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Abstract

Arrays are probably the most widely used data structure in imperative programming
languages, yet functional languages typically only support arrays in a limited manner, or
prohibit them entirely. This is not too surprising, since most other mutable data structures,
such as trees, have elegant immutable analogues in the functional world, whereas arrays
do not. Previous attempts at addressing the problem have suffered from one of three
weaknesses, either that they don’t support arrays as a persistent data structure (unlike the
functional analogues of other imperative data structures), or that the range of operations
is too restrictive to support some common array algorithms efficiently, or that they have
performance problems.

Our technique provides arrays as a true functional analogue of imperative arrays with
the properties that functional programmers have come to expect from their data struc-
tures. To efficiently support array algorithms from the imperative world, we provide O(1)
operations for single-threaded array use. Fully persistent array use can also be provided
at O(1) amortized cost, provided that the algorithm satisfies a simple requirement as to
uniformity of access. For those algorithms which do not access the array uniformly or
single-threadedly, array reads or updates take at most O(log n) amortized time, where n
is the size of the array.

Experimental results indicate that the overheads of our technique are acceptable in
practice for many applications.

1 Introduction

Data structures in the functional world and the imperative world are different. The

imperative style of programming involves assignment and the mutation of existing

data structures, whereas the functional model does not. To describe the ramific-

ations of these differences, we will use the terminologies of Schmidt (1985) and

Driscoll et al (1989). Updates to a mutable data structure destroy the old version

of the data structure in creating the new — thus in Driscoll’s terminology mutable

data structures are ephemeral. In contrast, updates to an immutable data structure

need to leave the original version of the data structure accessible and unchanged,

and so must create a separate new version where the relevant change has been made

— thus, in Driscoll’s terminology, immutable data structures are persistent. Driscoll

also introduced a concept of partial persistence, where the original version remains
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readable after an update, but cannot itself be updated. In Schmidt’s terminology,

algorithms that only ever refer to the most recent version of a data structure are

single-threaded, and those that do not are non-single-threaded. From these defini-

tions, single-threaded algorithms only require data structures that are ephemeral,

and ephemeral data structures can only support single-threaded algorithms.

Functional languages typically spurn explicit mutation of data structures, which

means that data structures in functional languages tend to be persistent. This

typically means functional programs do more copying than their imperative coun-

terparts, but for most data structures, the additional cost is small enough to be

outweighed by the elegance and safety of functional solutions. However, while mut-

able trees, lists and other linked data structures have pleasing functional analogs,

arrays do not. The cost of having to copy a whole array, of arbitrary size, at every

update seems grotesque and unacceptable.

In a functional context, then, while we could construct a vector data structure

that allowed rapid indexing, as imperative arrays do, we cannot so easily provide a

functional analog of the array element update that is the cornerstone of imperative

array use.

1.1 Ignoring and Sidestepping the Problem

Since providing efficient functional arrays seems awkward, we shouldn’t be too

surprised that usually they aren’t provided. Approaches vary from providing no

arrays at all, to providing them but restricting the kinds of accesses that can be

done efficiently, to offering no functional array support but providing imperative

arrays instead.

Miranda (Turner, 1986) takes the first approach, offering no support for arrays,

and the Standard ML definition omits them too (although most Standard ML im-

plementations take the third approach and provide imperative arrays as an impure

feature).

Haskell (Hudak et al., 1992) opts for the second approach. It does provide func-

tional arrays, but the functions provided seem designed to process groups of updates

at once. In current implementations these mass update operations have O(n + u)

cost, where n is the size of the array and u is the number of updates performed

together. While some algorithms can use this technique efficiently, by collecting

groups of O(n) updates and performing them en masse, others cannot. Unless up-

date analysis (Bloss, 1989) is employed by the Haskell compiler, this technique

cannot even offer good performance for common single-threaded algorithms from

the imperative world.

Concurrent Clean (Huitema & Plasmeijer, 1992) opts for the third approach, but

unlike Standard ML implementations, manages to do so quite elegantly, providing

safe access to ephemeral imperative structures, including arrays, by the use of u-

nique types (Achten et al., 1993), which are similar to the linear types proposed by

Philip Wadler (1990b). Unique types allow access to mutable structures by enfor-

cing a restriction that there can only be one copy of any pointer to such structures.

The mechanism allows array algorithms from the imperative world to be ported
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to Concurrent Clean (although observing the ‘single reference’ property may make

the ports rather more awkward than it would first appear).

Corresponding work has also been done on providing Haskell with safe support

for imperative features. Here the work has not so much been on incorporating linear

types into the language, but instead on programming using monads (Wadler, 1990a;

Wadler, 1992). In Haskell, one could provide imperative arrays by using an array

monad. Again this would allow imperative array algorithms that have no obvious

functional counterpart to be ported to Haskell.

The problem with this third approach is that it does not address the issue of

providing a functional analog of imperative arrays. If either unique types or mon-

ads are used to implement a comprehensive array package that can support all

imperative array algorithms, we also end up with a package that also allows back

into the language the very bugs that functional programming style is supposed to

eliminate. Also, by providing arrays as an ephemeral and not a persistent data

structure, arrays become special and unlike other functional data structures, which

can pose problems because ephemeral data structures cannot be used in non-single-

threaded algorithms.

For these reasons, others have looked at the issue of providing a true functional

analog of imperative arrays that allows them to be used as persistent structures.

1.2 Previous Attempts at Functional Arrays

Perhaps one of the most commonly used techniques to provide functional arrays is

to use a balanced binary tree with integer keys (Myers, 1984), or a tree where the

bit pattern of array index is used to determine the position of the element in the

tree (Hoogerwoord, 1992). This method has O(log n) time complexity for element

read, and O(log n) time and space complexity for element update, where n is the

size of the array. It is typically used when programmers have needed arrays and

had to ‘roll their own’, especially in languages like Miranda (Turner, 1986) where it

is not possible to extend the runtime environment to provide new functions which

internally use some imperative structures, making trees practically the only choice.

Sören Holmström (1983), John Hughes (1985) and Annika Aasa et al (1988) have

proposed a technique called version tree arrays or trailer arrays. The technique,

which is in fact a rebirth of Henry Baker’s shallow binding method (1978; 1991),

provides excellent performance for single-threaded algorithms. However, while it

does provide for non-single-threaded access, its performance when used as a per-

sistent data structure can be arbitrarily bad, being linear in the number of updates

between the old version accessed and the most recent version.

Tyng-Ruey Chuang (1992) extended the version tree array technique to provide

periodic cuts to the version tree, ensuring that reads of any array element costs

at most O(n), where n is the size of the array, in the fully persistent case, while

continuing to provide O(1) performance for single-threaded algorithms. Chuang’s

method also provides an operation to perform r reads, where r is Ω(n), in O(r)

amortized time. These voluminous reads are further restricted to be of versions

that form a linear path in the version tree. Chuang states that this voluminous read
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operation may prove useful in practice for some non-single-threaded algorithms, but

this still leaves the technique with an unfortunate O(n) worst case performance.

Chuang later developed an alternative method for providing cuts to the version

tree array based on randomization (1994). The idea is that instead of making cuts

to ensure reads of any array element takes at most O(n) steps, cuts are performed

with a probability of 1/n during read operations. This method has expected worst

case performance of O(u + r + nu) for u updates and r reads of an initial array

of size n, which we can restate as an expected amortized performance of O(1 +

nu/(r +u)) per access. Chuang proves that this is within a factor of two of optimal

for any strategy involving cuts to a version tree array. Chuang doesn’t consider

the theoretical space overheads of his algorithm, but it appears that the expected

amortized space requirements are O(1) space per element read, until the array

versions take O(nu) space in total; in other words the upper bound on space is

the same as the upper bound for näıvely copying the array at every update. This

contrasts sharply with other techniques, which almost universally require no space

consumption for element reads.

Prior to Tyng-Ruey Chuang’s work, Paul Dietz presented, in extended abstract

form (1989), a technique that supports fully persistent arrays in O(log log n) ex-

pected amortized time for read and update, and O(1) space per update. Dietz’s

technique is however particularly complex, and it seems unlikely that it could be

implemented without a large constant factor overhead, making it more theoretic-

ally interesting than useful in practice. Dietz’s work in this area seems to have been

largely overlooked by those working in this field (Baker Jr, 1991; Chuang, 1992),

perhaps because the method was never published as a complete paper. Dietz’s tech-

nique is interesting however, since it is broadly similar to ours in its early stages,

both being inspired by the work of James Driscoll and company on persistent data

structures (1989). However, beyond the common inspiration of Driscoll’s work, our

work and Dietz’s differ significantly.

More overlooked than Dietz’s work is that of Shimon Cohen (1984), being ignored

by all the above authors, and almost overlooked by ourselves1. Cohen’s method is

similar to both our method and that of Dietz, being based on the idea of storing

changes at the level of elements, rather than at the level of the array, and using a

version counter. However, Cohen’s method is less sophisticated than either Dietz’s

or our own, and claims2 a worst case performance for read of O(ue), where ue is the

number of updates performed on element e (although it does also achieve updates

in O(1) time).

1 Thanks to Chris Okasaki for bringing it to our attention.
2 From our understanding of Cohen’s work his result only holds for partially persistent

updates — a pathological fully persistent update sequence can actually cause accesses
to take O(u) time, where u is the total number of updates made to the array.
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1.3 Improvements with Our Method

The weaknesses of existing schemes for implementing functional arrays have promp-

ted us to develop an array method which can also provide O(1) performance for

single-threaded algorithms but has better typical use and worst case performance

than prior solutions.

Many array algorithms access array elements evenly, where no element is read or

updated (both of which we generically call accessed) more than k times the average

for all elements in the array, where k is a constant. If an algorithm uses arrays

evenly, we guarantee that the accesses will take O(1) amortized time. The accesses

do not even need to be on a single version of the array, but can be on any array

in a realm of O(n) adjacent versions (what we mean by this term is explained in

Section 2.1).

If an algorithm uses an array unevenly, the worst case performance of our tech-

nique is O(log n) amortized time for an access, with O(1) amortized space cost for

an update. This worst case performance is much better than Chuang’s O(n) per-

formance for read accesses, and also better than binary trees, which are O(log n)

time for all accesses and require O(log n) space for each update. Our technique is

also likely to perform better than Dietz’s method for most real cases, despite the

better expected amortized asymptotic performance of his technique.

2 The Fat Elements Method

In our opinion, most previous attempts at providing functional arrays have failed

to achieve good worst-case bounds because they failed to capitalize on the struc-

ture of arrays3. The popular technique of trailers, for example, stores change lists,

a technique that can in fact be applied to any data structure (Overmars, 1981;

Overmars, 1983). The fact that each change can only be to a single element of the

array is lost, and changes are only thought of as being applied to the array as a

whole. Our approach, on the other hand, does notice that reads and updates are

done on single elements, and so stores changes at the element level.

We use a scheme similar to the fat node method suggested by Driscoll et al (1989),

which was for implementing persistent linked data structures of bounded in-degree,

but our scheme is adapted for use with arrays, and refined. As Driscoll et al’s

technique used fat nodes, so ours uses fat elements.

In our method4, each array version receives a unique version stamp, which is used,

along with fat elements, to store multiple array versions in a single master array. A

fat element maps version stamps to values, being able to return the element’s value

for any version of the array. The master array is simply an array of fat elements.

To ensure good performance, we guarantee that we never store more than Θ(n)

3 Cohen’s (Cohen, 1984) and Dietz’s (1989) techniques do capitalize on the structure of
arrays and thus do achieve good worst case bounds.

4 The source for which is available though the JFP Internet home page (http://
www.dcs.gla.ac.uk/jfp/code/oneill-arrays.tar.gz).
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versions in a master array, where n is the size of the array, breaking it into two

independent master arrays when necessary to preserve this condition.

2.1 Version Stamps

The master array stores several array versions, and so requires some form of tagging

mechanism so that data corresponding to a particular array version can be retrieved

or stored. These tags are known as version stamps. We arrange for versions stamps

to have an ordering, whereby an update on some array version with version stamp

xv creates a new array version with version stamp yv, such that xv < yv.

If we only allowed the most recent version of an array to be updated (a restriction

known as partial persistence), issuing version stamps would be simple; we could issue

versions stamps from a simple integer counter. But, while partial persistence would

be sufficient for some algorithms, it wouldn’t be satisfying in general, since the

array interface would not be referentially transparent and the programmer would

be left having to worry about which array version was the most recent and be sure

to only update that version and no others.

Allowing any version of the array to be updated requires a more complex ar-

rangement. If x, y and z are array versions, with version stamps xv, yv and zv

respectively, and where both y and z are arrays derived from x though some se-

quence of updates, it is clear from the rule given earlier that xv < yv, and that

xv < zv, but no ordering is defined between yv and zv. Thus our requirements, as

stated so far, only dictate a partially ordered version stamping scheme.

A partially ordered version stamping scheme would cause problems, however,

because it would preclude the use of efficient data structures for storing data keyed

by array version stamp. Also the generation of n partially ordered version stamps

seems to require O(n2) space and time in the worst case, which is unacceptable.

Instead, we impose some additional structure that allows us to allocate version

stamps under a totally ordered scheme. The additional structure results from saying

if xv < yv and xv < zv, and yv was created before zv, then yv > zv. More formally,

we can state the rule as follows: let V be the set of all currently existing version

stamps, and x be an array version, with version stamp xv, if we update x to form

a new version y, y will be given a version stamp yv such that xv < yv and ∀v ∈

V s.t. v > xv, v ≥ yv — in other words, yv is the least version greater than xv.

This version scheme corresponds to an existing and well studied problem, the

list order problem. The technique above inserts version yv after some version, xv,

but before all the versions that follow xv, which parallels inserting items into an

ordered list. One solution to this problem would be to maintain a linked list of ver-

sions, and for efficient comparisons give each version a real number tag, where later

versions in the list have greater tags. With this scheme a version inserted between

two other versions would be given a tag that lies between the tags of those two

versions. A problem with this version stamping method is that it requires arbitrary

accuracy real arithmetic, which cannot be done in constant time. Practical solutions

that take constant time for insertion, deletion, successor and predecessor queries,

and comparisons do exist, however (Dietz & Sleator, 1987; Tsakalidis, 1984). We
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(a) A version tree and the totally ordered version stamps that are
applied to it. In the diagram arrows represent updates, and further,
the array versions were created in alphabetical sequence, thus array
version c was created before version d was, etc.

i

v0.7

a

v0

b

v1

d

v0.5

c

v2

g

v1.5

f

v0.8

h

v0.6

e

v3

(b) The same version tree flattened to better show the imposed
total ordering.

Fig. 1. Laying a total order on a Version Tree.

include a description of Dietz and Sleator’s method for version stamping in con-

stant amortized time in the appendix to this paper.

The näıve scheme we have just outlined has some worth in its simplicity, however.

While it may not be practical for efficient implementations, its directness is very

useful for explaining the concepts of our method. In examples we will write specific

version stamps as vtag where tag is a real number following the näıve scheme (with

subscripts rounded). Figure 1 gives an example of the näıve version stamp scheme,

showing how our version stamping rules coerce the natural partial order of array

versions into a total order.

Figure 1(b) also helps explain the concept of adjacent versions, which we will

refer to later. Put simply, two versions are adjacent if there is no version between

them. It should be clear from the discussion above that in the case of partially

persistent (or single-threaded) updating, versions which are adjacent at one time

will stay adjacent, because any new versions will always come after all previous

versions, but with fully persistent updates, the new version may lie between two

previous versions, making those two no longer adjacent.
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(a) The value of this fat element
changes at v0, v3 and v4. Entries
are omitted for versions v1, v2 an-
d v5, since their values can be in-
ferred from the versions that pre-
ceded them.
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(b) Here we show not only the actu-
al values stored in the fat element,
but also the values that are inferred
(shown in grey).

Fig. 2. Fat Elements don’t contain entries for every version stamp.

2.2 The fat element data structure

As outlined earlier, a fat element is a data structure able to support a mapping

from version stamps to values. Abstractly, we can imagine it storing a set of version

stamp/value pairs.

Often array elements have the same value over several array versions, and our

data structure will capitalize on this. The nature of array update is that it operates

on a single element of the array — all other elements remain the same. We can

capture this property by storing not a complete set of version stamp/value pairs,

but just the entries for times when the element was changed, and inferring those

that are missing.

Finding the correct value for a particular version stamp in this sparse set of pairs

is still relatively straightforward. The value corresponding to some desired version

stamp, vd, can be found by finding the closest version stamp, vc, in the fat element

F , where

vc = max{v | (v, x) ∈ F ∧ v ≤ vd}

and retrieving the value corresponding to that version stamp. In other words, vc

is the greatest version stamp less than or equal to vd. This technique is shown

graphically in Figure 2, which introduces the abstract diagrammatic notation we’ll

be using when representing fat elements.

Since we impose a total order on version stamps, we can use a relatively efficient

data structure to provide the necessary insert and lookup operations, such as a

height balanced mutable tree. Further, by using a splay tree (Sleator & Tarjan, 1985)

instead of an ordinary balanced binary tree, we can gain the property that the most

recently read or updated version in a fat element is at the top of the tree, and can

thus be accessed in O(1) time. It is this property which guarantees that accesses

done by single-threaded algorithms will execute in O(1) time (since every read will

be of the root of the tree, and every update will make the new fat element entry the

root, and the previous root its left child; thus creating a tree with no right children).
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array5:

(version list)

(master array)

Fig. 3. Putting the pieces together.

The use of splay trees can also provide useful locality to some non-single-threaded

algorithms, while guaranteeing O(log e) amortized worst case performance, where

e is the number of entries in the fat element5. Later, we will ensure that e ∈ O(n).

Putting fat elements together with our version stamping system developed in the

preceding section, we have the basic data structure used for our functional array

implementation (see Figure 3). Note that the version list is set up such that, given

any entry in the list, the pointer to the master array can be read in constant time,

and updated in at most O(v) time, where v is the number of versions.

There is, however, one flaw in our method, which we must rectify before we move

on. It relates to fully persistent updates, which are updates done to array versions

which have already received one update, and to an interaction between our totally

ordered version stamping scheme and our method for slimming down fat elements6

outlined above. The problem arises because fat elements need not contain entries

for every version stamp — in other words they may contain “gaps”. If an update

to an element causes a version stamp/value pair to be added where there is a gap,

the values inferred for some of the entries in the gap may change, when they should

have remained the same. An example of this problem is shown in the first two parts

of Figure 4, were we see that adding elements into a gap can change the value of

any inferred entries that lie immediately after it.

We cannot prevent new fat element entries from being added in the places they

are, but we can take steps to prevent the addition of new entries from affecting the

values inferred for entries that lie after the one we’ve added. If we will be adding

an entry, with version stamp v, to a fat element, we need to check whether there

are any version stamps greater than v and if so, whether v’s immediate successor

(in the version list) has no explicit entry in the fat element. If this is the case, we

need to turn the implicit entry for v’s successor into an explicit entry before adding

5 Splay trees are actually more powerful than is required to provide single-threaded al-
gorithms with O(1) performance — we need only cache the most recent addition to the
tree for fast retrieval. Thus the additional complexity that accompanies splay trees can
be eliminated, if that is desired.

6 Perhaps we should be calling them reduced fat elements?
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v2 19

v3 19

v0 19

54v5

54v4

(a) A fat element with
gaps. The entry for v0

is used to provide values
for v1, v2 and v3; simil-
arly v5 is inferred using
the value for v4.

v1 19

v2 ? 26 ?

v3 ? 26 ?
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26v1.5

54v5

54v4

(b) Näıvely inserting a
value for v1.5 inside a
gap, upsets the values of
v2 and v3. Note that v1.
v4 and v5 are unaffected.

v3 19

v2 19

54v5

54v4

v1 19

v0 19

26v1.5

(c) To ensure correct
behaviour, we need to
also insert an entry
corresponding to v2

(which was previously
just inferred using the v0

entry), before inserting
v1.5.

Fig. 4. Potential difficulties in using linear version stamps.

v’s entry (see Figure 4(c)). This does mean that in this case we add two entries to

the fat element, one for v’s successor and one for v, but we never need to add more

than two, no matter how big the gap.

We now have a working method for functional arrays. In our scheme, as presented

so far, accesses to the most recently read or written value of an array element take

constant time and, in general, reading or writing an array element which has been

updated ue times takes O(log ue) amortized7 time, and updates require O(1) space.

In the next section, we will improve on this result.

2.3 Breaking up is easy to do.

Our goal now is to make things faster. We saw in the preceding section that a fat

element is just an ordered tree of version stamp / value pairs and that if the tree

has u nodes (as it will after Θ(u) updates to the element), reading or updating the

element at a particular version will take O(log u) time, as we’d expect for a tree.

Currently u is unbounded, and thus the more updates the element receives, the

slower accesses become. If we could limit u, we would achieve a better worst case

bound.

Our scheme for achieving a better worst case bound involves splitting the mas-

ter array into two independent master arrays whenever the fat elements might be

growing too fat. We will guarantee a master array hold no more than O(n) versions,

where n is the size of the array. More specifically, if c∗ is the number of fat element

entries in the master array, we impose the condition that c∗ ≤ (1+kl)n, where kl is

7 This time result can be made O(log ue) real time if a balanced tree is used instead of a
splay tree, and a real time version stamping algorithm is used.
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a positive constant8. When the master reaches its fatness limit, we split it in half,

making two independent master arrays. Since it requires Θ(n) updates to take a

master array from half full to full, we can amortize the cost of splitting the array of

size n over those updates (a full amortized time analysis is presented in Section 3).

In order to know when to break the array into two, we need to maintain some

housekeeping information. With each version stamp, we’ll associate a counter, ci,

holding the number of fat element entries that are associated with that version and

a counter, c∗, for the total number of entries stored in the master array. When it

comes time to break up the array, we’ll split things so that entries corresponding

to all versions up to the mth are placed in one master array, and all entries from

versions m + 1 onwards are put in another. We define m to be an integer such that

m
∑

i=0

ci ≤
c∗ + n

2
≥ n +

v
∑

i=m+2

ci

holds, where n is the size of the array, v is one less than the number of versions

held by the master array, c0, . . . , cv are the counters for each entry in the version

list, and c∗ their sum (also, note that c0 will always be equal to n). The left-hand

and right-hand sums will be the sizes of the two master arrays after the split —

the right-hand sum is n +
∑v

i=m+2 ci and not
∑v

i=m+1 ci because the first version

in the second array will have to have entries for all n elements, regardless of the

number of entries it had before. If there is more than one possible m, we choose the

m such that c(m+1) is maximized, thus reducing the number of fat element entries

that have to be added during the split.

The formula above can be implemented very straightforwardly as an iterative

loop, and could also be generalized for splitting the master array into k master

arrays, if that were desired.

Thus an upper bound on the number of fat element entries in each of the two new

master arrays resulting from the split is (c∗ + n)/2 (where c∗ refers to the pre-split

master array) and an obvious9 lower bound on the number of entries is n. Since

splitting only takes place when c∗ = (1+kl)n we can see that another upper bound

on the number of fat element entries in each of the new master arrays is (2+kl)n/2.

Lemma 2.1

Splitting the master array into two independent master arrays takes O(n) real time

if splitting is done when c∗ = (1 + kl)n.

Proof

The steps involved in splitting the master array are:

• Allocating space for the second array, which requires O(n) time.

8 The exact value of kl is a matter of choice — testing has shown that when reads and
writes are equally balanced, a value of around 4 is appropriate, with a lower value being
better if reads are likely to outnumber writes.

9 One can also manipulate the inequality above to show a tighter lower bound of kln/2
when kl ≥ 2, but we do not require this, with the added conditionality it brings.



12 Melissa E. O’Neill and F. Warren Burton

• Finding the split point and chopping the version list into two at that point,

which from the description above takes O(v) time. Since v < c∗ and c∗ ∈ O(n),

a loose bound on the time taken to find the split point is O(n).

• Changing one of the two version lists so that it points to the new master

array, which (as we learned at the close of Section 2.2) takes at most O(v)

time, or more loosely O(n) time.

• Splitting all the fat elements, which takes O(n) time since splitting the splay

tree for element i takes O(log ei) amortized time and at most O(ei) real

time10, where ei the number of fat element entries stored in that fat element.

For simplicity, let’s take the looser bound of O(ei) time to split. Thus the

time to split all the elements is O(
∑n−1

i=0 ei) = O(e∗) = O(c∗) = O(n). (Note

that when we split a fat element we need to ensure that it has an explicit

entry for the version that is the split point, making an implicit entry into an

explicit one if necessary.)

Since each of the steps takes is bounded by O(n), the whole operation has this same

bound.

An example of splitting, with c∗ = 2n, is shown in Figure 5.

3 Amortized time analysis

We shall examine the amortized time complexity of our method using potential

functions (Tarjan, 1985). The idea is that each configuration of the data structure

is given a real number value called its potential (we may thus conceive of a function

which takes a data structure configuration and returns us this value). We may

think of potential as representing stored energy which can be used to compensate

for expensive operations, and thus define amortized work as follows:

(amortized time) ≡ (time taken) + (increase in potential)

or, using symbols to represent the words above TA ≡ TR + ∆Φ.

We define the potential of our data structure in terms of primitive potential, φ,

where:

φ = kΦ

(

c∗ −
(kl + 2)n

2

)

where n is the size of the array, c∗ is the total number of fat element entries in

the master array, and kΦ is a constant, kl is the constant governing the size of the

master array (i.e. c∗ ≤ (1 + kl)n). The potential of our data structure, Φ is defined

as

Φ = max (φ, 0) .

Since we will often be discussing changes in potential it is worth noting that when

10 Some search tree structures might require O(ei) time if they were used instead of the
splay tree, although AVL trees (Myers, 1984) can be split in O(log ei) real time.
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(b) If the master array receives another update, we need to split the array
into two before applying the update in order that our invariants be preserved
(i.e. in order that c∗ ≤ (1 + kl)n). Here the midpoint, m, is 2, thus the first
three versions form the first array (recall that numbering starts at zero), and
the remaining two form the second array.

Fig. 5. Splitting a master array.
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∆φ is positive, ∆Φ ≤ ∆φ and that since n is invariant, ∆φ = kΦ∆c∗ . Both of these

are obvious consequences of the equations above.

Lemma 3.1

Splitting a master array A at, or before, its maximum fullness (i.e. when c∗ ≤

(1 + kl)n ), using the algorithm of Section 2.3, produces two independent arrays A′

and A′′ with primitive potential of at most 0, and hence potential of exactly 0.

Proof

The algorithm of Section 2.3 splits the master array A into two arrays, A′ and A′′.

Without loss of generality consider the first of these. Our algorithm of Section 2.3

ensures that c′∗ ≤ (c∗+n)/2, and since c∗ ≤ (1+kl)n, we know that c′∗ ≤ (kl+2)n/2.

Thus φ′ ≤ 0, and hence Φ′ = 0.

Lemma 3.2

Splitting a master array A at its maximum fullness (i.e. when c∗ = (1 + kl)n) takes

zero amortized time, for a suitably chosen value of kΦ.

Proof

The real time taken to perform the split TR has the bound TR ≤ ksn real time

(from Lemma 2.1).

After the split, we have two arrays, neither of which can be larger than (c∗+n)/2.

Recall from Lemma 3.1 that the potential of the two arrays produced in the split

(Φ′ and Φ′′) is 0. Thus the net change in potential, ∆Φ, can be defined as

∆Φ = (Φ′ + Φ′′)− Φ

= 0− Φ

= −
kΦkln

2

since Φ = kΦkln/2 when c∗ = (1 + kl)n. Since the amortized time, TA is defined as

TA = TR + ∆Φ, the amortized time taken TA has the bound

TA ≤ ksn−
kΦkln

2

If we define kΦ such that kΦ ≥ 2ks/kl we find that TA ≤ 0.

Lemma 3.3

Adding an entry to a fat element, x, takes at most ki log ex + kΦ amortized time,

where ex is the number of entries stored in fat element x, ki is a constant of the

tree insertion algorithm.

Proof

There are two cases to consider, one where splitting occurs, and one where splitting

does not.

Case 1 : The master array is not full.

In this case the actual time taken to insert the entry will be the time taken to

perform an insertion in the tree used to represent fat elements. We’ll assume
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the tree insertion takes time bounded by ki log ex, where ki is a constant

of the tree insertion algorithm. Both Splay Trees (Sleator & Tarjan, 1985)

and balanced binary trees fit this assumption — although in the case of

Splay trees, it is amortized time, but the amortization analysis for splay

trees can be considered independent of this analysis (since the potential

of the splay trees has no effect on the potential of the master array that

contains them); it just means that the resulting complexity contains two

amortizations rather than one.

Now let us consider the increase in potential from the insertion. As we

noted earlier, ∆Φ ≤ ∆φ and ∆φ = kΦ∆c∗ . In the case of inserting one

element, ∆c∗ = 1, and thus ∆Φ ≤ kΦ.

Thus, the amortized time in this case is TA ≤ ki log ex + kΦ.

Case 2 : The master array is full.

In this case we need to split the array into two arrays before performing

the insertion, using the process outlined in Section 2.3. This takes zero

amortized time (Lemma 3.2).

After the split, we have two arrays, each with at most (c∗ + n)/2 fat

element entries. We’ll be inserting a new fat element entry in just one of

them.

Inserting a new fat element takes at most ki log e′x time, where e′x is the

size of the fat element in that half. Since e′x ≤ ex, we can also say that

the time taken is bounded by ki log ex, and as in the previous case causes a

change in potential for that array of at most kΦ. The potential of the other

array remains the same, and thus has no change in potential.

Thus, the amortized time TA ≤ ki log ex + kΦ.

Lemma 3.4

Updating array version element, x, takes at most 2(ki log ex + kΦ) amortized time,

where ex is the number of entries stored in fat element e of the array version’s

master array, and ki is a constant of the tree insertion algorithm.

Proof

This trivially follows from Lemma 3.3, since in the worst case we may have to add

two fat element entries for a single update (Section 2.2).

Lemma 3.5

Updating any element of an array version takes O(log n) amortized time. (Specific-

ally it takes at most 2(ki log(kln + 1) + kΦ) amortized time).

Proof

The maximum size of a fat element ex, in the master array is ex ≤ c∗ − n + 1, and

c∗ has the bound c∗ ≤ (1 + kl)n, thus ex ≤ kln + 1. Thus the Lemma follows from

Lemma 3.4
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Lemma 3.6

Reading any element, i, of an array version takes at most kr log ei amortized time,

where ei is the number of entries stored in fat element i of the array version’s master

array, and kr is a constant of the tree lookup algorithm.

Proof

Finding the value of an element of an array version requires looking up that ver-

sion in the master array associated with that array version. The fat element holds

ei entries, and we assume that our tree lookup algorithm takes at most kr log ei

amortized time. Since reading the array does not change its potential, that bound

is the total bound on the amortized time taken to perform the operation.

Lemma 3.7

Reading any element of an array version takes at most O(log n) amortized time.

(Specifically, it takes at most kr log(kln+1) amortized time, where kr is a constant

of the tree lookup algorithm.)

Proof

Analogously to Lemma 3.5.

Lemma 3.8

Any sequence of read accesses that occur within a master array, in which no array

element is accessed more than ka times the average for elements of that master

array, where ka is a constant, takes O(1) amortized time each. (Specifically, it takes

at most kr log(ka(1+kl)) amortized time, where kr is a constant of the tree lookup

algorithm — see Lemma 3.6.)

Proof

Rather than use the method of potential functions, we shall consider an arbitrary

sequence of read accesses, in which each element, i, of the array, is accessed ai

times, with the total number of accesses being referred to as a∗ (in other words,

a∗ =
∑n−1

i=0 ai), and each fat element corresponding to array element i contains ei

entries, with e∗ being the sum of all the eis (also note that e∗ = c∗, since both

count the total number of fat element entries in the master array).

The amortized time per access can be defined as

amortized time =
time for a∗ accesses

a∗

≤
1

a∗

n−1
∑

i=0

(aikr log ei)

= kr

n−1
∑

i=0

(

ai

a∗
log ei

)

Since log is a convex function, we can at this point use Jensen’s inequality (described

in most texts on convex functions (e.g. Pecaric et al., 1993)):

n−1
∑

i=0

(

ai

a∗
log ei

)

≤ log

(

n−1
∑

i=0

(

ai

a∗
ei

)

)
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Now, recall that our condition was that each element was accessed no more than

ka times the average, i.e.

∀(0 ≤ i < n), ai ≤
kaa∗

n

thus, we can now say:

amortized time ≤ kr log

(

n−1
∑

i=0

(

(

kaa∗

n

)

a∗
ei

))

= kr log

(

ka

n

n−1
∑

i=0

ei

)

= kr log

(

ka

n
e∗

)

But e∗ = c∗ and c∗ ≤ (1 + kl)n, thus:

amortized time ≤ kr log (ka(1 + kl))

Notice that the conditions of the above lemma do not require that all the elements

be accessed, some percentage may be ignored completely.

Lemma 3.9

The number of updates, u, required to take an initial array to the point where it

needs to be split is Θ(n) (specifically (kln + 1)/2 ≤ u ≤ kln).

Proof

Initially the number of fat element entries e∗ (also c∗) is n, but at the point when

the array is split c∗ = (1+kl)n, thus kln fat element entries must have been added.

In the upper bound case, every update adds exactly one fat element entry, meaning

that u ≤ kln. In the lower bound case every update, except the first, adds two fat

element entries, thus 2(u− 1) + 1 ≥ kln, which simplifies to u ≥ (kln + 1)/2

Lemma 3.10

The number of updates, u, required to take an array which has just been split to

the point where it needs to be split again is Θ(n) (specifically kln/4 ≤ u ≤ kln).

Proof

An array which has just been split will contain n ≤ e∗ ≤ (2+ kl)n/2 entries, but at

the point when the array is split c∗ = (1 + kl)n. Thus, the upper bound case is the

same as that of Lemma 3.9, thus u ≤ kln. In the lower bound case, we assume that

the split array has greatest possible size, (2+kl)n/2, thus to reach the splitting size

of (1 + kl)n, only kln/2 fat element entries have to be added. Since in the worst

case, every update may add two fat element entries, 2u ≥ kln/2, or u ≥ kln/4.

Lemma 3.11

If an initial array receives Θ(n) updates (with the updates being made to any array

in the version tree stemming from that initial array), this will create Θ(1) master

arrays.
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Proof

Trivially from Lemma 3.9 and Lemma 3.10.

Lemma 3.12

Any sequence of read accesses that occur within m master arrays, in which no

array element is accessed more than ka times the average for elements of those m

master arrays, where ka is a constant, takes O(log m) amortized time. (Specifically

amortized time bounded by kr log(ka(1 + kl)m), where kr is a constant of the tree

lookup algorithm — see Lemma 3.6.)

Proof

This proof is analogous to that of Lemma 3.8, except that we need to consider

multiple array versions. In this case we shall consider an arbitrary sequence of

read accesses, in which each element i of master array j is accessed ai,j times,

with the total number of accesses being referred to as a∗∗ (in other words, a∗∗ =
∑m−1

j=0

∑n−1
i=0 ai,j), and each fat element corresponding to element i of master array

j contains ei,j entries, with e∗∗ being
∑m−1

j=0

∑n−1
i=0 ei,j .

The amortized time per access can be defined as

amortized time =
time for a∗∗ accesses

a∗∗

≤
1

a∗∗

m−1
∑

j=0

n−1
∑

i=0

(ai,jkr log ei,j)

= kr

m−1
∑

j=0

n−1
∑

i=0

(

ai,j

a∗∗
log ei,j

)

≤ log





m−1
∑

j=0

n−1
∑

i=0

(

ai,j

a∗∗
ei,j

)





Now, recall that our condition was that each element was accessed no more than

ka times the average, i.e.

∀(0 ≤ j < m, 0 ≤ i < n), ai,j ≤
kaa∗∗

n

thus, we can now say:

amortized time ≤ kr log





m−1
∑

j=0

n−1
∑

i=0

(

(

kaa∗∗

n

)

a∗∗
ei,j

)





= kr log





ka

n

m−1
∑

j=0

n−1
∑

i=0

ei,j





= kr log

(

ka

n
e∗∗

)

But e∗∗ ≤ m((1 + kl)n), thus:

amortized time ≤ kr log (ka(1 + kl)m)
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Corollary 3.1

A collection of read accesses, across a set of versions created from an initial array

version by O(n) updates, in which no element is accessed more than ka times the

average for all elements takes O(1) amortized time per access.

Proof

From Lemma 3.11, the O(n) versions created by the updates will reside in a constant

number of master arrays. Hence this follows from Lemma 3.12.

Corollary 3.2

A collection of arbitrary read or write accesses, across set of versions created from

an initial array version by O(n) updates, in which no element is accessed more

than ka times the average for all elements and no more than O(n) updates are

made takes O(1) amortized time per access.

Proof

This is analogous to Lemma 3.12 and Corollary 3.1, except that we have the issue

that splitting may occur because we allow updates. However, the O(n) updates can

only cause a constant number of splits (from Lemma 3.11), meaning that there is a

constant upper bound on the number of master arrays. This constant bound on the

number of master arrays and thus O(n) bound on the total number of fat element

entries allows us to generalize Corollary 3.1 to cover updates as well as reads in this

case.

Thus, our data structure offers constant amortized time performance when array

versions are accessed evenly or single-threadedly, and even when they are not, it

turns in a quite reasonable O(log n) worst case amortized performance.

4 Real World Performance

In the previous section we showed that the fat element array method has nice

theoretical properties, but whether a data structure is useful depends not only on

its theoretical complexity but on the constant factor overheads involved in using

the data structure in the real world and how they compare to those of other data

structures aimed at doing the same job. Our intention in this section is to briefly

examine how a Standard ML implementation of our data structure fared against

ML implementations of competing techniques.

Thus, our goal is not to try to deduce the asymptotic complexity of our technique

from experimental results — we have already found these results in the preceding

section. In fact to try to make such inferences would be difficult, since our experi-

mental results often have small anomalies that result from the complex interactions

found on a modern computer system, with processor caches, virtual memory, an-

d running a large language such as ML. These anomalies however, affect neither
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the deductions we make about usability, nor the fundamental properties of the al-

gorithms found in the preceding section. The interested reader is welcome to invest-

igate these performance issues themselves by downloading our code for performance

testing and conducting their own runs of the tests described here, the source being

available at through the JFP Internet home page (http://www.dcs.gla.ac.uk/jfp/

code/oneill-arrays.tar.gz).

We compared the performance of our data structure against that of an imple-

mentation of functional arrays using binary trees and an implementation using the

trailers technique. Our tree based implementation was based on the implementation

in ML for the Working Programmer (Paulson, 1991), which is inspired by the work

of Hoogerwoord ((1992)), and our implementation of Trailers was based on that of

Annika Aasa et al (1988).

Lacking well known benchmarks for functional arrays, we used three fairly simple

tests to examine the behaviour of the data structures, one that treated arrays as a

fully persistent data structure, one that treated them as a partially persistent data

structure, and one that treated them as an ephemeral data structure.

Our first test created v different versions of an array of size n, with each version

depending on three randomly selected prior versions of the array. To do this it

repeatedly updated a random element of a randomly selected array version with

the sum of random elements of two other array randomly selected array versions.

Figure 6 shows the results of this test.

Figure 6(a) shows how the performance of the techniques vary as we increase both

the number of different versions and the size of the array (with n = v). Notice that

while the Fat Element technique has a worst case O(log n) performance, the random

element accesses cover the array evenly, causing us to expect O(1) performance. The

graph mostly echos these expectations, but in any case, the fat element method

turns in performance which is better in real time than the competing techniques.

Figure 6(b) shows how the performance of the techniques vary as we increase

versions while holding the size of the array constant (at 216 elements). From theory,

we would expect the performance of binary trees to depend only on the size of the

array, and we would expect the time per access to stay constant. The graph mostly

echos this, but has some anomalous behaviour for small arrays. From theory we

might also expect the performance of fat elements to take a constant time per

iteration. However, while there is a constant upper bound, we see that actual times

increase as we increase versions until splitting begins, which is the source of the

discontinuity on the graph. Unfortunately, with this array size our technique is

slower than binary trees for large numbers of versions. However, it’s still very close

in speed and one should bear in mind that for larger arrays trees will take longer,

and require O(log n) space per update compared to O(1) for fat elements. This

does show, however, that for the particular case of small arrays with many versions,

binary trees may be a preferable technique.

Figure 6(c) shows how the performance of the techniques vary as we increase the

size of the array while holding the number of versions constant (at 216). Again,

while the performance of fat elements is bounded by a constant, we see variations

in times, and see the overheads of splitting cause it to turn in worse performance
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(a) Varying n and v.
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(b) Varying only v (n = 216).
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(c) Varying only n (v = 216).

Fig. 6. Results from the multi-version test.
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(a) Ephemeral array reversal.
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(b) Partially persistent array reversal.

Fig. 7. Results from the two tests based on array reversal.

than binary trees for small n. As array size increases, we see fat elements turn it

better performance than the other techniques.

The remaining two tests test the array data structures in simple ephemeral and

partially persistent situations. For this we used the simple test of reversing an

array. The first of the two (shown in Figure 7(a)) uses the standard imperative

array reversal algorithm, swapping leftmost and rightmost elements and working

inwards until the whole array is reversed. The second (shown in Figure 7(b)) uses a

partially persistent method, performing updates from left to right, always reading

from the original array, but updating the most recently changed array.

We can see in Figure 7(a) that trailers significantly outperform both fat elements

and binary trees for imperative algorithms. This comes as no real surprise, since

trailers are primarily designed to support imperative algorithms. We can also see,
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however, that while fat elements are not the fastest technique in this case, they

outperform binary trees, and fit our theoretical expectations of O(1) performance.

Figure 7(b) reveals the weaknesses of the trailers method, however, while binary

trees and fat elements turn in virtually the same performance for this slight vari-

ation in the algorithm, we know from theory that trailers will fall into a terrible

O(n2) performance hole (it doesn’t even make it onto the graph, taking 0.04 seconds

per iteration when n = 4096). Even if we had used the first of Chuang’s techniques

for speeding up trailers (1992), it would have still seen the same O(n2) behaviour

(Chuang’s second, probablistic, method (1994) would have expected O(n) perform-

ance for this test, but as we noted earlier, this method has its own problems when

it comes to space usage.)

In this section, then, we have seen that, as well as having better theoretical

asymptotic performance, our technique is competitive with other techniques and

does offer better real time performance in many cases. In particular, unlike trailers

and balanced trees, fat elements yield reasonable performance for every case, making

them the most suitable general purpose functional array implementation.

5 Conclusion

Our goal was to develop a functional array data structure which offers good theoret-

ical performance, and also is not prohibitively complex and slow to use in practice.

We feel we have achieved our goal, offering better performance than either tree

based, or trailer based arrays. Obviously, our functional array scheme, cannot ever

be as fast as imperative arrays, as we are solving a more complex and general prob-

lem. Thus, even though we have constant time performance for single-threaded

algorithms, our technique should not be viewed as a drop in replacement for im-

perative arrays — they still have their place.

Functional arrays belong in situations where either persistence is required, or

where one cannot be certain that persistence isn’t required. Thus our technique

can act as a nice adjunct to other techniques for arrays, such as update analysis

(Bloss, 1989). In cases where abstract interpretation can determine that arrays are

used single-threadedly, raw imperative arrays may be used, but when that determin-

ation fails, fat element arrays can be used. In fact, such an analysis can even be used

for programs which are only partially single-threaded, and the information gained

can be used to allow update in place on the fat element arrays when that would

be safe. Runtime techniques that can catch safe opportunities for update-in-place,

such as single bit reference counting (Wise & Friedman, 1977; Stoye et al., 1984)

can also be integrated with fat element arrays.

While it would seem that no technique is likely to provide all the answers, the

method we have developed here does seem to be an improvement over previous

work. It is probably the first kind of array where the programmer is free to use

arrays in whatever way they like without worrying too much about whether they

are going to pay a terrible penalty for that freedom.
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Appendix: The List Order Problem

In this appendix we present an algorithm which addresses the list order problem,

which, as we have seen, corresponds exactly to our version stamping scheme. The al-

gorithm that we present has been presented previously by Dietz and Sleator (1987),

but we include it here because the generation and comparison of version stamps is

a fundamental part of our method, and to show that version stamp generation can

be done relatively easily.

Before we begin, we should note a few things about our choice of algorithm. We

have chosen to present the simplest practical solution to the list order problem,

but other solutions do exist. The technique we present requires O(1) amortized

time and space for insertion, deletion and comparison. Other, more complex, solu-

tions to the list order problem do exist, including an O(1) real time algorithm

(Dietz & Sleator, 1987; Tsakalidis, 1984).

Although the algorithm has been presented before, our presentation of it may

be of some interest to those who might encounter it elsewhere, since we present

it from a slightly different perspective, and reveal some properties that may not

have been obvious in the original presentation11. Note, however, that for brevity

we omit proofs of the complexity of this algorithm, referring the interested reader

to the original paper (Dietz & Sleator, 1987) for such matters.

We will start by presenting an O(log n) amortized time solution to the list order

problem, which we will then refine to give the desired O(1) amortized time solution.

11 In particular, we show that it is not necessary to refer to the ‘base’ when performing
insertions; it is only necessary for comparisons. Also, some of the formulas given by
Dietz and Sleator would, if implemented as presented, cause problems with overflow (in
effect causing ‘ mod M ’ to be prematurely applied) if M is chosen, as suggested, to
exactly fit the machine word size.
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An O(log n)solution to the List Order Problem.

The algorithm maintains the ordered list as a circularly linked list. Each node in the

list has an integer label, which is occasionally revised. For any run of the algorithm,

we need to know N , the maximum number of versions that might be created. This

upper limit could be decided for each run of the algorithm, or, more typically, be

fixed by an implementation. The value N should be influenced by the fact that

the larger the value of N , the faster the algorithm runs (because it operates using

an interval subdivision technique), but that real world considerations12 will likely

preclude the choice of an extremely large value for N . In cases where N is fixed by

an implementation, it would probably be the largest value that can fit in a machine

word, or perhaps a machine half-word (see below).

The integers used to label the nodes range from 0 to M − 1, where M > N2. In

practice, this means that if we wished N to be 232 − 1, we would need to set M to

264. If it is known that a large value for N is not required, it may be useful for an

implementation to fix M to be 2w, where w is the machine word size, since much

of the arithmetic needs to be performed modulo M , and when M is the machine

word size this will happen automatically.

In the discussion that follows, we shall use l(e) to denote the label of an element

e, and s(e) to denote its successor in the list. We shall also use the term sn(e)

to refer to the nth successor of e, for example, s3(e) refers to s(s(s(e))). Finally,

we define two ‘gap’ calculation functions, g(e, f) and g∗(e, f), that find the gap

between the labels of two elements:

g(e, f) = (l(f)− l(e)) mod M

g∗(e, f) =

{

g(e, f) if e 6= f

M if e = f.

To compare two elements of the list for order, we require the base, as well as the

elements which are to be compared. If we are comparing two elements, x and y, we

perform a simple integer comparison of g(base, x) with g(base, y), where base is the

first element in the list.

Comparison of elements is trivial then, as is deletion, which is done just by

removing the element from the list. The only issue that remains is that of insertion.

Suppose that we wish to place a new element, i, so that it comes directly after some

element, e. For most insertions, all that needs to be done is to select a new label

that lies between l(e) and l(s(e)). The label for this new node can be derived as

follows:

l(i) =

(

l(e) +

⌊

g∗(e, s(e))

2

⌋)

mod M.

This approach is only successful, however, if the gap between the labels of e and

12 Such as the fact that arithmetic on arbitrarily huge integers cannot be done in constant
time. In fact, if we could do arithmetic on arbitrary sized rationals in constant time,
we wouldn’t need this algorithm, since we could use the näıve version stamping scheme
outlined in Section 2.1.



A New Method for Functional Arrays 27

its successor is greater than 1 (i.e. g(e, s(e)) > 1), since there needs to be room for

the new label. If this is not the case, it is necessary to relabel some of the elements

in the list to make room. Thus we relabel a stretch of j nodes, starting at e, where

j is chosen to be the least integer such that g(e, sj(e)) > j2. (The appropriate value

of j can be found by simply stepping through the list until this condition is met). In

fact, the label for e is left as is, and so only the j−1 nodes that succeed e need have

their labels updated. The new labels for the nodes s1(e), . . . , sj−1(e) are assigned

using the formula below:

l(sk(e)) =

(

l(e) +

⌊

k × g∗(e, sj(e))

j

⌋)

mod M.

Having relabeled the nodes to create sufficient gap, we can then insert a new node

following the procedure outlined earlier.

Refining the Algorithm to O(1) performance

The algorithm, as presented so far, takes O(log n) amortized time to perform an

insertion (Dietz & Sleator, 1987), but there is a simple extension of the algorith-

m which allows it to take O(1) amortized time per insertion(Tsakalidis, 1984;

Dietz & Sleator, 1987). To do this, we use a two-level hierarchy that uses an ordered

list of ordered sublists.

The top level of the hierarchy is represented using the techniques outlined earlier,

but each node in the list contains an ordered sublist which forms the lower part of

the hierarchy. An order list element, e, is now represented by a node in the lower

(child) list, c(e), and a node in the upper (parent) list, p(e). Nodes that belong to

the same sublist will share the same node in the upper list. In other words

p(e) = p(f), ∀e, f s.t. c(e) = sc(c(f))

where sc(ec) is the successor of sublist element ec. We also define sp(ep), lc(ec) and

lp(ep) analogously.

The sublists have their order maintained using a simpler algorithm. Each sublist

initially contains ⌈log n0⌉ elements, where n0 is the total number of items in the

ordered list we are representing. This means that the parent order list contains

n0/log n0 entries.

Each sublist element receives an integer label, such that the labels of the elements

are, initially, k, 2k, . . . , ⌈log n0⌉ k, where k = 2⌈log n0⌉. When a new element, nc, is

inserted into a sublist, after some element ec, we choose a label in between ec and

sc(ec). More formally,

lc(nc) =

⌈

lc(ec) + lc(sc(ec))

2

⌉

Under this arrangement, the sublist can receive at least ⌈log n0⌉ insertions before

there is any risk of there not being an integer label available that lies between ec

and sc(ec).

To insert an element i after e in the overall order list, if the sublist that contains

c(e) has sufficient space, all that needs to be done is to insert a new sublist element
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ic after c(e), and perform the assignments c(i)← nc and p(i)← p(e). If the sublist

contains 2 ⌈log n0⌉ elements, it may not be possible to make insertions after some

of its elements, however. In this case, we split the sublist into two sublists of equal

length, relabeling both sets of ⌈log n0⌉ nodes following the initial labeling scheme.

The nodes of the first sublist are left with the same parent, ep, but nodes of the

second sublist are given a new parent, ip that is inserted in the upper order list

immediately after ep.

These techniques are used for insertions until the number of nodes, n, in the

overall order list is greater than 2⌈log n0⌉, since at that point ⌈log n⌉ > ⌈log n0⌉.

When this happens (every time n doubles), we must reorganize the list so that

we now have n/⌈log n⌉ sublists each containing ⌈log n⌉ nodes, rather than having

n/⌈log n0⌉ sublists of ⌈log n0⌉ nodes.

Since this new scheme only creates n/⌈log n⌉ entries in the upper order list, M ,

can be slightly lower. Recall that previously we imposed the condition M > N2.

Now we have a slightly smaller M, since it need only satisfy the condition:

M > (N/⌈log N⌉)2

In practice, this would mean that if we required up to 232 list entries, we would

need an arena size of 254 (instead of 264). Similarly, if we wished all labels to fit in

a machine word, and so wished M to be 232, we would be able to have a little over

220 items in an order list at one time (instead of 216 items).

Following this scheme then, we can implement efficient ordered lists and by simple

derivation, a quick and effective scheme for totally ordered version stamps.


