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Abstract
This paper proposes a mechanism for equation-based congestion control for unicastNtafft best-
effort traffic in the current Internet is well-served by the dominant trartgpotocol TCP. However, traffic
such as best-effort unicast streaming multimedia could find use for a Ti@RMHy congestion control
mechanism that refrains from reducing the sending rate in half in responseéngle gacket drop. With
our mechanism, the sender explicitly adjusts its sending rate as a function oetsrad rate of loss
events, where boss event consists of one or more packets dropped within a single round-trip time. We use
both simulations and experiments over the Internet to explore performance.
Equation-based congestion control is also a promising avenue of development for aongestrol of

multicast traffic, and so an additional reason for this work is to lay a sousid fia the later development
of multicast congestion control.

T AT&T Center for Internet Research at ICSI (ACIRI)
tUniversity of Massachusetts at Amherst
§International Computer Science Institute (ICSI)



1 Introduction a significant role in the Internet.
For most unicast flows that want to transfer data reliably

TCP is the dominant transport protocol in the Internet, andand as quickly as possible, the best choice is simply to use
the current stability of the Internet depends on its end-to-end'CP directly. However, equation-based congestion control
congestion control, which uses an Additive Increase Multi-is more appropriate for applications that need to maintain a
plicative Decrease (AIMD) algorithm. For TCP, the ‘sending slowly-changing sending rate, while still being responsive to
rate’ is controlled by a congestion window which is halved for network congestion over longer time periods (seconds, as op-
every window of data containing a packet drop, and increasefosed to fractions of a second). It is our belief that TFRC
by roughly one packet per window of data otherwise. is sufficiently mature for a wider experimental deployment,

End-to-end congestion control of best-effort traffic is re-testing, and evaluation.
quired to avoid the congestion collapse of the global Inter- A second goal of this work is to lay a foundation for
net [FF99]. While TCP congestion control is appropriatefurther research within the network community on the de-
for applications such as bulk data transfer, some applicationgelopment and evaluation of equation-based congestion con-
where the data is being played out in real-time find halvingirol. We address a number of key concerns in the design of
the sending rate in response to a single congestion indic&quation-based congestion control that have not been suffi-
tion to be unnecessarily severe, as it can noticeably reducagiently addressed in previous research, including responsive-
the user-perceived quality [TZ99]. TCP’s abrupt changes imess to persistent congestion, avoidance of unnecessary oscil-
the sending rate have been a key impediment to the deployations, avoidance of the introduction of unnecessary noise,
ment of TCP’s end-to-end congestion control by emerging apand robustness over a wide range of timescales.
plications such as streaming multimedia. In our judgement, The algorithm for calculating the loss event rate is the
equation-based congestion control is the leading candidate fgiey design issue in equation-based congestion control, de-
a viable mechanism to provide relatively smooth congestionermining the tradeoffs between responsiveness to changes in
control for such traffic. congestion and the avoidance of oscillations or unnecessarily

Equation-based congestion control was first proposed imbrupt shifts in the sending rate. The discussion in Section 3
[MF97]. Whereas AIMD congestion control backs off in re- addresses these tradeoffs and describes the fundamental com-
sponse to a single congestion indication, equation-based coponents of the TFRC algorithms that reconcile them.
gestion control uses a control equation that explicitly gives A third goal of this work is to build a solid basis for the
the maximum acceptable sending rate as a function of thgevelopment of congestion control for multicast traffic. In a
recentloss event rate. The sender adapts its sending rate,large multicast group, there will usually be at least one re-
guided by this control equation, in response to feedback frongeiver that has experienced a recent packet loss. If the con-
the receiver. For traffic that competes in the best-effort Intergestion control mechanisms require that the sender reduces
net with TCP, the appropriate control equation for equationits sending rate in response to each loss, as in TCP, then
based congestion control is the TCP response function chaghere is little potential for the construction of scalable mul-
acterizing the steady-state sending rate of TCP as a functiafitast congestion control. Equation-based congestion control
of the round-trip time and steady-state loss event rate. for multicast traffic has been an active area of research for

Although there has been significant previous research oBeveral years [RMR]. As we describe in Section 6, many of

equation-based and other congestion control mechanisms [J#6mechanisms in TFRC are directly applicable to multicast
OR99, RHE99, TZ99, PKTK99, TPB, VRC98, SS98], we congestion control.

are still rather far from having deployable congestion control

mechanisms for best-effort streaming multimedia. Section 3 . .

presents the TCP-Friendly Rate Control (TFRC) proposalfo ~ Foundations of equatlon-based con-
equation-based congestion control for unicast traffic, In Sec- i

tion 5 we provide a comparative discussion of TFRC and pre- gestlon control

viously proposed protocols. The benefit of TFRC is a morerpg pasic decision in designing equation-based congestion
smoothly-changing sending rate than that of TCP; the cost i§gnirol is to choose the underlying control equation. An ap-
amore moderate response to transient changes in CongeSt'acgﬂcation using congestion control that was significantly more
One of our goals in this paper is to present a proposalygressive than TCP could cause starvation for TCP traffic if
for equation-based congestion control that lays the foundaynip types of traffic were competing in a FIFO queue at a time
tion for the near-term experimental deployment of congestion, congestion [FF99]. From [BCC98], a TCP-compatible
control for unicast streaming multimedia. Section 4 presentgo,y is defined as a flow that, in steady-state, uses no more
results from extensive simulations and experiments with the);nqwidth than a conformant TCP running under comparable
TFRC protocol, showing that equation-based congestion Conysgngitions. For best-effort traffic competing with TCP in the
trol using the TCP response function competes fairly Witherrent Internet, in order to be TCP-compatible, the correct

TCP. Both the simulator code and the real-world implemen<pgice for the control equation is the TCP response function
tation are publically available. We believe that TFRC anddescribing the steady-state sending rate of TCP [Flo99].
related forms of equation-based congestion control can play



From [PFTK98], one formulation of the TCP responsepaper, preserving some form of “fairness” against competing

function is the following: TCP traffic also does not require such a drastic reaction to a
s single congestion indication.
T = (1) For flows desiring smoother changes in the sending rate,
R\/% +trro(3y/32)p(1 + 32p?) alternatives to TCP include AIMD congestion control mecha-

nisms that do not use a decrease-by-halfreduction in response

This gives an upper bound on the sending #ate bytes/sec, tg congestion. In DECbit, which was also based on AIMD,
as a function of the packet sizground-trip timeR, steady-  flows reduced their sending rate to 7/8 of the old value in
state loss event ragg and the TCP retransmit timeout value response to a packet drop [JRC87]. Similarly, in Van Jacob-
trTO- son’s 1992 revision of his 1988 paper on Congestion Avoid-

An application wishing to send less than the TCP-compatiig.e and Control [Jac88], the main justification for a decrease
sending rate (e.g., because of limited demand) would still béerm of 1/2 instead of 7/8, in Appendix D of the revised ver-
characterized as TCP-compatible. However, if a significantlysjon of the paper, is that the performance penalty for a de-
less aggressive response function were used, then the less @gease term of 1/2 is small. A related paper [FHP0O] includes

gressive traffic could encounter starvation when competing, relative evaluation of AIMD and equation-based congestion
with TCP traffic in a FIFO queue. In practice, when two typescontrol.

of traffic compete in a FIFO queue, acceptable performance

only results if the two traffic types have similar response func- )

tions. 3 The TCP-Friendly Rate Control
For traffic that is not competing with TCP traffic in a

FIFO queue, but is isolated from TCP traffic by some method (TFRC) Protocol

(e.g., with per-flow scheduling, orin a separate d|fferent|ated-|-he primary goal of equation-based congestion control is not

ts)ervu;es class f_rom TCP tlrafflcl)a appll(lcatlo dr?f?f using e;]qgatl?cnfo aggressively find and use available bandwidth, but to main-
ase cong_esﬂon contro could make a erent ¢ OIC€ 1%fain a relatively steady sending rate while still being respon-
the underlying control equation. Issues about the merits OLive to congestion. To accomplish this, equation-based con-
shortcomings of various control equations for equation—basegestion control makes the tradeoff of refraining fraggres-

congestion control are an active research area that we do n \/elyseeking out available bandwidth in the manner of TCP
address further in this paper. Thus, several of the design principles of equation-based con-

. _ _ gestion control can be seen in contrast to the behavior of TCP.
2.1 Viable congestion control does not require

TCP e Do not aggressively seek out available bandwidth. That
is, increase the sending rate slowly in response to a de-
This paper proposes deployment of a congestion control algo- crease in the loss event rate.

rithm that does not reduce its sending rate in half in response
to a single congestion indication. Given that the stability of
the current Internet rests on AIMD congestion control mech-
anisms in general, and on TCP in particular, a proposal for
non-AIMD congestion control requires justification in terms Additional design goals for equation-based congestion con-
of its suitability for the global Internet. We discuss two sepa-irol for unicast traffic include:

rate justifications, one practical and the other theoretical.

A practical justification is that the principle threat to the ~ ® The receiver should report feedback to the sender at
stability of end-to-end congestion control in the Internetcomes ~ least once per round-trip time if it has received any
not from flows using alternate forms of TCP-compatible con- packets in that interval.
gestion control, but from flows that do not use any end-to-
end congestion control at all. For some of these flows (e.g.,
large-scale multicast, some real-time traffic), the only viable
possibility for end-to-end congestion control is a mechanism

that responds less drastically to a single packet drop than does .
TCP. 3.1 Protocol Overview

__A more theoretical justification _is that preserving the Sta_'AppIying the TCP response equation (Equation (1)) as the
bility of the Internet does not require that flows reduce thelrControl equation for congestion control requires the follow-
sending rate by half in response to a single congestion indil—

cation. In particular, the prevention of congestion collapseng'

simply requires that flows use some form of end-to-end con- e The parameter® andp are determined. The loss event
gestion control to avoid a high sending rate in the presence ratep must be calculated at the receiver, while the round-
of a high packet drop rate. Similarly, as we will show in this trip time R could be measured at either the sender or

¢ Do not reduce the sending rate in half in response to a
single loss event. However, do reduce the sending rate
in half in response to several successive loss events.

e If the sender has not received feedback after several
round-trip times, then the sender should reduce its send-
ing rate, and ultimately stop sending altogether.



the receiver. (The other two values needed by the TCP e Decrease exponentially.Experiments show that this

response equation are the flow's packet siznd the is undesirable because it can involve decreasing to less
retransmit timeout valugz o, which can be estimated thanT', and the resulting undershoot leads to oscilla-
from R.) tory behavior.

e The receiver sends either the parameter the calcu- e Decrease towardd'. This might work, but there is al-
lated value of the allowed sending rateback to the ready significant damping introduced in the measure-
sender. ment of p and in the smoothing of?, and so addi-

tional damping only confuses the effects of the existing

e The sender increases or decreases its transmission rate damping without changing the behavior significantly.
based on its calculation af.

. . ] e Decrease tdl'. This works well, and is the behavior
For multicast, it makes sense for the receiver to deter- used in all the results presented in this paper.

mine the relevant parameters and calculate the allowed send-
ing rate. However, for unicast the functionality could be split . ) .
in a number of ways. In our proposal, the receiver only cal-3-3 Receiver functionality

culatesp, and feeds this back to the sender. The receiver provides feedback to allow the sender to mea-
sure the round-trip time (RTT). The receiver also calculates
3.2 Sender functionality the loss event ratg, and feeds this back to the sender. The

) ) calculation of the loss event rate is one of the most critical
In order to use the control equation, the sender determines ﬂB’arts of TFRC, and the part that has been through the largest
values for the round-trip timé& and retransmittimeout value 50,6, nt of evaluation and design iteration. There is a clear

trro. trade-off between measuring the loss event rate over a short

The sender and receiver together use sequence NnUMb&Sying of time and being able to respond rapidly to changes

for measuring the round-trip time. Every time the receiverjy e ayailable bandwidth, versus measuring over a longer
sends feedback, it echoes the sequence number from the m%%triod of time and getting a signal that is much less noisy.

recent data packet, along with the time since that packet was 1 method of calculating the loss event rate has been the

received. In this way the sender measures the round-trip timgubject of much discussion and testing, and over that process

through the network. o _ several guidelines have emerged:
The sender smoothes the measured round-trip time using

an exponentially weighted moving average. This weight de- e The estimated loss event rate should track relatively
termines the responsiveness of the transmission rate to changes smoothly in an environment with a stable steady-state
in round-trip time. loss event rate.

The sender could derive the retransmit timeout vaje,

using the usual TCP algorithm: e The estimated loss rate should measurel tise event

rate rather than the packet loss rate, wheitess event
trro = SRTT + 4 % RTT,,, can consist of several packets lost within a round-trip
time. This is discussed in more detail in Section 3.5.1.
whereRTT,,, is the variance of RTT anflRT'T is the round-
trip time estimate. However, in practi¢egro only critically
affects the allowed sending rate when the packet loss rate

is very high. Different TCPs use drastically different clock | The estimated loss event rate should increase only in
granularities to calculate retransmit timeout values, so itis not response to a new loss event. (We note that this prop-

clear that equation-based congestion control can accurately erty is not satisfied by some of the methods described
model atypical TCP. Unlike TCP, TFRC does not use this below.)

value to determine whether it is safe to retransmit, and so the

consequences of inaccuracy are less serious. In practice the e Let aloss interval be defined as the number of pack-

e The estimated loss event rate should respond strongly
to loss events in several successive round-trip times.

simple empirical heuristic ofgro = 4R works reasonably ets between loss events. The estimated loss event rate
well to provide fairness with TCP. should decrease only in response to a new loss interval

The sender obtains the value pin feedback messages thatis longer than the previously-calculated average, or
from the receiver at least once per round-trip time. a sufficiently-long interval since the last loss event.

Every time a feedback message is received, the sender
calculates a new value for the allowed sending fatasing
the control equation. If the actual sending ratg; .., is less
thanT, the sender may increase its sending rate.

If Twetuar 1S greater thari”, the sender must decrease the
sending rate. We have several choices here:

Obvious methods we looked at include the EWMA Loss
Interval method, the Dynamic History Window method, and
the Average Loss Interval method which is the method we
chose.



e The EWMA Loss Interval method uses an exponen- euence
tially weighted moving average of t_he number of_pac_k— Interval
ets between loss events. Depending on the weighting, since most

recent loss

this either puts too much weight on the most recent in- I i weight 1
terval, or takes too much history into account and is packet $intervall weighted
slow to react to real changes. Arrival
inteyval 2 weighted
¢ The Dynamic History Window method uses a history Packet nienele
window of packets whose length is determined by the lost 0
current transmission rate. This suffers from the effect

that even with a perfectly periodic loss pattern, loss

events entering and leaving the window cause changes . :

to the measured loss rate, and hence add unnecessary : t $ ‘ ‘

noise to the loss signal. — $Nam }ﬂ?;?&‘;?ﬁ
e The Average Loss Interval method computes the aver- i A “weightn

age loss rate over the lastloss intervals. By itself, Timenow  Time

the naive Average Loss Interval method suffers fromrigure 1: Weighted intervals between loss used to calculate

two problems: the interval since the most recent loss igoss probability.

not necessarily a reflection of the underlying loss event

rate, and there can be sudden changes in the calculated o ]

rate due to unrepresentative loss intervals leaving th&0r» = 8, this gives weights ofw; , w, w3, ws = 1; ws =

n intervals we're looking at. These concerns are ad0-8 wg = 0.6; wy = 0.4; andwg = 0.2.
dressed below. The full Average Loss Interval method also calcul&igs,,

which is the average loss interval calculated over inters@ls
The full Average Loss Interval method differs from the to s,,_; rather than oves; to s,
naive version in several ways. Letbe the number of packets e
in thei-th most recent loss interval, and let the most recent in- 8w = Zizon Wi+t18i
tervalsy be defined as the interval containing the packets that Dim1 Wi
have arnvecbncethelfast loss. The first difference addresses includes, only at the correct times, as discussed above,
the most recent loss interva. When a loss occurs, the loss
interval that has beesy now becomes;, all of the follow-
ing loss intervals are correspondingly shifted down one, and max($, $pew)
the new loss interval, is empty. Assg is not terminated by a
loss, itis different from the other loss intervals. It is important o )
to ignoresy in calculating the average loss interval unlegs The sensitivity to noise pf the calculated loss ra.te depends
is large enough that including it would increase the average?n the value ofu. In practice a value oh = 8, with the
This allows the calculated loss interval to track smoothly inMost recent four samples equally weighted, appears to be a
an environment with a stable loss event rate. lower bound that still achieves a reasonable balance between
The second difference from the naive method reduces thesilience to noise and responding quickly to real changes in
sudden changes in the calculated loss rate that could resfItwork conditions. Section 4.4 describes experiments that
from unrepresentative loss intervals leaving the set of loss invalidate the value o = 8. However, we have not carefully
tervals used to calculate the loss rate. The full Average | ostvestigated alternatives for the relative values of the weights.
Interval method takes a weighted average of theraster- Because the Average Loss Interval method averages over
vals, with equal weights for the most recen? intervalsand ~ & n_umber of Ioss_ intervals, rather than over a number of packet
smaller weights for older intervals. Thus the average loss in&/mivals, the naive Average Loss Interval method responds

the value actually used for the average loss interval is

tervals is calculated as follows: reasonably rapidly to a sudden increase in congestion, but is
slow to respond to a sudden decrease in the loss rate. For
5= Do Wisi this reason we deploy history discounting as a component of
Yo wi the full Average Loss Interval method, to allow a more timely
_ response to a sustained decrease in congestion. History dis-
for weightsw;: counting is used by the TFRC receiver after the identification

of a particularly long interval since the last dropped packet,
to smoothly discount the weight given to older loss intervals.
The details of the discounting mechanism are as follows:
If so > 25(;>1), then the most recent loss intervglis con-
siderably longer than the recent average, and the weights for

’LUz'Zl, 1§i§n/2,

and
i—n/2

L ME L9 e
Py n/2<i

w; =1

IN
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the older loss intervals are discounted correspondingly. The For the top graph, the solid line shows the number of
weights for the older loss intervals are discounted by usingpackets in the most recent loss interval, as calculated by the

the following discount factor: receiver once per round-trip time before sending a status re-
. port. The smoother dashed line shows the receiver’s estimate
d; = max <0_57 25(1’21)> . for i >0, of _the average loss interval. The mid_dle graph shows Fhe re-

S0 ceiver’'s estimated loss event ratewhich is simply the in-

verse of the average loss interval, along wjth. The bottom
do = 1. graph shows the sender’s transmission rate which is calcu-
The lower bound of 0.5 on the discount factor ensures thalated fromp.
past losses will never be completely forgotten, regardless of Several things are noticeable from these graphs:
the number of packet arrivals since the last loss.
When history discounting is invoked, this gives the fol-
lowing estimated loss interval:

e Before t=6, the loss rate is constant and the Average
Loss Interval method gives a completely stable mea-
sure of the loss rate.

5= Z?:no] di“’i+1si' e When the loss rate increases, the transmission rate is
i dicw; rapidly reduced.

When loss occurs and the old intergglis shifted tos;, then e When the loss rate decreases, the transmission rate in-
the discount factors are also shifted, so that once an interval creases in a smooth manner, with no step increases even
is discounted, it is never un-discounted, and its discount fac- when older (10 packet) loss intervals are excluded from
tor is never increased. In normal operation, in the absence of the history. With naive loss interval averaging we would
history discounting¢; = 1 for all values ofi. We do not de- have seen undesirable step-increases in the estimated
scribe all the details of the history discounting mechanism in loss interval, and hence in the transmission rate.

this paper, but the reader is referred to NS for a detailed im-
plementatiort. History discounting (also called proportional 3.4

deweighing) is described in more detail in [Wid0O0] in Sec- Improving Stability

tions 3.7 and 4.8.1. One of the goals of the TFRC protocol is to avoid the charac-
teristic oscillations in the sending rate that result from TCP’s
3.3.1 lllustrating the receiver’s estimated loss rate AIMD congestion control mechanisms. In controlling oscil-

lations, a key issue in the TFRC protocol concerns the re-
sponse function’s specification of the allowed sending rate
sl T curentoss el () —— ] as inversely proportional to the measured RTT. A relatively
prompt response to changes in the measured round-trip time
is helpful to prevent flows from overshooting the available
bandwidth after an uncongested period. On the other hand,
an over-prompt response to changes in the measured round-
trip time can result in unnecessary oscillations.

If the value of the EWMA weight for calculating the aver-
age RTT is set to a small value such as 0.1 (meaning that 10%
ow—_ - - ° of the weight is on the most recent sample) then TFRC does
not react strongly to increases in RTT. In this case, we tend to

see oscillations when a small number of TFRC flows share a
., [TansmissionRate high-bandwidth link with DropTail queuing; the TFRC flows
3 04 5 6 7 8 9 10 1 12 13 W 15 16 Tme() overshoot the link bandwidth and then experience loss over
several RTTs. The result is that they backoff together by a
significant amount, and then all start to increase their rate to-
gether. This is shown for a single flow in Figure 3 as we
increase the buffer size in Dummynet [Riz98]. Although not

Figure 2 shows a S'm“'?"on using the full Average LOSSdisastrous, the resulting oscillation is undesirable for appli-
Interval method for calculating the loss event rate at the "'®ations and can reduce network utilization. This is similar

geiver. The I@nk loss rate is .1% before time 6, then_lO% untilin some respects to the global oscillation of TCP congestion
time 9, and finally 0.5% until the end of the run. This simula-

L = . - _control cycles.

_tlon is rather unreallstl_c because the loss is periodic, but this If the EWMA weight is set to a high value such as 0.5,

llustrates the mechanism more clearly. then TFRC reduces its sending rate strongly in response to
1The history discounting mechanism is in the procedurdassi() inthe ~ @n increase in RTT, giving a delay-based congestion avoid-

file tfrc-sink.cc in the NS distribution. ance behavior. However, because the sender’s response is de-

Loss Interval

1
12 13 14 15 16 Time(s)

T T T
estimated loss rate ——
square root of estimated loss rate -------

Loss Rate

TX Rate (KBytes/s)
N
S
3

Figure 2: lllustration of the Average Loss Interval method
with idealized periodic loss.




outgoing packets can be generated for each acknowledged
data packet, so TCP cannot send at more than twice the bot-
tleneck link bandwidth.
Arate-based protocol does not have this natural self-limiting

e property, and so a slow-start algorithm that doubles its send-

0 160 ing rate every measured RTT can overshoot the bottleneck
link bandwidth by significantly more than a factor of two. A
simple mechanism to limit this overshoot is to have the re-
ceiver feed back the rate that packets arrived at the receiver
Figure 3: Oscillations of a TFRC flow over Dummynet, during the last measured RTT. If loss occurs, slowstart is ter-
EWMA weight 0.05 for calculating the RTT. minated, but if loss doesn’t occur the sender sets its rate to:

Send Rate
(KBytels)

300

buffer size

Tactual,i+1 = min(QTactual,i: 2Treceived,i)

Send Rate
(KBytels)

300

This limits the slow-start overshoot to be no worse than that
200 of TCP.
% 7, 150 When the loss occurs that causes slowstart to terminate,
there is no appropriate loss history from which to calculate
the loss fraction for subsequent RTTs. The interval until the
° first loss is not very meaningful as the rate changes so rapidly
Figure 4: TFRC flow over Dummynet: oscillations preventegduring this time. The solution is to assume that the correct
initial data rate is half of the rate when the loss occurred;
the factor of one-half results from the delay inherent in the
layed and the sending rate is directly proportional f&, it ~ feedback loop. We then calculate the expected loss interval
is possible for short-term oscillations to occur, particularly that would be required to produce this data rate, and use this
with DropTail queues. While undesirable, these oscillationssynthetic loss interval to seed the history mechanism. Real
tend to be less of a problem than the oscillations with smallefoss-interval data then replaces this synthetic value when it
values of the EWMA weight. becomes available.
What we desire is a middle ground, where we gain some
short-term delay—based (_:ongestion_ avoidance,_but ina forrg'S Discussion of protocol features
that has less gain than simply making the rate inversely pro-
portional to the most recent RTT measurement. To accom3.5.1 Loss Fraction vs. Loss Event Fraction
plish this, we use a small value for the EWMA weight in cal-
culating the average round-trip tinf@ in Equation (1), and
apply the increase or decrease functions as before, but th
set the interpacket-spacing as follows:

buffer size

The obvious way to measure loss is as a loss fraction calcu-
éﬁted by dividing the number of packets that were lost by the

number of packets transmitted. However this does not accu-
rately model the way TCP responds to loss. Different variants

/T of TCP cope differently when multiple packets are lost from
S Ro i . -
Linter—packet = T x M a window; Tahoe, NewReno, and Sack TCP implementations

generally halve the congestion window once in response to
where R, is the most recent RTT sample, and is the av-  several losses in a window, while Reno TCP typically reduces
erage of the square-roots of the RTTs, calculated using athe congestion window twice in response to multiple losses in
exponentially weighted moving average with the same timey window of data.
constant we use to calculate the mean RTT. Thus, we gainthe Where routers use RED queue management, multiple packet
benefits of short-term delay-based congestion avoidance, bdtops in a window of data are less common, but with drop-
with a lower feedback loop gain so that oscillations in RTT tail queue management it is common for several packets in
damp themselves out, as shown in Figure 4. The experimentie same round-trip-time to be lost when the queue overflows.
in Figure 3 did not use this adjustment to the interpacket spacfhese multiple drops can result in multiple packets dropped

Ing. from a window of data from a single flow, resulting in a sig-
nificant difference between the loss fraction and the loss event
3.4.1 Slowstart fraction for that flow.

o o Because we are trying to emulate the best behavior of a
The initial rate-based slow-start procedure should be similag,¢ormant TCP implementation, we measure loss &=

to the window-based slow-start procedure followed by TCPqent fraction. Thus we explicitly ignore losses within a round-

where the sender roughly doubles its sending rate each roungly, time that follow an initial loss, and model a transport pro-

trip time. However, TCP's ACK-clock mechanism provides a4 that reduces its window at most once for congestion no-
limit on the overshoot during slow start. No more that two



tifications in one window of data. This closely models thethe difference in the measured loss event rate is not very sen-
mechanism used by most TCP variants. sitive to variations about the correct data rate.

To see how the loss-event fraction differs from the regular ~ The version of the TCP response function in Equation (1)
loss fraction in the presence of random packet loss, considés based in some respects on the loss event rate, and in other
a flow that send®’ packets per round-trip time, and assume arespects on the packet loss rate. In particular, the response
Bernoulli loss model with loss probability;,,,. The proba- function in Equation (1) models Reno TCP, where multiple
bility that at least one packet is lost in a given round-trip timelosses in a window cause a retransmission timeout. Ideally,
is1 — (1 — pross)’Y. Therefore the loss-event fractiop, q,, this response function would be replaced with a TCP response
calculated as number of loss events per packet sent, is givéanction based on a model of Sack TCP and on loss event
by: rates rather than on packet drop rates.

p — 1-— (]- 7ploss)N
cvent N 3.5.2 Increasing the Transmission Rate

Note that for a fixed loss probability, the faster the SenderOne issue to resolve is how to increase the sending rate when

transmits, the lower the loss-event fraction. However, thethe rate given by the control equation is greater than the cur-

sendlngl rate is determined by the congesnon control SCh.em(raént sending rate. As the loss rate is not independent of the
and so itself depends gn,.,;- For a very high loss envi-

transmission rate, to avoid oscillatory behavior it might be

ronment where the congestion window is rarely higher thannecessary to provide damping, perhaps in the form of restrict-

one, and for a low loss environment, there will be little differ- . : . . :
ence between the packet loss rate and the loss event rate ng the increase to be small relative to the sending rate during
the period that it takes for the effect of the change to show up

a flow. However, for a moderate loss environment where th(len feedback that reaches the sender.

congestion window is usually higher than one, there is some In practice, the calculation of the loss rate by the method

difference between the two. A more formal discussion of this . - : T
) ) above provides sufficient damping, and there is little need to
problem is presented in [RR99].

explicitly bound the increase. As shown in Appendix A.1,

025 given a fixed RTT and no history discounting, the increase

Egﬁgfé@ggigﬁigﬁgg rate in transmission rate is limited to about 0.14 packets per RTT
02| y= 1 every RTT (using Equation 1).
= xx%% An increase in transmission rate can result from the inclu-
g o1sp 1 sion of new packets in the most recent inter-loss interval at the
§ 2 receiver. IfA is the number of packets in the TFRC flow’s av-
5 ot P ] erage loss interval, and is the fraction of the weight on the
3 oosl v | most recent loss interval, then the transmission rate cannot
increase by more thaf packets/RTT every RTT, where:
0 ‘ ‘ ‘ ‘
0 008 I?(-Jlss Probat?iiilt)? 0z 0.2 (57“ =1.2 < A+ ’11)12\/Z — \/Z)

Figure 5: Loss-events per packet as a function of loss prob

bility and error in the calculated transmission rate aI'he derivation is given in Appendix A.1 assuming the simpler

TCP response function from [MF97] for the control equation.

Figure 5 shows the loss-event fraction as a function of IOSThis behavior has been confirmed in simulations with TFRC.

robagbilit for a flow that obeys Equation (1), and also for aﬁ'his behavior has also been numerically modeled for the TCP
b y for . >YS 4 ' ... response function in Equation (1), giving similar results for
flow transmitting at twice this rate and a flow transmitting low loss-rate environments but with significantly lower in-
at half this rate. From Equation (1), for a TCP retransmit S )
timeout valuet of ART'T, the average window siz& as ~ C'cooc rates in high loss-rate environments.
2 function of ’RTOiS 2 follows: g As changes in measured RTT are already damped using

Ploss ' an EWMA, even with the maximum history discounting £

1 1), this increase rate does not exceed one packet per RTT ev-
V= 2P1os. 3Pioss 5 (@) ery RTT, which is the rate of increase of a TCP flow in con-
\/ e 4124/ B py oo (1 + 32p7 ) gestion avoidance mode.

Givenp,s, it is then possible to calculate,.,,; for window
sizesN, 2N, andN/2, for flows transmitting at the calculated
rate, twice this rate, and half the rate, respectively. Simulations in Appendix A.2 show that, in contrast to TCP,
As Figure 5 shows, for high and low loss rates the dif-TFRC requires from three to eight round-trip times to reduce
ference betweep,ss andp.,.+ is small. For moderate loss its sending rate in half in response to persistent congestion.
rates, the difference between,s; andpe.: can be at most  As discussed in Appendix A.1, this slower response to con-
10% for these flows. Thus, for congestion-controlled flows,gestion is coupled with a slower increase in the sending rate

3.5.3 The response to persistent congestion



than that of TCP. In contrast to TCP’s increase of the sendreader to [Pad00] for more detailed results, and to the simu-
ing rate by one packet/RTT for every round-trip time without lator code in theas distribution.
congestion, TFRC generally does not increase its sending rate Figure 6 illustrates the fairness of TFRC when competing
at all until a longer-than-average period has passed withowith TCP Sack traffic in both DropTail and RED queues. In
congestion. At that point, given an environment with stablethese simulations TCP andn TFRC flows share a common
round-trip times, TFRC increases the sending rate by 0.1#ottleneck; we vary the number of flows and the bottleneck
packets per round-trip; after an extended absence of congelBandwidth, and scale the queue size with the bandwidth. The
tion, TFRC begins to increase its sending rate by 0.28 packetgraph shows the mean TCP throughput over the last 60 sec-
per round-trip time. Thus the milder decrease of TFRC in re-onds of simulation, normalized so that a value of one would
sponse to congestion is coupled with a considerably mildebe a fair share of the link bandwidth. The network utilization
increase in the absence of congestion. is always greater than 90% and often greater than 99%, so
almost all of the remaining bandwidth is used by the TFRC

. . flows. These figures illustrate than TFRC and TCP co-exist

4 Expe”mental Evaluation fairly across a wide range of network conditions, and that

) , TCP throughput is similar to what it would be if the com-
We have tested TFRC extensively across the public '“terpeting traffic was TCP instead of TFRC.

net, in the Dummynet network emulator [Riz98], and in the

ns network simulator. These results give us confidence that 509% TFRC vs 50% Sack TCP, 15Mbls Link, RED Queuing

TFRC is remarkably fair when competing with TCP traffic, 25 o ‘ ‘ ‘ ‘ ‘
that situations where it performs very badly are rare, and that TERC Flows » .
it behaves well across a very wide range of network condi- 2 MeanTFRC ]
tions. In the next section, we present a summary of ns sim- § x y %X
ulation results, and in section 4.3 we look at behavior of the § s s % i
TFRC implementation over Dummynet and the Internet. 2 3 % % g p
R % ,,,,,,,, - :
£ o
. . 5 LI S
4.1 Simulation Results Z osl LM
0 | | | | T lx +\ %(
0 16 32 48 64 80 96 112 128
Number of flows (TCP + TFRC)
Moot Figure 7: TCP competing with TRFC, with RED.

The graphs do show that there are some cases (typically
where the mean TCP window is very small) where TCP suf-

g Number of Flows

L Rat (Mbla) % (TCP + TFRC) fers. This appears to be because TCP is more bursty than
n| ate S, .
¥ TFRC. When we modify TFRC to send two packets every
TFRC vs TCP, DropTail Queuing, CA Enabled two inter-packet intervals, TCP competes more fairly in these

cases. However this is not something we would recommend
for normal operation.

Normalized TCP Although the mean throughput of the two protocols is
rather similar, the variance can be quite high. This is illus-
trated in Figure 7 which shows the 15Mb/s data points from
Figure 6. Each column represents the results of a single simu-

23 3 g Number of Flows lation, and each data point is the normalized mean throughput
Link Rate (Mbis) ¢ 37 e |~ (TeP+ TFRO) of a single flow. Typically, the TCP flows have higher vari-
TFRC vs TCP, RED Queuing, CA Enabled ance than the TFRC flows, but if we replace all the flows with

TCP flows this variance doesn’t change greatly. In general,
Figure 6: TCP flow sending rate while co-existing with TFRC the variance between flows increases as the bandwidth per
flow decreases. This is to be expected as Equation (1) indi-
To demonstrate that it is feasible to widely deploy TFRC cates that TCP (and hence also TFRC) becomes more sensi-
we need to demonstrate that it co-exists acceptably well whetive to loss as the loss rate increases, which it must do at lower
sharing congested bottlenecks of many kinds with TCP traffibandwidths.
of different flavors. We also need to demonstrate that it be- We have also looked at Tahoe and Reno TCP implemen-
haves well in isolation, and that it performs acceptably ovetations and at different values for TCP’s timer granularity. Al-
a wide range of network conditions. There is only space heréhough Sack TCP with relatively low timer granularity does
for a summary of our findings, but we refer the interestedbetter against TFRC than the alternatives, their performance



Throughput of a TCP flow, and yet have less variability. The timescale at

Dropped Packet

which the send rates are measured affects the values of these
measures. Thus, we first define the send rate of a given data
flow F at timet, measured at a timescale

Ror(t) = sx packets sent by(SF betweerandt + (S, 3)
for s the packet size in bytes. We characterize the send rate
of the flow between timé, andt;, wheret; = tq + nd,
by the time series{Rs p(to + i 4)},_,. The coefficient of
variation (CoV), which is the ratio of standard deviation to
the average, of this time series can be used as a measure of
variability [Jai91] of the sending rate of the flow at timescale
4. A lower value implies a smoother flow.

To compare the send rates of two flows at a given time

scale, we define the equivalence at titne

. [BRsa(t) Rsy(t)
€s.a,5(t) = min <R67b(t) ’ R67a(t)> 7 @

Throughput
Dropped Packet

Rs54(t) >0 or Rsp(t) >0

Taking the minimum of the two ratios ensures that the result-
Figure 8: TFRC and TCP flows from Figure 6, for= 16. ing value remains between 0 and 1. Note that the equivalence

of two flows at a given time is defined only when at least one
of the two flows has a non-zero send rate. The equivalence

is still quite respectable. of two flows between time, and¢; can be characterized by

Figure 8 shows the throughput for eight of the flows (four the time series{es q 5 (to + i * 5)}?70. The average value of

TCP, four TFRC) from Figure 6, for the simulations with a the defined elements of this time series is called the equiva-

15Mb/s bottleneck and 32 flows in total. The graphs depicience ratio of the two flows at timescade The closer it is

each flow’s throughput on the congested link during the sectg 1, the more “equivalent” the two flows are. We choose to

ond half of the 30-second simulation, where the throughputake average instead of the median to capture the impact of

is averaged over 0.15 sec intervals; slightly more than a typany outliers in the equivalence time series. We can compute

ical round-trip time for this simulation. In addition, a 0.15 the equiva|ence ratio between a TCP flow and a TFRC flow,

sec interval seems to be plausible candidate for a minimumetween two TCP flows or between two TERC flows. Ide-

interval over which bandwidth variations would t)(?g]in to t)(EEi”)/, the ratio would be very close to 1 over a broad range of

noticeable to multimedia usefs. timescales between two flows of the same type experiencing

Figure 8 clearly shows the main benefit for equation-baseghe same network conditions .

congestion control over TCP-style congestion control for uni-

cast streaming media, which is the relative smoothnessinthg ; 5 5o 0 0a0ce with long-duration background traf-

sending rate. A comparison of the RED and Drop-Tail sim- fic

ulations in Figure 8 also shows how the reduced queuing de-

lay and reduced round-trip times imposed by RED require &or measuring the steady performance of the TFRC proto-

TCP 4
TFRC vs TCP Sack1, 32 flows, 15Mb/s link, Droptail Queue

higher loss rate to keep the flows in check. col, we consider the simple well-known single bottleneck (or
“dumbbell”) simulation scenario. The access links are suf-
4.1.1 Performance at various timescales ficiently provisioned to ensure that any packet drops/delays

o _ due to congestion occur only at the bottleneck bandwidth.

We are primarily mteres.ted in tWQ measures of performance e considered several simulation scenarios, but illustrate
of the TFRC protocol. First, we wish to compare the averageere a scenario with a bottleneck bandwidth of 15Mbps and a
send rates of a TCP flow and a TFRC flow experiencing SiImRED queué To plot the graphs, we monitor the performance
ilar network conditions. Second, we would like to compare— _ o
the “smoothness” of these send rates. Ideally, we would like The bottleneck delay is 50ms, packet size is 1000 bytes, diiteb

. ne[lck gqueue runs RED witgentle enabled, a total buffer of 100 packets, a
fora TFRC flow to achieve the same average send rate as tha,,/,sh of 10 and anawthresh of 50. There are 16 SACK TCP and

16 TFRC flows. The simulation duration is 150 seconds, andetglts are
from the last 100 seconds of the simulation. The round-tnetof each
flow, excluding the queuing delay, is random, uniformly digtted between
80 and 120 milliseconds. The flows are started at random fio@formly
distributed between 0 and 10 seconds.

°The simulations in Figure 8 were run with RED queue managémen
on the 15 Mbps congested link, with the RED parameters seblbsvé:
min_thresh is set to 25 packetsnpax_thresh is set to five times mitthresh,
maxp is set to 0.1, and thgentle_ parameter is set to true.



of one flow belonging to each protocol. The graphs are théraffic tends to be self-similar in nature. In [WTSW95], it is
result of averaging 14 such runs, and the 90% confidence irshown that self-similar traffic may be created by using sev-
tervals are shown. The loss rate observed at the bottlenearal ON/OFF UDP sources whose ON/OFF times are drawn

router was about 0.1%. from heavy-tailed distributions such as the Pareto distribu-
tion. Figures 11-13 present results from simulations in which
L T we simulate such background traffic. The mean ON time is 1
7Y IR second and the mean OFF time is 2 seconds, and during ON
8 B time each source sends at 500Kbps. The number of simul-
g 06 fr taneous connections is varied between 50 and 150 and the
<—§ oal simulation is run for 5000 seconds. The results are averages
3 ' of 10 runs. The bottleneck link characteristics are the same as
02| TFRC vs TFRC — 1 in the previous simulation. There are two monitored connec-
e ve LS tions: a long-duration TCP connection and a long-duration
%2 o5 1 2 s 10 TFRC connection. We measure the send rates on several dif-
Timescale for throughput measurement (seconds) ferent timescales and show the results in Figures 12 and 13.
These simulations produce a wide range of loss rates, as
Figure 9: TCP and TFRC equivalence shown in Figure 11. From the results in Figure 12, we can
see that at low loss rates the equivalence ratio of TFRC and
TCP connections is between 0.7 to 0.8 over a broad range
< 06 ‘T?Cég‘é‘ of timescales, which is similar to the steady-state case. At
.g zj L | higher Iqss rates the equivalence ratio is low at all but the
2 0‘3 | - | !ongest _tlmespales because packets are sent so rarely, a_nd any
g 0'2 | R interval in wh|cr_1 only one of the floyv send_s no pa_ckets gives
€ 0.1 M a value of zero in the equivalence time series, while the inter-
38 '0 S S vals in which neither flow sends any packets are not counted.
0.2 05 1 2 5 10 This tends to result in a lower equivalence ratio. However, on
Timescale for throughput measurement (seconds) long timescales, even at 40% loss (150 ON/OFF sources), the

equivalence ratio is still 0.4, meaning that one flow gets about
40% more than its fair share and one flow got 40% less. Thus
TFRC is seen to be comparable to TCP over a wide range of
Figure 9 shows the equivalence ratios of TCP and TFRgss rates even when the background traffic is very variable.
as a function of the timescale of measurement. Curves are Figure 13 shows that the send rate of TFRC is much smoother
shown for the mean equivalence ratio between pairs of TCkhan the send rate of TCP, especially when the loss rate is
flows, between pairs of TFRC flows, and between pairs ofigh. Note that the CoV for both flows is much higher com-
flows of different types. The equivalence ratio of TCP andpared to the values in Figure 10 at comparable timescales.
TFRC is between 0.6 to 0.8 over a broad range of timescaleshjs js due to the hight loss rates and the variable nature of
The measures for TFRC pairs and TCP pairs show that thSackground traffic in these simulations.
TFRC flows are “equivalent” to each other on a broader range
of timescales than the TCP flows.

Figure 10 shows that the send rate of TFRC is smoothe?"2 Effects of TFRC on queue dynamics

than that of TCP over a broad range of timescales. Both thiBecause TFRC increases its sending rate more slowly than
and the better TFRC equivalence ratio are due to the fact thatCP, and responds more mildly to a single loss event, it is rea-
TFRC responds only to the aggregate loss rate, and not teonable to expect queue dynamics will be slightly different.
individual loss events. However, because TFRC's slow-start procedure and long-term
From these graphs, we conclude that in an environmeniesponse to congestion are similar to those of TCP, we ex-
dominated by long-duration flows, the TFRC transmissionpect some correspondence between the queueing dynamics
rate is comparable to that of TCP, and is smoother than afnposed by TRFC, and the queueing dynamics imposed by
equivalent TCP flow across almost any timescale that mightCp.
be important to an application. Figure 14 shows 40 long-lived flows, with start times spaced
out over the first 20 seconds. The congested link is 15 Mbps,
4.1.3 Performance with ON-OFF flows as background and round-triptimes are roughly 45 ms. 20% of the link band-
traffic width is used by short-lived, “background” TCP traffic, and
there is a small amount of reverse-path traffic as well. Each

In this simulation scenario, we model the effects of compet-graph in Figure 14 shows the queue size at the congested link.

ing web-like traffic (very small TCP connections, some UDP |, the top graph the long-lived flows are TCP, and in the bot-
flows). It has been reported in [PKC96] that WWW-related graph they are TFRC. Both simulations have 99% link

Figure 10: Coefficient of Variation of TCP and TFRC
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05 | 130 anioff sources < Figure 14: 40 long-lived TCP (top) and TFRC (bottom) flows,
® [ 150 on/off sources . .
2 with Drop-Tail queue management.
T o6t
S T s ‘ links, and sites connected by a microwave link, T1 link, OC3
& e e link, cable modem, and dial-up modem. In addition, condi-
021 ° o kTR i . . -
R T tions unavailable to us over the Internet were tested against
FE i real TCP implementations in Dummynet. Full details of the
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Measurement Tmescale (seconds) experiments are available in [Wid00].
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Figure 13: Coefficient of Variation of TFRC (left) and TCP
(right), with ON-OFF background traffic

To summarise all the results, TFRC is generally fair to
TCP traffic across the wide range of network types and con-
ditions we examined. Figure 15 shows a typical experiment
with three TCP flows and one TFRC flow running concur-

utilization; the packet drop rate at the link is 4.9% for the rently from London to Berkeley, with the bandwidth mea-
TCP simulations, and 3.5% for the TFRC simulations. Assured over one-second intervals. In this case, the transmission

Figure 14 shows, the TFRC traffic does not have a negativéate of the TFRC flow is slightly lower, on average, than that
impact on queue dynamics in this case. of the TCP flows. At the same time, the transmission rate of

We have run similar simulations with RED queue man-the TFRC flow is smooth, with a low variance; in contrast, the
agement, with different levels of statistical multiplexing, with bandwidth used by each TCP flow varies strongly even over
a mix of TFRC and TCP traffic, and with different levels relatively short time periods, as shown in Figure 17. Com-
of background traffic and reverse-path traffic, and have comparing this with Figure 13 shows that, in the Internet, both
pared link utilization, queue occupancy, and packet drop rated FRC and TCP perform very similarly to the lightly loaded
While we have not done an exhaustive investigation, partic{50 sources) “ON/OFF” simulation environment which had
ularly at smaller time scales and at lower levels of link uti- less than 1% loss. The loss rate in these Internet experiments
lization, we do not see a negative impact on queue dynamid@nges from 0.1% to 5%. Figure 16 shows that fairness is
from TERC traffic. also rather similar in the real world, despite the Internet tests
being performed with less optimal TCP stacks than the Sack
TCP in the simulations.

We found only a few conditions where TFRC was less fair
We have implemented the TFRC algorithm, and conducted TCP or less well behaved:
many experiments to explore the performance of TFRC in
the Internet. Our tests include two different transcontinental

4.3 Implementation results

¢ In conditions where the network is overloaded so that
flows achieve close to one packet per RTT, it is possible
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aggressive TCP retransmission timeout, and appears to fre-
quently retransmit unnecessarily, which hurts its performance
e [Pax97]. Figure 16 shows the results for both Solaris and
§ Linux machines at UMass; the Linux machine gives good
§ equivalence results whereas Solaris does more poorly. That
%; 04t vl ] this is a TCP defect is more obvious in the CoV plot (Fig-
* sl VA | ure 17) where the SolariB-RC trace appears normal, but the
UMASS (Solaris) = SolarisTCP trace is abnormally variable.
P it The apparent phase effect occured when a large number
Measurement Timescale (seconds) of TFRC flows compete with a TCP flow over the T1 bottle-

neck link out of Nokia. We don't have conclusive evidence
Figure 16: TCP equivalence with TFRC over different Inter- but it appears that, without interpacket spacing adjustment as

net paths described in Section 3.4, the TFRC flows were sufficiently
1 T T T T T T T T T T T smooth that the TCP flow suffered from a poor interaction
Mannhérm — between its own burstiness and a full DropTail queue situated
0.8 b UMASS (Linux) - E

very close to the sources. Adding the interpacket spacing ad-
] justment introduced sufficient small short-term variations in
TFRC's throughput (and hence in the DropTail buffer utiliza-
tion) due to small queuing variations downstream of the bot-
tleneck that TCP’s burstiness was less of a hinderence and
fairness improved greatly. Figure 16 shows TFRC with this
FE— TS mechanism enabled, and the Nokia flow is performing nor-
TFRC Measurement Timescale (seconds) TCP ma”y
We also ran simulations and experiments to look for the
Figure 17: Coefficient of Variation of TFRC (left) and TCP synchronization of sending rate of TFRC flows (i.e., to look
(right) over different Internet paths for parallels to the synchronizing rate decreases among TCP
flows when packets are dropped from multiple TCP flows at
for TFRC to get significantly more than its fair share of the same time [SZC90]). We found synchronization of TFRC
bandwidth. flows only in a very small number_of experiments Wl_th very
low loss rates. When the loss rate increases, small differences
¢ Some TCP variants we tested against exhibited undein the experienced loss patterns causes the flows to desyn-
sirable behavior that can only be described as “buggy”chronize. This is discussed briefly in Section 6.3 of [Wid00].

e With an earlier version of the protocol we experienced
what appears to be a real-world example of a phase e#4.4  Testing the Loss Predictor
fect over the T1 link from Nokia when the link was
heavily loaded.

*

UMASS (Solaris) &
Nokia, Boston ----e---

0.6

0.4 |

Coefficient of Variance
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As described in Section 3.3, the TFRC receiver uses eight
inter-loss intervals to calculate the loss event rate, with the
The first condition is interesting because in simulationsoldest four intervals having decreasing weights. One measure
we do not normally see this problem. This issue occurs beef the effectiveness of this estimation of the past loss event
cause at low bandwidths caused by high levels of congestiomate is to look at its ability tgredict theimmediate futureloss
TCP becomes more sensitive to loss due to the effect of rerate when tested across a wide range of real networks. Figure
transmission timeouts. The TCP throughput equation modelg8 shows the average predictor error and the average of the
the effect of retransmission timeouts moderately well, but thestandard deviation of the predictor error for different history
trro (TCP retransmisson timeout) parameter in the equasizes (measured in loss intervals) and for constant weighting
tion cannot be chosen accurately. The FreeBSD TCP usegkft) of all the loss intervals versus decreasing the weights of
for our experiments has a 500ms clock granularity, whicholder intervals (right). The figure is an average across a large
makes it rather conservative under high-loss conditions, buet of Internet experiments including a wide range of network
not all TCPs are so conservative. Our TFRC implementatiorconditions.
is tuned to compete fairly with a more aggressive SACK TCP  Prediction accuracy is not the only criteria for choosing
with low clock granularity, and so it is to be expected that ita loss estimation mechanism, as stable steady-state through-
out-competes an older more conservative TCP. Similarly unput and quick reaction to changes in steady-state are perhaps
fair conditions are also likely to occur when different TCP equally important. However these figures provide experimen-
variants compete under these conditions. tal confirmation that the choices made in Section 3.3 are rea-
Experiments from UMass to California gave very differ- sonable.
ent fairness depending on whether the TCP sender was run-
ning Solaris 2.7 or Linux. The Solaris machine has a very
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rror avg. —— proposed in [MF97, PFTK98] that specifies the allowed send-
error std. dev.

0.01 | ] ing rate as a function of the RTT and packet drop rate, and

0.008 | ] adjusts its sending rate as a function of those measured pa-
0006 | \J ] rameters.

In [TZ99] the authors describe a simple equation-based
congestion control mechanism for unicast, unreliable video

0.004 |-

avg. loss prediction error

0002 1 ] traffic. The receiver measures the RTT and the loss rate over
R R 5 16 a2 a fixed multiple of the RTT. The sender then uses this infor-
history size (constant weights (L), decreasing weights (R)) mation, along with the version of the TCP response function

from [MF97], to control the sending rate and the output rate
of the associated MPEG encoder. The main focus of [TZ99]
is not the congestion control mechanism itself, but the cou-
5 Summary of related work pling between congestion control and error-resilient scalable
video compression.
The unreliable unicast congestion control mechanisms clos- The TCP-Friendly Rate Control Protocol (TFRCP) [PKTK99]
est to TCP maintain a congestion window which is used di-uses an equation-based congestion control mechanism for uni-
rectly [JE96] or indirectly [OR99] to control the transmission cast traffic where the receiver acknowledges each packet. At
of new packets. We believe that since [JE96] uses TCP mecliixed time intervals, the sender computes the loss rate ob-
anisms directly, comparison results will not be much differ-served during the previous interval and updates the sending
ent than those described in the previous section. In the TEARate using the TCP response function described in [PFTK98].
protocol (TCP Emulation at the Receivers) from [OR99], whic8ince the protocol adjusts its send rate only at fixed time in-
can be used for either unicast or multicast sessions, the reervals, the transient response of the protocol is poor at lower
ceiver emulates the congestion window modifications of aime scales. In addition, computing loss rate at fixed time
TCP sender, but then makes a translation from a windowintervals make the protocol vulnerable to changes in RTT
based to a rate-based congestion control mechanism. The rand sending rate. We have compared the performance TFRC
ceiver maintains an exponentially weighted moving averageagainst the TFRCP using simulations. With the metrics de-
of the congestion window, and divides this by the estimatedscribed in Section 3, we find TFRC to be better over a wide
round-trip time to obtain a TCP-friendly sending rate. At therange of timescales.
time of writing this paper, we did not have access to sufficient  TCP-Friendly multicast protocols have been proposed in
information about TEAR to allow us to perform comparative [TPB, VRC98]. These scheme rely on data layering and use
studies. of multiple multicast groups. The congestion control mech-
A class of unicast congestion control mechanisms on@anisms in these papers are specific to multicast, and are dis-
step removed from those of TCP are those that use additiveussed briefly in Appendix C.2.
increase, multiplicative decrease (AIMD) in some form, but
do not apply AIMD to a congestion window. The Rate Adap- . .
tation Pfoﬁgcol (RAP) [RHI299] uses an AIMD rate control 6 ISsues for Multicast Congestion Con-
scheme based on regular acknowledgments sent by the re-  {rq|
ceiver which the sender uses to detect lost packets and es-

timate the RTT. The authors use the ratio of long-term andyiany aspects of unicast equation-based congestion control
short-term averages of the RTT to fine-tune the sending ratgre suitable to form a basis for sender-based multicast con-
on a per-packet basis. This translation from a window-basegestion control. In particular, the mechanisms used by a re-
to a rate-based approach also includes a mechanism for th@ijver to estimate the packet drop rate and by the sender to
sender to stop sending in the absence of feedback from thgyjust the sending rate should be directly applicable to multi-

receiver. Pure AIMD protocols like RAP do not account for cast. However, a number of clear differences exist that require
the impact of retransmission timeouts, and hence we believgesign changes and further evaluation.

that TFRC will coexist better with TCP in the regime where  Firstly, there is a need to limit feedback to the multicast

the impact of timeouts is significant. Another AIMD proto- sender to prevent response implosion. This requires either hi-

col has been proposed in [SS98]. This protocol makes use @frarchical aggregation of feedback or a mechanism that su-

RTP [SCFJ96] reports from the receiver to estimate loss ratgresses feedback except from the receivers calculating the

and round-trip times. lowest transmission rate. Both of these add some delay to
Equation-based congestion control [MF97] is probablythe feedback loop that may affect protocol dynamics.

the class of TCP-compatible unicast congestion controlmech-  pepending on the feedback mechanism, the slow-start mech-

anisms most removed from the AIMD mechanisms of TCP.anjsm for unicast may also be problematic for multicast as it

As already described in this paper, in unicast equation-baseg@quires timely feedback to safely terminate slowstart.

congestion control the sender uses an equation such as those Finally, in the absence of synchronized clocks, it can be

Figure 18: Prediction quality of TFRC loss estimation
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difficult for multicast receivers to determine their round-trip congestion control mechanisms for applications that would
time to the sender in a rapid and scalable manner. prefer a smoother sending rate than that of TCP. There have
Addressing these issues will typically result in multicastalso been proposals for increase/decrease congestion control
congestion control schemes needing to be a little more cormechanisms that reduce the sending rate in response to each
servative than unicast congestion control to ensure safe opdpss event, but that do not use AIMD; we would like to com-
ation. pare TFRC with these congestion control mechanisms as well.
We believe that the emergence of congestion control mech-
. anisms for relatively-smooth congestion control for unicast
7 Conclusion and Open Issues traffic can play a key role in preventing the degradation of

end-to-end congestion control in the public Internet, by pro-

In this paper we have outlined a proposal for equation-basegqing 4 viable alternative for unicast multimedia flows that
unicast congestion control for unreliable, rate-adaptive appliy,ou1d otherwise be tempted to avoid end-to-end congestion
cations. We have evaluated the protocol extensively in Simuzgnirol altogether [FF99].

lations and in experiments, and have made bothnghien- Our view is that equation-based congestion control is also
plementation and the real-world implementation publically ot considerable potential importance apart from its role in

available [FHPWOO]. We would like to encourage others t0nicast congestion control. In our view, equation-based con-

experiment with and evaluate the TFRC congestion controlegtion control provides the foundation for scalable conges-
mechanisms, and to propose appropriate modifications. s control for multicast protocols. In particular, because

The currentimplementations of the TFRC congestion COna|vp and related increase/decrease congestion control mech-
trol mechanisms (insand in the actual implementation) have 4nisms require that the sender decrease its sending rate in re-
an omission that we are planning to correct. The current congyonse to each packet drop, these congestion control families
gestion control mechanisms are designed for a sender that &, not provide promising building blocks for scalable multi-

ways has data available to send (until the last packet has be@Qgt congestion control. Our hope is that, in contributing to a

sent). When we began this work, our intention was t0 @MU re solid understanding of equation-based congestion con-

late the behavior of TCP as much as possible; however, therg, tor unicast traffic, the paper contributes to a more solid

was no consensus on the appropriate response of TCP COga\eopment of multicast congestion control as well.
gestion control to a quiescent or application-limited period,

where the previously-authorized congestion window or send-
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A Analysis of TFRC given a fixed round-trip time, and without history discount-
ing, the sending rate increases by at most 0.12 packets/RTT.
A.1 Upper bound on the increase rate This analysis assumes TFRC uses the simple TCP control

Inthi . h h . fixed d-trin equation [FF99], but we have also numerically modeled the
n this section we show that, given a fixed round-trip time anqncrease behavior using Equation 1. Due to slightly different

in the absence of history discounting, the TFRC meChamsreonstants in the equation, the upper bound now becomes 0.14

'”Cﬁ‘?‘ses |t3_send|n_g ra_te by at most 0'14pr]Ck?t|S|/ iTT' packets/RTT. With the simple equation the usual increase is
Istory discounting Is a component of the full Average ¢,qq g the upper bound; with Equation 1 this is still the case

:‘OSS. Ir:terv?ll methotd t?ﬁt 'St |r?vokt(—:]d after the lmost. r:acen or flows where the loss rate is less that about 5% but at higher
0ss Interval 1S greater than twice the average 10Ss INteVay, o rates the increase rate is significantly lower than this up-

to smoothly discount the weight given to older loss mtervals.per bound.

In this section we show that with fixed round-trip times and When history discounting is invoked, the relative weight
the invocation of history discounting, the TFRC mechanismror the most recent interval can be incréased upte: 0.4:
increases its sending rate by at most 0.28 packets/RTT. this givesir ~ 0.28, giving an increase in the sending rate of

For simplicity of analysis, in this section we assume thatat most 0.28 packets/RTT in that case.

:FRE uslg:;ge d?\ermmltstli: vers;pn of tI;e”TCF? FESPONSE  As this section has shown, the increase rate at the TFRC
unction [ ] as the control equation, as follows: sender is controlled by the mechanism for calculating the loss

V15 event rate at the TFRC receiver. If the average loss rate was
= F\/Z_’)- calculated simply as the most recent loss interval, this would

mean a weight of 1, resulting indz ~ 0.7. Thus, even if all
This gives the sending rafe in packets/sec as a function of the weight was put on the most recent interval, TFRC would
the round-trip timeR and loss event rage Thus, the allowed increase its sending rate by less than one packet/RTT, given a

sending rate is at most fixed measurement for the round-trip time.
v 15/\/2_) ~ 12/\/]_) z ig L ' ' ' allowed sending rate in packets per RTT —+— |
packets/RTT. % f, —//
To explore the maximum increase rate for a TFRC flow £ = 1
with a fixed round-trip time, consider the simple case of a Hos 10 105 u s 12 125 13

Time

single TFRC flow with a round-trip time aR seconds, on a
path with no competing traffic. Letl be the TFRC flow's ) ) . .
average loss interval in packets, as calculated at the receivdrigure 19: A TFRC flow with an end to congestion at time
The reported loss event rateligA, and the allowed sending
rate is1.2v/A pkts/RTT.

After a round-trip time with no packet drops, the receiver
has received.2v/A additional packets, and the most recent
loss interval increases ly2+v/A packets. Let the most recent
loss interval be weighted by weightin calculating the aver-

To informally verify the analysis above, we have run sim-
ulations exploring the increase in the sending rate for the ac-
tual TRFC protocol. Figure 19 shows a TFRC flow with every
100-th packet being dropped, from a simulation innhsim-

, : ) ulator. Then, after time 10.0, no more packets are dropped.
age loss |_nterval, fob < w < 1 (with the We'ghts e_xpressed Figure 19 shows the sending rate in packets per RTT; this
in normalized form so that the sum of the weights is one). FOk;m 1ation uses 1000-byte packets. As Figure 19 shows, the
our TFRC implementation in the normal case, when historyrep e fiow does not begin to increase its rate until time 10.75;

discounting is not invokedy = 1/6. The calculated aver- 44 i time the current loss interval exceeds the average loss

age loss interval increases framto at mostA + 7&1“/2_\/2 interval of 100 packets. Figure 19 shows that, starting at time
packets. The allowed sending rate increases ftaw A to 10.75, the sender increases its sending rate by 0.12 packets

at mostl.2\/ A + w1.2v/A packets/RTT. each RTT. Starting at time 11.5, the TFRC receiver invokes
Therefore, given a fixed round-trip time, the sending ratenjstory discounting, in response to the detected discontinu-
increases by at most- packets/RTT, for ity in the level of congestion, and the TFRC sender slowly
changes its rate of increase, increasing its rate by up to 0.29
1.2/ A+ wl2VA =1.2VA + ir. packets per RTT. The simulation in Figure 19 informally con-

o ) ) firms the analysis in this section.
This gives the following solution faf:

B / A.2 The lower bound on TFRC’s response time
or =12 ( A+wl2vd - \/Z> ®) for persistent congestion

Solving this numerically forw = 1/6, as in TFRC without = This section uses both simulations and analysis to explore
history discounting, this givedr ~ 0.12 for A > 1. Thus, TFRC’s response time for responding to persistent conges-
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tion. We consider the following question: for conditions with only four loss intervals. However, after five small loss inter-
the slowest response to congestion, how many round-trip timgals the lower bound on the average loss interv%lﬁ& ip;
n Of persistent congestion are required before TFRC congeghus, in this simple model, it is possible for the average loss
tion control reduces its sending rate in half? For the simplifiednterval to be reduced by a factor of four after five loss inter-
model in this section, we assume a fixed round-trip time; thusyals. Thus, in this model with fixed round-trip times and mild
we do not consider the effect of changes in round-trip time orcongestion, it might be possible for the sending rate to be cut
the sending rate. We assume that, for an extended periodh half after five consecutive round-trip times of congestion,
all loss intervals have been of lengtiip packets, for some but it is not possible for the sending rate to be cut in half after
loss event ratg. When congestion begins, we assume that afour consecutive round-trip times of congestion.
least one packet is successfully received by the receiver each
round-trip time, and that the status reports transmitted each
round-trip time by the receiver are successfully received by
the sender. Thus, we are not considering the TFRC sender’s
mechanisms for reducing its sending rate in the absence of
feedback from the receiver. ' Time
Given this model, assume thatround-trip times of per-
sistent congestion are required before the TFRC sender resigure 20: A TFRC flow with persistent congestion at time
duces its sending rate by at least half. (That is,nldie a  10.
lower bound on the number of round-trip times of persistent
congestion required before the TFRC sender reduces its send- In fact this lower bound is close to the expected case. To
ing rate by at least half.) informally verify this lower bound, which applies only to the
The control equation used in TFRC is nonlinearj®  simplified model described above with equal loss intervals
for higher values op. A higher pre-existing loss event rate before the onset of persistent congestion, we have run simula-
results in a stronger response by the TFRC sender to an ifions exploring the decrease in the sending rate for the actual
crease in the reported loss event rate. In order to explore thERFC protocol. This is illustrated in the simulation shown in
slowest possible response of the TFRC sender to congestiohigure 20 which consists of a single TFRC flow. From time 0
we assume that we are in the region of the control equationntil time 10, every 100th packet dropped, and from time 10
where the sending rate is essentially proportional\}%o for  on, every other packetis dropped. Figure 20 shows the TFRC
loss event ratg. This is true in the region of small to moder- flow’s allowed sending rate as calculated at the sender every
ate loss event rates. round-trip time, with a mark each round-trip time, when the
In this model of fixed round-trip times, for the region of sender receives a new report from the receiver and calculates

moderate congestion, if the sending rate is reduced at leadthew sending rate. As Figure 20 shows, when persistent con-

in half, this can On|y have been caused by the loss event ragﬁstion begins at time 10, it takes five round—trip times for the

increasing by at least a factor of four, and therefore by thesending rate of the TFRC flow to be reduced by half.

average loss interval decreasing to at mgdt-th of its previ-

ous value. We note that in an environment where the round-

trip time increases with the onset of persistent congestion, the

TFRC sender would decrease its sending rate more strongly |

in response to congestion. . L = ¥E v 2
For this model of fixed round-trip times, what is the most Packet Drop Rate

drastic possible reduction in the average loss interval in re-

sponse ta: small loss intervals from persistent congestion?Figure 21: Number of round-trip times to reduce the sending

The most drastic possible reduction, not in fact achievable imate in half.

practice, would be when the small loss intervals were each of o _

size 0. We consider a model where the average loss interval Figure 21 plots the number of round-trip times of persis-

is computed as described in Section 3.3. After one small los&nt congestion before the TFRC sender cuts its sending rate

interval, the average loss interval calculated by the receiver i§ half, using the same scenario as in Figure 20 with a range
still at least of values for the initial packet drop rate. For the TFRC simu-

lations in Figure 21, the number of round-trip times required
3+08+06+04+021 5 to reduce the sending rate by half ranges from three to eight.
6 p 6p We note that for all of the simulations with lower packet drop

. . . _rates, the TFRC sender takes at least five round-trip times to
After two small loss intervals, the average loss interval is at . ; : }

9 o ; reduce its sending rate by half. Therefore, Figure 21 doesn’t
Ieastg. Similarly, after four small loss intervals the aver-

. . o ) contradict the result earlier in this section.
age loss interval is at Iea%. That is, it is not possible for This does notimply that the TERC flow’s response to con-
the average loss interval to have reduced by a factéover  gestion, for a TFRC flow with round-trip time, is as dis-

140
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T T
allowed sending rate —+— ]

Allowed Rate (KBps)
®
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T T
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ruptive to other traffic as that of a TCP flow with a round-trip path, and therefore the rate of acknowledgements transmitted
time 5R, five times larger. The TCP flow with a round-trip on the reverse path. The TCP sender in congestion avoid-
time of 5R seconds sends at an unreduced rate for the entirance sends one extra data packet each round-trip time, each
5R seconds, while the TFRC flow reduces its sending ratetime the congestion window is increased by one packet. Thus,
although somewhat mildly, after only seconds. when a TCP flow is the only active traffic on a path, and has
achieved 100% throughput, as after time 30 in Figure 22, the
A.3 The effect of increasing queueing delay T_CP sender receives A_CK_s at exactly the rate of the band-
width of the congested link in the forward path. Every round-
In this section we consider the effect of increasing queueingrip time the TCP sender sends one packet above the rate al-
delay on the sending rate of a TFRC flow. In particular, welowed by the bandwidth of the congested link over the previ-
consider the sending rate of a single flow at the point when @us round-trip time. As a result, the queue at the congested

queue has just begun to build at the congested link. link increases by one packet each round-trip time.
As described in Section A.1, given a fixed round-trip time,

the TFRC sender increases its sending rate each round-trip ¢ - - -

3 “flow" ———
time bydr packets/RTT, fobr given in Equation (5). In this g ol _— |
section we show that, once queueing delay begins to build, the 2 W
increase in queueing delay servestoinhibitthis increaseinthe € si \” ,
TFRC sending rate, and the TFRC sending rate stabilizes. & °2{; = = - - 1

We show that this is similar to the role of the ACK-clock
in limiting the sending rate of TCP. While TCP increases its
congestion window by one packet per round-trip time when
in congestion avoidance phase, this does not result in an un-
bounded increase in the sending rate. In particular, because
of the role of the ACK-clock, a TCP sender in the congestion
avoidance phase never sends more that one pkt/RTT above o m p o o m
the receive rate for that flow. Time (in Seconds)

Time (in Seconds)

20 T T T eyt "
queue’
15 | "drops" X B

Queue (in Packets)
=
o
T
L

Figure 23: Two TFRC flows on a single link.

Figure 23 shows the same simulation with two TRFC flows.
Although no packets are dropped from time 30 to time 34, the

Rate (in Pkts/0.1 Sec)

28 30 2 ” 3 38 TFRC sending rate never exceeds 20 packets/0.1 second. For
Time (in Seconds) the TFRC flow in Figure 23, the sending rate increases from
S , . . on s time 30 until time 31.6, when the queue begins to build at the
g sf "drops” < congested link. At this point, the sending rate of the TFRC
E wr p flattens out, even in the absence of new packet dtopée
g ° 1 show below that for TFRC, the slow increase in the measured
S I X x L x x4 x| round-trip time counterbalances the slow decrease in the re-
28 30 32 34 36 38

ported packet drop rate, stabilizing the TFRC sending rate.
Let W be the delay-bandwidth product of the path, in
packets, in the absence of queueing delay, andlbt the
round-trip time. ThenR/W is a single packet transmission
time on the congested link. For simplicity, in this simple anal-
Figure 22 shows a simulation with two TCP flows on aysjs we assume that the sender uses the instantaneous mea-
congested link, where flow 1 terminates at time 30. In thesyrement of the round-trip time in calculating the allowed
top graph, a line shows the number of packets transmitted byending rate. Assume that at timg the sender’s sending
each flow over 0.1 sec intervals. There is an ‘X’ at the botrate has increased to exactly the link bandwidth. (This hap-
tom of each graph for each packet drop; as the graph showpens at time 31.6 in Figure 23.) At this time, the queue is
there are no packet drops from time 30 to 32, but the sendingmpty, the measured RTT &8, and the sending rate ,%
rate of flow 0 never exceeds 21 packets/0.1 seconds. The bQ§ackets/sec. Let/A be the reported packet drop rate from
tom graph of Figure 22 shows the queue size in packets. Th@e receiver at this time. That is} is the average loss inter-

queue is using RED queue management. val calculated at the receiver. Because at tipthe allowed
For the simulation with TCP, TCP’s ACK clock limits the — . _ _
sending rate of the TCP sender. Thatis, no matter how fast the " the TFRC code in NS, there is an upper bound on the TFRC sgndi

. . . . éae that is either twice the receiver's reported receivte,rar one packet
sender is sending, the available bandwidth on the congestegd, round-trip time, whichever is larger. However, this eppound is not

link limits the rate of data packets transmitted on the forwardeached in this simulation.

Time (in Seconds)

Figure 22: Two TCP flows on a single link.
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sending rate”T\/Z equals the link bandwidth., it follows 1.5Mb/s RED

IHWM “n

1!

30
25
W =12VA. (6) 20

|
I
{

Recall that with a fixed round-trip time, the TFRC sender 8 * h ” lN "N mmml t VHM |
increases its sending rate each round-trip timeypypack- quini H“” " 1|'*' L
ets each round-trip time, fof; given in Equation (5). As-
sume that the queue increasesdhypackets each round-trip L Mbjs RED
time. Aftern round-trip times the queue has increasea by 20 '
packets. This increases the round-trip timedy R/W sec-
onds, increasing the most recent loss intervahiby2v/'A + JN j M l ‘h
drn(n — 1)/2 packets. As a result, the average loss inter- m l
val calculated at the sender increases frano roughly A + U il " M.\l ) | ll LY, w !
w(n1.2v/A+6rn(n—1)/2) packets. The new allowed send- ° 10 1 20 25 Time (s)
ing rate calculated at the TFRC sender afteound-trip times
of a slow increase in the queue size is as follows:

Queue (in Pkts)

\\ IUM j

Time (s)

Queue (in Pkts)
=
(2]

Figure 24: Four long-lived TCP (top) and TFRC (bottom)
1.2\/A—|—w(n1.2\/Z+ n(nQ_*l)(;T) flows.

R+ nérR/(1.2V/A) _ . .
of these simulations use RED queue management. The first
Exploring this numerically, this allowed sending rate remainstwo lines of Table 25 show the link utilization (averaged over
fairly constant as: ranges from 0 to 100. We usedis 1/6  the 30-second simulation) and packet drop rates for these two
anddr is 0.14, as described earlier in this section, and consjmulations.
sidered a wide range of values fdrand R.

This section shows that as queueing delay starts to build, Num. | Link | Drop
the decrease in the measured packet drop rate is balanced by || Queue | Traffic | Flows | Util. | Rate
the increase in queueing delay, and the TFRC sending rate RED TCP | 4 83 | 47
stabilizes. For a simulation with multiple TFRC flows, there RED TFRC | 4 89 |59
is a similar stabilization in the TFRC sending rate as a result DropTail | TCP | 4 89 5.2
of the increase in the measured round-trip time. We have not DropTail | TFRC | 4 9% | 4.9
attempted to give a rigorous proof in this section, but have RED TCP | 40 98 4.1
simply tried to lend insight into the stabilization of a TFRC RED TFRC | 40 98 5.0
flow’s sending rate in response to the onset of queueing de- DropTail | TCP | 40 99 | 49
lay. DropTail | TFRC | 40 99 3.5

Figure 25: Link utilization and packet drop rates.
B Effect of TFRC on queue dynamics,
extended version As Figure 24 shows, the simulation with TFRC traffic has
a slightly higher packet drop rate and link utilization than

In this section we continue an examination begin in Sectioff€ Simulation with TCP. Although we have not quantified
4.2 of the effects of TFRC on queue dynamics. it, it is clear thz_it the S|mulat|o_n with TFRC traffic has _Iower-_

There are two significant differences between TCP-imposggauency oscillations of the instantaneous queue size, with
and TFRC-imposed queue dynamics. TFRC responds mol@nger busy periods, as we might expect with TFRC.
slowly and mildly to a single loss event than does TCP, and  Figure 26 illustrates the queue dynamics with the same
TFRC does not probe as aggressively for available bandwidthimulation scenario, but with Drop-Tail instead of RED queue
as does TCP. As a consequence, in an Drop-Tail environmeRtanagement. For the simulations with Drop-Tail queue man-

queue busy periods with TCP traffic can be shorter but mor@gement, the TFRC simulation gives a higher link utilization
frequent than with TFRC traffic. and a lower drop rate than the TCP simulation. The third and

Figure 24 shows results from two simulations with four fourth lines of Table 25 show the link utilization and packet
long-lived flows, with start times spaced out over the first 204rop rates for these two simulations. A chart of the average
seconds, with a congested link of 1.5 Mbps, and round-trifluéueing delay would show a higher average queueing delay
times of roughly 45 ms. The simulations include the sam@Vith DropTail than with RED queue management.

random background and reverse-path traffic as in the simula- Queue dynamics can be expected to be considerably dif-
tions in Section 4.2. long-range shows a simulation where afferent with higher levels of statistical multiplexing. Figure 27

four long-lived flows are TCP, and the bottom graph showsshows simula_tions with forty I_ong—lived flows, starti_ng over
a simulation where all four long-lived flows are TFRC. Both & 20-second interval, competing over a 15 Mbps link using
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1.5Mbfs DropTail between zero and twenty. Similarly, in these simulations there
30 . . . N . .
Z 2 is some variation in the round-trip times for the long-lived
g ig connections. If we remove these elements of randomization,
g w0} and look at a simulation with forty long-lived flows that start
& g I over the first twenty seconds, each with the exact same round-
5 10 15 20 25 Time () trip time, we find a more pronounced oscillations in the queue
size.
1.5Mb/s DropTail
. 30 15Mb/s DropTail
e 25 250 .
T ol £ 200
€ 15f o
[ £ 150
2 12 i g 100
54 0 | | | | g’ 50 -
5 10 15 20 25  Time (s) 0 L L L I I
5 10 15 20 25 Time (s)
. . 15Mb/s DropTail
Figure 26: Four long-lived TCP (top) and TFRC (bottom) 250 i
—~ T W W I S —
flows. 2 20 g
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g 100 g
S 50
O 0 Il Il | Il
5 10 15 20 25 Time (s) Figure 28: 40 long-lived TCP (top) and TFRC (bottom) flows,

no randomization.

15Mb/s RED

As an example, Figure 28 shows oscillations with both
TCP and TFRC flows in simulations with no small TCP flows,
no reverse-path background traffic, no variations in the round-
trip times of the long-lived connections, and Drop-Tail queue
s 0 15 2 s Ttme  management. This is a scenario designed to elicit fixed oscil-

lations in queue size, and for the TCP traffic there are indeed

standing oscillations in the queue size, though the queue does

; . i not go idle in this scenario. We note that neither TCP nor

Figure 27: 40 long-lived TCP (top) and TFRC (bottom) flows. TFRC flows exhibited oscillations in this scenario with RED

queue management. We also note that TFRC'’s delay-based
RED queue management. The link bandwidth is ten timesongestion avoidance mechanism described in Section 3.4,
that in Figures 24 and 26, and there are also ten times as mamhich improves stability in the presence of short-time-scale
flows, resulting in the same overall level of congestion but achanges in the round-trip time, is instrumental in preventing
higher level of statistical multiplexing than in Figures 24 andmore pronounced oscillations with TFRC.
26.

The bottom half of Table 25 shows the link utilization and
packet drop rates for the simulations in Figures 27 and 14.C More related work
Note that for the simulations with Drop-Tail queue manage- )
ment, the queue is nearly full for most of the simulations,C':L Related work on TCP response functions
whether with TCP or with TFRC traffic. In both cases, the]’he simple TCP response function in [MF97] is as follows:
packet drop rates are low, but the average queueing delay is

Queue (in Pkts)

much higher than with the simulations with RED queue man- _ V1.5s 7
agement. Ryp’ (7)

We note that it is possible to construct simulations with )
medium-scale statistical multiplexing with more pronounced? his gives an upper bound on the sending faie bytes/sec,
oscillations in the queue size than those shown in Figures 225 @ function of the packet size round-trip time &z, and
and 14. For the simulations in Figures 27 and 14, 20% of thétéady-state packet drop rate This version of the TCP re-
link bandwidth is used by short TCP flows, where for eachSPOnse function is derived from a simple deterministic model,
flow the number of packets to transmit is randomly choserfXplored in [Flo91] and elsewhere, where the TCP connec-

tion receives regular deterministic packet drops. In this deter-
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ministic model, a packet is dropped each time the congestion
window reache$V packets. The congestion window is mul-
tiplicatively decreased t8//2 in response to the packet drop,
and then additively increased until it again reachiés We
note that this model does not take into account probabilistic
drops. In addition, this simple model does not take into ac-
count the retransmit timeouts, or exponential backoffs of the
retransmit timers, that are a key component of TCP’s conges-
tion control in the high-packet-drop-rate regime.

An earlier, more sophisticated derivation of the TCP re-
sponse function from [MSMQO97, OKM] analyzes an prob-
abilistic AIMD-based model of TCP where each packet is
dropped with a fixed probability. Again, this probabilistic
model does not take into account the role of TCP’s retrans-
mission timeouts.

In [MSMQO97, PFTK98] the authors have shown that in
many real-world TCP connections a large percentage of win-
dow reduction events are due to timeouts, and that the models
in [MF97, MSMO97, OKM] overestimate the sending rate for
packet loss rates greater than 5%. The TCP response function
in Equation (1) is based on a model of TCP that takes into ac-
count the impact of retransmission timeouts [PFTK98]

Additional papers discussing the TCP response function
can be found on the TCP-Friendly Web Page [TCP].

C.2 Related work on multicast congestion con-
trol mechanisms

This section discusses briefly some of the TCP-compatible
congestion control mechanisms for multicast traffic.

The Loss-Delay based Adjustment (LDA) algorithm de-
scribed in [SS98] applies AIMD directly to the sending rate
rather than to a congestion window. The protocol in [SS98]
relies on regular RTP/RTCP [SCFJ96] reports to estimate the
loss rate and the RTT. An AIMD scheme based on these esti-
mates is then used to control the sending rate. The receiver-
based, multicast congestion control mechanism in [VRC98]
uses data layering and multiple multicast groups to achieve
a TCP-like AIMD effect. The sending rate of each layer is
a multiple of sending rates of lower layers. Upon detecting
losses, the receiver joins or leaves multicast groups to receive
specific layers. The approach in [VRC98] uses periodic syn-
chronization points for receivers to synchronize in the joining
of additional layers.

The receiver-based, multicast congestion control mecha-
nism described in [TPB] applies equation-based congestion
control in an environment with data layering and multiple
multicast groups. Each receiver estimates the packet loss rate
and RTT, and uses a version of the TCP response function to
compute the permitted reception rate. Based on this rate, the
receiver decides which layers to receive by joining or leaving
layered multicast groups.
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