One possible way to unfold the boundary of a convex three–polytope into the plane is the so-called source unfolding [see, e.g., M. Sharir and A. Schorr, SIAM J. Comput. 15 (1986), no. 1, 193–215; MR0822201 (87b:68101)]. In the present paper an algorithm is given which generalizes this method to any dimension. The method is based on a characterization of the cut locus (the closure of the set of points with more than one shortest path to a special point, the source point \(v \)) and an analysis of the infinitesimal expansion of the wavefront consisting of points at constant distance from \(v \). In this way it is shown that the boundary of any convex polytope of dimension \(d+1 \) has a polyhedral nonoverlapping unfolding into \(\mathbb{R}^d \). Furthermore, the results are extended to convex polyhedral pseudomanifolds.

Reviewed by Uwe Schnell

References

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

© Copyright American Mathematical Society 2008, 2013