
Fast and Intuitive Clustering of Web Documents�Oren Zamir and Oren Etzioni and Omid Madani and Richard M. KarpDepartment of Computer Science & EngineeringUniversity of Washington Box 352350Seattle, WA 98195-2350zamir@cs.washington.eduAbstractConventional document retrieval systems (e.g.,Alta Vista) return long lists of ranked documentsin response to user queries. Recently, documentclustering has been put forth as an alternativemethod of organizing retrieval results (Cuttinget al. 1992). A person browsing the clusters candiscover patterns that could be overlooked in thetraditional presentation.This paper describes two novel clustering meth-ods that intersect the documents in a cluster todetermine the set of words (or phrases) sharedby all the documents in the cluster. We reporton experiments that evaluate these intersection-based clustering methods on collections of snip-pets returned from Web search engines. First, weshow that word-intersection clustering producessuperior clusters and does so faster than standardtechniques. Second, we show that our O(n log n)time phrase-intersection clustering method pro-duces comparable clusters and does so more thantwo orders of magnitude faster than all methodstested. IntroductionConventional document retrieval systems return longlists of ranked documents that users are forced tosift through to �nd the relevant documents. On theWeb, this problem is exacerbated by the high recalland low precision of search engines (e.g., Alta Vista).Moreover, the typical user has trouble formulatinghighly speci�c queries and does not take advantage ofadvanced search options. Finally, this problem getsworse as the Web continues to grow.Instead of attempting to reduce the number of doc-uments returned (e.g., by �ltering methods (Shakes,Langheinrich, & Etzioni 1997)) we attempt to makesearch engine results easy to browse. We investigatedocument clustering as a method that enables usersto e�ciently navigate through a large collection ofdocuments. In addition, clustering enables the userto discover patterns and structure in the collectionthat could be overlooked in the traditional ranked-list�Copyright 1997, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

presentation. In this context, a document clusteringmethod requires:1. Ease-of-browsing: A user needs to determine at aglance whether a cluster's contents are of interest.2. Speed: Web users expect results within seconds.3. Scalability: The method should be able to quicklycluster thousands of documents.4. Snippet-tolerance: The method should produce\reasonable" clusters even when it only has access tothe short document snippets returned by the searchengines; most users are unwilling to wait for the sys-tem to download the original documents.In this paper we describe and experimentally evalu-ate two novel clustering methods that meet the aboverequirements to varying degrees.Document ClusteringDocument clustering has been traditionally investig-ated mainly as a means of improving document searchand retrieval. Recently, a technique named Scat-ter/Gather (Cutting et al. 1992) introduced documentclustering as a document browsing method. Our workfollows the same paradigm.Hierarchical agglomerative clustering (HAC) al-gorithms are the most commonly used methods fordocument clustering (Willet 1988). These algorithmsstart with each document in a cluster of its own, it-erate by merging the two most similar clusters, andterminate when some halting criterion is reached.HAC algorithms require the de�nition of a similar-ity function between documents and between sets ofdocuments. Each document is typically representedas a weighted attribute vector, with each word in theentire document collection being an attribute in thisvector. The similarity of two documents is often takenas a normalized function of the dot product of theirattribute vectors.Several halting criteria for HAC algorithms havebeen suggested (Milligan & Cooper 1985), but they aretypically based on predetermined constants (e.g., haltwhen 5 clusters remain). Because the HAC algorithm

does not backtrack it is very sensitive to the halting cri-terion | when the algorithm mistakenly merges two\good" clusters, the resulting cluster could be mean-ingless to the user. In the domain of search engines, weoften receive many irrelevant snippets | snippets thatdo not have any correlation to the query or to othersnippets. This sort of \noise" reduces even further thee�ectiveness of commonly-used halting criteria.HAC algorithms are typically slow when appliedto large document collections. Single-link (Rijsber-gen 1971) and group-average methods typically takeO(n2) time1, while complete-link methods typicallytake O(n3) time (Voorhees 1986b). In terms of qual-ity, on the other hand, complete-link algorithms havebeen shown to perform well in comparative studies ofdocument retrieval (Voorhees 1986a), as they tend toproduce \tight" clusters | clusters in which all thedocuments are similar to one another. Single-link, andto a lesser degree group-average methods, exhibit atendency toward creating elongated clusters. Elong-ated clusters have the undesirable property that twodocuments can be in the same cluster even though thesimilarity between them is small. From our experiencein the Web domain, algorithms that produce elong-ated clusters often result in one or two large clusters,plus many extremely small ones. This can lead to non-intuitive clusters.The above discussion suggests that traditional docu-ment clustering methods fail to meet the requirementslisted in the introduction. Often, the methods generateelongated clusters that are not easy to browse | it'sdi�cult to determine at a glance what the contents of agiven cluster are likely to be. Furthermore, O(n2) timeclustering is likely to be too slow for Web users whenn = 1; 000 or more. Finally, our experience shows thatstandard techniques perform poorly on the short and\noisy" snippets of Web documents.Word-Intersection ClusteringWord-intersection clustering (Word-IC) is a newmethod designed to address some of the problems men-tioned above. Word-IC results in \tight" clusters, hasa well motivated halting criterion and captures a de-sirable trade-o� between the number of clusters, theirsize and their cohesion.Word-IC is a HAC algorithm that relies on a novelGlobal Quality Function (GQF) to quantify the qual-ity of a clustering. We use the GQF as the heuristicto guide the HAC algorithm and as the halting cri-terion. At each iteration of the HAC algorithm, the1Throughout this paper n denotes the number of docu-ments to be clustered. The number of words per documentis assumed to be bounded by a constant.

two clusters whose union would result in the highestincrease in the GQF are merged. The algorithm ter-minates when no merge increases the GQF . Next we'lldescribe the GQF .The de�nition of a cluster's cohesion is central tothe GQF . We de�ne the cohesion of a cluster c asthe number of words common to all the documents inthe cluster. We de�ne the score s(c) of a single clusterc to be the product of its size jcj and its dampenedcohesion. The score of a singleton cluster is de�ned tobe 0.For a clustering C, the GQF (C) is a product ofthree components: (a) f(C) | A function propor-tional to the fraction of documents in non-singletonclusters. This component captures the notion thatsingleton clusters are \bad". (b) 1=g(jCj) | Whereg(jCj) is an increasing function in the number of non-singleton clusters. This component captures the no-tion that the fewer clusters there are, the better. (c)Pc2C s(c) | The sum of the scores of all clusters inthe clustering. Thus:GQF (C) = f(C)g(jCj)Xc2C s(c) (1)Notice that the factors 1=g(jCj) andPc2C s(c) create atension between two extremes: having a small numberof large clusters of low cohesion vs. having many smallclusters of high cohesion. The GQF provides a trade-o� between these two extremes. We have investigateddi�erent functional forms for the components of theGQF ; our experiments have revealed that good resultsare obtained if f(C) is simply the ratio of the numberof documents in non-singleton clusters to the overallnumber of documents, and g(jCj) is the number of non-singleton clusters raised to the power of 0:5.Word-IC can be performed in O(n2) time. The res-ult is a monothetic classi�cation: all the documents ina given cluster must contain certain terms if they areto belong to it. In Word-IC, that set of common words| the centroid of the cluster | can be presented tothe user as a concise description of its contents. We be-lieve that this approach results in high-quality clustersbecause all the documents in the cluster share at leastthe words in its centroid.Experimental results in section 5 show that Word-ICis faster and results in higher quality clusters than thecommonly used group-average HAC algorithm usingthe cosine inter-document similarity function.Phrase-Intersection Clustering usingSu�x TreesFollowing the standard document clustering paradigm,Word-IC treats a document as a set of words, disreg-

arding word sequences. We conjecture that word prox-imity information may be valuable in some cases. Fur-thermore, clusters whose centroid is a shared phrasewould be particularly easy to browse. Based on theseobservations we formulate Phrase-intersection cluster-ing (Phrase-IC) | a novel intersection-based approachthat looks at the phrases that are common to a groupof documents as an indication of the group's cohesion.The HAC algorithms mentioned previously haveO(n2) time complexity, an obstacle to our speed andscalability goals. Phrase-IC using su�x trees (Weiner1973) is an O(n logn) time algorithm that results in alarge speedup without much degradation in quality.The su�x tree of a set of strings is a compact triecontaining all the su�xes of all the strings. In ourapplication, we construct a su�x tree of all the docu-ments. Each node of the su�x tree represents a groupof documents and a phrase that is common to all ofthem; the label of the node represents the commonphrase, and all the documents who have correspond-ing leaves that are descendants of the node make upthe group. Therefore, each node can be viewed as apotential cluster. Each node is assigned a score thatis a function of the length of the phrase, the wordsappearing in it, and the number of documents in thatcluster. The nodes are sorted based on their score.Clusters are determined directly from this sorted listof potential clusters using a simple selection algorithm.Notice that the selected clusters may overlap. We be-lieve that this feature is advantageous to the user, asmany topics do overlap. When selecting which clustersto display, we make sure the overlap between the selec-ted clusters is not high. We are currently exploring theoption of merging potential clusters with high overlap.The space requirement of the su�x tree is O(n), andit can be constructed in O(n) time (Ukkonen 1995).The su�x tree can be built incrementally as the docu-ments arrive. This allows the use of \free" CPU cyclesas the system waits for additional documents. Thenumber of potential clusters is O(n), thus sorting themand selecting which to present to the user can be per-formed in O(n logn) time.Preliminary ExperimentsIt is hard to measure the quality of a clustering al-gorithm, as one has to know the \correct" clusteringof the test cases. We chose to apply the algorithmsto snippet collections created by merging several dis-tinct base collections. We then scored the resultingclustering by measuring its deviation from the originalpartition of the snippets into base collections.We created 88 base collections from snippets re-turned by MetaCrawler (Selberg & Etzioni 1995) in

response to 88 di�erent queries. Each of the quer-ies contained between 1 and 4 keywords and de�neda topic in computer science (e.g. kernel & architec-ture; biology & computational; compiler). Each basecollection contained approximately 120 snippets; eachsnippet contained 40 words, on average. Test collec-tions were created by merging 1 to 8 randomly chosenbase collections, giving us test collections ranging from120 to 1000 snippets in size. 20 test collections of eachsize were created, for a total of 200 test collections.We need a scoring method to compare the originalpartition of the snippets into base collections with thealgorithm generated clustering. To do so, we look atall pairs of documents in a single cluster, and countthe number of true-positive pairs (the two documentswere also in the same base collection) and false-positivepairs. The quality of the clustering is a function of thedi�erence between these two quantities, normalized bythe size of the collection clustered. A quality score of 1means a perfect reproduction of the original partition.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8

q
u
a
l
i
t
y

o
f

c
l
u
s
t
e
r
i
n
g

number of base collections
(a)

Word-IC with GQF

Phrase-IC
Word-IC w/o GQF

COS-GAVG

0

50

100

150

200

250

100 300 500 700 900

t
i
m
e

i
n

s
e
c
o
n
d
s

number of snippets
(b)

Word-IC with GQF

Phrase-IC
Word-IC w/o GQF

COS-GAVG

Figure 1: (a) The quality of the clusters produced bythe di�erent algorithms. (b) The execution time of thedi�erent algorithms. The execution time of the Phrase-IC algorithm cannot be seen on the scale shown, as itclusters 1000 snippets in less than 0.5 seconds. Thisalgorithm exhibits a good tradeo� between quality andspeed | it achieves high quality clusters in O(n logn)time.Figure 1(a) compares the quality of the clusters pro-duced by the algorithms as a function of the number ofbase collections merged. We compare our clustering al-gorithms with the group-average HAC algorithm usingthe cosine inter-document similarity function (referredto as COS-GAVG), which is one of the most commonlyused document clustering algorithms.Word-IC includes two principal components: thede�nition of cohesion and the GQF . To investigatehow the de�nition of cohesion in
uences the cluster-

ing, we measured the performance of a variation ofthe Word-IC algorithm that does not use the GQF .This algorithm de�nes the similarity of two clusters asthe cohesion of the cluster that would be formed uponmerging the two clusters, where cohesion is de�ned asin Word-IC. It performs a HAC algorithm, merging ateach step the two most similar clusters, and terminateswith the same halting criterion used in COS-GAVG.At the top of Figure 1(a) we see that omitting GQFdegrades the performance of Word-IC.All the algorithms show, as expected, a quality de-gradation as the number of merged base collectionsincreases. The COS-GAVG algorithm performs poorlyin our experiments. The fact that we are clusteringshort, \noisy" snippets, probably contributes to thepoor quality of its results. Word-IC shows the highestquality results. The advantages of the GQF can beseen by comparing Word-IC without GQF with theregular Word-IC. We believe this is mainly due to thewell-motivated halting criterion of the algorithm. Thesu�x tree clustering algorithm produces results thatare not much worse than those produced by Word-IC.To compare the execution time of the algorithms, weclustered snippet collections of 100 to 1000 snippetsusing a DEC Alpha-station 500, 333 MHz, with 320MRAM. The algorithms were implemented in C++ andwere optimized to the same degree.Figure 1(b) presents the results of this experiment.The times measured are the actual times spent clus-tering, without including idle periods when the systemwas waiting for snippets to arrive. The COS-GAVGalgorithm is slower than the intersection-based ones asit requires longer attribute vectors. Using GQF addsa constant factor to the execution time of Word-IC be-cause of the added complexity. The performance of thesu�x tree clustering algorithm cannot be seen on thescale shown, as it clusters 1000 snippets in less than0.5 seconds.While experimenting with the system we have foundthat certain queries lend themselves very nicely toPhrase-IC, while other queries do not. We also foundthat Word-IC and Phrase-IC often yield complement-ary presentations of the collection and need not beviewed as alternatives; we could allow the user to viewthe results of both algorithms. An interesting ques-tion is whether users will �nd multiple sets of clustersworthwhile, and what visualization techniques wouldbe best for this task.Finally, a question that has to be answered is howwould the clustering results change if we downloadthe original documents from the Web. Will this res-ult in a substantial improvement in quality, and willsuch an improvement outweigh the increased delay?

We are currently deploying a clustering module on topof MetaCrawler, which will enable us to conduct userstudies aimed at answering these questions empirically.ConclusionWe have described and experimentally evaluated twonovel clustering methods that enable users to quicklynavigate through the results of Web search engines:word- and phrase- intersection clustering. Phrase-ICusing su�x trees is an O(n logn) time algorithm thatappears promising in terms of the stringent require-ments outlined in the introduction including ease ofbrowsing, speed, and scalability. Of course, additionalexperiments and extensive user studies are necessarybefore de�nitive claims can be made about the per-formance of our algorithms in practice.Acknowledgments: We thank Ronen Feldman for earlydiscussions and Erik Selberg for his help in integrating thissystem with MetaCrawler. Zhenya Sigal made importantcontributions to the implementation. This research wasfunded in part by O�ce of Naval Research grant 92-J-1946,by ARPA / Rome Labs grant F30602-95-1-0024, by a giftfrom Rockwell International Palo Alto Research, and byNational Science Foundation grant IRI-9357772.ReferencesCutting, D. R.; Karger, D. R.; Pedersen, J. O.; and Tukey,J. W. 1992. Scatter/gather: a cluster-based approach tobrowsing large document collections. In 15th InternationalACM SIGIR Conference on Research and Development inInformation Retrieval, 318{29.Milligan, G. W., and Cooper, M. C. 1985. An examinationof procedures for detecting the number of clusters in adata set. Psychometrika 50:159{79.Rijsbergen, C. V. 1971. An algorithm for informationstructuring and retrieval. Computer Journal 14:407{412.Selberg, E., and Etzioni, O. 1995. Multi-service searchand comparison using the metacrawler. In Proc. 4th WorldWide Web Conf., 195{208.Shakes, J.; Langheinrich, M.; and Etzioni, O. 1997. Ahoy!the home page �nder. In Proc. 6th World Wide Web Conf.Ukkonen, E. 1995. On-line construction of su�x-trees.Algorithmica 14:249{260.Voorhees, E. 1986a. The e�ectiveness and e�ciency ofagglomerative hierarchic clustering in document retrieval.Ph.D. Dissertation, Cornell University.Voorhees, E. 1986b. Implementing agglomerative hier-archical clustering algorithms for use in document re-trieval. Information Processing & Management 22:465{476.Weiner, P. 1973. Linear pattern matching algorithms.In 14th Annual Symposium on Foundations of ComputerScience (FOCS), 1{11.Willet, P. 1988. Recent trends in hierarchical documentclustering: a critical review. Information Processing andManagement 24:577{97.

