified zero-dimensional model for

population dynamics that is devoid of any spatial structure. The possible

configurations are indicated by the integer number n of particles or individu-

als A in a population present at time t. Let us consider offspring production

A→ A+A, with rate σ, and spontaneous death, A→ ∅, with rate κ, which

both constitute ‘first-order’ reactions. The ensuing Markovian dynamics is

implemented by defining the corresponding transition rates for the branch-

ing and decay processes, namely Wn→n+1 = σ n and Wn→n−1 = κn, both

of which are proportional to the population number. Notice that the con-

figuration n = 0 represents an absorbing state in the following sense: Once

reached, the stochastic process stops there, and there are no fluctuations

that allow the system to leave this empty configuration. Quite obviously

then, detailed balance cannot be satisfied, and we are dealing with a gen-

uine non-equilibrium system. The corresponding master equations for the

time-dependent probabilities Pn(t) are readily written down:

∂Pn(t)

∂t
= σ(n− 1)Pn−1(t)− (σ + κ)nPn(t) + κ(n+ 1)Pn+1(t) . (2.106)

In order to solve the coupled set of (infinitely many) differential equations

(2.106), we introduce the generating function

g(x, t) =
∞∑
n=0

xnPn(t) . (2.107)

The desired probabilities Pn(t) are just the nth Taylor coefficients of g(x, t)

in the auxiliary variable x. For example, the probability for reaching the

empty, absorbing state at time t is P0(t) = g(0, t), whence the survival

probability becomes

Pa(t) = 1− g(0, t) . (2.108)

Furthermore, averages are given by appropriate derivatives of g(x, t), e.g.,

the mean population size is

⟨n(t)⟩ =
∞∑
n=1

nPn(t) =
∂g(x, t)

∂x

∣∣∣∣
x=1

, (2.109)
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0
x

x(l)

t(l) 0

Fig. 2.7. Method of characteristics: The goal is to find a curve parametrization
x(l), t(l) such that x(0) = x0, t(0) = 0, and dg/dl = 0.

and

⟨n(t)2⟩ =
∞∑
n=1

n2Pn(t) =
∂

∂x

(
x
∂g(x, t)

∂x

) ∣∣∣∣
x=1

=
∂g(x, t)

∂x

∣∣∣∣
x=1

+
∂2g(x, t)

∂x2

∣∣∣∣
x=1

, (2.110)

etc. In addition, if initially there are n0 particles present, i.e., Pn(t = 0) =

δnn0 , the generating function satisfies g(x, 0) = xn0 ; normalization finally

gives

g(1, t) =
∞∑
n=0

Pn(t) = 1 . (2.111)

The crucial point, however, is that the set of infinitely many coupled mas-

ter equations (2.106) is contained in the single partial differential equation

∂g(x, t)

∂t
=

∞∑
n=1

[
σxn+1 − (σ + κ)xn + κxn−1

]
nPn(t)

= κ(1− x)

(
1− σ

κ
x

)
∂g(x, t)

∂x
, (2.112)

subject to the boundary condition (2.111). In order to solve (2.112), we

employ the method of characteristics. The idea is to view the solution as a

curve in (x, t) space (Fig. 2.7) and find a parametrization x(l), t(l) such that

dg
(
x(l), t(l)

)
dl

=
∂g(x, t)

∂x

dx(l)

dl
+
∂g(x, t)

∂t

dt(l)

dl
= 0 , (2.113)

because then

g
(
x(l), t(l)

)
= g

(
x(0) = x0, t(0) = 0

)
= xn0

0 (2.114)

according to the initial condition. Comparing Eqs. (2.112) and (2.113), we
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see that we may simply choose time itself as the curve parameter, t(l) = l,

which leaves us with a first-order ordinary differential equation

dx(t)

dt
= −κ [1− x(t)]

[
1− σ

κ
x(t)

]
. (2.115)

Straightforward integration yields

−κt =
∫ x(t)

x0

dx′

(1− x′)(1− σx′/κ)
=

κ

κ− σ
ln

[
κ− σx(t)

κ− σx0

1− x0
1− x(t)

]
for σ ̸= κ, whereas −κt = [1 − x(t)]−1 − [1 − x0]

−1 for equal rates σ = κ.

Solving for x0(x, t) and inserting into (2.114) one arrives at

g(x, t) = x0(x, t)
n0 =

[
(κ− σx) e(κ−σ)t − κ(1− x)

(κ− σx) e(κ−σ)t − σ(1− x)

]n0

(2.116)

if σ ̸= κ, and

g(x, t) =

[
1 + (1− x)(κt− 1)

1 + (1− x)κt

]n0

(2.117)

in the degenerate case σ = κ. It is easily checked that the solutions (2.116)

and (2.117) satisfy the normalization condition (2.111).

From Eqs. (2.116) and (2.117), we obtain the extinction probability

P0(t) = g(0, t) =


([
e(κ−σ)t − 1

]/ [
e(κ−σ)t − σ

κ

])n0
σ ̸= κ[

κt/(1 + κt)
]n0

σ = κ
. (2.118)

The extinction probability grows (decreases) exponentially in time if κ > σ

(κ < σ), with a characteristic time scale τc = 1/|κ − σ|. As the control

parameter κ/σ → 1, τc diverges, and P0(t) initially follows a power law.

In this sense, our zero-dimensional model displays features that resemble

critical behavior near a continuous phase transition. As a possible order

parameter, one may use the asymptotic survival probability

Pa = 1− lim
t→∞

P0(t) =

{
1− (κ/σ)n0 κ < σ

0 κ ≥ σ
, (2.119)

plotted in Fig. 2.8. Lastly, we determine the mean population size using

Eq. (2.109), ⟨n(t)⟩ = n0 e
(σ−κ)t. Consequently, n∞ = limt→∞⟨n(t)⟩ vanishes

in the inactive state (κ > σ), diverges in the active phase (κ < σ), whereas

⟨n(t)⟩ = n0 precisely at the extinction threshold. A straightforward calcu-

lation (Prob. 2.6) yields that the mean-square particle number fluctuations

grow linearly in time at this ‘critical point’: (∆n)2 = 2n0κt. With balancing

production and decay rates, the stochastic process {n(t)} may be viewed as
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Fig. 2.8. Asymptotic survival probability for the population model as function of
the ratio κ/σ of the decay and branching rates.

a one-dimensional unbiased random walk, starting at n0, and with effective

‘diffusion’ constant n0κ. We remark that if we replace the branching process

with spontaneous particle creation ∅ → A with rate τ > 0, i.e., Wn→n+1 = τ

(independent of n), the system always resides in the active state with finite

particle density n∞ = τ/κ (see Prob. 2.7).

2.3.3 Kinetic Ising models

As a final example, we construct equilibrium kinetics for the ferromagnetic

Ising model (1.10). Its possible configurations are given by the set of spin

values {σi = ±1} at each lattice site i. We take the thermodynamic limit,

and shall not worry about boundary conditions here. Starting from an

arbitrary initial state, the simplest Markovian dynamics consists of allowing

local spin flips σi → −σi with certain rates W (σi). This is usually referred

to as Glauber kinetics. In order to ensure that the system eventually relaxes

to the canonical distribution, we impose detailed balance, which we may

conveniently write in terms of the effective local fields (1.14) as

eheff,iσi/kBT W (σi) = e−heff,iσi/kBT W (−σi) . (2.120)

As σ2i = 1, we have the identity

e±heff,iσi/kBT =

(
1± σi tanh

heff,i
kBT

)
cosh

heff,i
kBT

,

and a simple choice for the transition rates that satisfies Eq. (2.120) is

W (σi) = ΓG

(
1− σi tanh

heff,i
kBT

)
(2.121)

with a constant flip rate ΓG. Notice that for T → ∞, the energetics becomes

irrelevant, and all rates equal to ΓG. For T = 0, on the other hand,W (σi) =
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ΓG(1 − σi sgnheff,i): The spin at site i may only flip, with rate 2ΓG, if the

net effective field there points in the opposite direction.

In one dimension, and with nearest-neighbor exchange couplings only,

heff,i = h + J(σi−1 + σi+1), and the rates W (σi) depend just on the values

of the two adjacent spins. This yields the following list of possible processes

and respective Glauber transition rates:

↑↑↑ → ↑↓↑ ΓG

(
1− tanh

h+ 2J

kBT

)
↑↑↓ → ↑↓↓ ΓG

(
1− tanh

h

kBT

)
↓↑↑ → ↓↓↑ ΓG

(
1− tanh

h

kBT

)
↓↑↓ → ↓↓↓ ΓG

(
1− tanh

h− 2J

kBT

)
↑↓↑ → ↑↑↑ ΓG

(
1 + tanh

h+ 2J

kBT

)
↑↓↓ → ↑↑↓ ΓG

(
1 + tanh

h

kBT

)
↓↓↑ → ↓↑↑ ΓG

(
1 + tanh

h

kBT

)
↓↓↓ → ↓↑↓ ΓG

(
1 + tanh

h− 2J

kBT

)
. (2.122)

Of course, the external field h favors spin flips in its direction. For h =

0, this bias disappears, and the first four of the above processes become

degenerate with their ↑ ↔ ↓ ‘mirror’ images. We may then employ the

domain wall representation of the Ising system, where a pair of opposite

spins is labeled as a ‘particle’ A, while a pair of parallel spins is viewed as

an empty space ∅. In this language, the four elementary Glauber processes

translate to pair creation, unbiased hopping, and pair annihilation of domain

walls, respectively, with the following rates:

∅ ∅ → AA ΓG

(
1− tanh

2J

kBT

)
∅A → A ∅ ΓG

A ∅ → ∅A ΓG

AA → ∅ ∅ ΓG

(
1 + tanh

2J

kBT

)
. (2.123)

As the temperature decreases to zero, domain wall creation is rendered im-

possible, and the annihilation rate becomes twice the hopping rate. The
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kinetic Ising system approaches the ordered state through expelling the in-

terfaces. Within the mean-field approximation, we may infer the overall

density n(t) of domain walls by means of an approximate rate equation that

balances the spontaneous production and pair annihilation contributions,

1

ΓG

dn(t)

dt
=

(
1− tanh

2J

kBT

)
[1− n(t)]2 −

(
1 + tanh

2J

kBT

)
n(t)2 . (2.124)

In the stationary state, we thus find the domain wall density

ns =

(
1 +

√
1 + tanh(2J/kBT )

1− tanh(2J/kBT )

)−1

=
1

1 + e2J/kBT
, (2.125)

which vanishes exponentially as T → 0, proportional to the inverse correla-

tion length (compare Prob. 1.2), whereas ns → 1/2 as T → ∞.

Under Glauber kinetics, the total magnetization M =
∑

i σi is not con-

served. However, for the Ising model without additional anisotropies, M is

actually a conserved quantity, its fixed value being determined by the exter-

nal field h. A more appropriate microscopic relaxation mechanism therefore

consists of spin exchanges σi ↔ σj ̸= σi, called Kawasaki dynamics, with

transition rates W (σi ↔ σj) ∝ ΓK
1
2(1 − σiσj). In the lattice gas rep-

resentation (1.30), this simply describes particle transfers to empty sites;

h is then related to the chemical potential that fixes the overall particle

number
∑

i ni =
1
2(N +M). According to detailed balance, the exchange

rates W (σi ↔ σj) will again be determined by the energetics, but become

independent of the external field h. In one dimension and for purely nearest-

neighbor interactions, we have the following elementary processes, both in

the spin and domain wall picture, and corresponding rates:

↑↑↓↑ → ↑↓↑↑ ∅ AA → AA ∅ ΓK

↑↑↓↓ → ↑↓↑↓ ∅ A ∅ → AAA Γb

↓↑↓↑ → ↓↓↑↑ AAA → ∅ A ∅ Γa

↓↑↓↓ → ↓↓↑↓ AA ∅ → ∅ AA ΓK . (2.126)

In particle language, the first and last process represent hopping, the second

one branching, and the third one fusion. As T → ∞, all rates must become

equal, while for T → 0 one should expect Γb → 0 and Γa → 2ΓK. In general,

Γa + Γb = 2ΓK; in addition, the detailed balance conditions imply

Γb = e−4J/kBT Γa (2.127)

for the second and third of the above spin exchange processes and their
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reverse, whence

Γa =
2ΓK

1 + e−4J/kBT
= ΓK

(
1 + tanh

2J

kBT

)
,

Γb =
2ΓK

1 + e4J/kBT
= ΓK

(
1− tanh

2J

kBT

)
. (2.128)

The mean-field rate equation for the average domain wall density now reads

1

ΓK

dn(t)

dt
=

(
1− tanh

2J

kBT

)
n(t)[1− n(t)]2 −

(
1 + tanh

2J

kBT

)
n(t)3 ,

(2.129)

with the same stationary solution (2.125) as for the Glauber model.

2.4 Langevin equations

As mentioned above, solving the fully microscopic equations of motion for

stochastic dynamical systems is rarely feasible. Neither is it really desired:

A description in terms of a few mesoscopic degrees of freedom, whose aver-

ages yield macroscopic observables, is much preferable. This requires some

sort of coarse-graining. Moreover, we are typically interested in the long-

time behavior of certain characteristic quantities, and not in their complete

short-time kinetics. Provided an appropriate separation of time scales ap-

plies, we may attempt to formulate dynamic equations for the relevant ‘slow’

mesoscopic degrees of freedom. The ‘fast’ microscopic variables then act on

the former as random forces, and can be viewed as system-inherent stochas-

tic noise. This leads to Langevin stochastic differential equations, which

have proven quite useful in the study of dynamic critical phenomena, both

in and away from thermal equilibrium.4

2.4.1 Langevin–Einstein theory of Brownian motion

We begin with a brief study of Brownian motion: A large, heavy particle,

with mass m, moves with velocity v (a d-dimensional vector) in a fluid con-

sisting of many small, light particles. The impacts with the fluid particles are

modeled through a stochastic force f(t). In addition, the random collisions

on average generate a friction force −mζv. Newton’s equation of motion for

the Brownian particle thus becomes a stochastic differential equation

m
∂v(t)

∂t
= −mζ v(t) + f(t) . (2.130)

4 Good introductions to Langevin dynamics can also be found in Reif (1985), Chaikin and Luben-
sky (1995), Pathria (1996), Cowan (2005), Schwabl (2006), Kardar (2007), Reichl (2009), and
Van Vliet (2010).
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Fig. 2.9. Typical correlation function for the stochastic forces.

In order to solve the Langevin equation (2.130), we need to specify the

statistical properties of the random force f(t). As we have already taken

care of the mean effect of the collisions through the friction term, the time

average of the stochastic force on a given large particle, or equivalently, the

ensemble average over a large set of alike Brownian particles, vanishes,

⟨f(t)⟩ = 0 . (2.131)

For the second moment, we assume time translation invariance, and take

the d spatial force components to be uncorrelated:

⟨fi(t)fj(t′)⟩ = ϕ(t− t′) δij . (2.132)

In the spirit of the central-limit theorem we demand that the specification of

the first two moments (2.131) and (2.132) should suffice to fully characterize

this stochastic process, which we hence presume to be Gaussian.

We expect the stochastic forces to lose any correlations beyond a typical

time scale τc, roughly the duration of a collision with a fluid particle; e.g.,

ϕ(t) =
λ

2τc
e−|t|/τc . (2.133)

In general, ϕ(t) = ϕ(−t) is a symmetric function, with ϕ(0) = ⟨f(t)2⟩/d ≥ 0,

and we expect lim|t−t′|→∞ ϕ(t − t′)δij = ⟨fi(t)⟩⟨fj(t′)⟩ = 0. Because of

0 ≤ ⟨[f(t) ± f(t′)]2⟩ = 2d [ϕ(0) ± ϕ(t − t′)], furthermore |ϕ(t)| ≤ ϕ(0); see

Fig. 2.9. The Fourier transform of the memory function ϕ(t) is symmetric

as well, ϕ(ω) = ϕ(−ω), and satisfies the Wiener–Khintchine theorem

ϕ(t = 0) =
1

d

⟨
f(t)2

⟩
=

1

π

∫ ∞

0
ϕ(ω) dω . (2.134)

For example, the Fourier transform of Eq. (2.133) is a Lorentzian with line

width 1/τc,

ϕ(ω) =
λ/τ2c

ω2 + 1/τ2c
. (2.135)
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If we are interested in the long-time limit t ≫ τc only, we may effectively

replace (2.133) with a delta function,

ϕ(t) → λ δ(t) , (2.136)

or equivalently ϕ(ω) → ϕ(ω = 0) = λ, yielding uncorrelated white noise.

In this limit, the associated Gaussian probability distribution for the

stochastic forces becomes

P [f ] = C exp

[
− 1

2λ

∫ tf

t0
f(t)2 dt

]
(2.137)

for processes starting at time t0 and ending at tf . Averages over random

force histories may then be computed via functional integration ⟨A[f ]⟩ =∫
D[f ]A[f ]P [f ]. The integral over all possible ‘paths’ f(t) is constructed

through temporal discretization withM time steps of length τ = (tf−t0)/M ,

tl = t0 + lτ , l = 0, . . . ,M , where we identify tM = tf . Upon defining the

functional integration measure explicitly via

D[f ] = lim
τ→0

M−1∏
l=0

(
τ

2πλ

)d/2

ddf(tl) , (2.138)

we obtain∫
D[f ]P [f ] = lim

τ→0

∫ M−1∏
l=0

(
τ

2πλ

)d/2

ddf(tl) exp

[
− τ

2λ

M−1∑
l=0

f(tl)
2

]
= 1 ,

whereupon we can set the normalization constant C = 1. As a check, we

also compute

⟨fi(tl)fj(tl′)⟩ = λ
δll′

τ
δij ,

i.e., the appropriately discretized version of (2.132) and (2.136).

In order to proceed with the analysis of the Langevin equation (2.130),

we apply the Green function technique. The associated differential equation

∂G(t)/∂t+ ζ G(t) = δ(t) is solved by G(t) = e−ζtΘ(t). With v(t = 0) = v0,

the solution of the homogeneous part of Eq. (2.130) reads v(t) = v0 e
−ζt,

whence that of the full, inhomogeneous equation becomes

v(t) = v0 e
−ζt +

1

m

∫ ∞

0
G(t− t′)f(t′) dt′

= e−ζt
(
v0 +

1

m

∫ t

0
eζt

′
f(t′) dt′

)
. (2.139)

Let us now consider the velocity correlation function

⟨vi(t)vj(t′)⟩ = e−ζ(t+t′)
[
v0iv0j +

δij
m2

∫ t

0
dτ

∫ t′

0
dτ ′ eζ(τ+τ ′) ϕ(τ − τ ′)

]
,
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where we have inserted the moments (2.131) and (2.132). For τc → 0,

we may use Eq. (2.136), whereupon the double integral here reduces to

λ(e2ζt − 1)/2ζ for t < t′, and thus

⟨vi(t)vj(t′)⟩ =
(
v0iv0j −

λ

2ζm2
δij

)
e−ζ(t+t′) +

λ

2ζm2
δij e

−ζ|t−t′| . (2.140)

Asymptotically for t, t′ ≫ 1/ζ, only the last term survives. If we assume that

the Brownian particle eventually equilibrates with the fluid at temperature

T , we may employ the classical equipartition theorem, d
2 kBT = m

2 ⟨v(t)2⟩ =
dλ/4ζm, to obtain Einstein’s relation

λ = 2ζmkBT . (2.141)

Hence, in thermal equilibrium, the relaxation coefficient ζ is determined by

the strength of the noise correlations λ and kBT . Notice that a double

separation of time scales has been applied here, namely τc ≪ 1/ζ ≪ t. If we

relax the first condition, we just need to replace λ with ϕ(ω = 0),

ζ =
ϕ(ω = 0)

2mkBT
=

1

2dmkBT

∫ ∞

−∞
⟨f(t) · f(0)⟩ dt . (2.142)

This relation is called the fluctuation-dissipation theorem of the second kind.

It ensures that the kinetic energy dissipation in the Langevin equation

(2.130) is on average balanced by the fluctuating force input, see Prob. 2.8,

and that the system eventually relaxes to thermal equilibrium.

The Brownian particle’s mean-square displacement follows from x(t) =∫ t
0 v(τ) dτ and our previous result (2.140):⟨

x(t)2
⟩
=

∫ t

0
dτ

∫ t

0
dτ ′ ⟨v(τ) · v(τ ′)⟩ (2.143)

=

(
v20 −

dλ

2ζm2

)(∫ t

0
e−ζτ dτ

)2

+
dλ

2ζm2

∫ t

0
dτ

∫ t

0
dτ ′ e−ζ|τ−τ ′|

=

(
v20 −

dλ

2ζm2

)
1

ζ2

(
1− e−ζt

)2
+

dλ

ζ2m2

[
t− 1

ζ

(
1− e−ζt

)]
after straightforward integration. At short times τc ≪ t ≪ 1/ζ, a Taylor

expansion to order (ζt)2 yields ballistic motion with the initial velocity:

⟨x(t)2⟩ ≈ v20t
2. For t ≫ 1/ζ, on the other hand, we may neglect e−ζt,

and the result becomes independent of the initial condition. With ⟨x(t)⟩ =
v0 (1 − e−ζt)/ζ, Eq. (2.143) then yields Fick’s diffusion law (∆x)2 ≈ 2Dt,

with the diffusion coefficient

D =
dλ

2ζ2m2
=

d

ζm
kBT . (2.144)
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In the last equation, we have inserted the Einstein relation (2.141).

2.4.2 Fokker–Planck equation for free Brownian motion

The solution {v(t)} of the Langevin equation (2.130) for a free Brownian

particle can be viewed as a stochastic process. For the associated Kramers–

Moyal expansion, we need the moments of the velocity increments ξ(t) =

v(t+ τ)− v(t),

αi1...ik(v) = lim
τ→0

1

τ

∫
ddξ ξi1 . . . ξikPtr(v, ξ, τ) . (2.145)

We utilize time translation invariance, and obtain from the explicit solution

(2.139): ⟨v(τ) − v0⟩ = (e−ζτ − 1)v0 → −ζτv0 as τ → 0. Hence the first

Kramers–Moyal coefficient becomes α1(v) = −ζv. For the second moment,

we compute with the aid of Eq. (2.140)

⟨[vi(τ)− vi0][vj(τ)− vj0]⟩ = v0iv0j
(
e−ζτ − 1

)2
− λ

2ζm2
δij
(
e−2ζτ − 1

)
,

whence αij = λδij/m
2, independent of v. In order to determine the re-

maining moments, we use ζτ ≪ 1 right away, apply forward integration to

Eq. (2.130),

v(t+ τ)− v(t) ≈ −ζτ v(t) + 1

m

∫ t+τ

t
f(t′) dt′ , (2.146)

and exploit the properties of the Gaussian distribution (2.137). Thus,

⟨ξiξjξk⟩ ≈ (−ζτ)3vivjvk

−ζτ
(
viδjk + vjδik + vkδij

) ∫ t+τ

t
dt′
∫ t+τ

t
dt′′

λ

m2
δ(t− t′) ,

which is of order τ2, as the double integral in the second term yields λτ/m2.

Similarly, we obtain

⟨ξiξjξkξl⟩ ≈ (−ζτ)4vivjvkvl + (ζτ)2
(
vivjδkl + 5 permutations

) λ

m2
τ

+(δijδkl + δikδjl + δilδjk)

(
λ

m2
τ

)2

.

Consequently, αijk(v) = 0 = αijkl(v), and according to Pawula’s theorem,

all higher Kramers–Moyal coefficients vanish as well. The probability distri-

bution P1(v, t) for free Brownian motion therefore obeys the Fokker–Planck

equation

∂P1(v, t)

∂t
= ζ

∂

∂v
· [vP1(v, t)] +

λ

2m2

∂2P1(v, t)

∂v2
. (2.147)
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It is instructive to derive Eq. (2.147) directly from the identity

P1(v, t) =
⟨
δ
(
v − v(t)

)⟩
. (2.148)

Upon inserting Eq. (2.130) one finds

∂P1(v, t)

∂t
= − ∂

∂v
·
⟨
δ
(
v − v(t)

) [
−ζ v(t) + 1

m
f(t)

]⟩
.

In the first term, we may replace v(t) with v, which yields the drift term

in the Fokker–Planck equation. For the second contribution, we recall the

definition of averages with the Gaussian probability distribution (2.137),

and integrate by parts⟨
δ
(
v − v(t)

)
f(t)

⟩
=

∫
D[f ] δ

(
v − v(t)

)
f(t) exp

[
− 1

2λ

∫
f(t′)2 dt′

]
= −λ

∫
D[f ] δ

(
v − v(t)

) δ

δf(t)
exp

[
− 1

2λ

∫
f(t′)2 dt′

]
= λ

⟨
δ

δf(t)
δ
(
v − v(t)

)⟩
= −λ ∂

∂v

⟨
δ
(
v − v(t)

) δv(t)
δf(t)

⟩
. (2.149)

Lastly we obtain from the explicit solution (2.139)

δv(t)

δf(t)
=
e−ζt

m

∫ t

0
eζt

′
δ(t− t′) dt′ =

1

2m
, (2.150)

and collecting all contributions, we are led to the diffusion term in (2.147).

Writing the Fokker–Planck equation in the form of a continuity equation

as in Eq. (2.92), we find for the probability current

J1(v, t) = −ζvP1(v, t)−
λ

2m2

∂P1(v, t)

∂v
. (2.151)

For a stationary solution Pst(v), Jst(v) = 0. Provided the Einstein relation

(2.141) holds, this condition is indeed satisfied by the classical Maxwell–

Boltzmann velocity distribution

Pst(v) =

(
m

2π kBT

)d/2

e−mv2/2kBT . (2.152)

This is confirmed by an explicit solution of the Fokker–Planck equation

(2.147). To this end, we substitute ρ(v, t) = v eζt into P1(v, t) = Y (ρ, t),

whence

∂Y (ρ, t)

∂t
= dζ Y (ρ, t) +

λ

2m2
e2ζt

∂2Y (ρ, t)

∂ρ2
.

The ansatz Y (ρ, t) = X(ρ, t) edζt then eliminates the homogeneous term,
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leaving us with a diffusion equation with time-dependent diffusion coefficient

D(t). The latter is solved simply through replacing Dt in the standard

results with the integral
∫ t
0 D(t′) dt′. Here, this amounts to transforming to

a new time variable θ(t) = (e2ζt − 1)/2ζ with θ(0) = 0, which yields the

normal diffusion equation

∂X(ρ, θ)

∂θ
=

λ

2m2

∂2X(ρ, θ)

∂ρ2
.

Notice that with the initial condition v(t = 0) = v0, we have P1(v, t) =

P1|1(v, t|v0, 0). As we shall see below, in the case of uncorrelated noise

(2.136) the Langevin equation indeed describes a Markovian stochastic pro-

cess, and the transition probability satisfies the very same Fokker–Planck

equation (2.147), see Prob. 2.5. For ρ(0) = v0, we find with the straightfor-

ward generalization of Eq. (2.104) to d space dimensions

X1|1
(
ρ(v, t), θ(t)|v0, 0

)
=

(
m2

2πλ θ(t)

)d/2

e−m2[ρ(v,t)−v0]2/2λθ(t) ,

and hence in terms of the original variables

P1|1(v, t|v0, 0) =
[

ζm2

πλ(1− e−2ζt)

]d/2
exp

[
− ζm2(v − v0 e

−ζt)2

λ(1− e−2ζt)

]
. (2.153)

Initially, this becomes P1|1(v, 0|v0, 0) = δ(v− v0), as it should, while asymp-

totically

P1|1(v, t→ ∞|v0, 0) = Pst(v) =

(
ζm2

πλ

)d/2

e−ζm2v2/λ , (2.154)

independent of v0. For λ = 2ζmkBT , this is exactly the Maxwell–Boltzmann

distribution (2.152). Given an arbitrary normalized initial velocity distribu-

tion w0(v) with
∫
w0(v) d

dv = 1, the general solution of Eq. (2.147) reads

P1(v, t) =

∫
P1|1(v, t|v′, 0)w0(v

′) ddv′ , (2.155)

see Eqs. (2.62) or (2.105), since P1|1(v, t|v0, 0) is just the corresponding Green

function. Thus P1(v, 0) = w0(v), whereas P1(v, t → ∞) = Pst(v): Quite

independent of the initial conditions, the probability distribution relaxes to

the same stationary limit, namely Eq. (2.154).

2.4.3 Random motion in an external potential

We now generalize the above considerations to the motion of a Brownian

particle in an external potential V (x), as shown in Fig. 2.10. With v(t) =
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x

V(x)

Fig. 2.10. Brownian motion in an external potential V (x).

∂x(t)/∂t, and the force F (x) = −∂V (x)/∂x, Newton’s equation now reads

m
∂2x(t)

∂t2
= −mζ

∂x(t)

∂t
+ F (x) + f(t) , (2.156)

where we assume the same statistical properties (2.131), (2.132) for the

stochastic force as before. Specifically, we may use (2.136) in the limit

of short collision times, and Einstein’s relation (2.141) holds in thermal

equilibrium.

In the case of strong damping, where ζ|v| ≫ |v̇|, we may neglect the

inertial term. Thus we arrive at the Langevin equation in the overdamped

limit,

∂x(t)

∂t
= −Γ

∂V (x)

∂x
+ r(t) , (2.157)

where Γ = 1/mζ and r(t) = f(t)/mζ, whence

⟨r(t)⟩ = 0 , ⟨ri(t)rj(t′)⟩ = 2Γ kBT δijδ(t− t′) , (2.158)

with the associated Gaussian probability distribution

P [r] = exp

[
− 1

4Γ kBT

∫
r(t)2 dt

]
, (2.159)

with the functional integration measure defined as in Eq. (2.138). Under

purely deterministic, overdamped dynamics, the particles will accumulate

in the potential minima closest to their starting positions, as indicated in

Fig. 2.10. In the presence of thermal noise, the Brownian particles may es-

cape from these local potential minima with a finite probability, and for

t → ∞ the equilibrium distribution should be given by the Boltzmann

weights Pst(x) ∝ e−V (x)/kBT . In order to confirm this, we study the cor-

responding Fokker–Planck equation, called Smoluchowski equation in this

context. With ξ(t) = x(t+τ)−x(t) ≈ ΓF (x)τ+
∫ t+τ
t r(t′) dt′, we find ⟨ξ(t)⟩ ≈

ΓF (x)τ and ⟨ξi(t)ξj(t)⟩ ≈ (Γτ)2FiFj + 2Γ kBT δij
∫ t+τ
t dt′

∫ t+τ
t dt′′δ(t − t′) =
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2Γ kBT δijτ +O(τ2), while all higher moments are at least of order τ2. The

only non-vanishing Kramers–Moyal coefficients are therefore α1(x) = ΓF (x)

and αij(x) = 2Γ kBT δij , and we obtain the Smoluchowski equation

∂P1(x, t)

∂t
= −Γ

∂

∂x
·
[
F (x)P1(x, t)− kBT

∂P1(x, t)

∂x

]
(2.160)

(for a direct derivation, see Prob. 2.9). Indeed, stationarity requires the

probability current J1(x, t) = Γ[F (x)P1(x, t)− kBT ∂P1(x, t)/∂x] to vanish,

which is satisfied by the canonical distribution

Pst(x) =
e−V (x)/kBT∫
e−V (x)/kBT ddx

. (2.161)

For example, let us consider a harmonic potential V (x) = f
2 x

2, F (x) =

−f x. With the substitutions x ↔ v, f ↔ m, and fΓ ↔ ζ, the associated

Smoluchowski equation (2.160) becomes identical with the Fokker–Planck

equation (2.147) for free Brownian motion. For the sharp initial condi-

tion P1(x, 0) = δ(x − x0), naturally P1(x, t) = P1|1(x, t|x0, 0), and with

Eq. (2.141) we obtain from Eq. (2.153),

P1|1(x, t|x0, 0) =
[

f

2π kBT (1− e−2fΓt)

]d/2
exp

[
− f(x− x0 e

−fΓt)2

2 kBT (1− e−2fΓt)

]
.

(2.162)

The general solution for an arbitrary normalized initial distribution w0(x)

reads

P1(x, t) =

∫
P1|1(x, t|x′, 0)w0(x

′) ddx′ , (2.163)

which relaxes to thermal equilibrium

Pst(x) =

(
f

2π kBT

)d/2

e−fx2/2kBT , (2.164)

independent of w0(x). Upon adding an external force term Γh(t) and with

γ = Γf , the corresponding overdamped Langevin equation (2.157) becomes

∂x(t)

∂t
= −γ x(t) + Γh(t) + r(t) . (2.165)

For h = 0, this is essentially Eq. (2.130) again.

An alternative long-time solution for this stochastic differential equation

proceeds via direct Fourier transform, which immediately yields the dynamic

response function (see also Prob. 2.2)

χij(ω) =
∂⟨xi(ω)⟩
∂hj(ω)

=
Γ

−iω + γ
δij = χ(ω) δij . (2.166)
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ω0

ωIm

Re

Fig. 2.11. Integration contours for the evaluation of the time-dependent response
and correlation functions for an overdamped harmonic oscillator. The full and
dashed circles denote the complex poles at ω = ∓iγ, respectively.

We can now establish the causality property χ(t) = 0 for t < 0. To this end

we analyze the Fourier integral for χ(t) by means of the residue theorem.

For t < 0, the exponential factor in the integrand forces us to close the

integration contour in the complex upper half-plane Im ω > 0 (full line in

Fig. 2.11). But notice that χ(ω) is analytic in the complex upper half-plane,

and therefore the integral vanishes. For t > 0, on the other hand, the contour

lies in the lower half-plane (dashed line in Fig. 2.11), and encloses the pole

at ω = −iγ (full circle in Fig. 2.11). The Fourier integral thus yields

χ(t) =
iΓ

2π

∫
e−iωt

ω + iγ
dω = Γ e−γtΘ(t) . (2.167)

With the aid of Eq. (2.158), we also readily compute the dynamic corre-

lation function

⟨xi(ω)xj(ω′)⟩ = ⟨ri(ω)rj(ω′)⟩
(−iω + γ)(−iω′ + γ)

= C(ω) 2πδ(ω + ω′)δij ,

C(ω) =
2Γ kBT

ω2 + γ2
, (2.168)

since ⟨ri(ω)rj(ω′)⟩ = 2Γ kBT 2πδ(ω+ω′)δij . Upon comparing with Imχ(ω),

we see that the Einstein relation (2.158) guarantees the validity of the equi-

librium fluctuation-dissipation theorem (2.35). Fourier backtransform gives

C(t) =
Γ kBT

π

∫
e−iωt

ω2 + γ2
dω =

kBT

f
e−γ|t| , (2.169)

in accord with Eqs. (2.36) and (2.167). Finally, we explicitly confirm the
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classical equipartition theorem

f

2
⟨x(t)2⟩ = f

d

2
C(t = 0) =

d

2
kBT . (2.170)

Probs. 2.10 and 2.11 address related applications to electrical LRC circuits

and a semi-classical description of single-mode lasers.

Quite generally in one dimension, the ansatz P1(x, t) = ρ(x, t) e−V (x)/2kBT

transforms the Smoluchowski equation (2.160) to a Schrödinger equation in

imaginary time (with τ = −ih̄2Γ kBT t):

∂ρ(x, t)

∂t
= 2Γ kBT

[
1

2

∂2

∂x2
− V 0(x)

]
ρ(x, t) , (2.171)

with the potential V 0(x) and its ‘supersymmetric’ partner V 1(x) defined

through

V 0/1(x) =
V ′(x)2

8(kBT )2
∓ V ′′(x)

4kBT
. (2.172)

Variable separation ρ(x, t) =
∑

n cnϕ
0/1
n (x) e−2Γ kBT ϵ

0/1
n t leads to the eigen-

value problems [
−1

2

∂2

∂x2
+ V 0/1(x)

]
ϕ0/1n (x) = ϵ0/1n ϕ0/1n (x) . (2.173)

‘Supersymmetric’ quantummechanics5 now states that the spectrum belong-

ing to the potential V 1(x) coincides with all the excited states for V 0(x),

ϵ1n = ϵ0n for n > 0. The latter has the additional normalized ground state

ϕ00(x) =
e−V (x)/2kBT(∫

e−V (x)/kBT dx
)1/2 , (2.174)

with ϵ00 = 0, as is readily confirmed by direct calculation. Hence all ϵ0n > 0

for n > 0, and with the coefficient

c0 =

∫
ϕ00(x)ρ(x, t) dx =

∫
P1(x, t) dx(∫

e−V (x)/kBT dx
)1/2 =

1(∫
e−V (x)/kBT dx

)1/2
we obtain

P1(x, t) =
e−V (x)/kBT∫
e−V (x)/kBT dx

+ e−V (x)/2kBT
∑
n>0

cnϕ
0
n(x) e

−2Γ kBT ϵ0nt , (2.175)

which approaches the Boltzmann factor (2.161) as t→ ∞.

At last we return to the general Langevin equation (2.156). Treating x(t)

5 See, e.g., Schwabl (2007), Chap. 19.
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and v(t) as independent variables, this second-order differential equation is

transformed to a first-order one for the 2d-dimensional vector (x, v),

∂x(t)

∂t
= v(t) ,

m
∂v(t)

∂t
= −mζ v(t) + F (x) + f(t) . (2.176)

At time t, the stochastic process is then characterized by the joint probability

distribution

P1(x, v, t) =
⟨
δ
(
x− x(t)

)
δ
(
v − v(t)

)⟩
. (2.177)

With ∂x(t)/∂t = v(t),

∂P1(x, v, t)

∂t
= − ∂

∂x
·
⟨
δ
(
x− x(t)

)
δ
(
v − v(t)

)
v(t)

⟩
− ∂

∂v
·
⟨
δ
(
x− x(t)

)
δ
(
v − v(t)

) [
−ζv(t) + F (x)

m
+
f(t)

m

]⟩
= −v · ∂P1(x, v, t)

∂x
+ ζ

∂

∂v
[v · P1(x, v, t)]−

F (x)

m
· ∂P1(x, v, t)

∂v

− 1

m

∂

∂v
·
⟨
δ
(
x− x(t)

)
δ
(
v − v(t)

)
f(t)

⟩
, (2.178)

and the last term can be evaluated further as in Eqs. (2.149) and (2.150).

The resulting general Fokker–Planck equation for Brownian motion in an

external field F (x) becomes

∂P1(x, v, t)

∂t
+ v · ∂P1(x, v, t)

∂x
+
F (x)

m
· ∂P1(x, v, t)

∂v

= ζ
∂

∂v
·
[
v P1(x, v, t) +

λ

2ζm2

∂P1(x, v, t)

∂v

]
. (2.179)

The left-hand side of this partial differential equation represents the de-

terministic part; with no fluid of light particles present, it just represents

Liouville’s equation for the phase space density of classical non-interacting

particles. The dissipative and stochastic terms on the right-hand side stem

from the collisions with the fluid particles. Provided Einstein’s relation

(2.141) is fulfilled, the stationary solution to Eq. (2.179) reads

Pst(x, v) =
1

Z(T )
exp

[
− V (x)

kBT
− mv2

2kBT

]
, (2.180)

with the classical canonical partition function

Z(T ) =

(
2π kBT

m

)d/2 ∫
e−V (x)/kBT ddx . (2.181)
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2.4.4 Markovian character and equilibrium conditions

We end this introduction to stochastic differential equations with some gen-

eral considerations. Langevin equations take the form

∂x(t)

∂t
= F [x(t)] + r(t) , (2.182)

where F (x) is a random function, and x may be a (possibly large) vector.

Indeed, if higher time derivatives occur, we may incorporate y(t) = ẋ(t) etc.

into an enlarged vector x, with non-trivial couplings between its entries, and

thus generically arrive (2.182), compare Eqs. (2.176). The solution {x(t)}
to this equation may be viewed as a stochastic process. It is of Markovian

character, if and only if (after incorporating the average ⟨r⟩ into F ) r(t)

represents Gaussian white noise,

⟨r(t)⟩ = 0 , ⟨ri(t)rj(t′)⟩ = λiδijδ(t− t′) . (2.183)

Roughly, the deterministic part of Eq. (2.182) is a first-order differential

equation, and x(t + τ) follows from x(t) only. The delta-correlated white

noise implies that the stochastic part induces no memory at all. For a more

formal proof, we recall that the temporal derivatives are defined here as

the limit τ → 0 of discrete time steps in forward discretization ∂x(t)/∂t =

limτ→0[x(t+ τ)− x(t)]/τ .6 For the second moment of these increments one

finds

1

τ2

⟨
[xi(t+ τ)− xi(t)][xj(t

′ + τ)− xj(t
′)]
⟩
= Fi[x(t)]Fj [x(t

′)] + ⟨ri(t)rj(t′)⟩ ,
(2.184)

which factorizes for t ̸= t′ (only) if (2.183) holds. The statements in Prob. 2.4

then establish the Markovian character.

The noise trajectory {r(t)} of course represents a stochastic process itself.

If we take its correlations to be

⟨r(t)⟩ = 0 , ⟨ri(t)rj(t′)⟩ =
λiγ

2
e−γ|t−t′| δij , (2.185)

then the solution for the associated Langevin equation (2.182) represents a

non-Markovian Ornstein–Uhlenbeck process. The stochastic process {r(t)},
on the other hand, can be obtained as the solution of the Langevin equation

∂r(t)

∂t
= −γ r(t) + η(t) , (2.186)

with Gaussian white noise η(t) precisely of the form (2.183). For, if we

6 Ambiguities can arise only in situations where the stochastic forces r or their correlators are
functionals of the random variables x(t) themselves; in such a situation, a more microscopic
approach is called for, see Chap. 9.
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recall Eqs. (2.139) and (2.140), we see that the solution of Eq. (2.186) reads

r(t) = e−γt
∫ t
0 e

γt′ η(t′) dt′, leading to

⟨ri(t)rj(t′)⟩ =
λiγ

2

[
e−γ|t−t′| − e−γ(t+t′)

]
δij ,

which reduces to (2.185) for t, t′ ≫ 1/γ. The two coupled Langevin equations

(2.182) and (2.186) therefore do constitute a Markov process. However, upon

eliminating r(t) as an independent variable, this Markovian character is lost.

Given an (effective) Hamiltonian H(x), we may separate the ‘reversible’

forces Frev(x) from the dissipative terms that describe relaxation towards a

minimum of H,

Frel(x) = −Γ
∂H(x)

∂x
, (2.187)

where Γ denotes the corresponding Onsager coefficient. The Langevin equa-

tion (2.182) now reads

∂x(t)

∂t
= Frev[x(t)]− Γ

δH[x]

δx(t)
+ r(t) . (2.188)

Furthermore, we impose the noise correlations ⟨ri(t)rj(t′)⟩ = ϕ(t − t′) δij .

As before, the associated Kramers–Moyal coefficients are readily found:

α1(x) = F (x) = Frev(x)− Γ
∂H(x)

∂x
, (2.189)

αij =
1

τ

∫ t+τ

t
dt′
∫ t+τ

t
dt′′ ϕ(t− t′) δij → ϕ(ω = 0) δij (2.190)

in the limit of time scale separation, τ ≫ τc. This yields the Fokker–

Planck equation in the usual form of a continuity equation (2.92), with

the probability current

J1(x) =

[
Frev(x)− Γ

∂H(x)

∂x

]
P1(x, t)−

λ

2

∂P1(x, t)

∂x
, (2.191)

where λ = ϕ(ω = 0). For P1(x, t) to approach the stationary, canonical

distribution (2.86) as t→ ∞, we see that there are two sufficient conditions,

namely first the Einstein relation

λ =

∫
ϕ(t) dt = 2Γ kBT (2.192)

for the dissipative terms; and second, we need to demand that the reversible

stationary probability current be divergence-free,

∂

∂x
·
[
Frev(x) e

−H(x)/kBT
]
= 0 . (2.193)
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The first equilibrium condition is actually often the less stringent one; for, as

long as the noise strength λ and the Onsager coefficient Γ are proportional,

Eq. (2.192) may serve as the definition of an effective temperature T ′. Yet

for a genuinely non-equilibrium stationary state, at least one of these two

conditions is violated, and the different contributions in (2.191) must balance

each other in a highly non-trivial manner.

Problems

2.1 Linear response functions with temporal operator derivatives.

For Ȧ(t) = dA(t)/dt and t ≥ 0, derive the identity ΦȦB(t) = −χAB(t),

provided that A(t) and B(t′) are uncorrelated as |t− t′| → ∞. As con-

sequences, establish the important relations ΦȦB(ω) = −iωΦAB(ω)−
χAB(ω = 0) and χȦB(ω = 0) = − i

h̄ ⟨[A,B]⟩0.

2.2 Dynamic response functions for a damped harmonic oscillator.

A driven classical harmonic oscillator is described by the equation of

motion

m

(
d2

dt2
+ γ

d

dt
+ ω2

0

)
x(t) = h(t) .

Here, γ denotes the friction coefficient, ω0 the eigenfrequency of the

free, undamped oscillator, and h(t) the external driving force. Deter-

mine the dynamic susceptibility χ(ω) = ∂⟨x(ω)⟩/∂h(ω), its reactive

and dissipative components, the relaxation function Φ(ω), and the dy-

namic correlation function C(ω).

2.3 Density response sum rules.

(a) For N particles confined to a volume V , derive the compressibility

sum rule

lim
q→0

P
∫
dω

π

χ′′
nn(q, ω)

ω
=
N2

V
κT .

(b) For N particles of mass m, demonstrate the f-sum rule∫
dω

2π
ω χ′′

nn(q, ω) =
Nq2

2m
.

Hint: Use the continuity equation with the particle current operator

j(x, t) = h̄
2mi

∑N
i=1

{
∇i, δ

(
x− xi(t)

)}
.
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2.4 Markovian character and factorization of moments.

(a) For a Markov chain, show that ⟨[x(t+τ)−x(t)][x(t′+τ)−x(t′)]⟩ =
⟨x(t+ τ)− x(t)⟩⟨x(t′ + τ)− x(t′)⟩ for t ̸= t′.

(b) Now assume the factorization of the second moments for all possible

arguments for t ̸= t′, and demonstrate that Eq. (2.60) holds for n = 3, 4.

Thus establish the Markovian character for a Gaussian stochastic pro-

cess with uncorrelated increments.

2.5 Master and Fokker–Planck equations for Markov processes.

By means of the Chapman–Kolmogorov equation (2.61), derive

(a) the master equation (2.73), and

(b) the Fokker–Planck equation for P1|1(x, t|x0, t0)
for Markovian processes with time-independent transition rates.

2.6 Particle number fluctuations in the population dynamics model.

(a) Compute the mean-square particle number fluctuations for the pop-

ulation dynamics model of Sec. 2.3.2 for σ ̸= κ:

(∆n)2 = ⟨n(t)2⟩ − ⟨n(t)⟩2 = n0
κ+ σ

κ− σ
e(σ−κ)t

(
1− e(σ−κ)t

)
.

(b) Confirm (∆n)2 = 2n0κt at the extinction threshold σ = κ.

2.7 Spontaneous particle creation and death processes.

(a) Write down the master equation for the competing processes ∅ → A

(rate τ) and A→ ∅ (rate κ), and derive the partial differential equation

∂g(x, t)

∂t
= (1− x)

[
κ
∂g(x, t)

∂x
− τg(x, t)

]
for the generating function g(x, t).

(b) Find the stationary solution g∞(x) = g(x, t → ∞), and subse-

quently determine the full time-dependent function g(x, t), if initially

n0 particles are present.

(c) Compute the survival probability Pa(t) and the mean particle num-

ber ⟨n(t)⟩ at time t.

2.8 Langevin equation energy balance.

For the Langevin equation (2.130), show that stationarity of the ki-

netic energy along with the classical equipartition theorem imply the

Einstein relation (2.141).
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2.9 Direct derivation of Smoluchowski’s equation.

Derive the Smoluchowski equation (2.160) starting from the identity

P1(x, t) =
⟨
δ
(
x− x(t)

)⟩
, using the Langevin equation (2.157).

2.10 LRC circuit and Nyquist’s theorem.

An LRC circuit consists of a resistor (resistance R), capacitor (capaci-

tance C), and inductive coil (inductivity L).

(a) Show that at fixed temperature T , with an external voltage Vext(t),

and taking thermal voltage noise Vth into account, the capacitor charge

Q(t) obeys the Langevin equation

L
∂2Q(t)

∂t2
+R

∂Q

∂t
+
Q(t)

C
= Vext(t) + Vth(t) .

Comparing with Prob. 2.2, determine the dynamic response function

χ(ω) = ∂⟨Q(ω)⟩/∂Vext(ω), and its Fourier transform χ(t).

(b) For vanishing battery potential Vext = 0, compute the voltage and

current correlations, and confirm Nyquist’s theorem

C

2

⟨
Vc(t)

2
⟩
=
kBT

2
=
L

2

⟨
Ic(t)

2
⟩
.

2.11 Semi-classical description of a single-mode laser.

Semi-classically, a single-mode laser is described by a complex elec-

tric field E(t) = |E(t)| eiφ(t). Including statistical (non-thermal) field

fluctuations F (t), the relevant equation of motion reads

∂E(t)

∂t
= −κE(t) +

[
α− β |E(t)|2

]
E(t) + F (t) ,

with positive coefficients κ, α, and β. They govern, respectively, losses

due to absorption, reflections, etc.; the intensity gain which is propor-

tional to the level inversion; and the saturation at high intensities. We

further assume ⟨F (t)⟩ = 0 and ⟨F (t)F (t′)∗⟩ = Λδ(t− t′).

(a) As functions of the control parameters, determine the stable sta-

tionary solutions in the noiseless limit.

(b) Transform the associated Fokker–Planck equation to polar coordi-

nates. Find the stationary probability distribution Pst(E).

(c) Below the lasing threshold, i.e., for κ > α, linearize both the

Langevin and Fokker–Planck equations, and determine the field fluc-

tuations as well as Pst(E).

(d) Above threshold (κ < α), similarly linearize about the non-trivial

stationary solution. For the phase fluctuations, confirm that⟨
ei[φ(t)−φ(t′)]

⟩
≈ e−βΛ|t−t′|/2(α−κ) .
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Again compute and discuss the field fluctuations and Pst(E).

References

P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics, Cam-
bridge University Press (Cambridge, 1995), Chaps. 7,8.

B. Cowan, Topics in Statistical Mechanics, Imperial College Press (London, 2005),
Chap. 5.

M. Kardar, Statistical physics of fields, Cambridge University Press (Cambridge,
2007), Chap. 9.

R.K. Pathria, Statistical mechanics, Butterworth–Heinemann (Oxford, 2nd ed.
1996), Chap. 14.

L.E. Reichl, A modern course in statistical physics, Wiley–VCH (Weinheim, 3rd
ed. 2009), Chap. 7.

F. Reif, Fundamentals of statistical and thermal physics, McGraw–Hill (Singapore,
18th ed. 1985), Chap. 15.

F. Schwabl, Statistical mechanics, Springer (Berlin, 2nd ed. 2006), Chap. 8.
F. Schwabl, Quantum mechanics, Springer (Berlin, 4th ed. 2007), Chap. 19.
F. Schwabl, Advanced quantum mechanics, Springer (Berlin, 4th ed. 2008), Chap. 4.
N.G. Van Kampen, Stochastic processes in physics and chemistry, North Holland

(Amsterdam, 1981).
C.M. Van Vliet, Equilibrium and non-equilibrium statistical mechanics, World Sci-

entific (New Jersey, 2nd ed. 2010), Chaps. 16,18,19.

Further reading

D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions,
Addison-Wesley (Redwood City, 3rd ed. 1983).

H. Haken, Synergetics, Springer (Berlin, 3rd ed. 1983).
P.K. Krapivsky, S. Redner, and E. Ben-Naim, A kinetic view of statistical physics,

Cambridge University Press (Cambridge, 2010).
R. Kubo, M. Toda, and N. Hashitsume, Statistical physics II — Nonequilibrium

statistical mechanics, Springer (Berlin, 2nd ed. 1991).
S.W. Lovesey, Condensed matter physics: Dynamic correlations, 2nd ed., Benja-

min–Cummings (Menlo Park, 1986).
L. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models, Cam-

bridge University Press (Cambridge, 1999).
D. Mukamel, Phase transitions in nonequilibrium systems, in: Soft and fragile mat-

ter: Nonequilibrium dynamics, metastability and flow, eds. M.E. Cates and
M.R. Evans, Scottish Universities Summer School in Physics 53, Institute of
Physics Publ. (Bristol), 231–258 (2000).

M. Polettini, Nonequilibrium thermodynamics as a gauge theory, EPL 97, 30003-
1–6 (2012).

H. Risken, The Fokker–Planck equation, Springer (Heidelberg, 1984).
R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press (Ox-

ford, 2001).



Index

absorbing state, 71
active phase, 73, 74
annihilation kinetics, 75, 76

ballistic motion, 80
barometric height formula, 69
Boltzmann factor, 65, 84, 87
boundary conditions, 72

periodic, 68
reflecting, 68, 69

branching process, 71, 74, 76
Brownian motion, 77, 80, 81, 83–85, 88

canonical ensemble, 48, 65
causality, 50, 52, 53, 86
central-limit theorem, 78
Chapman–Kolmogorov equation, 59, 62, 66, 92
characteristic time scale, 73, 78
chemical potential, 76
classical limit, 54, 55
classical statistical mechanics, 48, 88
coarse-graining, 47, 57, 77
commutator, 48, 54, 56, 57
compressibility, 91
conditional probability, 58
conserved quantity, 48, 76
continuity equation, 66, 82, 90, 91
continuum limit, 60, 69, 70
control parameter, 73, 93
correlation function

N -point, 58
dynamic, 47–49, 53, 58, 65, 86, 91

correlation length, 76
critical dynamics, 67, 77
critical point, 73
current, 56, 68, 91
current correlations, 93

density correlation function, 49
density matrix, 47, 50, 57
density response, 56, 91
detailed balance, 49, 61, 62, 64, 65, 68, 71, 74,

76

diffusion coefficient
time-dependent, 83

diffusion constant, 69, 74, 80
discretization, 79
dissipated power, 55
divergence, 73
domain wall, 75, 76
domain wall density, 76, 77
drift velocity, 69
drift-diffusion, 67, 69, 70, 82
driven diffusive systems, 67

effective Hamiltonian, 64, 90
effective temperature, 91
Einstein relation, 80–82, 84, 86, 88, 90, 92
energy dissipation, 80
entropy

time-dependent, 61
entropy flux, 61
entropy production, 61
equilibrium condition, 91
equilibrium statistical mechanics, 69
equipartition theorem, 80, 87, 92
extinction probability, 73
extinction threshold, 73, 92

Fermi’s golden rule, 55, 65
ferromagnetic, 74
Fick’s diffusion law, 70, 80
field fluctuations, 93
fluctuation-dissipation theorem, 47, 53, 54, 56,

65, 80, 86
fluctuation-response theorem, 55
fluctuations, 71, 93
Fokker–Planck equation, 65–67, 69, 70, 81, 82,

84, 85, 88, 90, 92, 93
forward discretization, 60, 89
friction, 77, 78, 91
functional integration, 79
functional measure, 79, 84
fusion process, 76

Galilean transformation, 70

499



500 Index

generating function, 71, 92
Glauber kinetics, 74, 76, 77
Green function, 70, 79, 83

Heisenberg picture, 47, 57
Heisenberg’s equation of motion, 48, 56
hierarchy rule, 57
hopping transport, 68

imaginary time, 63, 87
inactive phase, 73
initial conditions, 70, 83, 85
interaction representation, 53
Ising lattice gas, 76
Ising model, 76

kinetic, 74, 76

joint probability, 57, 88

Kawasaki dynamics, 76
Kolmogorov criterion, 62, 68
Kramers–Kronig relation, 52, 53, 55
Kramers–Moyal coefficient, 66, 67, 69, 81, 85,

90
Kramers–Moyal expansion, 65–67, 70, 81
Kubo relaxation function, 51, 91

Langevin equation, 77–81, 83, 87, 89, 90, 92,
93

overdamped, 84, 85
lasing threshold, 93
line width, 78
linear response, 47, 50, 51, 53, 56, 91
Liouville equation, 57, 88
Liouville operator, 63
Lorentzian curve, 78
LRC circuit, 87, 93

magnetization, 76
master equation, 60–62, 65, 68, 71, 92

matrix form, 62
Maxwell–Boltzmann distribution, 82, 83
mean-field theory, 76, 77
memory, 59, 78, 89
mesoscopic description, 47, 57, 77
method of characteristics, 72
Metropolis algorithm, 65
micro-canonical ensemble, 65
micro-reversibility, 65
Monte Carlo simulation, 65

Newton’s equation, 77, 84
noise, 77

Gaussian, 89
thermal, 84
white, 79, 83, 89

noise correlation, 78, 80, 89, 90
noise histories, 79, 89
noise strength, 80, 91
non-equilibrium processes, 47, 67, 68, 71
non-equilibrium regime, 56, 64, 77
non-equilibrium stationary state, 56, 68, 91

non-equilibrium statistical mechanics, 57
numerical simulations, 65
Nyquist’s theorem, 93

Onsager coefficient, 90, 91
order parameter, 73
Ornstein–Uhlenbeck process, 89

particle number fluctuations, 73, 92
partition function, 64, 88
Pawula’s theorem, 67, 81
perturbation theory

time-dependent, 53, 55
phase fluctuations, 93
phase transition

continuous, 73
Poisson bracket, 48, 57
population dynamics, 71, 74, 92
potential function, 64
probability conservation, 57, 63
probability current, 57, 64, 66, 82, 85, 90
probability distribution, 56–60, 65, 66, 81, 88

canonical, 55, 65, 74, 85, 88, 90
Gaussian, 70, 79, 81, 82, 84
stationary, 61, 64, 65, 68, 69, 82, 83, 88, 90,

93
uniform, 65, 68

projection state, 63

quantum critical phenomena, 47
quantum statistical mechanics, 47

random walk, 68, 74
biased, 68

rate equation, 76, 77
reaction-diffusion model, 67
relaxation rate, 80
relaxational kinetics, 57, 76, 90
response

dissipative, 56
reactive, 56

response function, 91
dynamic, 47, 50, 51, 55, 85, 86, 91, 93
non-linear, 50

reversible force, 90

Schrödinger equation, 47, 57, 63, 87
Schrödinger picture, 48
single-mode laser, 87, 93
Smoluchowski equation, 84, 85, 87, 93
spectral representation, 49, 55
state vector, 63
stationary state, 61, 64, 65, 76, 93
statistically independent, 59, 68
stochastic differential equation, 77, 85, 89
stochastic force, 77–80, 84, 89
stochastic process, 56, 57, 60, 64, 67, 68, 71,

73, 81, 88, 89
Gaussian, 59, 78, 92
irreversible, 62
Markovian, 59, 60, 62, 66, 68, 70, 71, 74, 83,

89, 90, 92



Index 501

stationary, 58
uncorrelated, 59

structure factor, 49
sum rule, 56, 91
supersymmetric quantum mechanics, 87
survival probability, 71, 73, 74, 92
susceptibility

dynamic, 47, 50–53, 56, 91
linear, 53, 54
thermodynamic, 55

thermal equilibrium, 48, 64, 65, 77, 80, 84, 85
thermodynamic limit, 74
time evolution operator, 47
time scale separation, 77, 80, 90
time translation invariance, 48, 58, 66, 78, 81
time-ordered product, 53
transition probability, 59, 62, 66, 67, 70, 83
transition rate, 60, 64, 65, 71, 74, 76

time-independent, 61, 63, 68, 92

velocity correlations, 79
voltage correlations, 93
voltage noise, 93
von-Neumann equation, 57

Wiener–Khintchine theorem, 78


