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Abstract

This work investigates the application of formal methods to object-oriented
programming. The desirable features of such a synthesis are defined, and the
problemsofachievingit—suchas aliasing—areinvestigated. Some solutions
are proposed.

Theworkfocusesonthedesign of ‘Fresco’, whichisadevelopmentenvironment
for the construction of object-oriented software with formally-specified and
proven components. Software is developed interactively (after the style of
Smalltalk) together with proofs of conformance to specification.

Specifications may be attached to abstract and concrete classes, and a strict
notion of subtyping is used to achieve polymorphism. Generic types are also
supported. Types are interpreted as sets of possible histories of objects.

Software components are generated and transmitted in ‘capsules’. A capsule
may contain specifications and/or implementations of new software, or
modifications of existing software. A system is composed of a sequence of
capsules, which have an acyclic dependency graph. While capsules may be
broughttogetherin different configurationsin different systems, Fresco can
ensure that each capsule performs as specified, prohibiting configurations
which could fail because of interference between capsules.
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1 Object-orientation and
formal methods

1-1  Objectives: formal methods into OOP

1-1.1 Object orientation is a Good Thing

1-1.11 Re-use

The advertised benefits of object-oriented programming include re-use in various
forms [Goldberg 83, Cox 86, Meyer 88]. These include:

» Parametric and inclusion polymorphism serve to minimize the amount of
code written within one system — in other languages, similar abstractions
need different pieces of code.

* Inheritance allows the common parts between different components to be
factored into one piece of code.

» Strong encapsulation and narrow interfaces make OO components portable
between systems and organizations.

In an object-oriented culture, there is less code-writing per product. The code which
Is written for any product should cover more cases, be more adaptable to variants of
the same product, and other products dealing in the same domain. Whilst traditional
component libraries have covered very restricted fields, it now makes sense for an
organization to make the development and maintenance of a component library a
key part of their planning [HW 90]. It follows that a market in such components
should be expected to develop: free exchanges already exist — e.g. [WW90].

1-1.1.2  Responsiveness to change

Partly for the same reasons, OOP can also produce very flexible code. Changes in
requirements are an inevitable feature of system design, and one which previous
software engineering methods have not tackled well. Change can be handled well in
an OO program because

* A polymorphic componer® is one which is designed to work in conjunc-
tion with many other componef, provided each has a set of characteris-
tics defined in a specificatidd. C; need not exist whel is designed; a new
C; may be added to the system without altefngrovided the new compo-
nent conforms t&.

* Because inheritance is used to factor the common features of many compo-
nents, there is often one place in a program which needs to be modified,
where in other methods there would be several. This tends to ensure that the
alterations to a system remain uniform, so that the coherence of the system

Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 9
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Fig. 1.

Polymorphism

1-1.2

1-1.2.1

1-1.2.2

IS better preserved over its lifetime.

» Strong encapsulation means that each component represents a clearly-
defined concept, generally reflecting the users’ perceptions of the real-world
domain which forms the context of the system. Changes in requirements
tend to happen within clearly-defined areas in the domain, whilst its overall
structure remains relatively constant. It is therefore easy to identify those
parts of the code which need changing, and these tend to be localized.

A well-managed object-oriented software house should therefore be able to produce
many variants of its products, and be able to cope rapidly with changes in the
demands of the market and individual customers.

Why it hasn’t happened yet (much)

Re-use between systems

A look at a public OO library (such @sodies-lib@cs.man.ac.uk ) reveals that

its dependency graph is rather flat: there are very few software components which
build upon others. This is partly because it is no-one’s responsibility to see that it is
well-structured, and contributions tend to cover several poorly-separated ideas in
one go.

But there is also the usual ‘not-invented-here’ syndrome: to some extent a distrust
of the work of others, and to some extent a feeling that it is easier to invent the com-
ponents you need for this job, than to have to search through and fully understand
someone else’s code and do your design so as to use them. Code created for other
projects is, in any case, likely to depend on undocumented assumptions which may
be invalid outside their original environment. Picking up code designed for another
project by people you don’'t know is very different from the informal to-and-fro
between the writers of separate modules in a single project.

Certainly no builder of a safety- or money-critical system would be wise, currently,
to use a collection of components from who-knows-where, whose designers may be
difficult to contact and have no further interest in them.

Change and re-use within a product or product line

The effectiveness of polymorphism depends on the existence, precision, and utiliza-
tion of the specificatiors (in the above model). In inclusion polymorphisiis
typically represented by an abstract class; but a class expressed in programming lan-
guage is not capable of representing a specification, and so of course, the class can
only stand in place of the specification, which has to be documented separately. In
current practice, this very rarely happens: and in consequence, very careful check-
ing and re-testing is usually required if a n@éws to be introduced.

Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 10



Indeed, in some forms of polymorphisghas no representative at all: for example,
the characteristics required of the items in any SmalftaltedCollection —
those of a totally ordered set — are specified only informally in the documentation
of that class.

It is very difficult to test polymorphic code: ti& components with which it is sup-
posed to work may not all have been designed yet.

Perhaps the biggest obstacle is that many practitioners are not aware of these ideals.

1-1.3 Formal Methods are the Solution

A well-written formal specification abstracts and separates the different features of
interest to the client. This makes it easier to read than the code. The separation of
features makes it easier to reason about the correctness of client-code.

The writing of a formal specification also tends to clarify the intentions of the
designer, leading to components which are conceptually more succinct and there-
fore more likely to be useful in contexts other than those for which they were
designed.

A formal proof of a component is an assurance that it is reliable. Whilst it can be
tedious to generate in the first place, a documented proof which comes with a redis-
tributed component can be checked entirely mechanically.

S is usually not a formal specification in current practice, but formal proofs can
make it unnecessary to re-t€sfor each newC;: whenP is written, it is proven to
work with anything which conforms 8; and when eac@; appears, it is proven to
conform toS.

1-2 The focus of this work: Fresco

Given these potential benefits, this work investigates the application of formal
methods to object-oriented programming. As a focus, a tool is being designed which
will embody the ideas: Fresco is to be a development environment for the construc-
tion of object-oriented software with formally-specified and proven components.

Fresco programs (in its currently envisaged form) are written in a version of Small-
talk-80, differing from that language only in its concrete syntax. Specifications are
written in an extension of the same language. Proofs will be generated with the help
an adaptation of the Mural proof assistant, which is the result of an earlier Manches-
ter University project [Mural].

As in Smalltalk, the intention is that software will be developed interactively, and
with much use of modules interchanged between Fresco programmers. The unit of
design and interchange is the ‘capsule’, which may contain specifications and/or
code for new software, or for modifying existing software. Every Fresco system is

a composition of capsules, beginning with a kernel of basic building blocks. Whilst
every capsule depends on a specific set of others, different configurations of cap-
sules may compose different systems. Fresco can ensure that each capsule performs
as its author intended, and prohibits configurations whose capsules would conflict.

Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 11



1-2.1

1-3

1-3.1

The objective is to maximize the benefits of object-oriented programming, of re-use
and flexibility.

The state and history of Fresco

It must be emphasized that, despite the tendency in the remainder of this thesis to

use the present tense to describe it — purely for reasons of style — Fresco is not yet
a fully extant system. Parts of the mechanics of capsule management have been pro-
totyped; and Mural, the precursor to Fresco’s proof system, does exist. The rest is

faith and hypothesis.

Mural is an interactive theorem prover’s assistant, built as the Manchester Univer-
sity contribution to the IPSE2.5 project [Ipse]. Builtin Smalltalk, it represents a con-
siderable advance on the interactive style of preceding proof tools, and implements
a very flexible inference system.

An objective of Mural was to be a generic tool, which could be used for pure math-
ematics, or — with a suitable front end — for program verification or any other
application. This flexibility was demonstrated to some extent, though with a rather
uncomfortable transition between the front-end and mathematical parts. The inten-
tion for Fresco is to take over many of the ideas in a more suitable implementation.
(Re-use is only worth it for the best bits!)

Smalltalk was chosen as an implementation language for Fresco and for Mural
because of its ready flexibility and prototyping strengths.

Smalltalk is also the basis of the target language of the initial version of Fresco,
partly because that’s clearly easier, but also because an aim in Fresco is to demon-
strate that formal methods and evolutionary programming are compatible.

The wider context: OO software engineering

Effects of OOP on the lifecycle

OO programming allows new systems to be built very quickly, especially if they are
similar to previous ones, or in the same domain. One consequence is that trial
systems can be prototyped, with feedback from users at an early stage of analysis.
Much more feedback from users can be obtained and applied between delivery of
successive versions of a system. Any pretence of a waterfall model of software
development can no longer be supported: product planning and project management
are clearly deeply affected (which is good for consultants).

Perhaps one of the benefits of the OO revolution is that the lure of its potential ben-
efits is making organizations think more seriously about methodology: since it is
clear that you do not get the benefits unless you apply the ideas properly. Hence the
growth in the fields of Object Oriented Analysis and Design [Coad, Rumbaugh,
Jacobson, Booch].

Hopefully, the same effect will apply to the adoption of formal methods. The notion
of abstract class gives a clear focus and motivation for abstract behavioural descrip-
tions, and also an obvious place to hang the specifications (rather than just in the
filing cabinet).
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It is worth noting that the re-use of specified components makes it far more cost-
effective to specify and prove a component than with traditional methods.

1-3.2 OO Analysis and Design

The topic is still in its infancy, and there are many ideas and confusions, and many
notations and tools to support them. “Object orientation”, perhaps less of an auto-
matic grant-attractor for researchers these days, is still a money-maker for textbook
writers, commercial trainers, and consultants, and the tag is often attached to imper-
fect adaptations of old material. Nevertheless, some good common ground can be
discerned.

The starting point is generally the assertion that the domain within which the pro-
posed system will work can itself be modelled as an OO system. Such a model is a
useful tool in analysis, and can be the base upon which another model, that of the
required system, can be built. The requirements are then reified into a set of execut-
able classes. (And it has to be said that many authors tend to confuse analysis with
design, introducing internal structure during analysis which they assert should carry
through to the final design.)

The notations used are similar to those of entity-relation models, using diagrams
together with supporting text. Boxes represent classes, arrows subtyping or sub-
classing (which are generally confused) and other lines represent references from
instances of one class to those of another.

Rumbaugh and others have emphasized the utility of these relations as abstractions
at early stages of design. For example, in a high-level design of a program develop-
ment support tool,

Spec impl
Spec 0+p Code

[Wills 91b] extends such a notation to include formal specifications in the form of
invariants and pre/postconditions. It is an ambition for Fresco that the designer
should be able to browse designs in diagrammatic form (though this is not tackled
here). It is the author’s belief that boxes with lines between them have considerable
power to sweeten the pill of formal specification and verification.

1-3.3 OO formal methods

The emphasis of this work is to apply formal specification and proof to object- ori-
ented program components. Others have come from the opposite direction, and are
interested in applying OO principles to specifications, to bring the benefits of mod-
ularisation. In particular, many OO variants of Z have been described. Not all of
these are especially suitable for describing OO program components: the separate
modules are not necessarily separately implementable, and the modular partitioning
of the implementation may be quite different (Fig. 2.)

These efforts may be seen as part of the general trend to produce OO variants of
Pascal, Cobol, Ada, and so on. Where the language already has a modularising con-
struct, the result is often uncomfortable. While there is some argument for making
a new, backward-compatible version of an old programming language, this seems
inapplicable to specification languages: since so few specifications have been writ-
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spec

e

Fig. 2. Different internal structures for spec and implementation

ten, and since even fewer people understand them, there is really very little invest-
ment to be preserved.

1-4  Scope of this work

The purpose here is to investigate and demonstrate the application of formal
methods to object-oriented programming, retaining and enhancing the benefits of
OO programming and design. The problems will be elucidated, and some solutions
proposed and tried out.

The preceding text should have given some flavour of the author’s keenness to inte-
grate formality with OOP in such a way as to preserve all the benefits. An evolution-
ary style of programming should still be possible, and the strong encapsulation of
OOP must be promoted in the specification method. The method should be reason-
ably practicable on an everyday basis. Minimal constraints should be imposed on
the order of construction of proofs or specifications, just as for the software itself.

It cannot be hoped for that it will be possible to complete proofs in full detail: we
will follow the spirit of ‘rigorous’ proof [Jones80], in which some parts of a proof
can be left as informal arguments until challenged in review.

Whilst Smalltalk is fixed upon as a target programming language, the principles are
applicable to other languages. It is not the intention to generate a formal system
which will cope with anything you can program in Smalltalk: rather, the program-
mer should stick to those constructs which can be dealt with by the formal system.
This makes it easier to generate the basic semantic model for Smalltalk, and follows
in the tradition of the formalists’ approach to tieo.

The main body of this work is on the design and semantics of the Fresco language
and proof system. The system can be described in layers, starting with the basics of
the proof system (Chapter 4), and continuing with the specification, refinement and
verification of three levels of description: statements (Ch. 5), types (Ch. 6), and cap-
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sules (Fresco’s module of design effort) (Ch.7). These provide a firm basis on which
the most difficult issues in OO/FM can be discussed, and Fresco’s contribution to
the field can be measured by its utility as a vehicle for formulating questions and
experimenting with solutions in these areas.

Certain areas are excluded from consideration: concurrent programming; program-
ming languages with models far removed from those of Smalltalk or Eiffel (such as
CLOS and Self).

The scope of the work is quite broad. The intention is to map out the area with the
benefit of a formal approach, rather than to examine any one detail in the fullest pos-
sible rigour — for many aspects of what is covered here, that will be a matter for a
future thesis.

1-5 Structure of this thesis

This objective of this chapter has been to motivate and set the scope of the work, and
put it in a wider context. The benefits to be expected of object-orientation, formal
methods, and their synthesis have been reviewed: principally, fast and reliable con-
struction through re-use, and responsiveness to changes of requirements.

The next chapter gives an overview of Fresco and the way in which it should be
used, so as to make plain the objectives of the more detailed descriptions in the sub-
sequent chapters. Chapter 3 then surveys the scene, assessing the state and directior
of the work of others, defining the issues of interest, and establishing a vocabulary
of terms and concepts best suited for the appreciation of what follows.

Chapters 4—7 describe the various features of the Fresco language individually; but
a summary is provided in the Appendix. A number of issues particularly concerned
with aliasing and encapsulation are separated out into Chapter 8, which also pro-
vides the opportunity for some larger examples.

Finally, Chapter 9 assesses how far Fresco meets its aims and contributes to the
field, and considers the directions future work should take.

A bibliography and a summary of language, kernel types, and proof rules is
appended.
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2 OO Software Engineering
with Fresco

Fresco is a scheme of software development which enables programmers to inter-
change well-defined and guaranteed software components called ‘capsules’. Pro-
gramming proceeds according to the precepts of evolutionary software
development, underpinned by the precision and reliability afforded by formal meth-
ods.

This view of software development and exchange motivates the Fresco notions,
central to this thesis, of types as theories of object behaviour, and subtypes as
theory-extensions.

Later chapters present the Fresco type system in detail. The purpose of this chapter
Is to give an informal overview of the material, and of the development method
Fresco is intended to promote.

2-1  The formalised goodie

2-1.1 Units of development effort

Object-oriented programming makes possible a culture in which systems are rapidly
built from widely-distributed and adapted components. Developers can build and
sell or exchange components as well as complete systems; and can treat their soft-
ware libraries as capital resources which they augment every time they write a new
component.

The units of distribution in the successful Smalltalk re-use culture are not classes,
nor even groups of classes. A look at any ‘goodies’ library shows them to be mix-
tures of new classes, new methods for existing classes, and new implementations of
existing classes and methods. (In Smalltalk, classes and methods are updated and
compiled dynamically into the running system.)gimodies-lib@cs.man.ac.uk,

73% of the files modify existing classes, and 44% define no new classes. Each pro-
grammer’s efforts build upon those of one or more predecessors by improvement
and extension. Fresco formalises this: software is packagedpsules,which

define extensions to classes, redefinitions of old methods, as well as new classes;
and each capsule includes specifications of the classes which result.

If this notion of ‘deltas’ as units of designer-effort seems a little strange, consider
this scenario. Class A uses class B extensively, and sometimes passes B-instances
back to its own clients. | design class C, which uses A; but C needs B to perform
some extra function, used whenever B-instances are passed back from A. Ideally, |
should design a'Bvhich inherits from B. But then | have to design drwhich is

all the same as A, except that it calls upémBtead of B. If A has been designed

with sufficient foresight, then this will be easy; but more likely, it will be a pain!
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2-1.2

What | really want to do is just to add the extra function to B — more economical
and less error-prone.

More generally, many of the real-life examples of redefinition are connected in
some way with improving the inheritability of a class, or broadening its functional-
ity. Others are concerned with improving the performance (so that all clients get
the benefit, not just those who know about a new subclass); and most of the rest,
with enhancing user-interaction without altering the procedural interface.

[Szyperski 92] gives the example of a statistics package to be addedltdum-
bers: if there are subclasses RealNumbers, they should inherit the new func-
tions too. A separatRealNumbersWithStats class would not achieve this —
unless the existing subclasses were altered to inherit from it.

In the other direction, the interdependence of frameworks of classes has been much
discussed [e.g. JF88]. If a diagram of dependencies between classes (or any other
units of design) is drawn, it makes no sense to attempt to transport separately any
units which belong to a loop. (Fresco capsules therefore form an acyclic dependency

graph — if two would form a loop, they ought to be in the same capsule.)

Functional units and their hierarchies are good for integrating into one structure all
the diverse functions which can be created by a single designer [team] while the
hierarchy remains under that designer’s control; additional requirements may
trigger a restructuring. But when we consider design effectively undertaken by
many designers between which there is only a one-way flow of information, then
the transmissible units of design-effort must be not functional units, but changes to
their definitions. But it is important that when a system imports such deltas from
diverse sources, they shouldn’t invalidate each other: each should be able to change
the implementation of what went before, and should be able to enrich any part of the
system’s behaviour, but not to alter (or delete!) the functional specification of exist-
ing behaviour, which other parts might depend on.

System composition

Fresco supports the specification and rigorous development of software capsules. A
capsule contains code, specifications, and proofs, and systems are built by compos-
ing capsules. All development work is done within the context of some capsule, and
systems are built by importing capsules and developing new ones. Every definition
in a system is part of some capsule. The mechanism has the potential to guarantee
that each capsule functions as its author intended, without interference from others:
although the functions a capsule provides can subsequently be extended or
improved, the properties its clients rely upon will never be invalidated.

Part of the scheme’s operation depends on restricting the ability of a capsule to over-
ride existing definitions, to those belonging to capsules on which it has a docu-

mented dependence: this by itself can help to reduce the likelihood of clashes.
Whilst the full benefit depends on the (admittedly theoretical) employment of fully
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2-2

formal proofs, greater reliability is nevertheless obtained by using specifications
with more or less ‘rigorous’ proofs. Even where proofs are completely informal, the
system highlights correspondences between specification and code which should be
rechecked whenever anything is altered.

The elements of a capsule may be created in any order: code first or specifications
first. Fresco generates appropriate proof obligations wherever the consistency of the
code and specifications cannot be verified automatically. Before the capsule may be
exported for distribution to other designers, Fresco performs a ‘certification check’,
that all the proofs have been completed, and are consistent with the definitions (see
Figure 1). A complementary ‘incorporation check’ ensures that imported capsules
(i) only alter the code of capsules they claim to know about and (ii) have internally
consistent proofs (even if partly informal ones) and hence, hopefully, code that con-
forms to their specifications.

It is essential that an extended version of any class should behave the same to pre-
vious clients as its predecessor did: in Fresco terms, it should conform to the same
type. The next section introduces Fresco’s type system and outlines how it fits into
the proof system. We will ultimately come back to capsules and explain their com-
position into systems, in the light of the type system.

Types and classes in Fresco

In traditional formal development methods, the documents representing top-level

specification, code, and intermediate levels of refinement are usually separate, with
some trace information and proofs interrelating them. Fresco integrates all these into
one database, in a unified syntax, accessible through a single browsing/editing
system.

The basic unit of specification is the ‘type’, and of implementation, the ‘class’. The
class is unchanged from Smalltalk (except for the concrete syntax). An object is
created as ainstanceof only one class, but may berembeiof many types. Types

Fig. 3.

Fresco systems are compositions of capsules

System 1

A

Certification check

Incorporation check
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are used to document constraints on variables or parameters; and to document
required and provided behaviour of software components.

An object’s type describes its behaviour, visible as its response to messages, and the
constraints which apply to messages it may be sent. (Notice that this is a far stronger
notion of type than in most programming languages, where type membership is
about which messages are understood, but not what they do.) Each type is specified
in model-oriented style, with pre/postconditions written in terms of model variables;
which may, but need not, correspond to any actual variables in any class which
implements the type.

Despite the distinction, type and class definitions are interwoven, for convenience,
into a single all-purpose piece of syntax, the type/class definition (TCD). Fresco has
TCDs instead of classes, and they are realised by adding opspecs and invariants to
Smalltalk’s classes. Some languages, such as POOL and Abel, separate the syntaxes
of types and classes; Fresco permits partial or complete class definitions to be inte-
grated with types where the designer considers this appropriate: in that case, the
assertions apply to the real instance variables.

The (planned) Fresco browser will provide a Smalltalk-like interface to the hierar-
chy of TCDs, and a diagrammatic representation similar to that of [Rumbaugh]. On
paper, boxes of this form are used:

TCDName

visible signature

private model &/or implementation

The model section may be missing; the signature section may also be missing, if the
tcd name by itself is to be used in a diagram of class relationships. So that a speci-
fication can be spread over several pages of a document, the same tcd may be
defined in several different boxes: any implementation must conform to the specifi-

Fig. 4.  Components of a Fresco type/class definition

A A .l

l
| Inheritance of Parent Definition(s) | \

| Type/Class Name |

ype
conformance

Variables
proof(s) model instanse
a b ¢ d...

Theorems Methods
axiom1 ) T - )

axiom?2 implen;gg]:[ation message
\ proof of thm3 ‘
theorem4... essageZ...
k K‘ proof of thm4 \ code /j
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2-3.1

cations in all the boxes — and it is up to the designer not to specify conflicting

requirements. The specification section defines behaviour which clients may rely
upon (whether or not they have seen every box referring to this class); the imple-
mentation section is of no concern to clients.

Specification in Fresco

A type

Shape is the type of objects representing mutable two-dimensional shapes. Every
such instance has at least two operations which can be performed on it: you can ask
whether itcontains a given two-dimensiond&toint, and you camove the whole

shape by someector, which translates the setBbints it contains.

Shape

fn contains O (Point) Bool
op move O (Vector)
mv-def: v, p - pOPoint |-
OvOVector :— (self.contains(p) = self.contains(p+v)) Omove(v)

The description lists the signatures of operations which clients can acoesss

is declared withn, meaning it does not alter the state of anything. (A more detailed
method of defining the scope of the effects of a method is described in §88.) The
axiom labelledmv-def details the effect omove on the state of the object. The
axiom is in the form of an ‘opspec’:

label: variables - Oprecondition :— postcondition CJoperation(parameters)

For any match between the variables and specific objects, provided that the client
ensures that the precondition is met, then the operation will terminate properly and
the postcondition will be satisfied. Within the postcondition, baitexds refer to

the state prior to the operation. In this case, unusually, one operation is specified in
terms of another. More than one opspec may apply to one operation.

The signatures of the operations are interpreted as ‘formation’ axioms — for
example

p - pOJPoint |- contains(p) O Bool

Other theorems may be derived from the axioms of a type, and the entire set of deriv-
able theorems is called the type’s theory.

An opspec may be extracted systematically from the context of it type

v, s - UsOShape OvVector :— Op - pUPoint [
(s.contains(p) < s.contains(p+v) [Js.move(v)

In this form, the opspec can be used as a theorem in the proofs of clients which use
Shape.

The type-membership assertiwldT means that conforms to all the axioms (and
therefore all the derivable theorems)ipfnany other types may also contailhe
type-description carries no implication that other operations may not be applicable
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to members oShape: merely that we do not know anything of how they will
behave. The vacuous specification

(false :— trueop
is implicitly true of every operation (including those we do not yet know about).

2-3.1.1  Role of types in code

Types are used in code just as in ordinary programming languages; except that it is
possible to distinguish types which would not be distinct in an ordinary signature-
checking language.

Fresco code may be developed with specification-statements in the style developed
by Morgan, Robinson, and others [Morgan]; the specifications may contain typing
assertions which describe the properties of a variable’s contents at that point in the
code. A type is used as an abbreviation for a set of properties; as such, it can be seen
as a convenience: the more basic tool is the ability to assert properties of an object.
All typing assertions, whether dispersed in the code, or at variable and parameter
declarations, are equivalent to a set of assertions about the object’s response to
applied operations.

2-3.1.2  Types and subtypes

A Fresco type is the set of all objects each of which conforms throughout its life to

a set of theorems about its observable behaviour. The type defines a set of possible
histories of operations on the object; an opspec defines the states in which a given
transition may occur, and the relation between the states at each end of a transition.

If Hgt is the set of possible histories conforming to the §peandHt to T, then
if Hgt O Hy, we say thaBT is a subtype of, writtenSTOT.

A client may be designed which will work for all subtypesStfape, without
knowing anything more thaBhape’s theorems. (For example, a handler which
keeps a list o6hapes and permits users to move them around the screen.)
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2-3.1.3

2-3.1.4

Type extension

FourSides ::+ Shape

op setpl O (Point)

op setp2 O (Point)

op setp3 [ (Point)

op setpd O (Point)

axfsc: p - 0:— 1t = p.withinLoop((p1, p2, p3, p40) Ocontains(p)

axfsl: np - ChonintersectingLoop(tp, p2, p3, p4l :— pl=np Osetpl(np)
axfs2: np - ChonintersectingLoop((p1, np, p3, p4l) :— p2=np Osetp2(np)
axfs3: np - ChonintersectingLoop((p1, p2, np, p40) :— p3=np Osetp3(np)
axfs4: np - ChonintersectingLoop((p1, p2, p3, npl :— p4=np Osetp4(np)

var pl0 Point

var p2 O Point /I disallowed:
var p3 [ Point
var p4 [ Point

FourSides is the type of objects representing shapes bounded by four straight
edges. It is defined as an extension{) of Shape: every axiom is inherited. Any
theorem derived from the axioms is therefore also true of the derived type. Any
client only interested in the movability of all membersStlape may therefore
make the same assumptions about membé&iswides. Fresco type membership

is defined by conformance to behavioural theorems, and so for any’tyBes

A:+B | AOB
Equivalent to the ‘“::+’ notation is the thick arrow:

Shape

FourSides

Model-oriented specification

FourSides has a model, the four variablgsin terms of their effects on which the
operations are defined. There is an invariant on the model, which ought to be true
before and after execution of every operation. Its maintenance is only the responsi-
bility of an implementation, and not of the clients — they just have to conform to
the stated preconditions of the operations.

The model is hidden from implementations of clients, but clients may use it in their
own specifications and reasoning. See §3-4.3Abplicability of encapsulation to
specificationgp.44).

Since it is not our business here to learn geometry, let's assume a predidate
tersectingLoop which ensures that the boundaries do not cross; and a predicate in
Point, withinLoop, which tells whether a point is within the bounds defined by a
given tuple of points.

The special variable is used within a postcondition to signify the object returned
by the operation.
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2-3.1.5

2-3.1.6

Preconditions and invariants

At this stage, we know thaetp; sets its corresponding vertex, but nothing else
about what it does or doesn't do. Notice that their preconditions duplicate the invar-
lant. If they did not, an implementation would be obliged to achieve the postcondi-
tion for any prior state; since it is impossible to guarantee that and be sure of
satisfying the invariant as well, the type would be unimplementable. (See 83-4.5 —
p.47.)

Inheritance and subtyping

Whilst the type of mutable rectangles is not a subtype of mutable quadrilaterals,
FourSides does describe the static and dynamic properties which they have in
common.

Quadrilateral ::+ FourSides

axql:  np - 0:— p2=p2 0p3=p3 [ p4=p4 Osetpl(np)/ other points are fixed
axqg2: np - 0:— pl=pl Op3=p3 Op4=p4 Osetp2(np)

axq3: np - 0:— pl=pl Op2=p2 Op4=p4 Osetp3(np)

axq4: np - 0:— pl=pl Op2=p2 Op3=p3 Osetp4(np)

No new operations or model variables are introduced here, but new opspecs apply
to the existing operations. Implementors must prove that their implementations
meet all the applicable axioms (e.g. code detpl must meet botlaxfs1l and

axql), and clients may assume any or all of the axioms they know about (so if |
know I've got aFourSides but don’t know what kind, then at least | can rely on
axfs;).

This is reflected in an interpretation rule for compositions of opspecs:

[prel:—postllicode
[pre2 :— post2[icode

Cprellpre2 — (preld postl) O (pre20 post2) [code

So subtypes always have weaker preconditions and stronger postconditions. This is
an effect of the Fresco interpretation of inheritance, not something that the designer
has to ensure. On the other hand, there is no guarantee that it will be possible to write
code which satisfies the combined specifications: that is, the type may be empty.

A type may extend more than one supertype (again with no guarantee of imple-
mentability of the result: that is up to the specifier). Model variables and operations
are identified by name, unless explicitly renamed.
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2-3.1.7

2-3.1.8

Strengthening invariants

HVRectangle is a different extension describing rectangles with sides parallel to
the axes. Repositioning any corner leaves the opposite one unmoved, but the other
two adjust accordingly.

HVRectangle ::+ FourSides

np - 0:— pl=np Osetpl(np) // now no constraint on pre
np - O:— p2=np Osetp2(np)
np - 0:— p3=np Osetp3(np)
np - 0:— p4=np Osetp4(np)

np - 0:— p3:ﬁ Osetpl(np) I/ opposite point is fixed

np - O:— p4:a Osetp2(np) B 4
np - 0:— p1l=pl Osetp3(np)

np - 0:— p2=p2 Osetp4(np)

Invariants are considered to conjoin with all pre and postconditions. Implementors
of HVRectangle should observe botinvhvr andinvfs: whether the result is imple-
mentable depends on the effect on the postconditions. In the case of a nondetermin-
istic specification, strengthening an invariant is OK if it only cuts down some of the
implementor’s options without cutting them out altogether. A new invariant may
also impose constraints on new model variables.

It is not possible to weaken the invariant in an inheriting type: but few examples
where this would be useful and good style have been found.

Operation extension

Notice that the domain of an operation can be extended by adding a new axiom. For
example an existing operation

Or=0 OrOReal :— tOReal Ot * 1t =r Osqrt(r)
can be extended to
0r<0 Or0Real :— tOComplex Ot * 1t =r Osqrt(r)

Old clients won't know the difference. A useful more general theorem can be
inferred:

Or0OReal :— 1t * 1t =r Osqrt(r)
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2-3.2

2-3.3

Fresco © Alan Cameron Wills 1992 OO Software Engineering with Fresco

Generic types

Generic types may be defined with type paramters. In this example, the arguments
are restricted to types conforming to a subtyp&otélOrdering:

SortedList of: T ::+ (TotalOrdering of: T)

op add: (M
fn get: (Nat) T
S: List(T)

i, j - i<jOj<selflen O sil<sj]

An instance of this, for example the type of sorted lists of integers, is written
SortedList of: Integer
and in the case of specific types, the designer may include theorems like
T - T sortedList = (SortedList of: T)
so that clients may write

Integer sortedList

Model refinement

HVRectanglel is not defined as an extensiontHdfRectangle, but is believed to
represent a subtype of it. Whilst the operations available to clients are the same, the
model variables are different: whildvVRectangle is defined with the four points
pl..p4, HVRectanglel is defined with one corner and a vector representing a diag-
onal. It will be necessary to prove the subtype relationship.

HVRectanglel

op contains 0  (Point) Bool

op move [ (Vector)

op setpl O (Point) xtent
op setp2 [ (Point) 8“gm

op setp3 O (Point)

op setpd O (Point)

p - OpOPoint :— 1 = origin<p O p < origin+extent [lcontains(p)

p - CpOVector :— origin = origin+p O extent = extent Clmove(p)

p - OpdPoint :— origin=p [ origin+extent = origin+extent Osetpl(p)

p - OpdPoint :— origin.y=p.y [ origin.x=origin.x

O (origin+extent).y = (origin+extent).y O (origin+extent).x=p.x Osetp2(p)

p - OpdPoint :— origin=origin [0 origin+extent = p Osetp3(p)
p - OpdPoint :— origin.x=p.x [ origin.y=origin.y

O (origin+extent).x = (origin+extent).x O (origin+extent).y=p.y Osetp4(p)

var_origin [0

Point

(Assume a relation onPoints: pl<p2 = pl.x<p2.x Opl.y<p2.y.)
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In order to prove subtyping in general, we need to prove that all the afkXmsf
the supertypd are observed by any member of the sub&/pe

STOT = Ox - xOST O xOT
o (AXgr | AXy)

The model variables present a slight complication. In the formal semantics of the
language (into the details of which we shall not go yet) model variables are hidden
with existential quantification: the history of the visible features is such that there is
a history of tuples (such aérigin, extentOdand[p1, p2, p3, p40 such that the
axioms are satisfied. It is therefore sufficient to demonstrate that any relation
between the two sets of variables exists, from which subtyping can be proven. Effec-
tively, the trick is to imagine that the subtype inherits the axioms and variables of
the supertype, and that an invariant relates the two sets of variables: given that
‘retrieval relation’, show that the inherited axioms are all derivable from the suib-
type’s axioms, and therefore redundant.

A suitable retreival relation for this example is
pl = origin [0 p3 = extent+origin
(The invariant irHVRectangle constraing2 andp4.)

2-3.4 Proofs and theories

The full form of a theorem is
[ label : ] [ variables - | [ hypothesis1, hypothesis2, ... |- | conclusion

where the hypotheses and conclusion may be opspecs, ordinary predicates, or nested
theorems. A theorem may be used as a proof rule: if, with a consistent substitution
of expressions for variables, known theorems can be found to match all the hypoth-
eses, then the conclusion may be inferred. A theorem may be proven either by
matching it in its entirety from such a conclusion, or by proving its conclusion
within a context in which its hypotheses are assumed.

Each theorem derived in this way should be annotated with a justification pointing
to its antecedents. There are many ways to display a proof in this style — the method
adopted here is similar to the ‘natural deduction’ style used in Mural.

The generation of a context in which hypotheses are assumed is a localised version
of the overall structure imposed on knowledge represented by theorems. A theory is
a set of variables and a set of axioms, together with the theorems which can be
derived therefrom. We have already met the theories generated by type descriptions.
Just as the variables of an individual theorem may be substituted by expressions to
specialise the theorem to a specific case, the variables of a type theory — the model
variables — may be substituted by expressions to demonstrate applicability to a spe-
cific object.

Each theory may be the context within which another is nested: all its variables and
theorems are inherited. The outermost types defined by a designer are defined
within the context of a standard Fresco theory which inherits information about
predicate calculus, sets, arithmetic, the Fresco language, and ‘built-in’ types and
classes.

Fresco’s proof support tools impose no chronological order upon the creation of the-
orems or their justifications. Help in searching a context for theorems to support any
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other is provided, and consistency and completeness checks can be called upon.
Fresco generates ‘proof expectations’ — theorems which ought to be verified to
support an implementation claim. The ‘filing out’ mechanism makes difficult the
publication of capsules containing incomplete proofs, and the same checks are run
on imported capsules.

Model refinement proofs

SincewithinLoop is not defined here, we cannot vefyntains, but we can check

its relationship tanove. Since that axiom does not refer to a model, the retrieve
relation is not used:

h p - pOPoint

1.h1  p-0OpOPoint :— t = origin<p O p<origin+ extent Ocontains(p)

1.h2  p - OpOVector :— origin = origin + p O extent=extent Omove(p)

1.1h1 V- origin = origintv [0 extent=extent
1.1h2 vOVector
111 origintv<p+v [ p+v<origin + v + extent

< origin<p+v 0 p+v<origin+extentby subs-eq from 1.1h1
1.1.2 origin<p O p<origin +extent « origin<p+v O p+v<origin+extent

by Point::Sym+-< from 1.1h2, h, 1.1.1

1.2 self.contains(p) = self.contains(p+v) by fn-defn from 1.1h1, h, 1.1.2
2 v- OvOVector:— self.contains(p) = self.contains(p+v)Omove(v)

by refine from 1.h2, 1.2

The theorem to be proven is formed by the hypotheses h1l, h2 and the concluding
line labeled ‘3’. There are several subproofs (1, 2, and 2.1) which may have local
variables and hypotheses: these are necessary for the application of rules containing
subtheorems. Non-hypotheses are justified Wwithrulenamefrom antecedents.
Rules used here include:

refine : OP1:-R10S, PFP1, (RRLFR) | OP:-ROS

subs-eq: E1=E2, P[E1] | P[E2]

O-elim: AOBO..}F A B, ..

Point::Sym+-< : p10Point, p20Point |- E[p1] < F[pl] = E[pl+p2]<F[pl+p2]

‘E[e]’ stands for any expression with a subexpression

Certain rules such ds-elim and its complement, and the commutativity of some

common operators, are used so frequently that they are built into the support tool
and made implicit.

Another proof, this time using the retrieve relation, and with three useful conclu-
sions (lines 4, 5, and 6) dealing with different supertype axioms:
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2-3.5

2-3.5.1

2-3.5.2

hl pl=origin 0O p3=origin+extent
h2 np - O:— origin=np O origin+extent = origin+extent Csetpl(np)
1h np - nonintersectingLoop(np,p2,p3,p4)

1 F true by true-intro
2h origin=np O origin+extent = origin+extent
2.1 p3=ﬁ by subs-eq, [Felim from 2h, hl
2.2 F pil=np by subs-eq, (Felim from 2h, h1
3 true by true-intro
4 np - OnonintersectingLoop(np,p2,p3,p4) :— pl=nplsetpl(np)

by refine from 1, 2.2
5 np - 0:— pl=npOsetpl(np) by refine from 3, 2.2
6 np - 0:— pS:EDsetpl(np) by refine from 3, 2.1

Operation decomposition

Types and classes

Whilst an object may be a member of many types, it is an instance of precisely one
class, which describes its implementation as a list of component variables and a set
of methods. It is useful to annotate a class with invariants and opspecs, and so we
merely extend the type notation to include method-definition. Class descriptions
may be derived from each other, for convenience, but that has little to do with any
useful behavioural relationship, and is not dealt with here.

Whilst the definitions of a type and a class may be combined in one type/class
description, it is not automatic that a class’s instances conform to its ‘home’ type.

Fresco ensures that all methods defined in or inherited by a class are proven to
conform to the relevant axioms of the home type. Not all the axioms of a type need
be provided for by methods in the associated class — partially-implemented

‘abstract classes’ are allowed. But the proof of a method which creates a new
member of a type depends at some point on a theorem of the form

C.implements(T), x class = C, T-invariants[self\x] |- xOOT

and the the first hypothesis can only be satisfied by a special ‘built-in’ justification
which checks whether proofs exist that all axiom$ afe satisfied by the methods
of C.

Code development

Although the abstract syntax and semantics of the coding component of the Fresco
language is that of Smalltalk, the concrete syntax is somewhat adapted to fit with
the reasoning system. (Nor do we expect to be able to give formal rules for every
detail of the language.)

The axiom applicable teetpl can be satisfied by
np - setpl(np)= ( var p4-

p4 := origin+extent;

origin := np;

extent := p4 — origin )
and the proof is largely documented by annotating the code with pre/post specifica-
tions. Preferably, the code should be developed from the axiom in stages as advo-
cated in [Morgan].
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1 origin+extent = origin+extent by A=A
Oorigin+extent = origin+extent :— p4 = origin+extent [

p4 := origin+extent by assign
3 00— p4= ngmMD p4:= origin+extent by stren from 1, 2
4 Op4 = origing+extenty
'— origin=np O p4 = origing+extenty O origin:= np by assign
5 [p4 = origingt+extenty :— origin=np O p4 = origing+extenty Horigin:= np

by stren from 4
6 Oorigin=np O origin+p4—origin = origing+extenty
:— origin=np O origin+extent = origing+extenty Oextent := p4—origin by assign
7 Oorigin=np O p4 = origing+extent,
:— origin=np O origin+extent = origing+extenty Jextent := p4—origin
by stren from 6
8 0 :— origin=np O origin+extent = origin+extent [
(p4:= origin+extent; origin:= np; extent:= p4—origin) by seq from 3,5,7
These rules are used:
seq: OP :— My[X]O0S;, OMi_1[X\xo] i—= MiX\xo]OS; | OP == M,[x] O(Sy; Sy;...Sp)
assign: OP[e] := P[v] Ovi=e
var-decl: (var x| OP:—=ROS) + OP:—RO(X - S)
The rules are somewhat more complicated when the possibility of expressions with
side-effects is taken into consideration: which is the clearest encouragement to
avoid them! Chapter 5 deals with those cases where the effects are on items men-

tioned in the relevant expressions; cases in which the effects may be on other items
are entirely ignored until chapter 8.

An alternative ‘in-line’ style (as in [Morgan]) may be used for documenting decom-
position proofs, in which any spec or code may be prefixed by another spec which
it refines:
0 :— origin=np O origin+extent = W+Went O
( varpd-
0:— p4 = origin+extent [
Oorigin+extent = origin+extent
‘— p4 = origin+extentO
p4:= origin+extent;
[p4 = origing+extenty
:— origin=np 0 p4 = origing+extenty O
Chp = np O p4 = origing+extenty :— origin=np 0 p4 = origing+extenty O
origin:= np;

O origin=np O p4 = origing+extenty
:— origin=np O origin+extent = origing+extenty O
Corigin=np Oorigin+p4—origin = origing+extenty
:— origin=np [ origin+extent = origing+extenty O
extent:= p4-origin

)

Some of the justifications and auxiliary proofs are a little difficult to integrate into
the code in such a style, though a good browsing tool should be able to expose and
hide them as required (a technique known as holophraxis).
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System composition

All Fresco software development work — specification, coding, proof, documenta-
tion — is done within the context of some capsule. A designer may develop several
at once within the same system, but has to switch consciously between them: each
corresponds to a separate ‘desktop’. Once developed, the designer can ask Fresco
to certify the capsule: that is, to check that the proof obligations are all up-to-date
and have complete proofs. A certified capsule can then be incorporated into another
system.

Each capsule has a name which is unique worldwide: the full identification includes
date and hostid of origin, and author’s name etc. are included in the ‘header’ docu-
mentation. Each builds on the work embodied in other capsuleseitquisites

A capsule cannot be incorporated into a system unless its prerequisites are already
there. The prerequisite graph is acyclic and directed; capsules are not functional
modules, but modules of programmer effort: if two modules are interdependent,
then they should be defined as separate TCDs within the same capsule; capsules
dependencies are unidirectional.

During development, Fresco ensures that the designer does not use (or inherit from)
anything defined by another capsule which is not a prerequisite. As far as TCDs and
global variables are concerned, this is just a question of tracing the definitions of
names: every definition in Fresco is associated with a particular capsule. But for
messages, this can’t be done with complete certainty until an attempt to construct a
proof, which must refer to the definitions of operations in particular types.

On incorporation into another system, Fresco checks that the definitions given by
the incoming capsule do not clash with those of other capsules which are not its pre-
requisites. A renaming scheme can be invented which circumvents some of the
problems, where a new definition accidentally has the same name as something else.
But in the case where two cousin capsules (with a common prerequisite, but neither
prerequisite of the other) try to redefine the same item in different ways, then they
can only be declared incompatible and cannot both become part of the same system.

A capsule may only define new TCDs and conformant augmentations of existing
ones. The TCDs in a capsule are therefore composed dsivgth the ones

Fresco © Alan Cameron Wills 1992 OO Software Engineering with Fresco 30



2-4.1

already existing in the system (which should come from prerequisites); so that the
new code implements the old specification as well as the extension. (Figure 4.)

Once certified and published, a capsule cannot in general be modified (without
renaming it); but a new version may be issued if it conforms to the old one. An
extension to the naming scheme encodes the version history (branches are allowed,
of course: improvements may be made by diverse authors), and prerequisites must
be quoted with name and version. Then any later version will be a satisfactory sub-
stitute.

Capsule contents and composition

A capsule is a tupléhame, version, prerequisites, definitions[] Definitions
includes all TCDs, together with global-variable definitions.

A Fresco system definition is a pditapsules, definitions[]capsules is a list of

the capsules the system has incorporateddefihitions can be attributed to a par-
ticular capsule. Every system has a Kernel capsule, which contains all the standard-
issue classes and globals. Run-time components of the system — the heap, stack,
interpreter state, and so on — depend on the code in just the same way as in ordinary
Smalltalk.

So the definitions in a system are determined by its capsules, and by the order in
which they were incorporated, which in turn is determined by the prerequisite graph.
Each capsule’s incorporation adds the new capsule to the list, conservatively extends
the types, overwrites method definitions and adds fields to classes.

Summary

Class definitions in Fresco also carry type specifications, in the form of model-ori-
ented specifications, which may apply to model or actual instance variables. Inher-
itance may be conformant or non-conformant: including type information or not.
Conformant inheritance gurantantees substitutable subtyping.

Figure 4. Capsule composition conjoins specs and overrides implementations

/ Capsule A o
prerequisite - prerequisite

Capsule "\

A-User

L

/ Capsule B\

implements Xp & Xg

apsule A-User is not upset by
B’s re-implementation of X K
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Subtypes may be constructed either by inheritance or by reification, involving a
proof with a retrieval function.

Methods may be constructed using a variant of Morgan’s method of specification-
statements.

Proofs are constructed in a style similar to ‘natural deduction’.

The unit of design modularity is the capsule. The design of each capsule is founded
on some set of precursors. Each capsule effectively defines a theory of the defini-
tions it carries, which is used by its importers. Capsules contain new class defini-
tions, and augmentations of old ones. Fresco ensures that (if proof obligations are
correctly fulfilled) no conflict will arise between capsules in any configuration.

The Fresco notation includes diagrammatic elements (used for analysis and design),
inexecutable assertions (used for specification) and Smalltalk code. Classes may be
related by conformant and non-conformant inheritance, reification, and composi-
tion; the last may carry a contract.

The proposed Fresco environment will support the interactive development of cap-
sules, including their type/class definitions, contracts, and proofs.
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3 The state of the art:
background and issues

This chapter combines a survey of relevant work by others with discussions of a
number of issues which arise from or contrast betweeen their efforts. There is a brief
summary of where Fresco stands on these matters. The scene is thereby set for the
detailed description of Fresco which follows in chapters 4—-6.

3-1 Formal methods

3-1.1 Specification styles

Algebraic specification[ GGH] defines a type using equations over its visible oper-
ations. Advantages and disadvantages of this technique:

» The equations are deterministic. Where loose specifications are required, a
separate kind of specification must be used. This limited expressiveness
tends to push the specifier into making design decisions too early on.

* Well-suited to execution for prototyping purposes with a Prolog-style inter-
preter. In Fresco, this is not seen as an advantage, since OOP already pro-
vides for rapid prototyping of a superior sort (81-3.1 — p.12).

* Not so easy for large specifications. It is inevitable that existentially-quanti-
fied intermediate variables will be required for the equations of anything
more complex than the usual examples (stacks, natural numbers, and so on).
These correspond to components in some hypothetical internal state. The
hypothesising of such a state is the basis of the model-oriented methods —
except that they force a consistent model of the internal state over all the
axioms, rather than inventing a new one ad hoc for each axiom.

* Amenable to proofs using term-rewriting systems.

Model-oriented specificationbegins with the definition of a hypothetical internal
structure of the objects of interest, and defines all the visible operations in terms of
their effects on that. Advantages and disadvantages:

* The model may be mistaken for a description of the required or expected
implementation.

* A badly-designed model may contain states indistinguishable by the use of
the external operations. The usual refinement techniques can be confused by
this state of affairs, disallowing valid implementations.

» Particular specifications are easy to understand, and the technique in general
is easy to teach. This is as true for large specifications as for small ones.

* Since one type is always modelled in terms of others, it is impossible to
define primitive types this way.
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In addition to the data structure (usually a record-like definition), thereinvan

ilant which constrains the model structure to an appropriate set of states, and opera-
tion-specifications dpspecsn Fresco parlance) which consist opastcondition

and a in some languagepr&condition

The advantages of model-oriented methods seem to outweigh those of the algebraic:
Fresco has no need for prototyping in the logic programming style; we need loose
specifications; and term-rewriting appears to have limited utility in proof systems.

3-1.2  Traditional specification methods

The principal features of the model-oriented specification langid§eivey] are
* Modularisation by “schemata”.

* A good associated tradition of interspersing formal schemata and informal
text.

The schema structure of a Z specification is chosen for readability; but each schema
cannot in general be implemented independently of the others — the structure needs
to be flattened before a reification can be done.

There is a poor separation in Z between client and provider: for example, clients
must infer the precondition of an operation from the postcondition and invariants —

there is little emphasis on a clear contract. This is remedied in many OO variants of
Z.

VDM [Jones86]

* has always been a development method, whose notation “Meta-1V” (almost
universally called “VDM”) was designed with that in mind.

* There has been little work on modularising VDM until recently [Fitzgerald
90, Bear], so that specifications tend to be big and daunting.

To develop OO forms of VDM, a method of composing specifications must be
added — necessary for a useful form of inheritance.

Hoare suggests [Hoare90] that Z forms the better base for specification, and VDM
for development. This advice is followed to some degree in Fresco: the style of pres-
entation of specifications, and the composability of pieces of specification owe their
inspiration to Z; while the emphasis on client-provider contract, data reification, and
the philosophy of rigorous proof come from the author’s experience of VDM.

Larch [GHW85] is a two-tier specification method, in which algebraic methods are
used to define terms used in the second tier, where they are employed in the style of
the chosen implementation language.

3-1.3 Decomposition strategies

Once the requirements for a particular operation have been defined, there are a
number of approaches to producing and verifying the code which is intended to
meet them.

Assertions & VCG. After writing a method, it is peppered with assertions — pred-
icates intended to be true whenever execution passes over them. The peppered text
is given to a Verification Condition Generator, which generates a verification condi-
tion — a large predicate which you try to prove. It is often difficult to see the con-
nection between any part of the VC and the features of your program; so it is
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difficult to get intuitions about how to prove it, and hence difficult to see where the
problem is if you get stuck. The assertions are added after the program is written,
and there may be a tendency to write assertions which differ little from the code.
Nevertheless, more real code has reputedly been verified this way, meeting the
highest requirements of the national software reliability standards, than by any
other; the system used was Gypsy [Good 82].

Stepwise refinement:A specification-statementonsisting of a pre & postcondi-

tion pair, can stand for any segment of code not yet developed, permitting reasoning
about the surrounding code to proceed. You begin with a specification statement,
and find a refinement or decomposition. The step is a small one, and so easily
proven. After many such steps, the method is decomposed entirely to code. The
principle was expounded in [Jones80], and is well illustrated in the refinement cal-
culus [Morgan 90], in which the steps can be documented ‘inline’ with the code.

This is the approach adopted in Fresco. The inline documentation of reification on
the small scale is in keeping with the larger scale OO use of the abstract class, which
represents a specification documented in the same space as the code.

Transformational development the stepwise application of rules to a specification

to turn it gradually into a program, has been demonstrated for applicative languages
such as Refine [Green]. The technique can also be used for optimisation. The col-
lection of rules must be extensible by the user. It would be interesting to try a
mixture of this technique and the refinement style in the context of a rule-based
system such as Fresco.

3-14 Inference methods

Term rewriting . A number of efforts have been made to produce fully automatic
theorem provers. They have generally centred on the technitgrenafewriting in
which the machine repeatedly applies conditional equalities — that is, of the form

hypl, hyp2, ...} f =g
This is especially applicable to the algebraic specification methods, where data

types are described in this form. Term-rewriting tactics deal very well with propo-
sitional logic, and some success has been had with more sophisticated problems.

The fully automatic theorem prover of Boyer and Moore used term-rewriting: their
experience suggests that when such a tactic fails, it is often difficult to see where the
problem lies. But since the machine’s complement of rules and tactics can never be
sufficient to cover all possible programs, human intervention is often necessary, to
suggest new axioms for the machine to try. [Lindsay 88]

It seems possible that as ‘artificial intelligence’ techniques improve, machines will
yet be got to do the bulk of theorem proving; indeed, this is a necessary precondition
for widespread use of formal verification. Until that day, a co-operative effort
between user and machine is necessary; and for that reason, half-done proofs must
be easy to read and to relate to the problem domain, so that the user can take over
where the machine gets stuck.

Natural Deduction is a proof system of Gentzen and others [Prawitz71], designed
to meet this criterion of reflecting human appreciation of the problem (an interesting
parallel to the aims of OO analysis and design). This is the basis of the proof system
in Mural [Mural], the proof-assistant precursor to Fresco. In Natural Deduction,
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proofs are composed of lines each of which is derived from a subset of its predeces-
sors by matching a proof rule. Each proof begins with a set of hypotheses; the proof
supports any theorem with those hypotheses and a conclusion matching any of the
derived lines. Proof rules and theorems are identified. A hypothesis may be a
straight assertion or a sequent (X}-YZ), and where such a hypothesis is encoun-
tered in a proof rule, it must be matched with a subproof — that is, a proof in which
the preceding lines of the containing proof may be used as supports.

In Mural, theorems are organised into theories, each of which is defined by a set of
axioms and constants. A theory-definition may inherit axioms and constants (and
therefore derived theorems) from one or more others, forming an acyclic graph. This
permits mathematical knowledge to be built up in a way which reflects a formalised
view of the working style of mathematicians: one body of ideas is built upon the
conclusions of predecessors.

Fresco adapts this system, identifying sequents with theorems and proofs with the-
ories: they are generalised into the idea of a ‘Context’; types are then introduced as
a specialisation of Context.

3-1.5 Proof tools

Mural is aproof editor: a tool which displays and browses theories and their theo-
rems and justifications, helps seek justifications, helps instantiate new justifications,
and ensures the consistency of the proofs and theories. Contrast this with the Boyer-
Moore system or with Gypsy, in which the machine works in batch mode, searching
for proofs or checking them.

The interactive style has become easier to support as hardware has advanced. LCF
[GMW?79] was teletype-based; Mural is window+mouse-based, making it easier to
think of the tool as providing a window on a database of proofs, constrained to be
consistent with the rules.

In fact, the constraints should not be imposed too harshly any CAD system should
allow inconsistencies whilst the elements are being juggled and experimented with,
but draw them to the user’s attention, and provide the means to find outstanding
incompletenesses or inconsistencies.

LCF developed the notion déctic: an algorithm or heuristic for discovering a
proof, described in some suitable language, and using the same searching and rule-
application primitives as are available to the human. The user can invoke tactics
where it seems likely that the machine will be able to find a proof: a well-designed
set of tactics should permit the user to do the creative sketch proofs, and then to get
the machine to do the straightforward filling-in of the details.

1. An alternative and more-or-less ‘natural’ view of proof as arcade game may be envisaged. You begin
with a goal-assertion, inscribed in a small cloud and gently floating around the screen, bouncing at the
edges. You have a battery of rules, one of which you zap it with: there is a small explosion (with suitable
sound effects) as it breaks up into subgoals, to which you then apply rules in the same way. Some subgoals
will directly match rules, and if your firing strategy is well-chosen, you eventually clear the screen of
goals; if, on the other hand, the screen gets so cluttered with a heaving mass of logic that you can no
longer see the rules for the subgoals, you can consider yourself to have lost. This is all just a matter of
user interface of course, and should be good for occasionally pepping up jaded theorem-provers of the
future, particularly those who have come into the business from particle physics.
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[Mural] documents an attempt in this direction. It is only a partial success, since
some rules (for example the induction rule) have so many possible ways of being
applied to any subgoal that a mindless series of matches would be hopelessly long.
However, there is a set of built-in and user-definable tactics that can be invoked
when desired.

3-1.6 Logic

First order predicate calculusis inconvenient as a logic in which to deal with
partial functions, which are very common in computing. For example, intuition sug-
gests that even whexe< 0, there is a useful meaning to this formula:

x<0 0O sgrt(x) <2
where in FOPC, it would be undefined.

LPF (“Logic of Partial Functions”) [CJ 90] is one of the logics for dealing with such
formulae. There are others, but LPF has the virtues that:

» only one extra operator -&; for testing definedness — is added;
* the symmetry of the operators is preserved;

* and the theorems are straightforwardly those of FOPC, after deleting all that
depend omp O-p (plus some new ones for dealing wah

The intention in LPF is to interpret formulae the way designers would expect, so the
above proposition is true X< 4 and false otherwise, including cases below 0.

3-2  Object orientation

3-2.1 Definition of object-orientation

[Wegner 90] defines an object-oriented language as one including these features:

» Object: a collection of operations associated with a mutable unit of state;
the operations can alter the state and yield results. An operation is invoked
by applying or “sending” anessagecomprising aselectorname or signa-
ture and arguments. The same selector may be implemented by different
methodsin different objects.

» Class: a definition of internal structure and methods shared between the
objects which arastancesof that class. We may speak of #itributes of
a class, meaning the definitions of the names, types etc of the attributes of
its instances.

* Inheritance: the derivation of one class-definitionsabclassrom one or
more others, itsuperclass(es)

3-2.2 Subclasses

Halbert & O'Brien [HO87] list many uses for the subclass relationship:

* Generalisation — adding extra information, for example addiiagh to
adapt a class of squares to represent rectangles.
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» Variation — providing variants of a basic theme.

» Composition of characteristics from multiple inheritors, for example to con-
structScrollableWindow by inheriting fromScrollbar andWindow.

» Specialisation — e.drourSidedShape to Square.
* Reification — e.gSet to BitMapSet or SparseArraySet.

The art of arranging a subclass hierarchy to achieve maximum flexibility is dis-
cussed by Johnson and Foote [JF88]. They also discuss the definiframef

works — groups of interdependent classes, like Smalltalk’'s Model-View-
Controller system, which can be specialised as a whole group. [HelIm90] discusses
the documentation of such frameworks and the contracts between their members.

3-2.3 Types

As the theory of the semantics and utilisation of object-orientation has grown, the
idea ofencapsulationhas been clarified. It is the separation of concerns between
client andimplementor. The client is concerned only with the externally visible
behaviour of the module, defined by its specification. The implementor is concerned
to satisfy the specification by providing a suitable implementation.

This gives rise to the notion tfpe — a set of objects which behave according to a
given specification from the external client’s point of view. A class defines the inter-
nal structure which implements a type. Its clients are interested in the type that an
object belongs to, and the type-description represents the set of assumptions that the
designer of the client makes about the object being used.

[CHC90] points out the class/type distinction, and the corollary that subclasses do
not necessarily define subtypessébtypeis a subset of a typextITT andTTOT,
thenxUdT; anything that can be said about memberEisfalso true of any member

of TT, and any client of will be satisfied with any member ©f. Subtyping, rather

than subclassing, is clearly the more important property when the aim is to write
polymorphic code (e.g. a screen manager which can handle many kinds of window).
From a software-engineering point of view, the dependency between the client and
the supertype (the generic window description) and its independence from the indi-
vidual subtypes (of particular kinds of window, icon, etc) is worth a lot more than
the subclassing facility of factoring some code.

[Meyer88] advocates only using subclassing where the intended subclass also
implements a subtype; this cuts out all but the last two of Halbert and O’Brien’s
uses. He and others have pointed out that in many (though not all) of the other cases,
the economy of implementation turns out to be a false one, for three reasons:

* The implementation is typically overcomplicated with overriding redefini-
tions of methods.

» Changes of requirements tend to affect types (and therefore their subtypes)
rather than subclasses — so any change is liable to require a rewrite of the
class hierarchy.

* The “yoyo problem”: because some methods are defined within a class and
others left to its superclasses, it can be difficult to follow the precise execu-
tion path of a program as it goes up and down through the different levels of
the hierarchy. The reader must therefore employ procedural abstraction: that
is, when you come to an operation call, do not put your finger on it and
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attempt to look up its implementation, but instead use its specification to
treat it as an atomic operation. If subclasses are also subtypes, then it is suf-
ficient to know the specification relevant to the type you know the receiver
belongs to: it is not necessary to treat different possible subtypes separately.

Further guidelines as to the design of class hierarchies have appeared, such as the
‘Law of Demeter’ [Lieberherr 88] (which prohibits sending messages to objects not
your immediate neighbours) and the principle that all classes should be either leaves
with no subclasses, or abstract classes, with no instances, representing types
[DT92].

The notion of inheritance can apply to any kind of definition, not just classes. Notice
that inheritance between type definitions does not necessarily imply that the inher-
iting definition will be a subtype. [Cusack90] examines the properties a language
must have in order to obtain this desirable relationship. Fresco’s type definitions do
have this property.

Polymorphism appears in two forms in OOP: inclusion and parametric.

_ uses
ShapeManipulator ¢ FourSldedShape

subtype of

Quadrilateral

Rhombus Square

Parallelogram | | Rectangle

From this itis clear that the purposdrolurSidedShape is to specify whaShape-
Manipulator can manipulat&hapeManipulator is dependent upoRourSided-
Shape, in the sense that FourSidedShape were alteredShapeManipulator

would have to be examined, possibly altered too, and in any case reverified. These
dependency diagrams are a powerful tool in software maintenance. However,
ShapeManipulator is not dependent upon any subtypeFolurSidedShape: pro-

vided they really are subtypes, they will all behave at least in the&ShvageMa-
nipulator expects (as well as doing more that it isn’t interested in). Furthermore, we
could add new subtypes, aBtdapeManipulator would deal with them just as well,
without any need for reverification of it. Whatnecessary is to verify that the new
type really is a subtype, but this is a cheaper proposition than going around all the
dependents dfourSidedShape, many of which may be unknown to its author.

Parametric polymorphism: A module of code may also be polymorphic in the more
general sense of being parameterised by type. For example, SortedList(Integer) is a
class or type (whereas SortedList by itself is not). In general, it is necessary to
restrict the parameter to have a certain set of characteristics: objects can be sorted
only if they belong to a type which has an ordering relation.
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3-3  Existing syntheses of object orientation and formal
methods

Three strategies have been followed by OO formalists; they may at some stage con-
verge:

» theintroduction of OO principles to an existing specification language, with
the objective of introducing OO benefits into the business of specification;

» the adaptation of a specification language or technique to facilitate the spec-
ification of OO program components;

» the introduction of specification elements into an OO programming lan-
guage.

The following sections describe some of these languages; then we shall look at some
of the issues upon which they differ.

3-3.1 Object-Z

OZ [CDDKRS] inherits from Z several pleasant presentational characteristics, and
adds a new class construct that encapsulates state and operation schemas. A seman:-
tics has been described, in terms of possible sequences of operations (and their
results) [DD90Q].

As an OO-ification of a specification language, it is not OZ’s chief concern to
specify OO program modules. Therefore, for example, there is no built-in distinc-
tion between equality and identity: if these are to be modelled, they must be explic-
itly described by the specifier.

Inheritance is used as a convenient device for constructing specifications: there is no
strict relationship with subtyping. Thus, for example, one may describe a class
Quadrilateral with an operatiorShear and then derive from it Rectanglewith
Shearredefined to beinusable, and a stronger invariant.

3-3.2 Z++

Lano and Haughton have done considerable work on the refinement of specifica-
tions written in OO extensions to Z [LH92], and have designed Z++ as an exemplar.
Object identity is a feature of the Z++ semantics. Z's schemas are rejected as too
difficult to reason about, and class and method definitions are used as modules in
their place. Z++ has a strict notion of subtyping, and inheritance is designed to guar-
antee strict subtyping, provided you are willing to accept their renaming convention.
For exampleRectanglecan have its own version shearwhich does nothing; but

it is also considered to have the metiiqahdrilateral::shear— so that if a client
always qualifies a method-name with the name of the type expected, the right things
are guaranteed to happen. This seems a bit of a cheat somehow.

3-3.3 OOZE

The prospective extender of Z should ignore its semantics in favour of its superficial
appearance, which is by far its best characteristic, and the cause of its wide popular-
ity among the general masses. In particular, it should be appreciated that schemas
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are a purely syntactical device, and that the schema calculus, unless firmly rejected,
will only interfere with any proper modularisation scheme.

Alencar and Goguen’s “Object oriented Z Environment” [AG91] provides a Z-like
syntactic appearance to a well-developed algebraic system, OBJ3. Methods are
specified with conditional equations, and there is an executable subset of the lan-
guage, intended for prototyping.

Loose specifications cannot be written with equations, although there is a separate
“Theory” construct for that purpose. This duality seems a little uncomfortable, and
seems likely to bias the specifier towards implementations.

Subclasses are not necessarily subtypes (in the strictest sense), since method speci-
fications can be arbitrarily overridden in subclasses. However, if a method specifi-
cation “promotes” the superclass’s version of itself, correct subtyping is assured.

Modules (for encapsulation) and classes (templates of objects) are separate concepts
in OOZE — though the syntax makes it easy to make the two coincide.

3-3.4  Abel

Abel [DLOB86] is one of the most well-developed languages in this field. It is a wide-
spectrum language — that is, with both inexecutable specification features and
imperative executable features, and there are formal verification rules and tools.

As in OOZE, specifications are algebraic in style, leading to the necessity of a sep-
arate kind of module to specify loose properties. Unlike OOZE, a good OO pro-
gramming language is part of the package, rather than just a rule-based prototyper.

3-3.5 Larch/Smalltalk

[Leavens 90, 91] describe the application of Larch to OOP, and to Smalltalk in par-
ticular. The scope of the work is restricted to immutable values at present. This
seems partly to be because of the extra difficulties of working with mutable objects
in Larch’s algebraic layer.

3-3.6 VDM++

The aim of VDM++ is to introduce the benefits of object-orientation to specifica-
tions [DK91]. Subclasses may be formed by selective inheritance — for example,
Rectanglemay be formed fronQuadrilateral by omittingshear.This ensures that
Rectanglds self-consistent — though of course does not ensure thatReetgn-

gle can be treated asQuadrilateral. It is a convenient constructional mechanism,
but unrelated to subtyping.

The primitive types (numbers etc.) and constructors (sets, lists, mappings) are as in
VDM. Object-identities are a special primitive type.

3-3.7 CDL and EVDM

The work of Huw Oliver [Oliver 88] aims to specify re-usable program components;
Ada is used as the exemplar implementation language. It is therefore not really
object-oriented, but more about packages (which do not have an instance-creation
mechanism). Specification languages CDL and EVDM (both based on VDM) are
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given a semantics in terms of the kernel language COLD-K [Jonkers 88]. One inter-
esting feature of the work is that CDL is the result of experiments with specifying
Ada modules, while EVDM comes from the other direction: it is the result of adding
modular features to VDM.

3-3.8 Utting & Robson — OO Refinement Calculus

[UR91, UR92] describe a system with similar objectives and approach to Fresco.

Subtyping is of the proper substitutable variety, and specification-statements

[Morgan 90] are the basis of the language. This is therefore one of the few pieces of
work to investigate verified refinement to code, in the OO arena.

3-3.9 Eiffel

Eiffel [Meyer 88] is a programming language in which classes may have invariants,
pre and postconditions. Meyer points out that it is only with specifications that
inheritance takes on its full meaning (as subtyping). Assertions are written as
boolean expressions of the programming language.

In Eiffel, opspecs and invariants are written in terms of instance variables. This
means that in an abstract class, you either must write quasi-algebraically, defining
each public operation in terms of private operations; or you must introduce instance
variables where you otherwise might defer them until the definitions of the sub-

classes. This is somewhat anti-encapsulation.

3-3.10 Annotated C++

A++ [CL90] adds invariants and pre/post conditions are added to classes in C++.
C++ “public” inheritance is identified with the intention to implement a subtype.
The axioms used for specification are uniform with the assertions that may be
inserted into the code (in Morgan’s style). C++ expression syntax is extended to
provide quantifiers; but where possible, the A++ compiler can use the assertions to
insert debugging checks.

Cline and Lea insist that axioms defining behaviour should use only the publicly
visible functions, and not private instance-variables. This is a reasonable restriction
in C++, where the specification defined in a superclass should not bias the imple-
mentation — variables once declared cannot be undeclared in subclasses. But the
consequent restriction to an axiomatic style is tedious for all but the simplest types.

An alternative scheme would be to introduce the idea of abstract model variables,
which would be ignored by the compiler. (This would work for Eiffel as well.)

3-3.11 POOL

Although POOL [America 87] does not have a full specification element, it is
worthy of notice for its syntactical separation of type and class. Types define sets of
objects which conform to a given signature and set of properties; but in its current
incarnation, properties are documented only informally. To check refinement, the
compiler compares property names. Properties may refer to any aspect of the
object’s behaviour. The rules for subtyping are interesting, and cover generic types.
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Both types and classes may be defined by inheritance (each from other definitions
in their own category). Because the behaviour is described only by property labels,
there can be no guarantee that an inheriting type definition is a subtype. Some of the
properties are informally described as invariants on states, and inheritance of invar-
iants can lead to non-subtypes (see 83-4.5 — p.47).

3-4  Issues in application of formal methods to OOP

It may reasonably be asked why the application of formal methods to OO program-
ming requires any special consideration. This section reviews what we require of
such a combination, and where the particular difficulties are.

3-4.1  Concurrency

Concurrent programming is not dealt with here. However, many of the same prob-
lems arise, because of the complexities of imposing encapsulation strictly in a
typical object-oriented system, especially those problems associated with aliasing
(see below).

3-4.2 Objects

3-4.2.1  Object identity

The specification of program modules requires that every behavioural aspect that a
client might need to know should be formalisable.

In many OOP languages, and always in Smalltalk, information is passed by refer-
ence, and subcomponents are references rather than complete structures. In Small-
talk, Eiffel, and others, the syntax treats this plethora of pointers implicitly, treating

a reference as if it were the item referred to.

This pretence breaks down wherever two pointers refer to the same object. In Small-
talk, x==y is true iff both names contain equal pointers to the same object; whereas

x=y depends on the classes of the object(s), and will usually compare the values the
objects (with any subcomponents) represent in their current state.

A specification method must be able to make this distinction, and must be able to
cope with user-defined equality.
3-4.2.2  Aliasing

A frequent precondition or invariant is that there should be no aliasing between
given names or their subcomponents; a specification language should be able to
state this, and the proof system should be able to verify it.

Object-Z, for example, appears not to tackle this issue at all; nor does Larch/Small-
talk. OOZE acknowledges object identity, and Abel contains provisions for prevent-
ing unwanted aliasing.
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3-4.3

3-4.3.1

3-4.3.2

Encapsulation

Encapsulation is the minimisation of the dependencies between units

* so that the work of creating them can easily be partitioned, with minimal
communication between the creators of different units;

* so that one unit may be used in conjunction with many others;

» so that the impact of alterations to a unit on its neighbours can readily be
assessed and minimised.

Units of encapsulation

The obvious unit in OOP is the object; and some languages (such as Smalltalk)
provide encapsulation on this basis: no method may access the instance variables of
any but its receiver-object. In C++, the unit of encapsulation is the class (and, imper-
fectly, the program file): a method may access the innards of any parameter belong-
ing to its own type.

The behaviour of objects is determined by their design, and so it makes more sense
to encapsulate in the units of design, than the run-time objects. This supports the
C++ strategy — but in general, that argument is flawed: a subclass may choose to
implement some other way, and whilst a method can be certain of its receiver’s class,
it can be certain only of other objects’ types. E.g.:

IntSet:: union (IntSet s2) // s2 is some kind of IntSet
{ size= size + s2.size ; // but if s2[JIntSet, size is unused ...

— though such pitfalls can be avoided by the observance of various ‘good program-
ming’ rules (such as “no variables in abstract classes & no subclasses of concrete
classes” [DT92]).

[Szyperski 92] argues for the separation of encapsulation and classes: encapsulating
modules should be groups of classes, and free access should be allowed between the
innards of classes defined within a module. Since classes are often defined in
groups, this is a very useful idea, realised in OOZE. Further, it may be argued that
modules and classes may be quite orthogonal, with modules (or “capsules” in
Fresco terminology) able to define new classes or extend existing ones.

Szyperski argues for “no paranoia”: you should be able to get at the innards of any-
thing defined within your own module. This freedom suffers from the same problem
as per-class encapsulation, unless all possible subtypes are confined within the
module. The problem can be avoided by encapsulating both on the object and
module levels: variables should be private to objects, whilst there should be mes-
sages which are private to modules.

(Multiple dispatching could also prevent this insecurity.)

Applicability of encapsulation to specifications

In some respects, encapsulation only applies where there is a reification, whose
details are hidden so that clients do not depend on them. But a specification should
be fully exposed, since clients use all its properties in their own correctness proofs.
Encapsulation is the prevention of dependency between a client and a provider’s
implementation: so that more efficient or more powerful code may be introduced.
Neither of these is an issue for specifications; if a nicer way of stating a specification

Fresco © Alan Cameron Wills 1992The state of the art: background and issues 44



is found, it can be used alongside the old one, rather than instead of it. And if the
specification has to be changed, then the clients will have to be re-assessed anyway.

However, normal functional abstraction remains useful for specifications — if
sStack, it is easier to sag.popTo(s’) thans'.size = s.size—1 O 0iJ1..s.size -
s[i]=s'[i]. When an operation has been specified for possible implementation, it is
also useful to be able to quote the specification within another specification by
qguoting the specified method s-pop — often known agpromotion.Z and its
derivatives make much use of this technique.

3-4.3.3  Encapsulation and invariants

In conventional specification, there is effectively one state-invariant, which applies
to the whole state. Each operation can rely on it being true on entry, and must ensure
its truth on exit. In this model, no activity happens in between calls to the system’s
operations, so nothing can disturb the truth of the invariant.

In OOP, we aim to apply formal methods on a per-class or per-module basis. An
invariant typically is quoted within a class, and applies individually in each object
of that class. The standard methodology can fail for two reasons:

» There may be ways in which an invariant may be invalidated in between calls
to the methods of the class. In particular, if any other operation in the system
has access to an object on which the invariant depends, then that may be
altered without the use of the class’s own methods.

For example, a SortedList class has the invariant that its components are
ordered; if a pointer to one of the (mutable) components is available to some
other part of the system, that component may be changed so that it is out of
order, without the SortedList being aware of that. It is not always efficient to
keep such components entirely within the control of the ‘owner’ object.

» Itis conventionally assumed that while an operation is in progress (and the
invariants are temporarily violated) no other operation may be called. In an
OO system, there is no automatic guarantee that the message passing map
will not be circular.

In both cases, the problem is the attempt to encapsulate: in the first case, pointers
cross the encapsulation boundary; in the second, the encapsulation prevents us from
knowing enough about the things we call to be sure they won’t come back to us. In
order to prevent these problems, extra specification and verification techniques will
be required.

3-4.4  Classes and types

3-4.4.1 Classes and types, subclasses and subtypes

We have seen that there is an important distinction to be made between the specifi-
cation of an object’s behaviour (a type), and its implementation (a class). An object
may be a member of many types, but is an instance of one particular class. The def-
initions of types and classes may each be derived from other definitions by inherit-
ance or parameterisation; in defining a language, we seek to give these derivations
useful properties.

In POOL, there are two different notations for classes and types. This makes the dis-
tinction clear to the programmer, but makes it more difficult to apply specification
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constraints directly to implementation constructs — a class can be asserted to
conform to a particular type, but an invariant cannot be applied to the internal vari-
ables of a class.

Meyer’'s approach recognises the difference between class and type, but attaches
type information to classes. This has the advantages that there are fewer pieces of
description to worry about; that the specification constructs (pre/postconditions and
invariants) can be applied directly to the attributes and methods of the class; and that
where it is sensible to provide a common implementation for a supertype, this can
readily be done.

Some authors suggest that every class should either be an abstract class (with no
instances of its own) or a leaf class, with no subclasses. The purpose of this seems
to be to emphasise the difference between class and type — their abstract classes are
really hangers for types; but where there is a clear type specification attached to each
class, this seems less relevant.

In Fresco, types and classes are represented by a single syntactical construct, even
though subtyping and subclassing are distinct. Every class has an associated ‘home’
type to which every instance of it and its subclasses are intended to belong. In
Fresco, the type specification can be fully formalised, so this ideal situation can be
realised more consistently than in other languages.

3-4.4.2  Composing types

When two specifications are combined — as for example in multiple inheritance —
the result may be interpreted in various ways.

There are two kinds of inheritance in Z++: strengthening, in which an extra invariant
and attributes are added to a class; and strict inheritance, in which the attributes and
methods of the superclass are renamed to avoid clashes with any other superclasses
and the additional material in the subclass.

Class C Class D
v : Real v : Real
v<10 v>10
~..methods|v]... ...methods|[v]...
Class CD'
C:v, D:v : Real
Class CD = C:v<100D:v>10

(in_Z++) ...C::methods|[C:v]...
...D::methods|[D::v]...

Z++ -strict inheritance does ensure that the subclass is a proper subtype of the super-
class: the latter’'s workings are insulated from all other material in the former. But
this isolation does make extra work for the specifier, who must then make the con-
nections explicitly by the use of “promotion” — that is, quotation of the appropriate
inherited methods in the subclass. Inheritance is therefore little more than import.

An extra complication is that if a variable is defined in a common superclass — e.g.
w defined inA which is supertype to both andD — then it should not be renamed
in CD. Work on COLD-K [Jonkers 88] has formalised this in a calculus of ‘origins.’
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An alternative approach — espoused by Object-Z and others — is not to bother with
renaming, permitting the final specification of an operation to be determined by
several statements from various sources. The advantage of this is that it helps mod-
ularise the specification.

3-4.4.3  Monotonicity

However, the modularity is not tremendously useful from a software engineering
point of view, unless specification-composition has the propertyafotonicity

That is: if a client can see a specificati®af some unit (class, method, M)then

any inferences that can be made fi®will remain true in all compositions &with

other specifications d¥l. Monotonicity is important in managing the building of a
large system, and in the sense of ‘backwards compatibility’ when a system is to be
updated.

Z++'s inheritance is certainly monotonic, but requires explicit promotion of opera-
tions from superclass to subclass (except where there is no change or clash). It is
more appropriate for a specification language than where implementations are
involved, and where renaming would be a complication.

Object-Z's inheritance is not monotonic: predicates may be arbitrarily added to an
invariant or method-schema, adding constraints which a client of the superclass
would not expect.

In Fresco, there is no renaming, but the conjunction of specifications (of types and
methods) is defined to be monotonic. This may result in a specificatitaisef
where there are inconsistencies. The philosophy is that clienGlge$ C and

Class D above for example) are always guaranteed that members of subclasses will
behave as expected; but there are inevitably some compositions (§ilaksa€D

in the Fresco version, where we would have the invavieb® [1v>10) which are
unimplementable.

Monotonic composition is used in several ways:

» Software may be documented with a mixture of formal specification and
explanatory text. Different aspects of a type may be described separately, in
separate boxes. Any client interested in only one aspect may rely on the
validity of whatever can be inferred from any of these partial descriptions,
without having to check out the rest.

* One class may fulfill the requirements of several clients, which refer to dif-
ferent types to specify their expectations.

* An implementation may be improved. Old clients will continue to work,
provided the new aspects augment the old specification monotonically.

3-4.5 Inheritance and subtyping

It is therefore essential to get right the rules for interpreting inheritance, at least of
type definitions. One of the key features of OOP facilitating re-use is polymor-
phism. As software engineers, we are therefore crucially interested in substitutabil-
ity; and so in Frescd is a supertype d@ if and only if all objects which have been
shown to operate according to the rules determining membersBigvibif always
conform to all clients’ expectations Afmembers.
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Class definitions may inherit merely as a convenience of construction; but it leads
to a more readable and maintainable system if every subclass relationship is associ-
ated with a subtype relationship. In C++, this corresponds to the intention of “pub-
lic” subclassing. The occasional utility of “private” (non-subtyping) subclassing is
provided for in C++; but many authorities argue against its use (see page 38).

Type definitions could also be derived one from another without the result generat-
ing a subtype, as may happen in Object-Z; but this seems likely to lead to confusion.
The absence of explicit preconditions in Z leads to this folly. If a new invariant
restricts the state space, then clients are supposed to know that they should not call
any operations which would take an object into the forbidden space.

For example,

— IntCell

n : Integer

—inc
An
n=n+1

DecadeCell
IntCell
n<10

DecadeCell is interpreted as being likatCell with a restricted state space. Users

of inc are supposed to know when it is valid to apply it — preconditions must be
inferred: the valid ‘before’ states are those for which there is a valid ‘after’ state that
meets the postcondition:

pre (o) = inv(o) OOa" - post(o, a') Oinv(a’)
In a world of immutable values, invariant-strenthening always constructs a subtype.
But for mutable objects, subtyping depends on the operations.

By contrast, in a language with preconditions (based on VDM), the restriction
would be likely to render some operations unimplementable: for example, if
IntCell::inc had arue precondition, the®ecadeCell::inc — and hence the whole
class — would be unimplementable, because it could not deat»@thrhus in this

latter interpretation, any non-subtyping inheritance would be caught in the attempt
to verify an implementation.

(A weaker interpretation os preconditions says that they should be considered in
conjunction with invariants; but this seems to render them pointless.)

3-4.5.1  Subranges are not subtypes (for objects)

It is the mutability of objects which is important in this respect. To take another
example, an immutable rectangle (think of a cardboard one) is undoubtedly a kind

| Fresco © Alan Cameron Wills 1992The state of the art: background and issues 48



3-4.5.2

of immutable quadrilateral: rectangles conform to all the criteria one could write
down to characterise quadrilaterals. But a mutable Rectangle (think of four tele-
scopic radio aerials welded at right angles)asa kind of mutable Quadrilateral:

you would expect to be able to bend the hinges of the latter, and stretch its edges
asymmetrically. So whilst in the world of immutable values, rectanigjeadrilat-

erals, the same is not true of their mutable counterparts. The Z approach works well
when considering the behaviour of a community of objects all of whose specifica-
tions are known to the designer: but for re-use of code, we require a clear separation
of the concerns of clients and providers, and so the VDM interpretation is more
appropriate.

In an applicative world dealing with immutable values, a subtype is a subset of the
value space, and can always be obtained by strengthening the constraints. When
dealing with objects, the important characteristics are not the static properties of the
object in a particular state, but the set of possible histories — sequences of states —
through which an object’s operations could take it. Viewed in this light, a subtype is
still a subset: but a subset of the possible histories, not of any individual state. To
facilitate re-use of program components dealing with mutable objects, we must
adopt this notion of subtyping.

The Z-tradition interpretation works well for subtyping of values: a stronger invari-
ant reduces the state space to a subset. The VDM-tradition interpretation works well
for subtyping of objects: strengthening the invariant may lead to an unimplementa-
ble type, since the real emphasis is on the opspecs.

Reducing nondeterminism

Strengthening an invariargtvalid where its only effect is to cut down non-determi-
nacy: in that case, all the operations still have ways of satisfying the clients’ expec-
tations.

Cycle-B

a: 0 A
b: 0 A
X: Nat

Ox<3 - x = x+1 Da
Ox=3:—x=40x=10a
Ox=3:=x=410b
Ox=4:—x=10a
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Two types are illustrated abo@ycle (ignore the shaded parts) abgcle—B (with
the shaded partsJycle-B is clearly a subtype @ycle, since it is the same but for
an extra theorem. They have this state diagram:

2 (D)

The a exit from state 3 is not determined Bycle. If we forgetb for a moment,
then an acceptable refinemeniQyfcle would be to remove state 4, either by alter-
ing the opspecs @, or by adding a new invariant:

Cycle3 ::+ Cycle
Ox<40

Clients ofCycle have to allow for the possibility that the resultaofould some-
times be 4, but they may never rely on the appearance of state 4. Cli€ytdeof

can therefore operate successfully with objects which are actually members of
Cycles.

But if we recallb, the same new invariant addedQgcle—B would render the
resultingCycle—Bn Cycle3 unimplementable: there is no object which could both
satisfy the opspec dnand keepx < 4.

Cycle

A X

Cycle-B Cycle-3

% A

Cycle-Bn Cycle-3

O

What makes the difference between an invariant which reduces nondeterminacy,
and one which goes beyond that and introduces an inconsistency? The former satis-
fies the following for each opspé&® (o) :— R(o, o) Oop which is an axiom of the
type:

nmt: Uo:T - P(o) Uinvi(o) O o0"T - R(o, 0') Uinvy(a")
where inv; is the conjuct of all of the type’s invariants. (This allows for initialisation
into any state, though strictly we need only deal with those accessible by closure
over all sequences of operations from a permitted set of initial states.) This may be

shown by induction over the object’s model: it helps if an enumeration function has
been defined which generates all valid states.

It may not always be useful to demonstratet, since the appropriateness of an
invariant will become apparent when implementation is attempted. Furthermore, its
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satisfaction is often obvious. However, if there are to be several following stages of
refinement from a complex invariant, it would be wise to check early on.

The Fresco environment should provide for the gathering of the invariants and gen-
eration ofnmt, and its incremental proof after a new invariant is added. It should
ensure that users are reminded that new operations need to be checked against exist-
ing invariants, as well as the other way around. (See chapter 7.)

3-4.5.3  Values can be range-restricted

Having made plain the pitfalls in attempting to restrict the range of states into which
an object can get, it is worth re-emphasising that there is nothing wrong with
forming subranges of immutable values (or objects which serve to represent them).
This is because any individual member of the type (e.g. 7) is not expected by any
client to be able to mutate into any other member. Certainly, there are operations
which yield results which are outside the restricted range, but that is not a problem:
they are different objects. So for example, if we extract the typing constraimeen
ger::succ:

Integer

succ(self)dInteger

Now define a restricted range:

OctDigits

selfdInteger
self <8

This does not change the fact tsatc(7) is aninteger. 7 is a member both of
Integer and ofOctDigits, andsucc(7) happens not to be. By contrast, if we had
defined a mutabl€ell containing an integer, with an increment operation, then a
restricted versio®ctCell would not be a subtype Gfell.

3-4.6 Generic definitions

Modules may be derived by supplying arguments to parameterised definitions. The
interesting issues are

* what to parameterise — types, classes, or larger modules
* how monotonicity is achieved

» the constraints on the type parameters

3-4.6.1  Subtyping amongst generics

It is worth noting that even thoudat is a subtype dit, Set(Nat) is not a subtype
of Set(Int): you would expect to be able to add rets to the latter. However, it is
possible to define a generic ty@entainer such that everget(T) is a subtype of
everyContainer(T).
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3-4.6.2  Constraints on type parameters

SortedList(T) requires thafl should have an ordering relation. A type may be
defined which has an ordering relation and nothing else:

Ordered

_<_: Ordered xOrdered — Boolean
...required properties of < ...

but the requirement & is not that it is a subtype Qfrdered: we would not wish

to excludelnt because it is unable to compare itself with all o®Detereds, such
asString. Instead, there is a substitution relationship between this and the types we
wish to admit: Palsberg and Schwarzbach [PS91] elaborate on such a scheme.

Abel and OOZE use their separate “property” or “theory” modules as constraints on
generic type parameters. The properties are applied via a morphism or “view” which
identifies, saynt with every occurrence @rdered within the property module. In
OOZE, both generics and their arguments are modules, not types. This means that
every occurrence of the type-na@edered in a module would be replaced with the
argument type.

It is interesting to observe that a variant of the OOZE approach works well if sub-
typing were defined between modules rather than types. Suppose modules are
defined like multi-sorted ADTSs: several types, perhaps with internal model varia-
bles, may be defined in a module; and operations are not attached to any specific
type, but to modules. A module MM is a submodule of another M iff all members
of its types behave according to the axioms of M. Now a rule k8 IxX1yT2

O op(x,y)JT3” should be interpreted as follows: for any refinement MM of M,
there will be types MM::TTn corresponding to the types M::Tn; in MM, the axiom

of M hold, with MM::TTn substituted for M::Tn; for any type Tx not bound within

M, the axioms in MM use Tx unsubstituted. The same substitution rules apply to
constants. So, for example, we may write rules about the interaction between
models, views and controllers, without any hassle about saying that SquareViews
are not expected to have to interact with RoundViews. Where we do mean M::Tn to
remain unadulterated, we can write it that way explicitly. In this scheme, it is easy
to writeOrdered as a module, of which aiSortedList’'s argument should be a sub-
module. This reduces the concept-count a little.

The Fresco solution is detailed in §6-4 — p.94.

3-4.7  Assertions and proofs

3-4.7.1  Wide-spectrum imperative OO languages
Eiffel uses programming language for its assertions. There are several advantages:

» Assertions can be executed for debugging purposes. (Fanatics of verification
do not believe inWhile test failsdo fiddle with code” approach; neverthe-
less, it is much cheaper to discover bugs by testing than by attempts at

| proofs; and since bugs are likely, it makes sense to begin by testing — verify
once you think you've got it right.)

* Programmers only have to learn one language.
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* The fundamental concepts of the languages used for analysis, design and
coding are integrated, making it unnecessary to construct and continually
trip over complex models of (say) pointers.

» The formal process can be taken right down to the code.

» As the library of re-usable modules grows, it extends the power not only of
the implementor, but of the specification-writer too.

But the language must be designed to be wide-spectrum. In Eiffel, the expressive-
ness of assertions is severely restricted by the absence of quantifiers.

There are also semantic difficulties: what does an assertion mean if it has side-
effects? Eiffel has an insecure partitioning between procedures (with side-effects)
and functions (without). Abel manages to achieve this partitioning strictly. In
Fresco, expressions with side-effects are allowed in assertions, as there is no inten-
tion to provide any facility for executing them. Even so, an assertion with more than
one subexpression with side-effects may be ambiguous: but that is just as itis in pro-
gramming languages. It is the specifier’'s responsibility to write meaningful specifi-
cations.

3-4.7.2  Expressiveness of the specification component

The purpose of a supertype is to define just those properties on which clients will
depend, minimising communication between modules. Since polymorphic code is
to be constructed, it must be possible to write partial specifications. General rela-
tions are therefore more appropriate than equations: so the model-oriented methods
seem better suited to specifications of OO modules.

Since we already have a programming language, there seems no point in having exe-
cutable specifications, so an equational interpreter such as OOZE’s would be super-
fluous in Fresco.

3-4.7.3 Verification

The proof system should be one in which both refinement of data types and decom-
position of method code can be combined with the generation of a proof, in stepwise
fashion. Morgan’s specification statements seem ideal for this. They are also

straightforward to compose when generating subtypes.

Where code is inherited, the necessity for re-verification should be minimised.

The proof methods and tools should permit proofs to be outlined and subgoals jus-
tified informally where appropriate. The term-rewriting systems which fit the equa-
tional systems best (such as Abel and OOZE) are less well suited to this, as subgoals
are less easy to isolate.

The B tool [Sorenson91] has been applied successfully to object-oriented versions
of Z, and Mural [Mural91] to VDM. It is Mural that is the basis of Fresco’s proof
assistant.

3-4.8 Larger units of design

The purpose of encapsulation is to ensure that one part of a design is not spuriously
dependent upon another: this will help limit the complexity of design decisions,
keep manageable the ramifications of change, and increase the portability of indi-
vidual chunks of design effort.
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In some OO languages, encapsulation is applied on a per-object basis, and in others
on a per-class basis. In the former regime (exemplified by Smalltalk), a method may
only access the inner structure of its receiver; in the latter (e.g. C++), a method may
access the innards of any object which is a member of its home class (that is, the
class of the receiver).

In OOP, the unit of design-effort is not the object, but the class or groups of interre-
lated classes. It is therefore arguably unnecessary to encapsulate per-object — Szy-
perski's “no paranoia” principle [Szyperski92]. If | am going to re-implement a
class, then I will re-implement all the objects of that class, and since | know what is
inside any object within that class, there is no point in hiding it from myself.

Modularity is about:

» the division of design-effort intmanageablgieces (both from the point of
view of the initial effort, and subsequent reading and modification)

» the division of designs into separatplyrtablechunks.

[Wills91] and [Szyperski92] propose that the two purposes of classes should be sep-
arated: the class should be a set of objects with a common implementation, whilst
encapsulation should reside in an orthogonal modularising concept, called the “cap-
sule” in Fresco (87). In practice, it is rare to incorporate a separable feature or sub-
system in a single class. The statistical functions form a unit of design effort which
should augment an existiddumber class, rather than forming a new cléksm-
bersWithStats — we want them to work for all the existing subclassés$umhber.

A subsystem which supervises the presentation of objects to the user (such as Small
talk’'s MVC) is designed as feameworkof interacting classes, with definedn-

tracts between them [HHG90].

3-4.9 Programming language issues

Smalltalk was chosen as the initial basis for the Fresco language:

* The entire lack of any “type-checking” (signature checking) leaves this as a
part of verification. The rules of any prescribed system (such as those of
C++) might conflict with those derived from the verification rules.

(C++ allows dynamic binding to be turned off for chosen selectors, so that

speed can be improved by determining the methods that will be called by

each message at compile time. This is not OO, of course. [JGZ 88] and sub-
sequent work have shown how to do such determinations automatically;

though at length and across encapsulation boundaries.)

» Persistence of data through a software change: essential to responsive proto-
typing, experimental development and frequent delivery of updates. Small-
talk and some of the newer OO databases do this.

« Smalltalk’s minimal language with generous predefined kernel of classes,
and the ability to compose a system by ‘filing in’ software updates, form an
excellent model upon which to build the Fresco capsule system.

» Similarly, the class browsing facilities, which can readily be extended to deal
with type specifications.

(Smalltalk was also chosen as the implementation language, since Mural was built
in it and again because of its ready modifiability.)
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3-4.10 Semantics

[Wolcko] describes a semantics for Smalltalk in denotational terms. It would clearly

improve the foundation of the present work to relate it to some such theory. The
present Fresco semantics, in the practical form of a set of proof rules, is open to
inconsistencies; however, it does make it easy to omit the difficult parts, such as
some of the more unpleasant uses of Blocks.

Utting and Robinson provide a semantics for their work in terms of object histories,
and a minimal similar model is used here.

3-5 How Fresco tackles these issues

This is, of course, the subject of the rest of this thesis; but to summarise:
* Fresco method-specifications are like those of VDM:

— a client is guaranteed that if the precondition is met, the operation will
succeed

— postconditions are relations on the before & after states

» Constructed subtypes always inherit their ancestors’ specifications, which
conjoin with any they have in their own right.

» Conjunction of specifications is such that a proof based on any conjunct is
always valid for the conjunction; this applies in particular to subtypes, so
there is no “yo-yo problem”.

» The semantics is based on object histories: subtypes are subclasses of possi-
ble histories. So subtyping is about true substitutability.

* The language is a wide-spectrum extension of Smalltalk (with an adapted
concrete syntax). Smalltalk’s clear distinction between identity and equality
is preserved. A scheme for dealing with aliasing is provided.

* Modules (called capsules) and classes are orthogonal. The capsule forms the
main unit of knowledge.

» \Verification can proceed stepwise with program development, and steps at
every level in the natural-deduction-style proofs can be left informally justi-
fied. The aim is ‘rigorous’ proof, in which every informal justification could
be rendered formal, given the motivation and effort.

3-6  Summary

A number of terms have been defined: in particular, local meaningpaf class,
abstract clasfiave been distinguished, together witheritance, subclass, subtype

The key issues to be addressed here have been desGdrexlirrencywill be
avoided. Software engineering considerations motivate a concern with rpbéble
ymorphismin parametric and inclusion forms, am@notonic system construction.

The orthogonality of system-design modules and classes will be addressed. Fresco
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should be integrable with popular methods of OO analysis and design, though that
integration is not part of the present work.

The virtues and drawbacks of other systems have been surveyed. The proof system
and tools provided by Mural seem at least as applicable as others. Of logical foun-
dations, LPF deals most easily with the sometimes undefined propositions that arise
in programming. In object-oriented program specification, algebraic methods tend
to be too deterministic, whilst current derivatives of the widely popular Z seem to
be converging with VDM in many respects. The Smalltalk language and program-
ming environment is a very flexible and minintabula rasaupon which to build

an experimental system such as Fresco.

The selection of VDM, Mural and Smalltalk as the bases for Fresco could have been
founded on careful reasoning about their virtues in relation to the goals in mind; but

that would be a gross post-rationalisation. However, the same reasoning applies to
being pleased in retrospect that these choices were imposed by circumstances.
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4 Theories and proofs

This chapter describes the proof system upon which support for formal methods in
Fresco is founded. It is an adaptation of the Mural system [Mural].

A model of the proof system is presented here in the form of a hierarchy of types,
as outlined in the chapter 2.

4-1 Theories

Theories are the basic portable units of knowledge: types, capsules, and proofs are
all varieties ofTheory.

Theory

var label O Symbol

var symbols 0  Binder set

var theorems 0 Theorem set

var axioms [ Theorem set

var knownSymbols [0Binding set

var knownThms OTheorem set

fn context O Context set

axioms O theorems 0O Oalltheorems - aldaxioms < a.justification = nil
context O Theory set

O tOtheorems - t.context = {self}

knownSymbols = ((lcontext). knownSymbols O symbols

A theory is a set of declared symbols, and a set of axioms over those symbols; and
the body of other theorems which are derivable from those akidtos example,

the theory of propositional logic with its symbatsie, False, [J, [J, = and the usual
axioms (including proof rules) over them. There will in general be an infinity of
derivable theorems, and so it is those which the user has explicitly discovered which
are recorded in a Fresco theory, together with the justifications for believing in their
membership. This is hot necessarily a subset of the set of true theorems, since justi-
fications may be partly informal and therefore wrong. The proof tool tracks depend-
encies between theorems and can highlight the transitive dependency of any proof
on an incompletely justified theorem.

Most useful theoriemherit the symbols and axioms (and therefore theorems) of
other theories, which form itoontext for example, predicate calculus is built upon
propositional logic, and number theory may built upon set theory. Contexts must

1. The axioms are not constrained to be equations, nor even propositions, since at the most
basic level, there is no interpretation of the theorems. All we know at this level
Is that theorems can be derived from other theorems.
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Context

var knownSymbols OBinding set
var knownThms OTheorem set

" fn context O Context set
Expression

Theory
Theorem

var label O Symbol
var label [Symbol] varsymbs 0 Binding set
var metavars [ Binding set var theorems 0 Theorem set
var justification O [Justification] var axioms [ Theorem set

knownThms = context.knownThms

b

Assertion Sequent
var expression [ Expression var hypotheses [0Theorem set
expression.context = {self} var conclusion 0 Theorem

0 tOhypotheses O{conclusion} - t.context = {self}

Fig. 5.  Theories, theorems, and proofs

form an acyclic graph. There is no guarantee that a Theory will not be vacuous, since
it is perfectly possible to define conflicting axioms, either directly or by inheritance.

The theorems of a theory may refer to any ofkh@wnSymbols, which include

both those bound in the local theory and those inherited from the contextual theo-
ries. Symbols with the same signature from different theories are identified, so the
theorems from different theories effectively conjoin.

4-1.1  Symbols

All expressions in Fresco are built out of Symbols declared in Theories, and the
spelling, arity and kind of the Symbols determine how. These attributegynts
ture, are fixed in a Symbol’s binding declaration in a Theory or Theorem.

Binding

var spellingd  Symbol

var arity [ Kind mapTo: Nat
var kind [ Kind

Fresco has five kinds of Symbol (to date).

vV, +_ Object-symbols represent pure expressions (such as parameter or
variable names). Written in lower case; and operators.

T Type-Symbols represent types. Upper case.
0,0{...} Binder-symbols, which bind variables locally within an expres-
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4-1.2

4-1.2.1

sion.

E Expression-symbols, standing for any code expression which
may have side-effects. Upper case.
A Expression-list-symbols, standing for any complete argument

list. Upper case with subscript.
Chapters 5 and 6 elaborate these distinctions and demonstrate the different uses.

The arity of a symbol determines how many arguments it may take of each kind —
so an arity of {ObjectK- 1} — let’s take 0 as the default — would be a unary func-
tion, whilst an arity of {} would be a constant.

The spelling of each Symbol is unique within its declaring Theory or Theorem. It
defines its concrete syntax: if it is declared just as a name but has an arity o {X
then it is written with round or square parenthesis —d{le b, ¢) or P[a,b,c]. By
convention, type-symbols and expression-symbols are spelled with initial capitals;
object-symbols aren't.

The full declaration syntax of a symbol will be
Decl ::= spelling [ : Kind { Arity } |
Kind ::= ObjectK [ ExpK [ ExpLK [ TypeK [ BinderK

(If the kind is omitted, the default arity is {0,0} and the default kind is inferred from
the spelling and the usage.)

Expressions

An expression is an instance of a symbol known in its context: that is, all those
bound by a containing Theorem or Theory. There are two kinds of expression:

Expression

fn subexprs 0  Expression set

N

bl A

OrdinaryExpression BindingExpression

var op O Symbol var binder O Symbol

var args [J Expression list var var [ Binder
var type [ Expression
var body O Expression
var.kind = ObjectK

Operator and message expressions

The concrete syntax of an expression is determined by the declared spelling within
certain limits. There are seven (!) variations of concrete syntax for expressions; the
first five are forOrdinaryExpressions:
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4-1.2.2

4-1.2.3

ZeroArity ::= Symbol

MixFix ::= Receiver selPartl. argl [selPart2. arg2 ...]
PostFix ::= Receiver. Symbol [( argument[, ...]) ]
BinaryOperation ::= Receiver OpSymbol Argument
UnaryOperation ::= OpSymbol Receiver

Binary and unary operations are reserved for symbols which are not formed from
alphanumeric characters, for which users may define syntactic precedence (in the
capsule in which that spelling is first used). The kernel definitions include symbols
for the usual operators for predicate calculus, sets, maps, and lists.

These are examples of expressions:
21 ab
ab.adjust ab.add(21, x.result)
z>42+i.raised(2) whileTrue: [z.reduce(i)]

The MixFix syntax permits Smalltalk-like expressions to be written. The PostFix
syntax is used in the kernel rules which define the semantics of the language, for
matching general operations.

Binding-expressions
A binding expression, such as
ax - f(x)
declares a {}-arity symbol which may be used in its body. It must define a type for
the variable. The signature of a binder-symbol is therefore always

BinderK {TypeK - 1, ObjectK - 1}

In the design of Mural, there was some debate about whether it would be useful to
loosen this to allow binders suchlag which binds to a specific value rather than

are covered.

The variable bound by a binder must always be an object-symbol of arity {}: that is,
binders may not define types, other binders, metavariables, or operations or func-
tions.

Blocks
A block represents a parameterised segment of code, written:
[ :parml :parm2 | code ]

The semantics of Smalltalk blocks is complex and not dealt with in full here. How-
ever, rules can be written covering its uses in particular ways: for example, condi-
tionals and loops are designed as higher-order operations taking blocks as
parameters — for example,

aCollection do: [:item | codePerltem ]
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4-1.3

Theorems

Theorem

var label O [Symbol]

var metavars [0 Binder set

var justification O [Justification]

knownVars = ([Ilcontext).knownVars [0 metaVars
knownThms = ([Tlcontext). knownThms

A theorem is a statement which, given some interpretation of its symbols, represents
some fact. An axiom is a theorem, in a context in which it is assumed without
needing justification. In Mural and in Fresco, proof rules are identified with theo-
rems: new rules can be derived by proving theorems. The term ‘theorem’ will hence-
forth include ‘proof rule’.

Theorems come in two varieties: Assertions and Sequents. An Assertion is an
expression of some sort; a Sequent is a conditional assertion. Both forms may have
localmetavariablesand the expressions are formed from these and symbols defined
in the context.

An Assertion is written

[label . ] [ Decl, ... -] Expression
A Sequent is written in either of two equivalent forms:

[label : ] [ Decl, ... - | hypothesis [, ... | |- conclusion
or alternatively,
hypothesis, hypothesis
[ label: ] [ Decl, ... - ] hypothesis, ...
conclusion

where the hypotheses and conclusion are Theorems.

Theorems are generic statements, valid for all well-formed consistent substitutions
of Expressions for each metavariable.

A Sequent states that in any interpretation and context in which the hypotheses are
known to be valid, then the conclusion is also valid. The interpretation of any
Theorem is such that it retains its validity whenever its metavariables are replaced
by expressions of an appropriate kind.

A theorem may appear as a conclusidn}- (B |- C). If A is proven, then in any
context in whichB is also provenC may be inferred. This amounts to the same as
saying that in any context in whié¢handB are both proven, thebimay be inferred,;

so we have the general rule

decurry-inf: A, B, C - AFBFC) FABEOC
A theorem may appear as a hypothe@s| B) | C. This says tha€ may be

inferred in any context in which the additional assumptioA @fill prove B. For
example:
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4-1.3.1

4-1.4

4-1.4.1

arith-induct: i, P - iOInteger, P[O], (j - j0Integer, P[j] } P[j+1]) | PIi]

Substitution

The metavariables are substituted by appropriate expressions in order to apply the
theorem to particular situations. For example, in this theorem, metavaniadiels
y stand for any values:

add-comm: x, y - xUInteger, ydinteger | x+y = y+Xx

(Sometimes the metavariable declaration clause will be omitted to reduce clutter; let
us use the convention that any variables not known in the environment and free in a
theorem are its metavariables, where this is obvious.)

An expression metavariable may be parameterised (with square brackets); for exam-
ple:

univ-elim: n, P:ExpK{ObjK-1} - Oi- P[] F P[n]

P[i] stands for any expression in whicbccurs;P[n] represents the same expres-
sion, withn appearing in place of

P[i] does not specifically match a function call. For exanm|2] matchesqrt(2),
with {P[z] - sqrt(2)}; but it also matche5x2+3 with {P[z] - 5xz+3}.

Notice that matching does not depend on judgements of equality: it is entirely based
on the symbols in the expressions.

Rules about executable code have to distinguish between expressions which may
have side-effects, and those which definitely do not. For example, it may be that
x add: y adds the value gfto x; but only if the expression we substitute yatoes

not itself add something to — x add: (x add: 2) might have a rather different
effect. Object-symbols (written in lower case) may be used as metavariables to rep-
resent pure expressions (so the example substitution would be invalid), whilst
expression-symbols (written in upper case) match expressions with possible side-
effects.

The interpretation of the use of an object-metavaraible is that it matches only a
parameter or variable (in the code), and a rule involving one can only be applied
after a notional transformation of a complex expression to a series of assignments.
Object-symbols must have arity {} when used as metavariables, again since we do
not deal in higher-order matching.

Special constructs for the kernel

The following notations will only be used in defining a few of the kernel rules: they
do not seem likely to be needed for ordinary design work, and will not be available
to Fresco users in the construction of new definitions.

Two-way theorems P1, P2

The formsa, b - P1, P2 H Q1, Q2ora, b - ————=will sometimes be a useful
abbreviation for the set of theorems Q1, Q2

a,b-P1,P2} Q1
a,b-P1, P2} Q2
a,b-Q1,Q2} P1
a,b-Q1 Q2} P2
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4-1.4.2

4-1.5

4-2

4-2.1

Theorem schemata

Af-P[f] — forall fsuch that ...

Is equivalent to a set of theorems, repeated for the val@isatdfying the side-con-
dition. The purpose is to express behaviour ‘wired in’ to Fresco which cannot be
defined in the general notation. It is applicable where there is a finite humber of
instantiations satisfying the side-condition. For example,

/\vi - P[vjj — for every private variable v;

Contexts

Context

var knownSymbols 0OBinding set
var knownThms OTheorem set
var context [J Context set
var allContext 0 Context set

Theorems and theories are all Contexts. Any Context has a set of known symbols
which may be used to form expressions within it; and a set of known Theorems to
which justifications may refer, provided there are no circularities.

Proofs

A derived theorem hasjastification, which supports the belief in its validity. For
example:

1 juice O porridge I/l a precursor of 2

2: porridge [juice /I derived from 1

from 1 by or-comm with {A - juice, B porridge} // justification

Theby...from...[with...] clause is one form of justification, which may be a match,

a subproof, an appeal to an oracle, or an informal text: these are dealt with in the
sections below. All justifications refer to a set of precursors — the theorems from

which this one is derived. No theorem should be among its own transitive precur-
sors.

A complete proof is a network of intermediate justified theorems generated for the
purpose of deriving some goal theorem. A proof may be constructed in any mixture
of forwards or backwards modes: ‘forwards’, seeking what theorems can be justi-
fied from the theorems known so far; or ‘backwards’, finding what would theorems
would be needed to justify the goal required.

Informal and rigorous proofs

An informal justificationis one taking the form of an intuitively-based argument in
natural language for the belief that a theorem holds. The intuitions may be based on
the current interpretation of the theory, and may possibly not be provable with the
theorems available.
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Justification

var antecedents0Theorem set
var context [ Context

var dependant O Theorem
dependant.justification = self
context = dependant.context

transitiveAntecedents = antecedents [
[{aOantecedents - a.justification.antecedents | a.justification # nil}

Yok

N

MatchJustification SubProof

var with O Binder mapTo: Expression var proof [J Theory

var rule O Theorem - B
Oracular InformalJustification
var whoO Oracle var handwaving OText

>

SplitMatchJustification

StraightMatchJustification

var hypsMatch O Theorem set

antecedents = {rule} 00 hypsMatch
rule.subs(mapping).hypotheses = hypsMatch
rule.subs(mapping).conclusion = dependant

antecedents = {rule}
rule.subs(mapping) = dependant

Fig. 6.  Justifications and proofs

A rigorous justificationis an informal justification, in which the intention is that,
should there be any query (for example at a design review) about its validity, it
could, with sufficient effort, be proven with the theorems available.

A rigorous proofis a mixture of rigorous and formal justifications. Most of the
proofs done with Fresco should be expected to be of this form. In general, the strat-
egy is to make an outline proof, beginning by stating key theorems, and giving rig-
orous or formal justifications connecting them ‘forwards’ to the theorem of interest,
and ‘backwards’ to axioms or other believed theorems.

4-2.2 Matching

A theorem may be proven by showing that it is equal to the result of substituting for
metavariables in an antecedent theorem: this is the Straight Match Justification. E.qg.
and-comm: A, B - AIB } BOA
F sprouts is orful [ peas is nice }- peas is nicelsprouts is orful

by and-comm with {A - sprouts is orful, B - peas is nice}

The Split Match Justification supports a match not of the complete rule, but of its
conclusion; but only if a match to the hypotheses can be found. Again, metavaria-
bles may be substituted consistently. For example,
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4-2.3

subs-eq: A,B,P - A=B, P[A] }+ P[B]

1 n=2
2 2x3=6
3: nNx3=6 from 2 by subs-eq with {A-n, B2, P[i]-ix3=6}

(The details of thevith clause are usually holophrasted.)

The symbols in the range of of theh clause are obviously to be interpreted in the
context of the Justification, and not of any more local context: this may require some
respelling in order to display the result unambiguously. For example,

nx- .. /l n and x defined and used in this context
1 X=n
2: sO0On - n>xOf(x,n)  //local context in here
3: sOddn'-n>n0Of(n,n") by subs-eq from 1, 2 with {a-Xx, b-n}
Subproofs
SubProof
var proof O Theory

proof.axioms = dependant.hypotheses
dependant.conclusion Oproof.theorems.rng
dependant.metavars [ proof.symbs

A sequent may be proven by showing that the conclusion (as a theorem on its own)
is provable in a context in which the hypotheses (as theorems on their own) are
assumed. It is generally necessary to prove intermediate theorems, rather than
getting to the conclusion in one step. The context in which the steps are documented
is itself a Theory.

The axioms of the theory must be just the hypotheses of the theorem to be justified,
and the declarations of the theory should be those of the theorem. (Except that local
names which are not metavariables of the theorem may be declared, and extra
axioms may be introduced, provided they do no more than define values for these
local names. This constraint can only practically be enforced by restricting such
axioms to the fornrmew-symbol = expression .)

Each theorem which appears as a step in a proof is annotated with a justification
which supports its validity. The most common justification is the split match, instan-
tiating a theorem from the context, such that the hypotheses match named anteced-
ents selected from prior steps in the proof or theorems in the environment.

The example below also demonstrates a ndssHroof (lines labelled 4).

The concrete syntax of a proof displays the steps (that is, theorems in the internal
context of the proof) linearised with respect to the chain of justification, and with
systematic labelling. Justifications are displayed with each step. For example, a
proof ofadd-comm consists of the declarations, hypotheses and conclusion of the
theorem, separated out into separate lines, together with intermediate theorems:
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4-2.3.1

4-2.4

decl x,y
hl xOlInteger
h2 yOInteger

1 0+x =X add-0-1(h1)
2 X+0 =X add-0-r(h1)
3 X+0 = 0+x subs-eq(1, 2)
4decl n-

4h1 X+n = n+x

4h2 nOInteger

4.1 (x+n)+1 = (n+x)+1 determinacy(4hl)
4.2 Xx+(n+1) = n+(x+1) add-assoc(4.1, h1, 4h2)
4.3 n+(x+1) = (n+1) + x add-defn(hl, 4h2)
4.4 x+(n+1) = (n+1) + x subs-eq(4.2, 4.3)
5 X+y = y+X arith-induct(h2, 3, 4)

The whole proof exists in a context in which the invoked theoeatds0-| etc are

known. The conclusion of each justifying theorem matches the line it justifies, and
the parenthesised labels show which lines are matched to its hypotheses. Hypothe-
ses form part of the context of the proof, and need no justificatin. The chain of jus-
tification may not contain loops. Omitted from the justifications as presented here
are the mappings from theorem metavariables to expressions in the application con-
text. For example, i&dd-0-l is defined in the context a&sellintegerf-0+e = e,

then metavariable is mapped to the expression consisting of the single local vari-
ablex. The declarations of the variables local to the proof are idebklines.

Proof construction

The order in which a proof is constructed has no relevance to the validity of the final
result, and strategies for proof construction are a matter of the detail of the proof
construction tool and its user.
As an example of a step in ‘backwards’ mode, in the example above, the instantia-
tion of arith-induct to match its conclusion with lire gives

yUlInteger,

x+0=0+x,

(n - nOInteger, x+n=n+x | x+(n+1)=(n+1)+x)
F Xy=y+x
(withi - vy, P[i] - x+i=i+x) of which we have the first hypothesis, but must still
prove the other two.

Oracles
The justification of a theorem may appeal to an oracle — a ‘wired in’ procedure for
deciding whether an inference is valid. There are two reasons for providing oracles:

» Fast deterministic application of a set of ordinary theorems — for example,
simplification in the propositional calculus, or arithmetic.

* Implementation of fundamental rules which are difficult or impossible to
express within the proof system; including:

— those with special side-conditions;
— rule schemata which are instantiated appropriately for the context.
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4-3

4-3.1

4-3.2

Context operations

Union of contexts

The union of two or more contexts is important for the monotonic composition of
specifications:

cl, c2 - cllContext, c2LContext,
{t.label|tOcl.knownTheorems}n{t.label|tC]c2.knownTheorems} = [J

(c10c2).knownSymbols = c1.knownSymbols[c2.knownSymbols [
(c10c2).knownTheorems = cl.knownTheorems[Ic2.knownTheorems)

Notice that any name declared in both Contexts is identified: this means that in the
union, a quantity represented by some variable can have more strict constraints on
it than in either of the origins. The union of contexts with clashing theorem-labels
IS undefined, but Fresco adds qualifications to theorem-labels where necessary.

When a context is to be extended, for example inside a proof or subproof, the enclos-
ing context is unified with the complete set of the theorems contained within the
proof. Each of the theorems is available to each of the others for justification, though
an invariant on justified theorems prevents theorems from depending on themselves.

Extraction from context

A theorem which has been proven in a given context may be extracted from that
context provided the antecedents on which it depends are attached to it as hypothe-
ses, and the declarations are brought out as metavariables. For example, we could
extract 4.2 from the example subproof into a line of its own in the main proof:
6 n - n:Integer, (x+n)+1 = (n+x)+1} x+(n+1) = n+(x+1)
add-assoc( hl, 4h2)
or we could go further, noting thatl depends in turn ofhl:
6 n - n:integer, Xx+n = n+x | x+(n+1) = n+(x+1)
determinacy, add-assoc( h1)
We can then extract the line from the context of the proof:
X, n - X:Integer, n:Integer, x+n = n+x | x+(n+1) = n+(x+1)
determinacy, add-assoc
At each stage, we have carried along the justifications which tell us what remains to
be prepended to the hypotheses. We are finally left with the named rules which link
the steps in the original proof. These can also be prepended: for example,
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4-4

4-4.1

4-4.2

4-5

Xx,n-(a, b, P-a=b} P[a] =P[b]), x:Integer, n:Integer,
X+n = n+x | x+(n+1) = n+(x+1) add-assoc

Comparison with Mural’s proof system

Theories and proofs

Chapter 4 of the Mural Book [Mural] elaborates on the foundations of the proof
system and the reasoning leading to the choices which were made from it. Fresco
builds on that work, and adapts it in some respects:

* Mural's separate sequents and theorems are unified in Fresco. This was
given some consideration in Mural but avoided because it would be slightly
less general [Mural p125]. This simplification effectively means building-in
the rule:

alJA
a- x - XOA | P[X]

Plal

» Proofs and Theories are identified in Fresco. This is simply a conceptual
economy. The number of different kinds of variable is thereby reduced.

» There is a distinction between metavariables which match general expres-
sions, and metavariables which match pure expressions (such as single
parameter or variable names).

» Mural distinguishes at the syntactic level expressions which yield types and
expressions which yield type-members. This is not done here, since this
means much duplication in the presentation. Instead, constraints on the
results of the expressions are used where necessary.

[Mural] goes into considerable detail about the properties of the proof system: it
would be unprofitable to repeat that here.

Fresco takes over much of Mural's standard population of theories (Fig. 7.)
(although there is some mechanical translation to do).

Logic

VDM is founded on LPF (83-1.6 — p.37). Axioms for LPF and for the use of equal-
ity are defined in MuralPropositional LPFdeclares symbolsue, -, [J, and
defines in terms of thems , (I , false, andll. LPF is designed to deal with the pos-
sibility of the falsity of the conventional axiogi-e. The other axioms follow con-
ventional logic.

Summary

Knowledge which can be applied to reasoning is represented in theories. A theory
is a collection of symbol-declarations and theorems about those symbols. A set of
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,

Equality and types

- :
Predicate LPF

Boolean typing

VDM base

Fig. 7.

The standard Mural basis of theories for VDM

known or assumed theorems may be used to support a further theorem, by one of a
few fixed justification schemes. A theory may be defined wholly or partly by inher-
itance from one or more others.

Formal justification is based on the idea of specialising a theorem by substituting for
its metavariables; a theorem states that its conclusion is valid if its hypotheses are
valid. Sequents are proven by constructing a theory in which the hypotheses are the
only axioms, and the conclusion appears as a theorem.

A theorem may be removed from its context be prepending as extra hypotheses a set
of theorems from which it can be derived.

This chapter has described the foundations of Fresco’s reasoning system. The next
three will show how it is used to specify and verify methods, classes and capsules.
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5

5-1.1

Statements and
Assertions

Specifications and code

Statementsrepresent the exectuable part of the Fresco langaageitionsare the

not always executable constructs from which theorems are built (See Fig. 8.) The
two languages overlap considerably: many expressions (e.g. 2+3) are both state-
ments (i.e. executable) and assertions (i.e. OK to use in a theorenppddfetate-

ment links the two: each SpecStatement is an assertion that a particular statement
conforms to a particula€odeSpecification Whilst a Statement determines a rela-
tionship between successive pairs of states by prescribing how the machine shall
achieve the transition, the CodeSpecification expresses this as a predicate over com-
ponents of the two states.

Code

The executable statements of Fresco are essentially those of Smalltalk dressed up in
a concrete syntax more convenient for integration with specification constructs.
They are an executable variant of tBepressions, together withSequences;

Fig. 8.

Statements

Assertion Statement

X\ /

Context SpecStatement

var spec O CodeSpec
CodeStmt

CodeSpec

var fields O FieldExpression set
var pre [
var post [ Expression

post.context = self.context [ fields.barred

Expression

CodeExpression

* Sequence
var vars [ Symbol set

Codelnvariant var stmts [J Statement list

pre = post
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5-1.2

loops, conditionals and other control constructions are formed from calls to higher-
order operations.

A sequence may have local variables. There is no special provision in the syntax for
imposing a type constraint on a variable; invariants inserted in the code may make
assertions about the type of a variable, but that is a matter for proof rather than
mechanical type-checking.

Sequence ::=( [var Symbol [...] - | Statement [; ...] )
CodeExpression ::= Assignment | Block | OrdinaryExpression
Block ::= [ [:Symbol [...]| ] Statement ]

CodeExpression

OrdinaryExpression

var op O Symbol
var args [1 Statement list

BlockExpression

var params Symbol list
var code [ Statement

Assignment

var variable 0 Symbol
var_expr [J Statement

Specification Statements

A spec-statement is #&ssertion, and may therefore appear in a theorem or a proof;
and it may also be a statement within code. The general form is:

Ospec Lcode

If embedded in a method, the spec-statement is executed by executoapifsart.

Code may itself be a specification-statement: rée8d[15200C as[510([(520

C).

The statement asserts that ttwle behaves according to ttepec. It is for the
designer to ensure that this is so: that is, the theorem must be proven valid within the
context in which itis stated. In the Fresco support environment, each such statement
has an attached proof, which the designer must complete with the assistance of the
proof tool: Fresco ensures that all such proofs are complete before a capsule may be
certified. (Capsule certification is discussed in Chapter Bystem composition

(p.110).)

Although several code-specs may apply to the same piece of code, clients may
assume that anything that may be inferred from a spec-statement will not be negated
by another found somewhere else: spec-statements compose monotonically. How-
ever, one must take care not to imagine that anything not specified doesn’t happen.

The axioms of the type which a class is intended to implement must be observed by
its operations: and so the outermost block of statements of every method forms a
specification-statement whose specification-part is the conjunction of all axioms

Fresco © Alan Cameron Wills 1992 Statements and Assertions 71



applicable to that method. (Alternatively, there may be separate proofs for each rel-
evant axiom.) Proof of this outer specification-statement proceeds by recursive
deomposition using rules likeeq above, in the style of [Morgan90].

5-1.2.1 Code invariants
Oinv Ocode

This asserts that inv is true before executingpde, then it will also be true after.
(If the execution ofnv would alter the state of the system, this has no effect on the
meaning of thecode.)

E.g.

X, Y, sum -
OxOInt OyOInt O sumOInt Ox+y = sum O(x:=x-=1; y:=y+1)

Like other theorems, spec-statements may involve metavariables. As well as being
used in rules, they may be used to represent the results of expressions evaluated in
particular states. For example,

Ng -5 = ng! =n! (s :=s xn; ni=n-1)

Hereng may represent any object at all — as is always the case with metavariables;
the interesting values are those for which the invariant is true when applied to a par-
ticular case.

The code invariant may be defined in terms of the more general code spec:

Oinv :— inv OCode

code-inv-defn: inv, Code -

Oinv OCode

5-1.2.2  Code specs
Opre :— post code

This asserts that dre is true just beforeode is executed, theoode will terminate
andpost will be true of the relation between the states just before and just after. If
pre is omitted, it is assumed to breie. (Don’t confusdl:— e Owith Oe [)

The fields define which program variables (or components thereof) may be altered
by thecode. Within post, any of the fields may be quoted barréenoting the value
it represented before execution. E.g.

[(hUInteger J n>0 :(—s = n' o
(s:=0; [n#0] whileTrue: [ng - B=ng! —n! O(s:=sxn; n:=n-1) ])

5-1.2.3  Opspecs

The opspec is a specialisation of the pre/post-assertion in whicGatie is
restricted to a singl&lessage whose parameters are restricted to constants or
metavariables. Opspecs are used for stating theorems about particular operations.

For example:
0z>0 :— 1t x 1 =z O(z.sqrt)
The special name refers to the value returned from the operation.
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5-2

5-2.1

5-2.1.1

5-2.1.2

Decomposition proofs

Decomposition is the development of code which will meet a given operation spec-
ification. A set of basic rules is given here for the fundamental coding constructs of
sequential, alternative and loop execution, and for the construction of expressions
(with possible side-effects) and assignments. Ideally, opspecs serve directly as
proof-rules for the employment of the operations they specify, though this works
well only under certain restrictions (as we shall see).

Basic rules

These are reformulated from [Morgan] and [Jones86a] to suit the Fresco axiomatic
style. Questions of framing and possible aliasing are omitted at this stage, and dealt
with separately below.

Strengthening
This combines the usual weaken-precondition and strengthen-postcondition rules:

PEP1

stren: P,P1,RLR,S- PR1IEFR
OP1:—R10OS

UP:—ROS

For the second hypothesis, you don’t have to proveRhalways follows from
R1— just that it will do in those cases wheteas satisfied by therior state.

Since code specs can be nesstitin may be paraphrased:
PRP1
stren': PP1,RLR,S- PR1}FR
OP:—RO0OP1:—R10S
This statement is satisfiable by @&yvhich terminates iP holds:

terminates: P,S - OP :—true OS
This specification says nothing:

bottom: R, S - Ofalse (=R OS
No S satisfies this specification:

miracle: P,S - 0P :—false OIS

Spec-statement conjunction

A statement may be called upon to satisfy more than one theorem (from different
parent types, for example). Each theorem applies to those situations in which its pre-
condition is true. It's perhaps worth considering carefully the consequences of this
if two theorems apply to the same statement. They may be conjoined into a theorem
which applies if either of the preconditions are true — that is, the precondition of
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5-2.1.3

the new theorem is the disjunction of the originals; and the result will depend on
which or both of them applied.

UP1:—R10S
0P2 :—R2 [0S

spec-conj: P1, P2, R1,R2,S -

OP1vP2 :— (P10 R1) O (P20 R2) OS

Conversely, suppose we believe the lower haBpsc-conj to apply to somé:
thenstren may be used to showP1 :— R1 [0S (which is OK because in writing
this theorem, we don’t care what happert32fis true or false, nor what happens if
P1 is false).

Consequences of this include:

' P :—R10S
post-con;: P R1,R2,S- OP — R2 OS

0P — R1[R2 OIS

and:
OP1:—ROS
pre-disj: P1,P2,R,S- OP2 :— R OS
OP10P2 (=R OS
Sequence

For a sequence of stateme8ts ...; S, whose postconditionl; govern variables
X;, and which contain no other barred variables

seq: P,M,,S;, x; - 0P :— Ml[ij] 0SS,
Xoj © UMi_1[Xgjl i— MilXg] U'Socicn

OP:— Mn[%] O (Sq1; Sy; -5 Sp)
The trick is to give intermediate names to the original values of all the variables

X;: thereafter, the barred variables have to be removed from the sucégssive

For example, suppose we wish to verify a sequence of three statements which
manipulate variables x, y, and z. Begin with their specifications:

a: O—x=xfl Oy=y 0 z=z 0S1
b: O—x=xf2 Oy=x9g2 O z=z1S2
C: O—-x=xf3:y) Oy=(yg3:(x,2) O0z=xh0OS3

It is also important that these functions can be shown to depend only on their argu-
ments (88-3.3 — p.141)

dfl: f1 transparent

df2: f2 transparent

df3: ...and so on for 13, g2, g3, h ...

Now augmenb so that it fits with the postcondition afand eliminate bars:
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5-2.1.4

5-2.1.5

bpl: x=xofl Oy=yy O z=zy | true /* precond of b */ by true-intro

bp2:  hi: x=x5fl Oy=yg 0 z=25 I* barred version of new precond */
h2: x =x f2 Dy=§gZDz=E
1; X=X f1 Oy=y, O z=7, from bp2.h1, dfl by unbar
= x=xoflf2 Oy=xgflg2 O z=zy5 from bp2.1, bp2.h2 by subs=

b2: Ox=X%Xofl Oy=yg O z=2z5 = x=xoflf2 Oy=xyflg2 O z=25 O S2
from bpl, bp2, b by stren

and similarly forc:

cpl: x=xoflf2 Oy=xyflg2 O z=z | true by true-intro
cp2:  hi: x=x5flf2 Oy=xgflg2 O z=z5

h2: x=(xf3y) Oy=(yg3:(x,2)) Oz=xh

= X=(xgflf213:x9f192) Oy=(Xqf19293: (Xxgf1f2,2zq)) O z=x%xgfLf2h

c2: Ox=xof1f2 Oy=x9flg2 O z=z,

= X=(Xof1f213: %51 g2) Oy=(Xgflg29g3: (Xgflf2,zg) O z=xqflf2hOS3

from cpl, cp2, c by stren

and finally, we can applyeq:
- O—x=(xflf2f3: xflg2) Oy=(xflg2g3: (xflf2,2)) O z=xflf2h

0 (S1; S2; S3) from a, b2, c2 by seq
Typing clauses are omitted here for clarity. The explicit preservation chayses
z=z are required because we have not yet considered framing.

Condition

Smalltalk’s blocks carry no problems provided we deal only with specific uses of
them. The basic conditional rule is:

if: P,R,C,S1,S2 - OP OC : —ROS1
OP O-C:—ROS2

0P :— ROC ifTrue: [S1] ifFalse: [S2]

but this assumes th@thas no side-effects. @ does cause changes, then the effect
is like (Jv] v := C. v ifTrue: [S1] ifFalse: [S2]), so the rule becomes

if-se: P,R,C,S1,52 - OP == M[x] OC
OM[xx] OC — R[xx;] OS1
OM[xxj] O-C —R[xxj] OS2

0P :— R[x] OC ifTrue: [S1] ifFalse: [S2]

Loop
loop: v, inv, C, S+ v . QvOint Oinv OC —inv 00<v Ov<v OS

dinv :— inv O-CO[C] whileTrue: [S]

v is avariant, any expression chosen so that it reduces monotonically, but not
beyond 0: and therefore guarantees termination. It does not, of course, need to be
realised in an actual code variable.
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Some styles of programming uSeas a substantial piece of code with side-effects;
in which case, the rule is

loop-se: v, inv, PT, C, S -
r - 0invixg] 0=PT = R[X\xg] O r=false[r:=C
r- dinv[xg] OPT - M[\_/, Xo] O r=truelr:=C
Vg - OvlInt OM[vg, Xg] -—inv[xg] 00<v Ov<vy OS

dinv[x] - R[Q]D([C] whileTrue: [S])

All barred variables in the concludind? must be substituted by other namgsn

the decompositiorPT is whatever condition gives rise @ultimately evaluating

to true. (If it's too difficult to characterise this when applying this rule — for exam-
ple, if C is not sufficiently deterministic — try makiriReM and forget abouRT.)

For example, to the fairly useless piece of code
[a:= ax2. a<b] whileTrue: [b:=b/2]

the rule can be applied with these substitutions, creagndyy as names for the
initial values:

inv[ag, bg] = axb = agxby,

PT= ax2>Db,

v= (b/a)floor, _

M[ag, bg] = v=v/2 Oaxb/2 = agxb,

R[ao, bo] = axb/2 = aoxbo Oa>b
hence

0:— axb/2 = axb O a=b0[a:= ax2. a<b] whileTrue: [b:=b/2]

5-2.1.6 Inline form

The rules can also be written and applied in a style more suited to the integration of
program code and development, in which specification-statements can be nested.
(See 810-1 —Fresco development language HPTLE5))

stren: P R,P1,R1,S:- 0OP:=RO((P}| P1), (I_D, R1 | R), OP1:—~R10S)

seq: P, Mj X, Sj - 0P = My, [X] Oxgj - (P i= Mi[x] 0S1; IMi_1[Xgj] i— Mi[XgiILIS;; -..)
if; PR,C,S1,S2-  OP:—R O(C ifTrue: [[POC:-ROS1] ifFalse: [[(P0~C:—ROS2])
loop-se:iny, C, v, S - Oinv[x] :— RX]O

( (Onv[xg](HPT :— R[xp] O 1t =false

Onv[xo]CPT :— M[v,xo] O 1 =truel) C ]
whileTrue: [B/OINtOM[v, Xg] :— inv[Xg] O0< vOv<vy[B])

The example given under §85-2.1.35equencé.74) now looks like this:
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X, ¥,z S1,S2,S3-
O-x=(xflf2f3: xflg2) Oy=(xflg2g3: (xfLf2,2)) O z=xflf2hO
X0, Yor Zo - (
Ox=xflOy=y O z=z 0S1;
Ox=X%Xofl O y=yg O z=z5:— x=%xoflf20 y=xgfl g2 O z=z5 O
(x=xfL 0O y=yy O z=z4 }- true),
(hl: x=xofl Oy=yy O z=2,,
h2: x=xf2 O y=§gZ 0 z=z,
Fox=xyflf2 Oy=x,f1g2 O z=z, from h1, h2 by subs=),
Otrue :—x=x 12 O yzigz 0 z=z 0S2);
Ox=xgflf2 Oy=xoflg2 O z=z,
= X=(Xgf1f213:x5f1g2) Oy =(xgflg29g3: (Xqflf2,2zq)) O z=xyflf2h0,
(hl: x=xyflf2 Oy=xyflg2 O z=z,,
h2:  x=(xf3:y) Oy=(yg3:(x,2)) Oz=xh,
F ox=(xof1f213: %1 g2)
Oy=Xyfl09293: (xgf112,2q)) O z=x,fLf2h),
Otrue :— x:(§f3:§) O y:()_/g?x (Q,E)) O zzihDS3)
)
The rules given here are derived from [Morgan], but

» stren combines several of Morgan'’s rules in a convenient manner
* seq conveniently handles more than one statement
» loop-se permits side-effects in the condition

» the scopes of effects of statements are dealt with explicitly here, since a more
complex framing scheme than Morgan’s will be introduced presently, to
cope with possible aliasing.

5-2.2  Assignment

assignment: P R, x, E - OP:—R[t, Xx]UE

OP:— OXg - R[X,%g] O t==x0x:=E
or in inline form:
assignment: OP:= Oxg - RX, %] O 1==x0¢= OP:=R[t,xX]0 E
and ifx does not occur i, this can be simplified to:
assignment': OP:— R Ot==x0x:= OP:=RO E[x\]

The assignment rule takes account of the possibilityEhatnot pure. Compare
with Morgan'’s, in whichR[E] would be difficult to interpret iE has side-effects:

Morgan Law 6.6: P, R,y, E - (y=y O P} R[E]) } OP:—R[y]JOE
For example:
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X,y hil: OxOSet :(— x = QD{y} O t1==y Ox add: y

1 OxOSet:— OX- X= QD{y} 0 x==y Ot==x Ox:=xadd:y
by assignment from h1
= OxOSet = x==y Ot==x0Ox:=xadd:y by O-elim, Credundant

5-2.3  Operation invocation and results

We have already seen how the theorems specifying each operation act as proof rules
for their clients. If invoked from outside the type in which it is defined, an opera-
tion’s specifying theorems need to be context-extracted from the type (86-3.1 —
p.88). For example,

Point

fn diffd (Point) Point
diff:(p00Point :— t=Point(X — p X, y — p y)Odiff(p)

yields the theorem (after some renaming):
Point::diff: pa, pb -
CpalJPoint, pbPoint
— t=Point(pax — pbx, pay — pby)
O pa diff(pb)
and in well-behaved cases, this can be applied easily:
.. —=1=Point(pl x + p2 x, ply+p2y) Opl add(p2) by Point::add
....— 1=Point(Point(pl X + p2 X, ply + p2y) X — p2 X,
Point(pl x + p2x, ply+p2y)y—p2y) O{pl add(p2) diff(p2)}
by Point::diff [pa\pl add(p2), pb\p2]
.. .—1=Point((pl x +p2x) — p2x, (ply+p2y) — p2y) O{pl add(p2) diff(p2)}
by Point(Real,Real)-defn
... .—1=Point(pl x, ply) O{pl add(p2) diff (p2)} by arith
pl, p2, pr - Op10OPoint Op20Point :— 1 =Point(pl) O{p1 add(p2) diff(p2)}
by Point(Point)-defn
(Notice that we have to conclude not thatresults, but that a copy of it results.)

However, in some cases, the arguments themselves have side-effects, and these must
be taken into account. One way is to state an equivalence between an operation-
invocation and a sequence of statements.dtand for variables artgl for expres-
sions with possible side-effects:
_ ORE[X] := R[X] Or:= pg op (pj)
[P :— RE[x] O(var vg,vq, ... - Vo:=Eq; v1:=E4...; r:=vgop (V) )

[P := R[X]Or:= Eq op (E))

(This is a simplification, as it would be more generally useful not to assume this
order of evaluation of arguments.)
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5-2.3.1

5-3

5-3.1

From the assignmérand sequence rules, we can derive this rule, in wijchust
be free of barred variables:
OP:—Mo[t, x]Ceg
Ai OMi1[Pi1, Xgi] i= Mi[1, Xgi]0 €;
OMnlPn, Xojl := Mgplt, XgjlEPo 0P (pj)

Opcall: P Mi’ Pi Xoj, Xj .

OP == Moyl ] Oeg op (&)

in which p; stand for the values of the arguments as they are computext; anel
the original values of all other variables.

For example:
1 XOSet :— xOSet O1==x 0 x=x O y=y Ox by var-exprn
2.1 OxOSet :— x=xOy O t==y 0 y=y[x add: y by Set-add-defn...
2 OxOSet Op0==x 0O x=Xg O y=yg

— xOSet O pO==xy O x=xg0y O t==y O y=yyUx add:y by stren
3.1 OpO0Set :— p0=p0—p1 O t==p1 O pl=pl Op0 sub: p1 by Set-sub-defn
3: Op00Set O p0 = xg0{p1} O pl==y O y=yo O p0==xq

— pO==xq¢ O t==y 0O pO0=xqy 0O y=yo0pO0 sub: p1 by stren...
4: OxOSet :— p0==x O t==y O p0=x O y=y O x sub: (x add:y) by opcall
C: OxOSet - 1==y O x=x O y:§ Ox sub: (x add:y) from 4 by subs==

opcall is required only where there are possible side-effects: clearly, it's easier to
use pure expressions where possible!

Yield of an expression
yield: PQ,x,0op-  OP:- Q[t]Oxop | Q[xop]

Issues in the use of programming language in
assertions

The language of specification in Fresco is just an extension of the implementation
language, for simplicity and close integration. Unlike some wide-spectrum lan-
guages, the programming component is practical and imperative, which raises some
guestions about possible ambiguities when used for specification.

Underdetermined expressions

Since a postcondition is a relation which can be as loose as you like, functions
defined by opspecs may not have precise values. For exasgpte(specified
above) has two possible meanings for most receivers. Some caution is therefore
required in employing such functions within the specifications of other operations.
We must avoid making assumptions sucH agrt = 4 sqrt — otherwise, it could

be shown tha? = -2, and hence that Bertrand Russell and | are the Pope etc.
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5-3.2

The rule for making inferences about opspec-defined functions is therefore slightly
circumspect:
Fla]A O

use-pure: G,FER,a S- a - UP[a] = R[t, a] UF[a]
OAs - PS:—P[a] OG[F[a]] OS

OAs-PS:— On - G[n]OR[n, a] OS

— must be applied separately for each occurrence of F[a] in G.

The rather ugly side-condition is necessary because a separate new variable is
required for each occurrence, to allow for them having different values. (Side-con-
ditions can be coped with in the basic rules, since they can be ‘wired-in’ to the proof
tool.) The first hypothesis states tlgf)] must have no side-effects — see 88-3 —
p.133.

So, for example:

hl: a- JalReal Da>0:— 1t =asqrt x a Ja powerThreeHalves // defn
h2: b. bOReal O b>0 = 1t x1 = bObsqrt //defn of sqgrt
0: a- JalJReal Da>0:— allReal 0a>0 [0 t = asqrt x a Ja powerThreeHalves

from hl by carry-pre
1 a- (A0RealJa>0 = 0On-t =nxa 0O nxn=al apowerThreeHalves

from h2, 0 by use-pure
with Gle]- t =exa, Fle]- e sqrt, R[el,e2] - elxel = e2,
a- a, S— apowerThreeHalves

2: (MOReal 04>0 :— [On-t =nx4 O nxn =404 powerThreeHalves by 2

3: = 1=2x402x2=4 0 t =-2x4 0-2x-2=4 [0 1t =43x4 143x43=4 [0...0
4 powerThreeHalves by expansion of (0from 2

4: 0:—1 =8 0O t =-8 04 powerThreeHalves by arith & simplicication from 3

The underdetermination is carried through.

Promotion

The rule above applies only to pure functions. No rule is available for direct use of
expressions with side-effects.

However, any opspec can pmmoted— quoted, via the name of its operation, in
other theorems:

OpOPoint OvOPoint:— px=px+vx O py=py+pyOp move: v

0d O Drawing O fx O d points O fx#f :— fx= fx Od update: f

O artODrawing Of O art points :— [f move: v]] O[[art update: f]] O art move: f by: v

This permits theorems to be neatly factored: in this examptiate is an operation
guoted by many of the opspecs for this type, and its purpose is to ‘carry’ those pred-
icates common to them all. Modularisation is also encouraged by this mechanism:
this operation has the effect batipulated by itsnove operation, but we have left

it to the specification dfs type to say what that is; if the meaningradveing indi-

vidual components of thdrawing changes, then so automatically does the meaning
of moveing the current type.
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The semantics is given by:
promote: P, R, S - Vi - OP[v] = RIv;, vi] OS[v]]

xi- [SIT O (Px]O RIx, x])

This means that if we can find any opspec which relatep,tthen we can interpret

it as part of the specification 8f There may be several such opspecs, and we may
not know all of them, but any inferences made from any one will not be invalidated
by later discoveries.

There is no inference to be made frefn..]|: so there’s no point in designers trying

to write negative promotions. This is essential, because our compositionality aim is
never to rely upon having seen all the rules which might apply to a particular oper-
ation until coding time, and so should not be able to say what it might mean defi-
nitely notto comply with its spec.

Asserting [inJequality between promotions is equally useless, with the same justifi-
cation.

However, the result of conjoining two promotions parallels that of stating two
opspecs for one operation:

DPA — RA DSA
DPB — RB DSB

[Sal O0Sgl O ((PAD Ray O(Pgl Rg))

(Parameterisation of the statements has been omitted here, for clarity.)

Disjunction of two promotions is useful for expressing exception-handling. Here,
we guarantee that (provided both their preconditions are met) the specifications of
at least one of them will apply:

DPA — RA DSA
DPB — RB DSB

[SAI OlSgl O (PaOPg O R ORg)

so we could envisage composing a specification from several partial operation-
specs:

[compileAndLink]] O [ reportErrors]] O] deleteObjFiles]]

(The preconditions for each of these would not include possible end-user errors like
syntax mistakes in the compiler input: recall that the point of a precondition is to
document what ouglaiwaysto be true on entry to a procedure if the design is to be
considered correct; preconditions are not for documenting cases which may arise at
run time. Syntax of the compiled language is therefore pampileAndLink’s
postconditions.)
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Given that other logical operators between promotions are not useful, it would be
interesting to investigate other compositions that are possible inside the promotions;
for example:

conjoin: OPAUOPB :— (PAQ RA)O(PB O RB) O(SA | SB)
disjoin: OPA OPB:— RAUORB O(SA |0 SB)
intersect: OPA OPB :— RAURB UO(SA |*| SB)
fallback: OPB :— (RA#RB) O(-PAORB) O(SA |/| SB)
seq: OPA — 0Os' - RA(s, s') ORB(s', s) J(SA ; SB)

The last is, of course, familiar, and is included to demonstrate uniformity between
this executable composition of statements and the others, which though inexecuta-
ble, are meaningful within [...]]: for example,

[[SA] O[SBII |- [SAD O[SB]

Satisfying Promotions

Promotions are Useful for factoring specifications, but in general there is less advan-
tage when it comes to implementation. All the opspecs relevant to a promoted
message must be gathered and conjoined; and the implementation of the flattened
result may or may not use the implementations of the promoted messages. When-
ever an opspec is added to a promoted message, its uses must be traced and reimple-
mented.

The implementation of a composition may use the components’ implementations
under certain circumstances:

choose: O—[Sall UISEI T(C ifTrue: [S,] ifFalse: [Sg])
except:  [O-[Sall UISgI L(Exception new within: [Sa] handle: [Sg])
seq-LL
OPa;j :— Raj OSa
OPgj :— Rgj USg
CA Rpi OSg
A Pa O PgORAF A Pa

OISAI O ISell U(Sa ; Sp)

Summary

This chapter has dealt with the use of expressions in executable code and in theo-
rems. Rules have been given for procedural decomposition proofs.

Whilst the decomposition proofs owe a great deal to the [Morgan], the rules are
somewhat more complicated, to allow for the possibilities of side-effects.

An important property of the theorems which specify statements is monotonic con-
junction.
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6-1.1

6-1.2

Types and Classes

Types

Type theories

» Thetheoryof a FrescaypeT is a set of theoren®s; ; over a set of message-
selectors.

* An objectx is a member of typé&, writtenxUT, iff all the theorems of the
theory of T are valid wherx is substituted foself (and after makingelf
explicit as a prefix to attribute namesself.x rather than just):

Ar 1 [selfix]

Ar t;elﬂx]

xdT

Type definitions will be interpreted in such a way that all the axioms are predicates
over object-behaviour, rather than individual states. Theorems therefore apply to the
whole behaviour of an object; so an object’s membership of a type does not change
with time.

An object may be a member of many types.

The fundamental way of proving type membership is to prove the type’s theorems.
Conversely, if an object is known to belong to a particular type, then we may infer
that that type’s theorems are true of it.

The theorems of a type may be partitioned atmms those given by the designer

as defining the type; ardkrived theoremsgprovable from the axioms. To prove that

an object is a member of a given type, it is therefore only necessary to prove that the
type’s axioms are valid for that object.

If one of the theorems of a type is unsatisfiable, then the type is necessarily empty.
However, this has no effect on any other types there may be in the system. For exam-
ple, if one of the theorems of typé contains the conjunct

OyOT2 - P(y)
this places no extra obligation upon the membef2additional toT2’s own def-

inition; rather, this just means that is empty unless the term does happen to be
always true for all possible membersId&.

The set of axioms implies the set of message-selectors which the type understands,
and the set of model-variables in terms of which the type is described: they are just
those which can be found within the axioms. An operation in the signature would
be no use without at least one axiom to define its effects.

Membership of types

Fresco types are sets of object histories.
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6-1.2.1  Object Histories
An object passes through a sequence of states in its lifetime.

ObjectHistory

var transitions [0 List(Transition)
Oi - i01..transitions.length-1 O
transitions[il.after = transitions[i+1].before

Transition
var before O State
var msg [J Message

Each transition is brought about by a message.

Message

var selector0  Name
var args [ List (ObjectTransition)

Each argument may be altered by the message,@bjaatTransition is a segment
of an object history, representing the states of the argument before and after.

ObjectTransition
var before O State
var after O State

var between 0 ObjectHistory
between.first = before O between.last = after

6-1.2.2  Type membership
Every type definitionl can be rendered as a set of opspecs

At = OPy(0, p) == Ry(0, 0, p, p, 1) opy(p)
whereﬁ, p are vectors oStates, ando, o, 1 areStates; and an invariant

Ay i =L]inv(0)

(where[_] is a convenient borrowing from temporal logic, indicating that the invar-
lant is true of every state in the history). There may be more than one opspec appli-
cable to each message (gm,; = 0p,,» is not excluded); and there may be several
invariants.

An ObjectHistory h is aweak membeof T, writtenx : T, if and only if

0 i0h.transitions.indices -
let o = h.transitions[i].before, o = h.transitions[i].after,
m= h.transitions[i].msg, a=m.args.before, a=m.args.after in

A\ n - PG, 3) Dm.selector = op, Oinv(G) 0 R(C, 0, a, a, m.return) inv(o)

An ObjectHistory h is astrong membeof T, writtenh 0O T, if and only if

Fresco © Alan Cameron Wills 1992 Types and Classes 84



6-2.1

h: T O OiOh.transitions.indices - let o = h.transitionsJi].before in /\ i -inv; (0)

Weak type membership says that if an object satisfies the invariant, then it will
behave as expected and the invariant will remain true, but may behave as it likes oth-
erwise: every opspec’s pre and postconditions are conjoined with the invariant.
Strong type membership asserts that the invariant is indeed true in all states; and is
the usual requirement — assume this variety of typing by default. The use of the dis-
tinction is discussed in 88-1 — p.125. A difference arises only during execution of
a message or in some cases where aliasing disturbs an invariant.

Notice that although this forces predictable behaviour for any message about which
there is an axiom whose preconditions are fulfilled, the invariant is the only con-
straint on the results of any message for which there is no axiom, or which does not
meet any axiom’s preconditions. This is a useful property when types are to be com-
posed.

An object is said to belong to a typd]T orx : T) if it can be shown that all its
possible histories belong to the typeIl orh : T).

» Type monotonicty theoreraach axiom which is added to a type-definition
restricts the type to a subset of what it was before.
It is clear that no new transitions are permitted by a new axiom, since every
transition still has to conform to the axioms which existed before. Hence a
new axiom can only restrict the set of histories, or at least leave it as it was.

Subtypes

* AtypeS is asubtypeof a typeT, written ST, iff every membex of S is
also a member Of.

xas | xOT

sOT

A type may have many subtypes and supertypes. A subtypay be defined as a
subtype ofT by inheritance; or it may be proven to be Bmofs are discussed in a
later section; the principle is to demonstrate that all the axiomsus valid within
S.

The purpose in determining subtyping is to check that the behaviour expected by a
client as expressed in tyfeis provided by a reified or more detailed specification

as expressed in tyg If S O T, then the client can treat membersSoéxactly as

if they were members df, and need not know abo8t

Defining a subtype by inheritance

If TT is defined as an inheritor @f writtenTT::+T, then its axioms are those Df
plus any explicitly defined fofT.

* Subtype by inheritance theorem.::+T |- TT O T.
TT is made up by adding new axiomsTtdy the type monotonicity theo-
rem, the result is a subtypebf
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6-2.3

Model-variables and axioms with the same namd&sTimandT are identified; new
names may also be introduced.

A type may be defined to inherit from more than one type — in which case it inherits
the axioms and features of them all.

Type product
o« xOT1NT2 - xOT1OxOT2

The product or intersectiofiLn T2 of two types is their greatest common subtype:
T1nT2 OTi.

If a type is defined a§T ::+(T1,T2) then it inherits the axioms of boill andT2.

* Multiple inheritance product theorenmheriting from bothT1 andT2 is
equivalent to inheriting fromi1nT2.
The minimal case is wheRnTl adds no axioms of its owmT is made up by
adding the axioms oF1 to T2: by the type monotonicty theorem, the result
must be a subtype df2; and of T1 by symmetry; henc@ TUT1nT2.
Clearly, sinceTT restricts the set of histories with no extra axioms,
TT=T1nT2.

Type products are the basis of monotonic composition, because if a client c1 expects
some objeck[T1, then we may supply an objedfi(T1nT2) — that is, with not

only the behaviour c1 is expecting, but some further rules derived from another con-
tract, or an improved specification, or the practicalities of implementation. All the
reasoning that can be done by a client about its u$& wforks by inference from

the type’s axioms; it is not possible to infer anything from the absence of a theorem.
Hence when new axioms are added, all existing inferences remain valid.

There is no guarantee that the intersection of two types will not be empty, forming
an unimplementable empty type with inconsistent axioms.

Co-product and type category

The co-product or uniom10T2 of two types is their least common supertype:
OT10T2.x0O0T10T2 < xOT1 OxOT2. A member of a union conforms to either

of the components: so that a union is the least common supertype of its components;
and is subtype of any other common supertyipi¢ iq the lattice shown). The only
theorems (and hence the only operations) that one can be sure of in a union are those
implied by the T of any pair of theorems from the two types; this includes, of
course, any theorems which the types have in common.

Where an alternative between several types is expected in some context, designers
are encouraged to specify the supertype and allow the range of subtype alternatives
to be decided at a later stage: for example, sp&tifype rather tharParallelo-
gramSquare, because that allows more readily for extension at a later stage. But

it is on occasion useful to be able to stipulate the precise range of alternatives: for
example, in specifying a tree, it may fundamental to the model, that branches always
sprout two of something which is either a leaf or a node, and, short of a major design
review, definitely never anything else. Traditional VDM makes extensive use of dis-
criminated unions, in which each alternative ‘knows’ what type it is.
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Ois the axiomless type, supertype of all others;@nsthe unimplementable type,
subtype of all others.

A

TU

I

T10T2

T1

>
/4

TinT2

!

TL

}

O

TL/TU is an arbitrary common sub/supertypd dfandT2; it is always a sub/super-
type of the intersection/union.

6-3  Type definitions

The ‘display’ syntax for a type description is of this form, with two alternative nota-
tions for supertype:

Supertype

type-name [ ..+ Supertype ...]

visible feature signatures

theorems

/ private feature signatures /
more theorems
(The disposition of the theorems between the partitions is not formally significant:

it's sometimes useful to distinguish any which make no mention of private compo-
nents by placing them above the line.)

Fresco © Alan Cameron Wills 1992 Types and Classes 87



6-3.1
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The abstract syntax:

FrescoType ::+ Context

var name [
var parents [
var axioms O
var derived O
var visible 0
var private O
var theory 0

Symbol
FrescoType set
Theorem set
Theorem set
Signature set
Signature set
Theory

O dOderived - d justification # nil

axioms are the defining opspecs of the tyderived are further theorems proven

from theaxioms. The Fresco system allows anyone to extend the detiwkd the-

orems attached to a type (provided they are proven), since they increase the ease
with which the type may be understood, and provide a less primitive base upon
which clients may base their own proofs.

visible lists the operations or functions which clients may expect to apply to
members of this typggrivate permits the construction of a model, and are usually
simple attributes.

private attributes are not hidden from clients: they may be referred to in a client’'s
reasoning. However, they are encapsulated, and cannot be used in code.

Signatures are prefixed wittp, fn, or var: operations may change the state and
arguments; functions only yield values without changing anything; and variables are
equivalent to zero-arity functions. The type-constraints are effectively extra axioms.

Type context extraction

Within the context of a type theory, the nased is conventionally used for the var-
lable that represents the receiver object in an opspec. Thus for example, in the theory
of Points:

0 - x:§+px y = §+psteIfmove:p

The Fresco convention is to orsélf as the receiver of an operation: it can system-
atically be restored by prefixing each term which does not begin with a metavariable
or local variable of the context (in a method):

p- -0 :—selfxzﬁx+px 0 selfy = ﬁy+pstelfmove:p

The theorems of a type are stated within a context in whiskIf(JT is axiomatic.
We can apply the context-extraction rule to any theokgself], at the same time
renamingself, to produce:

a-aT}l Ala]

So the example becomes:
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6-3.3

a,p-aDPointI—D:—ax:5x+px Oay = 5y+pyDamove:p

Model-oriented type definitions

In a conventional model-oriented specifications of mutable objects, each theorem is
either anOpSpec or an invariant. The invariants document constant relationships
among the attributes, while the opspecs determine the behaviour of the operations
in terms of the attributes.

TrafficLight

op next O 0

var red O Boolean
var amber O Boolean
var green [ Boolean

-green = (red Oamber)

Ored O -amber :— redCambernext
CredCamber :— green Onext

Coreen :— —red Oamber [Onext

One operation may have to conform to several opspecs. From a client’s point of
view, it is not obligatory to satisfy any particular precondition; but the applicability
of each opspec is determined by whether its precondition is fulfilled. So you had
better satisfy the precondition of at least one theorem applicable to the operation you
propose to call, if you are to have any idea of what the result will be.

Type invariants

Ordinary expressions (not spec-statements) may be used to restrict a model and to
define redundant components and auxiliary functions. There may be any number of
invariants in one type definition and inherited from parent types, buttheant of

a type is the conjunction of all of these.

In the early stages of analysis, it is common to deal with specifications of immutable
concepts (likd-rescoType, above), which can be written as sets of functions con-
strained by invariants.

An invariant may be used to constrain the model to exclude inapplicable combina-
tions of states, as in tieafficLight example above. (Thusyreen is not explicitly
required in the postcondition of the first axiom.)
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6-3.5

An invariant may be used to add extra ‘views’ of a model:

Point

op movell (Vector)
op rot O(Real)

var x [ Real
var y O Real
var r Real
var w0 Angle
r=0

FXr = XXX + yxy
cos(w) xr=x 0O sin(w) xr=y
Oi— X = X + V.X Oy :§+ v.y OOmove(v)

Here two pairs of variables, y andr, w, are each sufficient as models. Each model
is convenient for the specification of a different operation, but the two are coupled
by the invariants.

Functions

Public or model functions may be defined. E.qg.:

Point

fn_—_0O (Point) Point
p20Point |-
O-rOPointOrx = x—p2x 0O ry = y—p2ydr:=self- p2

var distanced  (Point) Real
p - pOPoint | distance(p) = (self-p) r

Property-oriented specifications

Fresco makes no big distinction between property-oriented and model-oriented
methods of specification: the difference comes down to whether the axioms make
use of internal model components. It is possible to derive non-component-using the-
orems from component-using axioms. [Fitzgerald90] demonstrates this in connec-
tion with non-OO specification modules. A purely axiomatic style is unavoidable
for the most primitive types, since they don't have anything more primitive to build
models with.
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E.g.

Set[T]

fnO0O Set[T]

fn_ <+ O (Set[T], T) Set[T]
fn_0O O (Set[T], Set[T]) Set[T]
fn_n_0O (Set[T], Set[T]) Set[T]

x - xdT | -(xO0)

X, ¥, s - xOT, yOT, sOSet[T] | yO(s<+x) = (y=x Oy0Os)

X, 81, 82 - xOT, s10Set[T], s20Set[T] | xd(s10s2) - xOs1 O xOs2
X, 81, s2 - xOT, s10Set[T], s20Set[T] | xd(s1ns2) < xOs1 O xOs2

6-3.6 Type Box composition

A type’s definition may be spread between more than one type-definition box, for
several reasons:

» to separate concerns in documentation; for example, where a type is devel-
oped as the intersection of several ‘contracts’ [Helm].

* in successive versions of a published design, a type may be extended by
adding new boxes and changing the implementation.

* in stepwise design, stages of refinement may be represented either by differ-
ent types, or by extensions to a single type.

The default composition of two boxes is type intersection; a client's knowledge of
any box will remain valid no matter what other boxes are added. On the other hand,
an implementor must gather specifications from all the boxes applying to any one
type, and must of course repeat the procedure whenever any new boxes are added.

The Fresco system ensures that the implementor of an operation has to document
proofs of all the relevant axioms from all the relevant boxes; if any relevant axiom

is changed or added, the implementation is flagged as needing re-doing. But each
client is only dependent on the theorems it uses in its proofs, and a change in a type
box flags for re-inspection only such dependent clients. Changes in the implemen-
tation of a type which aren’t caused by any change in the specifications therefore
raise no spurious alarms on the clients. This strict use of dependency information
provides accurate configuration control, and provides the maximum benefit of
encapsulation.

6-3.7 Signatures

The purpose of the feature signatures is to document which of the operations dealt
with by the theorems are visible to clients and therefore must be implemented. Sig-
natures may be interpreted as qualifying the theorems in the rest of the definition.
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For example:

Point
fn_ + O (Point) Point
p,r- O:—self =p —r Or:= self+p

Point
fn_+ 0O (Real) Point
m, r- O:—rx=x+m Ory =y+mUr:=self+m

Point
fn_+ 0O (Line) Line
n, r - O:—r = n+self Or:=self+n

We can modify the type context extraction rule of 86-3.1 to add signature informa-
tion to each theory as it is extracted.Tf::’ prefixes a theorem or signature which
originates in a boX, describing a typ@, then:

Ty, R, Pj, n, f, pre, post -
Tb:: f:(Pia) R
Ty 1, p - [pre :— post Or:=f(p;)

B, X, r - IXOT Op,0P; Opre :— rOR O postr:=x.f(p;)

Notice that this is not the same as translating the signature to some theorem and then
composing that theorem with the opspec: preconditions would not be conjoined in
such a procedure. Rather, the signature supplements each of the stated opspecs. This
scheme should be applied to every combination of opspec and theorem in a given
box whose operation-names and parameter-counts match.

Notice that this gives more significance in the semantics to

» the type box, which is no longer just a partitioning of the information in a
unified type description;

» the opspec, which is no longer just a special case of a specification-state-
ment.

Signatures and subtypes

The above rule clarifies some questions about signature-conformarficeE.I T}
thenTT::f (that is, an operatiohdefined for typel T) must conform to any signa-
ture-theorems of::f; so any further theorem aboUT::f must extend rather than
confict with the inherited theorems. If we have

TT:: f0 (P1, P2, P3) RR

then the returned result whéns applied to any member GfT must belong to
RNRR, which must therefore be non-emg®&nRR [0 R, of course; in program-
ming languages which handle this issue properly (such as Eiffel), the compiler
would insist thall T::f should be specified as yielding some subtype.dfn C++,
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6-3.8

no alterations in result type are allowed, because of implementation difficulties
[C++, p.211].)

If we have
TTy:: fO (PP, PP2, PP3) R

thenf applied to instances OfT is able to accept parameters of t{3#& as well as
P;: that is, thath parameter is of typeP;[1P;. This again corresponds to the usual
programming language rule, sineel] PP;LJP;: a function in a subtype has to be
able to deal at least with the parameters its parent deals with.

We also allow functions to deal with different parameter types in different ways.
Leaving aside the signature notation for a moment, we can have two theorems in the
same type-definition which specify different results for different preconditions:

OpOP1 :— postl [f(p)
OpOP2 :— post2 [f(p)

The two theorems can be implemented by separate operation code-bodies ‘over-
loading’ the same nanfigthough ifP1 andP2 overlap, theifiis implementable only

if it is possible to satisfpostlpost2 in the case whene [l P1nP2. To make the

best of the signature notation here, we have to write the two cases in separate type
definition boxes:

T T
op fO(P1) op fO(P2)
0:— postl Of(p) 0:— post2 Of(p)

The effect of a signature does not extend beyond the box it is defined in because it
is non-monotonic (see 3-4.4.3): if the signature in the left-hand box had an effect on
the meaning of the right-hand box, then clients would need to see both in order to
be able to usé.

Type inference

The usual methods of inferring thafl T are:

==-type: a, b T- a==b, adT |bOT by subs-==
Assign-type: OyOT :—xOT Ox =y by assignment
Type-Gen: xS, SOT | xOT

Dynamic-special:  (xOT, P[x] | xOT1) | OxOT OP[x] =R OS | (xOT1OP[x] :=ROS
yield-type: OP:— tOTOxop - xopOT by yield
By conventional axiom within a type-definition ©f self(IT.

The type definitions of many types will include definitions of creation functions
such as

xOT | T(xa, x b, xc)

and by convention, only creation functions have the same name as a type. So
T(..)OT.
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6-4

6-4.1

6-4.2

Generic types

Constant parameters

It is frequently the case that we specify a type in ideal terms, with no limits on size

or other parameters, and yet must implement it on a real machine. If we wish to be
honest about this and document the restriction, what is the best way of doing it, and
how do we reconcile this with the idea of subtyping? As discussed in §3-4.5 — p.47,

it is not appropriate just to add an extra invariant.

Parameterising a type definition with a constant makes it possible to design a type,
derive theorems and so on, whilst deferring certain specifics. E.g.:

Stack of: n

fn s O List
fn nONat

Oslen<ni—s=s<+x Opush(x)

Given this definition, it would be straightforward and useful to show that

n, m - nCONat, mCONat, nsm |- (Stack of: m) O (Stack of n)
so that a longer-capacity Stack can be provided where a shorter one is required.
Only clients and implementors need give particular values.for

In Fresco, the favoured solution in respect of the numbers and extensible collections
is to make believe that the implementation’s range is infinite: the axioms will reflect
this pretence.

Type parameters

Just as a type is defined by a theory of the membership of a specific type, a generic
type is defined by a theory of the membership of the type determined by a type
expression: in effect, an axiomatic semantics for type expressions.

We will write type expressions in postfix or infix notation, using type names as con-
stants. The aim is to be able to write expressionsSieof: Int, SortedList of:
String, List of: Char, Map from: Symbol to: Key. There is first the distinction of
mutability to be made. Consider these four kinds of set:

» Setis a type of immutable values (or at least, objects represeenting immu-
table values)tl, n, 0 yield values (= create new objects representing the
new values), but do not alter the states of their operands.

» Setof: T Like Set, but all the members of such a set are of fiype

» SetContainer — no parameter — is Smalltalk’s mutaldet , into which
you may add or remove any mixture of types of object.

» SetContainer of: T is a type of mutable sets, with restricted preconditions
on the add operations. You may only add objects of Tyjgeone of these.
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6-4.3 Generic types of immutable values

Set is sufficiently fundamental to merit description using axiomatic methods:

Set

fn O O Set

Ux-=x00

O x - xOSet(x)

Ox-x0S10x0S2 - x[0S10S2

Set of: T can be specified as a restrictionSait:

Setof: T

selfdSet
Ox - xOself O xOT

The extra invariant is OK here, because there are no operations which alter the state
of any member of the type.

Recalling the definition under 6-1.1, p83, there is no difficulty modifying it to cope
with parameters:

Ac(T)), 1 [selfix]

X, G, Ty Ag(r )i -
b e Accry), n [Seif]

xOG(T)

Notice that] is a member oBet of T for anyT (sincelUJSet andU x - xUOO O

xOT), and that there is no ground for any discomfort in this (as some bulletin-board
commentators have expressed in connection with a variety of langudgeshe

point at which these types all overlap. Notice alsoSeatof:[1 = Set, if O is the
common supertype of all others.

The generic type could of course have been written all in one description, without
using an auxiliary unrestricted type.

6-4.4 Generic types of mutable objects

SetContainer is not difficult to specify using the technigues we have seen so far. It
can be specified axiomatically from scratch, or in terms of a component &dy,pe
it will contain mutating operations such as:

x - O:— xOself Oadd (x)
x - O:— xzy O (yOself = yOself) Dadd(x)

But we cannot specifgetContainer of: T as a subtype of plafdetContainer for
the reasons discussed in 83-4.6 — p.51: clients of the unrestBetE€dntainer
rightfully expect to be able tadd any mixture of objects, so no memberSaft-
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Container of: T wil be suitable (unles§=0L]). HenceSetContainer of: T must be
written from scratch:

SetContainer of: T

op addOd m
op removel] (M
fn contains( (T) Bool

var s [ Set
OxOT :— s = sOSet(x) Dadd(x)

PlainSetContainer, if it is required, can now be defined as

SetContainer 2 SetContainer of:

Generic types with restricted parameters

SortedList of: T will only work if T has a< operator. Its implementation(s) will
depend on the properties ©fbetween members @i and so they must be docu-
mented as axioms in the specification:

SortedList of: T

op addOd (M

fn getd (Nat) T
var s [J List

X -XOT | x<x

X,y -XOT, yOT | xsy Oysx < x=y
X,y,z-xOT, yOT, zOT | x<y Oy<z O x<z
i, j-i<jOj<selflen O sJil<s[j]

The axioms relating t& do not mentiorself, but they nevertheless constrain the
implementation, which must satisfy them; SortedList of Compiler is just not
implementable, and has no members.

It would be tedious to repeat the axiomsoh every parameterised type that uses

it, SO we seek a method of encapsulating those properties in a type which would
describe all those objects which can be ordered. The immediately obvious solution
does not work, in general:

TotalOrdering

fn_ < 0O (TotalOrdering) Bool
x -xOTotalOrdering |- x<x

The snag is that this implies that afgtalOrdering (say, a number) is comparable
with any other (say, a string). But whilst these must be disallowed, it must also be
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possible for integers and reals, say, to be comparable. The solution (using a trick
described in [Meyer]) is another generic type:

TotalOrdering of: T

fn_ < 0O (TotalOrdering of: T) Bool
x -xOTotalOrdering of: T | x<x
X, y -XUOTotalOrdering of: T, yOTotalOrdering of: T | x<y [Oys<x

X,y,z-xOTotalOrdering of: T, y(TotalOrdering of: T
z(OTotalOrdering of: T |- x<y Oy<z O x<z

Now this type makes no mention lf: it is only a wrapper for a theory. Iff the
theorems in such selfless type are valid, then it is satisfied by any object — it is
equivalent to]; but if not, then it is empty. Asserting that anything — it doesn’t
matter what — is a member of this type is therefore a way of stating its axioms and
thereby importing them into a type definition. This gives a way of abbreviating
SortedList of T:

SortedList of: T

op addO m
fn getO (Nat) T
var s : List

self00TotalOrdering of: T
i, j - i<j Oj<self len O sil<s[j]

or using one of the subtyping notations:
SortedList of: T ::+ (TotalOrdering of: T)

op add O m
fn get O (Nat) T
var s : List

i, j - i<jOj<selflen O sJi]s[j]

which puts the parameter-constraint neatly in the header.

It would clearly be useful to have a facility for renaming operations within types, so
as not to be tied to the namdor the ordering operation: | wish to form, for exam-
ple, SortedList[</outranks] of Window.
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6-5.1

Lastly, it is worth noting that SortedList does not need to be generic: it only needs
to be constrained to accept only comparable objects whilst non-empty:

SortedList

op add0] (M)

op removel] (Nat)

var s : List

i,j-i<jOj<slen O slilss[j]

Os len = 0 Os[0]<x Ox<s[0] :— ...0add(x)

If this seems dubious, recall that in an axiomatic system, the validity of an expres-
sion is just a question of whether it can be proved. For the case in which a number
IS to be added to a list already containing strings, an attempt to prove the precondi-
tion of add will fail, so that the axiom shown cannot be applied: and therefore no
client can confidently perform that operation in that case. The fact that the precon-
dition has no defined Boolean value in that case is not relevant.

(It is interesting to ponder whether the application of such a style throughout would
make 3-valued logic as in [BCJ84] superfluous.)

Subtyping among generics

TOTT does not imply tha® of T O G of TT, nor the reverse: et of: Int supplied
instead of &et of: Number is incapable of storingeals; whilst aSet of: Number
supplied in lieu of &et of: Int may yield contents with which the client cannot deal.

However,(G of TT O GG of TT, TUTT) |- G of T O GG of T (for example when
TT =0).

Creation and verification of subtypes

Subtyping proofs

Subtyping proofs are applicable:
* to show that a class implements a given type

* to show that a member of a given type is suitable where some other type is
expected — as a parameter, or in a variable

Subtyping proofs may often be reduced by inheriting proofs:
» from a superclass which implements a supertype;
» from an earlier version of a class which implemented a supertype.

Subtyping may be proven by showing the axioms of the supertype to be theorems of
the subtype. This is complicated where the models of the two types are different; in
which case a retrieval relation must be defined between the two models.

There are other, non-subtyping, varieties of relationship between superclass and
subclass (i.e. a tcd which inherits methods and instance variables), and these can
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sometimes be interesting from the point of view of proof re-use; but these are not
dealt with in detail here.

In a language with function-name overloading (such as C++), it is necessary to
decide in which case a method is applicable (so as to free the designer from having
to prove the axioms for methods which will not be called). This is not difficult (at
least in C++), since all such discrimination is done at compile time, being only sig-
nature-dependent.

6-5.2  Varieties and purposes of subtyping

The subtyping assertiselfC'T may either be an axiom or a derived theorem of a
typeTT.

Asserted subtypingensures thakT is a subtype of by fiat of the designer; all the
axioms ofT are thereby included as if they were axiom3 f

Derived subtyping represents the conjecture that HE is a subtype off, and
should be supported by a proof founded on the axiorig.of

Axiomatic subtyping is used to construct one type from another: all that is necessary
Is to check that the resultiimplementableMethods attached to the supertype are
usually inherited at the same time, and must be checked for conformance to the new
axioms.

Derived subtyping is used when it is appropriate to construct an entirely new model,
closer to a feasible implementation.

In either case, subtyping may bperation-strengthening, state-restrictj\axten-
sional or any combination of the three.

Operation-strengthening adds extra opspecs to the specification which apply to
existing operations, so that they deal with a broader range of prior states, or produce
more strongly determined results.

State-restrictive subtyping constrains the state-space of the members by adding
extra invaraints: so that for example, a general shape is constrained to be a square.

Restrictive subtyping usually appears where a supertype is used to characterise the
common aspects of several types — as in a polymorphic system; it is therefore more
common in OOP than in traditional development.

Extensional subtypingprovides more operations and possibly provides more detail
for the state-space, differentiating individual states into substates. For example,

ColouredPoint ::+ Point

fn colourfColour
xOPoint implies that the possible statesxafan be enumerated by working through
the combinations of co-ordinates (to some finite precision!)Fuit doesnot tell

us that its members do not have some other attributes; if we now digttel-
ouredPoint, then for each state we enumerated before, we can now distinguish var-
iants for every possible colour.

There are three principal purposes of extension:

e again, to specialise a common supertype into variants
» to provide additional features for clients
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6-5.4

6-5.4.1

» to move towards an implementation by adding redundant state components
such as caches.

Subtyping and inheritance

Fresco leaves unchanged the normal code-inheritance mechanism of the host pro-
gramming language. Two kinds of inheritance are permitted: conformant and non-
conformant. A conformant subclass is expected to implement a subtype of its par-
ent(s), so subtyping is asserted; non-conformant inheritance is of code only, and no
such requirement is imposed.

Implementability

When a type is specified (either new or by inheritance from another) there is no auto-
matic guarantee that there are no contradictions between the axioms — both those
explicit in the type definition, and inherited from supertypes. A contradiction would
be discovered on attempting an implementation; but since that may happen some
way down the development road, it may be wise to perform an implementability
check as soon as the type is specified. Implementability is not a proof obligation in
Fresco, but the facilities to verify it are provided.

Implementability is not a crucial check from a client’s point of view, except that if
it is mistakenly asserted in advance of implementation, clients might waste work in
the expectation of undeliverable goods; however, no incorrect code will result.

Implementability from scratch

The Shape supertype, which documents the common features of several types of
mutable shape-representing objects, provides a suitable example.

Shape
op movell (Vector)
op rotate[] (Angle)
fn position Vector

fn v1, v2, v3, v4[d Vector //ledges

fn pl, p2, p3, p40J Vector // vertices

op set_p1, ...set_p4[i(Vector)

| :— position = position + v Omove(v)

0:— vl=vl Ov2=v2 Ov3=v3 Ov4=v4 Omove(v)

- vlzﬁ.rot(m) szzﬁ.rot(m) [ VB:E.rot(oo) [
position=position [Jrotate(w)

pl=position [0 p2=pl+vl [0 p3=p2+v2 [ p4=p3+v3
v1l+v2+v3+v4 =0
O—pl = xOset_pl(x) /letc

To prove consistency, it is only necessary to demonstrate that one implementation
can fulfill the axioms; but remember that Fresco theorems cover not single states,
but whole histories of behaviour, and it is therefore necessary to prove that for each
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operation, each accessible prior state has a permissable ulterior state. Permissable
states are those allowed by the invariants; accessible states are all those achievable
from some permissable initial state by some sequence of transitions via the opera-
tions with any parameters allowed by their preconditions.

The accessible states will generally be a subset of the permissable ones, but the per-
missable ones are much easier to characterise. The strategy is therefore to prove that
for every operatiorop; goverened by axioms pre;; :— post;;Llop; in a typeT

whose invariants conjoin to givev,

0;-00-00-0- inv(o) O prej(o) O post(o,0) Dinv(o) |- Ox - xOT

(The ;" are really schematic conjunctions.) Notice that for each operation, one
ulterior state must satisfy all the applicable postconditions simultaneously The
ando are the before and after versions of the set of parameters and variables forming
the model of the type.

Where several opspecs apply to one operation, it often simplifies matters to separate
into distinct cases the regions where the preconditions overlap and where they do
not. For example, there are three regions here, only one of which has a potential con-
flict:

Ox<0 :—r x r = —xr:= absSqrt(x)
Ox=0 :—r x r = x{r:= absSqrt(x)

In the case dbhape, | claim that the following arguments could be formalised from
the theorems o¥ector andAngle. The invariant is the constraint that the vectors
must meet up, together with the relationship between the vectors and points. A
degrees-of-freedom argument can convince usatmatour points can determine
three vectors; and, given three vectors, we can always determine a fourth which is
the complement of their sum: so we really only need worry about the loop closure
constraint. Foset_p/, nothing is said about the other points, which are free to move

if required; formove, the looping constraint must remain unaffected if the vectors
are unchanged, and the four points are free to follow from the new position; for
rotate, only one point is fixed, whilst only three of the vectors are explicitly rotated.

Implementability and restrictive subtyping

The fact that a state is permitted or accessible in a type does not necessarily imply
that it will be permitted or accessible in any subtype. For example:

SquareM ::+ Shape
v1+v3=0 O|v1|=|v2| Ov1Ov2

SquareM conforms to all the theorems $hape, but has fewer states. Whilst it is
bound to be a subtype, it is not necessarily implementable. Notice again that a non-
empty permissable state-space does not imply implementability, since there may be
accessible states for which some applicable postcondition cannot match a subse-
guent state. Nor is every accessible state necessarily meaningful, since no imple-
mentation should allow itself to get up a cul-de-sac:

(No implementation getting into state 2 would be able to satisfy the postcondition
for the next call obp.)
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6-5.4.4

6-5.5

[O—s = (s+1) mod 4 O s=0 Os=10op

s#3 sZ2 O0s#3

Unfortunately, there is little to do but to re-prove implementability as from scratch,
for each operation separately. However, it may be that some lemmas proven for
earlier implementability checks can be re-used.

Implementability and additional opspecs
Implementability must be re-proven, but just for the operations affected.

This is the case whether the opspecs apply to existing operations or new ones. Both
internal consistency, and compatibility with existing invariants and opspecs (for the
same operation) must be shown.

Implementability and extension

If a type has no nondeterminism, then the only subtyping possible is extension: oth-
erwise, restriction of the existing state space or strenghthening the postconditions of
any of the operations would render it unimplementable.

If the new state components are orthogonal to the old ones — that is, there are no
invariants or opspecs involving both — then the new components and the operations
and any invariants which relate solely to them can be treated in isolation. Adding
colour toPoint is an example.

If there is a relationship between the old components and the existing ones, then it
IS possible to introduce new invariants over the old components unwittingly:

(x>0 O colour=blue) O(y>0 O colour#blue)
The same applies to postconditions.

Reification

‘Reification’ is the creation of a subtype in which the model differs from that of its
supertype. The key to its verification is one or mateeval relationswhich link

new and old model elements. In order to prove subtyping in general, we need to
prove that all the axiom&X+ of the supertyp@ are observed by any member of the
subtypeST:

STUT = Ux - xdST O xOT
= (AXgr | AXT)

The difference in model variables presents a slight complication. It is necessary to
choose an extra axiom, the retrieval relation, which interconnects the variables of
the two.
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retrieve: varsgt - AXgt | (varsy - retrieval-relation | AXy)

The retrieval must not be such as to consffaso it is also necessary to prove the
propriety of the retrieval relation:

adequacy: [ varst - INVy[varsy] O
Ovarsgr * INVgr[varsgt] Oretrieve-relation[varsy, varsgt]

wherelNV+ is the conjoined invariants of

6-6  Reification example

6-6.1 Supertype: compiler’'s symbol table

SymbolTable stores associations 8mbols with characteristics (here represented

by Ref) within nested contexts, and is a suitable name-server for a compiler of
block-structured languages. As the compiler scans a text, declarations are recorded
with define; entry to and exit from a block should be recorded witter andexit;

andfind looks up the first occurrence of a symbol in successively containing con-
texts. Only one definition of a symbol is allowed per context.

sd la_rl |h-r4 |amr7
b-r2|b-r5
g- r3|c-r6 g- 18

sd@1 sd@2 sd@3 sd@sd.size

Here it is modelled asd, a Stack of Dictionaries each element of which associates
Symbols with Refs:

SymbolTable

op enter ()

op exit [ 0

op define 0 (Symbol, Ref) - Bool

op find O (Symbol) - Ref

0:— sd.size = sd.size+1 O (sd @ sd.size).size =0 0O Oi01..sd.size - sd@i = sd@i Oenter|
Osd.size >1 :— sd.size =sd.size— 1 O Oi-i0 1.sd.size - sd@i = sd@i0J exit

Os O (sd @ sd.size) :— t=FALSE O sd=sd Odefine(s, r)

Os O (sd @ sd.size) O ref # Ref.null :—

sd.size = sd.size 0 1=TRUE 0O sd@sd.size = (sd@sd.size) t Dict.map(s, r)
0 0Oi01.sd.size—1 - sd@i = sd@i [Idefine(s,r)

O0i-i01..sd.size O s O (sd@i).dom :— + = Ref.null O sd=sd Ofind(s)

00i - i01..sd.size O sO(sd@i).dom :— sd=sd O Oi - iJ1..sd.size OsO(sd@i).dom
O0-(0- jOi+1..sd.size OsO(sd@j).dom) O 1 = (sd@i)@sOfind(s)

var sd [ List .of(Dict.of(Symbol, Ref))

(Decoding clues: @ both indexes lists and looks up dictionary contents; n..m is the
set of integers in that rangiedom is the domain of a Dictionary;
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(d1td2).dom = (d1.domd2.dom); kOd2.dom O (d1td2)@k = d2@k;
kOd2.dom U (d1td2)@k = d1@k .)

6-6.2 Refinement: Dictionary of Stacks

This is a refinement ddymbolTable. The operations and their signatures are the
same, and though the internal model is entirely different, we hope to prove that the
externally observable behaviour is the same.

clev ds
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The Dictionary of Stacks model illustrated above moves a step towards a more effi-
cient structure, since only one dictionary-lookup will be requiredipér Further
refinements should be expected before realisation as code, but proceeding in small-
ish steps makes verification easier. The following type-definition goes one step fur-
ther: the dictionary-entry for each symbol is reduced from a complete stack to a set
of (Nat, Ref) pairs corresponding to the nonblank stack entaksy; records the
notional size of all the stacks:

StackDict

op enterd ()

op exit [ 0

op define 0 (Symbol, Ref) -~ Bool
op find O (Symbol) - Ref

0:— clev = clev+1 Ods=ds Denter

Oclev>1 — clev=clev—1 O ds.dom=ds.dom [J
Os,i,r -sdds.dom O isclev O (0 rO00(ds@s) < 0 rO0(ds@s) ) O exit

[Mrr - @lev, rds@s — t=FALSE O ds=ds Odefine(s, r)

O=-0rr - ©Glev, rMds@s O ref # Ref.null :— ds.dom=ds.dom 0 {s} 0 t=TRUE O
Ossds.dom - sszs [ ds@ss=ds@ss Ods@s= (ds@s)0 [tlev, rrddefine(s,r)

OsOds.dom Ods@s=0 :— t = Ref.null O ds=ds Ofind(s)
0 sOds.dom Ods@s=0 :—sd=sd O Oi - j,rr - @ rrf00ds@s O j<i Orr=1 Ofind(s)

var ds [ Dict.of(Symbol, Set.of(Tuple.of(Nat, Ref)))
var clev 0  Nat

6-6.3  Verifying refinement

We wish to prove that any memberSiackDict is also a member &ymbolTable:

that is, thaStackDict is a subtype (in the srict Fresco sens&ywhbolTable. This

is true if and only if every theorem that a client can infer algumbolTable-
members is also true 8tackDict-members. If the two types had identical models,
(or if the subtype’s model was an extension of the supertype’s) it would be a matter
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of proving that the axioms of the supertype were derivable theorems of the subtype.
An appropriate statement of the retrieval relation is:

sd.size = clev [
Oi,s, r- id1..clev O
(sd@i@s =r O sO(sd@i).dom < [ rldds@s O slds.dom)

The illustration below deals with one of the simpler operations from the example.

hl sd.size =clev O Oi, s, r- i0l..clev O
(sd@i@s =r O sO(sd@i).dom - [l rO0ds@s O sfds.dom)

h2 Oclev>1 =~ clev=clev-1 O ds.dom=ds.dom [
Os,i,r -sOds.dom O isclev O (0 rO0(ds@s) < 0O rO0(ds@s) ) O exit

1 sd.size = clev from hl by Crelim
2 Oi,s,r- i0l.clev O (sd@i@s=r O sO(sd@i).dom
= [0 rd0ds@s O sOds.dom)  from hl by [(Felim
3-h sd.size=1
3 | clev=l from 3-h, 1 by subs-eq
4-hl clev = clev—1 O ds.dom = ds.dom O .
Os, i, r-sOds.dom OiO1..clev O (0 rO0(ds@s) = 0[O rO00(ds@s) )
4.1 clev = clev-1 from 4-h1 by C-elim
4.2 ds.dom = ds.dom from 4-h1 by Felim
4.3 Os, i, r-sOds.dom OiO1..clev O (O rDD(E@s) = [ rd0(ds@s) )
from 4-h1 by elim
4.4-h1 i i01..sd.size
4:-4-1 i01..clev from 4-4-h1, 1by subs-eq
4:4.2-h S sl(sd@i).dom
4.4.2:1-h r- (sd@i@s =r
4.4.2:1-1 sOds.dom O [ rOd0(ds@s)
from 4-4.-1, 4-4-2-h, 4-4.2-1-h, 2oy 00O
4.4.2:1-2 sds.dom [ [i} rDD(&@s)from 4-4.2-1-1, 4.3by 00O
4.4.2:1-3 sOds.dom from 4-4-2-1-1, 4-2by [Felim, Set-eq
4.4.2.1 (sd@i)@s =r
from 4.4.2.1.2,4-4.2-1-3, 4-4-1, 2by OO
4.4.2 (sd@i)@s = (Q@i)@s from 4-4.-2-1by Trans-eq
4.4 F sd@i = sd@i from 4.2, 4-4-2by Dict-eq
4.5 Oi- i01..sd.size 0 sd@i = sd@i from 4-4 by O -intro
4.6 sd.size = sd.size-1 from 4-1, 1 by subs-eq
4 I sd.size = sd.size-1 O Oi - i01..sd.size O sd@i = sd@i
by Crintro from 4.6, 4-5
F Osd.size >1 — sd.size =sd.size— 1 O Oi-i01..sd.size - sd@i :El@iD exit

by refine from h2, 3, 4
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6-7

6-8

6-8.1

Creation functions

Creation functions are used to cite an instance of an object in a particular state. The
specifier or designer may define a variety of creation functions for one type. A cre-
ation function is applied to the type of which it creates members. For example,

I100Line, I200Line |- Point.intersect(l1, 12).lies_on(I1) O
Point.intersect(l1, 12).lies_on(12)

xOReal, yOOReal |- Point.xy(x,y) x = x [0 Point.xy(X,y)y =y
rCJReal, r=0, wlAngle |- Point.rw(r,w) r =r 0O Point.rw(r,w) w = w

Contrast this scheme with VDM, in which there is one creation function for each
type,mk-TypeName; the types of its parameters are those of the structural compo-
nents of the type. In Fresco, this would not be convenient, as a type may have many
redundant private features, including those inherited from reified types.

It is axiomatic that a creation function creates a new object; this is discussed under
§8-3.3.7 — p.145.

If the creation function is intended for the purposes of specification, the result need
not be as fully determined as a real instance would be. For example, all implemented
members oShape are actually quadrilaterals, squares, etc; but it might neverthe-
less be useful to define a functi@mape.vertices(pl,p2,p3,p4) to stand as an
abstraction of all possible shapes with those vertices:

O:—i=t.pl Oj=1.p2 Ok=1.p3 Ol=1.p4 OShape.vertices(i,},k,I)
[:— 1 =Shape.vertices(pl+v,p2+v,p3+v,p4+v) Oreplicate(v)

Creation functions are not inherited in any useful sense. If we dadiloeredPoint

as a subtype d?oint, the theorems about tReint creation functions are inherited,

but still producingoints, notColouredPoints. A new set must therefore be made
for every type. The same principle applies if we use a common function name such
asdeepCopy for every copying operation: we need to add information at each
subtype about how the new material is copied.

A creation function is not part of a type definition, since it is not part of the behav-
lour of any object. Axioms defining creation functions are stated within the context
of some capsule. It is automatically axiomatic that for every type-iaane every
functionf

Tfp)OT
and thafTl.f is pure.

Types and classes

Syntactical considerations

In Fresco, no strong distinction is made between types and classes. (The distinction
betweeen inheritance and subtyping is far more important.) One syntactic frame-
work, thetype/class descriptio(TCD), serves for both. In addition to the syntax we
have seen hitherto,
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* methods may be attached to the TCD.
» superclasses may be declared. There are three kinds of inheritance:

— concrete variables and methods only (corresponding to ordinary inherit-
ance in Smalltalk)

— type information only: supertype by assertion[Ssifpertype; any code
attached to supertype re-implemented in this

— conformant inheritance: both type and class inherited

Attached methods, concrete variables and implementation-inheritance are dealt
with by the compiler or interpreter just as they are in the unadulterated programming

language. Typing constraints in parameter and variable declarations are ignored by
the compiler. Conformant inheritance reduces the amount of proof required, and is

generally recommended. (The next chapter includes details of how proof obligations

are determined.)

6-8.2 Theorems and concrete features

An advantage of mixing types and classes in the same structure (instead of separat-
ing them as they are, for example in Abel [Dahl] or POOL [America]) is that
opspecs can be applied to methods, and invariants to concrete variables. (Eiffel has
this advantage.)

Each axiom of a typ& must be proven to be conformed to by any class that claims
to implement it. If subtyping is assertexlf(1S), all the axioms of the supertyfe

must be conformed to as well (except any which are proven as theordifis of
Where several axioms apply to one operation-name, each must be proven of the

Fig. 9. A method conforms to all the inherited specs

A

UOPA :—= RAOop

invA
B C
0OPB :— RBOop OPC :— RCOop
invB invC

~

D

OPD :— RDOop
invD
op & (OPAONVA :— RAGONnvAL, OPBUnvALnvB :— RBONnvALnvBO,
OPCUOnNnvALNvC :— RCOnvAOnvC O,
OPDOnvAONnvBOnvCOnvD :— RDOnvALnvBOnvCOnvDO)
(...code..))
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same operation; this may be done by performing separate proofs for each one, or by
conjoining them into one axiom first.

Implementation and proofs of operations marked as ‘abstract’ — specified only for
the convenience of promotion — may be omitted.

Each type/class description may contain a mixture of specification and implemen-
tation. Where there are methods attached to a tcd, they should implement the rele-
vant axioms. A class isompletely implementatf all the non-abstract operations
specified by its axioms (including those inherited by any subtyping axiom) have
methods, and all the invocations to self in its methods are provided for by methods.
(If a policy of complete proof is followed, then private functions will also implement
axioms, used in decomposition proofs.) Fresco can detect incompleete implementa-
tions as a certification check, and should disallow the definition of creation methods
in these cases (though abstract creation functions are allowed for the purpose of
guoting instances in specifications).

A TCD which provides methods for only some of its public features is an ‘abstract
class’, which cannot have instances of its own. Such TCDs are allowed because it is
often convenient to provide a partial implementation in a superclass.

Summary

Type definitions have been given a semantics in terms of theorems incorporating
opspecs, which are predicates over behaviour. A type is a set of objects which can
be shown to behave always according to a given set of such theorems. Type descrip-
tions may be model-oriented, defining visible behaviour in terms of the mutual
effects of externally applied operations and internal components. Model compo-
nents may be hypothetical, or they may correspond to actual variables. Types may
contain methods; the executable component of a type is a class in the ordinary sense.

The composition of type descriptions is based on conjunction, which is monotonic
in respect of signature, theorems, and model components. It is therefore easy

* to extend a type description to form a subtype;

» to compose multiple supertypes;

» to extend a type description as a reification;

» to compose partial type descriptions which take part in different contracts;
» to make a compatible extension of a type in a new version of a system.

In all of these cases, anything proven from the original type(s) — for example, the
correct implementation of a client — will remain valid for the resulting type. There

is no guarantee that such a conjunction is implementable, but this may be proven
either by adequacy proofs, or by the process of verified implementation.

We have also seen:

* how to understand conformance of signatures and class behaviour in terms
of type extension

* how to understand reification in terms of proof of axioms from the axioms
of the reifying type, together with a retrieve relation.

Finally, reification proofs were described.
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This completes a framework in which types and classes and verification can be
done. Chapter 7 will deal with the packaging of type and class descriptions into cap-
sules, and the mechanics of checking the correctness of capsules. Chapter 8 will
discuss the particular problems of reasoning about systems of objects.

Fresco © Alan Cameron Wills 1992 Types and Classes 109



v

7-1

7-1.1

System composition

The capsule is the basic unit of software design, change, transportation and re-use

in the Fresco scheme of things. As we have seen, classes do not always form the best
such modules; capsules can carry new software, extensions to existing software, or

just specifications.

The way in which a type-description focusses on one particular object (‘self’) is
consonant with the object-oriented style of programming. The principal advantage
in programming is that this encapsulation limits the spread of interdependencies
between software components, which could otherwise inhibit the reconfigurability
and re-use of the components. In specification, the focussing on a particular object
has the pragmatic advantage that it is easy to think in the same terms as the program-
mer; it permits the independent specification of an exportable chunk of software;
and again, it tends to limit the scope of the description in order to make descriptions
separable.

There are two drawbacks to these forms of encapsulation. Firstly, the natural bound-
aries of the behaviour you want to specify are not always best drawn around a single
object: it may be more natural to describe the relationships between several objects
in a ‘framework’; Fresco’s capsule system does not assume that classes are the
natural units of specification or design. Secondly, in order to verify that the prescrip-

tions of the specification of an object are observed, it is sometimes necessary to look
beyond the boundaries of that object; especially in connection with possible alias-

ing.
This chapter defines a semantics for capsules, and shows how a system is composed
from capsules.

The constraints on the development, publication, and composition of capsules are
described, showing how these constraints (some of which are mechanically enforce-
able, whilst some are proof obligations) prevent interference between capsules.

The Fresco notation is used here; there is a summary of the notation in Appendix A.

Systems are compositions of capsules

Systems
There are three interrelated ways of looking at a Fresco system:
System
var ev: Execution_View
var tv. Theory View
var cv: Capsule View
ev = cv.strip O tv = cv.theories
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7-1.2

Capsules are the units whereby design effort is distributed between different users.
A capsule may define new type/class descriptions or extend existing ones. The
Capsule_View of a system is a sequencedapsules — in the order in which they

were incorporated into the system.

The Execution_View ev is what the interpreter or compiler sees: globals and
classes with methods and instance variables. This is unchanged from the host pro-
gramming language; we shall concentrate on Smalltalk in this chapter. In Fresco,
everything is defined within some capsulegesds precisely determined toy. In
addition to executable declarations and codeontains the type specifications and
proofs discussed in earlier chapters.

The Theory_View is what the developer deals with whilst building and reasoning
about a system: the theories are fairly directly related to the information in the cap-
sules.

Capsules can become part of a system in two ways:

» Creationand development by a designer; the only way to create new soft-
ware and theory is in some capsule.

* Incorporation(from a library or distribution system) by a prospective client
designer.

Capsules

The order of incorporation determines how methods defined in the capsules may
overwrite one another. Each capsule must be preceded by its imports. The Kernel is
always the first capsule in any system. For convenience, we include in the model
both the sequence and a mapping from names.

Capsule_View

var s: Map from: CapsuleName to: Capsule

var  ordering : List of: Capsule

‘Kernel’ 0 s.dom OO n - n0s.dom O s(n).fullName.short = n
s rng = ordering.elems

[Ji02..ordering.length -
ordering(i).imports [ {ordering(j).fullName | jO1..i-1 }

An essential component ofGapsule is the informal description, which contains at
least some of the formal definitions scattered about in its text (just as this chapter
does). The whole set of formal definitionlefns, will be accessible with a brows-

ing tool.

Capsule

var fullName : CapsuleFullName

var imports :  Set of: CapsuleFullName

var status : {Developing, Certified, Published}
var description: CapsuleText /* contains Definitions */
var defns : Definitions

Fresco © Alan Cameron Wills 1992 System composition 111



7-1.3

Each capsule has a unique name: the full name includes sufficient information about
machine of origin, author and date to ensure uniqueness on a worldwide basis. A
short form may be assigned for use in any particular system: either the default abbre-
viation (which excludes all the origins information) or a name chosen when the
capsule is incorporated. The Fresco user interface will translate between the short
and full forms.

Once a capsule is fully developed, the designer can ask Freseaifipit: that is,

to perform a series of checks upon the consistency and completeness of its proofs.
A capsule cannot be altered without losing its certified status. Only a certified
capsule should be published, and once published, it cannot be altered (except under
a new name); and so a particular name is always guaranteed to refer to the same cap-
sule.

The full names are used to identify imports. Each capsule uses definitions and the-
orems from the capsules it imports, so a capsule cannot be incorporated into a
system until all of its imports have first been incorporated. A capsule may not, of
course, transitively import itself.

For capsule&A andKB, “KB«KA” abbreviates KB importsKA”.
A capsule’s imports list may be edited by the designer who creates it.

Definitions in a capsule

A capsule contains definitions which may be entirely new, or may augment those in
an imported capsule.

Definitions

var types: TypeName mapTo: TypeClassDefn
var lemmas: ThmLabel mapTo: JustifiedTheorem
var globals: VarName mapTo: GlobalDefn

var methods: TypeName mapTo: MethodDefn

0t, |, g - tOtypes.dom O l0lemmas.dom [ glglobals.dom [0
(types@t).name =t [ (lemmas@l).name =1 [

Thetypes carry specification and data structure whilstrirethods are separated
out for convenience; thglobals are concrete variables which act as the roots of the
system’s data structures; tleenmas include any inferences the designer wishes to
prove which might be useful to a client.

A designer may not remove anything declared in another capsule.

Whilst type-definitions and theorems always augment those from other capsules,
methods overwrite those in preceding capsules (Fig. 10.) The order in which cap-
sules are incorporated into a system is therefore more important in respect of the
resulting executable system, than in respect of the specifications.

Everything within a capsule can refer only to types, globals or theorems defined
within itself or its imports. (Although there are no restrictions on what operations
may be called in a method, its proof will have to refer to theorems about those oper-
ations.) A capsul&B must therefore import anothi€A if:

* KB is intended to implement or refif@,;
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« KB is a client ofKA.

A TypeClassDefn collects together thdypeBoxes for a given type scattered
throughout the capsule description:

TypeClassDefn

var name: TypeName
var parameters: TypeName list
var boxes: TypeBox set
[1b - blboxes [1 b hame = name

EachTypeBox has a public signature and private model (including the supertypes
and superclasses respectively), each of which implies axioms in addition to the
designer’s explicitly defined axioms:

TypeBox

var name: TypeName
var sig: TypeSignature
var model: TypeModel
var axioms: Theorem set

Globals will be dealt with in section 7-4 — p.120.

A method is attached to a specific class. In Smalltalk, the class of the receiver is suf-
ficient to determine which method is executed, but typed base languages with over-
loading also require static type information about the other arguments:

Fig. 10. Capsule composition conjoins specs and overrides implementations

4 Capsule A K
import
import Spec A::X

/ Capsule B\

Spec A::X

Capsule "\

A-User

implements A::X OB::X

JCapsule A-User is not upset by

B’s re-implementation of X \ /
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MethodDefn

var class: TypeName
var name: MethodName
var  signature: TypeExprn [* for overloading */

7-2  Capsule composition

7-2.1 The executable system

The compiler/interpreter sees classes and other globals. It represents the static part
of the system.

Execution_View

var classes: ClassName mapTo: Class

This is derived from the capsule view by superposing successive capsules in the
incorporation sequence:
kv - kv[dCapsuleView | kv strip O Execution_View [
kv strip classes dom = (kv s all: [ k - (k defns types dom) union)]) O
kv strip globals = (kv s all: [k - k defns globals dom] union) O
(Ocn, c- c=(kvstrip classes @ cn) O
¢ data = (kv s all: [k- (k defns types @ cn) classData]) union O
¢ methods = ((kv s all: [k- (k defns methods @ cn) dom]) union
mapAll: [mn - (kv ordered msgs: mn inClass: cn) last]))

whereclassData extracts model information from a type definitiomsgs:inClass:
extracts the list of methods defined by successive capsules for a particular operation.

kl, mn, cn, kimd - kIO (List of: Capsule), kimd = kl head defnhs methods }
(kI msg: mn inClass: cn) =
((en O kimd and:[mn O kimd@cn])
ifTrue: [List(kimd@cn@mn) ++ (kI tail msg: mn inClass: cn)]
ifFalse: [kl tail msg: mn inClass: cn])

7-2.2 The specifications

Theory_View = Set of: Theory

Every incorporated capsule engenders a new theory:
cvCapsuleView |- cv theories = (cv s all: [k - k name]) mapAll: [n - (cv s @ n) theory]
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Recall (84-1 — p.57 ) the principal components dhaory:

Theory

var name: TheoryName

var imports: TheoryName set
var sorts: SortDecl set

var consts: ConstDecl set
var axioms: Theorem set

The import structure of the theory is the same as the import structure of the capsules:
so everything defined and inferred about the contents of a capsule’s imports is also
known in its own theory.

k, th, def - k(OCapsule, th = k theory, def = k defns |-
th name = k name
th imports = k imports

The sort and constant names are the type and global names. Globals include both
variable and global function definitions; in particular, the latter include creation
functions. The names of these items are all qualified with the name of the capsule
(though this is hidden from the designer by the user interface): the expressidén
represents the definition with all occurrences of names qualified with the name of
capsulek.

th sorts = def types all: [t - (t in: K) sortDecl]
th consts = def globals all: [g - (g in: k) constDecl]

t, ¢ - tTypeClassDefn |- t = (SortDecl name: name arity: t parameters length)

g, ¢ - glGlobalDefn |- g = (ConstDecl name: name arity: g signature parms length)

The axioms are derived from the definitions:

k, th, def - k(OCapsule, th = k theory, def = k defns |-
th axioms = (def types all: [t - (t in: k) axioms])
O (def globals all: [g - (g in: k) axioms])
O (def methods all: [m - (m in: k) axioms])

Global-definition axioms say that the global belongs to the declared type; method-
definition axioms assert the association of a piece of code with an operation within
a given class. Aequirements axiom is derived from each type definition, asserting
equivalence of XOOK::T” (where K::T is the basic type name qualified with this
capsule name) with conformance to the axioms of the type:

t - tOTypeClassDefn |- t axioms = (Set with: (t in: ¢) requirements)
The theorems are:
» those defined and proved by the user (“lemmas”);

» theorems per typebox telling clients what the properties are individually, of
form “xOK:T | ...";

» proof expectations generated by Fresco automatically, which the designer
has to prove (see below).

k, th, def - k(OCapsule, th = k theory, def = k defns |-
th theorems = k lemmas [0 (def types all: [t - (t in: k) theorems])
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7-3

7-3.1

7-3.2

7-3.3

Capsule certification and incorporation

Changes to theorems

In general, if we have a graph of justified theorems, and we remove one of the the-
orems, then we must find the theorems which are dependent on it, and either remove
them or generate alternative proofs for them. By contrast, adding new axioms or

proving new theorems creates no such problem.

In Fresco, the central concern is object behaviour, characterised by types. A type
definition implies two theorems (86-1 — p.83): one setrgderties used by clients,
all of form

T-PROP: xOT | T::THM[X]

whereT::THM[self] is any theorem ofF; and a single requirement which implemen-
tors and reifiers must fulfill, of form

T-RQMTS: xOT <= (AT:=AX[X])
whereT::AX[x] are the axioms of (possibly including subtyping axioms).

If we now add an axiom t®, the oldT-PROPs all remain valid: no problem. But
the oldT-RQMTS is no longer valid, having an additional hypothesis. All proofs of
xOT would therefore have to be reviewed.

Fresco avoids this problem by creating new types in each capsule, by qualifying the
type names with the capsule names.

Capsules and type conformance

If KB importsKA, it must do so monotonically: that is, the client«&éf must not
need rewriting (Fig. 10.) This is essential, since dfes published, they may be
difficult to discover.

Within KA and its clients, a type nanferefers to that type as it is defined within
KA, if KB augments that definition, thdnrefers to the augmented type, witKiB
and its clients. We shall distinguish thenkK#s: T andKB::T, though these qualified
names need never be presented at the user interf&deidfdefined properly, then

T-MONO: KB«KA |- KB::TOKA::T

and so the clients need not worry about the distinction. But implementors and refin-
ers of T must be reviewed whédfB is designed or incorporated, in order to ensure
that this theorem is upheld.

Proof expectations

As a system is composed, either by successive incorporation of capsules from a
library, or by development of new capsules, Fresco will genpraté expectations
theorems which ensure that the system executes according to its specifications.
Proof expectations may come ready-proven in an incorporated capsule, or may be
generated by Fresco and justified by the designer, during development of a new cap-
sule. Proof expectations includeMONO (above) and the theorem that for every
concrete typd (that is, those for which creation functions exist: 7-5 — p.122)

T-impl: xclass=T | xOT
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and hence that the methods attached to or inherited by a type conform to its axioms.

For each method which is introduced by a capsule, relevant axioms are stated in its
type and its supertypes; and in any type and its supertypes which inherit the method.

For example:
T2 [T1 method defined here
T3 ax21:00..0op N op=m
ax31:0..0op \
\ & 121+ 12 conforms tcax21 here
" | superclass T1
T31:+ T3 \\ T22 =+ T21
superclass T21 | .nforms taax31 here superclass T21

An operation definitiorop=m (definingm to be the method implementing opera-
tion op) is said to beffectivein those classes in which is activated in response to
an invocation obp; namely:

* the class in which the definition occurs

» every class which does not itself have a definitiomfgrand which is a sub-
class of a class in whiatp=m is effective.

(In C++, the rules are complicated by overloading.)

An axiom AX defined in a typ€r is effectivein all the subtypes of (whether
asserted or by reification). An axiom is applicable to an operafoii it is an
opspec foop, or it is an invariant.

To every type which lies within the effectiveness of an axdotfop] which is appli-

cable to operationp, and the effectiveness of a definitiop=m, there is attached

a proof expectatioAX[m]. Many of these expectations will actually be the same,
where a subtype is also a subclass: for example, the proof expectationsftine

same inT22 (above) as it is iM21; Fresco should recognise this and not require
duplicated proofs. This reflects the commonplace recommendation (e.g. in [Meyer])
that subclasses should also be subtypes: the requirement for reasoning is much
reduced.

When a capsule is incorporated or certified, these proof expectations are searched
for and their proofs checked for each new axiom and each new method. The axioms
resulting from interpretation of signatures are included in this.

A new supertype can be treated as the introduction of all the axioms known in the
supertype.

In a system permitting multiple superclasses, introduction of a new superclass can
be treated as the extension of the effectiveness of all the methods effective in the
superclass. (If two inherited methods share an operation name without a disam-
biguating method in the inheriting class, it is not inevitable that there must be a con-
flict: so long as we stick to the rules, both will be shown to meet all relevant
specifications, and it is then acceptable for the execution system to choose one of
them arbitrarily.)

A final twist concernselevanceFor each typ& where there is more than one effec-
tive definition of a method for som@p, only the definitionK,,::m which comes
from the most recently incorporated capsQlevill be executed; and so for proof
expectations arising from earlier definitionsnofare not relevant.
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7-3.4

7-3.5

Certification and incorporation checks

Unproven theorems (calletkficity in a capsule under development indicate that it

Is not yet fit to be distributed. A designer may perforeeification checlon a cap-

sule, which either highlights deficits or marks the capsule as certified; in which case,
it may be marked published, protecting it from further alteration.

Informal justifications are allowed, but may be highlighted during the checking
process.

The checking is not confined to the assertions and methods visible in one capsule
and its imports: for it is important to ensure that conflicts do not arise with other cap-
sules present in the system.

A deficit may also arise upon the incorporation of a capsule into a system, indicating
a mutual incompatibility (aonflict) with other capsules forming part of that system.

For this reason, amcorporation checks always performed which duplicates the
certification check, but in the context of the incorporating system. It also assures the
purchaser that the capsule’s certification is not fraudulent! It is much easier and
quicker to check proofs than to generate them, so capsules carry all details of their
proofs — even though there is a naive sense in which a proof is no longer required
once it has been accomplished.

It should not be necessary for a user composing a system from capsules to perform
any further proofs on them. The Fresco scheme ensures that, provided no conflicts
are signalled, each capsule will perform as its designer intended, even in the
company of unfamiliar fellows, without interference.

Mostly, new implementations and reifications will be supplied together with the
specification all in one capsule; but the rules allow them to be supplied separately.
Clients need only import the capsules which contain specifications for the aspects
of behaviour they are interested in.

Checks ignora@relevant conflictsthat is, those which apply to methods which have
been superceded.

Conflict and resolution

Suppose capsuleU specifies and implements a new operationfor a user inter-

face, which re-arranges scattered icons into neat rows and columns. Later, an
improvementCUH is published which import8U, tightens the spec and re-imple-
mentscui, guaranteeing that the icons will be arranged into alphabetic order by
label, reading across rows. Meanwhile, an oriental designer creates an improvement
CUV, similar but with vertical ordering. Clearly both cannot be incorporated into
our system with a properly working result: on incorporating the secon€ (¢,

Fresco declares a conflict, becaG&#V::cui comes without a proof that it conforms

to the opspec fazui in CUH.

At this point, Fresco will offer the option of undoing the incorporation of one or
other of the conflicting capsules.

Now suppose a further improvem&it/SLIDE is designed which importU, and
makes the rearrangements happen visibly. The specification is compatible with
either of CUH andCUV; but nevertheless, we cannot just incorpof@tsSLIDE

and CUH (say) together, because each of their implementations only takes into
account its own spec: Fresco would signal a conflict. But an additional ‘fixup’
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7-3.6

7-3.6.1

CUSLIDE CuVv
CUSLIDE-H CUH-CLIENT

capsuleCUSLIDE-H could be designed which imports both capsules — for their
specifications — but re-implements the metiead This would come with a proof

that it conforms to both specs; the conflict is thereby resolved, because for methods,
only the most recently incorporated method is relevant (Fig. 10.)

(Notice that:

e It would not be so useful to designCAUJSLIDE-H which importedCU
directly, since client capsules GfJH (say) would not be satisfied by it.

* Itis not appropriate in this situation to design a subtype for each feature. )

It is possible to write a capsule which contains only a partial, or no implementation
and acts just as specification.

Renaming

In some cases, a conflict occurs only because two designers have used the same
name accidently for unrelated purposes. When capsules with a naming conflict are
incorporated into the same system, the problem can be resolved by systematically
changing one of the names.

The situation is easy to identify: it only occurs between capsules which are sepa-
rately defining a new name. In all cases where a capsule is refining a name, there is
a proof expectation that the new item is a refinement of the inherited version; if this
proof expectation is not present in a certified capsule, then the definition must be
intended to be new.

There is no internal conflict here amongst type names, because they are qualified
with the capsule names; but the ambiguity does arise at the user interface, where the
qualifications do not appear. And qualification is not done with the
Execution_View, because the objective is to modify existing code. Hence the
necessity to change a name, perhaps by ‘fixing’ the qualification so that (just in this
particular system) the capsule name is a permanent part of it.

Instead of incorporating capswde we are then incorporating{x\x1, y\y1] (where

X, y are the offending names). Any subsequent capsule which inkparits need

to have its references to the renamed items doctored; and so the list of renamings
should be considered part of the full capsule name, both in the system’s capsule list,
and in any list of imports in whick appears. Whenever any new dependenks of

are subsequently published, the reverse mapping is applied before distribution.

Hiding
It is desirable to be able to hide names defined within a capsule, both to preclude

spurious clashes, and so as to present a limited selection of them to client capsules.
This can be done by qualifying the appropriate names with the capsule name, but
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7-4

7-4.1

7-4.2

presenting only the unqualified name at the user interface. This prevents the item
being referred to except from within its own capsule. Hiding can be seen as a special
case of renaming.

Global variables

GlobalDefn

name: VarName
type: TypeExprn

A global definition in a capsule declares a variable which may act as the root of a
data structure, together with a type and code for its initialisation. It may be an exist-
ing or a new variable.

Notice that there are no global invariants — that is, no axioms outside type-defini-
tions and the Fresco fundamental axioms described here.

Initialisation and persistence

Once a capsule is successfully incorporated, the user’s permission is sought to
invoke the initialisation code of the globals. In some cases, this will be a question of
setting up empty new data; in others, of transforming an existing body of data, be it
a single menu or a whole database. It is important that when changes are made to a
system’s software, provision should also be made to bring forward existing data; or
at least, that the system should be able to deal with old data.

The initialisation code of global variables is intended for these purposes. Once a
capsule has been installed satisfactorily, its initialisations should be performed
before the new code is used. For a glgoddclared of typd, there is a proof expec-
tation of correct initialisation:

g-init-type: [P :—gUTO

The precondition is rather ill-defined, since it can depend on just about anything true
before the incorporation. It would be unwise to depend upon globals being initial-
ised in any particular order. This is a topic for further investigation.

Assignments to globals are not permitted: only operations may be used to interro-
gate and change them. This rule ensures that the global continues to have the
expected type.

Conformance

An updated global must belong to the same types as it did before, so that old clients
can use it. For any glob@ declared in capsuld§A andKB, a proof expectation
arises of the form:

KB«KA, KA:GOT1, KB::GOT2 | T20T1

The same issues of conflict, possible resolution and possible renaming arise as for
types.
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Globals and new no
proof expectations @ ) ﬂ (g new)
g0T K6
(no redecl of g)
TalTRk2::g0
k4::TbOk1::T
k2 k4::gOk1::T
glTa gTb
k5::Tc O k2::Ta \ KS k5::Tclk4::Tb
k5::g00k2::Ta gOTc k5::g00k4::Tb

Fig. 11. Globals and proof expectations

7-4.3 Incorporation scenario with globals

The nodes on the diagram (Fig. 11.) represent capsules, and the arcs imports. The
arcs are labelled with some of the theor@mwidedby the importing capsules (at

the source end of the arrow). Let us suppose that the capsules are all incorporated
into one system, in order of their nankds-k5.

kO has no global called. k1 importskO and defineg); no conformance proof is
provided or expected. (There will be a proof that the initialisation code yields a
member ofT, and a similar proof in each redefinition.)

k2 redefinegy to conform tola, and becausk2«k1, a proof ofTalIT is expected.

The originating system would have insisted that the designer should provide this
before certifying the capsulkl’s software continues to work with) and even with

k1 interacting withg, k2 works too. The only problem would begfwere to be
assigned a value il which is a member dF, but not ofTa: for this reason, we do

not permit assignment to globals.

k3 does not redefing, but possibly uses it. No conformance proof is expected. In
the system in whick3 originated, there would have beenki) and s&3's code
expectgy to beT. Now in the system illustrated, we know tgatTa: that's OK for

k3 becausdallT.

k4 redefinegTh. In the system in which it was orignat&&,was not known, and
sok4 provides only for the proof expectation that the originating Fresco expected,
for TbOT. However, as far as the incorporating system is concegisetype isTa,

and a proof offb(JTa is what is actually required; the alarm is therefore raised, and
the user given the option of undoing the incorporation.

However, this problem has arisen before, and someone has taken the trouble to write
k5 which imports bottk2 andk4, redefinegg[0Tc, and provides both the expected
proofs. Perhaps it might not be necessary to redgfinkit is possible to show
TbOTa: in which cas&5 contains a proof and nothing else.
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Finally, k6 also happens to define a global caltgchaving been originated in a
system in whictkl was not known. But in our system, we now hgi8c, so our
Fresco expects a proof etdJTc. However, sinc&k6 provides no conformance
proof forg at all, it clearly has no dependence on any imported definition, and can
safely be renamed.

Creation functions and concreteness

An implemented creation function, for examplenk must satisfy the axiom
TmkOT
so that the proof expectation {ifor mk are [re]defined in capsul€) is:
Tmk OK:T

(wheremk stands for any function with or without parameters). Notice that the left-
handT is not qualified with the capsule name: this is because it will appear in actual
code, rather than just in proofs, and we don’t qualify names in code (because the
idea of capsules is toodifythe code sensibly).

At this point, it becomes useful to distinguish carefully between class and type.
(Generally, we can rely onclass = T | xOT, and so need not worry about the dif-
ference.) We will refer to a cla€sand a typ&€T which we hop€ will implement.

Now we know that

T-RQMTS: xOT = (AiT2AX[X])

so having created &-instance, we must prove that all the axiomsCdr are
observed by it.

This can clearly be done only if there are actually methods suppl@doinall the
axioms ofCT.

There is an axiom of a primitive function (in Smalltalk)
basicNew: C - C basicNew class =C

The typical creation function will be in this form:
C mk = ;=1 O C OQ Ojustification missing here
O:= INV[1]Or class=COQDO
{x- 0:—x class = C [Ox « C basicNew.
Ox class =C :— INV[x] Ox class = C JQ Ox init.

tx}
wherelNV is the conjunction of all the invariants Gf, andQ is some particular
requirement on the initial state. But this gives rise to the proof expectation

INV[xo] O xclass=C | xOCT
or, fromT-RQMTS,

(INV[xog] O xclass=C | /\iCT:AX{x]) F xOCT
Clearly this can only be done if we can find a methad (mherited or not) for each
opspec among#tX;. Hence a class must be completely implementedonrerete

— in order for a creation function to be verified and used — which, of course, bears
out sensible practice.
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The proof depends on the induction over the history bit the designer does not
have to elaborate all this explicitly in Fresco: rather, the constraints Fresco imposes
ensure its validity. These are:

* The method implementation proof expectations discussed in 7-3 — p.116.

* There is a certification check (an existing compiler constraint in C++) that
ensures that creation functions are only invoked on concrete classes.

» Fresco generates the proof expectation that the type invariants are met by the
yield of a creation function; for any creation functiog,

T-INV-CREATION: KT INVIT mk]

From this it can be seen that creation functions have a special status in Fresco, just
as they have in C++, rather than just being ordinary operations of the metaclass as
in bare Smalltalk. Fresco therefore does not support any metaclass operations other
than creation functions.

The operatiomit is unusual in not taking the invariant@fas an implicit part of its
precondition. The present model of Fresco makes no provision for a special category
of initialisation functions — there may be any number per class — so it is up to the
designer not to assume the invariant in these cases. Initialisations are typically in this
form:
C:init = 0:— self0C O0ONV[el, e2] :— INV[v1, v2]0

{ vl < el.

V2 ~ e2.
}

Creation functions themselves have no reference to ‘self’ (unless it is the object rep-
resenting the class itself in Smalltalk idiom — not a recommended practice).

The User Interface

A prototype for a Smalltalk-based capsules system without theorem-proving facili-
ties exists. This outline of the projected development environment is therefore
somewhat less hypothetical than much of what has gone before.

All development work is done within some capsule; each is represented by a large
window within which can be created browsing tools for types, methods, and the
details of the capsule.

In the present prototype, the tools look similar to the standard Smalltalk browsers;
but much fascinating speculation can be made about the possibilities for integrating
the tools for formal material with, for example, a hypertext and diagrammatic
system for the informal description, similar to the various object-oriented analysis
and design tools which are appearing on the market (supporting, for example, [Rum-
baugh]). Ideally, one environment should take the designer all the way from for-
mally-annotated OOA through to verified code.

The designer can look at any of the specification or executable code in the system;

but only those items most recently updated by this or an imported capsule can be

altered. No alterations can be made to a ‘published’ capsule. Alterations apparently

made to the definitions in imported capsules are recorded as changes in the current
capsule.
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The structure of the system as seen through the browsers reflects the class and type
heirarchies rather than the capsule structure; though the originating capsule of each

type box and method can be discovered, and it is also possible to see previous ver-

sions of a method, from each capsule which defined one.

Theorems can appear both within a type box and in browsing tools of their own; any
theorem can be asked to display its proof, which pops up in a separate box. A
theorem inside some context such as a proof, code block, type, or indeed a capsule,
can be dragged into the enclosing context; and Fresco adds the necessary metavari-
ables and hypotheses.

Method code can be viewed with or without the specification components. If with,
then highlighting a specification-statement gives access through menus to its justi-
fication, which again can be shown separately.

The encapsulation of software into capsules is about managing the dependencies
between software modules. Therefore it would be useful for the system to draw a
diagram of dependencies, both between type-boxes and between capsules.

/-7 Summary

Every Fresco system is a composition of capsules, beginning with a Kernel capsule.
Each capsule contains definitions of types, global variables, and theorems, which
may be new or may augment existing definitions. Every capsule must import those
others whose definitions it uses.

Capsules may be composed in configurations other than those in which they were
originally developed; but Fresco’s proof expectation system ensures that a warning
is given if two capsules would interfere.

A capsule is concerned with relatively static matters — specification and code rather
than data — but may stipulate initialisation and translations upon persistent data. We
have not investigated the constraints which a translation would have to satisfy.

The generation of proof expectations and the process of checking before a capsule
is distributed, and on incorporation into a system have been described.
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8

8-1

8-1.1

Objects and verification

The aims of this chapter are twofold:

» to discuss certain topics, skirted hitherto, which are strongly connected with
the partitioning of the system state into objects;

» to try the utility of the concepts presented in the preceding chapters — that
is, the interpretation of types as theories about object histories — as an aid
to dealing with these issues.

The latter should be seen as the primary goal (even though it is essayed as a fairly
hefty attack on the former).

The topics are:

» Constraint maintenance: applying formal methods to the design of programs
as frameworks of co-operating classes.

» Framing: determining whetherinvC code when the specification ajode
does not explicitly mention the variables involvechin

» Barred expressions: the use and interpretation of variables and expressions
denoting prior states in postconditions.

* Equality and subtyping: equality is non-monotonic.

Each section ends with a summary which points out how the Fresco formal notion
of types has helped in the discussion. The chapter ends with an overall review.

Constraint maintenance: co-operating objects

Constrained subsystems

The functional focus in an OO program is often not individual objects, but co-oper-
ating clusters of them. [JF88] suggests that types should be documented in ‘frame-
works’, or interdependent groups whose instances co-operate. The OO design
method of [Rumbaugh91] lays as much emphasis on the attributes and properties of
the connections between objects (and therefore the relations between their classes)
as on the objects and classes themselves. The typical problem is to maintain an
invariant across a link, and in the first stages of design, it is useful to annotate the
link with the invariant, deferring the design decision as to how to realise it, or
whether to attribute it to a particular class:

v.projects(s) *

Viewer

Subject
s v

‘** signifies there may be marnyiewers perSubject. EachViewer displays a
Subject on the screen (or provides a ‘view’ in database terms, to other interactive
devices or other parts of the software), and may possibly be used to invoke modifi-
cations of it. When a modification occurs, all extant views should simultaneously
reflect the change: that is, theojects relation should be maintained.
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Because we still wish to be able to add new classes (for example, new kinds of view)
after the initial design of the framework, it is essential to be able to define the inter-
faces between them. [MP91] suggests a rule-based programming approach, and
[HHG90] demonstrates a ‘white-box’ notation for this purpose, in which skeleton
sequences of operation calls are documented. Fresco uses types to achieve a black-
box approach.

Suppose thatore is a type of object representing some problem-specific informa-
tion. There is some stor@dta with an invariant, and a typical pair of modification
and query operations:

Core
op mod O (Key, Item)
fn get O (Key) Item

:— post-mod(d) COOmod
0:— post-get(r, d)dget (...)

var d O Data
d.consistent

Now if the requirement is to displayore-members on the screen, then extensions

will be required. This object-diagram illustrates the general scheme:
uer

mutate

M
mouse, kb
mutate

This is an object diagram showing a typical snapshot of the connections in a system.
The arrows showrotocols,named groups of messages: for examplantiege pro-

tocol just containgnod in this example. There may be any numbevief subsys-

tems each displaying part of the current state oftinect. Each sends queries to
theSubject to find its current state, and displays part of it on the screen using appro-
priate bitmap operationsbftbit’). Part of the view’s function is to translate the user’s
mouse and keyboard actions into mutating operations osuthet. Each view is
required always to show the current state ofSiltgect, and so there is an ‘update’
protocol whereby theubject can notify all the views of any alterations as soon as
they happen.
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The Subject object must implement theore type, and in addition must be able to
aquire views and have them display the relevant pictures:

VisibleCore ::+ Core

op addView O  (Viewer)
op resetViews

var w [ IdSet(Viewer)

fn wf-Subject = (O vOView - vOvv O v.projects(self))
fn bkwd-ptr = (O vOView - vOwv O v.s == self)

bkwd-ptr [/l invariant
v - 0= w = w O IdSet(Viewer).mk(v) DaddView
0:— wf-SubjectOresetViews

(An Idset(T) is a set all of whose members are the identities of members sée
§10-2.1 — p.170.)

This assumes the existence of thever type, which must provide for the update
protocol, which in turn must us®re’s get function.

Viewer

op update
O- self.projects(s) Oupdate

var s [ VisibleCore
fn projects O VisibleCore — Boolean
self 0 s.vv

There may be several different kindsudwer, with theprojects relation specified
differently for each one.

From the point of view of clients external to this subsystemsiihect must invar-
iably be accurately displayed on thiews, so we have a further type. (For the
purpose of illustration, let's conjecture that it has some operation of its own.)

Subject ::+ VisibleCore

op bringForwardAllViews

wf-Subject // from VisibleCore

From the point of view of the display, we need to provide for user input, and again
it is convenient to express this as yet another type. The projection constraint should
always be true when input operations are dealt with, and the standard way of
expressing this is to insist thamust be &ubject:

View ::+ Viewer

op mouseOp [0 (MouseStuff)

var s [ Subject
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Finally, to summarise this complex net of types:

Core

‘ update

VisibleCore |[g

Viewer

get
resetViews

mod

(Thick arrows show subtyping, thin arrows are message paths; *’ denotes the pos-
sibility of multiple instances at one end of the connection.)

¢

Each type represents a protocol. An object dealing with several protocols is a
member of several types.

8-1.2 Callback and invariants

It was observed in an earlier section that an object either belongs throughout its life
to some type, or it doesn't, since type membership is a predicate over an object’s his-
tory. This is certainly true if we look upon each operation as an atomic transition.
But whilst mod is executing, the projection invariant may be invalid, and so the
object is temporarily not aubject, in the practical sense that it would be improper

to callbringForwardAllViews, whose implementation might rely on the views being up

to date.

The type to which an object is temporarily ‘downgraded’ whilst an operation is
active will be called a ‘transaction type’.

For completely encapsulated objects, this is not an issue, since it would be impossi-
ble to call an operation on an object that is already in the process of executing one.
But VisibleCore andviewer stipulate a loop of pointers between their members so that

a call toupdate can ‘call back’ the originatingcore object. For this reason,
Viewer::s[VisibleCore, rather tharsubject: this allowsupdate to get the information

it needs to restore the contractual constraint.

As an aside, it is worth noting that such callbacks are prohibited in POOL [Amer-
ica], to avoid this complication. The same strategy could be followed in other lan-
guages, setting a flag in an object during the activity of any public method, and
rebuffing any attempt to use public methods while it is set. It might be thought that
the problem in POOL is connected with its concurrency — that this measure is
equivalent to the protection by a semaphore of a critical segment of code. But encap-
sulation makes the problem almost as bad in a single-process system: any message
sent to another object is liable to be implemented by code outside our ken — and so
we have no control or knowledge about what else the receiver may send messages
to, and whether control may not ultimately loop back to us. The only intrinsic advan-
tage single processing has over concurrent processing, in OOP, is the guarantee that
there will be no interruptions between the evaluations of one expression and the
next, and in the invocation and return from messagssfto

This is an instance where the distinction betweanandx:T is a useful one. (Recall

that xOT means that the invariants are interpreted as permanent assertions about
every state, while:T conjoins the ‘invariants’ with every pre- and postcondition —
86-1.2, p.83.) Of an instane®f some class which implemerstsbject, it is always
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8-1.2.1

8-1.3

true thats : Subject O s : VisibleCore O s : Core; butsOSubject, for example, is true
only while no method ofubject is in progress.

Consider an implementation of a methodfor in Subject, shown here with the
skeleton of a proof:

Subject::mod (k,v) =

[kelfd0Subject :— selfd0Subject [ post-mod O /lopspec & invariants
( [kelfOVisibleCore :— selflIVisibleCore [0 post-mod(k,v) O
super.mod(k, v) ; /I call VisibleCore::mod

[self0VisibleCore :— selfJSubject [ d=d O
self.resetViews;

)

Strong type-membership has been used here as a shorthand for conformance to the
various invariants. The method has been implemented by calling a more primitive
version ofmod, inherited from a superclass, which does the required business on the
data; it seems reasonable to expect that this may affect the correctness of the views,
S0 thatselfdSubject is no longer true: and so the next thing is toreadtviews. (We

need to know that the datare not affected by this. Once again, discussion of such
‘frame’ inferences is left until a later section.)

The code ofvisibleCore::mod is inherited fromcCore, where it will be shown to
conform toselfCdCore :— selffiCore O post-mod(k,v) [l ForVisibleCore, it will therefore

additionally have to be shown to conform to the invariaatfOVisibleCorel Or

[bkwd-ptrl

VisibleCore::resetViews is implemented as a call tpdate in each view:

VisibleCore::resetViews =
Oself0VisibleCore :— selfVisibleCore O wf-Subject [
( vv do: [v |
[kelfVisibleCore:—v.projects(self)IselfVisibleCore [
Ovv=w O Ovx - vxOw Owvxjv O vx=vx[J
v.update] )

Propagation of transaction status

Whilst the truth otelf : T is fixed for any objeckelf0T may be assumed (in methods
attached ta or its subtypes) only on entry to a method, and should be restored by
the end. Thusubject::mod could not, half way through, caltingForwardAllViews,

while the implicit preconditiorelfdSubject is false. Nor should mouse messages be
sent to any of the associated views, sitgew depends orsSubject.

Constraints & contracts summary

Constraints operating between classes can be implemented as frameworks of classes
co-operating according to a set of contracts. Using the weaker Fresco definition of
type membership, the contracts have been characterised using transaction types.
This contrasts with the “white box” approach to contracts, in which specific
sequences of operations are stipulated.
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8-2  Aliasing example

This section considers the problems which arise from the possibility of multiple
access paths to an object.

8-2.1 SortedList and SortedldList

SortedList(T) iS a generic type of objects which accept members ofTtygel give
them back in sorted order;has to have a relatianwhich is a total ordering.

SortedList(T)
op add O (M
fn_@_ 0O (Nat) - T

X - XOT := x=x O sl.elems = sl.elems O IdSet.mk(x) Dadd(x)
0i O Nat Oi01..sl.length — 1 =sl@iOself@i

var sl O IdList(T)
Oi,j01..sllength - i<j O sI@i < sl@j

SortedList guarantees only to give back objects which are equal to the inputs, but

client

ss@2
generates separate copy
of relevant structure

there is a variargortedidList(T) which gives back the identical objects that were pre-
sented to it.

SortedIdList(T)

op add O (M

fn_ @ 0O (Nat) - T

X - XOT - x=x O sl.elems = a.elemsDIdSet.mk(x) Oadd(x)
0i O Nat Oi01..sl.length :— 1t ==sl@i0self@i

var sl O IdList(T)
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(1dList guarantees to preserve the identity of the objects, rather than just their states.
| have chosen to useList in both models, to minimise differences between them;
the difference is in the use of == or = in the postconditions.)

a SortedldList
Ss

client

ss@2
points at relevant object

8-2.2 Method implementations

Now consider a pair of simple implementations having the same structure — that is,
each object has one component which igigist. Theadd methods are:
SortedIdList(T) :: add(x) =
xOT O self0SortedIdList(T) /i.e. conforms to invariants
— x=x O Obefore, new, after O IdList(T) - _
new.length=1 0O before++after = sl O
before++new++after = sl 0 new@1==x
0 selfJSortedIdList(T)
O
( var n;
O-(n>1 0 sl@n-1<x) O(n<sl.length O x <sl@n) O
n := findPlace(sl, x); /l'local fn
[— Obefore, new, after O IdList(T) - before.length =n 0O
new.length=1 0O before++after = sl O
before++new++after = sl 0 new@1==x O
slinsert (X, n);
)
and — with even more of the skeleton proof omitted —
SortedList :: add(x) =
( var n;
n := findPlace(sl, x);
O- Obefore, new, after O IdList(T) - before.length =n O
new.length=1 O before++after = sl O
before++new++after = sl 0 new@1==x O
sl.insert (x.copy, n);

)
The access methods are
SortedldList(T) :: @(x) = (1 sI@i);
SortedList(T) :: @(x) = (1 (sl@i).copy);

8-2.3 Using the lists

The crucial difference between the two classes is that iriledidList accepts and
yields the identity of the items to be sortedstedList always makes copies, both
when accepting a new item, and when providing access to theoligtlidList iS
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open to interference with its invariant: having added mutable itemSotcealdList,
a client could alter individual items, causing the invariant to become invalid:

sidl := SortedIdList(T).empty; /l make new list
sidl.add(item1);
sidl.add(item?2);
item1.addOn(50000); /l mutate list contents
smaller:=sidl@1; /Inot necessarily!

The problem does not arise wihrtedList, becaus@em1 is not the object stored in
the list. Clearly, clients dfortedidList have some extra proof obligation to fulfill, if
they are to use it properly. Let us look at that code fragment augmented with the
principal code-specs of an attempted proof:
Oitem10T Oitem20T :— 2?2?20(
Otem10OT Oitem20T :—
—item10OT O item20T O sidlOSortedIdList(T) Osidl.length =0 O
sidl := SortedIdList(T).empty;
CkidlOSortedldList(T) Oitem1OT O item20T
— item1OT O item20T OsidldSortedldList O sidl.elems = IdSet.mk(item1) O
CsidIOSortedIdList(T) Oitem1OT
:— sidldSortedIdList(T) O iteml=item1
O sidl.sl.elems = sidl.sl.elems O IdSet.mk(item1)
sidl.add(item1l);
OsidldSortedldList O sidl.elems = ldSet.mk(item1) Oitem20T O
:— sidldSortedldList O sidl.elems = IdSet.mk(item1, item2)[] [[similarly
sidl.add(item?2);
CkidIOSortedldList O sidl.elems = IdSet.mk(item1, item2) item1OT
— item10T Oitem1 = item1+50000 O
item1.addOn(50000);
)

The proof really comes adrift at this point becatigi@SortedidList iS not preserved

by item1.addOn(50000). But how do we know that? Now consider a similar use of
SortedList:

Otem10T Oitem2dT

‘— (smallest = item1 O smallest = M) Osmallestsiteml O smallest<item2 O (

sidl := SortedList(T).empty; /l make new list

sidl.add(item1); /lput a copy of each item in the list

sidl.add(item?2);

CsidlOSortedListO // how do we know???
item1.addOn(50000); /I mutate original — list unaffected

CsidlOSortedList :— ... Osmaller:= sidl@1; /I guaranteed smaller of originals

)

The key thing is thatidiOSortedList is not disturbed in this case by changesbai.
The same immunity can be got even v@ithtedidList, if the client does the copying:
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8-2.4

Gtem1OT Oitem2dT
‘— (smallest = item1 O smallest = item2) [0 smallest<iteml [0 smallest<item2 [ (

sidl := SortedIdList(T).empty; /l make new list

sidl.add(item1.copy); /lput a copy of item1 in the list

sidl.add(item2.copy);

CsidlOSortedldList(d /l how do we know???
item1.addOn(50000); /l mutate original

CsidldSortedldList :— ... Osmallest:= sidl@1; /I guaranteed smallest

)

Or conversely, how do we know that, for examjpéen 10T is preserved by the state-
ments in whose invariants it is not directly implicated? Consider the above fragment
with the code-specs pared down to focus interestam:
Ctem1OT :—item1OT O item1 = item1 + 50000 O (
Citem1OTCsidl := SortedldList(T).empty; // how do we know???
Ctem10OTCsidl.add(iteml); /I spec of SortedldList::add
Citem1OTCsidl.add(item?2); /Ihow do we know ??7?
Otem10T :— item10T Oitem = item1+500000 item1.addOn(50000); // T::addOn
Otem1OTOteml = item1,+500000 smallest:= sidl@1; /fhow do we know???

)

In some cases, the relevant opspec is explicit about the effeatsnonin other
cases, the independence (or otherwise) of invariant and code is entirely implicit.

Aliasing problem summary

The general problem of aliasing is to prawecode in those cases where the
explicit specifications of the operations involvedciie don’t mentioninv. The
problem of type-invariant-breaking also falls within this scope if the weak definition
of typing is used (in which x : T is static andk varies). In OOP, the particular
obstacle is that we wish to specify and design one type without knowing about the
other subsystems which may interfere with it (as distinct from designing a whole
program at once, and having invariants that apply to the whole thing).

The analysis of the problem in terms of invariants on types has, for the author at
least, made the nature of the problem clearer than an intuitive feeling that aliasing
is difficult.

Effects calculus

This section outlines a method of deciding whether a piece of code will leave an
assertion invariant. It is similar to a system described in [Johnson 91], which was
developed simultaneously.

Each expression or statement hagrging frame,which is the set of variables to
which it may write. Every expression or statement hesading frame the set of
variables whose values affect its behaviour and outcome. If the reading frame of
some pure predicate is disjoint from the writing frame of, thentmOs (i.e.M is

an invariant o).

The complication is that since there may be aliasing, other variables may be
affected, besides those immediately apparent. A variable is said¢éphetefrom
the frame of a statemest if v is unaffected by the execution &f A variablex is
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8-3.1

8-3.1.1

8-3.1.2

said to be separate from anothewrittenx sep vy, if for every operatiors whose
frame includes but notx, x is unaffected bg.

To determine whetheMrs, it is therefore necessary to determine:
» the reading frame of Mm;
* the writing framew of S;
* whetherp sep w

A relevant set of rules follows.

Definition of concepts

Fields

A field is a name to which an assignment of an object identity may be made within
some context. This includes:

* local variables, within operations and statement-sequences
* global variables
» the instance-variables of objects (markedn TCDs)
A field may be referred to
* by name for local and global variablesame

» by containing object and name for instance variables; the object is identified
by some expression yielding its identity.&name
(In a TCD,&name is an abbreviation fagelf.&name)
All the fields of an object may be referred to as a set by omitting a specific field-
name:x.f, self, etc. Notice that.f.&name refers to a specific field within the object

identified byx.f, whilst x.f.name refers to the whole of the object identified by that
field.

x.f.&name x.f.name

x.f\ V

There may be more than one expression which refers to a single object.

Frames

Every expression or statemdathas a reading frame and a writing frame. The
writing-frame is the set of fields which could possibly be altered by exedttihg
reading-frame is the set of fields, altering which could possibly affect the outcome
of executinge. We define relationsl andA:

Odr-E states that the reading framesof] dr
Adw - E states that the writing frame Bf_] dw

Notice that the domain of these relations is the syntactic structure of pieces of code,
not the result-values they return: an expression appearing to the right of the “.”
cannot be substituted by another which has an equal evaluation.
If the reading and writing frames of an expres&@are disjoint,

Odw,dr-EAdw O EOdr O dwndr=0
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8-3.1.3

thene is said to bgure, which means it can be repeatedly evaluated without any
change of outcome (which doesn’t necessarily mean it won't affect the outcome of
any other operations).

If the reading frame of an expressiwand the writing frame of a statemenare
disjoint, s will not have any effect oa. If e is a pure predicate,

AW-S
Up-e
fx-indep: p,we S- Prw=U
Ue S

More generally, if the reading frame of any expression or statesaastdisjoint

from the writing frame 081, precedings2 with S1 will make no difference to any
effects attributable te2:

fx-indep-stmt: P, W S1,S2 - Aw-S1, 0p-S2,psep w | OP:—R 0(S1; OP:-R [B2)
(wherepsepw = p n w = 0).

A frame is an outer bound on the arena of action of an operation. If there are two
frame-specifications for one operation, then they must intersect. (Many of the fol-
lowing rules are the same for bdtfand(], and are given witf standing for either.)

QaL-S
¢d2-S

¢dlnd2-S

fx-conjoin: di,d2, S -

If we knows deals with a framsd which is wholly contained in a framiethen we
may also state thatdeals with the whole.

saLua
fx-expand : sd,d, S %sd-S
¢d-S

Demesneés

The details of the frames of a statement will usually depend on the encapsulated
detail of the definitions of the objects being dealt with. For exampteii$ort-
edList(Shape), then the writing-frame ofdd@3).move(v) depends on what kind of
Shapeld@3 is. We therefore define tltlemesnef an objeck, writtenx.s, to be that

set of fields which are involved in representing its current state. Each class has its
own definition ofd, and frames can be defined without knowing the details of the
frames. For example:

A (dd@3).5 - ((dd@3).move(v))

1. A demesne in feudal times was the land owned by the lord of the manor, held in feu by

the villeins of his village. Except that of course his land was in turn really owned
by the local baron; and so on through dukes and princes etc. up to the King.
‘Demesne’ has common derivation with ‘domain’, and is pronounced more or
less the same.
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for which sample demesne functions might be:

Triangle MultiLine
var v1, v2, v3 Point var path O List(Point)
fn & = {self, v1.5, v2.9, v3.6} fn & = {&path, pathd}

Demesnes are written in conventional set notation, and for convenience are always
interpreted after flattening any nested set structure: only the unified set of fields is
important.

The designer must define a demesne function for every TCD. It should have no
parameters, and should include all fields which are taken into account in an equality
comparison. Each field can be categorised into the following groups, according to
the role of the object to which it points:

» Component— the state of the object to which it points is regarded as part of
the state ofelf: e.g. each vertex afiangle; or thesalary field of anEmployee;
or the boundaries and subwindows of a window. Both the field and the
demesne of the component object should be included in the demestie of

» Reference— it is the identity of the pointed-to object which is important,
rather than its current state. For example btise field in Employee should
point to anotheEmployee; reassigningelf.boss would usefully be regarded
as a significant change to the stateeadf while a change igelf.ooss.salary
would not be regarded as a changseto The model displayed in a window
is a reference, since not all changes in the model’s state would be regarded
as a change to the window.
A reference field should be included in the demesmes§), but not the
demesne of the referred-to object.

* Redundant— caches and “upward” pointers fall into this category: they
have no functionally visible effect or are always completely determined by
other parts of the state.

Fig. 12. Demesnes define boundaries around subsystems of objects

a.p.g.r==ast asep c

ot gi? accetssible_groma Cofit
e ut is not considered part of i
OO "

- r

q C)mlll“!1 ..........

— - components demesnes
............................................... m references may overl
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8-3.1.4

8-3.1.5

The objective is to define meaningful boundaries around subsystems of objects in
the running system. An object should not therefore be contained within the
demesnes of its components. The placing of the boundaries depends on the abstrac-
tions which the concrete objects are intended to represent, and the above guidelines
are informal. In the present proposal, the onus is on the designer to ensure that the
demesne function is useful for the definitions of read and write-frames. Two alter-
native improvements would be: to derive it automatically from any equality test; and

to permit more than one per class, which would provide for different groups of
objects related to different purposes, encapsulated under different demesne-names.

Frames in signatures
The reading and writing frames of messages may be documented in their signatures:
SortedList(T)

op add O x:T) A {sl.d} [{x.9, sl.3, {sli.d | sli - slisl.elems}}
fn_@_0O (Nat) - T AD [{sl.8, {sli.d | sli - sliIsl.elems}}
var sl O IdList(T)

In this caseadd may alter the componentList, while @ alters nothing (that any
client could see). The declaration of an operation twitlignifies that its writing-
frame isl]. add reads its parameter, and both functions may read from thedisi
also from each of its elements. It is necessary to say so explicitly, b&ttasiskes
not include the demesnes of its elements in its own (810-2.2 — p.171).

Separation

fx-indep asserts that if the reading-frame of an expression is disj@eparaterom
the writing frame of a statement, then the latter will not affect the former. This
abbreviation is useful, whepgeandw are frames:
psepw = pnw=10
Wherex andy are objects,
xsepy = x0 n yd =10
Separation is commutative:
sep-comm : z1, z2 - z1 sep z2
z2 sep z1
A statement may have the effect of setting up a new alias, causing two frames to

overlap. To be able to link two frames, a statement has to read at least one and write
the other; so to prove separation is preserved:
sep-preserve: z1,z2,S,p, w- up->
Aw-S
P} wsep zl U psep z2
Pt psep zl [ wsep z2

UP 0zl sep z2 :— z1 sep z20S
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The property ofsolationmeans that an item is separate from everything else acces-
sible to any client:

isol-defn: z.isolated = [0x - = (1==x) 0 z sep X
All uninitialised newly created items are isolated:
Create-sep : (- 1.isolatedJAClass.basicNew

whereAClass is any class. This is a property of the built-in creation fundtamsic-
New, but the designer-built creation functions for any particular class may create
non-isolated items, ready-linked into an existing structure.

If a statement has an empty reading and writing demesne, then it can only yield an
isolated item:

indep-sep : Al 00O - S+ O- t.isolatedJS

8-3.2  Aliasing example revisited

8-3.2.1  Type specification with framing

The opspecs have been augmented to provide the relevant guarantees, and some of
the theorems are now labelled:

SortedList(T)

op add O xT) A{sl} [D{x.5, sl.§, {sli.d| sli - slisl.elems}}

fn_ @ 0O (Nat) - T A0 [{sl.8, {sli.0 | sli - sliIsl.elems}}
add-1: x - XOT = x=x d(Osli - slifsl.elems = (sliDQ.elems O

sli = x O sli.isolated))
O(O sli - slidsl.elems O x sep sli)
Oadd(x)

add-2: x - Ox sep self Dadd(x)
0i O Nat Oi01..sl.length :— 1 =sl@i O Osli - slillsl.elems O 1t sep sli Oself@i

var sl O IdList(T)

Oij01..sllength - i<j O sl@i < sl@j

and the creation function:

Al 00O - Ot OSortedList(T) O 1 .length = 0 OSortedList(T).empty

8-3.2.2  Sketch proof

An outline proof of the example usirggrtedList (which keeps copies of its argu-
ments)
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8-3.2.3

Gtem1OT Oitem2dT
— (smaller = item1 O smaller = item?2) O smaller<iteml [0 smaller<item2 0O (

sidl := SortedList(T).empty; /l make new list

sidl.add(item1l); /lput a copy of each item in the list

sidl.add(item?2);

CsidlOSortedList Oitem1 sep sidld /I crucial invariant
item1.addOn(50000); /I mutate original — list unaffected

CsidlOSortedList /I crucial precond

‘— (smaller = item1 O smaller = item?2) O smaller<iteml [0 smaller<item2
Osmaller:= sidl@1; /[ guaranteed smaller of originals

)

The last line can be shown easily from the postcondition of @ and the invariant of
SortedList, provided the invariant has not been interfered with — as would happen if
SortedldList had been used. It is essential for the preservatisidiogortedList, that
item1 sep sidl whenitem1.addOn(50000) executes. To see that this is the case on entry
to that operation, consider another sketch highlighting the continued separation of
the various protagonists:
Otem1OT Oiteml sep item2 :— ... O(

fn all = item10T Oiteml sep item2 Oiteml sep sidl Oditem2 sep sidl

OO0 sli - slifisidl.sl.elems O item1 sep sli; /lconvenient auxiliary
Ctem1OT Oitem1 sep item2 —all O

sidl := /linstantiate x in:
O-0x-=-(1==x) 0 1t sep xOSortedList(T).empty; //spec of empty

Call d(sidl.add(iteml)); Il spec of SortedList::add etc
Call d(sidl.add(item?2)); //(see below)

Call :—all Oitem10OT Oitem = item1+500000 item1.addOn(50000);// T::addOn
Otem1OTCteml = item1,+500000 smallest:= AQ [{sidl} - (sidl@1);//spec of @

)

An invariance proof
Elaborating one of these lines in detail will suffice to demonstrate the principles
(and horribleness) involved:
ftem1OT Oiteml sep item2 Oitem1 sep sidl Oitem2 sep sidl
00 sli - slidsidl.sl.elems O item1 sep sli O(sidl.add(item?2))
(Notice the invariant deals wittem1 while the item being addediitsm2.)

The proof begins with a restatement of the frame information in the signatuie of
1 sidlOdSortedList |- A {sidl.sl.8} - sidl.add(item2) from sig SortedList::add

2 sidlOSortedList | O {item2.9, sidl.sl.d, {sli.d | sli - sliClsl.elems}} - sidl.add(item?2)
from sig SortedList::add

3 sidld0SortedList |- A {sidl.&} - sidl.add(item2)
from 1, defn SortedList::0 by fx-expand

The requirement is to provall :— all Osidl.add(item2); the various conjuncts of the
postcondition will dealt with separately. The preservatioieofi’s type can be
derived from the separation iefm1 from the writing-frame of the method:

4 all |- iteml sep sidl by [Felim
5 Oitem1.d - item1OT by expr-0O //see below
6 Oall :— item10OT O(sidl.add(item?2)) by implicit-invar from 3, 4,5

The two items’ separation is preserved because the operation writes to neither:
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7 all |- item2 sep sidl by [Felim
8 Call ;- iteml sep item2 O(sidl.add(item?2)) by sep-preserve from 3, 4,7

The separation afem1 and the list is preserved becausel is separate from each
element in the reading-frame of the operation:

9.h all

9.1 item1 sep item2 by [Felim from 9h
9.2 item1 sep sidl.sl by sep-specialise from 4, SortedList::dem
9.3.1 Osli- slilsidl.sl.elems O item1 sep sli by [Felim from 9.h
9.3 iteml sep sidl.sl.elems by sep-conjoin from 9.3.1
9.4 item1 sep {item2, sidl.sl, sidl.sl.elems} by sep-conjoin from 9.1, 9.2, 9.3
9 Call ;- iteml sep sidl O(sidl.add(item?2)) by sep-preserve from 3, 4, 2,9

The term involving the elements of the list is dealt with in a subproof about each
individual element. The old members and the new one have to be dealt with sepa-
rately; the isolation of the new one is explicitly guaranteeatiby

10 con sli /lranges over new elements
10.h1 sliOsidl.sl.elems = (inDQ.eIems Osli = x Osli.isolated)) /l postcond of add
10.h2 all /lprecond of add
10.h3 sliOsidl.sl.elems

10.1  sliOsl.elems | iteml sep sl from 10.h2 by [Felim, O-elim
10.2  sli=x Osli.isolated } item1 sep sli by def isolated

10.3  Osli - slidsidl.sl.elems O item1 sep sli from 10.1, 10.2, 10.h3 by O-intro, [Fintro
12 Call :— O sli - sliJsidl.sl.elems [0 item1 sep sli O(sidl.add(item2))
from 10, add-1 by strengthen

Finally, the separation of the operands is implied by the specification itself. Notice
that asccording to this specification, clients are not allowed to add the list (or any-
thing containing it) to itself:

13 Call :— item2 sep sidl O(sidl.add(item?2)) by SortedList::add-2

14 Call O (sidl.add(item?2)) by post-conjoin from 6, 8, 9, 12, 13

8-3.2.4  SortedldList used with copied arguments

SortedldList, which keeps a list of references to the original items, allows more flex-
ibility for those cases where copying would be slow; but the client has to beware
breaking the invariant by altering any items while they belong to the list.

SortedldList(T)

op add O x:T) A {sl.d} [{x.9, sl.3, {sli.d | sli - slisl.elems}}
fn_@_0O (Nat) - T A0 [{sld, {sli.d | sli - slisl.elems}}
add-1: x - IXOT = x=x OO0 sli - slidsl.elems < (slidsl.elems Osli = x)Oadd(x)

add-2: x - Ox sep self Dadd(x)
0i O Nat Oi01..sl.length :— 1 =sl@i Oself@i

var sl O IdList(T)
Oi,j O1..sl.length - i<j O sl@i < sI@j
fn & = {sl.5}

The guarantees about separation are missing. However, this client chooses to do its
own copying for every argument, so that the effect is just like (&ontgdList:
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8-3.2.5

8-3.3

Gtem1OT Oitem2dT
‘— (smallest = item1 O smallest = item2) [0 smallest<iteml [0 smallest<item2 [ (

sidl := SortedIdList(T).empty; /l make new list
M sli - slifsidl.sl.elems O item1 sep sli]
sidl.add(O- 1 .isolated Otem1.deepCopy); /lput a copy of item1 in the list
M sli - slifsidl.sl.elems O item1 sep sli]
sidl.add(O- 1 .isolated Oitem2.deepCopy); /lconvention of deepCopy
CsidlOSortedldList Oitem1 sep sidl.elems [
item1.addOn(50000); /I mutate original
CsidldSortedldList :— ... Osmallest:= sidl@1; /I guaranteed smallest

)

The isolation of each new member is guaranteegk&yCopy, while the separation
of the existing ones can be shown usiagpreserve.

Commentary

Apart from demonstrating once again the prolixity and tedium of raw proof, the
example suggests that a great deal of effort may be spent in verifying the continued
separation of the entities involved, mostly so as to demonstrate the invariance of
type membership (to guard against the possibility of aliasing): 88-3.2.3 shows a sub-
proof of the sketch in §8-3.2.2, which is chiefly abiemOT. The preservation of
these invariants is in turn subsidiary to the real matter of the proof (§8-2.3 — p.131).

Notice that the responsibility of proving that all invariants are not broken is effec-
tively placed entirely on the client. A client using several servers will have to keep
track of the integrity of each variable used, each with a similar cost to that above.

Fortunately, many parts of this kind of proof seem straightforward, with good hope
of mechanisation by reasonably intelligent tactics.

(The toll could possibly be alleviated somewhat by the invention of a shortcut
method for sayingSortedList looks after its own invariants and those of its parame-
ters — no further proof necessary". This is not pursued here.)

However, the heavy load of proof upon the client is not due to any breach of encap-
sulation: the proof of the client's code shown above involves nothing from the
implementation of the class. Rather, the conditions under which the type may be
used have been spelled out, and the client has to prove compliance.

Inference of frame of an expression

The proof above included the lines:
1 sidld0SortedList |- A {sidl.sl.3} - sidl.add(item2) from sig SortedList::add
5 O item1.6 - item1OT by expr-0

This section discusses the rules for determining the frames of a statement or expres-
sion. It is important to realise that a framing assertion (beginningwettil) is a
statement about the syntax of an expression, and the rules apply to the expression’s
syntax, not the result it yields. So for example, in a context in witseilOT, the
expressionitem10T could elsewhere be substitutedthye; but while the reading-

frame ofitem10T is Oitem1.5, the reading-frame afue is [J. Substitutivity of equals

does not apply to the expression following “-”, although it may be applied to the
framing expression itself.

In many cases, the rules for read- and write-frames are the same, so thedsymbol
stands for eithelr] or A.
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8-3.3.1

8-3.3.2

8-3.3.3

Constants

A constant — type names, metavariables, and members of types with no mutating
operations (such as the numbers) — can be ignored, since frames are about possible
interference through unexpected mutations:

fx-const: ¢ O -(c) — ¢ a constant

Variables

Using a variable reads the reference in that variable (whether the resultant object is
read depends on the expression which uses it):

fx-var-r: 0 &v - (V)
and writes to nothing:

fx-var-w: AD-(v)

Operations

A messages’s frames are advertised with the type description. The frame (reading or
writing) of an invocation is the unidd; d; of the framesl; of the arguments, and

the frame of the message itself. The latter is usually expressed in terms of the param-
eters (dop[pil), and must be instantiated with the yields of the arguments.

O doplpi] - (Po oP( Pi>0))
O di =
fx-op: — e pure
0 dgplej] U Ujd; - egop(ep)

A rule allowing fore; with side-effects would be too complicated: such a program
can be rewritten as a series of assignments.

Any composition of pure expressions is pure; this applies to operations declared
with fn:

pure-form: Al -E
A DO - R[v]
A - R[E]

A transparentoperation is one which reads only its arguments:

transp: f transparent
Opi-E

U E|6 U Ui Pj - Eof(El)

Most of the operations on primitive types are pure and transparent — for example,
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8-3.3.4

h vOInt

1 O&v - v by fx-var-r
2 oo-5 by fx-const
3 X,y - xOInt | x+y pure & transparent //[documentation of Int::+
4 0{&v, v.0} - v+5 from 3, h, 1, 2 by fx-op
5.1 v.o=0 from h by Int:: //all ints are immutable
5 O{&v} - v+5 from 5.1, 4 by subs-=

The built-in identity comparison operation function == depends only on the identi-
ties of the operands:

fx-id: ¢odl-El1
0d2 - E2

0 di, d2 - (E1==E2)

(An ‘=" method would usually read the demesnes of the objects as well.)

An opspec governing a pure expression can be recast as an invariant:

pure-opspec: EAQ
OP —R[t]UE
P I RIE]

Compound statements

A sequence of statemerisreads and writes the unith d; of everything its com-
ponents do:

fx-seq: ¢ d; - E
O Ui di : (El; E2; )

Conditionals and loops are pure and transparent:

fx-cond: Ob - B, Ot - T, Of - F | obOtdf - (B ifTrue: [T] ifFalse: [F])

fx-loop: Ob - B, Ot T | obOt - ([B] whileTrue: [T]) — tinvariant
Throughout this discussion, the frames considered are the outer bounds for any pos-
sible execution: thus the frame of a conditional statement is the union of the frames
of its branches; and the frame of a loop can be determined only from a frame-spec
which can be shown to be true of its body for every execution. It would be possible
to make a finer analysis in which frame-specs are a form of postcondition, which
may differ depending on the starting conditions.

In inline form, these rules can be written:

fx-seq: OUjdi-(0dy-Eq; 0dy - Ey )

fx-cond: ObOtOf - (Ob -B ifTrue: [0t - T] ifFalse: [Of -F])

fx-loop: ObOt - ([Ob -B] whileTrue: [0t - T]) — tinvariant
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8-3.3.5

8-3.3.6

Assignment

Assignment reads nothing, but care must be taken if any existing frame was
expressed in terms of that variable:

fx-ass-r: Op-E
0 p[V\V] - (V:=E)

An assignment to a variable writes to that variable, and there are the same precau-
tions:

fx-ass-w: Aw-E
A d\V]0{&V} - (V:=E)

The use of a local variablecan be forgotten when we leave its scope, but the rule
only works if the frame expression involueenly as a reference:

fx-var-elim: 0{d, &v} - E
¢ d-(varv-E)
— v does not occur free in d

In this example, a variable is used to hold a reference to a value tempaetaisly (
supposed to be a list of references to complex objects of some kind):

Ocl.5 A &c2 OclOldList(NatCell) :— ¢c2 == c1l@3 O
( var v,

O0cl.d, &v A &v, &c2 - (
Ocl.0A &v - v = cl+3;
O&v A &c2 - c2:=v

)
The same rule applies to bindings of all kinds, such as
fx-var-elim-[: O0{d,&v}-E } Od-(Ov-E) — v does not occur free ind

If the content of a variable can be shown to be isolated (that is, separate from every
other frame: 88-3.1.5 — p.137) then leaving the scope of a variable throws the infor-
mation away:

fx-var-elim-iso: 0:— v isolated OE
0{d, &, v} - E

¢ d-(varv-E)

Substitution

Where these elimination rules are not applicable, it is only necessary to recast the
frame-expression in a form not involvinglf two expressions lead to the identical
object, then each may be substituted for the other in a frame specification:

fx-subs-==: OE1-S
El==E2
OE2-S

The overall effect of the following fragment should be that thelis read, but we
do the reading through the temporary variabl€he side-condition ofx-var-elim

Fresco © Alan Cameron Wills 1992 Objects and verification 144



prevents it from being used directly to infer the outer frame-spec, so we first use
subs== to get rid of V.5":

A&c2 0cl.0, &cl - ( var v; /I fx-var-elim
0&cl, cl.0 A &c2, &v- [[fx-subs-==
0 &cl, v.d A &c2 &v-(

0 &l1A&v-O-v==cllO
v :=cl;
A&20vd- c2:=v@3
)

8-3.3.7  Copying

Any operation writing to an isolated demesne can have no effect on any other; there-
fore the effect can be ignored.

Particularly useful amongst derivable results is that if an operation affects just its
receiver, then applying the operation to a copy writes effectively to nothing:

fx-copy-nop: Ad-E
A Xd-X P+ (xop)

A d - E.deepCopy.op

8-3.3.8 Mechanical inference of frames

With the exception of the rule for variable elimination, it should be possible to apply
these rules automatically. The syntactic mode of application does not, in any case,
fall within the normal rule-matching method of the theorem prover. A special built-
in “oracle” would be invoked, inserting a single justification in the proof, called
expr-A above.

8-3.4 Monotonicity and frames

This section discusses an incompletely resolved difficulty with frames.

A client should be entitled to expect that nothing outside the frame specification of
an operation will be affected by it; for this reason, multiple frame-specs intersect: a
subtype should not be able to expand the frame of an operation, but only narrow it.
But this immediately presents a problem: it is common to refine a type by adding
new variables in subtypes, and these must surely be accessible to the inherited oper-
ations; in a supertype, there may be no variables at all.

Consider as an exampeape, now with framing information:

Shape

fn contains O (pOPoint) Bool O p.d, self.d
op move [ (vOVector) A self.d 00 v.5, self.d

mv-def: v - OvOVector :— O p - pOPoint O
(self.contains(p) = self.contains(p+v)) [lmove(v)
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The signature states thatve writes only to theShape’s own components; but
since there are no variables in this very abstract TCD, there is no point in defining
0: that must be left to the subtypes. E.qg.:

FourSides ::+ Shape

op setpl O (Point) A self.d O self.5, p.d
op setp2 O (Point) A self.d O self.3, p.&
op setp3 O (Point) A self.d O self.3, p.d
op setp4 O (Point) A self.d O self.5, p.d

axfsc: p - O:— 1t = p.withinLoop((p1, p2, p3, p40) Ocontains(p)
axfsl: np - ChonintersectingLoop(thp, p2, p3, p40) :— pl=np Osetpl(np)

var pl, p2, p3, p4 OPoint

FourSides is still abstract, and can be refined with different constraints. The new
newA in Quadrilateral ensures that each vertex-setting operation leaves the others
unmoved:

Quadrilateral ::+ FourSides

op setpl O (Point) Apl.d /I other points are fixed

The newA is clearly OK, as it stipulates a subframe of the inherited one; the same
restriction could be described with an extra postcondition.

However, this type adds a new redundant variable — a valid move in refinement —
which the existing operations must clearly be allowed to alter:

QuadWithArea ::+ Quadrilateral

var area [ Area
area = areaWithin(p1,p2,p3,p4)
fn &= {p1.8, p2.8, p3.8, p4.5, area.d}

In this case, the extension®Eeems intuitively unlikely to cause any problem; but

in general, arbitrary expansionsd®tould permit interference unanticipated by cli-
ents, and would make separation proofs impossible except where you know the
precise class you are using. The invariance proof of §8-3.2.3 — p.139 worked by
expanding the definition a¥; but if d is allowed to be redefined in subtypes, that
will not work. We need to be able to make statements about the separatita of
from arbitrary demesnes of concern to clients, while still allowing subtypes to
choose their own implementations.

This suggests rules governing expansions of

* Frames defined in operation signatures may only be reduced in subtypes;
multiply-inherited frame-specifications intersect.

* Demesnes (i.&-functions) may be reduced in subtypes; multiply-inherited
demesnes intersect.

* A demesne may be expanded to a superset of its ancestors only if the exten-
sion is guaranteed to remain separate from every frame accessible to any
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8-3.5

8-3.6

client.
To allow for such extensions, the rules about restriction of frames are applied
beforeelaboration ob-functions.

(A more formal version of these rules is a topic for future work.)

Type Isolation

But this raises the question of how universal separation from clients can be guaran-
teed. It is merely a matter of applying the well-known rule, observexbrmdList

but not bySortedidList, that clients and servers should never be passed pointers to
your private demesne; nor should items to which pointers are passed to you by
clients or servers ever be incorporated into your own demesne. (This does not pre-
clude keeping references themselves, as sudp-s OK to keepp is not.) For
classes observing this regime, isolation can be proven by proving that it is main-
tained by each operation.

Isolation, characterised by an invariasitisolated, should, like other properties, be
observed by all classes claiming to be subtypes of this type. It can be used by clients
(of sortedList and its subtypes, for example) as a short-cut to demonstrating separa-
tion from all other objects (usingpl-defn — page 137).

Reification of subsystems

A system may be designed by splitting it into subsystems to which responsibilities
are assigned, and then defining protocols of communication between them. The
same process is reiterated on the subsystems, until individual objects are attained.
(E.g. [WWC90].) The design of a typical interactive system will begin with the par-
titioning into the User Interface and Core subsystems, with the latter holding all the
domain-specific information, and the former providing the means to browse and
massage it. The Ul will begin a session by presenting the end-user with an overall
picture of the state of the Core — let's suppose it's a programming support system,
and the initial view is of a list of classes.

At this stage, the Ul has a pointer of some sort to an anchor object in the Core: that
is, a fixed, globally accessible object, which provides methods for querying the

Fig. 13.

Pointer access to parts of a subsystem
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|
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which yield
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objects in a
reification.
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overall state — getting a list of classes. The user selects a class or other detail of the
current display, and asks to see more information about that: the Ul gets a pointer to
that class from the anchor, and asks it for sufficient information to display details.
The user then asks for more detail or some associated information, and again the Ul
gets another pointer to a core object. In other words, the user’s requests lead to a nav-
igation around the structure of pointers inside the core.

The earlier remarks on reification (86-5.5 — p.102) assert that a class can be restruc-
tured internally whilst still looking the same from the outside. This is clearly not
applicable in the present example: the query operations provided by the anchor
object pass out pointers to its own components; since these can be looked at directly,
they must remain after any reification. It would be permissible for a reification to try

to simulate the old components by constructing them on the fly, but because part of
the expected behaviour is that changes to these objects actually change the compo-
nents of the anchor, the constructions would have to be two-way views, translating
not only queries, but also editing operations.

But intuition suggests that there are some components of the core which really can
be altered: those to which no direct access is given to clients external to the subsys-
tem. How is this distinction to be made?

A query whose purpose is to yield the identity of a component should be docu-
mented with a postcondition that makes this explicit:
O- 1 == aComponent [getComponentPointer

from which it may be inferred thaigetComponentPointer [1 x.5 ; any reification must
observe this constraint.

So it follows that, during design, those objects not directly accessible to the external
clients may be reified away since they may be considered part of a hypothetical
model. But queries yielding identities of components must continue to do so, and
those objects must remain. This is a distinction not made in the current texts on OO
design, which generally consider design to be an expansion of the existing model.

Effects calculus summary

The flavour of this section is very much more oriented towards actual objects and
pointers than the preceding abstract stuff about models. This is in line with the
Fresco objective of specifying pieces of interchangeable software — not just high-
level OO-style specifications of whole programs. At the interface to such a module,
itis clearly necessary to specify the interconnections (or lack of them) of the objects:
x sep y is often a vital precondition for the parameters of an operation.

This section has introduced the notion of frame-specifications, which are typically
written in terms of demesnes. This replaces the simpler framing clauses such as
“ext” in VDM and “A” in Z. These do not provide the user with much help where
there is much potential aliasing, and where fields may be altered which are not
among the simply-named variables; nor do they cope with type extension.

The inference of frame of an expression is done with rules whose domain is the
syntax of an expression rather than its value; nevertheless, framing assertions seem
to fit into the general Fresco scheme of type theories. The quest for monotonicity
has shown up a difficulty with the extension of the frame of an operation in a subtype
— without carefully-chosen safeguards, aliasing could be introduced in a subtype
which was not there in the supertype.
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Although no claim can be made that the effects system presented here is well-tried
or complete, it is claimed that it could only be designed within the context of a type
system such as Fresco’s. Effects systems have been used elsewhere: for example in
[Johnson91], to assist with the optimisation of a compiler; but in that case, there are
no type-specifications, and so encapsulation is poor — the effect-inferencer often
has to re-analyse clients when a change is made. In Fresco, a type defines what
behaviour all of its subtypes will conform to, and the Fresco effects system seeks to
extend this to aliasing or its absence.

8-4  Naming previous states

8-4.1 Barred expressions

The essential thing about a barred assertion is that it remains unchanged by any
operation:

bar-invar: pre, S - Opre :—ﬁ 0S
Many theorems involve barred expressions, as in:
(P1:-R15, PR1+ R,P+ P1) | (P:=ROS

An expression such as5>y can be rewritten ag5>y, using these rules, which may
be applied automatically:

unbar-const: C=c — iff ¢ is a constant or metavariable
unbar-transp: EO.f(Ei) = ﬁ.f(ﬁ) — iff fis pure & transparent
unbar-binding: Ox-E[x] = Ox- E[x] — & same for other binders

No rules are provided for impure operations, as these should be avoided in asser-
tions. Field-selectors (instance variable names) may be regarded as functions; a field
Is transparent if its demesne occurs in the demesne of the receiver.

The situation with untransparent functions is more complex. A function may be
untransparent because it reads a global variable, or because it reads a field which is
not part of the receiver's or parameters’ demesnes, but nevertheless accessible
through them (via a reference field). Consider an objettypeB:

B

op opU () Ac.o, self.d
O— b.c= b.c+1 Ob.c=b.c+b.c Dop
var c [ IntCell

var x [ X

c iIs a mutable container for an integes.demesne is not part b§. op alters thec-
member to whicle refers, as well as altering the contents of both the old and the
newc. These are distinct:

b.c — the new value of the-member now pointed to by fietd
b.c — the old value of the-member now pointed to by fietd
b.c — the old value of the-membem.c used to point to
b.c — the new value of the-membem.c used to point to
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8-4.2.1

Reference fields and other untransparent functions should clearly be treated with
caution.

Metavariables and code

Potential inconsistencies in interpretation of metavariables
Recall that for a sequence of two statements, the sequence rule is:

sequence: P, M, R, S1, S2 - OpP:-=MOS1
X o . OM[x\xg] :— R[x\xg] IS2

OP —R [O(S1; S2)

(85-2.1.3 — p.74) a sample application being

xOInt ;— x = x+7 O( /l[sequence
con Xg; //kinder on reader to declare it, as in [Morgan]
O:— X = x+50 X = X+5;
Ox=Xg+5 = X = xp+70 I subs-=, arith
0 X=Xq+5 = X=Xg+5 [0 x=x+20] /I unbar
0 X=Xg+5 - x=xg+5 0 x=x+20] /IOP:—P O

Oi— X = x+2 OX = x+2

)
The purpose of the metavariakjgs to be the name of any arbitrary value satisfying
M and which will remain unaltered by any operation in the code (and can therefore
be unbarred). To be clear about the meaning,afle can imagine an infinite store
containing all possible patterns of objects (in addition to the ‘real’ ones we're inter-
ested in and can get at through the real variabigis)a name for any of those which
satisfy the assertions and are outside the frame of all our operations. However, it is
by no means clear that such a thing can always exist.

For suppose we have a model-view framework, with instances thus:

Model
m

mod odel
View v1 View v2

Every model has a variablewsOidSet(View), and the invariant observed by every
View IS selfOmodel.views.

Within the reasoning about some code modifyingl wish to refer to its original

state, and so introdue®y,, a hypothetical/iew which satisfies the same predicate
(matchingMm in sequence) asvl. It may not be necessary thatvw,, or even that

there be an equality operator defined Vafws: only that they behave the same in
respect of the predicate chosen to match is often sufficient to postulate that the
constant represents some hypothetical other object which could exist in the system
— this works for arithmetic examples and many others; but not in every case.

For example, according to the invariawtyvwg.model.views. NOW vwg.model==m
— if itis required by oum — should evaluate toue iff vi.model==m does, and by
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transitivity of ==,vw,.model==v1.model. But sincevl.model.views contains only the
“real” views, with no apparent mention af,, then either the invariant is contra-
vened orvwy==v1. How canvwy==v1 while vw, is nevertheless separate fron?

Two strategies are considered here. One is to reduce our ambitions about constancy
of metavariables, and the other is to extend our model of the system.

8-4.2.2  Metavariables are constant pointers only

In this solution, a metavariable is a new variable which contains a pointer to some
object, which may be any postulatpdssible object. Metavariables are never
assigned or used in code, so the pointer itself is constant; but the object it points to,
and hence the value it represents, is not immune from alteration.

In the case of primitive and other immutable objects, this makes no difference from
standard practice. In the case of mutable objects, the designer must stipulate explic-
itly any separation the object is to have. So when dealingpruwitils,

CpOPoint :— p = p + Point.xy(7,7) O(
¢on pg;
O-p= B + Point.xy(5, 5) Op.move(5, 5);
Op=pg+Point.xy(5, 5) Opgsep p :— p=pg+Point.xy(7, 7) O pgsep pO
Op=pg+Point.xy(5, 5) Opgy sep p
- ﬁ5+Point.xy(5, 5 0 p= E + Point.xy(2, 2) O pg sep pUO
Opg sep p :— pg sep p O Point.xy(2, 2)0p.move(2,2)
)

(To reduce cluttep,UPoint has been omitted from every pre & postcondition.)

The unbarring ofp, is permitted here only because it is not in the frame of
p.move(2,2), (because, sep p); unbarring ofPoint.xy(5, 5) is permitted because it is
specified as generating an isolated value.

If the model-view problem is to be dealt with under this scheme, the designer must
first invent a special type ofew which does not necessarily conform to the invari-
ant, and define equality etc to propesws. Alternatively, a separate constant may

be used to hold each component of\tlegv.

8-4.2.3  Metavariables refer to ghost copies

In this scheme, any object-address may be occupied by one real object and many
ghost objects. A real variable always refers to a real object, and a metavariable
points to a ghost object, possibly at the same address as a real one. The contents of
the ghost need not be the same as the other objects at the same address, and are se
by the constraints where the metavariable is used. Each instance variable of a ghost
object point at another ghost, if the field is within the object’s demesne; and at a real
object otherwise. The application of mutating operations to ghosts is undefined.

The use of a metavariable therefore implies a sort of transitive cagpCopy”)

from real to ghost objects, which have the advantage that they can occupy the same
addresses as real objects, thus permitiimg=v1 whilst allowingvl to change
without affectingiw,. The extent of the copying is entirely determined by the user’s
definition of d for the relevant classes.
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8-4.3 Bars and metavariables summary

In traditional program proof, ghost constants are used freely under the assumption

that an isolated constant of any value can be postulated. In OOP, where values are
represented by groups of interlinked objects, such an assumption is invalid. This

section has looked at the alternatives.

Whilst the “ghost copies” model is a more convenient scheme for the user, it cur-
rently lacks formalisation, and the first alternative appears more clearly-defined and
therefore safer. However, the duty of explicitly stipulating and proving the mainte-
nance of separation is onerous. Proofs elsewhere in this thesis must be regarded as
only semi-formal because of this (deliberate) omission.

Dealing with potential aliasing is clearly a potential drawback in this as in other
areas.

8-5  Projection to supertype, and equality

8-5.1 Equality and subtypes

It seems obvious that a definition of equality in this style is meaningful:
Point::def-eq: aldPoint, bOPoint - (a=b | ax=bx Oay=by)

but we have to be careful about the meaning of ‘=". MembersHioiot does not
preclude membership of any of its subtypes sucbadsuredPoint, which contain
more information: it andb were to turn out to be memberCiflouredPoint, then
we would want an equality test to check their colours as well.

So (a useful definition of) equality is not monotonic. Designers can follow two strat-
egies. One is to define a separate equality for each type in the hierarchy:

alJPoint, bOPoint |- (a =pgint b = ax=bx Oay=by)

allColouredPoint, bl1ColouredPoint }-
(@ =colouredroint P = ax=bx Oay=by O acolour=b colour)

Aless tedious notation involves the projection of the objects into the bottom element
of a type.

8-5.2 Projection operator

|-defn:  xOT,yOTF (XTOT OX[T=y|T = Af-xf=yf)
for all functionsf defined forT.

X|T (read “x as T”) is the projection afinto the bottom element @f. there is no
other typel’ suchthal’ OT O T 2T O x|TOT'.

Designers can now make useful assertions about equality; for example:

alJPoint, b[JPoint |- (a|JPoint = b|Point = ax=bx Oay=by)
which remains true for all subtypesRgint. Of course, since we have decided that
equality is always relative to a given type, we should be careful here abouawhat *
X = b x’ means. For primitive values, ‘=’ is the same as ‘==, so in those cases there

IS no problem. More generally, the equality of the components will be tested accord-
ing to the types that we expect them to have, and extra details they might have that
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8-5.3

we don’t know about are irrelevant, because they can’t make any difference to our
design. For example, if | define a finite straight line by its end-points, then so far as
| am concerned, two lines are equal if the respective end-points have equal co-ordi-
nates; now suppose some client then decides to set up a couple of my lines using
ColouredPoints: that's OK, but the colours are irrelevant to any property of the lines.

Definition of equality for a type

In general, if a designer wishes to state Thagas a view (i.e. a determining set of
variables or queries) whose componentxgreT; then a definition of equality may
be written according to the scheme:

eq-T: ab - alT,bdT | aT=blT = Ajax|Ti = bx|T;
and we can write

a=rb toabbreviate \; ax;|T, = bx|T,

Now what happens if we try to compare two objects of different types? No rule of
the formeq-T from either of their types will apply; but such rules defined for their
common supertypes will apply:

alA, bOB, AOC, BOC | a|C=b|C = a=cb

Notice that there’s no assertion here thatequality ofa andb depends on what

their common supertype is: the absolute notion of equality has been discarded. What
is asserted here is that anyone who can’t tel #iom aB should be satisfied with

C’s definition of equality.

If there is definitely no way that any object can be invented that is bdthead a
B, then any member @fis not equal to any memberBfeither in terms oA, orB:

neg-T: a,b - alA, bOB, AnB=0 } aJA#bJA O aB#b|B

Substitution

The familiar substitution rule
Plal,a=b } P[b]

looks a bit less useful than before subtyping, since in most cases, we are not be able
to say more thaa|T = b|T. However, consider the situations in which it is applied:

in nearly all cases, predicates matchngill deal only in those features understood

in the context in which we are working. Interesting inferences we make about
Points, for example, will rely only on the structure we have defined at that juncture,
and not on any future added information which descendants might contain. In such
cases, we can therefore employ a modified version of the above rule:

subs-eq : a, b, P, T - adT, bOT, P[a|T], a|]T =b|T | P[b|T]

If P only knows/cares about thenformation in these objects, then equality of their
T-projections will be sufficient for it.

However, we can still write the old rule in terms of object identity:
subs-id: a,b,P- Pla,a==b | P[b] from subs-eq, eq-[]
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8-5.4

8-5.5

8-5.6

Application of rules

Matching a rule to an assertion often requires a judgement of equality: in
xOScalar, yOScalar, zOScalar | x<y 0 y<z [0 x<z

y stands for a subexpression which must be matched identically in each occurrence.
Conventional theorem-proving relies heavily on the frequent application of the local
version ofsubs-eq, but Fresco’s version is weaker than usual. So the above rule will
be much more widely applicable if we can make it

x[OScalar, y(OScalar, zOScalar | x<(y|Scalar) O (y|Scalar)<z O x<z

as it will frequently not be possible to do more than obtaityiredequality of two
occurrences.

Comparison with conventional LPF

This conventional rule is omitted in Fresco:
=-subs: E, sl,s2 - E[sl],s1=s2 } E[s2]

Now in some sense, it is up to the designer of a type to decide what equality means
for members of that type. However, because equality is central to rule application,
we impose certain constraints. The above and the following are inherited by every
type, and so any definition which attempts to contradict them will be unimplementa-
ble:

=-subs: E,T,s1,s2- E[s1|T], s1=s2 } E[s2]|T]

id-=: a,bT- a==b,alT | a|T=Db|T

#-~~ a,bT- alJAZ£b|B } -(a==b)

antimono-=: a,b, T, TT - adT, bOT, TOTT, a|]T =b|T } a|TT =b|TT
mono-#: a,bsST- adT, bOT, SOT, a|T #b|T | al|S#b|S
uneg-types-l:  a,b,A,B - alA, bOB, AnB=0 | alA#blA

The Logic of Partial Functions as described in [CJ90] uses a delta-function (unre-
lated to Fresco’'s demesdgto denote whether a term signifies a meaningful value:
sox[integer |- 0(x/0) = false; in Fresco, only meaningful terms are members of types
(other thanJ), so this would be writterxUinteger |- ((x/0)Ointeger) = false. Clearly

only the possession of a definite type gives access to any theories: it is a rare theorem
of any method or function which does not require the operands to have definite
types. Little can therefore be proven about untyped terms, and terms formed from
them are therefore also untyped.

Summary of typed equality

This section has investigated some consequences of the un-inheritability of compar-
ison operators, and in particular equality. The usual substitution of equals rule

should not be used: you must always say which equality you mean. This arises
entirely from the desire to use a type as a specification of a server for a polymorphic
client, which may be seen as the especial pursuit of this thesis.
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8-6

Summary

In attempting to clarify and resolve those particular difficulties associated with rea-
soning about object-oriented programs, this chapter has demonstrated the utility,
and some of the limitations, of the overall Fresco approach of expressing types as
theories:

The intricate contracts in complex frameworks can be characterised as types
within the weak typing interpretation.

Type theories have provided a framework within which to apply a framing
calculus. The strictly monotonic approach imposed by types-as-theories has
exposed the difficulty of making frame specifications monotonic.

Reification of types which pass pointers to components has been clarified.

In the presence of much potential aliasing, the standard ghost-variable
approach to verification of code sequences has turned out to be fraught either
with difficulties of interpretation, or with separation proofs.

The Freco view of subtyping has exposed a limitation in the conventional
view of equality.

Problems with the framing calculus:

Separation proofs seem even huger and more laborious than most.
The rules are incomplete and little-tried as yet.

Object-oriented programs are not yet the stuff of which nuclear power stations ought
to be built. However, the application of a framing calculus within the context of
proofs seems likely to be a step towards the alleviation of the aliasing problem, since
itis frequently the attempt to do proofs, either formally or informally, that points the
way to an improved style of programming. And while none is presented here, it is
reasonable to expect that effective elisions of separation proofs will be found in
future work.
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O Conclusion

9-1 Overview

The objective of this work has been to set up a framework in which object-oriented
software can be specified, verified and exchanged in usefully re-usable units. Poly-
morphic and incremental design are supported. The overall aims and the envisaged
mode of use of Fresco were described in Chapter 2.

The key notions, described in Chapter 6, are the formulation of types as theories of
object-histories, and subtypes as sub-theories. These theories are defined as sets of
opspecs, the basic theorems of object behaviour, described in Chapter 5. Chapter 4
described theories and proofs.

Using these ideas, Chapter 7 showed how “capsules” of specified software are gen-

erated and incoporated into systems in such a way as to ensure the correct operation
of each successfully incorporated capsule. Because of the constraints to correct sub-
typing, new versions of servers always continue to work with old clients.

Finally Chapter 8 used the previously-described concepts as a language in which to
investigate a number of difficult issues in the formalisation of OO programming.

9-2 Assessment

The utility of the key concepts has been demonstrated in three ways:

» Construction of a number of examples throughout the text, showing the way
in which types, implementations, and proofs will be constructed by Fresco-
users.

* As the basis of the guarantees of correct integration of capsules.

* In the formulation of the discussions of Chapter 8, and the light shed on
those issues. Although firm conclusions were not reached on all of these
topics, their exposure in itself demonstrates the value of the Fresco approach
to types and proofs.

The Fresco style of specification is, | believe, readable and not difficult for good pro-
grammers to learn. Type hierarcchies provide good structures around which to hang
formal specification, which otherwise tends to be daunting. The style can be inte-
grated with diagrammatic OO analysis and design methods such as [Coad], [Rum-
baugh]: it provides, for example, for multiple appearances of a type in a document.

Fresco is much more oriented towards programming than, for example, Object Z,
dealing as it does with concerns like aliasing.

Unlike many OO design texts and OOP languages, Fresco permits and promotes the
use of data-reification, in which the concrete model used for implementation is not
necessarily an extension of the abstract model used for specification.
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Proofs are, as usual, enormous and tedious: it seems as unlikely as ever that real pro-
grammers will do them much without significantly more mechanical help. Although
some progress has been made on tackling aliasing, taking such considerations into
account serves to expaaderyproof — not just those where aliasing is suspected.

9-3 Future work

Several directions can be perceived:

» The work described here lacks the concrete touchstone of a testbed. A pro-
totype Fresco should be built. To date, an experimental framework of the
capsules mechanism has been designed, which provides some help in struc-
turing published software, but without the extra security provided by formal
specification.

» The system should then be used to specify, design and build a number of
practical capsules, with semi-formal proofs.

« The semantics of barred variables needs further clarification.

» The rules of the effects calculus need larger trials and further refinement and
formalisation.

* The user interface to the stepwise development and browsing of inline
proofs is clearly crucial to the usefulness of the tool.

» It should be easy to mix ordinary stepwise refinement of code with the invo-
cation of code-transformational rules, chosen and applied in the same way
as proof rules and tactics. This would be an interesting investigation of
coding technique.

» Methods of verification in respect of aliasing need to be improved. Mechan-
ical assistance (‘tactics’) for the straightforward parts of these proofs should
be developed.

* A number of tools supporting the OOA/D methods are appearing; none of
them supports formal methods, and it would be interesting to make such an
extension.
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10-1

10-1.1

10-1.1.1

Appendices

Fresco development languadgeST

The syntax of the executable parts has been somewhat modified from that of Small-
talk, to accommodate the extra specification constructions. The ability to refer to the
vector of parameters to an operation is useful, and so traditional arhument-list
syntax has been introduced.

Expressions

Expr ::= MonadicPrefix | DyadicExpr | OpExpr | KeywdExpr
| Variable | Constant | '(" Expr )" | Block | Assign-
ment
| SetExprn | BoundExprn | Metavariable | SpecStmt

Expressions differ from Smalltalk in providing: unary operators; a syntactic prece-
dence for operators; parenthesised argument lists; and specialised syntaxes for
guantified predicates and members of the &gk All of these are syntactic sugar,

and can be translated to conventional Smalltalk syntax. In addition, there is provi-
sion for metavariables which are used within theorems to stand for subexpressions.

Conventional expressions
MonadicPrefix ::=  UnaryOp Expr
DyadicExpr ::= Expr BinOp Expr
OpExpr::= Expr OpName ['( Expr [, ...] )1

The names of binary and unary operators are constructed from nonalphanumeric
symbols;OpNames are constructed from alphanumeric symbols. There are prede-
fined binary and unary operators, and users may define new ones.

The predefined binary operators have a conventional syntactic binding precedence,
and bind left-to-right.

| %/ n

+-0
<><2=~===~~
U

/

0 o

Unary operators bind tighter than binary; binary bind tighter @@Exprs, which

bind left-to-right:a b(c) d(e) = (a b(c)) d(e). OpExprs need no parentheses if there

are no arguments beyond the first, ‘receiver’, argument.

(Once defined, the unary and binary operators have a fixed precedence within a

capsule and its importers; but the operations they represent may vary from class to
class. For example, | could define a new t¥peith operatorst and<, and they
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would have new meanings relative ipbut their syntactic precedence cannot be
changed. However, the same symbol can be defined as an operator in different cap-
sules, with different precedence: the parsing depends on the capsule you're working
in. Where there is a conflict between the imports of a new capsule, the designer must
redefine the precedences in the new capsule.)

10-1.1.2 Smalltalk-style expressions
KeywdExpr ::= Expr sell: Expr [sel2: Expr [sel3: Expr [...]]]
This is an invocation of one parameterised operation cediddsel2:sel3:.
KeywdExprs bind less tightly tha®@pExprs.

There is no real difference between operations declared and usedéywaExpr
style and in th©pExpr style: the former is standard Smalltalk, and works well with
program-constructing expressiotigrue:ifFalse: etc), and the latter is more con-
venient where the operation name is a metavariable in a theorem.

10-1.1.3 Assignment
Assignment ::= Variable ":=" Expr
The variable now refers to the object yielded by the expression.

10-1.1.4 Creation functions
ClassName a:....b:...

10-1.1.5 Special notations
X == The expressionX andY refer to the identical object.

X=Yy The expressions refer to objects which represent equal values,
where equality is determined by their type(s).

{X|T, y|T, ...} A member ofSet containing objects equal (wrt tyde to x, or
y, or ..., and not containing objects not equal to any of these.

x,y, ...} A member ofSet containing the objects referred toyy, ...
xS If S is a member obet, the object referred to bybelongs t&.
X|TOS If Sis a member obet, thenOy - y|T = x|T OydS

{xOT - P[X]} This is a member obet containing a representative object of
every equality-class whose members satyKj:

Oy - Ply]O yO{xOT - P[x]}
xdT If T is a type, them conforms to the axioms definifg

O xOT - P[x] P holds for all states of all possible objects in all possible
systems satisfying the assumptions of the current context.

OxOT - P[x] P holds for some state of some possible objectlipossible
systemssatisfying the assumptions of the current context

10-1.2 Specifications
Spec :="'0Expr = Expr'D | 'Oinv'O |'(Spec-stmt[,"...])

A specification can prefixing a piece of code asserts that the code conforms to the
specification:
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10-1.2.1

10-1.2.2

10-1.2.3

10-1.2.4

10-1.3

SpecStmt ::= Spec [ '/ Justification '/ | Statement

In addition, aSpecStmt is executable, being equivalent to$fatement or Expr
for that purpose. The optiondiistification is the label of a [justified] theorem
which proves the conformance.

Pre/post
In
Upre :(— postlS
if pre is true before executing, thenS is aStatement or Expr that will

» terminate and leave the system in a state conforming to relevant invariants
(for example, type invariants if this statement forms part of a type-descrip-
tion);

» leave the system in a state such past would evaluate to true.

post may contain barred expressions, and the special varighbee may not.

Code-Invariant

A code-invariant stipulates thdtthe assertion is true beforehand, it will be true
after:

OinvdS = Opre :— postdS

Composition

More than oné&pec-stmt may be applied to any statement or expression:
(Oprel :— postl 0, Opre2 :— post2[], ...) S

in which case all of them apply individually

Inline justification
A theorem or proof may be included in with the code:

JustifiedSpecStmt ::= SpecStmt
| Spec ‘(" JustifiedTheorem [','...] Statement )’

Most of the useful decomposition proofs can be written this way.

Code

A method definition associates a piece of executable code with a particular type and
operation name. If an objexftclass = T, and if T::op = S[self, pj], then the evalu-

ation ofx op (E;) will be the evaluation db(x, E;). T::0p is the code explicitly pre-
scribed if there is any, or the samérlds.op if TT is a superassof T.

A method definition may be written:

MethodDefn ::=
metavars - Type ;' OpName '(' params ')" ="' (' Sequence ')’

A sequence is a group of statements, possibly with local variables:
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Sequence ::= ['var'localvar [,...] '] Statement['; ...]
Statement :: ‘(' Sequence )" | Expr | JustifiedSpecStmt

A block is a value representing a sequence of statements, possibly with parameters
and local variables:
Block ::= T [ params '-'] Sequence ']

Executing aBlock yields an object representing the code in the block; executing a
sequence executes the statements in the sequence. To execute the sequence inside :
Block, an appropriate operation must be used.

10-1.3.1 Control expressions

Blocks form the basis of control structures. Used in a limited fashion, they present
no particular problems of validation. We use these basic Smalltalk control struc-
tures, whereC; are expressions yielding membersBaiolean, E; are expressions,
andS; areStatements:

C ifTrue: [S1] ifFalse: [S2]
[S1; C] whileTrue: [S2]

10-1.4 Metavariables

These are used within theorems to stand for variables, expressions, operation-
names, lists of variables or expressions, or statements. Metavariables are distin-
guished from other variables by their declaration in the bindings of theorems or

proofs.
E (capital initial letter) stands for an expression or statement
% (small letters) stands for an op-name, variable or parameter
E;, v (unbound subscript) stands for a list of items, of which any par-

ticular one may subsequently be referred to,astc (literal or
bound subscript)

When a theorem is applied, operation-name metavariables match with ‘conven-
tional’ operations, binary or unary operators, or Smalltalk-style keyword expres-
sions: for example,

a, op, b - aop(b)
matches all of:
xf(y), xadd:y, 2+x.
whilst
a, op, by - aop(by)
matches all of
x f(y), xff(y, z), xfloor, —x, x+y

Theorems about variables can be applied to expressions, provided the expressions
are pure (relative, at least, to the expressions of the theorem) (see 88):
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pure-thm: A, B- (& A@) F B@)) F (E-(i-EAD), AE)FB(E)

10-1.4.1 Qualified and modified metavariables
Expression-metavariables may be qualified:
M[X]
The qualifier may be any expression, including another metavariable. A theorem

containing metavariables matches with an expression only if there is a consistent
assignment of subexpressions to metavariables.

For example, in an induction rule:
P - P[O], (i-iONat, P[i] F P[i+1]) F (j-jONat }P[j])

P matches any propositionandj match variables or pure expressiobsiNat, +
and are constants and operation-names defined in the context.

Expression-metavariables may be modified:
M[x \y]

If M matches some expression containing occurrencest#nM[x \ y] is the same
expression with each occurrencexatplaced witly.

10-1.5 Theorems
Assertion ::= Exprn | Spec-Stmt | Theorem

Theorem ::= [ label "] [ metavar [')"...] "' ]
[ Theorem [',"...]]
" Assertion [',"...]
The initial set oimetavar names binds those names to the scope of the theorem.

Syntactic precedence rules: any expression-construction >}';>ahd the latter
associates left-to-right:

a,bfFclde = (@b)lc)l(d e)
Multiple conclusions just mean that each of them can be inferred separately:
AFC = AFCL AFCy, ..
A convenient alternative syntax substitutes horizontal linefs for

e A [

pure-opspec: p,R,E. UP—RIT]JOE

P |- R[E]

10-1.5.1 Proofs

A proof is a theorem documented with intermediate theorems from which the final
assertion follows:

Fresco © Alan Cameron Wills 1992 169



Proof ::= [ label "] [ metavar [',...] ']
[ Assertion [','...]
[JustifiedTheorem [','...]]
" JustifiedAssertion [',"...]

An intermediate theorem may be the nested proof of a theorem which can be proven
within the context of the containing hypotheses; or it may be an assertion justified
as a match to the conclusion of some rule:

JustifiedTheorem ::=Proof | JustifiedAssertion

A justified assertion is documented with the label of the rule whose conclusion it
matches, together with the antecedents which match the rule’s hypotheses. (There
are also other styles of justification.)

JustifiedAssertion::=Theorem 'by' Justification ‘from’ label [',"...]

10-1.6 Types and classes
TypeDef ::=

Name [ ‘( TypeExprn ‘) ][ “:+ Type [, ...] [

‘op’ name ‘I’  OpSignautre
[...]

opspec

[...]J¥%

[

‘var’ | ‘const’ name ‘0’ TypeExprn

[.]

invasriant

1l

Methods may be attached td@ygpeDef:
MethodDef ::= TypeName ‘“::’ OpName ‘=" SpecStatment

10-2 Fresco kernel types

10-2.1 Sets

The conventional set operators have their usual meanings, and are defined as pure
functions, so that they may be used in assertions or code:

n Q-
(s1ns2)d(sl1-s2) = sl
s card The size of sed.
Setof: T A set whose members must be subtypet of
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Setof: T

y :Setof: T [* creation func */
(Set of:T): (T) Setof: T [* creation func */
» c(Setof: T) Setof: T

L« :(Setof: T) Setof: T

& _ :(® ) Bool

card . Integer

O O(Setof: T)

0x-=x0d

Ox:T,y:T - xO(Set of: T)(x) O(xzy O yO (Set of: T)(X))
Ox-x0S1 0x0S2 - x0OS10S2

Ox-x0S1 0x0S2 = x[O0S1nS2

O card =0

(Setof: T) x) =1

Osl,s2-slcard+s2card = (sls2) card

10-2.2 Lists

An ldList keeps references to objects:
ldList(T)
op _++_ [ (IdList(T)) A {self.d}
fn_@_0O (Nat) - T A
var length O Int
var @ O Nat - T
O- 1.length = self.length+x.length O (0i O1..self.length O t @i==self@i) O

O i0Olength+1..1 .length - 1 @i == x@(i+length)Oself++t

did1..length :— 1t == @(i) Oself@i
fn dem = {length, {@(i) | i - i01..length}}

OxOT :— 1 Oldlist(T) O 1 .length=1 0O+ @1 == x OldList(T).mk(x:T)
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10-2.3

10-3

10-3.1

Maps

Map from: S to: T

[ Map from: Sto: T
- (S, T) Map from: Sto: T
@ (9T

dom Setof: S

rng Setof: T

T_ (Map from: Sto: T) Map from: Sto: T

(Map from: S to: T) Boolean

s O self dom | self@s [0 self rng

(s »t) dom = Set(s)

s-t)@s =t

m O (Map from: S to: T) } selftm dom = self dom O m dom
O(@s-sOmdomd (selffm)@s = m@s)
0@ s-sOmdom O (selffm)@s = self@s)

xx=self = xx dom = self dom O
O(@s-sOdom O xx@s = self@s)

Kernel proof rules

a-aldA, (x - xOA P[x]) | Pla]

Comparison with conventional LPF

The Mural standard complement of theories defines these fundamental theories:

» Propositional LPF,declares symbolsue, -, [0, and defines in terms of
them =, [0, false, andll. LPF is designed to deal with the possibility of the

falsity of the conventional axiosl 0-e2.
The other axioms follow conventional logic:

contradiction: el,e2 - el,-el } e2

true-intro: true

- [Jelim-l: el,e2 - -(elle2) } -e2

= [Jelim-r: el,e2 - -(elle2) } -el

= [kintro: el,e2 - -el, -e2 } -(elle2)
—=-elim: e - --el e

= =-intro: e - e | --e

-elim: el,e2,e - ellke2, (elf-e), (e2l-e) | e
[Fintro-I: el,e2 - e2 | ellle2

(Fintro-r: el, e2 - el ellle2

» Equality and typinginherits from propositional LPF, and declares symbols

= and; #Z is defined in terms of and =. These axioms are defined:
=-comm: sl,s2 - sl=s2 } s2=s1
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#-comm: sl,s2 - s1#s2 } s2#sl

=-contr: S, e- s£s | e
=-subs: E,T,s1,s2- E[s1|T], s1=s2 } E[s2|T]
id-=: a,bT- a==b,aldT } a|T=Db|T

— neither barred
Fo~m a,bT- alAZb|B } -(a==b)
antimono-=: a,b, T, TT: adT, bOT, TOTT, a|]T =b|T | a|]TT =b|TT
Mmono-#: a,b ST adT, bOT, SOT, a|T #b|T | a|S #b|S
uneqg-types-l: a,b, A B - alA, bOB, AnB=0 | alJA#bJA

10-3.2 Projection to a type

10-3.3

|-defn:  XxOT,yOT R (XTOT OXT=y|[T = Af-xf=yf)

for all functionsf defined forT.

Opspecs
code-inv-defn: inv, Code - Oinv :—inv OCode = Oinv OCode
stren: P.P1,R1,R,S: (PP, (P R1 F R) | (P:--R O00OP1:-R10S
stren: PR,P1,R1,S:- 0OP:=RO((P} P, (PR R1l}| R), OP1:—R10S)
seq: P M;x;,S;- 0P == My, [X] Dxgj - ((P = Mi[x]] US1; IMi_1[Xgj] :— MilXg;]TS;; -..)
if: P R, C, S1, S2- OP — R O(C ifTrue: [[(POC:—ROS1] ifFalse: [P C:—ROS2])
loop-se:inv, C, v, S - dinv[x] := R[X]O
[ (Onv[xg](HPT :— R[xg] O 1 =false

Onv[xolOPT — M[\_/,xo] O1=truel) C]

whileTrue: [BrOINtOM[vg, Xg] :— inv[x] 00< vOv<vyOS]

assignment; OP:— Oxg - R[X,%0] O 1==x0k:= OP:—R[t, x]C E
assignment': OP:—= R O1t==x0x:= OP:=RO E[x\]
yield: P, Q,x, op - OP :— Q[t] Ox op | Q[x op]
var-exprn: X, Y- O— x=x 0 1==x Dy=§ tx
Fla] A O
use-pure: G,FR,aS- a - OP[a] := R[t, a] OF[a]

OA's - PS :— P[a] O G[F[a]] OS

OAs - PS:— On - G[n]OR[n, a] 0S

— must be applied separately for each occurrence of F[a] in G.

promote: P, R, S - vi - OP[vj] = R[v;, vil OS[v]]

xi- [SIT O (PIx] O RIx;, x])

conjoin: OPAOPB:— (PAD RA) O(PB O RB) O(SA |O] SB)
disjoin: OPA OPB :— RA ORB O(SA |0 SB)
intersect: OPA OPB :— RA ORB O(SA |*| SB)
fallback: OPB :— (RA # RB) O(-PAORB) O(SA |/| SB)
seq: OPA — Os' - RA(s, s') ORB(s', s) (SA ; SB)
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10-3.4 Types

» Thetheoryof a FrescaypeT is a set of theoren®s; ; over a set of message-
selectors.

* An objectx is a member of typ€&, writtenxT, iff all the theorems of the
theory of T are valid wherx is substituted foself (and after makingelf
explicit as a prefix to attribute namesself.x rather than just):

Ar 1 [selfix]

At '['s'elf\x]

xdT

* AtypeS is asubtypeof a typeT, written SUT, iff every membek of S is
also a member OF.

xS | xOT
SOT
e XOT1INT2 < xOT1OxOT2
T-impl: xclass=T }xOT
basicNew: C - C basicNew class = C

10-3.5 Effects

fx-indep: r,w,e,S-0Ore Aw-S, rsepw | OeOS

fx-indep-stmt: rnw,e, S1,S2: Aw-S1, 0r-S2,rsep w | 0OP:-R 0(S1; OP:—R 0S2)
fx-conjoin: d1,d2,S-0dl-S,0d2 -S| ¢dlnd2-S

fx-expand: sd,d,S-sdld,¢sd-S | ¢d-S

sep-comm:zl, z2 - z1 sep z2

sep-preserve: z1,2z2,S,r,w-0r- S, Aw - S,

(PFwsep z1 Orsep z2), (P}rsep z1 Ow sep z2)
| OPOz1 sep z2 :—z1 sep z20S

isol-defn:  z.isolated= Ox - - (1==x) O zsep x
create-sep: :— 1.isolatedJAnyClass basicNew
indep-sep: A0 OO -S | O:- 1.isolateddS

10-3.6 Frames

fx-const: ¢ 0O -(c) — ¢ a constant
fx-var-r: O &v - (v)
fx-var-w: A O-(v)

Fresco © Alan Cameron Wills 1992 174



O doplpi] - (Po OP( Pi>0))
O di =
fx-op: — e pure
O dop[ei] [0 U d; - egop( €jp)

pure-form: Al -E
A - R[v]
A - R[E]
transp: f transparent
Opi- g

O E|6 O Ui Pj - Eof(El)

fx-id: ¢0dl-El1
0d2 - E2

0 di, d2 - (E1==E2)

pure-opspec: EAD
OP —R[t]UE
P I RIE]
fx-seq: ¢ d; - E

O Ui di . (El’ EZ; )

fx-ass-r: Op-E
0 p[v\V] - (v:=E)

fx-ass-w: Aw-E
A d[VW]O{&V} - (vi=E)

fx-var-elim: 0{d, &v} - E
¢ d-(varv-E)
— v does not occur free in d

fx-var-elim-iso: 0:— v isolated OE
0{d, &, v} - E

¢ d-(varv-E)
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10-3.7

10-3.8

fx-subs-==:

fx-copy-nop:

OEL1-S
El==E2

OE2-S

Ad-E
A Xd-X P+ (xop)

A d - E.deepCopy.op

Barred variables

bar-invar:
unbar-const:
unbar-transp:
unbar-binding:

Projection

pre, S - [pre :—ﬁ HRS)

C=c — iff ¢ is a constant or metavariable
EO.f(Ei) = EO.f(Ei) — iff fis pure & transparent
Ox-E[x] = Ox-EX] — & same for other binders

|-defn:  xOT,yOT R (X[TOT Ox|[T=y|T = Af-xf=yf)
for all functionsf defined forT.

eqg-T:

a,b - adT,bdT F aT=bT = A;ax|T; = bx|T,

a=rb toabbreviate \; ax;|T; = bx|T;

neq-T:

subs-eq :

subs-id:

a,b - alA, bOB, AnB=0 | aJA#b]A O a|B #b|B
a, b, P, T - adT, bdT, P[a|T], a|]T =b|T | P[b|T]
a,b,P- Pla,a==b | P[b] from subs-eq, eq-[]
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A
a 37
Aliasing 43, 130, 138
arity 59
Assertion 169
Assertions 52
Assignment 77
attributes 37
B
Barred expression 149
binding 60
Block 168
block 60
Box 91
C
Callback 128
capsule 30, 110
capsules 16, 123
Certification 118
certification 116
Class 37
class 28
classes 106, 170
client 38
Code 70, 167
Code invariant 72
Code spec 72
Component 136
Composition 167
Concurrency 43
Conflict 118
conformance 116
Constraint 125
context 67, 88
Creation 106, 122
D
Decomposition 73
decomposition 29
deficits 118
Demesnes 135
E
Effects 133, 148, 174
Eiffel 42
Encapsulation 44
encapsulation 38
Equality 152
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expression 59
Expressions 165
extension 22

F

Fields 134

frame 133, 141
Frames 134, 174
framework 126, 150
Functions 90

G

Generic 25, 94
Global 120

H

holophraxis 29

I

identity 43
Implementability 100
incorporation 116
Inheritance 37, 47
Inline 76

Invariant 167
invariant 139
invariants 89
invocation 78
Isolation 147
isolation 138

J

justification 63

K

Kernel 172

kernel 170

L

Lists 171

Loop 75

LPF 37, 154

M

Maps 172

Matching 64
message 37
Metavariables 150, 168
metavariables 62
methods 37

model 22, 89
Monotonicity 47, 145
monotonicty 85
Mural 12, 68

N

Natural Deduction 35
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O

Object 37

Object Histories 84
Object-Z 40

OOZE 40

opspec 20, 72
Opspecs 173
Oracles 66

P

Polymorphism 39
POOL 42, 128
Preconditions 23
product 86
Projection 152, 176
Promotion 80
proof 63

Proof expectations 116
Property 90
protocol 126

Q

Qualified 169

R

Re 10

Reference 136
refinement 25
Reification 102, 147
Renaming 119

S

Semantics 55
Separation 137
Sequence 74

Sets 170
Signatures 91
signatures 137
Specifications 166
Statements 70
Strengthening 73
subclass 37
Subranges 48
Substitution 62, 144, 153
subsystems 147
Subtypes 85
Subtyping 98
Symbol 58

System 110

T

tactic 36

TCD 19, 107
Theorem 169
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theorem 61

theory 57
transaction type 128
Transformational 35
type 20, 38

Type Box 91

Type theories 83
Types 170, 174

Vv
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Z

Z 34
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