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Abstract

This work investigates the application of formal methods to object-oriented 
programming. The desirable features of such a synthesis are defined, and the 
problems of achieving it — such as aliasing — are investigated. Some solutions 
are proposed.

The work focuses on the design of ‘Fresco’, which is a development environment 
for the construction of object-oriented software with formally-specified and 
proven components. Software is developed interactively (after the style of 
Smalltalk) together with proofs of conformance to specification. 

Specifications may be attached to abstract and concrete classes, and a strict 
notion of subtyping is used to achieve polymorphism. Generic types are also 
supported. Types are interpreted as sets of possible histories of objects.

Software components are generated and transmitted in ‘capsules’. A capsule 
may contain specifications and/or implementations of new software, or 
modifications of existing software. A system is composed of a sequence of 
capsules, which have an acyclic dependency graph. While capsules may be 
brought together in different configurations in different systems, Fresco can 
ensure that each capsule performs as specified, prohibiting configurations 
which could fail because of interference between capsules.
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1 Object-orientation and 
formal methods

1-1 Objectives: formal methods into OOP

1-1.1 Object orientation is a Good Thing

1-1.1.1 Re-use

The advertised benefits of object-oriented programming include re-use in va
forms [Goldberg 83, Cox 86, Meyer 88]. These include:

• Parametric and inclusion polymorphism serve to minimize the amoun
code written within one system — in other languages, similar abstrac
need different pieces of code.

• Inheritance allows the common parts between different components 
factored into one piece of code.

• Strong encapsulation and narrow interfaces make OO components po
between systems and organizations.

In an object-oriented culture, there is less code-writing per product. The code w
is written for any product should cover more cases, be more adaptable to varia
the same product, and other products dealing in the same domain. Whilst trad
component libraries have covered very restricted fields, it now makes sense 
organization to make the development and maintenance of a component lib
key part of their planning [HW 90]. It follows that a market in such compone
should be expected to develop: free exchanges already exist — e.g. [WW90].

1-1.1.2 Responsiveness to change

Partly for the same reasons, OOP can also produce very flexible code. Chan
requirements are an inevitable feature of system design, and one which pre
software engineering methods have not tackled well. Change can be handled 
an OO program because

• A polymorphic component P is one which is designed to work in conjunc
tion with many other component Ci, provided each has a set of character
tics defined in a specification S. Ci need not exist when P is designed; a new
Ci may be added to the system without altering P, provided the new compo-
nent conforms to S.

• Because inheritance is used to factor the common features of many co
nents, there is often one place in a program which needs to be mod
where in other methods there would be several. This tends to ensure th
alterations to a system remain uniform, so that the coherence of the sy
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 9 
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• Strong encapsulation means that each component represents a c
defined concept, generally reflecting the users’ perceptions of the real-w
domain which forms the context of the system. Changes in requirem
tend to happen within clearly-defined areas in the domain, whilst its ov
structure remains relatively constant. It is therefore easy to identify th
parts of the code which need changing, and these tend to be localized

A well-managed object-oriented software house should therefore be able to pr
many variants of its products, and be able to cope rapidly with changes i
demands of the market and individual customers.

1-1.2 Why it hasn’t happened yet (much)

1-1.2.1 Re-use between systems

A look at a public OO library (such as goodies-lib@cs.man.ac.uk ) reveals that
its dependency graph is rather flat: there are very few software components 
build upon others. This is partly because it is no-one’s responsibility to see tha
well-structured, and contributions tend to cover several poorly-separated ide
one go. 

But there is also the usual ‘not-invented-here’ syndrome: to some extent a di
of the work of others, and to some extent a feeling that it is easier to invent the
ponents you need for this job, than to have to search through and fully under
someone else’s code and do your design so as to use them. Code created fo
projects is, in any case, likely to depend on undocumented assumptions whic
be invalid outside their original environment. Picking up code designed for ano
project by people you don’t know is very different from the informal to-and-
between the writers of separate modules in a single project.

Certainly no builder of a safety- or money-critical system would be wise, curre
to use a collection of components from who-knows-where, whose designers m
difficult to contact and have no further interest in them.

1-1.2.2 Change and re-use within a product or product line

The effectiveness of polymorphism depends on the existence, precision, and u
tion of the specification S (in the above model). In inclusion polymorphism, S is
typically represented by an abstract class; but a class expressed in programmi
guage is not capable of representing a specification, and so of course, the cla
only stand in place of the specification, which has to be documented separat
current practice, this very rarely happens: and in consequence, very careful c
ing and re-testing is usually required if a new Ci is to be introduced. 

P S
uses

conforms to

...added later...C3C2

C1

Fig. 1. Polymorphism
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 10 
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Indeed, in some forms of polymorphism, S has no representative at all: for exampl
the characteristics required of the items in any Smalltalk SortedCollection  —
those of a totally ordered set — are specified only informally in the document
of that class.

It is very difficult to test polymorphic code: the Ci components with which it is sup-
posed to work may not all have been designed yet. 

Perhaps the biggest obstacle is that many practitioners are not aware of these

1-1.3 Formal Methods are the Solution

A well-written formal specification abstracts and separates the different featur
interest to the client. This makes it easier to read than the code. The separa
features makes it easier to reason about the correctness of client-code.

The writing of a formal specification also tends to clarify the intentions of 
designer, leading to components which are conceptually more succinct and 
fore more likely to be useful in contexts other than those for which they w
designed.

A formal proof of a component is an assurance that it is reliable. Whilst it ca
tedious to generate in the first place, a documented proof which comes with a 
tributed component can be checked entirely mechanically.

S is usually not a formal specification in current practice, but formal proofs 
make it unnecessary to re-test P for each new Ci: when P is written, it is proven to
work with anything which conforms to S; and when each Ci appears, it is proven to
conform to S.

1-2 The focus of this work: Fresco

Given these potential benefits, this work investigates the application of fo
methods to object-oriented programming. As a focus, a tool is being designed 
will embody the ideas: Fresco is to be a development environment for the con
tion of object-oriented software with formally-specified and proven componen

Fresco programs (in its currently envisaged form) are written in a version of S
talk-80, differing from that language only in its concrete syntax. Specifications
written in an extension of the same language. Proofs will be generated with the
an adaptation of the Mural proof assistant, which is the result of an earlier Man
ter University project [Mural].

As in Smalltalk, the intention is that software will be developed interactively, 
with much use of modules interchanged between Fresco programmers. The u
design and interchange is the ‘capsule’, which may contain specifications a
code for new software, or for modifying existing software. Every Fresco syste
a composition of capsules, beginning with a kernel of basic building blocks. W
every capsule depends on a specific set of others, different configurations o
sules may compose different systems. Fresco can ensure that each capsule p
as its author intended, and prohibits configurations whose capsules would co
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 11 
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The objective is to maximize the benefits of object-oriented programming, of re
and flexibility.

1-2.1 The state and history of Fresco

It must be emphasized that, despite the tendency in the remainder of this the
use the present tense to describe it — purely for reasons of style — Fresco is 
a fully extant system. Parts of the mechanics of capsule management have be
totyped; and Mural, the precursor to Fresco’s proof system, does exist. The 
faith and hypothesis.

Mural is an interactive theorem prover’s assistant, built as the Manchester Un
sity contribution to the IPSE2.5 project [Ipse]. Built in Smalltalk, it represents a 
siderable advance on the interactive style of preceding proof tools, and implem
a very flexible inference system. 

An objective of Mural was to be a generic tool, which could be used for pure m
ematics, or — with a suitable front end — for program verification or any o
application. This flexibility was demonstrated to some extent, though with a ra
uncomfortable transition between the front-end and mathematical parts. The 
tion for Fresco is to take over many of the ideas in a more suitable implement
(Re-use is only worth it for the best bits!)

Smalltalk was chosen as an implementation language for Fresco and for M
because of its ready flexibility and prototyping strengths.

Smalltalk is also the basis of the target language of the initial version of Fre
partly because that’s clearly easier, but also because an aim in Fresco is to d
strate that formal methods and evolutionary programming are compatible.

1-3 The wider context: OO software engineering

1-3.1 Effects of OOP on the lifecycle

OO programming allows new systems to be built very quickly, especially if they
similar to previous ones, or in the same domain. One consequence is tha
systems can be prototyped, with feedback from users at an early stage of an
Much more feedback from users can be obtained and applied between deliv
successive versions of a system. Any pretence of a waterfall model of sof
development can no longer be supported: product planning and project manag
are clearly deeply affected (which is good for consultants).

Perhaps one of the benefits of the OO revolution is that the lure of its potentia
efits is making organizations think more seriously about methodology: since
clear that you do not get the benefits unless you apply the ideas properly. Hen
growth in the fields of Object Oriented Analysis and Design [Coad, Rumba
Jacobson, Booch]. 

Hopefully, the same effect will apply to the adoption of formal methods. The no
of abstract class gives a clear focus and motivation for abstract behavioural de
tions, and also an obvious place to hang the specifications (rather than just 
filing cabinet). 
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 12 
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It is worth noting that the re-use of specified components makes it far more 
effective to specify and prove a component than with traditional methods.

1-3.2 OO Analysis and Design

The topic is still in its infancy, and there are many ideas and confusions, and 
notations and tools to support them. “Object orientation”, perhaps less of an 
matic grant-attractor for researchers these days, is still a money-maker for tex
writers, commercial trainers, and consultants, and the tag is often attached to i
fect adaptations of old material. Nevertheless, some good common ground c
discerned.

The starting point is generally the assertion that the domain within which the
posed system will work can itself be modelled as an OO system. Such a mod
useful tool in analysis, and can be the base upon which another model, that 
required system, can be built. The requirements are then reified into a set of e
able classes. (And it has to be said that many authors tend to confuse analys
design, introducing internal structure during analysis which they assert should
through to the final design.)

The notations used are similar to those of entity-relation models, using diag
together with supporting text. Boxes represent classes, arrows subtyping o
classing (which are generally confused) and other lines represent reference
instances of one class to those of another. 

Rumbaugh and others have emphasized the utility of these relations as abstr
at early stages of design. For example, in a high-level design of a program de
ment support tool,

[Wills 91b] extends such a notation to include formal specifications in the form
invariants and pre/postconditions. It is an ambition for Fresco that the des
should be able to browse designs in diagrammatic form (though this is not ta
here). It is the author’s belief that boxes with lines between them have conside
power to sweeten the pill of formal specification and verification.

1-3.3 OO formal methods

The emphasis of this work is to apply formal specification and proof to object-
ented program components. Others have come from the opposite direction, a
interested in applying OO principles to specifications, to bring the benefits of m
ularisation. In particular, many OO variants of Z have been described. Not a
these are especially suitable for describing OO program components: the se
modules are not necessarily separately implementable, and the modular partit
of the implementation may be quite different (Fig. 2.)

These efforts may be seen as part of the general trend to produce OO varia
Pascal, Cobol, Ada, and so on. Where the language already has a modularisin
struct, the result is often uncomfortable. While there is some argument for ma
a new, backward-compatible version of an old programming language, this s
inapplicable to specification languages: since so few specifications have been

Spec Code
implspec
0+
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 13 
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ten, and since even fewer people understand them, there is really very little i
ment to be preserved.

1-4 Scope of this work

The purpose here is to investigate and demonstrate the application of f
methods to object-oriented programming, retaining and enhancing the bene
OO programming and design. The problems will be elucidated, and some solu
proposed and tried out.

The preceding text should have given some flavour of the author’s keenness t
grate formality with OOP in such a way as to preserve all the benefits. An evolu
ary style of programming should still be possible, and the strong encapsulati
OOP must be promoted in the specification method. The method should be re
ably practicable on an everyday basis. Minimal constraints should be impos
the order of construction of proofs or specifications, just as for the software its

It cannot be hoped for that it will be possible to complete proofs in full detail:
will follow the spirit of ‘rigorous’ proof [Jones80], in which some parts of a pro
can be left as informal arguments until challenged in review.

Whilst Smalltalk is fixed upon as a target programming language, the principle
applicable to other languages. It is not the intention to generate a formal sy
which will cope with anything you can program in Smalltalk: rather, the progr
mer should stick to those constructs which can be dealt with by the formal sy
This makes it easier to generate the basic semantic model for Smalltalk, and fo
in the tradition of the formalists’ approach to the goto.

The main body of this work is on the design and semantics of the Fresco lan
and proof system. The system can be described in layers, starting with the ba
the proof system (Chapter 4), and continuing with the specification, refinemen
verification of three levels of description: statements (Ch. 5), types (Ch. 6), and

spec

code

spec

code

spec

code

spec

codespec

Fig. 2. Different internal structures for spec and implementation
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 14 
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sules (Fresco’s module of design effort) (Ch.7). These provide a firm basis on w
the most difficult issues in OO/FM can be discussed, and Fresco’s contributi
the field can be measured by its utility as a vehicle for formulating questions
experimenting with solutions in these areas.

Certain areas are excluded from consideration: concurrent programming; pro
ming languages with models far removed from those of Smalltalk or Eiffel (suc
CLOS and Self).

The scope of the work is quite broad. The intention is to map out the area wi
benefit of a formal approach, rather than to examine any one detail in the fulles
sible rigour — for many aspects of what is covered here, that will be a matter
future thesis.

1-5 Structure of this thesis

This objective of this chapter has been to motivate and set the scope of the wo
put it in a wider context. The benefits to be expected of object-orientation, fo
methods, and their synthesis have been reviewed: principally, fast and reliable
struction through re-use, and responsiveness to changes of requirements.

The next chapter gives an overview of Fresco and the way in which it shou
used, so as to make plain the objectives of the more detailed descriptions in th
sequent chapters. Chapter 3 then surveys the scene, assessing the state and 
of the work of others, defining the issues of interest, and establishing a vocab
of terms and concepts best suited for the appreciation of what follows. 

Chapters 4–7 describe the various features of the Fresco language individual
a summary is provided in the Appendix. A number of issues particularly conce
with aliasing and encapsulation are separated out into Chapter 8, which als
vides the opportunity for some larger examples.

Finally, Chapter 9 assesses how far Fresco meets its aims and contributes
field, and considers the directions future work should take.

A bibliography and a summary of language, kernel types, and proof rule
appended.
Fresco © Alan Cameron Wills 1992 Object-orientation and formal methods 15 
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2 OO Software Engineering 
with Fresco

Fresco is a scheme of software development which enables programmers to
change well-defined and guaranteed software components called ‘capsules
gramming proceeds according to the precepts of evolutionary softw
development, underpinned by the precision and reliability afforded by formal m
ods.

This view of software development and exchange motivates the Fresco no
central to this thesis, of types as theories of object behaviour, and subtyp
theory-extensions.

Later chapters present the Fresco type system in detail. The purpose of this c
is to give an informal overview of the material, and of the development me
Fresco is intended to promote.

2-1 The formalised goodie

2-1.1 Units of development effort

Object-oriented programming makes possible a culture in which systems are ra
built from widely-distributed and adapted components. Developers can build
sell or exchange components as well as complete systems; and can treat the
ware libraries as capital resources which they augment every time they write 
component. 

The units of distribution in the successful Smalltalk re-use culture are not cla
nor even groups of classes. A look at any ‘goodies’ library shows them to be
tures of new classes, new methods for existing classes, and new implementat
existing classes and methods. (In Smalltalk, classes and methods are updat
compiled dynamically into the running system.) In goodies-lib@cs.man.ac.uk,
73% of the files modify existing classes, and 44% define no new classes. Eac
grammer’s efforts build upon those of one or more predecessors by improve
and extension. Fresco formalises this: software is packaged in capsules, which
define extensions to classes, redefinitions of old methods, as well as new cl
and each capsule includes specifications of the classes which result.

If this notion of ‘deltas’ as units of designer-effort seems a little strange, con
this scenario. Class A uses class B extensively, and sometimes passes B-in
back to its own clients. I design class C, which uses A; but C needs B to pe
some extra function, used whenever B-instances are passed back from A. Ide
should design a B′ which inherits from B. But then I have to design an A′ which is
all the same as A, except that it calls upon B′ instead of B. If A has been designe
with sufficient foresight, then this will be easy; but more likely, it will be a pa
Fresco © Alan Cameron Wills 1992 OO Software Engineering with Fresco 16 
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What I really want to do is just to add the extra function to B — more econom
and less error-prone.  

More generally, many of the real-life examples of redefinition are connecte
some way with improving the inheritability of a class, or broadening its functio
ity.   Others are concerned with improving the performance (so that all client
the benefit, not just those who know about a new subclass); and most of the
with enhancing user-interaction without altering the procedural interface. 

[Szyperski 92] gives the example of a statistics package to be added to RealNum-
bers: if there are subclasses of RealNumbers, they should inherit the new func
tions too. A separate RealNumbersWithStats class would not achieve this —
unless the existing subclasses were altered to inherit from it.

In the other direction, the interdependence of frameworks of classes has been
discussed [e.g. JF88]. If a diagram of dependencies between classes (or an
units of design) is drawn, it makes no sense to attempt to transport separate
units which belong to a loop. (Fresco capsules therefore form an acyclic depen
graph — if two would form a loop, they ought to be in the same capsule.)

Functional units and their hierarchies are good for integrating into one structu
the diverse functions which can be created by a single designer [team] whi
hierarchy remains under that designer’s control; additional requirements 
trigger a restructuring. But when we consider design effectively undertake
many designers between which there is only a one-way flow of information, 
the transmissible units of design-effort must be not functional units, but chang
their definitions.  But it is important that when a system imports such deltas 
diverse sources, they shouldn’t invalidate each other: each should be able to c
the implementation of what went before, and should be able to enrich any part 
system’s behaviour, but not to alter (or delete!) the functional specification of e
ing behaviour, which other parts might depend on.

2-1.2 System composition

Fresco supports the specification and rigorous development of software capsu
capsule contains code, specifications, and proofs, and systems are built by co
ing capsules. All development work is done within the context of some capsule
systems are built by importing capsules and developing new ones. Every defi
in a system is part of some capsule. The mechanism has the potential to gua
that each capsule functions as its author intended, without interference from o
although the functions a capsule provides can subsequently be extend
improved, the properties its clients rely upon will never be invalidated.  

Part of the scheme’s operation depends on restricting the ability of a capsule to
ride existing definitions, to those belonging to capsules on which it has a d
mented dependence: this by itself can help to reduce the likelihood of cla
Whilst the full benefit depends on the (admittedly theoretical) employment of f

A B

C

B′

uses
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formal proofs, greater reliability is nevertheless obtained by using specifica
with more or less ‘rigorous’ proofs.  Even where proofs are completely informal
system highlights correspondences between specification and code which sho
rechecked whenever anything is altered.

The elements of a capsule may be created in any order: code first or specific
first.  Fresco generates appropriate proof obligations wherever the consistency
code and specifications cannot be verified automatically.  Before the capsule m
exported for distribution to other designers, Fresco performs a ‘certification ch
that all the proofs have been completed, and are consistent with the definition
Figure 1).  A complementary ‘incorporation check’ ensures that imported cap
(i) only alter the code of capsules they claim to know about and (ii) have inter
consistent proofs (even if partly informal ones) and hence, hopefully, code that
forms to their specifications.

It is essential that an extended version of any class should behave the same
vious clients as its predecessor did: in Fresco terms, it should conform to the
type.  The next section introduces Fresco’s type system and outlines how it fit
the proof system. We will ultimately come back to capsules and explain their 
position into systems,  in the light of the type system.

2-2 Types and classes in Fresco

In traditional formal development methods, the documents representing top
specification, code, and intermediate levels of refinement are usually separate
some trace information and proofs interrelating them. Fresco integrates all thes
one database, in a unified syntax, accessible through a single browsing/e
system.

The basic unit of specification is the ‘type’, and of implementation, the ‘class’. 
class is unchanged from Smalltalk (except for the concrete syntax). An obje
created as an instance of only one class, but may be a member of many types. Types

Library/net

Incorporation checkCertification check

System 1 System 2

Fig. 3. Fresco systems are compositions of capsules
Fresco © Alan Cameron Wills 1992 OO Software Engineering with Fresco 18 
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are used to document constraints on variables or parameters; and to doc
required and provided behaviour of software components.

An object’s type describes its behaviour, visible as its response to messages, a
constraints which apply to messages it may be sent. (Notice that this is a far st
notion of type than in most programming languages, where type members
about which messages are understood, but not what they do.) Each type is sp
in model-oriented style, with pre/postconditions written in terms of model variab
which may, but need not, correspond to any actual variables in any class w
implements the type.

Despite the distinction, type and class definitions are interwoven, for convenie
into a single all-purpose piece of syntax, the type/class definition (TCD).  Fresc
TCDs instead of classes, and they are realised by adding opspecs and invari
Smalltalk’s classes. Some languages, such as POOL and Abel, separate the s
of types and classes; Fresco permits partial or complete class definitions to b
grated with types where the designer considers this appropriate: in that cas
assertions apply to the real instance variables.

The (planned) Fresco browser will provide a Smalltalk-like interface to the hie
chy of TCDs, and a diagrammatic representation similar to that of [Rumbaugh
paper, boxes of this form are used:

The model section may be missing; the signature section may also be missing
tcd name by itself is to be used in a diagram of class relationships. So that a 
fication can be spread over several pages of a document, the same tcd m
defined in several different boxes: any implementation must conform to the sp

Fig. 4. Components of a Fresco type/class definition

Type/Class Name

Inheritance of Parent Definition(s)

instancemodel
a b c d...

message1

code

message2...
code

implementation
proof

type
conformance

proof(s)

axiom1 
axiom2...
theorem3

theorem4...

proof of thm3

proof of thm4

Theorems Methods

Variables

TCDName

visible signature

private model &/or implementation
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cations in all the boxes — and it is up to the designer not to specify conflic
requirements. The specification section defines behaviour which clients may
upon (whether or not they have seen every box referring to this class); the i
mentation section is of no concern to clients. 

2-3 Specification in Fresco

2-3.1 A type

Shape is the type of objects representing mutable two-dimensional shapes. E
such instance has at least two operations which can be performed on it: you c
whether it contains a given two-dimensional Point, and you can move the whole
shape by some Vector, which translates the set of Points it contains.

The description lists the signatures of operations which clients can access; contains
is declared with fn , meaning it does not alter the state of anything. (A more deta
method of defining the scope of the effects of a method is described in §8.
axiom labelled mv-def details the effect of move on the state of the object. Th
axiom is in the form of an ‘opspec’:

label: variables ·  precondition :– postcondition  operation(parameters)

For any match between the variables and specific objects, provided that the 
ensures that the precondition is met, then the operation will terminate properl
the postcondition will be satisfied.  Within the postcondition, barred items refer to
the state prior to the operation. In this case, unusually, one operation is speci
terms of another. More than one opspec may apply to one operation. 

The signatures of the operations are interpreted as ‘formation’ axioms —
example

p · p∈Point |–  contains(p) ∈ Bool

Other theorems may be derived from the axioms of a type, and the entire set of
able theorems is called the type’s theory.

An opspec may be extracted systematically from the context of its type T:

v, s ·  s∈Shape ∧ v∈Vector :– ∀p · p∈Point ⇒
(s.contains(p)  ⇔  s.contains(p+v)  s.move(v)

In this form, the opspec can be used as a theorem in the proofs of clients whi
Shape. 

The type-membership assertion x∈T means that x conforms to all the axioms (and
therefore all the derivable theorems) of T; many other types may also contain x. The
type-description carries no implication that other operations may not be appli

Shape

fn contains ∈ (Point) Bool

op move ∈ (Vector)

mv-def: v, p · p∈Point |–  
    v∈Vector :– (self.contains(p) ⇔ self.contains(p+v))  move(v)

v

v

Fresco © Alan Cameron Wills 1992 OO Software Engineering with Fresco 20 
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to members of Shape: merely that we do not know anything of how they w
behave. The vacuous specification

  false :– true op

is implicitly true of every operation (including those we do not yet know about)

2-3.1.1 Role of types in code

Types are used in code just as in ordinary programming languages; except th
possible to distinguish types which would not be distinct in an ordinary signa
checking language.

Fresco code may be developed with specification-statements in the style deve
by Morgan, Robinson, and others [Morgan]; the specifications may contain ty
assertions which describe the properties of a variable’s contents at that point
code. A type is used as an abbreviation for a set of properties; as such, it can b
as a convenience: the more basic tool is the ability to assert properties of an o
All typing assertions, whether dispersed in the code, or at variable and para
declarations, are equivalent to a set of assertions about the object’s respo
applied operations.

2-3.1.2 Types and subtypes

A Fresco type is the set of all objects each of which conforms throughout its l
a set of theorems about its observable behaviour. The type defines a set of p
histories of operations on the object; an opspec defines the states in which a
transition may occur, and the relation between the states at each end of a tran

If HST is the set of possible histories conforming to the type ST, and HT to T, then
if HST ⊆ HT, we say that ST is a subtype of T, written ST⊆T.

A client may be designed which will work for all subtypes of Shape, without
knowing anything more than Shape’s theorems. (For example, a handler whic
keeps a list of Shapes and permits users to move them around the screen.)
Fresco © Alan Cameron Wills 1992 OO Software Engineering with Fresco 21 
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2-3.1.3 Type extension

FourSides is the type of objects representing shapes bounded by four str
edges. It is defined as an extension (‘::+’) of Shape: every axiom is inherited. Any
theorem derived from the axioms is therefore also true of the derived type.
client only interested in the movability of all members of Shape may therefore
make the same assumptions about members of FourSides. Fresco type membership
is defined by conformance to behavioural theorems, and so for any types A, B

A ::+ B  |–   A ⊆ B

Equivalent to the ‘::+’ notation is the thick arrow:

2-3.1.4 Model-oriented specification

FourSides has a model, the four variables pi, in terms of their effects on which the
operations are defined. There is an invariant on the model, which ought to b
before and after execution of every operation. Its maintenance is only the resp
bility of an implementation, and not of the clients — they just have to conform
the stated preconditions of the operations.

The model is hidden from implementations of clients, but clients may use it in 
own specifications and reasoning. See §3-4.3.2 –  Applicability of encapsulation to
specifications (p.44).

Since it is not our business here to learn geometry, let’s assume a predicate nonIn-
tersectingLoop which ensures that the boundaries do not cross; and a predic
Point, withinLoop, which tells whether a point is within the bounds defined b
given tuple of points.

The special variable ↑ is used within a postcondition to signify the object return
by the operation.

FourSides ::+ Shape

op  setp1 ∈ (Point)

op  setp2 ∈ (Point)

op  setp3 ∈ (Point)

op  setp4 ∈ (Point)

axfsc: p ·  :– ↑ = p.withinLoop(〈p1, p2, p3, p4〉)  contains(p)

axfs1: np · nonIntersectingLoop(〈np, p2, p3, p4〉) :– p1=np  setp1(np)
axfs2: np · nonIntersectingLoop(〈p1, np, p3, p4〉) :– p2=np  setp2(np)
axfs3: np · nonIntersectingLoop(〈p1, p2, np, p4〉) :– p3=np  setp3(np)
axfs4: np · nonIntersectingLoop(〈p1, p2, p3, np〉) :– p4=np  setp4(np)

var  p1 ∈ Point

var  p2 ∈ Point

var  p3 ∈ Point

var  p4 ∈ Point

// disallowed:

FourSides

Shape
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2-3.1.5 Preconditions and invariants

At this stage, we know that setpi sets its corresponding vertex, but nothing e
about what it does or doesn’t do. Notice that their preconditions duplicate the i
iant. If they did not, an implementation would be obliged to achieve the postco
tion for any prior state; since it is impossible to guarantee that and be su
satisfying the invariant as well, the type would be unimplementable. (See §3-4
p.47.)

2-3.1.6 Inheritance and subtyping

Whilst the type of mutable rectangles is not a subtype of mutable quadrilate
FourSides does describe the static and dynamic properties which they hav
common.

No new operations or model variables are introduced here, but new opspecs
to the existing operations. Implementors must prove that their implementa
meet all the applicable axioms (e.g. code for setp1 must meet both axfs1 and
axq1), and clients may assume any or all of the axioms they know about (s
know I’ve got a FourSides but don’t know what kind, then at least I can rely o
axfsi). 

This is reflected in an interpretation rule for compositions of opspecs:

So subtypes always have weaker preconditions and stronger postconditions. 
an effect of the Fresco interpretation of inheritance, not something that the de
has to ensure. On the other hand, there is no guarantee that it will be possible t
code which satisfies the combined specifications: that is, the type may be em

A type may extend more than one supertype (again with no guarantee of im
mentability of the result: that is up to the specifier). Model variables and opera
are identified by name, unless explicitly renamed.

Quadrilateral ::+ FourSides

axq1: np ·  :–  p2=p2 ∧ p3=p3 ∧ p4=p4  setp1(np)// other points are fixed
axq2: np ·  :–  p1=p1 ∧ p3=p3 ∧ p4=p4  setp2(np)
axq3: np ·  :–  p1=p1 ∧ p2=p2 ∧ p4=p4  setp3(np)
axq4: np ·  :–  p1=p1 ∧ p2=p2 ∧ p3=p3  setp4(np)

pre1:–post1 code
 pre2 :– post2 code

pre1∨pre2 :– (pre1⇒post1) ∧ (pre2⇒post2)  code
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2-3.1.7 Strengthening invariants

HVRectangle is a different extension describing rectangles with sides paralle
the axes. Repositioning any corner leaves the opposite one unmoved, but the
two adjust accordingly.

Invariants are considered to conjoin with all pre and postconditions. Impleme
of HVRectangle should observe both invhvr and invfs: whether the result is imple-
mentable depends on the effect on the postconditions. In the case of a nondet
istic specification, strengthening an invariant is OK if it only cuts down some o
implementor’s options without cutting them out altogether. A new invariant m
also impose constraints on new model variables.

It is not possible to weaken the invariant in an inheriting type: but few exam
where this would be useful and good style have been found.

2-3.1.8 Operation extension

Notice that the domain of an operation can be extended by adding a new axiom
example an existing operation

 r≥0 ∧ r∈Real :– ↑∈Real ∧ ↑ * ↑ = r  sqrt(r)

can be extended to

 r<0 ∧ r∈Real :–  ↑∈Complex  ∧ ↑ * ↑ = r  sqrt(r)

Old clients won’t know the difference. A useful more general theorem can
inferred:

 r∈Real :–  ↑ * ↑ = r  sqrt(r)

HVRectangle ::+ FourSides

np ·  :– p1=np  setp1(np) // now no constraint on pre
np ·  :– p2=np  setp2(np)
np ·  :– p3=np  setp3(np)
np ·  :– p4=np  setp4(np)

np ·  :– p3=p3  setp1(np) // opposite point is fixed
np ·  :– p4=p4  setp2(np)
np ·  :– p1=p1  setp3(np)
np ·  :– p2=p2  setp4(np)
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2-3.2 Generic types

Generic types may be defined with type paramters. In this example, the argu
are restricted to types conforming to a subtype of TotalOrdering:

An instance of this, for example the type of sorted lists of integers, is written

SortedList of: Integer

and in the case of specific types, the designer may include theorems like

T · T sortedList = (SortedList of: T)

so that clients may write

Integer sortedList

2-3.3 Model refinement

HVRectangle1 is not defined as an extension of HVRectangle, but is believed to
represent a subtype of it. Whilst the operations available to clients are the sam
model variables are different: while HVRectangle is defined with the four points
p1..p4, HVRectangle1 is defined with one corner and a vector representing a d
onal. It will be necessary to prove the subtype relationship.

(Assume a relation < on Points: p1<p2 ⇔ p1.x<p2.x ∧ p1.y<p2.y .)

SortedList of: T ::+ (TotalOrdering of: T)

op  add: (T) 
fn  get: (Nat) T
...

s : List(T)
i, j · i<j ∧ j<self.len  ⇒  s[i]≤s[j]

...

HVRectangle1

op contains ∈ (Point) Bool

op move ∈ (Vector)

op  setp1 ∈ (Point)

op  setp2 ∈ (Point)

op  setp3 ∈ (Point)

op  setp4 ∈ (Point)

p ·  p∈Point :– ↑  =  origin<p  ∧  p < origin+extent  contains(p)

p · p∈Vector :– origin = origin+p ∧ extent = extent  move(p)

p ·  p∈Point :– origin=p  ∧  origin+extent = origin+extent  setp1(p)
p ·  p∈Point :– origin.y=p.y  ∧  origin.x=origin.x  

∧  (origin+extent).y = (origin+extent).y  ∧  (origin+extent).x=p.x  setp2(p)
p ·  p∈Point :– origin=origin  ∧  origin+extent = p  setp3(p)
p ·  p∈Point :– origin.x=p.x  ∧  origin.y=origin.y

∧  (origin+extent).x = (origin+extent).x  ∧  (origin+extent).y=p.y  setp4(p)

var   origin ∈ Point

extent

origin
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In order to prove subtyping in general, we need to prove that all the axioms AXT of
the supertype T are observed by any member of the subtype ST:

ST⊆T ⇔    ∀ x · x∈ST ⇒ x∈T

⇔ (AXST |–  AXT)

The model variables present a slight complication. In the formal semantics o
language (into the details of which we shall not go yet) model variables are h
with existential quantification: the history of the visible features is such that the
a history of tuples (such as 〈origin, extent〉 and 〈p1, p2, p3, p4〉) such that the
axioms are satisfied. It is therefore sufficient to demonstrate that any rel
between the two sets of variables exists, from which subtyping can be proven. 
tively, the trick is to imagine that the subtype inherits the axioms and variable
the supertype, and that an invariant relates the two sets of variables: give
‘retrieval relation’, show that the inherited axioms are all derivable from the s
type’s axioms, and therefore redundant.

A suitable retreival relation for this example is

p1 = origin  ∧  p3 = extent+origin

(The invariant in HVRectangle constrains p2 and p4.)

2-3.4 Proofs and theories

The full form of a theorem is

[ label : ] [ variables · ] [ hypothesis1, hypothesis2, ... |–  ]  conclusion

where the hypotheses and conclusion may be opspecs, ordinary predicates, or
theorems. A theorem may be used as a proof rule: if, with a consistent substi
of expressions for variables, known theorems can be found to match all the hy
eses, then the conclusion may be inferred.  A theorem may be proven eith
matching it in its entirety from such a conclusion, or by proving its conclus
within a context in which its hypotheses are assumed. 

Each theorem derived in this way should be annotated with a justification poi
to its antecedents. There are many ways to display a proof in this style — the m
adopted here is similar to the ‘natural deduction’ style used in Mural.

The generation of a context in which hypotheses are assumed is a localised v
of the overall structure imposed on knowledge represented by theorems. A the
a set of variables and a set of axioms, together with the theorems which c
derived therefrom. We have already met the theories generated by type descri
Just as the variables of an individual theorem may be substituted by expressi
specialise the theorem to a specific case, the variables of a type theory — the
variables — may be substituted by expressions to demonstrate applicability to 
cific object. 

Each theory may be the context within which another is nested: all its variable
theorems are inherited. The outermost types defined by a designer are d
within the context of a standard Fresco theory which inherits information a
predicate calculus, sets, arithmetic, the Fresco language, and ‘built-in’ type
classes.

Fresco’s proof support tools impose no chronological order upon the creation o
orems or their justifications. Help in searching a context for theorems to suppo
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Fresco generates ‘proof expectations’ — theorems which ought to be verifi
support an implementation claim.  The ‘filing out’ mechanism makes difficult 
publication of capsules containing incomplete proofs, and the same checks a
on imported capsules.

2-3.4.1 Model refinement proofs

Since withinLoop is not defined here, we cannot verify contains, but we can check
its relationship to move. Since that axiom does not refer to a model, the retri
relation is not used:
h p · p∈Point

1.h1 p ·  p∈Point  :–  ↑  =  origin<p  ∧  p<origin+ extent  contains(p)

1.h2 p ·  p∈Vector :– origin = origin + p  ∧  extent=extent  move(p)
1.1h1 v · origin = origin+v  ∧  extent=extent
1.1h2 v∈Vector
1.1.1 origin+v<p+v  ∧  p+v<origin  + v + extent

 ⇔ origin<p+v ∧ p+v<origin+extentby  subs-eq from  1.1h1
1.1.2 origin<p  ∧  p<origin +extent  ⇔  origin<p+v ∧ p+v<origin+extent

by  Point::Sym+-<  from  1.1h2, h, 1.1.1

1.2 self.contains(p) ⇔ self.contains(p+v) by  fn-defn from  1.1h1, h, 1.1.2

2  v·  v∈Vector:–  self.contains(p) ⇔ self.contains(p+v) move(v)
by  refine from  1.h2, 1.2

The theorem to be proven is formed by the hypotheses h1, h2 and the conc
line labeled ‘3’. There are several subproofs (1, 2, and 2.1) which may have
variables and hypotheses: these are necessary for the application of rules con
subtheorems. Non-hypotheses are justified with by rulename from antecedents.
Rules used here include:
refine :  P1 :– R1  S,   (P |–  P1),   ( P, R1 |–  R)   |–     P :– R  S
subs-eq : E1 = E2,  P[E1]  |–   P[E2]

∧-elim: A ∧ B ∧ ... |–  A, B,  ...

Point::Sym+-< : p1∈Point, p2∈Point |– E[p1] < F[p1] ⇔ E[p1+p2]<F[p1+p2]

‘E[e]’ stands for any expression with a subexpression e.

Certain rules such as ∧-elim and its complement, and the commutativity of som
common operators, are used so frequently that they are built into the suppo
and made implicit.

Another proof, this time using the retrieve relation, and with three useful con
sions (lines 4, 5, and 6) dealing with different supertype axioms:
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h1 p1=origin  ∧  p3=origin+extent

h2 np ·  :– origin=np ∧ origin+extent = origin+extent  setp1(np)

1h np ·nonintersectingLoop(np,p2,p3,p4)

1 |– true by  true-intro

2h origin=np ∧ origin+extent = origin+extent

2.1 p3=p3 by  subs-eq, ∧-elim from  2h, h1

2.2 |– p1=np by  subs-eq, ∧-elim from  2h, h1

3 true by  true-intro

4 np ·  nonintersectingLoop(np,p2,p3,p4) :– p1=np setp1(np)
by  refine from  1, 2.2

5 np ·  :– p1=np setp1(np) by  refine from  3, 2.2

6 np ·  :– p3=p3 setp1(np) by  refine from  3, 2.1

2-3.5 Operation decomposition

2-3.5.1 Types and classes

Whilst an object may be a member of many types, it is an instance of precisel
class, which describes its implementation as a list of component variables and
of methods. It is useful to annotate a class with invariants and opspecs, and
merely extend the type notation to include method-definition. Class descrip
may be derived from each other, for convenience, but that has little to do with
useful behavioural relationship, and is not dealt with here.

Whilst the definitions of a type and a class may be combined in one type/
description, it is not automatic that a class’s instances conform to its ‘home’ 
Fresco ensures that all methods defined in or inherited by a class are pro
conform to the relevant axioms of the home type. Not all the axioms of a type
be provided for by methods in the associated class — partially-impleme
‘abstract classes’ are allowed. But the proof of a method which creates a
member of a type depends at some point on a theorem of the form

C.implements(T),  x class = C,  T-invariants[self\x] |–  x∈T

and the the first hypothesis can only be satisfied by a special ‘built-in’ justifica
which checks whether proofs exist that all axioms of T are satisfied by the method
of C.

2-3.5.2 Code development

Although the abstract syntax and semantics of the coding component of the F
language is that of Smalltalk, the concrete syntax is somewhat adapted to fi
the reasoning system. (Nor do we expect to be able to give formal rules for 
detail of the language.)

The axiom applicable to setp1 can be satisfied by
np · setp1(np) =̂   ( var  p4 ·

p4 := origin+extent;

origin := np;

extent := p4 – origin )

and the proof is largely documented by annotating the code with pre/post spec
tions. Preferably, the code should be developed from the axiom in stages as
cated in [Morgan]. 
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1 origin+extent  = origin+extent by  A=A

2  origin+extent  = origin+extent :–  p4 = origin+extent 
 p4 := origin+extent by  assign

3  :–  p4 = origin+extent  p4:= origin+extent by  stren from  1, 2

4  p4 = origin0+extent0
 :–  origin=np ∧ p4 = origin0+extent0   origin:= np by  assign

5 p4 = origin0+extent0  :–  origin=np ∧ p4 = origin0+extent0  origin:= np
by  stren from  4

6  origin=np ∧ origin+p4–origin = origin0+extent0
 :– origin=np ∧ origin+extent = origin0+extent0  extent := p4–origin  by  assign

7  origin=np ∧  p4 = origin0+extent0 
:– origin=np ∧ origin+extent = origin0+extent0  extent := p4–origin

by  stren from  6

8   :– origin=np ∧ origin+extent = origin+extent 
(p4:= origin+extent; origin:= np; extent:= p4–origin) by  seq from  3,5,7

These rules are used:

seq:  P :– M1[x] S1,  Mi–1[x\x0] :– Mi[x\x0] Si  |–    P :– Mn[x]  (S1; S2;...Sn)

assign:  P[e] :– P[v]  v:= e

var-decl: (var  x |–   P:– R  S)  |–   P:– R  (x · S) 

The rules are somewhat more complicated when the possibility of expression
side-effects is taken into consideration: which is the clearest encourageme
avoid them! Chapter 5 deals with those cases where the effects are on items
tioned in the relevant expressions; cases in which the effects may be on other
are entirely ignored until chapter 8.

An alternative ‘in-line’ style (as in [Morgan]) may be used for documenting dec
position proofs, in which any spec or code may be prefixed by another spec w
it refines: 
  :– origin=np ∧ origin+extent = origin+extent 

( var  p4 ·
 :–  p4 = origin+extent 

 origin+extent  = origin+extent
 :–  p4 = origin+extent

p4:= origin+extent; 

p4 = origin0+extent0
 :–  origin=np ∧ p4 = origin0+extent0 

np = np ∧ p4 = origin0+extent0  :–  origin=np ∧ p4 = origin0+extent0 
origin:= np; 

  origin=np ∧  p4 = origin0+extent0
 :– origin=np ∧ origin+extent = origin0+extent0 

origin=np ∧ origin+p4–origin =  origin0+extent0
:– origin=np ∧ origin+extent = origin0+extent0 

extent:= p4–origin

)

Some of the justifications and auxiliary proofs are a little difficult to integrate 
the code in such a style, though a good browsing tool should be able to expo
hide them as required (a technique known as holophraxis).
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2-4 System composition

All Fresco software development work — specification, coding, proof, docume
tion — is done within the context of some capsule.  A designer may develop se
at once within the same system, but has to switch consciously between them
corresponds to a separate ‘desktop’.  Once developed, the designer can ask
to certify the capsule: that is, to check that the proof obligations are all up-to
and have complete proofs.   A certified capsule can then be incorporated into a
system.

Each capsule has a name which is unique worldwide: the full identification incl
date and hostid of origin, and author’s name etc. are included in the ‘header’ 
mentation.  Each builds on the work embodied in other capsules, its prerequisites.
A capsule cannot be incorporated into a system unless its prerequisites are a
there.  The prerequisite graph is acyclic and directed; capsules are not func
modules, but modules of programmer effort: if two modules are interdepen
then they should be defined as separate TCDs within the same capsule; ca
dependencies are unidirectional.  

During development, Fresco ensures that the designer does not use (or inheri
anything defined by another capsule which is not a prerequisite.  As far as TCD
global variables are concerned, this is just a question of tracing the definitio
names: every definition in Fresco is associated with a particular capsule.  B
messages, this can’t be done with complete certainty until an attempt to cons
proof, which must refer to the definitions of operations in particular types.

On incorporation into another system, Fresco checks that the definitions give
the incoming capsule do not clash with those of other capsules which are not i
requisites.  A renaming scheme can be invented which circumvents some 
problems, where a new definition accidentally has the same name as somethin
But in the case where two cousin capsules (with a common prerequisite, but n
prerequisite of the other) try to redefine the same item in different ways, then
can only be declared incompatible and cannot both become part of the same s

A capsule may only define new TCDs and conformant augmentations of exi
ones.  The TCDs in a capsule are therefore composed using ‘&’ with the ones
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already existing in the system (which should come from prerequisites); so th
new code implements the old specification as well as the extension.  (Figure 4

Once certified and published, a capsule cannot in general be modified (wi
renaming it); but a new version may be issued if it conforms to the old one.
extension to the naming scheme  encodes the version history (branches are a
of course: improvements may be made by diverse authors), and prerequisite
be quoted with name and version.  Then any later version will be a satisfactory
stitute.

2-4.1 Capsule contents and composition

A capsule is a tuple 〈name, version, prerequisites, definitions〉. Definitions
includes all TCDs, together with global-variable definitions.

A Fresco system definition is a pair  〈capsules, definitions〉. capsules is a list of
the capsules the system has incorporated.  All definitions can be attributed to a par
ticular capsule.  Every system has a Kernel capsule, which contains all the sta
issue classes and globals. Run-time components of the system — the heap
interpreter state, and so on — depend on the code in just the same way as in o
Smalltalk.

So the definitions in a system are determined by its capsules, and by the or
which they were incorporated, which in turn is determined by the prerequisite g
Each capsule’s incorporation adds the new capsule to the list, conservatively e
the types, overwrites method definitions and adds fields to classes.

2-5 Summary

Class definitions in Fresco also carry type specifications, in the form of mode
ented specifications, which may apply to model or actual instance variables. I
itance may be conformant or non-conformant: including type information or 
Conformant inheritance gurantantees substitutable subtyping.

Figure 4.   Capsule composition conjoins specs and overrides implementations

Capsule A

Spec XA Capsule B

Spec XB

Impl XA

overrides

implements  XA & XB

prerequisite

Capsule
A-User

prerequisite

uses
X

Capsule A-User is not upset by 
B’s re-implementation of X

Impl XB
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Subtypes may be constructed either by inheritance or by reification, involvi
proof with a retrieval function. 

Methods may be constructed using a variant of Morgan’s method of specifica
statements. 

Proofs are constructed in a style similar to ‘natural deduction’. 

The unit of design modularity is the capsule. The design of each capsule is fo
on some set of precursors. Each capsule effectively defines a theory of the d
tions it carries, which is used by its importers. Capsules contain new class d
tions, and augmentations of old ones. Fresco ensures that (if proof obligation
correctly fulfilled) no conflict will arise between capsules in any configuration.

The Fresco notation includes diagrammatic elements (used for analysis and de
inexecutable assertions (used for specification) and Smalltalk code. Classes m
related by conformant and non-conformant inheritance, reification, and com
tion; the last may carry a contract.

The proposed Fresco environment will support the interactive development of
sules, including their type/class definitions, contracts, and proofs.
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3 The state of the art:
background and issues

This chapter combines a survey of relevant work by others with discussions
number of issues which arise from or contrast betweeen their efforts. There is a
summary of where Fresco stands on these matters. The scene is thereby set
detailed description of Fresco which follows in chapters 4—6.

3-1 Formal methods

3-1.1 Specification styles

Algebraic specification [GGH] defines a type using equations over its visible op
ations. Advantages and disadvantages of this technique:

• The equations are deterministic. Where loose specifications are requir
separate kind of specification must be used. This limited expressive
tends to push the specifier into making design decisions too early on.

• Well-suited to execution for prototyping purposes with a Prolog-style in
preter. In Fresco, this is not seen as an advantage, since OOP alread
vides for rapid prototyping of a superior sort (§1-3.1 — p.12).

• Not so easy for large specifications. It is inevitable that existentially-qua
fied intermediate variables will be required for the equations of anyth
more complex than the usual examples (stacks, natural numbers, and s
These correspond to components in some hypothetical internal state
hypothesising of such a state is the basis of the model-oriented metho
except that they force a consistent model of the internal state over a
axioms, rather than inventing a new one ad hoc for each axiom.

• Amenable to proofs using term-rewriting systems.

Model-oriented specification begins with the definition of a hypothetical intern
structure of the objects of interest, and defines all the visible operations in ter
their effects on that. Advantages and disadvantages:

• The model may be mistaken for a description of the required or expe
implementation.

• A badly-designed model may contain states indistinguishable by the u
the external operations. The usual refinement techniques can be confus
this state of affairs, disallowing valid implementations. 

• Particular specifications are easy to understand, and the technique in g
is easy to teach. This is as true for large specifications as for small one

• Since one type is always modelled in terms of others, it is impossib
define primitive types this way.
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In addition to the data structure (usually a record-like definition), there is an invar-
iant which constrains the model structure to an appropriate set of states, and 
tion-specifications (opspecs in Fresco parlance) which consist of a postcondition
and a in some languages a precondition.

The advantages of model-oriented methods seem to outweigh those of the alg
Fresco has no need for prototyping in the logic programming style; we need 
specifications; and term-rewriting appears to have limited utility in proof syste

3-1.2 Traditional specification methods

The principal features of the model-oriented specification language Z [Spivey] are 

• Modularisation by “schemata”.

• A good associated tradition of interspersing formal schemata and info
text.

The schema structure of a Z specification is chosen for readability; but each sc
cannot in general be implemented independently of the others — the structure
to be flattened before a reification can be done.

There is a poor separation in Z between client and provider: for example, c
must infer the precondition of an operation from the postcondition and invarian
there is little emphasis on a clear contract. This is remedied in many OO varia
Z.

VDM  [Jones86] 

• has always been a development method, whose notation “Meta-IV” (alm
universally called “VDM”) was designed with that in mind. 

• There has been little work on modularising VDM until recently [Fitzgera
90, Bear], so that specifications tend to be big and daunting.

To develop OO forms of VDM, a method of composing specifications mus
added — necessary for a useful form of inheritance.
Hoare suggests [Hoare90] that Z forms the better base for specification, and 
for development. This advice is followed to some degree in Fresco: the style of
entation of specifications, and the composability of pieces of specification owe
inspiration to Z; while the emphasis on client-provider contract, data reification
the philosophy of rigorous proof come from the author’s experience of VDM.

Larch  [GHW85] is a two-tier specification method, in which algebraic methods
used to define terms used in the second tier, where they are employed in the s
the chosen implementation language.

3-1.3 Decomposition strategies

Once the requirements for a particular operation have been defined, there
number of approaches to producing and verifying the code which is intend
meet them.

Assertions & VCG. After writing a method, it is peppered with assertions — pr
icates intended to be true whenever execution passes over them. The peppe
is given to a Verification Condition Generator, which generates a verification co
tion — a large predicate which you try to prove. It is often difficult to see the c
nection between any part of the VC and the features of your program; so
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difficult to get intuitions about how to prove it, and hence difficult to see where
problem is if you get stuck. The assertions are added after the program is w
and there may be a tendency to write assertions which differ little from the c
Nevertheless, more real code has reputedly been verified this way, meetin
highest requirements of the national software reliability standards, than by
other; the system used was Gypsy [Good 82].

Stepwise refinement: A specification-statement, consisting of a pre & postcondi
tion pair, can stand for any segment of code not yet developed, permitting reas
about the surrounding code to proceed. You begin with a specification state
and find a refinement or decomposition. The step is a small one, and so 
proven. After many such steps, the method is decomposed entirely to code
principle was expounded in [Jones80], and is well illustrated in the refinemen
culus [Morgan 90], in which the steps can be documented ‘inline’ with the cod

This is the approach adopted in Fresco. The inline documentation of reificatio
the small scale is in keeping with the larger scale OO use of the abstract class,
represents a specification documented in the same space as the code.

Transformational development, the stepwise application of rules to a specificati
to turn it gradually into a program, has been demonstrated for applicative lang
such as Refine [Green]. The technique can also be used for optimisation. Th
lection of rules must be extensible by the user. It would be interesting to 
mixture of this technique and the refinement style in the context of a rule-b
system such as Fresco.

3-1.4 Inference methods

Term rewriting . A number of efforts have been made to produce fully autom
theorem provers. They have generally centred on the technique of term rewriting, in
which the machine repeatedly applies conditional equalities — that is, of the f

hyp1, hyp2, ... |–  f  =  g

This is especially applicable to the algebraic specification methods, where
types are described in this form. Term-rewriting tactics deal very well with pro
sitional logic, and some success has been had with more sophisticated proble

The fully automatic theorem prover of Boyer and Moore used term-rewriting: t
experience suggests that when such a tactic fails, it is often difficult to see whe
problem lies. But since the machine’s complement of rules and tactics can ne
sufficient to cover all possible programs, human intervention is often necessa
suggest new axioms for the machine to try. [Lindsay 88]

It seems possible that as ‘artificial intelligence’ techniques improve, machines
yet be got to do the bulk of theorem proving; indeed, this is a necessary precon
for widespread use of formal verification. Until that day, a co-operative ef
between user and machine is necessary; and for that reason, half-done proo
be easy to read and to relate to the problem domain, so that the user can ta
where the machine gets stuck.

Natural Deduction is a proof system of Gentzen and others [Prawitz71], desig
to meet this criterion of reflecting human appreciation of the problem (an intere
parallel to the aims of OO analysis and design). This is the basis of the proof s
in Mural [Mural], the proof-assistant precursor to Fresco. In Natural Deduct
Fresco © Alan Cameron Wills 1992The state of the art: background and issues 35 
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proofs are composed of lines each of which is derived from a subset of its pred
sors by matching a proof rule. Each proof begins with a set of hypotheses; the
supports any theorem with those hypotheses and a conclusion matching any
derived lines. Proof rules and theorems are identified. A hypothesis may 
straight assertion or a sequent (X, Y |–  Z), and where such a hypothesis is encou
tered in a proof rule, it must be matched with a subproof — that is, a proof in w
the preceding lines of the containing proof may be used as supports.1

In Mural, theorems are organised into theories, each of which is defined by a 
axioms and constants. A theory-definition may inherit axioms and constants
therefore derived theorems) from one or more others, forming an acyclic graph
permits mathematical knowledge to be built up in a way which reflects a forma
view of the working style of mathematicians: one body of ideas is built upon
conclusions of predecessors.

Fresco adapts this system, identifying sequents with theorems and proofs wit
ories: they are generalised into the idea of a ‘Context’; types are then introduc
a specialisation of Context.

3-1.5 Proof tools

Mural is a proof editor:  a tool which displays and browses theories and their th
rems and justifications, helps seek justifications, helps instantiate new justificat
and ensures the consistency of the proofs and theories. Contrast this with the 
Moore system or with Gypsy, in which the machine works in batch mode, sear
for proofs or checking them.

The interactive style has become easier to support as hardware has advance
[GMW79] was teletype-based; Mural is window+mouse-based, making it easi
think of the tool as providing a window on a database of proofs, constrained 
consistent with the rules.

In fact, the constraints should not be imposed too harshly any CAD system s
allow inconsistencies whilst the elements are being juggled and experimented
but draw them to the user’s attention, and provide the means to find outsta
incompletenesses or inconsistencies.

LCF developed the notion of tactic: an algorithm or heuristic for discovering 
proof, described in some suitable language, and using the same searching an
application primitives as are available to the human. The user can invoke t
where it seems likely that the machine will be able to find a proof: a well-desig
set of tactics should permit the user to do the creative sketch proofs, and then
the machine to do the straightforward filling-in of the details.

1. An alternative and more-or-less ‘natural’ view of proof as arcade game may be envisaged. You beg
with a goal-assertion, inscribed in a small cloud and gently floating around the screen, bouncing at th
edges. You have a battery of rules, one of which you zap it with: there is a small explosion (with suitab
sound effects) as it breaks up into subgoals, to which you then apply rules in the same way. Some subg
will directly match rules, and if your firing strategy is well-chosen, you eventually clear the screen of 
goals; if, on the other hand, the screen gets so cluttered with a heaving mass of logic that you can no
longer see the rules for the subgoals, you can consider yourself to have lost. This is all just a matter o
user interface of course, and should be good for occasionally pepping up jaded theorem-provers of th
future, particularly those who have come into the business from particle physics.
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[Mural] documents an attempt in this direction. It is only a partial success, s
some rules (for example the induction rule) have so many possible ways of 
applied to any subgoal that a mindless series of matches would be hopelessl
However, there is a set of built-in and user-definable tactics that can be inv
when desired.

3-1.6 Logic

First order predicate calculus is inconvenient as a logic in which to deal wit
partial functions, which are very common in computing. For example, intuition 
gests that even where x < 0, there is a useful meaning to this formula:

x < 0 ∨ sqrt(x) < 2

where in FOPC, it would be undefined.

LPF (“Logic of Partial Functions”) [CJ 90] is one of the logics for dealing with su
formulae. There are others, but LPF has the virtues that: 

• only one extra operator — δ, for testing definedness — is added; 

• the symmetry of the operators is preserved; 

• and the theorems are straightforwardly those of FOPC, after deleting al
depend on p ∨ ¬p (plus some new ones for dealing with δ). 

The intention in LPF is to interpret formulae the way designers would expect, s
above proposition is true if x < 4 and false otherwise, including cases below 0.

3-2 Object orientation

3-2.1 Definition of object-orientation

[Wegner 90] defines an object-oriented language as one including these featu

• Object: a collection of operations associated with a mutable unit of st
the operations can alter the state and yield results. An operation is inv
by applying or “sending” a message comprising a selector name or signa-
ture and arguments. The same selector may be implemented by diff
methods in different objects. 

• Class: a definition of internal structure and methods shared between
objects which are instances of that class. We may speak of the attributes of
a class, meaning the definitions of the names, types etc of the attribu
its instances.

• Inheritance: the derivation of one class-definition, a subclass from one or
more others, its superclass(es).

3-2.2 Subclasses

Halbert & O’Brien [HO87] list many uses for the subclass relationship:

• Generalisation — adding extra information, for example adding width to
adapt a class of squares to represent rectangles.
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• Variation — providing variants of a basic theme.

• Composition of characteristics from multiple inheritors, for example to c
struct ScrollableWindow by inheriting from Scrollbar and Window.

• Specialisation — e.g. FourSidedShape to Square.

• Reification — e.g. Set to BitMapSet or SparseArraySet.

The art of arranging a subclass hierarchy to achieve maximum flexibility is 
cussed by Johnson and Foote [JF88]. They also discuss the definition of frame-
works — groups of interdependent classes, like Smalltalk’s Model-Vie
Controller system, which can be specialised as a whole group. [Helm90] disc
the documentation of such frameworks and the contracts between their memb

3-2.3 Types

As the theory of the semantics and utilisation of object-orientation has grown
idea of encapsulation has been clarified.  It is the separation of concerns betw
client and implementor. The client is concerned only with the externally visib
behaviour of the module, defined by its specification. The implementor is conce
to satisfy the specification by providing a suitable implementation.

This gives rise to the notion of type — a set of objects which behave according to
given specification from the external client’s point of view. A class defines the in
nal structure which implements a type. Its clients are interested in the type th
object belongs to, and the type-description represents the set of assumptions t
designer of the client makes about the object being used. 

[CHC90] points out the class/type distinction, and the corollary that subclass
not necessarily define subtypes. A subtype is a subset of a type: if x∈TT and TT⊆T,
then x∈T; anything that can be said about members of T is also true of any membe
of TT, and any client of T will be satisfied with any member of TT. Subtyping, rather
than subclassing, is clearly the more important property when the aim is to 
polymorphic code (e.g. a screen manager which can handle many kinds of win
From a software-engineering point of view, the dependency between the clien
the supertype (the generic window description) and its independence from the
vidual subtypes (of particular kinds of window, icon, etc) is worth a lot more t
the subclassing facility of factoring some code.

[Meyer88] advocates only using subclassing where the intended subclass
implements a subtype; this cuts out all but the last two of Halbert and O’Br
uses. He and others have pointed out that in many (though not all) of the other
the economy of implementation turns out to be a false one, for three reasons:

• The implementation is typically overcomplicated with overriding redefi
tions of methods.

• Changes of requirements tend to affect types (and therefore their subt
rather than subclasses — so any change is liable to require a rewrite 
class hierarchy.

• The “yoyo problem”: because some methods are defined within a class
others left to its superclasses, it can be difficult to follow the precise ex
tion path of a program as it goes up and down through the different leve
the hierarchy. The reader must therefore employ procedural abstraction
is, when you come to an operation call, do not put your finger on it 
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attempt to look up its implementation, but instead use its specificatio
treat it as an atomic operation. If subclasses are also subtypes, then it 
ficient to know the specification relevant to the type you know the rece
belongs to: it is not necessary to treat different possible subtypes sepa

Further guidelines as to the design of class hierarchies have appeared, such
‘Law of Demeter’ [Lieberherr 88] (which prohibits sending messages to objects
your immediate neighbours) and the principle that all classes should be either 
with no subclasses, or abstract classes, with no instances, representing
[DT92].

The notion of inheritance can apply to any kind of definition, not just classes. N
that inheritance between type definitions does not necessarily imply that the i
iting definition will be a subtype. [Cusack90] examines the properties a lang
must have in order to obtain this desirable relationship. Fresco’s type definitio
have this property.

Polymorphism appears in two forms in OOP: inclusion and parametric.

From this it is clear that the purpose of FourSidedShape is to specify what Shape-
Manipulator can manipulate.ShapeManipulator is dependent upon FourSided-
Shape, in the sense that if FourSidedShape were altered, ShapeManipulator
would have to be examined, possibly altered too, and in any case reverified. 
dependency diagrams are a powerful tool in software maintenance. How
ShapeManipulator is not dependent upon any subtype of FourSidedShape: pro-
vided they really are subtypes, they will all behave at least in the way ShapeMa-
nipulator expects (as well as doing more that it isn’t interested in). Furthermore
could add new subtypes, and ShapeManipulator would deal with them just as well
without any need for reverification of it. What is necessary is to verify that the new
type really is a subtype, but this is a cheaper proposition than going around a
dependents of FourSidedShape, many of which may be unknown to its author.

Parametric polymorphism: A module of code may also be polymorphic in the m
general sense of being parameterised by type. For example, SortedList(Intege
class or type (whereas SortedList by itself is not). In general, it is necessa
restrict the parameter to have a certain set of characteristics: objects can be
only if they belong to a type which has an ordering relation.

ShapeManipulator FourSIdedShape
uses

Quadrilateral

Rhombus

Parallelogram

Square

Rectangle

subtype of

...
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3-3 Existing syntheses of object orientation and formal 
methods

Three strategies have been followed by OO formalists; they may at some stag
verge:

• the introduction of OO principles to an existing specification language, w
the objective of introducing OO benefits into the business of specificati

• the adaptation of a specification language or technique to facilitate the s
ification of OO program components;

• the introduction of specification elements into an OO programming 
guage.

The following sections describe some of these languages; then we shall look a
of the issues upon which they differ.

3-3.1 Object-Z

OZ [CDDKRS] inherits from Z several pleasant presentational characteristics
adds a new class construct that encapsulates state and operation schemas. A
tics has been described, in terms of possible sequences of operations (an
results) [DD90].

As an OO-ification of a specification language, it is not OZ’s chief concern
specify OO program modules. Therefore, for example, there is no built-in dis
tion between equality and identity: if these are to be modelled, they must be e
itly described by the specifier.

Inheritance is used as a convenient device for constructing specifications: there
strict relationship with subtyping. Thus, for example, one may describe a 
Quadrilateral with an operation Shear, and then derive from it a Rectangle with
Shear redefined to be unusable, and a stronger invariant.

3-3.2 Z++

Lano and Haughton have done considerable work on the refinement of spec
tions written in OO extensions to Z [LH92], and have designed Z++ as an exem
Object identity is a feature of the Z++ semantics. Z’s schemas are rejected 
difficult to reason about, and class and method definitions are used as modu
their place. Z++ has a strict notion of subtyping, and inheritance is designed to
antee strict subtyping, provided you are willing to accept their renaming conven
For example, Rectangle can have its own version of shear which does nothing; but
it is also considered to have the method Quadrilateral::shear — so that if a client
always qualifies a method-name with the name of the type expected, the right 
are guaranteed to happen. This seems a bit of a cheat somehow.

3-3.3 OOZE

The prospective extender of Z should ignore its semantics in favour of its supe
appearance, which is by far its best characteristic, and the cause of its wide po
ity among the general masses. In particular, it should be appreciated that sc
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are a purely syntactical device, and that the schema calculus, unless firmly rej
will only interfere with any proper modularisation scheme. 

Alencar and Goguen’s “Object oriented Z Environment” [AG91] provides a Z-
syntactic appearance to a well-developed algebraic system, OBJ3. Method
specified with conditional equations, and there is an executable subset of th
guage, intended for prototyping. 

Loose specifications cannot be written with equations, although there is a se
“Theory” construct for that purpose. This duality seems a little uncomfortable,
seems likely to bias the specifier towards implementations.

Subclasses are not necessarily subtypes (in the strictest sense), since metho
fications can be arbitrarily overridden in subclasses. However, if a method sp
cation “promotes” the superclass’s version of itself, correct subtyping is assur

Modules (for encapsulation) and classes (templates of objects) are separate co
in OOZE — though the syntax makes it easy to make the two coincide.

3-3.4 Abel

Abel [DLO86] is one of the most well-developed languages in this field. It is a w
spectrum language — that is, with both inexecutable specification features
imperative executable features, and there are formal verification rules and too

As in OOZE, specifications are algebraic in style, leading to the necessity of a
arate kind of module to specify loose properties. Unlike OOZE, a good OO 
gramming language is part of the package, rather than just a rule-based proto

3-3.5 Larch/Smalltalk

[Leavens 90, 91] describe the application of Larch to OOP, and to Smalltalk in
ticular. The scope of the work is restricted to immutable values at present.
seems partly to be because of the extra difficulties of working with mutable ob
in Larch’s algebraic layer.

3-3.6 VDM++

The aim of VDM++ is to introduce the benefits of object-orientation to specif
tions [DK91]. Subclasses may be formed by selective inheritance — for exam
Rectangle may be formed from Quadrilateral by omitting shear. This ensures that
Rectangle is self-consistent — though of course does not ensure that every Rectan-
gle can be treated as a Quadrilateral. It is a convenient constructional mechanism
but unrelated to subtyping.

The primitive types (numbers etc.) and constructors (sets, lists, mappings) are
VDM. Object-identities are a special primitive type.

3-3.7 CDL and EVDM

The work of Huw Oliver [Oliver 88] aims to specify re-usable program compone
Ada is used as the exemplar implementation language. It is therefore not 
object-oriented, but more about packages (which do not have an instance-cr
mechanism). Specification languages CDL and EVDM (both based on VDM)
Fresco © Alan Cameron Wills 1992The state of the art: background and issues 41 
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given a semantics in terms of the kernel language COLD-K [Jonkers 88]. One 
esting feature of the work is that CDL is the result of experiments with specif
Ada modules, while EVDM comes from the other direction: it is the result of ad
modular features to VDM.

3-3.8 Utting & Robson — OO Refinement Calculus

[UR91, UR92] describe a system with similar objectives and approach to Fr
Subtyping is of the proper substitutable variety, and specification-statem
[Morgan 90] are the basis of the language. This is therefore one of the few pie
work to investigate verified refinement to code, in the OO arena.

3-3.9 Eiffel

Eiffel [Meyer 88] is a programming language in which classes may have invari
pre and postconditions. Meyer points out that it is only with specifications 
inheritance takes on its full meaning (as subtyping). Assertions are writte
boolean expressions of the programming language.

In Eiffel, opspecs and invariants are written in terms of instance variables. 
means that in an abstract class, you either must write quasi-algebraically, de
each public operation in terms of private operations; or you must introduce ins
variables where you otherwise might defer them until the definitions of the 
classes. This is somewhat anti-encapsulation.

3-3.10 Annotated C++

A++ [CL90] adds invariants and pre/post conditions are added to classes in 
C++ “public” inheritance is identified with the intention to implement a subty
The axioms used for specification are uniform with the assertions that ma
inserted into the code (in Morgan’s style). C++ expression syntax is extend
provide quantifiers; but where possible, the A++ compiler can use the assertio
insert debugging checks.

Cline and Lea insist that axioms defining behaviour should use only the pub
visible functions, and not private instance-variables. This is a reasonable restr
in C++, where the specification defined in a superclass should not bias the im
mentation — variables once declared cannot be undeclared in subclasses. B
consequent restriction to an axiomatic style is tedious for all but the simplest ty

An alternative scheme would be to introduce the idea of abstract model varia
which would be ignored by the compiler. (This would work for Eiffel as well.) 

3-3.11 POOL

Although POOL [America 87] does not have a full specification element, 
worthy of notice for its syntactical separation of type and class. Types define s
objects which conform to a given signature and set of properties; but in its cu
incarnation, properties are documented only informally. To check refinement
compiler compares property names. Properties may refer to any aspect 
object’s behaviour. The rules for subtyping are interesting, and cover generic t
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Both types and classes may be defined by inheritance (each from other defin
in their own category). Because the behaviour is described only by property la
there can be no guarantee that an inheriting type definition is a subtype. Some
properties are informally described as invariants on states, and inheritance of 
iants can lead to non-subtypes (see §3-4.5 — p.47).

3-4 Issues in application of formal methods to OOP

It may reasonably be asked why the application of formal methods to OO prog
ming requires any special consideration. This section reviews what we requ
such a combination, and where the particular difficulties are.

3-4.1 Concurrency

Concurrent programming is not dealt with here. However, many of the same 
lems arise, because of the complexities of imposing encapsulation strictly
typical object-oriented system, especially those problems associated with ali
(see below).

3-4.2 Objects

3-4.2.1 Object identity

The specification of program modules requires that every behavioural aspect 
client might need to know should be formalisable. 

In many OOP languages, and always in Smalltalk, information is passed by 
ence, and subcomponents are references rather than complete structures. In
talk, Eiffel, and others, the syntax treats this plethora of pointers implicitly, trea
a reference as if it were the item referred to. 

This pretence breaks down wherever two pointers refer to the same object. In S
talk, x==y is true iff both names contain equal pointers to the same object; wh
x=y depends on the classes of the object(s), and will usually compare the valu
objects (with any subcomponents) represent in their current state.

A specification method must be able to make this distinction, and must be a
cope with user-defined equality. 

3-4.2.2 Aliasing

A frequent precondition or invariant is that there should be no aliasing betw
given names or their subcomponents; a specification language should be a
state this, and the proof system should be able to verify it.

Object-Z, for example, appears not to tackle this issue at all; nor does Larch/S
talk. OOZE acknowledges object identity, and Abel contains provisions for prev
ing unwanted aliasing.
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3-4.3 Encapsulation

Encapsulation is the minimisation of the dependencies between units

• so that the work of creating them can easily be partitioned, with mini
communication between the creators of different units;

• so that one unit may be used in conjunction with many others;

• so that the impact of alterations to a unit on its neighbours can readi
assessed and minimised.

3-4.3.1 Units of encapsulation

The obvious unit in OOP is the object; and some languages (such as Sma
provide encapsulation on this basis: no method may access the instance varia
any but its receiver-object. In C++, the unit of encapsulation is the class (and, im
fectly, the program file): a method may access the innards of any parameter b
ing to its own type. 

The behaviour of objects is determined by their design, and so it makes more
to encapsulate in the units of design, than the run-time objects. This suppor
C++ strategy — but in general, that argument is flawed: a subclass may cho
implement some other way, and whilst a method can be certain of its receiver’s
it can be certain only of other objects’ types. E.g.:

IntSet:: union (IntSet s2) // s2 is some kind of IntSet

{ size= size + s2.size ; // but if s2∈IntSet, size is unused ...

— though such pitfalls can be avoided by the observance of various ‘good prog
ming’ rules (such as “no variables in abstract classes & no subclasses of co
classes” [DT92]).

[Szyperski 92] argues for the separation of encapsulation and classes: encaps
modules should be groups of classes, and free access should be allowed betw
innards of classes defined within a module. Since classes are often defin
groups, this is a very useful idea, realised in OOZE. Further, it may be argue
modules and classes may be quite orthogonal, with modules (or “capsule
Fresco terminology) able to define new classes or extend existing ones.

Szyperski argues for “no paranoia”: you should be able to get at the innards o
thing defined within your own module. This freedom suffers from the same prob
as per-class encapsulation, unless all possible subtypes are confined with
module. The problem can be avoided by encapsulating both on the objec
module levels: variables should be private to objects, whilst there should be
sages which are private to modules.

(Multiple dispatching could also prevent this insecurity.)

3-4.3.2 Applicability of encapsulation to specifications

In some respects, encapsulation only applies where there is a reification, w
details are hidden so that clients do not depend on them. But a specification s
be fully exposed, since clients use all its properties in their own correctness p
Encapsulation is the prevention of dependency between a client and a prov
implementation: so that more efficient or more powerful code may be introdu
Neither of these is an issue for specifications; if a nicer way of stating a specific
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is found, it can be used alongside the old one, rather than instead of it. And
specification has to be changed, then the clients will have to be re-assessed a

However, normal functional abstraction remains useful for specifications —
s∈Stack, it is easier to say s.popTo(s′) than s′.size = s.size–1 ∧ ∀i∈1..s.size ·
s[i]=s′[i]. When an operation has been specified for possible implementation
also useful to be able to quote the specification within another specificatio
quoting the specified method — s.pop — often known as promotion. Z and its
derivatives make much use of this technique.

3-4.3.3 Encapsulation and invariants

In conventional specification, there is effectively one state-invariant, which ap
to the whole state. Each operation can rely on it being true on entry, and must e
its truth on exit. In this model, no activity happens in between calls to the syst
operations, so nothing can disturb the truth of the invariant. 

In OOP, we aim to apply formal methods on a per-class or per-module basi
invariant typically is quoted within a class, and applies individually in each ob
of that class. The standard methodology can fail for two reasons:

• There may be ways in which an invariant may be invalidated in between
to the methods of the class. In particular, if any other operation in the sy
has access to an object on which the invariant depends, then that m
altered without the use of the class’s own methods. 
For example, a SortedList class has the invariant that its component
ordered; if a pointer to one of the (mutable) components is available to s
other part of the system, that component may be changed so that it is 
order, without the SortedList being aware of that. It is not always efficien
keep such components entirely within the control of the ‘owner’ object.

• It is conventionally assumed that while an operation is in progress (an
invariants are temporarily violated) no other operation may be called. I
OO system, there is no automatic guarantee that the message passin
will not be circular. 

In both cases, the problem is the attempt to encapsulate: in the first case, p
cross the encapsulation boundary; in the second, the encapsulation prevents u
knowing enough about the things we call to be sure they won’t come back to 
order to prevent these problems, extra specification and verification technique
be required.

3-4.4 Classes and types

3-4.4.1 Classes and types, subclasses and subtypes

We have seen that there is an important distinction to be made between the s
cation of an object’s behaviour (a type), and its implementation (a class). An o
may be a member of many types, but is an instance of one particular class. Th
initions of types and classes may each be derived from other definitions by in
ance or parameterisation; in defining a language, we seek to give these deriv
useful properties.

In POOL, there are two different notations for classes and types. This makes th
tinction clear to the programmer, but makes it more difficult to apply specifica
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constraints directly to implementation constructs — a class can be asser
conform to a particular type, but an invariant cannot be applied to the internal
ables of a class. 

Meyer’s approach recognises the difference between class and type, but at
type information to classes. This has the advantages that there are fewer pie
description to worry about; that the specification constructs (pre/postcondition
invariants) can be applied directly to the attributes and methods of the class; an
where it is sensible to provide a common implementation for a supertype, thi
readily be done.

Some authors suggest that every class should either be an abstract class (w
instances of its own) or a leaf class, with no subclasses. The purpose of this 
to be to emphasise the difference between class and type — their abstract clas
really hangers for types; but where there is a clear type specification attached t
class, this seems less relevant.

In Fresco, types and classes are represented by a single syntactical construc
though subtyping and subclassing are distinct. Every class has an associated 
type to which every instance of it and its subclasses are intended to belon
Fresco, the type specification can be fully formalised, so this ideal situation ca
realised more consistently than in other languages.

3-4.4.2 Composing types

When two specifications are combined — as for example in multiple inheritanc
the result may be interpreted in various ways. 

There are two kinds of inheritance in Z++: strengthening, in which an extra inva
and attributes are added to a class; and strict inheritance, in which the attribut
methods of the superclass are renamed to avoid clashes with any other super
and the additional material in the subclass.

Z++ -strict inheritance does ensure that the subclass is a proper subtype of the
class: the latter’s workings are insulated from all other material in the former
this isolation does make extra work for the specifier, who must then make the
nections explicitly by the use of “promotion” — that is, quotation of the appropr
inherited methods in the subclass. Inheritance is therefore little more than imp

An extra complication is that if a variable is defined in a common superclass —
w defined in A which is supertype to both C and D — then it should not be rename
in CD. Work on  COLD-K [Jonkers 88] has formalised this in a calculus of ‘origin

Class C
v : Real
v < 10

...methods[v]...

Class D
v : Real
v > 10

...methods[v]...

Class CD′

C::v, D::v : Real
C::v < 10 ∧ D::v > 10
...C::methods[C::v]... 

≡

...D::methods[D::v]...
(in Z++)

Class CD 
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An alternative approach — espoused by Object-Z and others — is not to bothe
renaming, permitting the final specification of an operation to be determine
several statements from various sources. The advantage of this is that it helps
ularise the specification.

3-4.4.3 Monotonicity

However, the modularity is not tremendously useful from a software enginee
point of view, unless specification-composition has the property of monotonicity.
That is: if a client can see a specification S of some unit (class, method, ...) M then
any inferences that can be made from S will remain true in all compositions of S with
other specifications of M. Monotonicity is important in managing the building of 
large system, and in the sense of ‘backwards compatibility’ when a system is
updated.

Z++’s inheritance is certainly monotonic, but requires explicit promotion of ope
tions from superclass to subclass (except where there is no change or clash
more appropriate for a specification language than where implementation
involved, and where renaming would be a complication.

Object-Z’s inheritance is not monotonic: predicates may be arbitrarily added 
invariant or method-schema, adding constraints which a client of the supe
would not expect.

In Fresco, there is no renaming, but the conjunction of specifications (of type
methods) is defined to be monotonic. This may result in a specification of false
where there are inconsistencies. The philosophy is that clients (of Class C and
Class D above for example) are always guaranteed that members of subclass
behave as expected; but there are inevitably some compositions (such as Class CD
in the Fresco version, where we would have the invariant v<10 ∧ v>10) which are
unimplementable. 

Monotonic composition is used in several ways:

• Software may be documented with a mixture of formal specification 
explanatory text. Different aspects of a type may be described separat
separate boxes. Any client interested in only one aspect may rely o
validity of whatever can be inferred from any of these partial descriptio
without having to check out the rest.

• One class may fulfill the requirements of several clients, which refer to
ferent types to specify their expectations.

• An implementation may be improved. Old clients will continue to wo
provided the new aspects augment the old specification monotonically.

3-4.5 Inheritance and subtyping

It is therefore essential to get right the rules for interpreting inheritance, at lea
type definitions. One of the key features of OOP facilitating re-use is polym
phism. As software engineers, we are therefore crucially interested in substitu
ity; and so in Fresco, A is a supertype of B if and only if all objects which have bee
shown to operate according to the rules determining membership of B will always
conform to all clients’ expectations of A-members. 
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Class definitions may inherit merely as a convenience of construction; but it 
to a more readable and maintainable system if every subclass relationship is a
ated with a subtype relationship. In C++, this corresponds to the intention of “
lic” subclassing. The occasional utility of “private” (non-subtyping) subclassin
provided for in C++; but many authorities argue against its use (see page 38)

Type definitions could also be derived one from another without the result gen
ing a subtype, as may happen in Object-Z; but this seems likely to lead to conf
The absence of explicit preconditions in Z leads to this folly. If a new invar
restricts the state space, then clients are supposed to know that they should n
any operations which would take an object into the forbidden space.

For example, 

DecadeCell is interpreted as being like IntCell with a restricted state space. Use
of inc are supposed to know when it is valid to apply it — preconditions mus
inferred: the valid ‘before’ states are those for which there is a valid ‘after’ state
meets the postcondition:

pre (σ) = inv(σ) ∧ ∃ σ′ · post(σ, σ′) ∧ inv(σ′)

In a world of immutable values, invariant-strenthening always constructs a sub
But for mutable objects, subtyping depends on the operations.

By contrast, in a language with preconditions (based on VDM), the restric
would be likely to render some operations unimplementable: for exampl
IntCell::inc had a true precondition, then DecadeCell::inc — and hence the whole
class — would be unimplementable, because it could not deal with n=9. Thus in this
latter interpretation, any non-subtyping inheritance would be caught in the att
to verify an implementation.

(A weaker interpretation os preconditions says that they should be conside
conjunction with invariants; but this seems to render them pointless.)

3-4.5.1 Subranges are not subtypes (for objects)

It is the mutability of objects which is important in this respect. To take ano
example, an immutable rectangle (think of a cardboard one) is undoubtedly a

IntCell

n : Integer

inc
∆ n
n = n′ + 1

...

DecadeCell

IntCell

n < 10
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of immutable quadrilateral: rectangles conform to all the criteria one could w
down to characterise quadrilaterals. But a mutable Rectangle (think of four 
scopic radio aerials welded at right angles) is not a kind of mutable Quadrilateral
you would expect to be able to bend the hinges of the latter, and stretch its 
asymmetrically. So whilst in the world of immutable values, rectangles⊆quadrilat-
erals, the same is not true of their mutable counterparts. The Z approach work
when considering the behaviour of a community of objects all of whose spec
tions are known to the designer: but for re-use of code, we require a clear sepa
of the concerns of clients and providers, and so the VDM interpretation is m
appropriate.

In an applicative world dealing with immutable values, a subtype is a subset o
value space, and can always be obtained by strengthening the constraints.
dealing with objects, the important characteristics are not the static properties 
object in a particular state, but the set of possible histories — sequences of sta
through which an object’s operations could take it. Viewed in this light, a subty
still a subset: but a subset of the possible histories, not of any individual sta
facilitate re-use of program components dealing with mutable objects, we 
adopt this notion of subtyping.

The Z-tradition interpretation works well for subtyping of values: a stronger inv
ant reduces the state space to a subset. The VDM-tradition interpretation work
for subtyping of objects: strengthening the invariant may lead to an unimplem
ble type, since the real emphasis is on the opspecs. 

3-4.5.2 Reducing nondeterminism

Strengthening an invariant is valid where its only effect is to cut down non-determ
nacy: in that case, all the operations still have ways of satisfying the clients’ ex
tations.

Cycle–B

a : ()  ∆
b: ()  ∆

x : Nat
 x<3 :– x = x+1  a

 x = 3 :– x = 4 ∨ x = 1 a

 x = 3 :– x = 4  b

 x = 4 :– x = 1  a
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Two types are illustrated above, Cycle (ignore the shaded parts) and Cycle–B (with
the shaded parts). Cycle–B is clearly a subtype of Cycle, since it is the same but fo
an extra theorem. They have this state diagram:

The a exit from state 3 is not determined by Cycle. If we forget b for a moment,
then an acceptable refinement of Cycle would be to remove state 4, either by alte
ing the opspecs of a, or by adding a new invariant:

Clients of Cycle have to allow for the possibility that the result of a could some-
times be 4, but they may never rely on the appearance of state 4. Clients of Cycle
can therefore operate successfully with objects which are actually membe
Cycle3.

But if we recall b, the same new invariant added to Cycle–B would render the
resulting Cycle–B∩Cycle3  unimplementable: there is no object which could b
satisfy the opspec on b and keep x < 4.

What makes the difference between an invariant which reduces nondeterm
and one which goes beyond that and introduces an inconsistency? The forme
fies the following for each opspec P(σ) :– R(σ, σ)  op which is an axiom of the
type:

nmt: ∀σ:T · P(σ) ∧ invi(σ)  ⇒  ∃σ′:T · R(σ, σ′) ∧ invi(σ′)

where  invi is the conjuct of all of the type’s invariants. (This allows for initialisati
into any state, though strictly we need only deal with those accessible by cl
over all sequences of operations from a permitted set of initial states.) This m
shown by induction over the object’s model: it helps if an enumeration function
been defined which generates all valid states.

It may not always be useful to demonstrate nmt, since the appropriateness of a
invariant will become apparent when implementation is attempted. Furthermor

1

2

3

4

a

a

a

a

b

Cycle3 ::+ Cycle
 x < 4 

Cycle

Cycle–B Cycle–3

Cycle–B∩Cycle–3 ≡ ∅
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satisfaction is often obvious. However, if there are to be several following stag
refinement from a complex invariant, it would be wise to check early on.

The Fresco environment should provide for the gathering of the invariants and
eration of nmt, and its incremental proof after a new invariant is added. It sho
ensure that users are reminded that new operations need to be checked again
ing invariants, as well as the other way around. (See chapter 7.)

3-4.5.3 Values can be range-restricted

Having made plain the pitfalls in attempting to restrict the range of states into w
an object can get, it is worth re-emphasising that there is nothing wrong 
forming subranges of immutable values (or objects which serve to represent t
This is because any individual member of the type (e.g. 7) is not expected b
client to be able to mutate into any other member. Certainly, there are opera
which yield results which are outside the restricted range, but that is not a pro
they are different objects. So for example, if we extract the typing constraint on Inte-
ger::succ:

Now define a restricted range:

This does not change the fact that succ(7) is an Integer. 7 is a member both of
Integer and of OctDigits, and succ(7) happens not to be. By contrast, if we ha
defined a mutable Cell containing an integer, with an increment operation, the
restricted version OctCell would not be a subtype of Cell.

3-4.6 Generic definitions

Modules may be derived by supplying arguments to parameterised definitions
interesting issues are

• what to parameterise — types, classes, or larger modules

• how monotonicity is achieved

• the constraints on the type parameters

3-4.6.1 Subtyping amongst generics

It is worth noting that even though Nat is a subtype of Int, Set(Nat) is not a subtype
of Set(Int): you would expect to be able to add new Ints to the latter. However, it is
possible to define a generic type Container such that every Set(T) is a subtype of
every Container(T).

Integer

succ(self)∈Integer

OctDigits

self∈Integer

self < 8
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3-4.6.2 Constraints on type parameters

SortedList(T) requires that T should have an ordering relation. A type may 
defined which has an ordering relation and nothing else:

but the requirement of T is not that it is a subtype of Ordered: we would not wish
to exclude Int because it is unable to compare itself with all other Ordereds, such
as String. Instead, there is a substitution relationship between this and the type
wish to admit: Palsberg and Schwarzbach [PS91] elaborate on such a schem

Abel and OOZE use their separate “property” or “theory” modules as constrain
generic type parameters. The properties are applied via a morphism or “view” w
identifies, say Int with every occurrence of Ordered within the property module. In
OOZE, both generics and their arguments are modules, not types. This mea
every occurrence of the type-name Ordered in a module would be replaced with th
argument type.

It is interesting to observe that a variant of the OOZE approach works well if 
typing were defined between modules rather than types. Suppose module
defined like multi-sorted ADTs: several types, perhaps with internal model v
bles, may be defined in a module; and operations are not attached to any s
type, but to modules. A module MM is a submodule of another M iff all memb
of its types behave according to the axioms of M. Now a rule like “x∈T1 ∧ y∈T2
⇒ op(x,y)∈T3” should be interpreted as follows: for any refinement MM of M
there will be types MM::TTn corresponding to the types M::Tn; in MM, the axi
of M hold, with MM::TTn substituted for M::Tn; for any type Tx not bound with
M, the axioms in MM use Tx unsubstituted. The same substitution rules app
constants. So, for example, we may write rules about the interaction bet
models, views and controllers, without any hassle about saying that Square
are not expected to have to interact with RoundViews. Where we do mean M::
remain unadulterated, we can write it that way explicitly. In this scheme, it is 
to write Ordered as a module, of which any SortedList’s argument should be a sub
module. This reduces the concept-count a little.

The Fresco solution is detailed in §6-4 — p.94.

3-4.7 Assertions and proofs

3-4.7.1 Wide-spectrum imperative OO languages

Eiffel uses programming language for its assertions. There are several advan

• Assertions can be executed for debugging purposes. (Fanatics of verific
do not believe in “while test fails do fiddle with code” approach; neverthe
less, it is much cheaper to discover bugs by testing than by attemp
proofs; and since bugs are likely, it makes sense to begin by testing — v
once you think you’ve got it right.)

• Programmers only have to learn one language.

Ordered

_≤_ : Ordered ×Ordered → Boolean
...required properties of ≤ ...
Fresco © Alan Cameron Wills 1992The state of the art: background and issues 52 



n and
ually

ly of

ssive-

 side-
fects)
. In
 inten-
 than
in pro-
cifi-

s will
de is
 rela-
ethods

g exe-
super-

com-
pwise
 also

.

ls jus-
ua-
bgoals

rsions
of

riously
ons,
f indi-
• The fundamental concepts of the languages used for analysis, desig
coding are integrated, making it unnecessary to construct and contin
trip over complex models of (say) pointers.

• The formal process can be taken right down to the code.

• As the library of re-usable modules grows, it extends the power not on
the implementor, but of the specification-writer too.

But the language must be designed to be wide-spectrum. In Eiffel, the expre
ness of assertions is severely restricted by the absence of quantifiers.

There are also semantic difficulties: what does an assertion mean if it has
effects? Eiffel has an insecure partitioning between procedures (with side-ef
and functions (without). Abel manages to achieve this partitioning strictly
Fresco, expressions with side-effects are allowed in assertions, as there is no
tion to provide any facility for executing them. Even so, an assertion with more
one subexpression with side-effects may be ambiguous: but that is just as it is 
gramming languages. It is the specifier’s responsibility to write meaningful spe
cations.

3-4.7.2 Expressiveness of the specification component

The purpose of a supertype is to define just those properties on which client
depend, minimising communication between modules. Since polymorphic co
to be constructed, it must be possible to write partial specifications. General
tions are therefore more appropriate than equations: so the model-oriented m
seem better suited to specifications of OO modules. 

Since we already have a programming language, there seems no point in havin
cutable specifications, so an equational interpreter such as OOZE’s would be 
fluous in Fresco.

3-4.7.3 Verification

The proof system should be one in which both refinement of data types and de
position of method code can be combined with the generation of a proof, in ste
fashion. Morgan’s specification statements seem ideal for this. They are
straightforward to compose when generating subtypes.

Where code is inherited, the necessity for re-verification should be minimised

The proof methods and tools should permit proofs to be outlined and subgoa
tified informally where appropriate. The term-rewriting systems which fit the eq
tional systems best (such as Abel and OOZE) are less well suited to this, as su
are less easy to isolate. 

The B tool [Sorenson91] has been applied successfully to object-oriented ve
of Z, and Mural [Mural91] to VDM. It is Mural that is the basis of Fresco’s pro
assistant.

3-4.8 Larger units of design

The purpose of encapsulation is to ensure that one part of a design is not spu
dependent upon another: this will help limit the complexity of design decisi
keep manageable the ramifications of change, and increase the portability o
vidual chunks of design effort.
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In some OO languages, encapsulation is applied on a per-object basis, and in
on a per-class basis. In the former regime (exemplified by Smalltalk), a method
only access the inner structure of its receiver; in the latter (e.g. C++), a method
access the innards of any object which is a member of its home class (that 
class of the receiver).

In OOP, the unit of design-effort is not the object, but the class or groups of int
lated classes. It is therefore arguably unnecessary to encapsulate per-object —
perski’s “no paranoia” principle [Szyperski92]. If I am going to re-implemen
class, then I will re-implement all the objects of that class, and since I know wh
inside any object within that class, there is no point in hiding it from myself.

Modularity is about:

• the division of design-effort into manageable pieces (both from the point o
view of the initial effort, and subsequent reading and modification)

• the division of designs into separately portable chunks.

[Wills91] and [Szyperski92] propose that the two purposes of classes should b
arated: the class should be a set of objects with a common implementation, 
encapsulation should reside in an orthogonal modularising concept, called the
sule” in Fresco (§7). In practice, it is rare to incorporate a separable feature o
system in a single class. The statistical functions form a unit of design effort w
should augment an existing Number class, rather than forming a new class Num-
bersWithStats — we want them to work for all the existing subclasses of Number.
A subsystem which supervises the presentation of objects to the user (such as
talk’s MVC) is designed as a framework of interacting classes, with defined con-
tracts between them [HHG90].

3-4.9 Programming language issues

Smalltalk was chosen as the initial basis for the Fresco language:

• The entire lack of any “type-checking” (signature checking) leaves this 
part of verification. The rules of any prescribed system (such as thos
C++) might conflict with those derived from the verification rules.
(C++ allows dynamic binding to be turned off for chosen selectors, so
speed can be improved by determining the methods that will be calle
each message at compile time. This is not OO, of course. [JGZ 88] and
sequent work have shown how to do such determinations automatic
though at length and across encapsulation boundaries.)

• Persistence of data through a software change: essential to responsive
typing, experimental development and frequent delivery of updates. Sm
talk and some of the newer OO databases do this.

• Smalltalk’s minimal language with generous predefined kernel of clas
and the ability to compose a system by ‘filing in’ software updates, form
excellent model upon which to build the Fresco capsule system.

• Similarly, the class browsing facilities, which can readily be extended to 
with type specifications.

(Smalltalk was also chosen as the implementation language, since Mural wa
in it and again because of its ready modifiability.)
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3-4.10 Semantics

[Wolcko] describes a semantics for Smalltalk in denotational terms. It would cle
improve the foundation of the present work to relate it to some such theory.
present Fresco semantics, in the practical form of a set of proof rules, is op
inconsistencies; however, it does make it easy to omit the difficult parts, su
some of the more unpleasant uses of Blocks.

Utting and Robinson provide a semantics for their work in terms of object histo
and a minimal similar model is used here.

3-5 How Fresco tackles these issues

This is, of course, the subject of the rest of this thesis; but to summarise:

• Fresco method-specifications are like those of VDM: 

— a client is guaranteed that if the precondition is met, the operation
succeed

— postconditions are relations on the before & after states

• Constructed subtypes always inherit their ancestors’ specifications, w
conjoin with any they have in their own right. 

• Conjunction of specifications is such that a proof based on any conjun
always valid for the conjunction; this applies in particular to subtypes
there is no “yo-yo problem”. 

• The semantics is based on object histories: subtypes are subclasses o
ble histories. So subtyping is about true substitutability. 

• The language is a wide-spectrum extension of Smalltalk (with an ada
concrete syntax). Smalltalk’s clear distinction between identity and equ
is preserved. A scheme for dealing with aliasing is provided.

• Modules (called capsules) and classes are orthogonal. The capsule form
main unit of knowledge.

• Verification can proceed stepwise with program development, and ste
every level in the natural-deduction-style proofs can be left informally ju
fied. The aim is ‘rigorous’ proof, in which every informal justification cou
be rendered formal, given the motivation and effort.

3-6 Summary

A number of terms have been defined: in particular, local meanings of type, class,
abstract class have been distinguished, together with inheritance, subclass, subtype. 

The key issues to be addressed here have been described. Concurrency will be
avoided. Software engineering considerations motivate a concern with reliablepol-
ymorphism in parametric and inclusion forms, and monotonic system construction
The orthogonality of system-design modules and classes will be addressed. 
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should be integrable with popular methods of OO analysis and design, thoug
integration is not part of the present work.

The virtues and drawbacks of other systems have been surveyed. The proof s
and tools provided by Mural seem at least as applicable as others. Of logical
dations, LPF deals most easily with the sometimes undefined propositions tha
in programming. In object-oriented program specification, algebraic methods
to be too deterministic, whilst current derivatives of the widely popular Z see
be converging with VDM in many respects. The Smalltalk language and prog
ming environment is a very flexible and minimal tabula rasa upon which to build
an experimental system such as Fresco.

The selection of VDM, Mural and Smalltalk as the bases for Fresco could have
founded on careful reasoning about their virtues in relation to the goals in mind
that would be a gross post-rationalisation. However, the same reasoning app
being pleased in retrospect that these choices were imposed by circumstance
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4 Theories and proofs

This chapter describes the proof system upon which support for formal metho
Fresco is founded. It is an adaptation of the Mural system [Mural].

A model of the proof system is presented here in the form of a hierarchy of t
as outlined in the chapter 2.

4-1 Theories

Theories are the basic portable units of knowledge: types, capsules, and proo
all varieties of Theory.

A theory is a set of declared symbols, and a set of axioms over those symbo
the body of other theorems which are derivable from those axioms1. For example,
the theory of propositional logic with its symbols True, False, ∧, ∨, ¬ and the usual
axioms (including proof rules) over them. There will in general be an infinity
derivable theorems, and so it is those which the user has explicitly discovered 
are recorded in a Fresco theory, together with the justifications for believing in 
membership. This is not necessarily a subset of the set of true theorems, sinc
fications may be partly informal and therefore wrong. The proof tool tracks dep
encies between theorems and can highlight the transitive dependency of any
on an incompletely justified theorem.

Most useful theories inherit the symbols and axioms (and therefore theorems
other theories, which form its context: for example, predicate calculus is built upo
propositional logic, and number theory may built upon set theory. Contexts 

1. The axioms are not constrained to be equations, nor even propositions, since at the m
basic level, there is no interpretation of the theorems. All we know at this leve
is that theorems can be derived from other theorems. 

Theory

var  label ∈ Symbol

var  symbols ∈ Binder set

var  theorems ∈ Theorem set

var  axioms ∈ Theorem set

var  knownSymbols ∈Binding set

var  knownThms ∈Theorem set

fn context ∈ Context set

axioms ⊆  theorems  ∧  ∀a∈theorems · a∈axioms ⇔ a.justification = nil

context ∈ Theory set

∀ t∈theorems · t.context = {self}

knownSymbols = (context).knownSymbols ∪ symbols
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form an acyclic graph. There is no guarantee that a Theory will not be vacuous,
it is perfectly possible to define conflicting axioms, either directly or by inheritan

The theorems of a theory may refer to any of the knownSymbols, which include
both those bound in the local theory and those inherited from the contextual 
ries. Symbols with the same signature from different theories are identified, s
theorems from different theories effectively conjoin.

4-1.1 Symbols

All expressions in Fresco are built out of Symbols declared in Theories, an
spelling, arity and kind of the Symbols determine how. These attributes, its signa-
ture, are fixed in a Symbol’s binding declaration in a Theory or Theorem.

Fresco has five kinds of Symbol (to date). 

v, _+_ Object-symbols represent pure expressions (such as parame
variable names). Written in lower case; and operators.

T Type-Symbols represent types. Upper case.

∀, ∃, {...} Binder-symbols, which bind variables locally within an expre

Fig. 5. Theories, theorems, and proofs

Sequent

var hypotheses ∈Theorem set

var  conclusion ∈ Theorem

∀ t∈hypotheses ∪{conclusion} · t.context = {self}

Assertion

var expression ∈ Expression

expression.context = {self}

Context

var  knownSymbols ∈Binding set

var  knownThms ∈Theorem set

fn context ∈ Context set

Theorem

var label ∈ [Symbol]

var  metavars ∈ Binding set

var  justification ∈ [Justification]

knownThms = context.knownThms

Theory

var  label ∈ Symbol

varsymbs ∈ Binding set

var  theorems ∈ Theorem set

var  axioms ∈ Theorem set

Expression

Binding

var spelling ∈ Symbol

var  arity ∈ Kind mapTo: Nat

var  kind ∈ Kind
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E Expression-symbols, standing for any code expression wh
may have side-effects. Upper case.

Ai Expression-list-symbols, standing for any complete argum
list. Upper case with subscript.

Chapters 5 and 6 elaborate these distinctions and demonstrate the different u

The arity of a symbol determines how many arguments it may take of each ki
so an arity of {ObjectK → 1} — let’s take 0 as the default — would be a unary fun
tion, whilst an arity of {} would be a constant.

The spelling of each Symbol is unique within its declaring Theory or Theorem
defines its concrete syntax: if it is declared just as a name but has an arity of {X→n}
then it is written with round or square parenthesis — like s(a, b, c) or P[a,b,c]. By
convention, type-symbols and expression-symbols are spelled with initial cap
object-symbols aren’t.

The full declaration syntax of a symbol will be 

Decl ::= spelling [ : Kind' { Arity } ]

Kind ::= ObjectK | ExpK | ExpLK | TypeK | BinderK

(If the kind is omitted, the default arity is {0,0} and the default kind is inferred fr
the spelling and the usage.)

4-1.2 Expressions

An expression is an instance of a symbol known in its context: that is, all t
bound by a containing Theorem or Theory. There are two kinds of expression

4-1.2.1 Operator and message expressions

The concrete syntax of an expression is determined by the declared spelling 
certain limits. There are seven (!) variations of concrete syntax for expression
first five are for OrdinaryExpressions:

Expression

fn  subexprs ∈ Expression set

OrdinaryExpression

var op ∈ Symbol

var  args ∈ Expression list

BindingExpression

var binder ∈ Symbol

var  var ∈ Binder

var  type ∈ Expression

var  body ∈ Expression

var.kind = ObjectK
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ZeroArity ::= Symbol

MixFix ::= Receiver   selPart1:  arg1 [selPart2: arg2 ...]

PostFix ::= Receiver . Symbol  [ ( argument [ , ...] ) ]

BinaryOperation ::= Receiver OpSymbol Argument

UnaryOperation ::= OpSymbol Receiver

Binary and unary operations are reserved for symbols which are not formed
alphanumeric characters, for which users may define syntactic precedence 
capsule in which that spelling is first used). The kernel definitions include sym
for the usual operators for predicate calculus, sets, maps, and lists. 

These are examples of expressions:
21 ab
ab.adjust ab.add(21, x.result)
z>42+i.raised(2)  whileTrue: [z.reduce(i)]

The MixFix syntax permits Smalltalk-like expressions to be written. The Pos
syntax is used in the kernel rules which define the semantics of the languag
matching general operations.

4-1.2.2 Binding-expressions

A binding expression, such as
∀ x · f(x)

declares a {}-arity symbol which may be used in its body. It must define a type
the variable. The signature of a binder-symbol is therefore always

BinderK {TypeK→1, ObjectK→1}

In the design of Mural, there was some debate about whether it would be use
loosen this to allow binders such as let, which binds to a specific value rather tha
a type; however, this is not tackled here.  The common binders such as ∀, ∀, {...· ...}
are covered.

The variable bound by a binder must always be an object-symbol of arity {}: tha
binders may not define types, other binders, metavariables, or operations or
tions.

4-1.2.3 Blocks

A block represents a parameterised segment of code, written:

[ :parm1 :parm2 | code ]

The semantics of Smalltalk blocks is complex and not dealt with in full here. H
ever, rules can be written covering its uses in particular ways: for example, c
tionals and loops are designed as higher-order operations taking bloc
parameters — for example, 

aCollection do: [:item | codePerItem ]
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4-1.3 Theorems

A theorem is a statement which, given some interpretation of its symbols, repre
some fact. An axiom is a theorem, in a context in which it is assumed wit
needing justification. In Mural and in Fresco, proof rules are identified with th
rems: new rules can be derived by proving theorems. The term ‘theorem’ will he
forth include ‘proof rule’.

Theorems come in two varieties: Assertions and Sequents. An Assertion 
expression of some sort; a Sequent is a conditional assertion. Both forms ma
local metavariables, and the expressions are formed from these and symbols de
in the context.

An Assertion is written

[ label : ] [ Decl , ... ·] Expression

A Sequent is written in either of two equivalent forms:

[ label : ] [ Decl , ... · ] hypothesis [, ... ] |– conclusion

or alternatively,

[ label : ] [ Decl , ... · ]

where the hypotheses and conclusion are Theorems.

Theorems are generic statements, valid for all well-formed consistent substitu
of Expressions for each metavariable.

A Sequent states that in any interpretation and context in which the hypothes
known to be valid, then the conclusion is also valid. The interpretation of 
Theorem is such that it retains its validity whenever its metavariables are rep
by expressions of an appropriate kind. 

A theorem may appear as a conclusion: A  |–  (B |–  C). If A is proven, then in any
context in which B is also proven, C may be inferred. This amounts to the same
saying that in any context in which A and B are both proven, then C may be inferred;
so we have the general rule

decurry-inf: A, B, C · (A  |–  (B |–  C))  |–  (A, B |–  C)

A theorem may appear as a hypothesis: (A |–  B) |–  C. This says that C may be
inferred in any context in which the additional assumption of A will prove B. For
example:

Theorem

var label ∈ [Symbol]

var  metavars ∈ Binder set

var  justification ∈ [Justification]

knownVars = (context).knownVars  ∪  metaVars

knownThms = (context).knownThms

hypothesis, hypothesis
hypothesis, ...

conclusion
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arith-induct: i, P · i∈Integer, P[0], (j · j∈Integer, P[j] |–  P[j+1]) |–  P[i]

4-1.3.1 Substitution

The metavariables are substituted by appropriate expressions in order to app
theorem to particular situations. For example, in this theorem, metavariables x and
y stand for any values:

 add-comm: x, y · x∈Integer, y∈Integer  |– x+y = y+x

(Sometimes the metavariable declaration clause will be omitted to reduce clutt
us use the convention that any variables not known in the environment and fre
theorem are its metavariables, where this is obvious.)

An expression metavariable may be parameterised (with square brackets); for 
ple:

univ-elim:  n,  P:ExpK{ObjK→1}  ·   ∀ i · P[i]   |–    P[n]

P[i] stands for any expression in which i occurs; P[n] represents the same expre
sion, with n appearing in place of i.

P[i] does not specifically match a function call. For example, P[2] matches sqrt(2),
with {P[z]→sqrt(z)}; but it also matches 5×2+3 with {P[z]→5×z+3}.

Notice that matching does not depend on judgements of equality: it is entirely b
on the symbols in the expressions.

Rules about executable code have to distinguish between expressions whic
have side-effects, and those which definitely do not. For example, it may be
x add: y adds the value of y to x; but only if the expression we substitute for y does
not itself add something to x — x add: (x add: 2) might have a rather differen
effect. Object-symbols (written in lower case) may be used as metavariables t
resent pure expressions (so the example substitution would be invalid), w
expression-symbols (written in upper case) match expressions with possible
effects. 

The interpretation of the use of an object-metavaraible is that it matches o
parameter or variable (in the code), and a rule involving one can only be ap
after a notional transformation of a complex expression to a series of assignm
Object-symbols must have arity {} when used as metavariables, again since w
not deal in higher-order matching.

4-1.4 Special constructs for the kernel

The following notations will only be used in defining a few of the kernel rules: t
do not seem likely to be needed for ordinary design work, and will not be avai
to Fresco users in the construction of new definitions.

4-1.4.1 Two-way theorems

The forms a, b · P1, P2 |—|  Q1, Q2 or a, b ·  will sometimes be a usefu
abbreviation for the set of theorems

a, b · P1, P2 |–  Q1

a, b · P1, P2 |–  Q2

a, b · Q1, Q2 |–  P1

a, b · Q1, Q2 |–  P2

P1, P2

Q1, Q2
Fresco © Alan Cameron Wills 1992 Theories and proofs 62 



t be
er of

mbols
s to

r

h,
in the
from
ecur-

r the
xture
justi-
ems

 in
ed on
h the
4-1.4.2 Theorem schemata

  f · P[f]     — for all f such that ...

is equivalent to a set of theorems, repeated for the values of f satisfying the side-con-
dition. The purpose is to express behaviour ‘wired in’ to Fresco which canno
defined in the general notation. It is applicable where there is a finite numb
instantiations satisfying the side-condition. For example, 

  vi · P[vi]     — for every private variable vi

4-1.5 Contexts

Theorems and theories are all Contexts. Any Context has a set of known sy
which may be used to form expressions within it; and a set of known Theorem
which justifications may refer, provided there are no circularities. 

4-2 Proofs

A derived theorem has a justification, which supports the belief in its validity. Fo
example:
1: juice ∨ porridge // a precursor of 2
2: porridge ∨ juice // derived from 1

from 1 by  or-comm with  {A→juice, B→porridge} // justification

The by...from...[with...] clause is one form of justification, which may be a matc
a subproof, an appeal to an oracle, or an informal text: these are dealt with 
sections below. All justifications refer to a set of precursors — the theorems 
which this one is derived. No theorem should be among its own transitive pr
sors.

A complete proof is a network of intermediate justified theorems generated fo
purpose of deriving some goal theorem. A proof may be constructed in any mi
of forwards or backwards modes: ‘forwards’, seeking what theorems can be 
fied from the theorems known so far; or ‘backwards’, finding what would theor
would be needed to justify the goal required.

4-2.1 Informal and rigorous proofs

An informal justification is one taking the form of an intuitively-based argument
natural language for the belief that a theorem holds. The intuitions may be bas
the current interpretation of the theory, and may possibly not be provable wit
theorems available.

Context

var  knownSymbols ∈Binding set

var  knownThms ∈Theorem set

var context ∈ Context set

var  allContext ∈ Context set
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A rigorous justification is an informal justification, in which the intention is tha
should there be any query (for example at a design review) about its valid
could, with sufficient effort, be proven with the theorems available.

A rigorous proof is a mixture of rigorous and formal justifications. Most of th
proofs done with Fresco should be expected to be of this form. In general, the
egy is to make an outline proof, beginning by stating key theorems, and giving
orous or formal justifications connecting them ‘forwards’ to the theorem of inte
and ‘backwards’ to axioms or other believed theorems.

4-2.2 Matching

A theorem may be proven by showing that it is equal to the result of substitutin
metavariables in an antecedent theorem: this is the Straight Match Justification
and-comm: A, B · A∧B |–  B∧A
|–  sprouts is orful ∧ peas is nice |– peas is nice∧sprouts is orful

by  and-comm with  {A→sprouts is orful, B→peas is nice}

The Split Match Justification supports a match not of the complete rule, but 
conclusion; but only if a match to the hypotheses can be found. Again, meta
bles may be substituted consistently. For example,

Fig. 6. Justifications and proofs

Justification

var antecedents∈Theorem set

var  context ∈ Context

var dependant ∈ Theorem

dependant.justification = self

context = dependant.context

transitiveAntecedents = antecedents ∪ 
 {a∈antecedents · a.justification.antecedents | a.justification ≠ nil}

MatchJustification

var with ∈ Binder mapTo: Expression

var  rule ∈ Theorem

StraightMatchJustification

antecedents = {rule}
rule.subs(mapping) = dependant

SubProof

var  proof ∈ Theory

SplitMatchJustification

var  hypsMatch ∈ Theorem set

antecedents = {rule} ∪ hypsMatch

rule.subs(mapping).hypotheses = hypsMatch

rule.subs(mapping).conclusion = dependant

InformalJustification

var handwaving ∈Text

Oracular

var  who∈ Oracle
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subs-eq: A, B, P · A=B, P[A]  |–   P[B]
1: n = 2
2: 2 × 3 = 6
3: n × 3 = 6 from  2 by  subs-eq with  {A→n, B→2, P[i]→i×3=6}

(The details of the with clause are usually holophrasted.)

The symbols in the range of of the with  clause are obviously to be interpreted in t
context of the Justification, and not of any more local context: this may require 
respelling in order to display the result unambiguously. For example,

n, x · ... // n and x defined and used in this context
1: x=n
2: s ∧ ∀ n · n>x ∨ f(x,n) // local context in here
3: s ∧ ∀ n′ · n′>n ∨ f(n,n′) by  subs-eq from  1, 2 with  {a→x, b→n}

4-2.3 Subproofs

A sequent may be proven by showing that the conclusion (as a theorem on its
is provable in a context in which the hypotheses (as theorems on their own
assumed. It is generally necessary to prove intermediate theorems, rathe
getting to the conclusion in one step. The context in which the steps are docum
is itself a Theory.

The axioms of the theory must be just the hypotheses of the theorem to be jus
and the declarations of the theory should be those of the theorem. (Except tha
names which are not metavariables of the theorem may be declared, and
axioms may be introduced, provided they do no more than define values for 
local names. This constraint can only practically be enforced by restricting 
axioms to the form new-symbol = expression .)

Each theorem which appears as a step in a proof is annotated with a justifi
which supports its validity. The most common justification is the split match, ins
tiating a theorem from the context, such that the hypotheses match named an
ents selected from prior steps in the proof or theorems in the environment.

The example below also demonstrates a nested NatProof (lines labelled 4).

The concrete syntax of a proof displays the steps (that is, theorems in the in
context of the proof) linearised with respect to the chain of justification, and 
systematic labelling. Justifications are displayed with each step. For examp
proof of add-comm consists of the declarations, hypotheses and conclusion o
theorem, separated out into separate lines, together with intermediate theore

SubProof

var  proof ∈ Theory

proof.axioms = dependant.hypotheses

dependant.conclusion ∈proof.theorems.rng

dependant.metavars ⊆ proof.symbs
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decl x, y
h1 x∈Integer
h2 y∈Integer
1 0+x = x add-0-l(h1)
2 x+0 = x add-0-r(h1)
3 x+0 = 0+x subs-eq(1, 2)
4decl n ·
4h1 x+n = n+x
4h2 n∈Integer
4.1 (x+n)+1 = (n+x)+1 determinacy(4h1)
4.2 x+(n+1) = n+(x+1) add-assoc(4.1, h1, 4h2)
4.3 n+(x+1) = (n+1) + x add-defn(h1, 4h2)
4.4 x+(n+1) = (n+1) + x subs-eq(4.2, 4.3)
5 x+y = y+x arith-induct(h2, 3, 4)

The whole proof exists in a context in which the invoked theorems add-0-l etc are
known. The conclusion of each justifying theorem matches the line it justifies,
the parenthesised labels show which lines are matched to its hypotheses. Hy
ses form part of the context of the proof, and need no justificatin. The chain o
tification may not contain loops. Omitted from the justifications as presented 
are the mappings from theorem metavariables to expressions in the applicatio
text. For example, if add-0-l is defined in the context as e·e∈Integer|– 0+e = e,
then metavariable e is mapped to the expression consisting of the single local v
able x. The declarations of the variables local to the proof are in the decl lines. 

4-2.3.1 Proof construction

The order in which a proof is constructed has no relevance to the validity of the
result, and strategies for proof construction are a matter of the detail of the 
construction tool and its user.

As an example of a step in ‘backwards’ mode, in the example above, the inst
tion of arith-induct to match its conclusion with line 5 gives
 y∈Integer, 

x+0=0+x, 
(n · n∈Integer, x+n=n+x |–  x+(n+1)=(n+1)+x)

 |–  x+y=y+x

(with i → y, P[i] → x+i=i+x) of which we have the first hypothesis, but must s
prove the other two.

4-2.4 Oracles

The justification of a theorem may appeal to an oracle — a ‘wired in’ procedur
deciding whether an inference is valid. There are two reasons for providing ora

• Fast deterministic application of a set of ordinary theorems — for exam
simplification in the propositional calculus, or arithmetic.

• Implementation of fundamental rules which are difficult or impossible
express within the proof system; including:

— those with special side-conditions;

— rule schemata which are instantiated appropriately for the context.
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4-3 Context operations

4-3.1 Union of contexts

The union of two or more contexts is important for the monotonic compositio
specifications:

c1, c2 · c1∈Context, c2∈Context, 
     {t.label|t∈c1.knownTheorems}∩{t.label|t∈c2.knownTheorems}  =  ∅ 
|– 
    (c1∪c2).knownSymbols = c1.knownSymbols∪c2.knownSymbols ∧
    (c1∪c2).knownTheorems = c1.knownTheorems∪c2.knownTheorems)

Notice that any name declared in both Contexts is identified: this means that 
union, a quantity represented by some variable can have more strict constrai
it than in either of the origins. The union of contexts with clashing theorem-la
is undefined, but Fresco adds qualifications to theorem-labels where necessa

When a context is to be extended, for example inside a proof or subproof, the e
ing context is unified with the complete set of the theorems contained within
proof. Each of the theorems is available to each of the others for justification, th
an invariant on justified theorems prevents theorems from depending on thems

4-3.2 Extraction from context

A theorem which has been proven in a given context may be extracted from
context provided the antecedents on which it depends are attached to it as hy
ses, and the declarations are brought out as metavariables. For example, we
extract 4.2 from the example subproof into a line of its own in the main proof:
6 n · n:Integer, (x+n)+1 = (n+x)+1|– x+(n+1) = n+(x+1)

add-assoc( h1, 4h2)

or we could go further, noting that 4.1 depends in turn on 4h1:
6 n · n:Integer, x+n = n+x |– x+(n+1) = n+(x+1)

determinacy, add-assoc( h1)

We can then extract the line from the context of the proof:
x, n · x:Integer, n:Integer, x+n = n+x |– x+(n+1) = n+(x+1)

determinacy, add-assoc

At each stage, we have carried along the justifications which tell us what rema
be prepended to the hypotheses. We are finally left with the named rules whic
the steps in the original proof. These can also be prepended: for example,
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x, n · (a, b, P · a = b |–  P[a] = P[b]), x:Integer, n:Integer, 
x+n = n+x |– x+(n+1) = n+(x+1) add-assoc

4-4 Comparison with Mural’s proof system

4-4.1 Theories and proofs

Chapter 4 of the Mural Book [Mural] elaborates on the foundations of the p
system and the reasoning leading to the choices which were made from it. F
builds on that work, and adapts it in some respects:

• Mural’s separate sequents and theorems are unified in Fresco. This
given some consideration in Mural but avoided because it would be slig
less general [Mural p125]. This simplification effectively means building
the rule:

a · 

• Proofs and Theories are identified in Fresco. This is simply a concep
economy. The number of different kinds of variable is thereby reduced.

• There is a distinction between metavariables which match general ex
sions, and metavariables which match pure expressions (such as 
parameter or variable names). 

• Mural distinguishes at the syntactic level expressions which yield types
expressions which yield type-members. This is not done here, since
means much duplication in the presentation. Instead, constraints o
results of the expressions are used where necessary.

[Mural] goes into considerable detail about the properties of the proof syste
would be unprofitable to repeat that here.

Fresco takes over much of Mural’s standard population of theories (Fig
(although there is some mechanical translation to do). 

4-4.2 Logic

VDM is founded on LPF (§3-1.6 — p.37). Axioms for LPF and for the use of eq
ity are defined in Mural: Propositional LPF declares symbols true, ¬, ∨, and
defines in terms of them ⇔, ⇒, false, and ∧. LPF is designed to deal with the pos
sibility of the falsity of the conventional axiom e ∨ ¬e. The other axioms follow con-
ventional logic.

4-5 Summary

Knowledge which can be applied to reasoning is represented in theories. A t
is a collection of symbol-declarations and theorems about those symbols. A 

a∈A
x · x∈A |–  P[x]

P[a]
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known or assumed theorems may be used to support a further theorem, by o
few fixed justification schemes. A theory may be defined wholly or partly by inh
itance from one or more others.

Formal justification is based on the idea of specialising a theorem by substitutin
its metavariables; a theorem states that its conclusion is valid if its hypothese
valid. Sequents are proven by constructing a theory in which the hypotheses a
only axioms, and the conclusion appears as a theorem.

A theorem may be removed from its context be prepending as extra hypothese
of theorems from which it can be derived.

This chapter has described the foundations of Fresco’s reasoning system. Th
three will show how it is used to specify and verify methods, classes and caps

Fig. 7. The standard Mural basis of theories for VDM

Equality and types

∃! & ι

Predicate LPF

LPF

Conditionals
& subtypes

×  types∪  types [T]  types

Integers

Nat

Finite Sets

Finite MapsFinite Seqs

VDM base

Boolean typing
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5 Statements and 
Assertions

5-1 Specifications and code

Statements represent the exectuable part of the Fresco language; assertions are the
not always executable constructs from which theorems are built (See Fig. 8.
two languages overlap considerably: many expressions (e.g. 2+3) are both
ments (i.e. executable) and assertions (i.e. OK to use in a theorem). The SpecState-
ment links the two: each SpecStatement is an assertion that a particular stat
conforms to a particular CodeSpecification. Whilst a Statement determines a rel
tionship between successive pairs of states by prescribing how the machine
achieve the transition, the CodeSpecification expresses this as a predicate ove
ponents of the two states.

5-1.1 Code

The executable statements of Fresco are essentially those of Smalltalk dresse
a concrete syntax more convenient for integration with specification constr
They are an executable variant of the Expressions, together with Sequences;

Fig. 8. Statements

CodeSpec

var  fields ∈ FieldExpression set

var  pre ∈ Expression

var  post ∈ Expression

post.context = self.context ∪ fields.barred

Statement

Sequence

var  vars ∈ Symbol set

var  stmts ∈ Statement list

CodeExpression

CodeStmt

SpecStatement

var  spec ∈ CodeSpec

CodeInvariant

pre = post

Assertion

Context
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loops, conditionals and other control constructions are formed from calls to hi
order operations. 

A sequence may have local variables. There is no special provision in the synt
imposing a type constraint on a variable; invariants inserted in the code may 
assertions about the type of a variable, but that is a matter for proof rather
mechanical type-checking.

Sequence ::= ( [ var  Symbol [...] · ] Statement  [ ;  ...]  )

CodeExpression ::= Assignment | Block | OrdinaryExpression

Block ::=  [  [:Symbol [...] |  ]  Statement  ]

5-1.2 Specification Statements

A spec-statement is an Assertion, and may therefore appear in a theorem or a pro
and it may also be a statement within code. The general form is:

 spec  code

If embedded in a method, the spec-statement is executed by executing its code part.
Code may itself be a specification-statement: read S1 S2 C as S1 (S2
C). 

The statement asserts that the code behaves according to the spec. It is for the
designer to ensure that this is so: that is, the theorem must be proven valid with
context in which it is stated.  In the Fresco support environment, each such stat
has an attached proof, which the designer must complete with the assistance
proof tool: Fresco ensures that all such proofs are complete before a capsule m
certified. (Capsule certification is discussed in Chapter 7 –  System composition
(p.110).) 

Although several code-specs may apply to the same piece of code, clients
assume that anything that may be inferred from a spec-statement will not be ne
by another found somewhere else: spec-statements compose monotonically.
ever, one must take care not to imagine that anything not specified doesn’t ha

The axioms of the type which a class is intended to implement must be observ
its operations: and so the outermost block of statements of every method fo
specification-statement whose specification-part is the conjunction of all ax

OrdinaryExpression

var op ∈ Symbol

var  args ∈ Statement list

BlockExpression

var params ∈ Symbol list

var  code ∈ Statement

CodeExpression

Assignment

var variable ∈ Symbol

var  expr ∈ Statement
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applicable to that method. (Alternatively, there may be separate proofs for eac
evant axiom.) Proof of this outer specification-statement proceeds by recu
deomposition using rules like seq above, in the style of [Morgan90]. 

5-1.2.1 Code invariants

 inv  code

This asserts that if inv is true before executing code, then it will also be true after.
(If the execution of inv would alter the state of the system, this has no effect on
meaning of the code.)

E.g.

x, y, sum ·
 x∈Int ∧ y∈Int ∧ sum∈Int ∧ x+y = sum  (x:=x–1;  y:=y+1)

Like other theorems, spec-statements may involve metavariables. As well as
used in rules, they may be used to represent the results of expressions evalu
particular states. For example,

n0 · s  =  n0! – n!  (s := s × n; n:= n–1) 

Here n0 may represent any object at all — as is always the case with metavaria
the interesting values are those for which the invariant is true when applied to 
ticular case.

The code invariant may be defined in terms of the more general code spec:

code-inv-defn:   inv, Code ·  

5-1.2.2 Code specs

 pre :– post  code

This asserts that if pre is true just before code is executed, then code will terminate
and post will be true of the relation between the states just before and just aft
pre is omitted, it is assumed to be true. (Don’t confuse  :– e  with  e .)

The fields define which program variables (or components thereof) may be alt
by the code. Within post, any of the fields may be quoted barred, denoting the value
it represented before execution. E.g.

n∈Integer  ∧  n>0 :– s = n!   

(s:= 0;  [n≠0] whileTrue: [ n0 · s = n0! – n!  (s := s × n; n:= n–1) ])

5-1.2.3 Opspecs

The opspec is a specialisation of the pre/post-assertion in which the Code is
restricted to a single Message whose parameters are restricted to constants
metavariables. Opspecs are used for stating theorems about particular opera

For example:

 z>0 :– ↑ × ↑ = z  (z.sqrt)

The special name ↑ refers to the value returned from the operation.

 inv :– inv  Code

 inv  Code
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5-2 Decomposition proofs

Decomposition is the development of code which will meet a given operation s
ification. A set of basic rules is given here for the fundamental coding construc
sequential, alternative and loop execution, and for the construction of expres
(with possible side-effects) and assignments. Ideally, opspecs serve direc
proof-rules for the employment of the operations they specify, though this w
well only under certain restrictions (as we shall see).

5-2.1 Basic rules

These are reformulated from [Morgan] and [Jones86a] to suit the Fresco axio
style. Questions of framing and possible aliasing are omitted at this stage, and
with separately below.

5-2.1.1 Strengthening

This combines the usual weaken-precondition and strengthen-postcondition r

stren: P, P1, R1, R, S ·

For the second hypothesis, you don’t have to prove that R always follows from
R1— just that it will do in those cases where P is satisfied by the prior state.

Since code specs can be nested, stren may be paraphrased:

stren′: P, P1, R1, R, S ·

This statement is satisfiable by any S which terminates if P holds:

terminates:  P, S ·   P :– true  S

This specification says nothing:

bottom: R, S ·  false :– R  S

No S satisfies this specification:

miracle: P, S ·  P :– false  S

5-2.1.2 Spec-statement conjunction

A statement may be called upon to satisfy more than one theorem (from diff
parent types, for example). Each theorem applies to those situations in which i
condition is true. It’s perhaps worth considering carefully the consequences o
if two theorems apply to the same statement. They may be conjoined into a the
which applies if either of the preconditions are true — that is, the preconditio

P |–  P1
P, R1 |–  R

 P1 :– R1  S

 P :– R  S

P |– P1
P, R1 |– R

 P :– R   P1 :– R1  S
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which or both of them applied.

spec-conj:  P1, P2, R1, R2, S ·    

Conversely, suppose we believe the lower half of spec-conj to apply to some S:
then stren may be used to show  P1 :– R1  S (which is OK because in writing
this theorem, we don’t care what happens if P2 is true or false, nor what happens 
P1 is false).

Consequences of this include:

post-conj: P, R1, R2, S ·  

and:

pre-disj: P1, P2, R, S ·  

5-2.1.3 Sequence

For a sequence of statements S1; ...; Sn whose postconditions Mi govern variables
xj, and which contain no other barred variables:

seq: P,Mi,Si, xj ·

The trick is to give intermediate names x0j to the original values of all the variable
xj: thereafter, the barred variables have to be removed from the successive Mi.

For example, suppose we wish to verify a sequence of three statements 
manipulate variables x, y, and z. Begin with their specifications:
a:  :– x = x f1 ∧ y=y  ∧  z=z  S1
b:  :– x = x f2  ∧  y = x g2  ∧  z=z  S2
c:  :– x = (x f3: y)  ∧  y = (y g3: (x, z))  ∧  z = x h  S3

It is also important that these functions can be shown to depend only on their
ments (§8-3.3 — p.141)
df1: f1 transparent
df2: f2 transparent
df3: ...and so on for f3, g2, g3, h ...

Now augment b so that it fits with the postcondition of a and eliminate bars:

 P1 :– R1  S
 P2 :– R2  S 

 P1vP2 :– (P1⇒R1) ∧ (P2⇒R2)  S

 P :– R1  S
 P :– R2  S 

 P :– R1∧R2  S

 P1 :– R  S
 P2 :– R  S 

 P1∨P2 :– R  S

 P :– M1[xj]  S1

x0j ·   Mi–1[x0j] :– Mi[x0j]  S2≤i≤n

 P:– Mn[xj]   (S1; S2; ...; Sn)
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bp1: x = x0 f1 ∧ y=y0  ∧  z=z0  |–  true    /* precond of b */ by true-intro

bp2: h1:  x = x0 f1 ∧ y=y0  ∧  z=z0 /* barred version of new precond */

h2: x = x f2  ∧  y = x g2  ∧  z=z
1: x = x0 f1 ∧ y=y0  ∧  z=z0    from bp2.h1, df1 by  unbar

|– x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0 from bp2.1, bp2.h2 by subs=

b2:  x = x0 f1 ∧ y=y0  ∧  z=z0  :–  x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0   S2
from bp1, bp2, b by stren

and similarly for c:
cp1: x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0  |–  true by true-intro

cp2: h1: x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0

h2: x = (x f3: y)  ∧  y = (y g3: (x, z))  ∧  z = x h

|– x = (x0 f1 f2 f3: x0 f1 g2)  ∧  y = (x0 f1 g2 g3: (x0 f1 f2, z0))  ∧  z = x0 f1 f2 h

c2:  x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0 
:–  x = (x0 f1 f2 f3: x0 f1 g2)  ∧  y = (x0 f1 g2 g3: (x0 f1 f2, z0))  ∧  z = x0 f1 f2 h S3

from cp1, cp2, c by stren

and finally, we can apply seq:
|–  :– x = (x f1 f2 f3: x f1 g2)  ∧  y = (x f1 g2 g3: (x f1 f2, z))  ∧  z = x f1 f2 h

  (S1; S2; S3) from a, b2, c2 by seq

Typing clauses are omitted here for clarity. The explicit preservation clauses y=y  ∧
z=z are required because we have not yet considered framing. 

5-2.1.4 Condition

Smalltalk’s blocks carry no problems provided we deal only with specific use
them. The basic conditional rule is:

if: P,R,C,S1,S2 ·

but this assumes that C has no side-effects. If C does cause changes, then the effe
is like (|v| v := C. v ifTrue: [S1] ifFalse: [S2]), so the rule becomes

if-se: P,R,C,S1,S2 ·

5-2.1.5 Loop

loop: v, inv, C, S ·

v is a variant, any expression chosen so that it reduces monotonically, but
beyond 0: and therefore guarantees termination. It does not, of course, need
realised in an actual code variable.

 P ∧ C :– R S1
 P ∧ ¬C :– R S2

 P :– R C ifTrue: [S1] ifFalse: [S2]

 P :– M[[xi]  C
 M[xxi] ∧ C :– R[xxi]  S1

 M[xxi]  ∧ ¬C :– R[xxi]  S2

 P :– R[xi]  C ifTrue: [S1] ifFalse: [S2]

v ·  v∈Int  ∧ inv ∧ C :– inv ∧ 0≤v ∧ v<v  S

 inv :–  inv ∧ ¬C [C] whileTrue: [S]
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Some styles of programming use C as a substantial piece of code with side-effec
in which case, the rule is

loop-se: v, inv, PT, C, S ·

All barred variables x in the concluding R must be substituted by other names x0 in
the decomposition. PT is whatever condition gives rise to C ultimately evaluating
to true. (If it’s too difficult to characterise this when applying this rule — for exa
ple, if C is not sufficiently deterministic — try making R≡M and forget about PT.)

For example, to the fairly useless piece of code

[a:= a×2. a<b] whileTrue: [b:=b/2]

the rule can be applied with these substitutions, creating a0, b0 as names for the
initial values:

inv[a0, b0] ≡ a×b = a0×b0, 
PT≡ a×2>b, 
v≡ (b/a)floor, 
M[a0, b0] ≡ v=v/2 ∧ a×b/2 = a0×b0,
R[a0, b0] ≡  a×b/2 = a0×b0 ∧ a>b

hence

 :– a×b/2 = a×b ∧ a≥b [a:= a×2. a<b] whileTrue: [b:=b/2]

5-2.1.6 Inline form

The rules can also be written and applied in a style more suited to the integrat
program code and development, in which specification-statements can be n
(See §10-1 –  Fresco development language FST (p.165))
stren: P, R, P1, R1, S ·  P :– R  ( (P |–  P1),  (P, R1 |–  R),   P1 :– R1  S)
seq: P, Mi, xi, Sj ·  P :– Mn [xj]  x0j · (P :– Mi[xj]  S1; Mi–1[x0j] :– Mi[x0j] Si; ...)

if: P, R, C, S1, S2·  P :– R  (C ifTrue: [P∧C:–R S1] ifFalse: [P∧¬C:–R S2])
loop-se:inv, C, v, S ·  inv[x] :– R[x] 

 ([ (inv[x0]∧¬PT :– R[x0] ∧ ↑=false,
  inv[x0]∧PT :– M[v,x0] ∧ ↑=true ) C ] 

whileTrue: [v∈Int∧M[v0, x0] :– inv[x0] ∧ 0≤ v∧v<v0S])

The example given under §5-2.1.3 –  Sequence (p.74) now looks like this:

r ·  inv[x0] ∧ ¬PT :– R[x\x0] ∧ r=false r:=C
r ·  inv[x0] ∧ PT :– M[v, x0] ∧ r=true r:=C

v0 ·  v∈Int ∧ M[v0, x0] :– inv[x0] ∧ 0≤v ∧ v<v0  S

 inv[x] :– R[x] ([C] whileTrue: [S])
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x, y, z, S1, S2, S3 ·
 :– x = (x f1 f2 f3: x f1 g2)  ∧  y = (x f1 g2 g3: (x f1 f2, z))  ∧  z = x f1 f2 h 
x0, y0, z0 · (

 x = x f1 ∧  y=y  ∧  z=z  S1 ;
 x = x0 f1 ∧  y=y0  ∧  z=z0 :–  x = x0 f1 f2 ∧  y = x0 f1 g2  ∧  z=z0  

((x = x0 f1 ∧  y=y0  ∧  z=z0 |–  true),
 ( h1: x = x0 f1 ∧ y=y0  ∧  z=z0 ,

   h2: x = x f2  ∧  y = x g2  ∧  z=z ,
   |– x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0 from h1, h2 by subs= ),

  true :– x = x f2  ∧  y = x g2  ∧  z=z  S2) ;
  x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0  
  :–  x = (x0 f1 f2 f3: x0 f1 g2)  ∧  y = (x0 f1 g2 g3: (x0 f1 f2, z0))  ∧  z = x0 f1 f2 h ,

( h1: x = x0 f1 f2  ∧  y = x0 f1 g2  ∧  z=z0 ,

  h2: x = (x f3: y)  ∧  y = (y g3: (x, z))  ∧  z = x h ,

  |– x = (x0 f1 f2 f3: x0 f1 g2)  
∧  y = (x0 f1 g2 g3: (x0 f1 f2, z0))  ∧  z = x0 f1 f2 h ),

 true :–  x = (x f3: y)  ∧  y = (y g3: (x, z))  ∧  z = x h  S3 )
)

The rules given here are derived from [Morgan], but

• stren combines several of Morgan’s rules in a convenient manner

• seq conveniently handles more than one statement

• loop-se permits side-effects in the condition

• the scopes of effects of statements are dealt with explicitly here, since a
complex framing scheme than Morgan’s will be introduced presently
cope with possible aliasing.

5-2.2 Assignment

assignment: P, R, x, E ·  

or in inline form:
assignment:  P:– ∃ x0 · R[x,x0] ∧ ↑==xx:=   P:–R[↑, x]  E

and if x does not occur in E, this can be simplified to:
assignment′:  P:– R ∧ ↑==xx:=   P:–R  E[x\ ]

The assignment rule takes account of the possibility that E is not pure. Compare
with Morgan’s, in which R[E] would be difficult to interpret if E has side-effects:
Morgan Law 6.6: P, R, y, E · (y=y ∧  P|–  R[E])  |–    P :– R[y] E

For example:

  P:–R[↑, x] E

  P:– ∃ x0 · R[x,x0] ∧ ↑==x x:=E
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x, y · h1:  x∈Set :–  x = x∪{y}  ∧  ↑==y  x add: y
1:  x∈Set :–    ∃ X ·  X = x∪{y}  ∧  x==y  ∧ ↑==x  x:= x add: y

by assignment from h1

|–  x∈Set :–    x==y ∧ ↑==x  x:= x add: y by ∧-elim, ∃-redundant

5-2.3 Operation invocation and results

We have already seen how the theorems specifying each operation act as proo
for their clients. If invoked from outside the type in which it is defined, an ope
tion’s specifying theorems need to be context-extracted from the type (§6-3
p.88). For example, 

yields the theorem (after some renaming):

Point::diff:  pa, pb ·
 pa∈Point, pb∈Point 

:– ↑=Point(pa x  –  pb x,  pa y  –  pb y)
  pa diff(pb)

and in well-behaved cases, this can be applied easily:
... :–↑=Point(p1 x + p2 x,  p1 y + p2 y)  p1 add(p2) by Point::add
...:– ↑=Point(Point(p1 x + p2 x,  p1 y + p2 y) x –  p2 x,

Point(p1 x + p2 x,  p1 y + p2 y) y – p2 y)  {p1 add(p2) diff(p2)}
by Point::diff [pa\p1 add(p2), pb\p2]

... :– ↑=Point((p1 x + p2 x)  –  p2 x,  (p1 y + p2 y)  –  p2 y)  {p1 add(p2) diff(p2)}
by Point(Real,Real)-defn

... :– ↑=Point(p1 x,  p1 y)  {p1 add(p2) diff (p2)} by arith
p1, p2, pr · p1∈Point ∧ p2∈Point  :– ↑=Point(p1)  {p1 add(p2) diff(p2)}

by Point(Point)-defn

(Notice that we have to conclude not that p1 results, but that a copy of it results.)

However, in some cases, the arguments themselves have side-effects, and the
be taken into account. One way is to state an equivalence between an ope
invocation and a sequence of statements. If pi stand for variables and Ei for expres-
sions with possible side-effects:

(This is a simplification, as it would be more generally useful not to assume
order of evaluation of arguments.)

Point

fn  diff∈ (Point) Point

diff:p∈Point :– ↑=Point(x – p x, y – p y) diff(p)

 RE[X] :– R[X]  r:= p0 op (pi)
P :– RE[x]  (var  v0,v1, ... · v0:=E0; v1:=E1...;  r:=v0op (vi) )

P :=  R[x] r:= E0 op (Ei)
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From the assignment′ and sequence rules, we can derive this rule, in which Mi must
be free of barred variables:

opcall:  P, Mi, pi, x0j, xj ·  

in which pi stand for the values of the arguments as they are computed, and x0j are
the original values of all other variables.

For example:
1 x∈Set :–  x∈Set ∧ ↑==x  ∧  x=x  ∧  y=y  x by var-exprn
2.1  x∈Set :–  x=x∪y  ∧  ↑==y  ∧  y=y x add: y by Set-add-defn...
2  x∈Set ∧ p0==x  ∧  x=x0  ∧  y=y0 

 :–  x∈Set ∧  p0==x0  ∧  x=x0∪y  ∧  ↑==y  ∧  y=y0 x add: y by stren

3.1  p0∈Set :– p0=p0–p1 ∧  ↑==p1  ∧  p1=p1  p0 sub: p1 by Set-sub-defn
3:  p0∈Set ∧  p0 = x0∪{p1}  ∧  p1==y  ∧  y=y0 ∧  p0==x0  

:–  p0==x0  ∧  ↑==y  ∧  p0=x0  ∧  y=y0 p0 sub: p1 by stren...

4:  x∈Set :– p0==x  ∧  ↑==y  ∧  p0=x  ∧  y=y   x sub: (x add:y) by opcall
c:  x∈Set :– ↑==y  ∧  x=x  ∧  y=y  x sub: (x add:y) from 4 by subs==

opcall is required only where there are possible side-effects: clearly, it’s easi
use pure expressions where possible!

5-2.3.1 Yield of an expression

yield: P, Q, x, op ·  P :–  Q[↑]  x op |–  Q[x op]

5-3 Issues in the use of programming language in 
assertions

The language of specification in Fresco is just an extension of the implemen
language, for simplicity and close integration. Unlike some wide-spectrum 
guages, the programming component is practical and imperative, which raises
questions about possible ambiguities when used for specification.

5-3.1 Underdetermined expressions

Since a postcondition is a relation which can be as loose as you like, func
defined by opspecs may not have precise values. For example, sqrt (specified
above) has two possible meanings for most receivers. Some caution is the
required in employing such functions within the specifications of other operat
We must avoid making assumptions such as 4 sqrt = 4 sqrt — otherwise, it could
be shown that 2 = –2, and hence that Bertrand Russell and I are the Pope etc.

  P:–M0[↑, xj] e0

i  Mi-1[pi-1, x0j] :– Mi[↑, x0j]  ei

 Mn[pn, x0j] :– Mop[↑, x0j] p0 op (pi)

 P :– Mop[↑,x]  e0 op (ei)
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The rule for making inferences about opspec-defined functions is therefore sli
circumspect:

use-pure: G, F, R, a, S ·

— must be applied separately for each occurrence of F[a] in G.

The rather ugly side-condition is necessary because a separate new vari
required for each occurrence, to allow for them having different values. (Side-
ditions can be coped with in the basic rules, since they can be ‘wired-in’ to the 
tool.) The first hypothesis states that F[a] must have no side-effects — see §8-3 
p.133.

So, for example:
h1: a ·  a∈Real ∧ a>0 :–  ↑ = a sqrt × a  a powerThreeHalves // defn
h2: b · b∈Real  ∧  b>0   :–   ↑ × ↑  =  b  b sqrt //defn of sqrt
0: a ·  a∈Real ∧ a>0 :–   a∈Real ∧ a>0  ∧  ↑ = a sqrt × a  a powerThreeHalves

from  h1 by  carry-pre
1: a · a∈Real ∧ a>0   :–    ∃ n · ↑ = n × a  ∧  n×n = a   a powerThreeHalves

from  h2, 0 by  use-pure
with  G[e]→ ↑ = e×a, F[e]→ e sqrt, R[e1,e2]→ e1×e1 = e2, 

a→ a, S→ a powerThreeHalves
2:  4∈Real ∧ 4>0   :–   ∃ n · ↑ = n × 4  ∧  n×n = 4  4 powerThreeHalves by  2
3:  :–  ↑ = 2×4 ∧ 2×2 = 4  ∨  ↑ = –2×4 ∧ –2×–2 = 4  ∨  ↑ = 43×4 ∧ 43×43=4  ∨ ...

4 powerThreeHalves by  expansion of ∃ from  2
4:  :– ↑ = 8  ∨  ↑ = –8  4 powerThreeHalves  by  arith & simplicication from  3

The underdetermination is carried through.

5-3.2 Promotion

The rule above applies only to pure functions. No rule is available for direct u
expressions with side-effects.

However, any opspec can be promoted — quoted, via the name of its operation, 
other theorems:

 p∈Point ∧ v∈Point :–  p x = p x + v x  ∧  p y = p y + p y  p move: v
 d ∈ Drawing  ∧  fx ∈ d points  ∧  fx≠f  :–   fx = fx  d update: f
  art∈Drawing ∧ f ∈ art points :– [[ f move: v]] ∧ [[art update: f ]]   art move: f by: v

This permits theorems to be neatly factored: in this example, update is an operation
quoted by many of the opspecs for this type, and its purpose is to ‘carry’ those
icates common to them all. Modularisation is also encouraged by this mecha
this operation has the effect on f stipulated by its move operation, but we have left
it to the specification of f’s type to say what that is; if the meaning of moveing indi-
vidual components of the drawing changes, then so automatically does the mean
of moveing the current type.

F[a] ∆ ∅
a ·  P[a] :– R[↑, a]  F[a]

 ∆ s · PS :– P[a] ∧ G[F[a]]  S

 ∆ s · PS :–  ∃ n · G[n] ∧ R[n, a]  S
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The semantics is given by:

promote: P, R, S · 

This means that if we can find any opspec which relates to op, then we can interpret
it as part of the specification of S. There may be several such opspecs, and we m
not know all of them, but any inferences made from any one will not be invalid
by later discoveries.

There is no inference to be made from ¬[[ ...]]: so there’s no point in designers tryin
to write negative promotions. This is essential, because our compositionality a
never to rely upon having seen all the rules which might apply to a particular 
ation until coding time, and so should not be able to say what it might mean
nitely not to comply with its spec. 

Asserting [in]equality between promotions is equally useless, with the same ju
cation.

However, the result of conjoining two promotions parallels that of stating 
opspecs for one operation:

(Parameterisation of the statements has been omitted here, for clarity.)

Disjunction of two promotions is useful for expressing exception-handling. H
we guarantee that (provided both their preconditions are met) the specificatio
at least one of them will apply:

so we could envisage composing a specification from several partial opera
specs:

 [[compileAndLink]]  ∨  [[ reportErrors]] ∧ [[ deleteObjFiles]] 

(The preconditions for each of these would not include possible end-user error
syntax mistakes in the compiler input: recall that the point of a precondition 
document what ought always to be true on entry to a procedure if the design is to
considered correct; preconditions are not for documenting cases which may a
run time. Syntax of the compiled language is therefore part of compileAndLink’s
postconditions.)

vi ·   P[vi] :– R[vi, vi]  S[vi]

xi ·  [[S[xi] ]]  ⇒   ( P[xi] ⇒ R[xi, xi] )

 PA :– RA  SA

 PB :– RB  SB

 [[SA]] ∧ [[SB]]  ⇒  ((PA⇒RA) ∧ (PB⇒RB))

 PA :– RA  SA

 PB :– RB  SB

 [[SA]] ∨ [[SB]]  ⇒  (PA ∧ PB  ⇒  RA ∨ RB)
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Given that other logical operators between promotions are not useful, it wou
interesting to investigate other compositions that are possible inside the promo
for example:

conjoin:  PA ∨ PB :–  (PA ⇒ RA) ∧ (PB ⇒ RB)  (SA |∧| SB)

disjoin:  PA ∧ PB :–  RA ∨ RB  (SA |∨| SB)

intersect:  PA ∧ PB :–  RA ∧ RB  (SA |*| SB)

fallback:  PB :–  (RA ≠ RB) ∧ (¬PA⇒RB)  (SA |/| SB)

seq:  PA :–  ∃ s′ · RA(s, s′) ∧ RB(s′, s)  (SA ; SB)

The last is, of course, familiar, and is included to demonstrate uniformity betw
this executable composition of statements and the others, which though inex
ble, are meaningful within [[...]] : for example, 

[[[SA] ∧ [SB]]]  |–  [[SA]] ∧ [[SB]] 

5-3.2.1 Satisfying Promotions

Promotions are Useful for factoring specifications, but in general there is less a
tage when it comes to implementation. All the opspecs relevant to a prom
message must be gathered and conjoined; and the implementation of the fla
result may or may not use the implementations of the promoted messages. W
ever an opspec is added to a promoted message, its uses must be traced and 
mented.

The implementation of a composition may use the components’ implementa
under certain circumstances:

choose: :– [[SA]] ∨ [[SB]]  (C ifTrue: [SA] ifFalse: [SB])

except: :– [[SA]] ∨ [[SB]]  (Exception new within: [SA] handle: [SB])

seq-∧:

5-4 Summary

This chapter has dealt with the use of expressions in executable code and in
rems. Rules have been given for procedural decomposition proofs. 

Whilst the decomposition proofs owe a great deal to the [Morgan], the rule
somewhat more complicated, to allow for the possibilities of side-effects.

An important property of the theorems which specify statements is monotonic
junction.

 PAi :– RAi  SA

 PBi :– RBi  SB

  RAi  SB

  PAi  ∧   PBi ∧  RAi |–    PBi 

 [[SA]] ∧ [[SB]]  (SA ; SB)
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6 Types and Classes

6-1 Types

6-1.1 Type theories

• The theory of a Fresco type T is a set of theorems AT,i over a set of message
selectors.

• An object x is a member of type T, written x∈T, iff all the theorems of the
theory of T are valid when x is substituted for self (and after making self
explicit as a prefix to attribute names — self.x rather than just x):

Type definitions will be interpreted in such a way that all the axioms are predic
over object-behaviour, rather than individual states. Theorems therefore apply 
whole behaviour of an object; so an object’s membership of a type does not c
with time.

An object may be a member of many types.

The fundamental way of proving type membership is to prove the type’s theor
Conversely, if an object is known to belong to a particular type, then we may 
that that type’s theorems are true of it.

The theorems of a type may be partitioned into axioms, those given by the designe
as defining the type; and derived theorems, provable from the axioms. To prove tha
an object is a member of a given type, it is therefore only necessary to prove th
type’s axioms are valid for that object.

If one of the theorems of a type is unsatisfiable, then the type is necessarily e
However, this has no effect on any other types there may be in the system. For
ple, if one of the theorems of type T1 contains the conjunct

∀ y∈T2 · P(y)

this places no extra obligation upon the members of T2 additional to T2’s own def-
inition; rather, this just means that T1 is empty unless the term does happen to
always true for all possible members of T2.

The set of axioms implies the set of message-selectors which the type unders
and the set of model-variables in terms of which the type is described: they ar
those which can be found within the axioms. An operation in the signature w
be no use without at least one axiom to define its effects.

6-1.2 Membership of types

Fresco types are sets of object histories.

AT, 1 [self\x]
…

AT, n [self\x]

x∈T
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6-1.2.1 Object Histories

An object passes through a sequence of states in its lifetime.

Each transition is brought about by a message.

Each argument may be altered by the message, so an ObjectTransition is a segment
of an object history, representing the states of the argument before and after.

6-1.2.2 Type membership

Every type definition T can be rendered as a set of opspecs

AT, n ≡  Pn(σ, p) :– Rn(σ, σ, p, p, ↑)  opn(p)

 where p, p are vectors of States, and σ, σ, ↑ are States; and an invariant

AT, i ≡ inv(σ)

(where  is a convenient borrowing from temporal logic, indicating that the inv
iant is true of every state in the history). There may be more than one opspec
cable to each message (so opn1 = opn2 is not excluded); and there may be seve
invariants.

An ObjectHistory h is a weak member of T, written x : T,  if and only if
∀ i∈h.transitions.indices ·

let  σ = h.transitions[i].before, σ = h.transitions[i].after, 
m= h.transitions[i].msg, a=m.args.before, a=m.args.after  in

 n · Pn(σ, a) ∧ m.selector = opn  ∧ inv(σ) ⇒  Rn(σ, σ, a, a, m.return) ∧ inv(σ)

An ObjectHistory h is a strong member of T, written h ∈ T,  if and only if

ObjectHistory

var  transitions ∈ List(Transition)

∀ i · i∈1..transitions.length–1 ⇒
 transitions[i].after = transitions[i+1].before

Transition

var  before ∈ State

var  msg ∈ Message

Message

var  selector ∈ Name

var  args ∈ List (ObjectTransition)

ObjectTransition

var  before ∈ State

var  after ∈ State

var  between ∈ ObjectHistory

between.first = before  ∧  between.last = after
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h : T  ∧  ∀ i∈h.transitions.indices · let  σ = h.transitions[i].before in   i · invi (σ)

Weak type membership says that if an object satisfies the invariant, then i
behave as expected and the invariant will remain true, but may behave as it like
erwise: every opspec’s pre and postconditions are conjoined with the inva
Strong type membership asserts that the invariant is indeed true in all states;
the usual requirement — assume this variety of typing by default. The use of th
tinction is discussed in §8-1 — p.125. A difference arises only during executio
a message or in some cases where aliasing disturbs an invariant. 

Notice that although this forces predictable behaviour for any message about 
there is an axiom whose preconditions are fulfilled, the invariant is the only 
straint on the results of any message for which there is no axiom, or which doe
meet any axiom’s preconditions. This is a useful property when types are to be
posed.

An object is said to belong to a type (x∈T or x : T)  if it can be shown that all its
possible histories belong to the type (h∈T or h : T).

• Type monotonicty theorem. Each axiom which is added to a type-definitio
restricts the type to a subset of what it was before. 
It is clear that no new transitions are permitted by a new axiom, since e
transition still has to conform to the axioms which existed before. Hen
new axiom can only restrict the set of histories, or at least leave it as it

6-2 Subtypes

• A type S is a subtype of a type T, written S⊆T, iff every member x of S is
also a member of T.

x∈S |–  x∈T

S ⊆ T

A type may have many subtypes and supertypes. A subtype S may be defined as a
subtype of T by inheritance; or it may be proven to be so. Proofs are discussed in 
later section; the principle is to demonstrate that all the axioms of T are valid within
S.

The purpose in determining subtyping is to check that the behaviour expecte
client as expressed in type T is provided by a reified or more detailed specificatio
as expressed in type S. If S ⊆ T, then the client can treat members of S exactly as
if they were members of T; and need not know about S.

6-2.1 Defining a subtype by inheritance

If TT is defined as an inheritor of T, written TT::+T, then its axioms are those of T
plus any explicitly defined for TT.

• Subtype by inheritance theorem. TT::+T |–  TT ⊆ T. 
TT is made up by adding new axioms to T. By the type monotonicity theo-
rem, the result is a subtype of T.
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Model-variables and axioms with the same names in TT and T are identified; new
names may also be introduced.

A type may be defined to inherit from more than one type — in which case it inh
the axioms and features of them all.

6-2.2 Type product

• x∈ T1∩T2  ⇔  x∈T1 ∧ x∈T2

The product or intersection T1∩T2 of two types is their greatest common subtyp
T1∩T2 ⊆ Ti.

If a type is defined as TT ::+(T1,T2) then it inherits the axioms of both T1 and T2.

• Multiple inheritance product theorem. Inheriting from both T1 and T2 is
equivalent to inheriting from T1∩T2.
The minimal case is when TT adds no axioms of its own. TT is made up by
adding the axioms of T1 to T2: by the type monotonicty theorem, the resu
must be a subtype of T2; and of T1 by symmetry; hence TT⊆T1∩T2.
Clearly, since TT restricts the set of histories with no extra axiom
TT=T1∩T2.

Type products are the basis of monotonic composition, because if a client c1 ex
some object x∈T1, then we may supply an object x∈(T1∩T2) — that is, with not
only the behaviour c1 is expecting, but some further rules derived from anothe
tract, or an improved specification, or the practicalities of implementation. All
reasoning that can be done by a client about its use of T1 works by inference from
the type’s axioms; it is not possible to infer anything from the absence of a theo
Hence when new axioms are added, all existing inferences remain valid.  

There is no guarantee that the intersection of two types will not be empty, for
an unimplementable empty type with inconsistent axioms.

6-2.3 Co-product and type category

The co-product or union T1∪T2 of two types is their least common supertype: Ti
⊆ T1∪T2. x∈T1∪T2  ⇔  x∈T1 ∨ x∈T2. A member of a union conforms to eithe
of the components: so that a union is the least common supertype of its compo
and is subtype of any other common supertype (TU in the lattice shown). The only
theorems (and hence the only operations) that one can be sure of in a union ar
implied by the ‘∨’ of any pair of theorems from the two types; this includes,
course, any theorems which the types have in common.

Where an alternative between several types is expected in some context, de
are encouraged to specify the supertype and allow the range of subtype altern
to be decided at a later stage: for example, specify Shape rather than Parallelo-
gram∪Square, because that allows more readily for extension at a later stage
it is on occasion useful to be able to stipulate the precise range of alternative
example, in specifying a tree, it may fundamental to the model, that branches a
sprout two of something which is either a leaf or a node, and, short of a major d
review, definitely never anything else. Traditional VDM makes extensive use of
criminated unions, in which each alternative ‘knows’ what type it is.
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⊥ is the axiomless type, supertype of all others; and ∅ is the unimplementable type
subtype of all others.

TL/TU is an arbitrary common sub/supertype of T1 and T2; it is always a sub/super-
type of the intersection/union.

6-3 Type definitions

The ‘display’ syntax for a type description  is of this form, with two alternative no
tions for supertype:

(The disposition of the theorems between the partitions is not formally signific
it’s sometimes useful to distinguish any which make no mention of private com
nents by placing them above the line.)

T2T1

TU

T1∪T2

T1∩T2

⊥

TL

∅

type-name [ ::+ Supertype ...]

visible feature signatures

private feature signatures

theorems

more theorems

Supertype

...
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The abstract syntax:

axioms are the defining opspecs of the type; derived are further theorems proven
from the axioms. The Fresco system allows anyone to extend the set of derived the-
orems attached to a type (provided they are proven), since they increase th
with which the type may be understood, and provide a less primitive base 
which clients may base their own proofs.

visible lists the operations or functions which clients may expect to apply
members of this type; private permits the construction of a model, and are usua
simple attributes. 

private attributes are not hidden from clients: they may be referred to in a clie
reasoning. However, they are encapsulated, and cannot be used in code.

Signatures are prefixed with op , fn , or var : operations may change the state a
arguments; functions only yield values without changing anything; and variable
equivalent to zero-arity functions. The type-constraints are effectively extra axi

6-3.1 Type context extraction

Within the context of a type theory, the name self is conventionally used for the var
iable that represents the receiver object in an opspec. Thus for example, in the
of Points:

  :–  x = x + p x  ∧  y  =  y + p y   self move: p

The Fresco convention is to omit self as the receiver of an operation: it can syste
atically be restored by prefixing each term which does not begin with a metava
or local variable of the context (in a method):

p ·   :– self x = self x + p x  ∧  self y  =  self y + p y   self move: p

The theorems of a type T are stated within a context in which self∈T is axiomatic.
We can apply the context-extraction rule to any theorem A[self], at the same time
renaming self, to produce:

a · a:T |–  A[a]

So the example becomes:

FrescoType  ::+ Context

var  name ∈ Symbol

var  parents ∈ FrescoType set

var  axioms ∈ Theorem set

var  derived ∈ Theorem set

var  visible ∈ Signature set

var  private ∈ Signature set

var  theory ∈ Theory

∀ d∈derived · d justification ≠ nil
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a, p · a∈Point |–   :– a x = a x + p x  ∧  a y  =  a y + p y   a move: p

6-3.2 Model-oriented type definitions

In a conventional model-oriented specifications of mutable objects, each theor
either an OpSpec or an invariant. The invariants document constant relationsh
among the attributes, while the opspecs determine the behaviour of the oper
in terms of the attributes.

One operation may have to conform to several opspecs. From a client’s po
view, it is not obligatory to satisfy any particular precondition; but the applicab
of each opspec is determined by whether its precondition is fulfilled. So you
better satisfy the precondition of at least one theorem applicable to the operatio
propose to call, if you are to have any idea of what the result will be. 

6-3.3 Type invariants

Ordinary expressions (not spec-statements) may be used to restrict a model 
define redundant components and auxiliary functions. There may be any num
invariants in one type definition and inherited from parent types, but the invariant of
a type is the conjunction of all of these.

In the early stages of analysis, it is common to deal with specifications of immu
concepts (like FrescoType, above), which can be written as sets of functions c
strained by invariants.

An invariant may be used to constrain the model to exclude inapplicable com
tions of states, as in the TrafficLight example above. (Thus ¬green is not explicitly
required in the postcondition of the first axiom.)

TrafficLight

op  next ∈ ()

var  red ∈ Boolean

var  amber ∈ Boolean

var  green ∈ Boolean

¬green = (red ∨ amber)

 red ∧ ¬amber :–  red∧amber next
red∧amber :– green  next
green :– ¬red ∧ amber  next
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An invariant may be used to add extra ‘views’ of a model:

Here two pairs of variables, x, y and r, ω, are each sufficient as models. Each mod
is convenient for the specification of a different operation, but the two are cou
by the invariants.

6-3.4 Functions

Public or model functions may be defined. E.g.:

6-3.5 Property-oriented specifications

Fresco makes no big distinction between property-oriented and model-orie
methods of specification: the difference comes down to whether the axioms 
use of internal model components. It is possible to derive non-component-usin
orems from component-using axioms. [Fitzgerald90] demonstrates this in co
tion with non-OO specification modules. A purely axiomatic style is unavoida
for the most primitive types, since they don’t have anything more primitive to b
models with. 

Point

op  move∈ (Vector)

op  rot ∈(Real)

var  x ∈ Real

var  y ∈ Real

var  r ∈ Real

var  ω ∈ Angle

r ≥ 0
r×r = x×x + y×y
cos(ω) × r = x  ∧  sin(ω) × r = y

 :– x = x + v.x ∧ y = y + v.y  move(v)

Point

fn  _– _∈ (Point) Point

p2∈Point |–  
:– r∈Point ∧ r x  =  x – p2 x   ∧   r y  =  y – p2 y r:= self– p2

var  distance∈ (Point) Real

p ·  p∈Point  |–   distance(p) = (self–p) r
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6-3.6 Type Box composition

A type’s definition may be spread between more than one type-definition box
several reasons:

• to separate concerns in documentation; for example, where a type is d
oped as the intersection of several ‘contracts’ [Helm].

• in successive versions of a published design, a type may be extend
adding new boxes and changing the implementation.

• in stepwise design, stages of refinement may be represented either by 
ent types, or by extensions to a single type.

The default composition of two boxes is type intersection; a client’s  knowledg
any box will remain valid no matter what other boxes are added. On the other 
an implementor must gather specifications from all the boxes applying to any
type, and must of course repeat the procedure whenever any new boxes are 

The Fresco system ensures that the implementor of an operation has to doc
proofs of all the relevant axioms from all the relevant boxes; if any relevant a
is changed or added, the implementation is flagged as needing re-doing. Bu
client is only dependent on the theorems it uses in its proofs, and a change in
box flags for re-inspection only such dependent clients. Changes in the imple
tation of a type which aren’t caused by any change in the specifications ther
raise no spurious alarms on the clients. This strict use of dependency inform
provides accurate configuration control, and provides the maximum benef
encapsulation.

6-3.7 Signatures

The purpose of the feature signatures is to document which of the operations
with by the theorems are visible to clients and therefore must be implemented
natures may be interpreted as qualifying the theorems in the rest of the defini

Set[T]

fn ∅ ∈ Set[T]

fn _<+_ ∈ (Set[T], T) Set[T]

fn _∪_ ∈ (Set[T], Set[T]) Set[T]

fn _∩_ ∈ (Set[T], Set[T]) Set[T]

x · x∈T  |–   ¬(x∈∅)
x, y, s · x∈T, y∈T, s∈Set[T]   |–   y ∈ (s <+ x)   =   (y=x ∨ y∈s)

x, s1, s2 · x∈T, s1∈Set[T], s2∈Set[T] |–  x∈(s1∪s2) ⇔ x∈s1 ∨  x∈s2

x, s1, s2 · x∈T, s1∈Set[T], s2∈Set[T] |–  x∈(s1∩s2) ⇔ x∈s1 ∧  x∈s2
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For example:

We can modify the type context extraction rule of §6-3.1 to add signature info
tion to each theory as it is extracted. If ‘Tb::’ prefixes a theorem or signature whic
originates in a box Tb describing a type T, then:

Tb, R, Pi, n, f, pre, post ·

Notice that this is not the same as translating the signature to some theorem an
composing that theorem with the opspec: preconditions would not be conjoin
such a procedure. Rather, the signature supplements each of the stated opspe
scheme should be applied to every combination of opspec and theorem in a
box whose operation-names and parameter-counts match. 

Notice that this gives more significance in the semantics to

• the type box, which is no longer just a partitioning of the information i
unified type description;

• the opspec, which is no longer just a special case of a specification-s
ment.

Signatures and subtypes

The above rule clarifies some questions about signature-conformance. If TT⊆T,
then TT::f (that is, an operation f defined for type TT) must conform to any signa-
ture-theorems of T::f; so any further theorem about TT::f must extend rather than
confict with the inherited theorems. If we have

TT:: f∈ (P1, P2, P3) RR

then the returned result when f is applied to any member of TT must belong to
R∩RR, which must therefore be non-empty. R∩RR ⊆ R, of course; in program-
ming languages which handle this issue properly (such as Eiffel), the com
would insist that TT::f should be specified as yielding some subtype of R. (In C++,

Point

fn _+_ ∈ (Point) Point

p, r ·   :– self = p – r  r:= self+p

Point

fn _+_ ∈ (Real) Point

m, r ·   :– r x = x+m ∧ r y = y+m r:=self+m

Point

fn _+_ ∈ (Line) Line

n, r ·  :– r = n+self  r:=self+n

Tb::  f:(Pið) R
Tb::  r, pi · pre :– post  r:=f(pi)

pi, x, r · x∈T ∧ pi∈Pi ∧ pre :– r∈R ∧ post r:=x.f(pi)
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no alterations in result type are allowed, because of implementation difficu
[C++, p.211].)

If we have

TTb:: f∈ (PP1, PP2, PP3) R

then f applied to instances of TT is able to accept parameters of type PPi  as well as
Pi: that is, the ith parameter is of type PPi∪Pi. This again corresponds to the usu
programming language rule, since Pi ⊆ PPi∪Pi : a function in a subtype has to b
able to deal at least with the parameters its parent deals with.

We also allow functions to deal with different parameter types in different w
Leaving aside the signature notation for a moment, we can have two theorems
same type-definition which specify different results for different preconditions:

 p∈P1 :– post1  f(p)

 p∈P2 :– post2  f(p)

The two theorems can be implemented by separate operation code-bodies 
loading’ the same name f, though if P1 and P2 overlap, then f is implementable only
if it is possible to satisfy post1∧post2 in the case where p ∈ P1∩P2. To make the
best of the signature notation here, we have to write the two cases in separa
definition boxes:

The effect of a signature does not extend beyond the box it is defined in beca
is non-monotonic (see 3-4.4.3): if the signature in the left-hand box had an effe
the meaning of the right-hand box, then clients would need to see both in ord
be able to use T.

6-3.8 Type inference

The usual methods of inferring that x∈T are:

==-type: a, b, T · a == b, a∈T |– b∈T by subs-==

Assign-type:  y∈T :– x∈T  x := y by assignment

Type-Gen: x∈S, S⊆T |–  x∈T

Dynamic-special: (x∈T, P[x] |–  x∈T1) |–   x∈T ∧ P[x] :– R  S |–  x∈T1 ∧ P[x] :– R   S

yield-type:  P :–  ↑∈T  x op |–  x op ∈ T by yield

By conventional axiom within a type-definition of T, self∈T.

The type definitions of many types will include definitions of creation functio
such as

x∈T |–  T(x a, x b, x c)

and by convention, only creation functions have the same name as a typ
T(…)∈T.

T

op f ∈ (P1) 
 :– post1  f(p)

T

op f ∈ (P2) 
 :– post2  f(p)
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6-4 Generic types

6-4.1 Constant parameters

It is frequently the case that we specify a type in ideal terms, with no limits on
or other parameters, and yet must implement it on a real machine. If we wish
honest about this and document the restriction, what is the best way of doing 
how do we reconcile this with the idea of subtyping? As discussed in §3-4.5 — 
it is not appropriate just to add an extra invariant.

Parameterising a type definition with a constant makes it possible to design a
derive theorems and so on, whilst deferring certain specifics. E.g.:

Given this definition, it would be straightforward and useful to show that 

n, m · n∈Nat, m∈Nat, n≤m |–  (Stack of: m) ⊆ (Stack of n)

so that a longer-capacity Stack can be provided where a shorter one is requir

Only clients and implementors need give particular values for n.

In Fresco, the favoured solution in respect of the numbers and extensible colle
is to make believe that the implementation’s range is infinite: the axioms will re
this pretence.

6-4.2 Type parameters

Just as a type is defined by a theory of the membership of a specific type, a g
type is defined by a theory of the membership of the type determined by a
expression: in effect, an axiomatic semantics for type expressions.

We will write type expressions in postfix or infix notation, using type names as 
stants. The aim is to be able to write expressions like Set of: Int, SortedList of:
String, List of: Char, Map from: Symbol to: Key. There is first the distinction of
mutability to be made. Consider these four kinds of set:

• Set is a type of immutable values (or at least, objects represeenting im
table values): ∪, ∩, ∈ yield values (= create new objects representing 
new values), but do not alter the states of their operands.

• Set of: T  Like Set, but all the members of such a set are of type T.

• SetContainer — no parameter — is Smalltalk’s mutable Set , into which
you may add or remove any mixture of types of object.

• SetContainer of: T is a type of mutable sets, with restricted preconditio
on the add operations. You may only add objects of type T to one of these.

Stack of: n

fn s ∈ List
fn n∈Nat
 s len < n :– s = s<+x  push(x)

...
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6-4.3 Generic types of immutable values

Set is sufficiently fundamental to merit description using axiomatic methods: 

Set of: T can be specified as a restriction of Set:

The extra invariant is OK here, because there are no operations which alter th
of any member of the type.

Recalling the definition under 6-1.1, p83, there is no difficulty modifying it to co
with parameters:

x, G, Tj, AG(Tj ), i  ·    

Notice that ∅ is a member of Set of T for any T (since ∅∈Set and ∀ x · x∈∅ ⇒
x∈T), and that there is no ground for any discomfort in this (as some bulletin-b
commentators have expressed in connection with a variety of languages): ∅ is the
point at which these types all overlap.  Notice also that Set of:⊥  =  Set, if ⊥ is the
common supertype of all others.

The generic type could of course have been written all in one description, wi
using an auxiliary unrestricted type.

6-4.4 Generic types of mutable objects

SetContainer is not difficult to specify using the techniques we have seen so fa
can be specified axiomatically from scratch, or in terms of a component of typeSet;
it will contain mutating operations such as:

x ·  :– x∈self  add (x)

x ·  :– x≠y ⇒ (y∈self = y∈self)  add(x)

But we cannot specify SetContainer of: T as a subtype of plain SetContainer for
the reasons discussed in §3-4.6 — p.51: clients of the unrestricted SetContainer
rightfully expect to be able to add any mixture of objects, so no member of Set-

Set

fn ∅ ∈ Set

∀ x · ¬x∈∅
∀ x · x∈Set(x)

∀ x · x∈S1 ∨ x∈S2  ⇔  x ∈ S1∪S2

...

Set of: T

self∈Set

∀ x · x∈self ⇒ x∈T

AG(Tj ), 1 [self\x]

…
AG(Tj ), n [self\x]

x∈G(Tj)
Fresco © Alan Cameron Wills 1992 Types and Classes 95 



l
-

e

es
would
lution

e
o be
Container of: T wil be suitable (unless T=⊥). Hence SetContainer of: T must be
written from scratch:

Plain SetContainer, if it is required, can now be defined as

SetContainer =̂  SetContainer of: ⊥

6-4.5 Generic types with restricted parameters

SortedList of: T will only work if T has a ≤ operator. Its implementation(s) wil
depend on the properties of ≤ between members of T, and so they must be docu
mented as axioms in the specification:

The axioms relating to ≤ do not mention self, but they nevertheless constrain th
implementation, which must satisfy them; so SortedList of Compiler is just not
implementable, and has no members.

It would be tedious to repeat the axioms of ≤ in every parameterised type that us
it, so we seek a method of encapsulating those properties in a type which 
describe all those objects which can be ordered. The immediately obvious so
does not work, in general:

The snag is that this implies that any TotalOrdering (say, a number) is comparabl
with any other (say, a string). But whilst these must be disallowed, it must als

SetContainer of: T

op add∈ (T)  
op remove∈ (T)  
fn contains∈ (T) Bool

var s ∈ Set

 x∈T :–  s = s∪Set(x)  add(x)

...

SortedList of: T

op add∈ (T)  
fn get∈ (Nat) T

...

var s ∈ List

x ·x∈T |– x≤x

x, y ·x∈T, y∈T |– x≤y ∧ y≤x  ⇔  x=y

x,y,z·x∈T, y∈T, z∈T |– x≤y ∧ y≤z  ⇒  x≤z

i, j · i<j ∧ j<self len  ⇒  s[i]≤s[j]

...

TotalOrdering

fn _≤_ ∈ (TotalOrdering) Bool

x ·x∈TotalOrdering |– x≤x

...
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possible for integers and reals, say, to be comparable. The solution (using a
described in [Meyer]) is another generic type:

Now this type makes no mention of self: it is only a wrapper for a theory. Iff the
theorems in such a selfless type are valid, then it is satisfied by any object — i
equivalent to ⊥; but if not, then it is empty. Asserting that anything — it does
matter what — is a member of this type is therefore a way of stating its axiom
thereby importing them into a type definition. This gives a way of abbrevia
SortedList of T:

or using one of the subtyping notations:

which puts the parameter-constraint neatly in the header.

It would clearly be useful to have a facility for renaming operations within types
as not to be tied to the name ≤ for the ordering operation: I wish to form, for exam
ple, SortedList[≤/outranks] of Window.

TotalOrdering of: T

fn _≤_ ∈ (TotalOrdering of: T) Bool

x ·x∈TotalOrdering of: T |–    x≤x

x, y ·x∈TotalOrdering of: T, y∈TotalOrdering of: T |–   x≤y  ∨ y≤x

x,y,z·x∈TotalOrdering of: T, y∈TotalOrdering of: T
 z∈TotalOrdering of: T |–  x≤y ∧ y≤z  ⇒  x≤z

SortedList of: T

op add∈ (T)  
fn get∈ (Nat) T

...

var s : List
self∈TotalOrdering of: T

i, j · i<j ∧ j<self len  ⇒  s[i]≤s[j]

...

SortedList of: T ::+ (TotalOrdering of: T)

op add ∈ (T) 

fn get ∈ (Nat) T

...

var s : List
i, j · i<j ∧ j<self len  ⇒  s[i]≤s[j]
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Lastly, it is worth noting that a SortedList does not need to be generic: it only nee
to be constrained to accept only comparable objects whilst non-empty:

If this seems dubious, recall that in an axiomatic system, the validity of an ex
sion is just a question of whether it can be proved.  For the case in which a nu
is to be added to a list already containing strings, an attempt to prove the pre
tion of add will fail, so that the axiom shown cannot be applied: and therefore
client can confidently perform that operation in that case. The fact that the pre
dition has no defined Boolean value in that case is not relevant.

(It is interesting to ponder whether the application of such a style throughout w
make 3-valued logic as in [BCJ84] superfluous.)

6-4.6 Subtyping among generics

T⊆TT does not imply that G of T ⊆ G of TT, nor the reverse: a Set of: Int supplied
instead of a Set of: Number is incapable of storing Reals; whilst a Set of: Number
supplied in lieu of a Set of: Int may yield contents with which the client cannot de

However, (G of TT ⊆ GG of TT, T⊆TT) |–  G of T ⊆ GG of T (for example when
TT = ⊥).

6-5  Creation and verification of subtypes

6-5.1 Subtyping proofs

Subtyping proofs are applicable: 

• to show that a class implements a given type

• to show that a member of a given type is suitable where some other ty
expected — as a parameter, or in a variable

Subtyping proofs may often be reduced by inheriting proofs:

• from a superclass which implements a supertype;

• from an earlier version of a class which implemented a supertype.

Subtyping may be proven by showing the axioms of the supertype to be theore
the subtype. This is complicated where the models of the two types are differe
which case a retrieval relation must be defined between the two models.

There are other, non-subtyping, varieties of relationship between superclas
subclass (i.e. a tcd which inherits methods and instance variables), and the

SortedList

op add∈ (T) 

op remove∈ (Nat)  
...

var s : List
i, j · i<j ∧ j<s len  ⇒  s[i]≤s[j]

 s len = 0 ∨ s[0]≤x ∨ x≤s[0] :– ... add(x)
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sometimes be interesting from the point of view of proof re-use; but these ar
dealt with in detail here.

In a language with function-name overloading (such as C++), it is necessa
decide in which case a method is applicable (so as to free the designer from h
to prove the axioms for methods which will not be called). This is not difficult
least in C++), since all such discrimination is done at compile time, being only
nature-dependent.

6-5.2 Varieties and purposes of subtyping

The subtyping assertion self∈T may either be an axiom or a derived theorem o
type TT.

Asserted subtyping ensures that TT is a subtype of T by fiat of the designer; all the
axioms of T are thereby included as if they were axioms of TT.

Derived subtyping represents the conjecture that the TT is a subtype of T, and
should be supported by a proof founded on the axioms of TT.

Axiomatic subtyping is used to construct one type from another: all that is nece
is to check that the result is implementable. Methods attached to the supertype a
usually inherited at the same time, and must be checked for conformance to th
axioms.

Derived subtyping is used when it is appropriate to construct an entirely new m
closer to a feasible implementation.

In either case, subtyping may be operation-strengthening, state-restrictive, exten-
sional, or any combination of the three. 

Operation-strengthening adds extra opspecs to the specification which apply
existing operations, so that they deal with a broader range of prior states, or pr
more strongly determined results.

State-restrictive subtyping constrains the state-space of the members by ad
extra invaraints: so that for example, a general shape is constrained to be a s

Restrictive subtyping usually appears where a supertype is used to character
common aspects of several types — as in a polymorphic system; it is therefore
common in OOP than in traditional development.

Extensional subtyping provides more operations and possibly provides more de
for the state-space, differentiating individual states into substates. For exa

x∈Point implies that the possible states of x can be enumerated by working throug
the combinations of co-ordinates (to some finite precision!) But Point does not tell
us that its members do not have some other attributes; if we now discover x∈Col-
ouredPoint, then for each state we enumerated before, we can now distinguish
iants for every possible colour.

There are three principal purposes of extension:

• again, to specialise a common supertype into variants

• to provide additional features for clients

ColouredPoint ::+ Point

fn colour∈Colour
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• to move towards an implementation by adding redundant state compo
such as caches.

6-5.3 Subtyping and inheritance

Fresco leaves unchanged the normal code-inheritance mechanism of the ho
gramming language. Two kinds of inheritance are permitted: conformant and
conformant. A conformant subclass is expected to implement a subtype of its
ent(s), so subtyping is asserted; non-conformant inheritance is of code only, a
such requirement is imposed. 

6-5.4 Implementability

When a type is specified (either new or by inheritance from another) there is no
matic guarantee that there are no contradictions between the axioms — both
explicit in the type definition, and inherited from supertypes. A contradiction wo
be discovered on attempting an implementation; but since that may happen
way down the development road, it may be wise to perform an implementa
check as soon as the type is specified.  Implementability is not a proof obligati
Fresco, but the facilities to verify it are provided.

Implementability is not a crucial check from a client’s point of view, except tha
it is mistakenly asserted in advance of implementation, clients might waste wo
the expectation of undeliverable goods; however, no incorrect code will result.

6-5.4.1 Implementability from scratch

The Shape supertype, which documents the common features of several typ
mutable shape-representing objects, provides a suitable example.

To prove consistency, it is only necessary to demonstrate that one implemen
can fulfill the axioms; but remember that Fresco theorems cover not single s
but whole histories of behaviour, and it is therefore necessary to prove that for

Shape

op move∈ (Vector) 

op rotate∈ (Angle) 

fn position∈ Vector

fn v1, v2, v3, v4∈ Vector //edges

fn p1, p2, p3, p4∈ Vector   // vertices

op set_p1, ...set_p4∈(Vector) 

Ì :– position = position + v  move(v)

 :– v1=v1 ∧ v2=v2 ∧ v3=v3 ∧ v4=v4  move(v)

:–  v1=v1.rot(ω)  ∧ v2=v2.rot(ω)  ∧  v3=v3.rot(ω)  ∧ 
position=position  rotate(ω)

p1=position ∧ p2=p1+v1 ∧ p3=p2+v2 ∧ p4=p3+v3

v1+v2+v3+v4 = 0

:–p1 = x set_p1(x) //etc
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operation, each accessible prior state has a permissable ulterior state. Perm
states are those allowed by the invariants; accessible states are all those ach
from some permissable initial state by some sequence of transitions via the o
tions with any parameters allowed by their preconditions.

The accessible states will generally be a subset of the permissable ones, but t
missable ones are much easier to characterise. The strategy is therefore to pro
for every operation opi goverened by axioms  prei,j :– posti,j opi in a type T
whose invariants conjoin to give inv,

∀i · ∀ σ · ∃ σ · ∀j · inv(σ) ∧ prei(σ) ⇒ posti(σ,σ) ∧ inv(σ) |– ∃ x · x∈T

(The ‘∀i/j’ are really schematic conjunctions.) Notice that for each operation, 
ulterior state must satisfy all the applicable postconditions simultaneously. Tσ
and σ are the before and after versions of the set of parameters and variables fo
the model of the type.

Where several opspecs apply to one operation, it often simplifies matters to se
into distinct cases the regions where the preconditions overlap and where th
not. For example, there are three regions here, only one of which has a potenti
flict:

 x≤0 :– r × r = –x r:= absSqrt(x)

 x≥0 :– r × r = x r:= absSqrt(x)

In the case of Shape, I claim that the following arguments could be formalised fro
the theorems of Vector and Angle. The invariant is the constraint that the vecto
must meet up, together with the relationship between the vectors and poin
degrees-of-freedom argument can convince us that any four points can determine
three vectors; and, given three vectors, we can always determine a fourth wh
the complement of their sum: so we really only need worry about the loop clo
constraint. For set_pi, nothing is said about the other points, which are free to m
if required; for move, the looping constraint must remain unaffected if the vect
are unchanged, and the four points are free to follow from the new position
rotate, only one point is fixed, whilst only three of the vectors are explicitly rota

6-5.4.2 Implementability and restrictive subtyping

The fact that a state is permitted or accessible in a type does not necessarily
that it will be permitted or accessible in any subtype. For example:

SquareM conforms to all the theorems of Shape, but has fewer states. Whilst it i
bound to be a subtype, it is not necessarily implementable. Notice again that 
empty permissable state-space does not imply implementability, since there m
accessible states for which some applicable postcondition cannot match a 
quent state. Nor is every accessible state necessarily meaningful, since no 
mentation should allow itself to get up a cul-de-sac:

(No implementation getting into state 2 would be able to satisfy the postcond
for the next call of op.)

SquareM ::+ Shape

v1+v3=0 ∧ |v1|=|v2| ∧ v1⊥v2
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Unfortunately, there is little to do but to re-prove implementability as from scra
for each operation separately. However, it may be that some lemmas prove
earlier implementability checks can be re-used.

6-5.4.3 Implementability and additional opspecs

Implementability must be re-proven, but just for the operations affected.

This is the case whether the opspecs apply to existing operations or new ones
internal consistency, and compatibility with existing invariants and opspecs (fo
same operation) must be shown.

6-5.4.4 Implementability and extension

If a type has no nondeterminism, then the only subtyping possible is extension
erwise, restriction of the existing state space or strenghthening the postconditi
any of the operations would render it unimplementable.

If the new state components are orthogonal to the old ones — that is, there 
invariants or opspecs involving both — then the new components and the oper
and any invariants which relate solely to them can be treated in isolation. Ad
colour to Point is an example.

If there is a relationship between the old components and the existing ones, 
is possible to introduce new invariants over the old components unwittingly:

(x>0 ⇒ colour=blue) ∧ (y>0 ⇒ colour≠blue)

The same applies to postconditions.

6-5.5 Reification

‘Reification’ is the creation of a subtype in which the model differs from that o
supertype. The key to its verification is one or more retrieval relations which link
new and old model elements. In order to prove subtyping in general, we ne
prove that all the axioms AXT of the supertype T are observed by any member of th
subtype ST:

ST⊆T ⇔    ∀ x · x∈ST ⇒ x∈T

⇔ (AXST |–  AXT)

The difference in model variables presents a slight complication. It is necess
choose an extra axiom, the retrieval relation, which interconnects the variab
the two.

0

1 2

30

1 2

3

:– s = (s+1) mod 4  ∨  s=0 ∧ s=1 op

s ≠ 2  ∧  s ≠ 3s ≠ 3

≡
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retrieve: varsST · AXST  |–   (varsT · retrieval-relation |–  AXT)

The retrieval must not be such as to constrain T; so it is also necessary to prove th
propriety of the retrieval relation:

adequacy: ∀ varsT · INVT[varsT] ⇒  
∃ varsST · INVST[varsST] ∧ retrieve-relation[varsT, varsST]

where INVT is the conjoined invariants of T.

6-6 Reification example

6-6.1 Supertype: compiler’s symbol table

SymbolTable stores associations of Symbols with characteristics (here represent
by Ref) within nested contexts, and is a suitable name-server for a compil
block-structured languages. As the compiler scans a text, declarations are re
with define; entry to and exit from a block should be recorded with enter and exit;
and find looks up the first occurrence of a symbol in successively containing 
texts. Only one definition of a symbol is allowed per context.

Here it is modelled as sd, a Stack of Dictionaries each element of which associa
Symbols with Refs:

(Decoding clues: @ both indexes lists and looks up dictionary contents; n..m 
set of integers in that range; d.dom is the domain of a Dictionary; 

a→r1
b→ r2
g→ r3

h→r4
b→ r5
c→ r6

a→r7

g→ r8

sd@1 sd@2 sd@sd.sizesd@3

sd

SymbolTable

op  enter ∈ ()

op  exit ∈ ()

op  define ∈ (Symbol, Ref) →  Bool

op  find ∈ (Symbol) → Ref

 :– sd.size  =  sd.size + 1  ∧  (sd @ sd.size).size = 0  ∧  ∀ i ∈ 1..sd.size ·  sd@i = sd@i  enter

 sd.size ≥ 1  :–  sd.size = sd.size –  1   ∧   ∀ i · i ∈ 1..sd.size · sd@i = sd@i  exit

 s ∈ (sd @ sd.size) :–  ↑=FALSE  ∧  sd=sd  define(s, r)

 s ∉ (sd @ sd.size)  ∧  ref ≠ Ref.null :–  
sd.size = sd.size  ∧  ↑=TRUE  ∧  sd@sd.size = (sd@sd.size) † Dict.map(s, r)
 ∧  ∀ i ∈ 1..sd.size – 1 · sd@i = sd@i  define(s,r)

 ∀ i · i∈1..sd.size ⇒ s ∉ (sd@i).dom :– ↑ = Ref.null ∧ sd=sd  find(s)

 ∃ i · i∈1..sd.size ∧ s∈(sd@i).dom :– sd=sd  ∧  ∃ i · i∈1..sd.size ∧ s∈(sd@i).dom 
∧ ¬(∃j· j∈i+1..sd.size ∧ s∈(sd@j).dom) ∧ ↑ = (sd@i)@s find(s)

var  sd ∈ List .of(Dict.of(Symbol, Ref))
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(d1†d2).dom = (d1.dom∪d2.dom);  k∈d2.dom ⇒ (d1†d2)@k = d2@k;
k∉d2.dom ⇒ (d1†d2)@k = d1@k .)

6-6.2 Refinement: Dictionary of Stacks

This is a refinement of SymbolTable. The operations and their signatures are 
same, and though the internal model is entirely different, we hope to prove th
externally observable behaviour is the same.

The Dictionary of Stacks model illustrated above  moves a step towards a mor
cient structure, since only one dictionary-lookup will be required per find. Further
refinements should be expected before realisation as code, but proceeding in
ish steps makes verification easier. The following type-definition goes one step
ther: the dictionary-entry for each symbol is reduced from a complete stack to
of (Nat, Ref) pairs corresponding to the nonblank stack entries; clev records the
notional size of all the stacks:

6-6.3 Verifying refinement

We wish to prove that any member of StackDict is also a member of SymbolTable:
that is, that StackDict is a subtype (in the srict Fresco sense) of SymbolTable. This
is true if and only if every theorem that a client can infer about SymbolTable-
members is also true of StackDict-members. If the two types had identical mode
(or if the subtype’s model was an extension of the supertype’s) it would be a m

a →  r1 r7
b → r2 r5
c → r6
g → r3 r8
h → r4

dsclev 4

StackDict

op  enter ∈ ()

op  exit ∈ ()

op  define ∈ (Symbol, Ref) →  Bool

op  find ∈ (Symbol) → Ref

 :– clev = clev+1 ∧ ds=ds  enter

 clev ≥ 1  :–  clev=clev–1 ∧  ds.dom=ds.dom ∧ 
∀ s, i, r  · s∈ds.dom ∧  i≤clev ⇒ ( 〈i, r〉 ∈(ds@s) ⇔ 〈i, r〉 ∈(ds@s) )   exit

∃ rr · 〈clev, r〉∈ds@s :–  ↑=FALSE  ∧  ds=ds  define(s, r)

 ¬∃ rr · 〈clev, r〉∈ds@s  ∧  ref ≠ Ref.null :–  ds.dom=ds.dom ∪ {s}  ∧  ↑=TRUE  ∧  
∀ss∈ds.dom · ss≠s ⇒ ds@ss=ds@ss ∧ ds@s= (ds@s)∪ 〈clev, r〉  define(s,r)

 s∉ds.dom ∨ ds@s=∅  :– ↑ = Ref.null ∧ ds=ds  find(s)

  s∉ds.dom ∨ ds@s=∅  :– sd=sd  ∧  ∃ i · ∀j,rr · 〈i, rr〉 ∈ds@s ⇒  j<i ∨ rr=↑ find(s)

var  ds ∈ Dict.of(Symbol, Set.of(Tuple.of(Nat, Ref)))

var  clev ∈ Nat
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An appropriate statement of the retrieval relation is:

sd.size = clev  ∧
∀ i, s, r ·  i∈1..clev  ⇒  

( sd@i@s = r  ∧  s∈(sd@i).dom   ⇔   〈i, r〉 ∈ ds@s  ∧  s∈ds.dom )

The illustration below deals with one of the simpler operations from the exam

h1 sd.size = clev  ∧  ∀ i, s, r ·  i∈1..clev  ⇒ 
 ( sd@i@s = r  ∧  s∈(sd@i).dom  ⇔  〈i, r〉 ∈ds@s  ∧  s∈ds.dom )

h2  clev ≥ 1  :–  clev=clev–1 ∧  ds.dom=ds.dom ∧ 
∀ s, i, r  · s∈ds.dom ∧  i≤clev ⇒ ( 〈i, r〉 ∈(ds@s) ⇔ 〈i, r〉 ∈(ds@s) )   exit

1 sd.size = clev from  h1 by  ∧-elim

2 ∀ i, s, r ·  i∈1..clev  ⇒  ( sd@i@s = r  ∧  s∈(sd@i).dom  
⇔  〈i, r〉 ∈ds@s  ∧  s∈ds.dom ) from  h1 by  ∧-elim

3·h sd.size≥1

3 |– clev≥1 from  3·h, 1 by  subs-eq

4·h1 clev = clev–1  ∧  ds.dom = ds.dom  ∧
∀ s, i, r · s∈ds.dom ∧ i∈1..clev ⇒ ( 〈i, r〉 ∈(ds@s) ⇔ 〈i, r〉 ∈(ds@s) )

4·1 clev = clev–1 from  4·h1 by  ∧-elim

4·2 ds.dom = ds.dom from  4·h1 by  ∧-elim

4·3 ∀ s, i, r · s∈ds.dom ∧ i∈1..clev ⇒ ( 〈i, r〉 ∈(ds@s) ⇔ 〈i, r〉 ∈(ds@s) )
from  4·h1 by  ∧-elim

4·4·h1 i · i∈1..sd.size

4·4·1 i∈1..clev from  4·4·h1, 1 by  subs-eq

4·4·2·h s · s∈(sd@i).dom

4·4·2·1·h r · (sd@i)@s = r

4·4·2·1·1 s∈ds.dom ∧ 〈i, r〉 ∈(ds@s)
from  4·4·1, 4·4·2·h, 4·4·2·1·h, 2 by  ∀⇒

4·4·2·1·2 s∈ds.dom ∧ 〈i, r〉 ∈(ds@s) from  4·4·2·1·1, 4.3 by  ∀⇒

4·4·2·1·3 s∈ds.dom from  4·4·2·1·1, 4·2 by  ∧-elim, Set-eq

4·4·2·1 (sd@i)@s = r
from 4·4·2·1·2, 4·4·2·1·3, 4·4·1, 2  by  ∀⇒

4·4·2 (sd@i)@s = (sd@i)@s from 4·4·2·1 by  Trans-eq

4·4 |– sd@i = sd@i from  4·2, 4·4·2 by  Dict-eq

4·5 ∀ i ·  i∈1..sd.size ⇒ sd@i = sd@i from  4·4 by  ⇒-intro

4·6 sd.size = sd.size–1 from  4·1, 1 by  subs-eq

4 |– sd.size = sd.size–1  ∧  ∀ i · i∈1..sd.size ⇒ sd@i = sd@i
by  ∧-intro from  4·6, 4·5

|–  sd.size ≥ 1  :–  sd.size = sd.size –  1   ∧   ∀ i · i ∈ 1..sd.size · sd@i = sd@i  exit
by  refine from  h2, 3, 4
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6-7 Creation functions

Creation functions are used to cite an instance of an object in a particular stat
specifier or designer may define a variety of creation functions for one type. A
ation function is applied to the type of which it creates members. For example

l1∈Line, l2∈Line |– Point.intersect(l1, l2).lies_on(l1) ∧ 
Point.intersect(l1, l2).lies_on(l2)

x∈Real, y∈Real |– Point.xy(x,y) x = x  ∧  Point.xy(x,y) y = y

r∈Real, r≥0, ω∈Angle |– Point.rw(r,ω)  r = r  ∧  Point.rw(r,ω) ω = ω
Contrast this scheme with VDM, in which there is one creation function for e
type, mk-TypeName; the types of its parameters are those of the structural com
nents of the type. In Fresco, this would not be convenient, as a type may have
redundant private features, including those inherited from reified types.

It is axiomatic that a creation function creates a new object; this is discussed 
§8-3.3.7 — p.145.

If the creation function is intended for the purposes of specification, the result 
not be as fully determined as a real instance would be. For example, all implem
members of Shape are actually quadrilaterals, squares, etc; but it might never
less be useful to define a function Shape.vertices(p1,p2,p3,p4) to stand as an
abstraction of all possible shapes with those vertices:

 :– i=↑.p1 ∧ j=↑.p2 ∧ k=↑.p3 ∧ l=↑.p4  Shape.vertices(i,j,k,l)

 :– ↑=Shape.vertices(p1+v,p2+v,p3+v,p4+v)  replicate(v)

Creation functions are not inherited in any useful sense. If we define ColouredPoint
as a subtype of Point, the theorems about the Point creation functions are inherited
but still producing Points, not ColouredPoints. A new set must therefore be mad
for every type. The same principle applies if we use a common function name
as deepCopy for every copying operation: we need to add information at e
subtype about how the new material is copied.

A creation function is not part of a type definition, since it is not part of the be
iour of any object. Axioms defining creation functions are stated within the con
of some capsule. It is automatically axiomatic that for every type-name T and every
function f

T.f(pi) ∈ T

and that T.f is pure.

6-8 Types and classes

6-8.1 Syntactical considerations

In Fresco, no strong distinction is made between types and classes. (The dist
betweeen inheritance and subtyping is far more important.) One syntactic fr
work, the type/class description (TCD), serves for both. In addition to the syntax w
have seen hitherto,
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• methods may be attached to the TCD.

• superclasses may be declared. There are three kinds of inheritance:

— concrete variables and methods only (corresponding to ordinary inh
ance in Smalltalk)

— type information only: supertype by assertion self∈supertype; any code
attached to supertype re-implemented in this

— conformant inheritance: both type and class inherited

Attached methods, concrete variables and implementation-inheritance are
with by the compiler or interpreter just as they are in the unadulterated program
language. Typing constraints in parameter and variable declarations are igno
the compiler. Conformant inheritance reduces the amount of proof required, a
generally recommended. (The next chapter includes details of how proof obliga
are determined.)

6-8.2 Theorems and concrete features

An advantage of mixing types and classes in the same structure (instead of se
ing them as they are, for example in Abel [Dahl] or POOL [America]) is t
opspecs can be applied to methods, and invariants to concrete variables. (Eif
this advantage.) 

Each axiom of a type T must be proven to be conformed to by any class that cla
to implement it. If subtyping is asserted (self∈S), all the axioms of the supertype S
must be conformed to as well (except any which are proven as theorems T).
Where several axioms apply to one operation-name, each must be proven 

A

 PA :– RA op

invA

B

 PB :– RB op

invB

C

 PC :– RC op

invC

D

 PD :– RD op

invD

op =̂  ( PA∧invA :– RA∧invA ,  PB∧invA∧invB :– RB∧invA∧invB ,

 PC∧invA∧invC :– RC∧invA∧invC  ,

 PD∧invA∧invB∧invC∧invD :– RD∧invA∧invB∧invC∧invD )

       ( ...code...)

Fig. 9. A method conforms to all the inherited specs
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same operation; this may be done by performing separate proofs for each one
conjoining them into one axiom first.

Implementation and proofs of operations marked as ‘abstract’ — specified on
the convenience of promotion — may be omitted.

Each type/class description may contain a mixture of specification and imple
tation. Where there are methods attached to a tcd, they should implement th
vant axioms. A class is completely implemented iff all the non-abstract operations
specified by its axioms (including those inherited by any subtyping axiom) h
methods, and all the invocations to self in its methods are provided for by met
(If a policy of complete proof is followed, then private functions will also implem
axioms, used in decomposition proofs.) Fresco can detect incompleete implem
tions as a certification check, and should disallow the definition of creation met
in these cases (though abstract creation functions are allowed for the purp
quoting instances in specifications).

A TCD which provides methods for only some of its public features is an ‘abs
class’, which cannot have instances of its own. Such TCDs are allowed becau
often convenient to provide a partial implementation in a superclass.

6-9 Summary

Type definitions have been given a semantics in terms of theorems incorpo
opspecs, which are predicates over behaviour. A type is a set of objects whic
be shown to behave always according to a given set of such theorems. Type d
tions may be model-oriented, defining visible behaviour in terms of the mu
effects of externally applied operations and internal components. Model co
nents may be hypothetical, or they may correspond to actual variables. Type
contain methods; the executable component of a type is a class in the ordinary

The composition of type descriptions is based on conjunction, which is mono
in respect of signature, theorems, and model components. It is therefore easy

• to extend a type description to form a subtype;

• to compose multiple supertypes;

• to extend a type description as a reification;

• to compose partial type descriptions which take part in different contra

• to make a compatible extension of a type in a new version of a system

In all of these cases, anything proven from the original type(s) — for example
correct implementation of a client — will remain valid for the resulting type. Th
is no guarantee that such a conjunction is implementable, but this may be p
either by adequacy proofs, or by the process of verified implementation.

We have also seen:

• how to understand conformance of signatures and class behaviour in 
of type extension

• how to understand reification in terms of proof of axioms from the axio
of the reifying type, together with a retrieve relation.

Finally, reification proofs were described.
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This completes a framework in which types and classes and verification ca
done. Chapter 7 will deal with the packaging of type and class descriptions into
sules, and the mechanics of checking the correctness of capsules. Chapter
discuss the particular problems of reasoning about systems of objects.
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7 System composition

The capsule is the basic unit of software design, change, transportation and 
in the Fresco scheme of things. As we have seen, classes do not always form t
such modules; capsules can carry new software, extensions to existing softw
just specifications.

The way in which a type-description focusses on one particular object (‘self
consonant with the object-oriented style of programming. The principal advan
in programming is that this encapsulation limits the spread of interdepende
between software components, which could otherwise inhibit the reconfigura
and re-use of the components. In specification, the focussing on a particular 
has the pragmatic advantage that it is easy to think in the same terms as the pr
mer; it permits the independent specification of an exportable chunk of softw
and again, it tends to limit the scope of the description in order to make descrip
separable.

There are two drawbacks to these forms of encapsulation. Firstly, the natural b
aries of the behaviour you want to specify are not always best drawn around a 
object: it may be more natural to describe the relationships between several o
in a ‘framework’; Fresco’s capsule system does not assume that classes a
natural units of specification or design. Secondly, in order to verify that the pres
tions of the specification of an object are observed, it is sometimes necessary t
beyond the boundaries of that object; especially in connection with possible 
ing.

This chapter defines a semantics for capsules, and shows how a system is com
from capsules.

The constraints on the development, publication, and composition of capsule
described, showing how these constraints (some of which are mechanically en
able, whilst some are proof obligations) prevent interference between capsule

The Fresco notation is used here; there is a summary of the notation in Appen

7-1 Systems are compositions of capsules

7-1.1 Systems

There are three interrelated ways of looking at a Fresco system:

System

var ev: Execution_View
var tv: Theory_View
var cv: Capsule_View

ev = cv.strip  ∧  tv = cv.theories
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Capsules are the units whereby design effort is distributed between different 
A capsule may define new type/class descriptions or extend existing ones.
Capsule_View of a system is a sequence of Capsules — in the order in which they
were incorporated into the system.

The Execution_View ev is what the interpreter or compiler sees: globals a
classes with methods and instance variables. This is unchanged from the ho
gramming language; we shall concentrate on Smalltalk in this chapter. In Fr
everything is defined within some capsule; so ev is precisely determined by cv. In
addition to executable declarations and code, cv contains the type specifications an
proofs discussed in earlier chapters.

The Theory_View is what the developer deals with whilst building and reason
about a system: the theories are fairly directly related to the information in the
sules.

Capsules can become part of a system in two ways: 

• Creation and development by a designer; the only way to create new 
ware and theory is in some capsule.

• Incorporation (from a library or  distribution system) by a prospective clie
designer.

7-1.2 Capsules

The order of incorporation determines how methods defined in the capsules
overwrite one another. Each capsule must be preceded by its imports. The Ke
always the first capsule in any system. For convenience, we include in the m
both the sequence and a mapping from names.

An essential component of a Capsule is the informal description, which contains a
least some of the formal definitions scattered about in its text (just as this ch
does). The whole set of formal definitions, defns, will be accessible with a brows
ing tool.

Capsule_View

var s : Map from: CapsuleName to: Capsule
var ordering : List of: Capsule

‘Kernel’ ∈ s.dom ∧ ∀ n · n ∈ s.dom ⇒ s(n).fullName.short = n
s rng = ordering.elems
∀ i∈2..ordering.length · 

ordering(i).imports ⊆ {ordering(j).fullName | j∈1..i-1 }

Capsule

var fullName : CapsuleFullName
var imports : Set of: CapsuleFullName
var status : {Developing, Certified, Published}
var description: CapsuleText /* contains Definitions */
var defns : Definitions
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Each capsule has a unique name: the full name includes sufficient information 
machine of origin, author and date to ensure uniqueness on a worldwide ba
short form may be assigned for use in any particular system: either the default a
viation (which excludes all the origins information) or a name chosen when
capsule is incorporated. The Fresco user interface will translate between the
and full forms.

Once a capsule is fully developed, the designer can ask Fresco to certify it: that is,
to perform a series of checks upon the consistency and completeness of its p
A capsule cannot be altered without losing its certified status. Only a cert
capsule should be published, and once published, it cannot be altered (excep
a new name); and so a particular name is always guaranteed to refer to the sam
sule.

The full names are used to identify imports. Each capsule uses definitions an
orems from the capsules it imports, so a capsule cannot be incorporated 
system until all of its imports have first been incorporated. A capsule may no
course, transitively import itself.

For capsules KA and KB, “KB«KA” abbreviates “KB imports KA”.

A capsule’s imports list may be edited by the designer who creates it.

7-1.3 Definitions in a capsule

A capsule contains definitions which may be entirely new, or may augment tho
an imported capsule.

The types carry specification and data structure whilst the methods are separated
out for convenience; the globals are concrete variables which act as the roots of 
system’s data structures; the lemmas include any inferences the designer wishes
prove which might be useful to a client.

A designer may not remove anything declared in another capsule.

Whilst type-definitions and theorems always augment those from other caps
methods overwrite those in preceding capsules (Fig. 10.) The order in which
sules are incorporated into a system is therefore more important in respect 
resulting executable system, than in respect of the specifications.

Everything within a capsule can refer only to types, globals or theorems de
within itself or its imports. (Although there are no restrictions on what operat
may be called in a method, its proof will have to refer to theorems about those
ations.) A capsule KB must therefore import another KA if:

• KB is intended to implement or refine KA;

Definitions

var types: TypeName mapTo: TypeClassDefn
var lemmas: ThmLabel mapTo: JustifiedTheorem
var globals: VarName mapTo: GlobalDefn
var methods: TypeName mapTo: MethodDefn

∀t, l, g · t∈types.dom ∧ l∈lemmas.dom ∧ g∈globals.dom ⇒
(types@t).name = t  ∧ (lemmas@l).name = l  ∧ 
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• KB is a client of KA.

A TypeClassDefn collects together the TypeBoxes for a given type scattere
throughout the capsule description:

Each TypeBox has a public signature and private model (including the superty
and superclasses respectively), each of which implies axioms in addition t
designer’s explicitly defined axioms:

Globals will be dealt with in section 7-4 — p.120.

A method is attached to a specific class. In Smalltalk, the class of the receiver 
ficient to determine which method is executed, but typed base languages with
loading also require static type information about the other arguments:

Capsule A

Spec A::X
Capsule B

Spec A::X

Impl A::X

overrides

implements  A::X ∧ B::X

import 

Capsule
A-User

import

uses
X

Capsule A-User is not upset by 
B’s re-implementation of X

Impl B::X

 Fig. 10. Capsule composition conjoins specs and overrides implementations

TypeClassDefn

var name: TypeName
var parameters: TypeName list
var boxes: TypeBox set

∀ b · b∈boxes ⇒ b name = name

TypeBox

var name: TypeName
var sig: TypeSignature
var model: TypeModel
var axioms: Theorem set
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7-2 Capsule composition

7-2.1 The executable system

The compiler/interpreter sees classes and other globals. It represents the sta
of the system.

This is derived from the capsule view by superposing successive capsules 
incorporation sequence:
kv · kv∈CapsuleView   |–   kv strip ∈ Execution_View   ∧

kv strip classes dom = (kv s all: [ k · (k defns types dom) union)])  ∧
kv strip globals = (kv s all: [k · k defns globals dom] union)  ∧
(∀ cn, c ·  c = (kv strip classes @ cn) ⇒

c data = (kv s all: [k· (k defns types @ cn) classData]) union  ∧
c methods  = ((kv s all: [k· (k defns methods @ cn) dom]) union 

mapAll: [mn · (kv ordered msgs: mn inClass: cn) last]))

where classData extracts model information from a type definition. msgs:inClass:
extracts the list of methods defined by successive capsules for a particular ope
kl, mn, cn, klmd  ·  kl∈ (List of: Capsule), klmd = kl head defns methods  |–

(kl msg: mn inClass: cn) = 
((cn ∈ klmd  and:[mn ∈ klmd@cn]) 

ifTrue: [List(klmd@cn@mn) ++ (kl tail msg: mn inClass: cn)]
ifFalse: [kl tail msg: mn inClass: cn])

7-2.2 The specifications

Theory_View = Set of: Theory

Every incorporated capsule engenders a new theory:
cv∈CapsuleView  |–   cv theories = (cv s all: [k · k name]) mapAll: [n · (cv s @ n) theory]

MethodDefn

var class: TypeName
var name: MethodName
var signature: TypeExprn /* for overloading */

Execution_View

var classes: ClassName mapTo: Class
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Recall (§4-1 — p.57 ) the principal components of a Theory:

The import structure of the theory is the same as the import structure of the cap
so everything defined and inferred about the contents of a capsule’s imports i
known in its own theory.

k, th, def · k∈Capsule, th = k theory, def = k defns |–
th name = k name
th imports = k imports

The sort and constant names are the type and global names. Globals includ
variable and global function definitions; in particular, the latter include crea
functions. The names of these items are all qualified with the name of the ca
(though this is hidden from the designer by the user interface): the expression x in: k
represents the definition with all occurrences of names qualified with the nam
capsule k.

… th sorts = def types all: [t · (t in: k) sortDecl]
th consts = def globals all: [g · (g in: k) constDecl]

t, c · t∈TypeClassDefn  |–   t  = (SortDecl name: name arity: t parameters length)

g, c · g∈GlobalDefn |–  g  =  (ConstDecl name: name arity: g signature parms length)

The axioms are derived from the definitions:

k, th, def · k∈Capsule, th = k theory, def = k defns |–
th axioms  =  (def types all: [t · (t in: k) axioms])  

∪ (def globals all: [g ·  (g in: k) axioms])
∪ (def methods all: [m · (m in: k) axioms])

Global-definition axioms say that the global belongs to the declared type; me
definition axioms assert the association of a piece of code with an operation w
a given class. A requirements axiom is derived from each type definition, asserti
equivalence of “x∈K::T” (where K::T is the basic type name qualified with th
capsule name) with conformance to the axioms of the type:

t · t∈TypeClassDefn  |–  t axioms = (Set with: (t in: c) requirements)

The theorems are:

• those defined and proved by the user (“lemmas”);

• theorems per typebox telling clients what the properties are individuall
form “x∈K::T  |– …”;

• proof expectations generated by Fresco automatically, which the des
has to prove (see below).

k, th, def · k∈Capsule, th = k theory, def = k defns |–
th theorems = k lemmas ∪ (def types all: [t · (t in: k) theorems])

Theory

var name: TheoryName
var imports: TheoryName set
var sorts: SortDecl set
var consts: ConstDecl set
var axioms: Theorem set
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7-3 Capsule certification and incorporation

7-3.1 Changes to theorems

In general, if we have a graph of justified theorems, and we remove one of th
orems, then we must find the theorems which are dependent on it, and either r
them or generate alternative proofs for them. By contrast, adding new axiom
proving new theorems creates no such problem.

In Fresco, the central concern is object behaviour, characterised by types. A
definition implies two theorems (§6-1 — p.83): one set of properties used by clients,
all of form

T-PROP: x∈T |–  T::THM[x]

where T::THM[self] is any theorem of T; and a single requirement which impleme
tors and reifiers must fulfill, of form

T-RQMTS:  x∈T  ⇔  ( T::AX[x])

where T::AX[x] are the axioms of T (possibly including subtyping axioms).

If we now add an axiom to T, the old T-PROPs all remain valid: no problem. Bu
the old T-RQMTS is no longer valid, having an additional hypothesis. All proofs
x∈T would therefore have to be reviewed. 

Fresco avoids this problem by creating new types in each capsule, by qualifyin
type names with the capsule names.

7-3.2 Capsules and type conformance

If KB imports KA, it must do so monotonically: that is, the clients of KA must not
need rewriting (Fig. 10.) This is essential, since once KA is published, they may be
difficult to discover.

Within KA and its clients, a type name T refers to that type as it is defined withi
KA; if KB augments that definition, then T refers to the augmented type, within KB
and its clients. We shall distinguish them as KA::T and KB::T, though these qualified
names need never be presented at the user interface. If KB is defined properly, then

T-MONO: KB«KA |–  KB::T⊆KA::T

and so the clients need not worry about the distinction. But implementors and 
ers of T must be reviewed when KB is designed or incorporated, in order to ensu
that this theorem is upheld.

7-3.3 Proof expectations

As a system is composed, either by successive incorporation of capsules f
library, or by development of new capsules, Fresco will generate proof expectations:
theorems which ensure that the system executes according to its specifica
Proof expectations may come ready-proven in an incorporated capsule, or m
generated by Fresco and justified by the designer, during development of a new
sule. Proof expectations include T-MONO (above) and the theorem that for eve
concrete type T (that is, those for which creation functions exist: 7-5 — p.122)

T-impl: x class = T  |–  x ∈ T
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and hence that the methods attached to or inherited by a type conform to its a

For each method which is introduced by a capsule, relevant axioms are stated
type and its supertypes; and in any type and its supertypes which inherit the m
For example:

An operation definition op=m (defining m to be the method implementing opera
tion op) is said to be effective in those classes in which m is activated in response to
an invocation of op; namely:

• the class in which the definition occurs

• every class which does not itself have a definition for op, and which is a sub-
class of a class in which op=m is effective.

(In C++, the rules are complicated by overloading.)

An axiom AX defined in a type T is effective in all the subtypes of T (whether
asserted or by reification). An axiom is applicable to an operation op if it is an
opspec for op, or it is an invariant.

To every type which lies within the effectiveness of an axiom AX[op] which is appli-
cable to operation op, and the effectiveness of a definition op=m, there is attached
a proof expectation AX[m]. Many of these expectations will actually be the sam
where a subtype is also a subclass: for example, the proof expectation for m is the
same in T22 (above) as it is in T21; Fresco should recognise this and not requ
duplicated proofs. This reflects the commonplace recommendation (e.g. in [Me
that subclasses should also be subtypes: the requirement for reasoning is
reduced.

When a capsule is incorporated or certified, these proof expectations are se
for and their proofs checked for each new axiom and each new method. The a
resulting from interpretation of signatures are included in this.

A new supertype can be treated as the introduction of all the axioms known 
supertype.

In a system permitting multiple superclasses, introduction of a new superclas
be treated as the extension of the effectiveness of all the methods effective 
superclass. (If two inherited methods share an operation name without a d
biguating method in the inheriting class, it is not inevitable that there must be a
flict: so long as we stick to the rules, both will be shown to meet all rele
specifications, and it is then acceptable for the execution system to choose o
them arbitrarily.)

A final twist concerns relevance. For each type T where there is more than one effe
tive definition of a method for some op, only the definition Kn::m which comes
from the most recently incorporated capsule Kn will be executed; and so for T, proof
expectations arising from earlier definitions of m are not relevant.

op=max21:… op
method defined hereT1T2

ax31:… op
T3

T31 ::+ T3

superclass T21

T21 ::+ T2

superclass T1
conforms to ax21 here

conforms to ax31 here

T22 ::+ T21

superclass T21
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7-3.4 Certification and incorporation checks

Unproven theorems (called deficits) in a capsule under development indicate tha
is not yet fit to be distributed. A designer may perform a certification check on a cap-
sule, which either highlights deficits or marks the capsule as certified; in which 
it may be marked published, protecting it from further alteration.

Informal justifications are allowed, but may be highlighted during the check
process.

The checking is not confined to the assertions and methods visible in one ca
and its imports: for it is important to ensure that conflicts do not arise with other
sules present in the system.

A deficit may also arise upon the incorporation of a capsule into a system, indic
a mutual incompatibility (a conflict) with other capsules forming part of that system
For this reason, an incorporation check is always performed which duplicates th
certification check, but in the context of the incorporating system. It also assure
purchaser that the capsule’s certification is not fraudulent! It is much easie
quicker to check proofs than to generate them, so capsules carry all details o
proofs — even though there is a naïve sense in which a proof is no longer req
once it has been accomplished.

It should not be necessary for a user composing a system from capsules to p
any further proofs on them. The Fresco scheme ensures that, provided no co
are signalled, each capsule will perform as its designer intended, even i
company of unfamiliar fellows, without interference.

Mostly, new implementations and reifications will be supplied together with 
specification all in one capsule; but the rules allow them to be supplied separ
Clients need only import the capsules which contain specifications for the as
of behaviour they are interested in. 

Checks ignore irrelevant conflicts: that is, those which apply to methods which ha
been superceded.

7-3.5 Conflict and resolution

Suppose capsule CU specifies and implements a new operation cui for a user inter-
face, which re-arranges scattered icons into neat rows and columns. Lat
improvement CUH is published which imports CU, tightens the spec and re-imple
ments cui, guaranteeing that the icons will be arranged into alphabetic orde
label, reading across rows. Meanwhile, an oriental designer creates an improv
CUV, similar but with vertical ordering. Clearly both cannot be incorporated 
our system with a properly working result: on incorporating the second (say CUV),
Fresco declares a conflict, because CUV::cui comes without a proof that it conform
to the opspec for cui in CUH.

At this point, Fresco will offer the option of undoing the incorporation of one
other of the conflicting capsules.

Now suppose a further improvement CUSLIDE is designed which imports CU, and
makes the rearrangements happen visibly. The specification is compatible
either of CUH and CUV; but nevertheless, we cannot just incorporate CUSLIDE
and CUH (say) together, because each of their implementations only takes
account its own spec: Fresco would signal a conflict. But an additional ‘fix
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capsule CUSLIDE-H could be designed which imports both capsules — for th
specifications — but re-implements the method cui. This would come with a proof
that it conforms to both specs; the conflict is thereby resolved, because for me
only the most recently incorporated method is relevant (Fig. 10.)

(Notice that:

• It would not be so useful to design a CUSLIDE-H which imported CU
directly, since client capsules of CUH (say) would not be satisfied by it.

• It is not appropriate in this situation to design a subtype for each featur

It is possible to write a capsule which contains only a partial, or no implement
and acts just as specification.

7-3.6 Renaming

In some cases, a conflict occurs only because two designers have used th
name accidently for unrelated purposes. When capsules with a naming confli
incorporated into the same system, the  problem can be resolved by systema
changing one of the names.

The situation is easy to identify: it only occurs between capsules which are 
rately defining a new name. In all cases where a capsule is refining a name, th
a proof expectation that the new item is a refinement of the inherited version; i
proof expectation is not present in a certified capsule, then the definition mu
intended to be new.

There is no internal conflict here amongst type names, because they are qu
with the capsule names; but the ambiguity does arise at the user interface, wh
qualifications do not appear. And qualification is not done with 
Execution_View, because the objective is to modify existing code. Hence 
necessity to change a name, perhaps by ‘fixing’ the qualification so that (just in
particular system) the capsule name is a permanent part of it.

Instead of incorporating capsule K, we are then incorporating K[x\x1, y\y1] (where
x, y are the offending names). Any subsequent capsule which imports K will need
to have its references to the renamed items doctored; and so the list of rena
should be considered part of the full capsule name, both in the system’s capsu
and in any list of imports in which K appears. Whenever any new dependents oK
are subsequently published, the reverse mapping is applied before distributio

7-3.6.1 Hiding

It is desirable to be able to hide names defined within a capsule, both to pre
spurious clashes, and so as to present a limited selection of them to client ca
This can be done by qualifying the appropriate names with the capsule nam

CUH

CU

CUVCUSLIDE

CUSLIDE-H CUH-CLIENT
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presenting only the unqualified name at the user interface. This prevents the
being referred to except from within its own capsule. Hiding can be seen as a s
case of renaming.

7-4 Global variables

A global definition in a capsule declares a variable which may act as the roo
data structure, together with a type and code for its initialisation. It may be an 
ing or a new variable.

Notice that there are no global invariants — that is, no axioms outside type-d
tions and the Fresco fundamental axioms described here.

7-4.1 Initialisation and persistence

Once a capsule is successfully incorporated, the user’s permission is sou
invoke the initialisation code of the globals. In some cases, this will be a questi
setting up empty new data; in others, of transforming an existing body of data
a single menu or a whole database. It is important that when changes are ma
system’s software, provision should also be made to bring forward existing da
at least, that the system should be able to deal with old data.

The initialisation code of global variables is intended for these purposes. O
capsule has been installed satisfactorily, its initialisations should be perfo
before the new code is used. For a global g declared of type T, there is a proof expec-
tation of correct initialisation:

g-init-type: ? :– g∈T 

The precondition is rather ill-defined, since it can depend on just about anything
before the incorporation. It would be unwise to depend upon globals being in
ised in any particular order. This is a topic for further investigation.

Assignments to globals are not permitted: only operations may be used to in
gate and change them. This rule ensures that the global continues to ha
expected type.

7-4.2 Conformance

An updated global must belong to the same types as it did before, so that old 
can use it. For any global G declared in capsules KA and KB, a proof expectation
arises of the form:

KB«KA, KA::G∈T1, KB::G∈T2  |–   T2⊆T1

The same issues of conflict, possible resolution and possible renaming arise
types.

GlobalDefn

name: VarName
type: TypeExprn
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7-4.3 Incorporation scenario with globals

The nodes on the diagram (Fig. 11.) represent capsules, and the arcs impor
arcs are labelled with some of the theorems provided by the importing capsules (a
the source end of the arrow). Let us suppose that the capsules are all incorp
into one system, in order of their names k1–k5.

k0 has no global called g. k1 imports k0 and defines g; no conformance proof is
provided or expected. (There will be a proof that the initialisation code yield
member of T, and a similar proof in each redefinition.)

k2 redefines g to conform to Ta, and because k2«k1, a proof of Ta⊆T is expected.
The originating system would have insisted that the designer should provide
before certifying the capsule. k1’s software continues to work with g, and even with
k1 interacting with g, k2 works too. The only problem would be if g were to be
assigned a value by k1 which is a member of T, but not of Ta: for this reason, we do
not permit assignment to globals.

k3 does not redefine g, but possibly uses it. No conformance proof is expected
the system in which k3 originated, there would have been no k2, and so k3’s code
expects g to be T. Now in the system illustrated, we know that g∈Ta: that’s OK for
k3 because Ta⊆T.

k4 redefines g∈Tb. In the system in which it was orignated, k2 was not known, and
so k4 provides only for the proof expectation that the originating Fresco expe
for Tb⊆T. However, as far as the incorporating system is concerned, g’s type is Ta,
and a proof of Tb⊆Ta is what is actually required; the alarm is therefore raised, 
the user given the option of undoing the incorporation.

However, this problem has arisen before, and someone has taken the trouble t
k5 which imports both k2 and k4, redefines g∈Tc, and provides both the expecte
proofs. Perhaps it might not be necessary to redefine g, if it is possible to show
Tb⊆Ta: in which case k5 contains a proof and nothing else.

g∈Ta

g∈Tc

k5

k2

g∈T
k1

Globals and

Ta⊆T|– k2::g∈T

k5::Tc ⊆ k2::Ta

g∈Tb

k4

k5::Tc⊆k4::Tb

k4::Tb⊆k1::T
(g∈T)

k3
(no redecl of g)

(no g)
k0

g∈Td
k6

k5::g∈k2::Ta k5::g∈k4::Tb

k4::g∈k1::T

(g new)
(g new)proof expectations

 Fig. 11. Globals and proof expectations
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Finally, k6 also happens to define a global called g, having been originated in a
system in which k1 was not known. But in our system, we now have g∈Tc, so our
Fresco expects a proof of Td⊆Tc. However, since k6 provides no conformance
proof for g at all, it clearly has no dependence on any imported definition, and
safely be renamed.

7-5 Creation functions and concreteness

An implemented creation function, for example T mk must satisfy the axiom

T mk ∈ T

so that the proof expectation (if T or mk are [re]defined in capsule K) is:

T mk ∈ K::T

(where mk stands for any function with or without parameters). Notice that the 
hand T is not qualified with the capsule name: this is because it will appear in a
code, rather than just in proofs, and we don’t qualify names in code (becaus
idea of capsules is to modify the code sensibly).

At this point, it becomes useful to distinguish carefully between class and 
(Generally, we can rely on x class = T |–  x∈T, and so need not worry about the di
ference.) We will refer to a class C and a type CT which we hope C will implement.
Now we know that 

T-RQMTS:  x∈T  ⇔  ( iT::AXi[x])

so having created a C-instance, we must prove that all the axioms of CT are
observed by it.

This can clearly be done only if there are actually methods supplied in C for all the
axioms of CT. 

There is an axiom of a primitive function (in Smalltalk)

basicNew: C · C basicNew class = C

The typical creation function will be in this form:
C mk =  :– ↑ ∈ C ∧ Q  justification missing here

 :–  INV[↑] ∧ ↑ class = C ∧ Q  
{ x ·  :– x class = C  x ← C basicNew. 

 x class = C  :–  INV[x] ∧ x class = C ∧ Q  x init. 
↑x }

where INV is the conjunction of all the invariants of CT, and Q is some particular
requirement on the initial state. But this gives rise to the proof expectation

 INV[x0]  ∧  x class = C  |–   x ∈ CT

or, from T-RQMTS,

( INV[x0]  ∧  x class = C  |–  i CT::AXi[x])  |–   x ∈ CT

Clearly this can only be done if we can find a method in C (inherited or not) for each
opspec amongst AXi. Hence a class must be completely implemented — concrete
—  in order for a creation function to be verified and used — which, of course, b
out sensible practice.
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The proof depends on the induction over the history of x; but the designer does no
have to elaborate all this explicitly in Fresco: rather, the constraints Fresco im
ensure its validity. These are:

• The method implementation proof expectations discussed in 7-3 — p.1

• There is a certification check (an existing compiler constraint in C++) 
ensures that creation functions are only invoked on concrete classes. 

• Fresco generates the proof expectation that the type invariants are met
yield of a creation function; for any creation function mk, 

T-INV-CREATION: K::T::INV[T mk]

From this it can be seen that creation functions have a special status in Fresc
as they have in C++, rather than just being ordinary operations of the metacl
in bare Smalltalk. Fresco therefore does not support any metaclass operation
than creation functions.

The operation init is unusual in not taking the invariant of C as an implicit part of its
precondition. The present model of Fresco makes no provision for a special cat
of initialisation functions — there may be any number per class — so it is up t
designer not to assume the invariant in these cases. Initialisations are typically 
form:
C::init =  :– self∈C  INV[e1, e2] :– INV[v1, v2] 

{ v1 ← e1.
v2 ← e2.

 }

Creation functions themselves have no reference to ‘self’ (unless it is the objec
resenting the class itself in Smalltalk idiom — not a recommended practice).

7-6 The User Interface

A prototype for a Smalltalk-based capsules system without theorem-proving f
ties exists. This outline of the projected development environment is there
somewhat less hypothetical than much of what has gone before.

All development work is done within some capsule; each is represented by a
window within which can be created browsing tools for types, methods, and
details of the capsule. 

In the present prototype, the tools look similar to the standard Smalltalk brow
but much fascinating speculation can be made about the possibilities for integ
the tools for formal material with, for example, a hypertext and diagramm
system for the informal description, similar to the various object-oriented ana
and design tools which are appearing on the market (supporting, for example, [
baugh]). Ideally, one environment should take the designer all the way from
mally-annotated OOA through to verified code.

The designer can look at any of the specification or executable code in the sy
but only those items most recently updated by this or an imported capsule c
altered. No alterations can be made to a ‘published’ capsule. Alterations appa
made to the definitions in imported capsules are recorded as changes in the c
capsule.
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The structure of the system as seen through the browsers reflects the class a
heirarchies rather than the capsule structure; though the originating capsule o
type box and method can be discovered, and it is also possible to see previo
sions of a method, from each capsule which defined one.

Theorems can appear both within a type box and in browsing tools of their own
theorem can be asked to display its proof, which pops up in a separate b
theorem inside some context such as a proof, code block, type, or indeed a ca
can be dragged into the enclosing context; and Fresco adds the necessary m
ables and hypotheses.

Method code can be viewed with or without the specification components. If w
then highlighting a specification-statement gives access through menus to its
fication, which again can be shown separately.

The encapsulation of software into capsules is about managing the depend
between software modules. Therefore it would be useful for the system to d
diagram of dependencies, both between type-boxes and between capsules.

7-7 Summary

Every Fresco system is a composition of capsules, beginning with a Kernel ca
Each capsule contains definitions of types, global variables, and theorems, 
may be new or may augment existing definitions. Every capsule must import 
others whose definitions it uses. 

Capsules may be composed in configurations other than those in which they
originally developed; but Fresco’s proof expectation system ensures that a wa
is given if two capsules would interfere. 

A capsule is concerned with relatively static matters — specification and code r
than data — but may stipulate initialisation and translations upon persistent dat
have not investigated the constraints which a translation would have to satisfy

The generation of proof expectations and the process of checking before a c
is distributed, and on incorporation into a system have been described.
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8 Objects and verification

The aims of this chapter are twofold: 

• to discuss certain topics, skirted hitherto, which are strongly connected
the partitioning of the system state into objects;

• to try the utility of the concepts presented in the preceding chapters —
is, the interpretation of types as theories about object histories — as a
to dealing with these issues.

The latter should be seen as the primary goal (even though it is essayed as 
hefty attack on the former).

The topics are:

• Constraint maintenance: applying formal methods to the design of prog
as frameworks of co-operating classes.

• Framing: determining whether  inv code when the specification of code
does not explicitly mention the variables involved in inv.

• Barred expressions: the use and interpretation of variables and expres
denoting prior states in postconditions.

• Equality and subtyping: equality is non-monotonic.

Each section ends with a summary which points out how the Fresco formal n
of types has helped in the discussion. The chapter ends with an overall review

8-1 Constraint maintenance: co-operating objects

8-1.1 Constrained subsystems

The functional focus in an OO program is often not individual objects, but co-o
ating clusters of them. [JF88] suggests that types should be documented in ‘f
works’, or interdependent groups whose instances co-operate. The OO d
method of [Rumbaugh91] lays as much emphasis on the attributes and proper
the connections  between objects (and therefore the relations between their c
as on the objects and classes themselves. The typical problem is to maint
invariant across a link, and in the first stages of design, it is useful to annota
link with the invariant, deferring the design decision as to how to realise i
whether to attribute it to a particular class:

‘* ’ signifies there may be many Viewers per Subject. Each Viewer displays a
Subject on the screen (or provides a ‘view’ in database terms, to other intera
devices or  other parts of the software), and may possibly be used to invoke m
cations of it. When a modification occurs, all extant views should simultaneo
reflect the change: that is, the projects relation should be maintained.

Subject Viewer
s v

v.projects(s) *
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Because we still wish to be able to add new classes (for example, new  kinds of
after the initial design of the framework, it is essential to be able to define the i
faces between them. [MP91] suggests a rule-based programming approac
[HHG90] demonstrates a ‘white-box’ notation for this purpose, in which skele
sequences of operation calls are documented. Fresco uses types to achieve 
box approach.

Suppose that Core is a type of object representing some problem-specific inform
tion. There is some stored Data with an invariant, and a typical pair of modificatio
and query operations:

Now if the requirement is to display Core-members on the screen, then extensio
will be required. This object-diagram illustrates the general scheme:

This is an object diagram showing a typical snapshot of the connections in a sy
The arrows show protocols, named groups of messages: for example, the mutate pro-
tocol just contains mod in this example. There may be any number of View subsys-
tems each displaying part of the current state of the Subject.  Each sends queries t
the Subject to find its current state, and displays part of it on the screen using ap
priate bitmap operations (‘bitblt’). Part of the view’s function is to translate the use
mouse and keyboard actions into mutating operations on the Subject. Each view is
required always to show the current state of the Subject, and so there is an ‘update
protocol whereby the Subject can notify all the views of any alterations as soon
they happen.

Core

op mod ∈ (Key, Item)

fn  get ∈ (Key) Item 

 :– post-mod(d)  mod
 :– post-get(↑, d) get (...)

var   d ∈ Data
d.consistent

Window1

Subject

Window2

bitblt

mouse, kbquerymutate

update

View2

View1

mutate
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The Subject object must implement the Core type, and in addition must be able t
aquire views and have them display the relevant pictures:

(An IdSet(T) is a set all of whose members are the identities of members of T – see
§10-2.1 — p.170.)

This assumes the existence of the Viewer type, which must provide for the updat
protocol, which in turn must use Core’s get function. 

There may be several different kinds of Viewer, with the projects relation specified
differently for each one. 

From the point of view of clients external to this subsystem, the Subject must invar-
iably be accurately displayed on the Views, so we have a further type. (For th
purpose of illustration, let’s conjecture that it has some operation of its own.)

From the point of view of the display, we need to provide for user input, and a
it is convenient to express this as yet another type. The projection constraint s
always be true when input operations are dealt with, and the standard w
expressing this is to insist that s must be a Subject:

VisibleCore ::+ Core

op  addView ∈ (Viewer)

op  resetViews

var  vv ∈ IdSet(Viewer)

fn  wf-Subject =  (∀ v∈View · v∈vv ⇒ v.projects(self))
fn  bkwd-ptr = (∀ v∈View · v∈vv ⇒  v.s == self)

bkwd-ptr // invariant

v ·  :– vv = vv ∪ IdSet(Viewer).mk(v)  addView

 :– wf-Subject resetViews

Viewer

op  update 
:– self.projects(s)  update

var  s ∈ VisibleCore

fn projects ∈ VisibleCore → Boolean

self ∈ s.vv

Subject ::+ VisibleCore

op bringForwardAllViews

wf-Subject  // from VisibleCore

View ::+ Viewer

op  mouseOp ∈ (MouseStuff) 

...

var  s ∈ Subject
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Finally, to summarise this complex net of types:

(Thick arrows show subtyping, thin arrows are message paths; ‘*’ denotes the
sibility of multiple instances at one end of the connection.)

Each type represents a protocol. An object dealing with several protocols
member of several types. 

8-1.2 Callback and invariants

It was observed in an earlier section that an object either belongs throughout 
to some type, or it doesn’t, since type membership is a predicate over an objec
tory. This is certainly true if we look upon each operation as an atomic trans
But whilst mod is executing, the projection invariant may be invalid, and so  
object is temporarily not a Subject, in the practical sense that it would be improp
to call bringForwardAllViews, whose implementation might rely on the views being 
to date. 

The type to which an object is temporarily ‘downgraded’  whilst an operatio
active will be called a ‘transaction type’.

For completely encapsulated objects, this is not an issue, since it would be im
ble to call an operation on an object that is already in the process of executin
But VisibleCore and Viewer stipulate a loop of pointers between their members so 
a call to update can ‘call back’ the originating Core object. For this reason
Viewer::s∈VisibleCore, rather than Subject: this allows update to get the information
it needs to restore the contractual constraint. 

As an aside, it is worth noting that such callbacks are prohibited in POOL [A
ica], to avoid this complication.  The same strategy could be followed in other
guages, setting a flag in an object during the activity of any public method,
rebuffing any attempt to use public methods while it is set. It might be thought
the problem in POOL is connected with its concurrency — that this measu
equivalent to the protection by a semaphore of a critical segment of code. But e
sulation makes the problem almost as bad in a single-process system: any m
sent to another object is liable to be implemented by code outside our ken — a
we have no control or knowledge about what else the receiver may send me
to, and whether control may not ultimately loop back to us. The only intrinsic ad
tage single processing has over concurrent processing, in OOP, is the guaran
there will be no interruptions between the evaluations of one expression an
next, and in the invocation and return from messages to self.

This is an instance where the distinction between x∈T and x:T is a useful one. (Recal
that x∈T means that the invariants are interpreted as permanent assertions
every state, while x:T conjoins the ‘invariants’ with every pre- and postcondition 
§6-1.2, p.83.) Of an instance s of some class which implements Subject, it is always

Subject

VisibleCore

Core

Viewer

View

get

update

mod mod mouse

*

*

mod

resetViews
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true that s : Subject  ∧  s : VisibleCore  ∧  s : Core; but s∈Subject, for example, is true
only while no method of Subject is in progress.

Consider an implementation of a method for mod in  Subject, shown here with the
skeleton of a proof:

Subject::mod (k,v) = 
self∈Subject :– self∈Subject  ∧ post-mod   //opspec & invariants
( self∈VisibleCore :– self∈VisibleCore ∧ post-mod(k,v)  

super.mod(k, v) ;  // call VisibleCore::mod

self∈VisibleCore :– self∈Subject ∧ d=d ,
self.resetViews;

)

Strong type-membership has been used here as a shorthand for conformanc
various invariants. The method has been implemented by calling a more prim
version of mod, inherited from a superclass, which does the required business o
data; it seems reasonable to expect that this may affect the correctness of the
so that self∈Subject is no longer true: and so the next thing is to call resetViews. (We
need to know that the data d are not affected by this. Once again, discussion of s
‘frame’ inferences is left until a later section.)

The code of VisibleCore::mod is inherited from Core, where it will be shown to
conform to self∈Core :– self∈Core ∧ post-mod(k,v) . For VisibleCore, it will therefore
additionally have to be shown to conform to the invariant self∈VisibleCore or
bkwd-ptr.

VisibleCore::resetViews is implemented as a call to update in each view:

VisibleCore::resetViews = 
 self∈VisibleCore :– self∈VisibleCore ∧ wf-Subject 
( vv do: [:v | 

self∈VisibleCore:–v.projects(self)∧self∈VisibleCore ∧ 
∧ vv=vv  ∧  ∀ vx · vx∈vv ∧ vx¦v ⇒ vx=vx

v.update] )

8-1.2.1 Propagation of transaction status

Whilst the truth of self : T is fixed for any object, self∈T may be assumed (in method
attached to T or its subtypes) only on entry to a method, and should be restore
the end. Thus Subject::mod could not, half way through, call bringForwardAllViews,
while the implicit precondition self∈Subject is false. Nor should mouse messages
sent to any of the associated views, since v∈View depends on v.s∈Subject.

8-1.3 Constraints & contracts summary

Constraints operating between classes can be implemented as frameworks of 
co-operating according to a set of contracts. Using the weaker Fresco definit
type membership, the contracts have been characterised using transaction
This contrasts with the “white box” approach to contracts, in which spec
sequences of operations are stipulated.
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8-2 Aliasing example

This section considers the problems which arise from the possibility of mul
access paths to an object.

8-2.1 SortedList and SortedIdList

SortedList(T) is a generic type of objects which accept members of type T and give
them back in sorted order; T has to have a relation ≤ which is a total ordering. 

SortedList guarantees only to give back objects which are equal to the inputs

there is a variant SortedIdList(T) which gives back the identical objects that were p
sented to it.

SortedList(T)

op  add ∈ (T)

fn  _@_ ∈ (Nat) → T

x · x∈T :– x=x ∧  sl.elems  =  sl.elems ∪ IdSet.mk(x)  add(x)

 i ∈ Nat ∧ i∈1..sl.length :– ↑=sl@i self@i

var  sl ∈ IdList(T)

∀ i,j ∈1..sl.length · i<j  ⇒  sl@i ≤ sl@j

a SortedList

1 2 3

ss

ss@2
generates separate copy

client

of relevant structure

SortedIdList(T)

op  add ∈ (T)

fn  _@_ ∈ (Nat) → T

x · x∈T :– x=x ∧  sl.elems = sl.elems∪IdSet.mk(x)  add(x)

 i ∈ Nat ∧ i∈1..sl.length :– ↑==sl@i self@i

var  sl ∈ IdList(T)
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(IdList guarantees to preserve the identity of the objects, rather than just their s
I have chosen to use IdList in both models, to minimise differences between the
the difference is in the use of == or = in the postconditions.)

8-2.2 Method implementations

Now consider a pair of simple implementations having the same structure — th
each object has one component which is an IdList. The add methods are:
SortedIdList(T) :: add(x) =

x∈T  ∧  self∈SortedIdList(T) //i.e. conforms to invariants
 :– x=x ∧ ∃ before, new, after ∈ IdList(T) ·  

new.length=1  ∧  before++after = sl  ∧
before++new++after = sl  ∧  new@1==x

∧  self∈SortedIdList(T)
 

( var  n;
:– (n>1 ⇒ sl@n–1 ≤ x) ∧ (n<sl.length ⇒ x  ≤ sl@n) 

n := findPlace(sl, x); // local fn
:– ∃ before, new, after ∈ IdList(T) ·  before.length = n  ∧

new.length=1  ∧  before++after = sl  ∧
before++new++after = sl  ∧  new@1==x 
sl.insert (x, n);

)

and — with even more of the skeleton proof omitted —
SortedList :: add(x) =

( var  n;
n := findPlace(sl, x);

:– ∃ before, new, after ∈ IdList(T) ·  before.length = n  ∧
new.length=1  ∧  before++after = sl  ∧
before++new++after = sl  ∧  new@1==x 
sl.insert (x.copy, n);

)

The access methods are
SortedIdList(T) :: @(x) = (↑sl@i);

SortedList(T) :: @(x) = (↑(sl@i).copy);

8-2.3 Using the lists

The crucial difference between the two classes is that while SortedIdList accepts and
yields the identity of the items to be sorted, SortedList always makes copies, both
when accepting a new item, and when providing access to the list. SortedIdList is

a SortedIdList

1 2 3
ss

ss@2
points at relevant object

client
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open to interference with its invariant: having added mutable items to a SortedIdList,
a client could alter individual items, causing the invariant to become invalid:

sidl := SortedIdList(T).empty; // make new list
sidl.add(item1);
sidl.add(item2);
item1.addOn(50000); // mutate list contents
smaller:= sidl@1; //not necessarily!

The problem does not arise with SortedList, because item1 is not the object stored in
the list. Clearly, clients of SortedIdList have some extra proof obligation to fulfill, i
they are to use it properly. Let us look at that code fragment augmented wit
principal code-specs of an attempted proof:
 item1∈T ∧ item2∈T :– ??? (

item1∈T ∧ item2∈T :– 
:– item1∈T ∧  item2∈T  ∧  sidl∈SortedIdList(T) ∧ sidl.length = 0  

sidl := SortedIdList(T).empty;
sidl∈SortedIdList(T) ∧ item1∈T  ∧  item2∈T
 :–  item1∈T  ∧  item2∈T ∧ sidl∈SortedIdList  ∧  sidl.elems = IdSet.mk(item1) 

 sidl∈SortedIdList(T)  ∧ item1∈T 
:– sidl∈SortedIdList(T)  ∧  item1=item1 

∧  sidl.sl.elems  =  sidl.sl.elems ∪ IdSet.mk(item1)
sidl.add(item1);

 sidl∈SortedIdList  ∧  sidl.elems = IdSet.mk(item1)  ∧ item2∈T ∧
:– sidl∈SortedIdList  ∧  sidl.elems = IdSet.mk(item1, item2)  //similarly

sidl.add(item2);
sidl∈SortedIdList  ∧  sidl.elems = IdSet.mk(item1, item2) item1∈T 
:– item1∈T ∧ item1 = item1+50000 

item1.addOn(50000);
...)

The proof really comes adrift at this point because sidl∈SortedIdList is not preserved
by item1.addOn(50000). But how do we know that? Now consider a similar use
SortedList:
item1∈T ∧ item2∈T 
:– (smallest = item1 ∨ smallest = item2) ∧ smallest≤item1 ∧ smallest≤item2   (

sidl := SortedList(T).empty; // make new list
sidl.add(item1); //put a copy of each item in the list
sidl.add(item2);
sidl∈SortedList // how do we know???

 item1.addOn(50000); // mutate original –  list unaffected
sidl∈SortedList :– ...  smaller:= sidl@1; // guaranteed smaller of originals

)

The key thing is that sidl∈SortedList is not disturbed in this case by changes to item1.
The same immunity can be got even with SortedIdList, if the client does the copying
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item1∈T ∧ item2∈T 

:– (smallest = item1 ∨ smallest = item2) ∧ smallest≤item1 ∧ smallest≤item2   (
sidl := SortedIdList(T).empty; // make new list
sidl.add(item1.copy); //put a copy of item1 in the list
sidl.add(item2.copy);
sidl∈SortedIdList // how do we know???

 item1.addOn(50000); // mutate original
sidl∈SortedIdList :– ...  smallest:= sidl@1; // guaranteed smallest

)

Or conversely, how do we know that, for example, item1∈T is preserved by the state
ments in whose invariants it is not directly implicated? Consider the above frag
with the code-specs pared down to focus interest on item1:
item1∈T :– item1∈T  ∧  item1 = item1 + 50000   (

item1∈Tsidl := SortedIdList(T).empty; // how do we know???
item1∈Tsidl.add(item1); // spec of SortedIdList::add
item1∈Tsidl.add(item2); //how do we know ???
item1∈T :– item1∈T ∧ item = item1+50000  item1.addOn(50000); // T::addOn
item1∈T∧item1 = item10+50000  smallest:= sidl@1; //how do we know???
)

In some cases, the relevant opspec is explicit about the effects on item1; in other
cases, the independence (or otherwise) of invariant and code is entirely implic

8-2.4 Aliasing problem summary

The general problem of aliasing is to prove inv code in those cases where th
explicit specifications of the operations involved in code don’t mention inv. The
problem of type-invariant-breaking also falls within this scope if the weak defini
of typing is used (in which x : T is static and x∈T varies). In OOP, the particula
obstacle is that we wish to specify and design one type without knowing abou
other subsystems which may interfere with it (as distinct from designing a w
program at once, and having invariants that apply to the whole thing).

The analysis of the problem in terms of invariants on types has, for the auth
least, made the nature of the problem clearer than an intuitive feeling that ali
is difficult.

8-3 Effects calculus

This section outlines a method of deciding whether a piece of code will leav
assertion invariant. It is similar to a system described in [Johnson 91], which
developed simultaneously.

Each expression or statement has a writing frame, which is the set of variables to
which it may write. Every expression or statement has a reading frame, the set of
variables whose values affect its behaviour and outcome. If the reading fram
some pure predicate M is disjoint from the writing frame of S, then M S (i.e. M is
an invariant of S).

The complication is that since there may be aliasing, other variables ma
affected, besides those immediately apparent. A variable is said to be separate from
the frame of a statement S, if v is unaffected by the execution of S. A variable x is
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said to be separate from another y, written x sep  y, if for every operation S whose
frame includes y but not x, x is unaffected by S.

To determine whether MS, it is therefore necessary to determine:

• the reading frame ρ of M;

• the writing frame ω of S;

• whether ρ sep  ω 

A relevant set of rules follows.

8-3.1 Definition of concepts

8-3.1.1 Fields

A field is a name to which an assignment of an object identity may be made w
some context. This includes:

• local variables, within operations and statement-sequences

• global variables

• the instance-variables of objects (marked var in TCDs)

A field may be referred to 

• by name for local and global variables: &name

• by containing object and name for instance variables; the object is iden
by some expression yielding its identity: x.f.&name
(In a TCD, &name is an abbreviation for self.&name)

All the fields of an object may be referred to as a set by omitting a specific f
name: x.f, self, etc. Notice that x.f.&name refers to a specific field within the objec
identified by x.f, whilst x.f.name refers to the whole of the object identified by th
field.

There may be more than one expression which refers to a single object.

8-3.1.2 Frames

Every expression or statement E has a reading frame and a writing frame. T
writing-frame is the set of fields which could possibly be altered by executing E; the
reading-frame is the set of fields, altering which could possibly affect the outc
of executing E. We define relations ∇ and ∆:

∇ dr · E states that the reading frame of E ⊆ dr

∆ dw · E states that the writing frame of E ⊆ dw

Notice that the domain of these relations is the syntactic structure of pieces of
not the result-values they return: an expression appearing to the right of th
cannot be substituted by another which has an equal evaluation.

If the reading and writing frames of an expression E are disjoint,
∃ dw, dr · E ∆ dw  ∧  E ∇ dr  ∧  dw∩dr = ∅

name

 x.f.&name
 x.f 

 x.f.name
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then e is said to be pure, which means it can be repeatedly evaluated without 
change of outcome (which doesn’t necessarily mean it won’t affect the outcom
any other operations).

If the reading frame of an expression e and the writing frame of a statement S are
disjoint, S will not have any effect on e. If e is a pure predicate, 

fx-indep: ρ, ω, e, S ·    

More generally, if the reading frame of any expression or statement S2 is disjoint
from the writing frame of S1, preceding S2 with S1 will make no difference to any
effects attributable to S2:

fx-indep-stmt: ρ, ω, S1, S2 ·  ∆ω·S1, ∇ρ·S2, ρ sep  ω  |–    P:–R  (S1;  P:–R S2)

(where ρ sep  ω   ≡    ρ  ∩  ω  =  ∅).

A frame is an outer bound on the arena of action of an operation. If there ar
frame-specifications for one operation, then they must intersect. (Many of the
lowing rules are the same for both ∆ and ∇, and are given with ◊ standing for either.)

fx-conjoin: d1, d2, S ·    

If we know S deals with a frame sd which is wholly contained in a frame d, then we
may also state that S deals with the whole d. 

fx-expand : sd, d, S · 

8-3.1.3 Demesnes1

The details of the frames of a statement will usually depend on the encaps
detail of the definitions of the objects being dealt with. For example, if dd∈Sort-
edList(Shape), then the writing-frame of (dd@3).move(v) depends on what kind of
Shape dd@3 is. We therefore define the demesne of an object x, written x.δ, to be that
set of fields which are involved in representing its current state. Each class h
own definition of δ, and frames can be defined without knowing the details of
frames. For example: 

∆ (dd@3).δ · ((dd@3).move(v))

1. A demesne in feudal times was the land owned by the lord of the manor, held in feu 
the villeins of his village. Except that of course his land was in turn really owned
by the local baron; and so on through dukes and princes etc. up to the Kin
‘Demesne’ has common derivation with ‘domain’, and is pronounced more o
less the same.

∆ ω · S
∇ ρ · e

ρ∩ω = ∅

 e  S

◊ d1 · S
◊ d2 · S

◊ d1∩d2 · S

sd ⊆ d
◊ sd · S

◊ d · S
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for which sample demesne functions might be:

Demesnes are written in conventional set notation, and for convenience are a
interpreted after flattening any nested set structure: only the unified set of fie
important.

The designer must define a demesne function for every TCD. It should hav
parameters, and should include all fields which are taken into account in an eq
comparison. Each field can be categorised into the following groups, accordi
the role of the object to which it points:

• Component — the state of the object to which it points is regarded as pa
the state of self: e.g. each vertex of Triangle; or the salary field of an Employee;
or the boundaries and subwindows of a window. Both the field and
demesne of the component object should be included in the demesne oself.

• Reference — it is the identity of the pointed-to object which is importan
rather than its current state. For example, the boss field in Employee should
point to another Employee; reassigning self.boss would usefully be regarded
as a significant change to the state of self, while a change in self.boss.salary
would not be regarded as a change to self. The model displayed in a window
is a reference, since not all changes in the model’s state would be reg
as a change to the window.
A reference field should be included in the demesne (&boss), but not the
demesne of the referred-to object.

• Redundant — caches and “upward” pointers fall into this category: th
have no functionally visible effect or are always completely determined
other parts of the state.

Triangle

...

var  v1, v2, v3∈ Point

fn  δ =  {self, v1.δ, v2.δ, v3.δ}

MultiLine

...

var  path ∈ List(Point)

fn  δ =  {&path, pathδ}

Fig. 12. Demesnes define boundaries around subsystems of objects

components
references

a

b

b is accessible from a,
but is not considered part of it

p

q
r

s

t

a.p.q.r == a.s.t

demesnes
may overlap

c

a sep  c 
a.δ

a.p.δ

c.δ
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The objective is to define meaningful boundaries around subsystems of obje
the running system. An object should not therefore be contained within
demesnes of its components. The placing of the boundaries depends on the a
tions which the concrete objects are intended to represent, and the above guid
are informal. In the present proposal, the onus is on the designer to ensure t
demesne function is useful for the definitions of read and write-frames. Two a
native improvements would be: to derive it automatically from any equality test;
to permit more than one per class, which would provide for different group
objects related to different purposes, encapsulated under different demesne-n

8-3.1.4 Frames in signatures

The reading and writing frames of messages may be documented in their signa

In this case, add may alter the component IdList, while @ alters nothing (that any
client could see). The declaration of an operation with fn  signifies that its writing-
frame is ∅. add reads its parameter, and both functions may read from the list sl and
also from each of its elements. It is necessary to say so explicitly, because IdList does
not include the demesnes of its elements in its own (§10-2.2 — p.171).

8-3.1.5 Separation

fx-indep asserts that if the reading-frame of an expression is disjoint or separate from
the writing frame of a statement, then the latter will not affect the former. T
abbreviation is useful, where ρ and ω are frames:

ρ sep  ω   ≡    ρ  ∩  ω  =  ∅
Where x and y are objects, 

x sep  y   ≡    x.δ  ∩  y.δ  =  ∅
Separation is commutative:

sep-comm : z1, z2 · 

A statement may have the effect of setting up a new alias, causing two fram
overlap. To be able to link two frames, a statement has to read at least one an
the other; so to prove separation is preserved:

sep-preserve: z1, z2, S, ρ, ω · 

SortedList(T)

op  add ∈ (x:T) ∆ {sl.δ} ∇{x.δ, sl.δ, {sli.δ | sli · sli∈sl.elems}}

fn  _@_ ∈ (Nat) → T ∆ ∅ ∇{sl.δ, {sli.δ | sli · sli∈sl.elems}}

...

var  sl ∈ IdList(T)

...

z1 sep  z2

z2 sep  z1

 ∇ρ · S
∆ω · S

P |–  ω sep  z1  ∨  ρ sep  z2
P |–  ρ sep  z1  ∨  ω sep  z2

 P ∧ z1 sep  z2 :–  z1 sep  z2 S
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The property of isolation means that an item is separate from everything else ac
sible to any client:

isol-defn: z.isolated ≡ ∀x · ¬(↑==x) ⇒ z sep  x

All uninitialised newly created items are isolated:

create-sep : :– ↑.isolated AClass.basicNew

where AClass is any class. This is a property of the built-in creation function basic-
New, but the designer-built creation functions for any particular class may cr
non-isolated items, ready-linked into an existing structure.

If a statement has an empty reading and writing demesne, then it can only yi
isolated item:

indep-sep : ∆∅ ∇∅ · S |–  :– ↑.isolated S

8-3.2 Aliasing example revisited

8-3.2.1 Type specification with framing

The opspecs have been augmented to provide the relevant guarantees, and 
the theorems are now labelled:

and the creation function:
  ∆∅ ∇∅ ·  ↑∈SortedList(T) ∧ ↑.length = 0  SortedList(T).empty

8-3.2.2 Sketch proof

An outline proof of the example using SortedList (which keeps copies of its argu
ments)

SortedList(T)

op  add ∈ (x:T) ∆ {sl} ∇{x.δ, sl.δ, {sli.δ | sli · sli∈sl.elems}}

fn  _@_ ∈ (Nat) → T ∆ ∅ ∇{sl.δ, {sli.δ | sli · sli∈sl.elems}}

add-1: x · x∈T  :–   x=x ∧ (∀ sli · sli∈sl.elems ⇔ (sli∈sl.elems ∨ 
sli = x ∧ sli.isolated))

∧ (∀ sli · sli∈sl.elems ⇒  x sep sli)
 add(x)

add-2: x ·  x sep  self  add(x)
 i ∈ Nat ∧ i∈1..sl.length :– ↑=sl@i ∧ ∀sli · sli∈sl.elems ⇒  ↑ sep sli  self@i

var  sl ∈ IdList(T)

∀ i,j ∈1..sl.length · i<j  ⇒  sl@i ≤ sl@j
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item1∈T ∧ item2∈T 

:– (smaller = item1 ∨ smaller = item2) ∧ smaller≤item1 ∧ smaller≤item2   (
sidl := SortedList(T).empty; // make new list
sidl.add(item1); //put a copy of each item in the list
sidl.add(item2);
sidl∈SortedList ∧ item1 sep  sidl // crucial invariant

 item1.addOn(50000); // mutate original –  list unaffected
sidl∈SortedList // crucial precond

:– (smaller = item1 ∨ smaller = item2) ∧ smaller≤item1 ∧ smaller≤item2 
 smaller:= sidl@1; // guaranteed smaller of originals

)

The last line can be shown easily from the postcondition of @ and the invaria
SortedList, provided the invariant has not been interfered with — as would happ
SortedIdList had been used. It is essential for the preservation of sidl∈SortedList, that
item1 sep  sidl when item1.addOn(50000) executes. To see that this is the case on en
to that operation, consider another sketch highlighting the continued separat
the various protagonists:

item1∈T  ∧ item1 sep  item2 :– ...  (
fn  all = item1∈T ∧ item1 sep  item2  ∧ item1 sep  sidl ∧ item2 sep  sidl

∧ ∀ sli · sli∈sidl.sl.elems ⇒  item1 sep sli ; //convenient auxiliary
item1∈T ∧ item1 sep  item2  :– all 

sidl := //instantiate x in:
:– ∀ x · ¬(↑==x) ⇒ ↑ sep  x SortedList(T).empty; //spec of empty

all  (sidl.add(item1)); // spec of SortedList::add etc
all  (sidl.add(item2)); //(see below)

all :– all ∧ item1∈T ∧ item = item1+50000  item1.addOn(50000);// T::addOn
item1∈T∧item1 = item10+50000  smallest:= ∆∅ ∇{sidl} · (sidl@1);//spec of @
)

8-3.2.3 An invariance proof

Elaborating one of these lines in detail will suffice to demonstrate the princ
(and horribleness) involved:

item1∈T ∧ item1 sep  item2 ∧ item1 sep  sidl ∧ item2 sep  sidl
∧ ∀ sli · sli∈sidl.sl.elems ⇒  item1 sep sli  (sidl.add(item2))

(Notice the invariant deals with item1 while the item being added is item2.)

The proof begins with a restatement of the frame information in the signature oadd:

1  sidl∈SortedList |–  ∆ {sidl.sl.δ} ·  sidl.add(item2) from  sig SortedList::add

2  sidl∈SortedList |–  ∇ {item2.δ, sidl.sl.δ, {sli.δ | sli · sli∈sl.elems}} · sidl.add(item2)
from  sig SortedList::add

3 sidl∈SortedList |–  ∆ {sidl.δ} · sidl.add(item2)
from  1, defn SortedList::δ by  fx-expand

The requirement is to prove all :– all  sidl.add(item2); the various conjuncts of the
postcondition will dealt with separately. The preservation of item1’s type can be
derived from the separation of item1 from the writing-frame of the method:
4 all |–   item1 sep  sidl by  ∧-elim

5 ∇ item1.δ ·  item1∈T by  expr-∇ //see below

6  all :– item1∈T  (sidl.add(item2)) by  implicit-invar from  3, 4, 5

The two items’ separation is preserved because the operation writes to neithe
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7 all |–   item2 sep  sidl by  ∧-elim

8 all :– item1 sep  item2  (sidl.add(item2)) by  sep-preserve from  3, 4, 7

The separation of item1 and the list is preserved because item1 is separate from each
element in the reading-frame of the operation:
9.h all 

9.1 item1 sep item2 by  ∧-elim from  9h

9.2 item1 sep  sidl.sl by  sep-specialise from  4,  SortedList::dem

9.3.1 ∀ sli · sli∈sidl.sl.elems ⇒ item1 sep  sli by  ∧-elim from  9.h

9.3 item1 sep   sidl.sl.elems by  sep-conjoin from  9.3.1

9.4 item1 sep  {item2, sidl.sl, sidl.sl.elems} by  sep-conjoin from  9.1, 9.2, 9.3

9 all :– item1 sep  sidl  (sidl.add(item2)) by  sep-preserve from  3, 4, 2, 9

The term involving the elements of the list is dealt with in a subproof about 
individual element. The old members and the new one have to be dealt with 
rately; the isolation of the new one is explicitly guaranteed by add:
10 con sli //ranges over new elements

10.h1 sli∈sidl.sl.elems ⇔ (sli∈sl.elems ∨ sli = x ∧ sli.isolated)) // postcond of add

10.h2 all //precond of add

10.h3 sli∈sidl.sl.elems

10.1 sli∈sl.elems |–   item1 sep  sli from  10.h2 by  ∧-elim, ∀-elim

10.2 sli = x ∧ sli.isolated |–  item1 sep  sli by  def isolated

10.3 ∀ sli · sli∈sidl.sl.elems ⇒ item1 sep  sli from  10.1, 10.2, 10.h3 by  ∀-intro, ∧-intro

12 all :– ∀ sli · sli∈sidl.sl.elems ⇒  item1 sep sli  (sidl.add(item2))
from  10, add-1 by  strengthen

Finally, the separation of the operands is implied by the specification itself. N
that asccording to this specification, clients are not allowed to add the list (or
thing containing it) to itself:
13 all :– item2 sep  sidl  (sidl.add(item2)) by  SortedList::add-2

14 all   (sidl.add(item2)) by  post-conjoin from  6, 8, 9, 12, 13

8-3.2.4 SortedIdList used with copied arguments

SortedIdList, which keeps a list of references to the original items, allows more f
ibility for those cases where copying would be slow; but the client has to be
breaking the invariant by altering any items while they belong to the list.

The guarantees about separation are missing. However, this client chooses to
own copying for every argument, so that the effect is just like using SortedList:

SortedIdList(T)

op  add ∈ (x:T) ∆ {sl.δ} ∇{x.δ, sl.δ, {sli.δ | sli · sli∈sl.elems}}

fn  _@_ ∈ (Nat) → T  ∆ ∅ ∇{ sl.δ, {sli.δ | sli · sli∈sl.elems}}

add-1: x · x∈T  :–   x=x ∧ ∀ sli · sli∈sl.elems ⇔ (sli∈sl.elems ∨ sli = x) add(x)

add-2: x ·  x sep  self  add(x)
 i ∈ Nat ∧ i∈1..sl.length :– ↑=sl@i  self@i

var  sl ∈ IdList(T)

∀ i,j ∈1..sl.length · i<j  ⇒  sl@i ≤ sl@j

fn δ = {sl.δ}
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item1∈T ∧ item2∈T 
:– (smallest = item1 ∨ smallest = item2) ∧ smallest≤item1 ∧ smallest≤item2   (

sidl := SortedIdList(T).empty; // make new list
∀ sli · sli∈sidl.sl.elems ⇒  item1 sep sli

sidl.add(:– ↑.isolated item1.deepCopy); //put a copy of item1 in the list
∀ sli · sli∈sidl.sl.elems ⇒  item1 sep sli

sidl.add(:– ↑.isolated  item2.deepCopy); //convention of deepCopy
sidl∈SortedIdList ∧ item1 sep  sidl.elems 

 item1.addOn(50000); // mutate original
sidl∈SortedIdList :– ...  smallest:= sidl@1; // guaranteed smallest

)

The isolation of each new member is guaranteed by deepCopy, while the separation
of the existing ones can be shown using sep-preserve.

8-3.2.5 Commentary

Apart from demonstrating once again the prolixity and tedium of raw proof,
example suggests that a great deal of effort may be spent in verifying the con
separation of the entities involved, mostly so as to demonstrate the invarian
type membership (to guard against the possibility of aliasing): §8-3.2.3 shows a
proof of the sketch in §8-3.2.2, which is chiefly about item∈T. The preservation of
these invariants is in turn subsidiary to the real matter of the proof (§8-2.3 — p.

Notice that the responsibility of proving that all invariants are not broken is e
tively placed entirely on the client. A client using several servers will have to k
track of the integrity of each variable used, each with a similar cost to that abo

Fortunately, many parts of this kind of proof seem straightforward, with good h
of mechanisation by reasonably intelligent tactics.

(The toll could possibly be alleviated somewhat by the invention of a sho
method for saying "SortedList looks after its own invariants and those of its param
ters — no further proof necessary". This is not pursued here.)

However, the heavy load of proof upon the client is not due to any breach of e
sulation: the proof of the client’s code shown above involves nothing from
implementation of the class. Rather, the conditions under which the type m
used have been spelled out, and the client has to prove compliance.

8-3.3 Inference of frame of an expression

The proof above included the lines:
1 sidl∈SortedList |– ∆ {sidl.sl.δ} · sidl.add(item2) from  sig SortedList::add
5 ∇ item1.δ · item1∈T by  expr-∇

This section discusses the rules for determining the frames of a statement or e
sion. It is important to realise that a framing assertion (beginning with ∆ or ∇) is a
statement about the syntax of an expression, and the rules apply to the expre
syntax, not the result it yields. So for example, in a context in which  item1∈T, the
expression  item1∈T could elsewhere be substituted by true; but while the reading-
frame of  item1∈T is ∇ item1.δ, the reading-frame of true is ∅. Substitutivity of equals
does not apply to the expression following “·”, although it may be applied to
framing expression itself.

In many cases, the rules for read- and write-frames are the same, so the sy◊
stands for either ∇ or ∆.
Fresco © Alan Cameron Wills 1992 Objects and verification 141 



tating
ossible

ject is

ing or

aram-

am

lared

ple, 
8-3.3.1 Constants

A constant — type names, metavariables, and members of types with no mu
operations (such as the numbers) — can be ignored, since frames are about p
interference through unexpected mutations:

fx-const: — c a constant

8-3.3.2 Variables

Using a variable reads the reference in that variable (whether the resultant ob
read depends on the expression which uses it):

fx-var-r:

and writes to nothing:

fx-var-w:

8-3.3.3 Operations

A messages’s frames are advertised with the type description. The frame (read
writing) of an invocation is the union Ui di of the frames di of the argumentsEi, and
the frame of the message itself. The latter is usually expressed in terms of the p
eters ( dop[pi]), and must be instantiated with the yields of the arguments.

fx-op:  — ei pure

A rule allowing for ei with side-effects would be too complicated: such a progr
can be rewritten as a series of assignments.

Any composition of pure expressions is pure; this applies to operations dec
with fn :

pure-form: 

A transparent operation is one which reads only its arguments:

transp: 

Most of the operations on primitive types are pure and transparent — for exam

◊  ∅  · (c)

∇  &v · (v)

∆  ∅ · (v)

◊   dop[pi] · (p0 op( pi>0))   
◊ di · ei 

◊    dop[ei ] ∪  Ui di · e0 op( ei>0)

∆ ∅ · E
∆ ∅ · R[v] 

∆ ∅ · R[E]

f transparent
∇ ρi · Ei 

∇ Ei.δ ∪ Ui ρi · E0.f(Ei)
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1 ∇ &v · v by  fx-var-r

2 ∇ ∅ · 5 by  fx-const

3 x, y · x∈Int |–  x+y pure & transparent //documentation of Int::+

4 ∇ {&v, v.δ} · v+5 from 3, h, 1, 2 by  fx-op

5.1 v.δ = ∅ from  h by Int::δ //all ints are immutable

5 ∇ {&v} · v+5 from  5.1, 4 by subs-=

The built-in identity comparison operation function == depends only on the ide
ties of the operands:

fx-id:

(An ‘=’ method would usually read the demesnes of the objects as well.)

An opspec governing a pure expression can be recast as an invariant:

pure-opspec: 

8-3.3.4 Compound statements

A sequence of statements Ei reads and writes the union Ui di of everything its com-
ponents do:

fx-seq:

Conditionals and loops are pure and transparent:

fx-cond: ◊b · B,  ◊t · T,  ◊f · F |–  ◊b∪t∪f · (B ifTrue: [T] ifFalse: [F])

fx-loop: ◊b · B,  ◊t · T  |–  ◊b∪t · ([B] whileTrue: [T]) —  t invariant

Throughout this discussion, the frames considered are the outer bounds for an
sible execution: thus the frame of a conditional statement is the union of the fr
of its branches; and the frame of a loop can be determined only from a frame
which can be shown to be true of its body for every execution. It would be pos
to make a finer analysis in which frame-specs are a form of postcondition, w
may differ depending on the starting conditions.

In inline form, these rules can be written:

fx-seq: ◊ Ui di · ( ◊d1 · E1 ;  ◊d2 · E2 ;...)

fx-cond:  ◊b∪t∪f · (◊b ·B ifTrue: [ ◊t · T] ifFalse: [◊f ·F])

fx-loop: ◊b∪t · ([◊b ·B] whileTrue: [◊t · T]) — t invariant

◊ d1 · E1
◊ d2 · E2

◊  d1, d2 · (E1==E2)

E  ∆  ∅
 P :– R[↑] E

P |–  R[E]

◊ di · Ei 

 ◊  Ui di · (E1; E2; ... )
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8-3.3.5 Assignment

Assignment reads nothing, but care must be taken if any existing frame
expressed in terms of that variable:

fx-ass-r:

An assignment to a variable writes to that variable, and there are the same p
tions:

fx-ass-w:

The use of a local variable v can be forgotten when we leave its scope, but the 
only works if the frame expression involves v only as a reference:

fx-var-elim:

— v does not occur free in d

In this example, a variable is used to hold a reference to a value temporarily c1 is
supposed to be a list of references to complex objects of some kind):

∇ c1.δ ∆ &c2  c1∈IdList(NatCell) :–  c2 == c1@3  
( var v;

∇ c1.δ, &v ∆ &v, &c2 · (
∇c1.δ ∆ &v · v := c1+3;
∇ &v ∆ &c2 · c2 := v

))

The same rule applies to bindings of all kinds, such as
fx-var-elim-∀: ∇ {d, &v} · E  |–   ∇ d · ( ∀ v · E ) — v does not occur free in d

If the content of a variable can be shown to be isolated (that is, separate from
other frame: §8-3.1.5 — p.137) then leaving the scope of a variable throws the 
mation away:

fx-var-elim-iso:

8-3.3.6 Substitution

Where these elimination rules are not applicable, it is only necessary to reca
frame-expression in a form not involving v. If two expressions lead to the identica
object, then each may be substituted for the other in a frame specification:

fx-subs-==: 

The overall effect of the following fragment should be that the list c1 is read, but we
do the reading through the temporary variable v. The side-condition on fx-var-elim

 ∇ ρ · E

 ∇ ρ[v\v] · (v:=E) 

∆ ω · E

∆ d[v\v]∪{&v} · (v:=E)  

◊ {d, &v} · E

◊  d · ( var  v · E ) 

 :– v isolated  E
◊ {d, &v, v} · E

◊  d · ( var  v · E ) 

◊ E1 · S
E1 == E2

◊ E2 · S 
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prevents it from being used directly to infer the outer frame-spec, so we first ufx-
subs==  to get rid of “v.δ”:

∆ &c2 ∇ c1.δ, &c1 · ( var v; // fx-var-elim
∇&c1, c1.δ ∆ &c2, &v· //fx-subs-==

∇ &c1, v.δ ∆ &c2 &v·(

∇  &c1 ∆ &v ·  :– v == c1  
v := c1;

∆ &c2 ∇ v.δ · c2:= v@3
))

8-3.3.7 Copying

Any operation writing to an isolated demesne can have no effect on any other; 
fore the effect can be ignored.

Particularly useful amongst derivable results is that if an operation affects ju
receiver, then applying the operation to a copy writes effectively to nothing:

fx-copy-nop:

8-3.3.8 Mechanical inference of frames

With the exception of the rule for variable elimination, it should be possible to a
these rules automatically. The syntactic mode of application does not, in any
fall within the normal rule-matching method of the theorem prover. A special b
in “oracle” would be invoked, inserting a single justification in the proof, cal
expr-∆ above.

8-3.4 Monotonicity and frames

This section discusses an incompletely resolved difficulty with frames.

A client should be entitled to expect that nothing outside the frame specificati
an operation will be affected by it; for this reason, multiple frame-specs interse
subtype should not be able to expand the frame of an operation, but only narr
But this immediately presents a problem: it is common to refine a type by ad
new variables in subtypes, and these must surely be accessible to the inherite
ations; in a supertype, there may be no variables at all.

Consider as an example Shape, now with framing information:

∆  d · E
  ∆  x.δ · x, pi ·   (x op)

 ∆   d · E.deepCopy.op

Shape

fn contains ∈ (p∈Point) Bool ∇ p.δ, self.δ
op move ∈ (v∈Vector) ∆ self.δ ∇ v.δ, self.δ
mv-def: v ·  v∈Vector :– ∀ p · p∈Point ⇒ 

(self.contains(p) ⇔ self.contains(p+v))  move(v)
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The signature states that move writes only to the Shape’s own components; but
since there are no variables in this very abstract TCD, there is no point in de
δ: that must be left to the subtypes. E.g.:

FourSides is still abstract, and can be refined with different constraints. The 
new ∆ in Quadrilateral ensures that each vertex-setting operation leaves the o
unmoved:

The new ∆ is clearly OK, as it stipulates a subframe of the inherited one; the s
restriction could be described with an extra postcondition.

However, this type adds a new redundant variable — a valid move in refineme
which the existing operations must clearly be allowed to alter:

In this case, the extension of δ seems intuitively unlikely to cause any problem; b
in general, arbitrary expansions of δ could permit interference unanticipated by c
ents, and would make separation proofs impossible except where you kno
precise class you are using. The invariance proof of §8-3.2.3 — p.139 worke
expanding the definition of δ; but if δ is allowed to be redefined in subtypes, th
will not work. We need to be able to make statements about the separation oself.δ
from arbitrary demesnes of concern to clients, while still allowing subtype
choose their own implementations.

This suggests rules governing expansions of δ:

• Frames defined in operation signatures may only be reduced in subt
multiply-inherited frame-specifications intersect.

• Demesnes (i.e. δ-functions) may be reduced in subtypes; multiply-inherit
demesnes intersect.

• A demesne may be expanded to a superset of its ancestors only if the 
sion is guaranteed to remain separate from every frame accessible t

FourSides ::+ Shape

op  setp1 ∈ (Point) ∆ self.δ ∇ self.δ, p.δ
op  setp2 ∈ (Point) ∆ self.δ ∇ self.δ, p.δ
op  setp3 ∈ (Point) ∆ self.δ ∇ self.δ, p.δ
op  setp4 ∈ (Point) ∆ self.δ ∇ self.δ, p.δ
axfsc: p ·  :– ↑ = p.withinLoop(〈p1, p2, p3, p4〉)  contains(p)

axfs1: np · nonIntersectingLoop(〈np, p2, p3, p4〉) :– p1=np  setp1(np)
...

var  p1, p2, p3, p4 ∈Point

Quadrilateral ::+ FourSides

op  setp1 ∈ (Point) ∆ p1.δ // other points are fixed
...

QuadWithArea ::+ Quadrilateral

var  area ∈ Area

area = areaWithin(p1,p2,p3,p4)

fn  δ = {p1.δ, p2.δ, p3.δ, p4.δ, area.δ}
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To allow for such extensions, the rules about restriction of frames are ap
before elaboration of δ-functions.

(A more formal version of these rules is a topic for future work.)

8-3.5 Type Isolation

But this raises the question of how universal separation from clients can be gu
teed. It is merely a matter of applying the well-known rule, observed by SortedList
but not by SortedIdList,  that clients and servers should never be passed pointe
your private demesne; nor should items to which pointers are passed to y
clients or servers ever be incorporated into your own demesne. (This does no
clude keeping references themselves, as such — &p is OK to keep, p is not.) For
classes observing this regime, isolation can be proven by proving that it is m
tained by each operation.

Isolation, characterised by an invariant self.isolated, should, like other properties, b
observed by all classes claiming to be subtypes of this type. It can be used by 
(of SortedList and its subtypes, for example) as a short-cut to demonstrating se
tion from all other objects (using isol-defn — page 137). 

8-3.6 Reification of subsystems

A system may be designed by splitting it into subsystems to which responsib
are assigned, and then defining protocols of communication between them
same process is reiterated on the subsystems, until individual objects are at
(E.g. [WWC90].) The design of a typical interactive system will begin with the p
titioning into the User Interface and Core subsystems, with the latter holding a
domain-specific information, and the former providing the means to browse
massage it. The UI will begin a session by presenting the end-user with an o
picture of the state of the Core — let’s suppose it’s a programming support sy
and the initial view is of a list of classes. 

At this stage, the UI has a pointer of some sort to an anchor object in the Core
is, a fixed, globally accessible object, which provides methods for querying

Fig. 13. Pointer access to parts of a subsystem

UI

Core

anchor

There are
no queries
which yield
pointers to
the grey
objects,
which need
not have
correspondi
objects in a
reification.
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overall state — getting a list of classes. The user selects a class or other detai
current display, and asks to see more information about that: the UI gets a poi
that class from the anchor, and asks it for sufficient information to display de
The user then asks for more detail or some associated information, and again
gets another pointer to a core object. In other words, the user’s requests lead to
igation around the structure of pointers inside the core.

The earlier remarks on reification (§6-5.5 — p.102) assert that a class can be re
tured internally whilst still looking the same from the outside. This is clearly 
applicable in the present example: the query operations provided by the a
object pass out pointers to its own components; since these can be looked at d
they must remain after any reification. It would be permissible for a reification to
to simulate the old components by constructing them on the fly, but because p
the expected behaviour is that changes to these objects actually change the c
nents of the anchor, the constructions would have to be two-way views, trans
not only queries, but also editing operations.

But intuition suggests that there are some components of the core which real
be altered: those to which no direct access is given to clients external to the s
tem. How is this distinction to be made?

A query whose purpose is to yield the identity of a component should be d
mented with a postcondition that makes this explicit:

:– ↑ == aComponent  getComponentPointer

from which it may be inferred that x.getComponentPointer ∈ x.δ ; any reification must
observe this constraint. 

So it follows that, during design, those objects not directly accessible to the ex
clients may be reified away since they may be considered part of a hypoth
model. But queries yielding identities of components must continue to do so
those objects must remain. This is a distinction not made in the current texts o
design, which generally consider design to be an expansion of the existing m

8-3.7 Effects calculus summary

The flavour of this section is very much more oriented towards actual objects
pointers than the preceding abstract stuff about models. This is in line with
Fresco objective of specifying pieces of interchangeable software — not just 
level OO-style specifications of whole programs. At the interface to such a mo
it is clearly necessary to specify the interconnections (or lack of them) of the ob
x sep  y is often a vital precondition for the parameters of an operation.

This section has introduced the notion of frame-specifications, which are typi
written in terms of demesnes. This replaces the simpler framing clauses su
“ext” in VDM and “∆” in Z. These do not provide the user with much help whe
there is much potential aliasing, and where fields may be altered which ar
among the simply-named variables; nor do they cope with type extension.

The inference of frame of an expression is done with rules whose domain 
syntax of an expression rather than its value; nevertheless, framing assertion
to fit into the general Fresco scheme of type theories. The quest for monoto
has shown up a difficulty with the extension of the frame of an operation in a sub
— without carefully-chosen safeguards, aliasing could be introduced in a sub
which was not there in the supertype.
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Although no claim can be made that the effects system presented here is we
or complete, it is claimed that it could only be designed within the context of a
system such as Fresco’s. Effects systems have been used elsewhere: for exa
[Johnson91], to assist with the optimisation of a compiler; but in that case, the
no type-specifications, and so encapsulation is poor — the effect-inferencer 
has to re-analyse clients when a change is made. In Fresco, a type define
behaviour all of its subtypes will conform to, and the Fresco effects system se
extend this to aliasing or its absence.

8-4 Naming previous states

8-4.1 Barred expressions

The essential thing about a barred assertion is that it remains unchanged b
operation:

bar-invar: pre, S ·  pre :– pre   S

Many theorems involve barred expressions, as in:

(P1:–R1S,  P∧R1 |–  R, P |–  P1) |–  P:–R S

An expression such as x+5>y can be rewritten as x+5>y, using these rules, which ma
be applied automatically:
unbar-const: c ≡ c — iff c is a constant or metavariable

unbar-transp: E0.f(Ei)   ≡   E0.f(Ei) — iff f is pure &  transparent

unbar-binding: ∀ x · E[x]   ≡   ∀ x· E[x] — & same for other binders

No rules are provided for impure operations, as these should be avoided in 
tions. Field-selectors (instance variable names) may be regarded as functions;
is transparent if its demesne occurs in the demesne of the receiver.

The situation with untransparent functions is more complex. A function ma
untransparent because it reads a global variable, or because it reads a field w
not part of the receiver’s or parameters’ demesnes, but nevertheless acc
through them (via a reference field). Consider an object b of type B:

c is a mutable container for an integer. c’s demesne is not part of b’s. op alters the C-
member to which c refers, as well as altering the contents of both the old and
new c. These are distinct:

b.c — the new value of the C-member now pointed to by field c
b.c — the old value of  the C-member now pointed to by field c
b.c — the old value of the C-member b.c used to point to
b.c — the new value of the C-member b.c used to point to

B

op  op ∈ () ∆ c.δ, self.δ
:– b.c= b.c+1 ∧ b.c=b.c+b.c  op

var  c ∈ IntCell

var  x ∈ X
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Reference fields and other untransparent functions should clearly be treated
caution.

8-4.2 Metavariables and code

8-4.2.1 Potential inconsistencies in interpretation of metavariables

Recall that for a sequence of two statements, the sequence rule is:

sequence:  P, M, R, S1, S2 ·

(§5-2.1.3 — p.74) a sample application being
x∈Int :– x = x+7  ( //sequence

con  x0; //kinder on reader to declare it, as in [Morgan]
 :– x = x+5  x := x+5 ;
 x=x0+5 :– x = x0+7 // subs-=, arith

  x=x0+5  :– x=x0+5 ∧ x=x+2 // unbar
  x=x0+5  :– x=x0+5 ∧ x=x+2 //  P :– P  

 :– x = x+2  x := x+2
))

The purpose of the metavariable x0 is to be the name of any arbitrary value satisfyi
M and which will remain unaltered by any operation in the code (and can ther
be unbarred). To be clear about the meaning of x0, we can imagine an infinite store
containing all possible patterns of objects (in addition to the ‘real’ ones we’re in
ested in and can get at through the real variables); x0 is a name for any of those which
satisfy the assertions and are outside the frame of all our operations. Howeve
by no means clear that such a thing can always exist.

For suppose we have a model-view framework, with instances thus:

Every model has a variable views∈IdSet(View), and the invariant observed by ever
View is self∈model.views.

Within the reasoning about some code modifying v1, I wish to refer to its original
state, and so introduce vw0, a hypothetical View which satisfies the same predica
(matching M in sequence) as v1. It may not be necessary that v1=vw0, or even that
there be an equality operator defined for Views: only that they behave the same 
respect of the predicate chosen to match M. It is often sufficient to postulate that th
constant represents some hypothetical other object which could exist in the s
— this works for arithmetic examples and many others; but not in every case.

For example, according to the invariant, vw0∈vw0.model.views. Now vw0.model==m
— if it is required by our M — should evaluate to true iff v1.model==m does, and by

 P :– M  S1
x 0 ·  M[x\x0] :– R[x\x0]  S2

 P :– R  (S1; S2)

Model
m

View v1 View v2
model model

views
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transitivity of ==, vw0.model==v1.model. But since v1.model.views contains only the
“real” views, with no apparent mention of vw0, then either the invariant is contra
vened or vw0==v1. How can vw0==v1 while vw0 is nevertheless separate from v1?

Two strategies are considered here. One is to reduce our ambitions about con
of metavariables, and the other is to extend our model of the system.

8-4.2.2 Metavariables are constant pointers only

In this solution, a metavariable is a new variable which contains a pointer to 
object, which may be any postulated possible object. Metavariables are neve
assigned or used in code, so the pointer itself is constant; but the object it poi
and hence the value it represents, is not immune from alteration. 

In the case of primitive and other immutable objects, this makes no difference
standard practice. In the case of mutable objects, the designer must stipulate 
itly any separation the object is to have. So when dealing with Points, 

p∈Point :– p = p + Point.xy(7,7)  (
con p0;
 :– p = p + Point.xy(5, 5)  p.move(5, 5);
 p=p0+Point.xy(5, 5)  ∧ p0 sep  p :–  p=p0+Point.xy(7, 7)  ∧  p0 sep  p 

 p=p0+Point.xy(5, 5) ∧ p0 sep  p 
:–  p=p0+Point.xy(5, 5)  ∧   p = p + Point.xy(2, 2)  ∧  p0 sep  p

 p0 sep  p :–  p0 sep  p  ∧  Point.xy(2, 2) p.move(2,2)
))

(To reduce clutter, p0∈Point has been omitted from every pre & postcondition.)

The unbarring of p0 is permitted here only because it is not in the frame
p.move(2,2), (because p0 sep  p); unbarring of Point.xy(5, 5) is permitted because it is
specified as generating an isolated value.

If the model-view problem is to be dealt with under this scheme, the designer
first invent a special type of view which does not necessarily conform to the inva
ant, and define equality etc to proper Views. Alternatively, a separate constant ma
be used to hold each component of the View.

8-4.2.3 Metavariables refer to ghost copies

In this scheme, any object-address may be occupied by one real object and
ghost objects. A real variable always refers to a real object, and a metava
points to a ghost object, possibly at the same address as a real one. The con
the ghost need not be the same as the other objects at the same address, an
by the constraints where the metavariable is used. Each instance variable of a
object point at another ghost, if the field is within the object’s demesne; and at 
object otherwise. The application of mutating operations to ghosts is undefine

The use of a metavariable therefore implies a sort of transitive copy (“deepCopy”)
from real to ghost objects, which have the advantage that they can occupy the
addresses as real objects, thus permitting vw0==v1 whilst allowing v1  to change
without affecting vw0.  The extent of the copying is entirely determined by the us
definition of δ for the relevant classes.
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8-4.3 Bars and metavariables summary

In traditional program proof, ghost constants are used freely under the assum
that an isolated constant of any value can be postulated. In OOP, where valu
represented by groups of interlinked objects, such an assumption is invalid.
section has looked at the alternatives. 

Whilst the “ghost copies” model is a more convenient scheme for the user, i
rently lacks formalisation, and the first alternative appears more clearly-defined
therefore safer. However, the duty of explicitly stipulating and proving the ma
nance of separation is onerous. Proofs elsewhere in this thesis must be rega
only semi-formal because of this (deliberate) omission.

Dealing with potential aliasing is clearly a potential drawback in this as in o
areas. 

8-5 Projection to supertype, and equality

8-5.1 Equality and subtypes

It seems obvious that a definition of equality in this style is meaningful:
Point::def-eq: a∈Point, b∈Point  |–   (a = b   |–   a x = b x  ∧  a y = b y)

but we have to be careful about the meaning of ‘=’. Membership of Point does not
preclude membership of any of its subtypes such as ColouredPoint, which contain
more information: if a and b were to turn out to be members of ColouredPoint, then
we would want an equality test to check their colours as well.

So (a useful definition of) equality is not monotonic. Designers can follow two s
egies. One is to define a separate equality for each type in the hierarchy:

a∈Point, b∈Point  |–     ( a  =Point  b   ⇔    a x = b x  ∧  a y = b y)

a∈ColouredPoint, b∈ColouredPoint  |–      
(a  =ColouredPoint  b  ⇔  a x = b x  ∧  a y = b y  ∧  a colour = b colour)

Aless tedious notation involves the projection of the objects into the bottom ele
of a type.

8-5.2 Projection operator

|-defn: x∈T, y∈T |–  ( x|T ∈ T  ∧  x|T = y|T  ≡   f · x f = y f )
for all functions f defined for T.

x|T (read “x as T”) is the projection of x into the bottom element of T: there is no
other type T′ such that T′ ⊆ T  ∧  T′ ≠ T  ∧  x|T ∈ T′. 
Designers can now make useful assertions about equality; for example:

a∈Point, b∈Point  |–     ( a|Point  =  b|Point    ≡    a x = b x  ∧  a y = b y )

which remains true for all subtypes of Point. Of course, since we have decided th
equality is always relative to a given type, we should be careful here about wha
x = b x’ means. For primitive values, ‘=’ is the same as ‘==’, so in those cases 
is no problem. More generally, the equality of the components will be tested ac
ing to the types that we expect them to have, and extra details they might hav
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we don’t know about are irrelevant, because they can’t make any difference t
design. For example, if I define a finite straight line by its end-points, then so f
I am concerned, two lines are equal if the respective end-points have equal co
nates; now suppose some client then decides to set up  a couple of my lines
ColouredPoints: that’s OK, but the colours are irrelevant to any property of the l

8-5.2.1 Definition of equality for a type

In general, if a designer wishes to state that T has a view (i.e. a determining set o
variables or queries) whose components are xi ∈ Ti then a definition of equality may
be written according to the scheme:

eq-T: a, b  ·  a∈T, b∈T  |–    a|T = b|T    ⇔    i  a xi | Ti   =   b xi | Ti

and we can write

a =T b  to abbreviate   i  a xi | Ti   =   b xi | Ti

Now what happens if we try to compare two objects of different types? No ru
the form eq-T from either of their types will apply; but such rules defined for th
common supertypes will apply:

a∈A, b∈B, A⊆C, B⊆C |–   a|C = b|C ⇔ a =C b

Notice that there’s no assertion here that the equality of a and b depends on what
their common supertype is: the absolute notion of equality has been discarded
is asserted here is that anyone who can’t tell an A from a B should be satisfied with
C’s definition of equality.

If there is definitely no way that any object can be invented that is both an A and a
B, then any member of A is not equal to any member of B either in terms of A, or B:

neq-T: a, b  ·   a∈A, b∈B, A∩B=∅ |–   a|A ≠ b|A  ∧  a|B ≠ b|B

8-5.3 Substitution

The familiar substitution rule

P[a], a = b  |–   P[b]

looks a bit less useful than before subtyping, since in most cases, we are not b
to say more than a|T = b|T.  However, consider the situations in which it is applie
in nearly all cases, predicates matching P will deal only in those features understoo
in the context in which we are working. Interesting inferences we make a
Points, for example, will rely only on the structure we have defined at that junc
and not on any future added information which descendants might contain. In
cases, we can therefore employ a modified version of the above rule:

subs-eq : a, b, P, T  ·  a∈T, b∈T, P[a|T],  a|T = b|T  |–   P[b|T]

If P only knows/cares about the T-information in these objects, then equality of the
T-projections will be sufficient for it.

However, we can still write the old rule in terms of object identity:

subs-id: a, b, P ·  P[a], a == b  |–   P[b]             from subs-eq, eq-⊥
Fresco © Alan Cameron Wills 1992 Objects and verification 153 



rence.
local
 will

eans
tion,

every
nta-

unre-
ue:
es

eorem
finite
 from

mpar-
 rule
rises
rphic
8-5.4 Application of rules

Matching a rule to an assertion often requires a judgement of equality: in 

x∈Scalar, y∈Scalar, z∈Scalar  |–   x<y  ∧  y<z   ⇒   x<z

y stands for a subexpression which must be matched identically in each occur
Conventional theorem-proving relies heavily on the frequent application of the 
version of subs-eq, but Fresco’s version is weaker than usual. So the above rule
be much more widely applicable if we can make it

x∈Scalar, y∈Scalar, z∈Scalar  |–   x<(y|Scalar)  ∧  (y|Scalar)<z   ⇒   x<z

as it will frequently not be possible to do more than obtain the typed equality of two
occurrences. 

8-5.5 Comparison with conventional LPF

This conventional rule is omitted in Fresco:

=-subs: E, s1, s2  · E[s1], s1 = s2  |–   E[s2]

Now in some sense, it is up to the designer of a type to decide what equality m
for members of that type. However, because equality is central to rule applica
we impose certain constraints. The above and the  following are inherited by 
type, and so any definition which attempts to contradict them will be unimpleme
ble:

=-subs: E, T, s1, s2 · E[s1|T], s1=s2  |–   E[s2|T]

id-=: a, b, T · a == b, a∈T  |–   a|T = b|T

≠-~~: a, b, T · a|A ≠ b|B  |–   ¬(a==b)

antimono- =: a, b, T, TT · a∈T, b∈T, T⊆TT, a|T = b|T |–  a|TT = b|TT

mono-≠: a, b, S, T · a∈T, b∈T, S⊆T, a|T ≠ b|T  |–   a|S ≠ b|S

uneq-types-l: a, b, A, B  · a∈A, b∈B,  A∩B = ∅   |–  a|A ≠ b|A

The Logic of Partial Functions as described in [CJ90] uses a delta-function (
lated to Fresco’s demesne δ) to denote whether a term signifies a meaningful val
so x∈Integer |– δ(x/0) = false; in Fresco, only meaningful terms are members of typ
(other than ⊥), so this would be written  x∈Integer |– ((x/0)∈Integer) = false. Clearly
only the possession of a definite type gives access to any theories: it is a rare th
of any method or function which does not require the operands to have de
types. Little can therefore be proven about untyped terms, and terms formed
them are therefore also untyped.

8-5.6 Summary of typed equality

This section has investigated some consequences of the un-inheritability of co
ison operators, and in particular equality. The usual substitution of equals
should not be used: you must always say which equality you mean. This a
entirely from the desire to use a type as a specification of a server for a polymo
client, which may be seen as the especial pursuit of this thesis. 
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8-6 Summary

In attempting to clarify and resolve those particular difficulties associated with
soning about object-oriented programs, this chapter has demonstrated the 
and some of the limitations, of the overall Fresco approach of expressing typ
theories:

• The intricate contracts in complex frameworks can be characterised as
within the weak typing interpretation.

• Type theories have provided a framework within which to apply a fram
calculus. The strictly monotonic approach imposed by types-as-theorie
exposed the difficulty of making frame specifications monotonic.

• Reification of types which pass pointers to components has been clarif

• In the presence of much potential aliasing, the standard ghost-var
approach to verification of code sequences has turned out to be fraught 
with difficulties of interpretation, or with separation proofs. 

• The Freco view of subtyping has exposed a limitation in the conventi
view of equality.

Problems with the framing calculus:

• Separation proofs seem even huger and more laborious than most.

• The rules are incomplete and little-tried as yet.

Object-oriented programs are not yet the stuff of which nuclear power stations 
to be built. However, the application of a framing calculus within the contex
proofs seems likely to be a step towards the alleviation of the aliasing problem,
it is frequently the attempt to do proofs, either formally or informally, that points
way to an improved style of programming. And while none is presented here
reasonable to expect that effective elisions of separation proofs will be foun
future work.
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9 Conclusion

9-1 Overview

The objective of this work has been to set up a framework in which object-orie
software can be specified, verified and exchanged in usefully re-usable units.
morphic and incremental design are supported. The overall aims and the env
mode of use of Fresco were described in Chapter 2.

The key notions, described in Chapter 6, are the formulation of types as theor
object-histories, and subtypes as sub-theories. These theories are defined as
opspecs, the basic theorems of object behaviour, described in Chapter 5. Ch
described theories and proofs.

Using these ideas, Chapter 7 showed how “capsules” of specified software ar
erated and incoporated into systems in such a way as to ensure the correct op
of each successfully incorporated capsule. Because of the constraints to corre
typing, new versions of servers always continue to work with old clients.

Finally Chapter 8 used the previously-described concepts as a language in wh
investigate a number of difficult issues in the formalisation of OO programmin

9-2 Assessment

The utility of the key concepts has been demonstrated in three ways:

• Construction of a number of examples throughout the text, showing the
in which types, implementations, and proofs will be constructed by Fre
users.

• As the basis of the guarantees of correct integration of capsules.

• In the formulation of the discussions of Chapter 8, and the light she
those issues. Although firm conclusions were not reached on all of t
topics, their exposure in itself demonstrates the value of the Fresco app
to types and proofs.

The Fresco style of specification is, I believe, readable and not difficult for good
grammers to learn. Type hierarcchies provide good structures around which to
formal specification, which otherwise tends to be daunting. The style can be
grated with diagrammatic OO analysis and design methods such as [Coad], [
baugh]: it provides, for example, for multiple appearances of a type in a docum

Fresco is much more oriented towards programming than, for example, Obje
dealing as it does with concerns like aliasing.

Unlike many OO design texts and OOP languages, Fresco permits and promo
use of data-reification, in which the concrete model used for implementation i
necessarily an extension of the abstract model used for specification.
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Proofs are, as usual, enormous and tedious: it seems as unlikely as ever that r
grammers will do them much without significantly more mechanical help. Altho
some progress has been made on tackling aliasing, taking such consideratio
account serves to expand every proof — not just those where aliasing is suspecte

9-3 Future work

Several directions can be perceived:

• The work described here lacks the concrete touchstone of a testbed. A
totype Fresco should be built. To date, an experimental framework o
capsules mechanism has been designed, which provides some help in
turing published software, but without the extra security provided by for
specification.

• The system should then be used to specify, design and build a numb
practical capsules, with semi-formal proofs.

• The semantics of barred variables needs further clarification.

• The rules of the effects calculus need larger trials and further refinemen
formalisation.

• The user interface to the stepwise development and browsing of in
proofs is clearly crucial to the usefulness of the tool.

• It should be easy to mix ordinary stepwise refinement of code with the i
cation of code-transformational rules, chosen and applied in the same
as proof rules and tactics. This would be an interesting investigatio
coding technique.

• Methods of verification in respect of aliasing need to be improved. Mech
ical assistance (‘tactics’) for the straightforward parts of these proofs sh
be developed.

• A number of tools supporting the OOA/D methods are appearing; non
them supports formal methods, and it would be interesting to make suc
extension.
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Appendices

10-1 Fresco development language FST

The syntax of the executable parts has been somewhat modified from that of S
talk, to accommodate the extra specification constructions. The ability to refer t
vector of parameters to an operation is useful, and so traditional arhume
syntax has been introduced.

10-1.1 Expressions

Expr ::= MonadicPrefix | DyadicExpr | OpExpr | KeywdExpr
| Variable | Constant | '(' Expr ')' | Block |  Assign-

ment
| SetExprn | BoundExprn | Metavariable | SpecStmt

Expressions differ from Smalltalk in providing: unary operators; a syntactic pr
dence for operators; parenthesised argument lists; and specialised syntax
quantified predicates and members of the type Set. All of these are syntactic sugar
and can be translated to conventional Smalltalk syntax. In addition, there is p
sion for metavariables which are used within theorems to stand for subexpres

10-1.1.1 Conventional expressions

MonadicPrefix ::= UnaryOp Expr

DyadicExpr ::= Expr BinOp Expr

OpExpr::= Expr OpName ['(' Expr [',' ...] ')']

The names of binary and unary operators are constructed from nonalphanu
symbols; OpNames are constructed from alphanumeric symbols. There are pr
fined binary and unary operators, and users may define new ones.

The predefined binary operators have a conventional syntactic binding preced
and bind left-to-right. 

| × / ∩ 

+ – ∪ 

∈ ⊆ < > ≤ ≥ = ~= == ~~ 

∧ 

⁄
⇒ ⇔ 

Unary operators bind tighter than binary; binary bind tighter than OpExprs, which
bind left-to-right: a b(c) d(e) ≡ (a b(c)) d(e). OpExprs need no parentheses if the
are no arguments beyond the first, ‘receiver’, argument.

(Once defined, the unary and binary operators have a fixed precedence wi
capsule and its importers; but the operations they represent may vary from cl
class. For example, I could define a new type T with operators + and <, and they
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would have new meanings relative to T, but their syntactic precedence cannot 
changed. However, the same symbol can be defined as an operator in differe
sules, with different precedence: the parsing depends on the capsule you’re w
in. Where there is a conflict between the imports of a new capsule, the designe
redefine the precedences in the new capsule.)

10-1.1.2 Smalltalk-style expressions

KeywdExpr ::= Expr sel1: Expr [sel2: Expr [sel3: Expr [...]]]

This is an invocation of one parameterised operation called sel1:sel2:sel3:. 

KeywdExprs bind less tightly than OpExprs.

There is no real difference between operations declared and used in the KeywdExpr
style and in the OpExpr style: the former is standard Smalltalk, and works well w
program-constructing expressions (ifTrue:ifFalse: etc), and the latter is more con
venient where the operation name is a metavariable in a theorem.

10-1.1.3 Assignment

Assignment ::= Variable ':=' Expr

The variable now refers to the object yielded by the expression.

10-1.1.4 Creation functions
ClassName a:...b:...

10-1.1.5 Special notations

x == y The expressions X and Y refer to the identical object.

x = y The expressions refer to objects which represent equal va
where equality is determined by their type(s).

{x|T, y|T, …} A member of Set containing objects equal (wrt type T) to x, or
y, or ..., and not containing objects not equal to any of these

{x, y, …} A member of Set containing the objects referred to by x, y, ...

x∈S If S is a member of Set, the object referred to by x belongs to S.

x|T∈S If S is a member of Set, then ∃ y · y|T = x|T ∧ y∈S

{x∈T · P[x]} This is a member of Set containing a representative object o
every equality-class whose members satisfy P[x]:

∀ y · P[y] ⇒ y∈{x∈T · P[x]}

x∈T If T is a type, then x conforms to the axioms defining T.

∀ x∈T · P[x] P holds for all states of all possible objects in all possib
systems satisfying the assumptions of the current context.

∃ x∈T · P[x] P holds for some state of some possible object in all possible
systems satisfying the assumptions of the current context.

10-1.2 Specifications

Spec ::= '' Expr ':–' Expr ''  |  '' inv ''  | '('Spec-stmt [','…]')'

A specification can prefixing a piece of code asserts that the code conforms 
specification:
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SpecStmt ::= Spec [ '/' Justification '/' ] Statement

In addition, a SpecStmt is executable, being equivalent to its Statement or Expr
for that purpose.  The optional Justification is the label of a [justified] theorem
which proves the conformance.

10-1.2.1 Pre/post

In

 pre :– post S

if pre is true before executing S, then S is a Statement or Expr that will

• terminate and leave the system in a state conforming to relevant invar
(for example, type invariants if this statement forms part of a type-des
tion);

• leave the system in a state such that post would evaluate to true.

post may contain barred expressions, and the special variable '↑'; pre may not.

10-1.2.2 Code-Invariant

A code-invariant stipulates that if the assertion is true beforehand, it will be tru
after:

 inv S   ≡    pre :– post S

10-1.2.3 Composition

More than one Spec-stmt may be applied to any statement or expression:

( pre1 :– post1  ,  pre2 :– post2 , …) S

in which case all of them apply individually to S.

10-1.2.4 Inline justification

A theorem or proof may be included in with the code:

JustifiedSpecStmt ::= SpecStmt 
| Spec '(' JustifiedTheorem [','…] Statement ')'

Most of the useful decomposition proofs can be written this way.

10-1.3 Code

A method definition associates a piece of executable code with a particular typ
operation name. If an object x class = T, and if T::op = S[self, pi], then the evalu-
ation of x op (Ei) will be the evaluation of S(x, Ei). T::op is the code explicitly pre-
scribed if there is any, or the same as TT::op if TT is a superclass of T. 

A method definition may be written:

MethodDefn ::=
metavars · Type '::'  OpName '(' params ')'  ':='  '(' Sequence ')'

A sequence is a group of statements, possibly with local variables:
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Sequence ::= [ 'var ' localVar [,…] '·' ]  Statement [ ';'  ... ]

Statement ::= '(' Sequence ')'  |  Expr | JustifiedSpecStmt

A block is a value representing a sequence of statements, possibly with param
and local variables:

Block ::= '['  [ params '·' ] Sequence ']'

Executing a Block yields an object representing the code in the block; executin
sequence executes the statements in the sequence. To execute the sequence
Block, an appropriate operation must be used.

10-1.3.1 Control expressions

Blocks form the basis of control structures. Used in a limited fashion, they pre
no particular problems of validation.  We use these basic Smalltalk control s
tures, where Ci are expressions yielding members of Boolean, Ei are expressions,
and Si are Statements:

C ifTrue: [S1] ifFalse: [S2]

[S1 ; C] whileTrue: [S2]

10-1.4 Metavariables

These are used within theorems to stand for variables, expressions, ope
names, lists of variables or expressions, or statements. Metavariables are 
guished from other variables by their declaration in the bindings of theorem
proofs.

E (capital initial letter) stands for an expression or statement

v (small letters) stands for an op-name, variable or parameter

Ei, vi (unbound subscript) stands for a list of items, of which any p
ticular one may subsequently be referred to as v1 etc (literal or
bound subscript)

When a theorem is applied, operation-name metavariables match with ‘co
tional’ operations, binary or unary operators, or Smalltalk-style keyword exp
sions: for example, 

a, op, b ·  a op(b)

matches all of:

x f (y),  x add: y,  2+x.

whilst

a, op, bi  ·  a op(bi)

matches all of

x f(y),  x ff(y, z),  x floor,  –x,  x+y

Theorems about variables can be applied to expressions, provided the expre
are pure (relative, at least, to the expressions of the theorem) (see §8):
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pure-thm: A, B · (ai ·  A(ai) |–  B(ai))  |–   (Ei · (i · Ei ∆ ∅),  A(Ei) |– B(Ei))

10-1.4.1 Qualified and modified metavariables

Expression-metavariables may be qualified: 

M[x]

The qualifier may be any expression, including another metavariable. A the
containing metavariables matches with an expression only if there is a cons
assignment of subexpressions to metavariables. 

For example, in an induction rule:

P ·  P[0], ( i · i∈Nat, P[i] |–  P[i+1])  |–  ( j · j∈Nat  |– P[j] )

P matches any proposition; i and j match variables or pure expressions; 0, Nat, +
and ∈ are constants and operation-names defined in the context.

Expression-metavariables may be modified:

M[x \ y]

If M matches some expression containing occurrences of x, then M[x \ y] is the same
expression with each occurrence of x replaced with y.

10-1.5 Theorems

Assertion ::= Exprn | Spec-Stmt | Theorem

Theorem ::= [ label ':' ] [ metavar [','...] '·' ] 
[ Theorem [','...] ]
'|– '  Assertion [','...]

The initial set of metavar names binds those names to the scope of the theore

Syntactic precedence rules: any expression-construction > ',’ >  '|– ';  and the latter
associates left-to-right:

a, b |–  c |–  d, e   ≡   ((a, b) |–  c) |–  (d,  e)

Multiple conclusions just mean that each of them can be inferred separately:

Ai |–  Ci   ≡   Ai |–  C1 , Ai |–  C2 , …

A convenient alternative syntax substitutes horizontal lines for |– :

pure-opspec: P, R, E · 

10-1.5.1 Proofs

A proof is a theorem documented with intermediate theorems from which the
assertion follows:

e  ∆  ∅
 P :– R[↑] E

P |–  R[E]
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Proof ::= [ label ':' ] [ metavar [','...] '·' ] 
[ Assertion [','...]  
[JustifiedTheorem [','…]]
'|– '  JustifiedAssertion [','...]

An intermediate theorem may be the nested proof of a theorem which can be p
within the context of the containing hypotheses; or it may be an assertion jus
as a match to the conclusion of some rule:

JustifiedTheorem ::=Proof | JustifiedAssertion

A justified assertion is documented with the label of the rule whose conclusi
matches, together with the antecedents which match the rule’s hypotheses. 
are also other styles of justification.)

JustifiedAssertion::=Theorem 'by' Justification 'from' label [','…]

10-1.6 Types and classes

TypeDef ::= 

Methods may be attached to a TypeDef:

MethodDef ::= TypeName ‘::’ OpName ‘=’ SpecStatment

10-2 Fresco kernel types

10-2.1 Sets

The conventional set operators have their usual meanings, and are defined a
functions, so that they may be used in assertions or code:

∩ ∪ –
(s1 ∩ s2) ∪ (s1 – s2)  =  s1

s card The size of set s.

Set of: T A set whose members must be subtypes of T

Name [ ‘(‘ TypeExprn ‘)’ ] [  ‘::+’ Type [, ...] [

‘op ’  name ‘∈’ OpSignautre
[...]
opspec

[...]½

[

‘var ’ | ‘const ’   name ‘∈’ TypeExprn
[...]
invasriant

]]
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10-2.2 Lists

An IdList keeps references to objects:

 x∈T :– ↑∈Idlist(T) ∧ ↑.length=1 ∧ ↑@1 == x  IdList(T).mk(x:T)

Set of: T

ý : Set of: T /* creation func */
(Set of:T): (T) Set of: T /* creation func */
_»_ : (Set of: T) Set of: T
_«_ : (Set of: T) Set of: T
_Œ_ : (^, _) Bool
card : Integer
∅ ∈ (Set of: T)

∀ x · ¬x∈∅
∀ x:T, y:T · x∈(Set of: T)(x) ∧ (x≠y ⇒ y∉ (Set of: T)(x))

∀ x · x∈S1 ∨ x∈S2  ⇔  x ∈ S1∪S2

∀ x · x∈S1 ∧ x∈S2 ⇔ x ∈ S1∩S2

∅ card = 0

(Set of: T) (x) = 1

∀ s1, s2 · s1 card + s2 card  =  (s1∪s2) card

IdList(T)

op  _++_ ∈ (IdList(T)) ∆ {self.δ}

fn  _@_ ∈ (Nat) → T ∆ ∅

var  length ∈ Int

var  @ ∈ Nat → T

:– ↑.length = self.length+x.length ∧ (∀i ∈1..self.length ⇒ ↑@i==self@i) ∧ 
∀ i∈length+1..↑.length · ↑@i == x@(i+length) self++t

 i∈1..length :– ↑ == @(i)  self@i

fn dem = {length, {@(i) | i · i∈1..length}}
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10-2.3 Maps

10-3 Kernel proof rules

a · a∈A, (x · x∈A |– P[x])  |–  P[a]

10-3.1 Comparison with conventional LPF

The Mural standard complement of theories defines these fundamental theor

• Propositional LPF, declares symbols true, ¬, ∨, and defines in terms of
them ⇔, ⇒, false, and ∧. LPF is designed to deal with the possibility of th
falsity of the conventional axiom e1 ∨ ¬e2.

The other axioms follow conventional logic:
contradiction: e1, e2  · e1, ¬e1  |–   e2
true-intro: true
¬∨-elim-l: e1, e2  · ¬(e1∨e2) |–  ¬e2
¬∨-elim-r: e1, e2  · ¬(e1∨e2) |–  ¬e1
¬∨-intro: e1, e2  · ¬e1, ¬e2  |–   ¬(e1∨e2)
¬¬-elim: e  · ¬¬e |–  e
¬¬-intro: e  · e  |–   ¬¬e
∨-elim: e1, e2, e  · e1∨e2, (e1|– e), (e2|– e)  |–   e
∨-intro-l: e1, e2  · e2 |–   e1∨e2
∨-intro-r: e1, e2  · e1 |–   e1∨e2

• Equality and typing, inherits from propositional LPF, and declares symb
= and ∈; ≠ is defined in terms of ¬ and =. These axioms are defined:

=-comm: s1, s2  · s1 = s2  |–   s2 = s1

Map from: S to: T

∅ Map from: S to: T
_→_ (S, T) Map from: S to: T

_@_ (S) T

dom Set of: S
rng Set of: T
_†_ (Map from: S to: T) Map from: S to: T
= (Map from: S to: T) Boolean
s ∈ self dom |–  self@s ∈ self rng

(s→t) dom = Set(s)

(s→t) @ s  =  t

m ∈ (Map from: S to: T) |–  self†m dom = self dom ∪ m dom
∧ (∀ s · s ∈ m dom ⇒ (self†m)@s = m@s)
∧ (∀ s · s ∉ m dom ⇒ (self†m)@s = self@s)

xx=self  ⇔  xx dom = self dom ∧
∧ (∀ s · s ∈ dom  ⇒  xx@s = self@s)
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≠-comm: s1, s2  · s1 ≠ s2  |–   s2 ≠ s1
=-contr: s, e · s≠s  |–   e

=-subs: E, T, s1, s2 · E[s1|T], s1=s2  |–   E[s2|T]
id-=: a, b, T · a == b, a∈T  |–   a|T = b|T

— neither barred
≠-~~: a, b, T · a|A ≠ b|B  |–   ¬(a==b)
antimono- =: a, b, T, TT · a∈T, b∈T, T⊆TT, a|T = b|T |–  a|TT = b|TT
mono-≠: a, b, S, T · a∈T, b∈T, S⊆T, a|T ≠ b|T  |–   a|S ≠ b|S

uneq-types-l: a, b, A, B  · a∈A, b∈B,  A∩B = ∅   |–  a|A ≠ b|A

10-3.2 Projection to a type

|-defn: x∈T, y∈T |–  ( x|T ∈ T  ∧  x|T = y|T  ≡   f · x f = y f )
for all functions f defined for T.

10-3.3 Opspecs
code-inv-defn: inv, Code ·  inv :– inv  Code  ≡   inv  Code

stren: P, P1, R1, R, S · (P|– P1), (P, R1 |–  R) |–  P:–R   P1:–R1 S

stren: P, R, P1, R1, S ·  P :– R  ( (P |–  P1),  (P, R1 |–  R),   P1 :– R1  S)
seq: P, Mi, xi, Sj ·  P :– Mn [xj]  x0j · (P :– Mi[xj]  S1; Mi–1[x0j] :– Mi[x0j] Si; ...)

if: P, R, C, S1, S2·  P :– R  (C ifTrue: [P∧C:–R S1] ifFalse: [P∧¬C:–R S2])
loop-se:inv, C, v, S ·  inv[x] :– R[x] 

 [ (inv[x0]∧¬PT :– R[x0] ∧ ↑=false,
  inv[x0]∧PT :– M[v,x0] ∧ ↑=true ) C ] 

whileTrue: [v∈Int∧M[v0, x0] :– inv[x0] ∧ 0≤ v∧v<v0 S]

assignment:  P:– ∃ x0 · R[x,x0] ∧ ↑==xx:=   P:–R[↑, x]  E

assignment′:  P:– R ∧ ↑==xx:=   P:–R  E[x\ ]

yield: P, Q, x, op ·  P :–  Q[↑]  x op |–  Q[x op]

var-exprn: x, y ·  :–  x=x  ∧  ↑==x ∧ y=y  x

use-pure: G, F, R, a, S ·

— must be applied separately for each occurrence of F[a] in G.

promote: P, R, S · 

conjoin:  PA ∨ PB :–  (PA ⇒ RA) ∧ (PB ⇒ RB)  (SA |∧| SB)

disjoin:  PA ∧ PB :–  RA ∨ RB  (SA |∨| SB)

intersect:  PA ∧ PB :–  RA ∧ RB  (SA |*| SB)

fallback:  PB :–  (RA ≠ RB) ∧ (¬PA⇒RB)  (SA |/| SB)

seq:  PA :–  ∃ s′ · RA(s, s′) ∧ RB(s′, s)  (SA ; SB)

F[a] ∆ ∅
a ·  P[a] :– R[↑, a]  F[a]

 ∆ s · PS :– P[a] ∧ G[F[a]]  S

 ∆ s · PS :–  ∃ n · G[n] ∧ R[n, a]  S

vi ·   P[vi] :– R[vi, vi]  S[vi]

xi ·  [[S[xi] ]]  ⇒   ( P[xi] ⇒ R[xi, xi] )
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10-3.4 Types

• The theory of a Fresco type T is a set of theorems AT,i over a set of message
selectors.

• An object x is a member of type T, written x∈T, iff all the theorems of the
theory of T are valid when x is substituted for self (and after making self
explicit as a prefix to attribute names — self.x rather than just x):

• A type S is a subtype of a type T, written S⊆T, iff every member x of S is
also a member of T.

x∈S |–  x∈T

S ⊆ T

• x∈ T1∩T2  ⇔  x∈T1 ∧ x∈T2

T-impl: x class = T  |–  x ∈ T

basicNew: C · C basicNew class = C

10-3.5 Effects

fx-indep: r, w, e, S · ∇r·e, ∆w·S,  r sep  w  |–    e  S

fx-indep-stmt: r, w, e, S1, S2 ·  ∆w·S1, ∇r·S2, r sep  w  |–    P:–R  (S1;  P:–R  S2)

fx-conjoin: d1, d2, S · ◊ d1 · S, ◊ d2 · S |–  ◊ d1∩d2 · S
fx-expand: sd, d, S · sd⊆d, ◊ sd · S  |–   ◊ d · S

sep-comm:z1, z2 · z1 sep  z2
sep-preserve: z1, z2, S, r, w · ∇r · S, ∆w · S, 

(P|– w sep  z1 ∨ r sep  z2),  (P|– r sep  z1 ∨ w sep  z2)
 |–   P∧ z1 sep  z2 :– z1 sep  z2 S

isol-defn: z.isolated ≡  ∀ x · ¬(↑==x)  ⇒ z sep  x
create-sep:  :– ↑.isolated AnyClass basicNew
indep-sep: ∆∅ ∇∅ · S  |–    :– ↑.isolated S

10-3.6 Frames

fx-const: — c a constant

fx-var-r:

fx-var-w:

AT, 1 [self\x]
…

AT, n [self\x]

x∈T

◊  ∅  · (c)

∇  &v · (v)

∆  ∅ · (v)
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fx-op:  — ei pure

pure-form: 

transp: 

fx-id:

pure-opspec: 

fx-seq:

fx-ass-r:

fx-ass-w:

fx-var-elim:

— v does not occur free in d

fx-var-elim-iso:

◊   dop[pi] · (p0 op( pi>0))   
◊ di · ei 

◊    dop[ei ] ∪  Ui di · e0 op( ei>0)

∆ ∅ · E
∆ ∅ · R[v] 

∆ ∅ · R[E]

f transparent
∇ ρi · Ei 

∇ Ei.δ ∪ Ui ρi · E0.f(Ei)

◊ d1 · E1
◊ d2 · E2

◊  d1, d2 · (E1==E2)

E  ∆  ∅
 P :– R[↑] E

P |–  R[E]

◊ di · Ei 

 ◊  Ui di · (E1; E2; ... )

 ∇ ρ · E

 ∇ ρ[v\v] · (v:=E) 

∆ ω · E

∆ d[v\v]∪{&v} · (v:=E)  

◊ {d, &v} · E

◊  d · ( var  v · E ) 

 :– v isolated  E
◊ {d, &v, v} · E

◊  d · ( var  v · E ) 
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fx-subs-==: 

fx-copy-nop:

10-3.7 Barred variables

bar-invar: pre, S ·  pre :– pre   S
unbar-const: c ≡ c — iff c is a constant or metavariable
unbar-transp: E0.f(Ei)   ≡   E0.f(Ei) — iff f is pure &  transparent
unbar-binding: ∀ x · E[x]   ≡   ∀ x· E[x] — & same for other binders

10-3.8 Projection

|-defn: x∈T, y∈T |–  ( x|T ∈ T  ∧  x|T = y|T  ≡   f · x f = y f )
for all functions f defined for T.

eq-T: a, b  ·  a∈T, b∈T  |–    a|T = b|T    ⇔    i  a xi | Ti   =   b xi | Ti

a =T b  to abbreviate   i  a xi | Ti   =   b xi | Ti

neq-T: a, b  ·   a∈A, b∈B, A∩B=∅ |–   a|A ≠ b|A  ∧  a|B ≠ b|B

subs-eq : a, b, P, T  ·  a∈T, b∈T, P[a|T],  a|T = b|T  |–   P[b|T]

subs-id: a, b, P ·  P[a], a == b  |–   P[b]             from subs-eq, eq-⊥

◊ E1 · S
E1 == E2

◊ E2 · S 

∆  d · E
  ∆  x.δ · x, pi ·   (x op)

 ∆   d · E.deepCopy.op
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