
Parallel Programming with Control AbstractionLawrence A. CrowlOregon State UniversityandThomas J. LeBlancUniversity of RochesterParallel programming involves �nding the potential parallelism in an application and mappingit to the architecture at hand. Since a typical application has more potential parallelism than anysingle architecture can exploit e�ectively, programmers usually limit their focus to the parallelismthat the available control constructs express easily and that the given architecture exploits e�-ciently. This approach produces programs that exhibit much less parallelism than exists in theapplication, and whose performance depends critically on the underlying hardware and software.We argue for an alternative approach based on control abstraction. Control abstraction is theprocess by which programmers de�ne new control constructs, specifying constraints on statementordering separately from an implementation of that ordering. With control abstraction program-mers can de�ne and use a rich variety of control constructs to represent an algorithm's potentialparallelism.Since control abstraction separates the de�nition of a construct from its implementation, aconstruct may have several di�erent implementations, each exploiting a di�erent subset of theparallelism admitted by the construct. By selecting an implementation for each control constructusing annotations, a programmer can vary the parallelism in a program to best exploit the under-lying hardware without otherwise changing the source code. This approach produces programsthat exhibit most of the potential parallelism in an algorithm, and whose performance can betuned simply by choosing among the various implementations for the control constructs in use.We use several example applications to illustrate the use of control abstraction in parallel pro-gramming and performance tuning, and describe our implementation of a prototype programminglanguage based on these ideas on the BBN Buttery.Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-ming|parallel programming; D.2.m [Software Engineering]: Miscellaneous|reusable software;D.3.2 [Programming Languages]: Language Classi�cations|concurrent, distributed, and par-allel languages, Matroshka, Natasha; D.3.3 [Programming Languages]: Language Constructsand Features|abstract data types, concurrent programming structures, control structures, pro-cedures, functions, and subroutines; F.3.3 [Logics and Meanings of Programs]: Studies ofProgram Constructs|control primitivesGeneral terms: Design, LanguagesAdditional Key Words and Phrases: parallel programming languages, control abstraction, dataabstraction, closures, early reply, multiprocessors, architectural adaptability, performance tuning.An early version of some of this material appeared in the Proceedings of the 1992 InternationalConference on Computer Languages (Crowl and LeBlanc 1992).Authors' addresses: Lawrence A. Crowl, Computer Science Department, Oregon State University,Corvallis, Oregon, 97331-3202, crowl@cs.orst.edu; Thomas J. LeBlanc, Computer Science Depart-ment, University of Rochester, Rochester, New York, 14627-0226, leblanc@cs.rochester.edu.This work was supported by the National Science Foundation under research grant CDA-8822724,and the O�ce of Naval Research under research contract N00014-92-J-1801 (jointly funded byARPA, HPCC Software Science and Technology program, ARPA Order No. 8930). The Govern-ment has certain rights in this material.

2 � Crowl and LeBlancContents1 Introduction 41.1 Related Work : 51.1.1 Parallel Function Evaluation : : : : : : : : : : : : : : : : : : 51.1.2 Data Parallelism : 61.1.3 Fixed Control Constructs : 71.1.4 Control Abstraction : 71.1.5 User-De�ned Control Constructs for Parallel Programming : 81.2 Overview of the Paper : 92 Control Abstraction 92.1 Primitive Mechanisms for Control Abstraction : : : : : : : : : : : : 92.1.1 Statement Sequencing : 92.1.2 Operation Invocation : 92.1.3 First-Class Closures : 102.1.4 Early Reply : 112.1.5 Conditional Execution : 112.1.6 Condition Variables : 122.2 Specifying Execution Order in Control Constructs : : : : : : : : : : 122.3 User-De�ned Control Constructs : 142.3.1 Syntax Description : 152.3.2 Precedence Constraints : 152.3.3 Implementation : 152.3.4 Veri�cation : 152.4 Building Common Parallel Control Constructs : : : : : : : : : : : : 162.4.1 Wait on Condition : 162.4.2 Cobegin : 172.4.3 Forall : 182.5 Multiple Implementations for Control Constructs : : : : : : : : : : : 192.5.1 Cobegin : 192.5.2 Forall : 203 Parallel Programming with Control Abstraction 213.1 Selecting Parallelism with Prede�ned Control Constructs : : : : : : 213.2 Representing Application-Speci�c Parallelism : : : : : : : : : : : : : 223.2.1 Parallelizing a Sequential Program : : : : : : : : : : : : : : : 223.2.2 Understanding an Application's Parallelism : : : : : : : : : : 243.2.3 Incorporating Explicit Synchronization in Control Constructs 253.3 Splitting Closures to Expose Data Dependences : : : : : : : : : : : : 283.4 Data and Control Abstraction : 303.4.1 Subgraph Isomorphism Algorithm and Data Representation : 303.4.2 Iterators for Abstract Data Types : : : : : : : : : : : : : : : 323.4.3 Conditional Iterators : 333.4.4 Conditional Modi�cation of Abstract Data Types : : : : : : : 343.4.5 Representation-Dependent Control Abstractions : : : : : : : 354 Performance Tuning with Control Abstraction 36

Parallel Programming with Control Abstraction � 34.1 Parallelizations of Subgraph Isomorphism : : : : : : : : : : : : : : : 364.1.1 Search Parallelism : 364.1.2 Filter Parallelism : 374.1.3 Graph Parallelism : 384.1.4 Set Parallelism : 384.1.5 Summary of Parallelizations of Subgraph Isomorphism : : : : 394.2 Experimental Comparison of Parallelizations : : : : : : : : : : : : : 404.2.1 Tuning to a Particular Class of Inputs : : : : : : : : : : : : : 404.2.2 Changing the Problem Instance : : : : : : : : : : : : : : : : : 414.2.3 Porting to a New Machine : 414.2.4 Exploiting Multiple Sources of Parallelism : : : : : : : : : : : 424.3 Summary of Results : 435 Implementation of Control Abstraction 435.1 Natasha Compiler : 435.2 Natasha Runtime Environment : 455.3 Performance Evaluation : 466 Conclusions 47References 50

4 � Crowl and LeBlanc1. INTRODUCTIONApplications generally contain more potential parallelism than any one machinecan e�ectively exploit. Although an application may have an e�cient realizationon a wide range of architectures, including vector processors, bus-based shared-memory multiprocessors, distributed-shared-memory machines, and distributed-memory multicomputers, each class of architecture may exploit a di�erent subset ofthe parallelism inherent in the algorithm. When we write a program, we typicallylimit consideration to the parallelism in the algorithm that a given machine cane�ectively exploit, and ignore any other potential parallelism. While this approachmay result in an e�cient implementation of the algorithm on a given machine, theprogram is di�cult to tune or port to di�erent architectures because the distinctionbetween potential and exploited parallelism has been lost. All that remains in theprogram is a description of the parallelism that is most appropriate for our originalassumptions about the underlying machine.Architectural adaptability is the ease with which programmers can tune or porta program to a di�erent architecture. Many sequential programs adapt easily to anew architecture because the source code embeds few assumptions about the un-derlying machine. Parallel programs, on the other hand, often contain embeddedassumptions about the overhead of process management, and the cost of commu-nication and synchronization. When an architecture violates any of these assump-tions, the program must be restructured to avoid serious performance degradationor to exploit alternative sources of parallelism. This restructuring can be complex,because the underlying assumptions are rarely explicit, and the rami�cations ofeach assumption are di�cult to discern.In this paper we address one aspect of architectural adaptability for parallelprograms | the ease with which programmers can select the parallelism in analgorithm appropriate for a given machine. This particular aspect of adaptabilityis important because we often cannot predict the most e�cient parallelization fora given architecture in advance, and a signi�cant change in parallelization mayrequire a drastic change in source code. Our approach to adaptability requires thata program specify all the potential parallelism in an algorithm that architectures ofinterest might exploit. While only a subset of the potential parallelism is realizedon a given architecture, including other potential parallelism in the source codefacilitates performance tuning and porting to other architectures.We are interested in supporting this approach in explicitly-parallel imperativeprograms. These programs use control ow constructs, such as fork, cobegin, andparallel for, to introduce parallel execution. Since the expression of parallelismin these languages is fundamentally an issue of control ow, the control constructsprovided by the language can either help or hinder attempts to express and exploitparallelism.Given the importance of control ow in parallel programming, it seems prematureto base a language on a small, �xed set of control constructs. In addition, if weare to encourage programmers to specify all potential parallelism, we must makeit easy and natural to do so; no small set of control constructs will su�ce. Whatis required is a mechanism to create new control constructs that precisely expressthe parallelism in an algorithm. Control abstraction provides us with the necessaryexibility and extensibility.

Parallel Programming with Control Abstraction � 5With control abstraction, programmers can build new control constructs beyondthose a language may provide. Each programmer-de�ned control construct accepts,as a parameter, some code to execute and its execution environment | a closure.An implementation of the construct executes the code in an order consistent withthe construct's de�nition. For example, using control abstraction we can de�ne aforall construct that accepts a range of integers and a body of code to executefor each integer in the range. The semantics of forall could be that iterationi+1 may not proceed until iteration i ends, thereby requiring sequential execution.Alternatively, the semantics might allow iteration i + 1 to overlap or even precedeiteration i, admitting parallel execution. Using control abstraction, the programmerspeci�es the exact semantics of the construct, as well as the implementations.Much like data abstraction, which hides the implementations of an abstract datatype from users of the type, control abstraction hides the exact sequencing of oper-ations from the user of the control construct. When the semantics of a construct,such as forall, admit either a parallel or sequential implementation, the user of theconstruct need not know which implementation is actually used during execution.The program will execute correctly whichever implementation is used.In general, a control construct de�ned using control abstraction may have severaldi�erent implementations, each of which exploits di�erent sources of parallelism.Programmers can choose appropriate exploitations of parallelism for a speci�c useof a construct on a given architecture by selecting among the implementations. Thede�nition of a control construct represents potential parallelism; an implementa-tion of the construct de�nes the exploited parallelism. Using annotations, we caneasily select alternative implementations of control constructs (and hence select theparallelism to be exploited) without changing the meaning of the program, andthereby achieve architectural adaptability.1.1 Related WorkIn creating a parallel program, the programmer must decide what parallelism toexploit, how to map that parallelism to processors, how to distribute data amongprocessors, and how to communicate between parallel tasks. Researchers have pro-posed several techniques that address each of these problems; in this paper wefocus on the �rst problem, specifying and exploiting parallelism. Our goal is toexpose all of the potentially useful sources of parallelism in the source code of aprogram, while allowing the user to select the parallelism to exploit in the implemen-tation. Our approach is compatible with techniques developed by others to addressmapping (Hudak 1986, Snyder 1984), distribution (Co�n and Andrews 1989, Cof-�n 1992, Alverson and Notkin 1992), and communication (Black et al. 1987).1.1.1 Parallel Function Evaluation. Functional programs have no side e�ects,so expressions may be evaluated in any order. As a consequence, parallelism infunctional programs is implicit, in that expressions can be evaluated in parallel.There are two sources of parallelism in function evaluation: parallel evaluationof multiple arguments to a function and evaluation of a function in parallel withits caller (the promise or future). Owing to the di�culty of automatically �ndingand exploiting the optimal sources of parallelism in a functional program, severalresearchers have suggested the use of annotations to specify lazy, eager, parallel,and distributed function evaluation (Burton 1984, Halstead 1985, Hudak 1986).

6 � Crowl and LeBlancParAl (Hudak 1986, Hudak 1988) is a functional language that provides annota-tions to select eager evaluation over lazy evaluation, resulting in parallel execution,and to map expression evaluation to processors. A mapped expression in ParAlcan dynamically select the processor on which it executes. An eager expression exe-cutes in parallel with its surrounding context. By using a combination of eager andmapped expressions, a programmer can select the parallelism to be exploited andmap it to the underlying architecture. The use of mapped and eager annotationsdoes not change the meaning of the program, which in a functional programminglanguage does not depend on the evaluation order. Thus, ParAl achieves a signif-icant degree of architectural adaptability, requiring only changes to annotations toport a program between architectures. ParAl achieves this goal only in the contextof functional languages, however. Many of the issues that we must address beforewe can achieve architectural adaptability for imperative programs do not arise infunctional programs, including the expression of potential parallelism, the e�ect ofexploiting parallelism on program semantics, and the relationship between explicitsynchronization and parallelism.Although pure Lisp is functional, most Lisp-based programming languages areimperative. Like ParAl, an imperative Lisp can exploit parallelism in functionevaluation by selecting either lazy or eager (and potentially parallel) evaluation.For example, Multilisp (Halstead 1985) (and Qlisp (Goldman, Gabriel, and Sex-ton 1990)) provides the function pcall for parallel argument evaluation, and futurefor parallel expression evaluation. Unlike ParAl, Multilisp is an imperative lan-guage with assignment. Since parallel execution may a�ect the order of assignments,the use of pcall and future to introduce parallelism can a�ect the semantics ofthe program. In particular, a programmer can use future only when certain thatit will not produce a race condition. Halstead advocates a combination of dataabstraction with explicit synchronization and a functional programming style tominimize the extent to which side-e�ects and parallelism conict.To the extent that only the side-e�ect-free subset of Multilisp is used, both pcalland future can be thought of as annotations that select a parallel implementationwithout a�ecting the semantics of the program. Like ParAl, a side-e�ect-free Mul-tilisp program can adapt easily to a new architecture with the addition or deletionof pcall and future. However, Multilisp was not designed to be used in such alimited fashion. A Multilisp program that uses side-e�ects to any signi�cant degreecannot adapt easily to a new architecture, since exploiting alternative parallelismin the program requires that the programmer understand the relationship betweenside-e�ects and the intended use of pcall or future.1.1.2 Data Parallelism. Data-parallel languages provide high-level data struc-tures and data operations that allow programmers to operate on large amounts ofdata in an SIMD fashion. The compilers for these languages generate parallel orsequential code, as appropriate for the target machine. APL (Budd 1984), Fortran8x (Albert et al. 1988), and its descendent Fortran 90 (ANSI 1990, Metcalf andReid 1990) provide operators that act over entire arrays, which can have parallelimplementations. The Seymor language (Miller and Stout 1989) provides pre�x,broadcast, sort, and divide-and-conquer operations, which also have parallel imple-mentations. These languages restrict parallelism to a particular set of operationson data structures.

Parallel Programming with Control Abstraction � 7The Paralation model (Sabot 1988) and Connection Machine Lisp (Steele andHillis 1986) support data parallelism through high-level control operations suchas iteration and reduction on parallel data structures. These operations, whichrepresent a limited use of control abstraction, are not a general solution to theproblem of specifying parallelism in explicitly-parallel programs, since they de�neparallelism solely in terms of a particular data structure.1.1.3 Fixed Control Constructs. Explicitly parallel languages typically provide alimited set of parallel control constructs that programmers use to simultaneouslyrepresent and exploit parallelism. Fortran 90 loosens the correspondence betweenpotential and exploited parallelism with the do across construct, which has bothsequential and parallel implementations. Programmers use do across to specifypotential parallelism, and the compiler can choose either a sequential or parallelimplementation as appropriate. Compilers on di�erent architectures may makedi�erent choices, thus providing a limited degree of architectural independence.The Par language (Co�n and Andrews 1989, Co�n 1990, Co�n 1992) (based onSR (Andrews et al. 1988)) extends the concept of multiple implementations for aconstruct to user-de�ned implementations. Par's primary parallel control constructis the co statement, which is a combination of cobegin and parallel for loops. Theprogrammer may specify several implementations of co, called schedulers, whichmap iterations to processors and de�ne the order in which iterations execute. Usingannotations, a programmer can choose among alternative schedulers for co, andthereby tune a program to the architecture at hand.Any single control construct may not easily express all the parallelism in analgorithm, however. When the given constructs do not easily express the parallelismin an algorithm, the programmer must either accept a loss of parallelism, or use theavailable constructs to express excessive parallelism, and then remove the excessusing explicit synchronization. The former approach limits the potential parallelismthat can be exploited, while the latter approach results in programs that are di�cultto adapt to di�erent architectures. In the particular case of Par, programmers mustexpress all parallelism with co. There is a temptation to create new parallel controlconstructs by embedding synchronization within an implementation of co. Thisapproach changes the semantics of co however, and leaves a program sensitive tothe selection of implementations, violating the Par assumption that annotations donot change the meaning of the program.1.1.4 Control Abstraction. Hil�nger (1982) provides a short history of major ab-straction mechanisms in programming languages, with an emphasis on procedureand data abstraction. This history does not mention control abstraction, althoughthe mechanisms for control abstraction are present in Lisp. Control abstraction hasbeen used in several sequential languages to support data abstraction. For example,CLU iterators (Liskov et al. 1977) (or generators) are a limited form of control ab-straction that allows the user of an abstract type to operate on the elements of thetype without knowing the underlying representation. In CLU, and other languagesdesigned to support data abstraction, control abstraction plays a secondary role tothe speci�cation and representation of abstract data types.Given that parallelism is a form of control ow, control abstraction is particularlyimportant for parallel programming. Yet, to our knowledge, only those parallelprogramming languages that inherit control abstraction from a parent sequential

8 � Crowl and LeBlanclanguage support it. Thus, even though Multilisp and Paralation use Lisp closuresin the implementation of the parallel programming constructs presented to users,there is little or no recognition of the bene�ts of user-de�ned control abstractionsas a parallel programming tool.1.1.5 User-De�ned Control Constructs for Parallel Programming. BBN's Uni-form System (Thomas and Crowther 1988) represents one approach to user-de�nedcontrol constructs for parallel programming. The Uniform System provides a globalshared memory and a general-purpose task activation routine, called ActivateGen.This routine takes as parameters a task generation procedure and a work procedure.The task generation procedure typically consists of a loop that generates parame-ters for the work procedure; idle processors invoke the task generation procedureto get work. Thus, generators are a form of control abstraction. The Uniform Sys-tem provides built-in generators for manipulating arrays and matrices, but allowscustomized generators to be implemented by calling ActivateGen directly.Chameleon (Alverson 1990, Alverson and Notkin 1992) extends this form of con-trol abstraction by separating the partitioning and scheduling policy from taskgeneration. Thus, a task generator in Chameleon might specify that a work proce-dure is to be applied to all elements in a two-dimensional array, but the assignmentof work to processors is speci�ed separately in a partition-scheduler policy object(ps-object). By selecting among multiple ps-objects for a single task generator,one can easily vary the amount of work assigned to each processor and control theassignment of tasks to processors. In addition, a ps-object can embed both a�n-ity scheduling (executing a task on a processor whose local memory contains therequired data) and software caching (loading the required data into local memorybefore execution begins).Chameleon's representation of parallelism is based on C++ functions, so the pro-grammer must explicitly pass the environment of a task as a parameter to the task.In addition, Chameleon relies on the dynamic binding of C++ virtual functions,which introduces enough overhead on every task to preclude the use of tasks for�ne-grain parallelism.Both the Uniform System and Chameleon are runtime libraries, not programminglanguages, and therefore have similar limitations. Both systems have separate op-erations for data representation and scheduling, but provide no explicit link toensure compatible implementations. Both systems use a run-to-completion execu-tion model for tasks, which requires that all synchronization use busy-waiting. Bothsystems were designed for numeric problems, so the data distribution strategies areprimarily intended for use on arrays or matrices, and the control abstractions arelimited to various forms of loops.The primary focus of both Par and Chameleon is on the use of data abstractionand schedulers to hide data and processing distributions that may vary across archi-tectures. Like CLU, Par and Chameleon provide the minimumcontrol mechanismsneeded to support data abstraction and distribution; our approach to specifyingparallelism via control abstraction is complementary to their approach to specify-ing data distribution via data abstraction.

Parallel Programming with Control Abstraction � 91.2 Overview of the PaperIn the following section we introduce a small set of mechanisms for programmingwith control abstraction, and present a notation for describing constraints on con-trol ow in the implementation of a control construct. We use these mechanisms andnotation to de�ne some common constructs for parallel programming, and presentseveral implementations for each construct. In section 3 we use a number of concreteexample applications to demonstrate the power of control abstraction in parallelprogramming, and to show some of the e�ects on programming methodology thatresult from the liberal use of control abstraction. In section 4 we illustrate the roleof control abstraction in performance tuning by porting a parallel program amongseven di�erent shared-memory multiprocessors. This example not only illustratesthe importance of multiple parallelizations for a single application, it also demon-strates the e�ectiveness of control abstraction for tuning the performance of parallelprograms. In section 5 we describe our BBN Buttery implementation of Natasha,a prototype parallel programming language that supports control abstraction, andargue that parallel programs based on control abstraction can achieve executione�ciency comparable to that of conventional programming languages. Finally, insection 6, we summarize our experiences and present our conclusions.2. CONTROL ABSTRACTIONIn this section we introduce a small set of primitive mechanisms for implementingcontrol constructs, and a notation for describing the allowable execution orderingsof control constructs built from these mechanisms. Using this notation and theprimitive mechanisms, we de�ne an interface and implementation for three parallelcontrol constructs, and show that the implementations meet the speci�cations inthe interfaces. Finally, we show alternative implementations for these control con-structs, each of which exploits a di�erent subset of the parallelism admitted by theconstruct.2.1 Primitive Mechanisms for Control AbstractionOur primitive mechanisms for parallel programming with control abstraction are:statement sequencing, operation invocation, �rst-class closures, early reply, condi-tional execution, and condition variables. These mechanisms are key componentsof Matroshka, an explicitly-parallel imperative programming model, and are incor-porated into Natasha, a programming language based on the Matroshka model.1With these mechanisms, programmers can build a wide variety of control constructsto represent the parallelism in an application.2.1.1 Statement Sequencing. A sequence of statements de�nes a total order onstatement execution. Notationally, we separate statements by a semicolon, e.g., s1;s2. There are two kinds of statements, operation invocations and reply statements,both described below.2.1.2 Operation Invocation. Operations are recursive procedures that accept pa-rameters and return results. Operation invocation is synchronous with respect tothe caller; the caller waits for the operation to return a result before proceeding.1A complete description of the Matroshka programming model and the Natasha programminglanguage is beyond the scope of this paper; see (Crowl 1991) for additional details.

10 � Crowl and LeBlancAs in nearly all imperative programming languages, we require that all argumentsbe evaluated in sequence before invoking the operation. This requirement results insequential evaluation of expressions, without limiting the potential for parallelismin control ow.In our programming model, all interprocess communication is implemented bypassing parameters to operations and returning results from them. Although ourfocus is on shared-memory multiprocessors, an implementation of this programmingmodel on distributed-memory machines is possible, given an implementation ofoperation invocation based on remote procedure calls or message passing.We apply the operation invocation mechanism uniformly to both programmer-de�ned operations and language-de�ned primitive operations. For presentationpurposes, we use a procedural syntax for operation invocation, and a conventionalin�x notation for expressions. Nonetheless, we model all operations on data, in-cluding assignment, using invocations.2.1.3 First-Class Closures. General control abstraction requires a mechanism forencapsulating a sequence of operations. These operations must have access to theenvironment in which the control construct is used. Like Lisp, Smalltalk, andtheir derivatives, we use �rst-class closures to capture code and its environment.Closures capture their environment at the point of elaboration, and may reference(and change) variables in that environment, even though those variables may notbe visible in the environment in which the closure is eventually called.2Closures are, in essence, the in-line de�nition of a nested operation (procedure).Operations are simply named closures. Both operations and closures may be passedas arguments for later invocation.Like procedures, closures may accept parameters and return results. Also likeprocedures, closures are reusable, in that a program may invoke a closure manytimes. Each invocation produces a separate activation, and there is no implicitsynchronization between activations.In our syntax, the de�nition of a closure consists of a parameter list withinparentheses (with parameters separated by commas) followed by a sequence ofstatements within braces. One of the statements may be the reply statement (allother statements are operation invocations), which returns control to the point ofinvocation. A reply statement may contain a return value expression; a replywithout an expression simply returns control.Using this syntax, a closure that accepts an integer parameter and returns twiceits value would be written as follows:(arg: integer){ reply 2*arg }We can call a closure at the point of de�nition as follows:(arg: integer){ reply 2*arg }(4)The �rst pair of parentheses de�nes the parameter type, the braces de�ne the bodyof the closure, and the second pair of parentheses invoke the closure with an integerargument. This example is somewhat atypical; we normally name a closure andinvoke it using that name, e.g. twice(4).2Closures may access variables in the surrounding environment using addresses in a shared-memory system or using messages in a distributed-memory system.

Parallel Programming with Control Abstraction � 11Like procedures, a closure must be invoked before the �rst statement in theclosure can be executed. In addition, the reply value must be evaluated before thereturn from the closure occurs.As an example of the use of closures in the de�nition of a control construct,consider a for construct that iterates over a range of integers. The construct takesthree parameters: an integer lower bound, an integer upper bound, and a closure(corresponding to the loop body) that accepts an integer parameter. The syntaxfor this construct is de�ned as follows:define for(lower, upper: integer;body: closure(iteration: integer))An example of its use is:for(1, 10, (i: integer){ print i })In our examples we use two syntactic shortcuts. First, when a closure takes noparameters, we omit the parameter list. Second, if a valueless reply is the laststatement in a closure, we omit the reply statement. In addition, we omit speci�ersfor closures return types when the closures return no value.2.1.4 Early Reply. When an invocation of an operation (or closure) returns aresult, it may continue executing concurrently with the caller. That is, upon ex-ecuting a reply statement, a single process (the caller) splits into two concurrentprocesses (the caller and the callee); the calling process continues execution at thestatement following the invocation, while the callee continues execution at the state-ment following the reply. This mechanism, called early reply, is the sole source ofparallelism in Matroshka.3 This mechanism is not new (for example, see (Andrewset al. 1988, Liskov, Herlihy, and Gilbert 1986, Scott 1987)), but its expressive powerdoes not appear to be widely recognized.We require that in any implementation of early reply, both processes (that is, thereturn to the caller and the continuation of the invocation) make �nite progress.One way to implement this guarantee is to use a fair, preemptive scheduler in theunderlying implementation of early reply. A non-preemptive scheduler could alsobe used, provided that both processes are guaranteed to either block or terminate(thereby ensuring that both processes are able to make �nite progress regardless ofwhich runs �rst).Busy-waiting synchronization may prevent a process from terminating, and there-fore cannot be used in tandem with a non-preemptive scheduler, unless knowledgeof the scheduling policy can be used to ensure that both processes make �niteprogress.2.1.5 Conditional Execution. For conditional execution we adopt the approach ofSmalltalk (Goldberg and Robson 1983) and depend on a Boolean type and built-inif operation that conditionally executes a closure. The syntax for this construct isde�ned as follows:define if(cond: boolean; then_body: closure())3Early reply di�ers from rendezvous in that a new execution stream is created by early reply,whereas rendezvous is a synchronization mechanism between two existing execution streams.

12 � Crowl and LeBlancAs in most programming languages, we evaluate the condition �rst, and if thecondition is true, we execute the compound statement (i.e., closure) correspondingto then_body. We invoke the if statement using a procedural syntax:if(y>0, { z := x/y })Given the if operation, we can build many other common control constructsfor conditional execution. For example, we can de�ne an implementation for anifelse construct as follows:implement ifelse(cond: boolean; then_body, else_body: closure()){ if(cond, then_body); if(not cond, else_body) }Similarly, the while construct has the following recursive implementation:implement while(cond: closure(): boolean; body: closure()){ if(cond(), { body(); while(cond, body) }) }The repeat construct, which repeatedly executes a boolean function (or closure)until it produces false as a result, has the following implementation:implement repeat(func: closure(): boolean){ if(func(), { repeat(func) }) }We will use all of these constructs in our example programs.2.1.6 Condition Variables. For expository purposes, we use condition variablesfor synchronization, since they are easy to describe and are su�cient for our exam-ples. We assume that an imperative parallel programming language based on theMatroshka model would provide other synchronization primitives, such as compare-and-swap or semaphores.A condition variable has atomic signal and pending operations. The signaloperation, which may only be invoked once for each condition variable, certi�esthat the condition associated with the variable has been established. The pendingoperation returns true if the condition has not yet been established, and false oth-erwise. It does not wait for the signal. The syntax for these operations is de�nedas follows:define pending(var cond: condition): booleandefine signal(var cond: condition)2.2 Specifying Execution Order in Control ConstructsA control construct de�nes an order of execution for a set of operations (or closures).A sequential control construct, such as if and while, de�nes a total order on theexecution of the constituent operations. In contrast, a parallel control construct,such as forall and cobegin, de�nes a partial order of execution; the implementa-tion of the construct need only execute the operations in an order consistent withthat partial order. Here we present a notation for specifying the allowable partialorders of execution for parallel control constructs.A control construct may be used in many di�erent contexts, with many di�erentoperation parameters, and therefore the implementation of a construct cannot, ingeneral, exploit knowledge of the internal structure of the operations it executes.Furthermore, our programming model provides no mechanism for a control con-

Parallel Programming with Control Abstraction � 13struct to suspend the execution of an operation it has invoked. Given these twofacts, a control construct can only impose an order of execution on operations interms of two events that take place during the execution of an operation: the con-trol transfer from the control construct to the operation, and the correspondingreturn. We will use # op to denote the transfer of control to an operation, and " opto denote its return.We use the precedes relation to describe constraints on the order of executionimposed by a control construct. Our de�nition of precedes is similar to Lamport'shappened before relation (Lamport 1978) and Hewitt's and Atkinson's necessarilyprecedes relation (Hewitt and Atkinson 1979), which are statements about causalordering of execution events. Informally, we say that \a precedes b" (written a! b)if event a must occur before event b. We determine whether one event must occurbefore another using the semantics of our primitive mechanisms. For example,givenf(); g(h())the semantics of statement sequencing and operation invocation dictate that# f ! " f ! # h ! " h ! # g ! " g.Also, if operation op has the closure de�nition(){ f(); reply g() }and op is invoked by the following program fragments(); op(); t();then the semantics of operations, closures, and statement sequencing dictate that" s ! # op ! # f ! " f ! # g ! " g ! " op ! # tSimilar precedence relations can be derived from the semantics of if and conditionvariables.The transfer to an operation always precedes its return, and therefore 8 opera-tions op, # op ! " op. Similarly, a control construct must begin execution beforeit can order the execution of any operations, so if op is passed as a parameter to acontrol construct cc, then # cc ! # op. The precedes relation is transitive, but notsymmetric.Any construct de�ned using only the precedes relation has a valid sequentialimplementation corresponding to a topological sort of the relations. A sequentialimplementation may not be appropriate however, especially when the operationsinvolved use explicit synchronization. For example, if the operations representingthe iterations of a parallel forall construct contain explicit synchronization, thenone iteration might block awaiting the completion of another. A sequential imple-mentation in which the blocking operation executes �rst causes deadlock. To avoidthis problem, we introduce the anti-precedes relation.We use the anti-precedes relation to de�ne causal orderings that the implemen-tation of a control construct cannot introduce. Informally, we say that \a anti-precedes b" (written a 6! b) if execution of event b does not require that event aoccur �rst. That is, event b cannot wait (even indirectly) for event a to occur.Clearly, if b ! a, then a 6! b. In addition, the early reply mechanism allows anoperation invocation to continue executing concurrently with the caller. Therefore,

14 � Crowl and LeBlancif operation op has the closure de�nition(){ reply; f() }and op is invoked by the following program fragment:op(); g()then the semantics of early reply dictate that# f 6! # g ^ # g 6! # fThe anti-precedes relation is neither symmetric nor transitive.For notational convenience, we also de�ne the concurrent relation. Given twoevents, a and b, a k b means a 6! b ^ b 6! a. The concurrent relation is symmetric,but not transitive.When using the precedes and anti-precedes relations in the speci�cation of acontrol construct, the relations impose a requirement on all implementations of theconstruct. Thus, any control construct whose speci�cation includes a! b requiresthat a ! b in every possible execution of the construct. Similarly, we use a 6! bin the speci�cation of a construct to preclude a ! b in any implementation ofthe construct. This constraint allows the user of a construct to introduce b ! a(via explicit synchronization) in the operations passed to the construct withoutproducing deadlock between the implementation and the operations.4We use two conventions in the speci�cations of control constructs. First, weuse the shorthand notation ! op ! in place of ! # op ! " op ! . Second, weexploit the fact that # cc ! # op is true of all operations op executed by a controlconstruct cc, and interpret the absence of any such rule for a given operation tomean that the operation is not executed at all by the control construct.5 Thus, byconvention, a control construct executes an operation passed as a parameter to theconstruct if and only if the operation's execution is present in the precedence rulesfor the construct.Much like preconditions, postconditions, and invariants, our precedence rules arenot a required part of the source code for a program. The precedence relationsare used to de�ne the semantics of a control construct, and to reason about thecorrectness of an implementation. Although these relations are not required duringcompilation, we envision future programming systems that use explicit representa-tions of this information to aid the programmer in writing parallel programs.2.3 User-De�ned Control ConstructsA user-de�ned control construct uses the primitive mechanisms presented aboveto execute a set of operations (or closures) in an order that is consistent with thesemantics of the control construct. To de�ne a new control construct, we mustidentify the syntax used to invoke the construct, specify the precedence constraintson operation execution that apply to every implementation of the construct, andprovide at least one implementation of the construct that meets those precedenceconstraints. We can also verify that the implementation meets the constraints. Inthis section, we use the ifelse construct described earlier to illustrate each of thesetasks.4We illustrate this use of anti-precedes in the de�nition of cobegin given below.5We use this convention to express conditional execution in control constructs.

Parallel Programming with Control Abstraction � 152.3.1 Syntax Description. The syntactic description of a construct de�nes theparameters it expects, including any operations to be executed by the control con-struct.define ifelse(cond: boolean; then_part, else_part: closure())2.3.2 Precedence Constraints. The precedence constraints are speci�ed using theprecedes and anti-precedes relations de�ned above.The precedence constraints on all implementations of ifelse are:# ifelse(true, then_part, else_part) ! then_part ! " ifelse# ifelse(false, then_part, else_part) ! else_part ! " ifelseThe �rst precedence relation states that an invocation of ifelse with a conditionalexpression that evaluates to true precedes the execution of then_part. The secondprecedence rule states that an invocation of ifelse with a false condition precedesthe execution of the else_part. Note that the absence of a precedence rule forinvoking then_part when the condition is false, and for invoking else_part whenthe condition is true, means that those operations are not executed under thosecircumstances.2.3.3 Implementation. The implementation of a control construct uses the prim-itive mechanisms of the language, and any previously-de�ned control abstractions,to implement an ordering on the execution of actions taken by the control construct.An implementation of ifelse that meets its precedence constraints is:implement ifelse(cond: boolean; then_part, else_part: closure()){ if(not cond, else_part); if(cond, then_part) }Both this implementation, which attempts to execute the else_part �rst, andthe one given earlier, which attempts to execute the then_part �rst, meet theconstraints given in the de�nition of the construct.2.3.4 Veri�cation. We use the semantics of the primitive mechanisms for controlabstraction to verify that an implementation meets the speci�cation for a controlconstruct. In the case of ifelse, one proof that the implementation given abovemeets the speci�cations is:# ifelse(false, then_part, else_part) 1! # if1(true, else_part)2! else_part 3! " if1 4! # if2(false, then_part)5! " if2 6! " ifelse# ifelse(true, then_part, else_part) 7! # if1(false, else_part)8! " if1 9! # if2(true, then_part)10! then_part 11! " if2 12! " ifelsePrecedences 1 and 7 derive from the fact that an operation must be invoked beforeany statement in the operation can be executed, and the fact that the conditionpassed to the �rst if is the negation of the condition passed to ifelse. Precedences2, 3, 10, and 11 derive from the semantics of if with a true condition. Precedences4 and 9 derive from statement sequencing, and the fact that the condition passedto the second if is the same as the condition passed to ifelse. Precedences 5

16 � Crowl and LeBlancand 8 derive from the semantics of if with a false condition. Precedences 6 and 12derive from statement sequencing, the implicit reply at the end of a closure, andthe de�nition of closures. By the transitivity of the precedes relation, we can inferthat this implementation meets the precedence constraints for ifelse.2.4 Building Common Parallel Control ConstructsIn this section, we provide examples of de�ning, implementing, verifying, and usingparallel control constructs. Our �rst example is the implementation of a busy-waiting operation on condition variables. We use this operation in the implementa-tion of a parallel cobegin construct. We then use cobegin in the implementationof a parallel forall construct.2.4.1 Wait on Condition. Given the condition variables de�ned in x2.1.6, weconstruct a wait operation that does not return until a condition has been signaled.Our implementation will use busy-waiting; alternative implementations based onblocking synchronization are also possible.define wait(var cond: condition)# signal ! " waitThis construct has a straightforward implementation using if and recursion:implement wait(var cond: condition){ if(pending(cond), { wait(cond) }) }We use induction on the number of recursive calls to wait and the semantics of theprimitive operations pending and signal to verify that this implementation satis-�es the constraints in the de�nition of the construct. The base case (no recursivecalls to wait) occurs when pending returns a value of false, which can only happenif signal has already been invoked:# signal 1! " pending:false# wait 2! pending:false 3! # if(false, wait) 4! " if 5! " waitPrecedence 1 derives from the semantics of the primitive operations on conditionvariables. Precedence 2 derives from the �rst statement of a closure following theinvocation of the closure. Precedence 3 derives from the evaluation of pending asan argument before invoking if. Precedence 4 derives from the semantics of ifwith a false condition. Finally, precedence 5 derives from statement sequencing,the implicit reply at the end of a closure, and the de�nition of closures. By thetransitivity of the precedes relation, we can infer # signal ! " wait.The induction step occurs when signal has not yet been invoked when pendingis evaluated:# signal 1! " waitrecursive# wait 2! pending:true 3! # if(true, wait) 4! waitrecursive5! " if 6! " waitPrecedence 1 is the inductive assumption derived above. Precedence 2 derives fromthe �rst statement of a closure following the invocation of the closure. Precedence 3derives from the evaluation of pending as an argument before invoking if. Prece-dences 4 and 5 derive from the semantics of if with a true argument. Precedence 6

Parallel Programming with Control Abstraction � 17derives from the implicit reply at the end of a closure, statement sequencing, and thede�nition of closures. Finally, by transitivity, we have # signal ! " wait, whichproves that the implementation meets the precedence constraint in the de�nition.2.4.2 Cobegin. Our next example is a cobegin construct that allows two closuresto execute concurrently, returning control only when both closures have returnedfrom execution. Its syntax and precedence constraints are de�ned as follows:define cobegin(stmt1, stmt2: closure())# cobegin ! stmt1 ! " cobegin# cobegin ! stmt2 ! " cobegin# stmt2 6! # stmt1These rules state, respectively, that both closures start execution after the cobegin,both closures return before the cobegin returns, and in no implementation maythe invocation of stmt1 be required to wait (either directly or indirectly) on theinvocation of stmt2.These precedence rules permit, but do not guarantee, a concurrent implementa-tion based on early reply. (In particular, a sequential implementation that executesstmt1 �rst meets the precedence constraints.) We could add another precedencerule, # stmt1 6! # stmt2, and guarantee concurrent execution, since# stmt2 6! # stmt1 ^ # stmt1 6! # stmt2) # stmt1 k # stmt2However, doing so would preclude a sequential implementation. In general, we avoidusing control constructs that guarantee concurrency as building blocks for otherconstructs, because they preclude sequential implementations of every construct inwhich they are used.The de�nition of cobegin given here is asymmetric, in that it allows the imple-mentation to introduce stmt1 ! stmt2, but not stmt2 ! stmt1. We could havede�ned a symmetric cobegin construct by simply eliminating the third precedenceconstraint. In that case, an implementation could execute stmt1 and stmt2 in anyorder. While this alternative de�nition is intuitively appealing, it could introducedeadlock in cases where stmt2 uses explicit synchronization to wait for stmt1. Byincluding the third precedence constraint, we accommodate both a sequential im-plementation of cobegin and explicit synchronization between stmt1 and stmt2.We require however that stmt1 execute before stmt2 in any sequential implemen-tation, and that stmt1 never wait for stmt2. This de�nition of cobegin allowsstmt2 to wait for stmt1 regardless of the underlying implementation of cobegin.In the next section we exploit this ordering of stmt1 and stmt2 in cobegin tobuild an implementation of forall in which lower-numbered iterations never waitfor higher-numbered iterations.One possible implementation of cobegin appears in �gure 1. It uses only theprimitivemechanisms de�ned earlier, and the wait operation de�ned above. We useearly reply as the source of concurrency and a condition variable for synchronization.We can show that the implementation meets the speci�cation as follows:

18 � Crowl and LeBlancimplement cobegin(stmt1, stmt2: closure()){ var done: condition;--- define and execute a closure to execute one argument{ reply; --- begin parallel executionstmt1(); --- invoke stmt1signal(done) --- signal stmt2 after stmt1 has returned}(); --- directly execute the closure--- execution continues here, in parallel, after the replystmt2(); --- invoke stmt2wait(done) --- wait for signal from after stmt1--- implicit reply from cobegin} Fig. 1. Implementation of cobegin# cobegin 1! # closure 2! explicit replyexplicit reply 3! stmt1 4! # signal 5! " waitexplicit reply 6! stmt2 7! # wait 8! " wait" wait 9! implicit reply 10! " cobegin# stmt2 116! # stmt1Precedences 1 and 2 derive from the �rst statement in a closure executing afterthe closure is invoked. Precedences 3 and 6 derive from the semantics of earlyreply. Precedences 4 and 7 derive from the semantics of statement sequencing.Precedence 5 derives from the de�nition of wait. Precedence 8 derives from thesemantics of operation invocation. Precedences 9 and 10 derive from the implicitreply at the end of cobegin, statement sequencing, and the semantics of closures.Finally, precedence 11 derives from the semantics of early reply. By the transitivityof the precedes relation, we can infer that the implementation meets the �rst twoconstraints in the de�nition of cobegin. Since precedence 11 is the third constraint,we have shown that the implementation satis�es the de�nition.2.4.3 Forall. In our next example we de�ne an iterator over a range of integers,analogous to a parallel for loop or a CLU iterator. The syntax for the constructis:define forall(lower, upper: integer;body: closure(iteration: integer))The precedence rules are:# forall(lower, upper, body) ! # body(i) [i : lower � i � upper]" body(i) ! " forall(lower, upper, body) [i : lower � i � upper]# body(j) 6! # body(i) [i; j : lower � i < j � upper]These rules state, respectively, that the forall starts before any iteration, alliterations return before forall does, and lower-numbered iterations do not wait on

Parallel Programming with Control Abstraction � 19higher-numbered iterations.6 Once again, we purposely omit a rule that guaranteesconcurrency such as:# body(i) k # body(j) [i; j : i 6= j ^ lower � i; j � upper]which states that the implementation must start all iterations before waiting onthe reply of any iteration.We can use cobegin and recursion to build a parallel divide-and-conquer imple-mentation of forall as in �gure 2. We omit the detailed proof that this implemen-implement forall(lower, upper: integer;body: closure(iteration: integer)){ if(lower = upper, { body(lower) });if(lower < upper,{ middle := (lower + upper) div 2;cobegin({ forall(lower, middle, body) },{ forall(middle+1, upper, body) }) }) }Fig. 2. Implementation of foralltation satis�es the de�nition, but note that we rely on the third precedence rule ofcobegin to satisfy the third precedence rule of forall.2.5 Multiple Implementations for Control ConstructsControl abstraction separates the de�nition of a control construct from its imple-mentation, which permits multiple implementations for a given control construct.Since our rules for each of the control constructs de�ned previously deliberatelyleft the partial order of execution underspeci�ed, we can provide either a parallelor sequential implementation.Given that we have multiple implementations for a given control construct, weneed a mechanism for selecting an appropriate implementation. We use programannotations to associate the use of a control construct with an implementation.Each implementation of a control construct is named using an annotation; thatname is then used to select the corresponding implementation at the point of use.In our examples we use descriptive names that denote the parallelism provided byan implementation (e.g., $SEQUENTIAL, $PARALLEL, $BLOCKED), but our compileruses simple string matching to select implementations, and makes no attempt tointerpret annotations.2.5.1 Cobegin. Our earlier implementation of cobegin used early reply and acondition variable to execute two closures in parallel. We can construct a sequentialimplementation of cobegin using statement sequencing:implement cobegin $SEQUENTIAL (stmt1, stmt2: closure()){ stmt1(); stmt2() }6This last constraint imposes an ordering on iterations analogous to the ORDERED quali�er forPARALLEL DO in PCF Fortran (Leasure 1990). We exploit this property of forall in sections3.2 and 3.3.

20 � Crowl and LeBlancNote that the precedence rules in the de�nition of cobegin require that stmt1precede stmt2 in any sequential implementation. It is easy to show that this im-plementation meets the speci�cation, sincestmt1(); stmt2()) # stmt1 ! # stmt2) # stmt2 6! # stmt1.We can select either this sequential implementation of cobegin or the parallelimplementation given above simply by using the corresponding annotation at thepoint of use.2.5.2 Forall. We have already shown a divide-and-conquer implementation offorall based on cobegin. If we truly desire a parallel implementation of forallthen we must add an annotation to that implementation so as to select the parallelimplementation of cobegin. We will refer to the parallel divide-and-conquer im-plementation based on a parallel implementation of cobegin using the annotation$DIVIDED.Of course there are many other possible implementations of forall. For example,rather than implement all iterations in parallel, it might be preferable to implementiterations in blocks of size N, where N is determined by the number of processors, thenumber of iterations remaining in the loop, or the granularity of parallelism thatcan be e�ciently implemented on the target machine. One implementation basedon this approach follows; other implementations based on dynamic loop schedulingalgorithms, such as guided self-scheduling (Polychronopoulos and Kuck 1987), couldbe implemented in a similar fashion.7implement forall $BLOCKED (lower, upper: integer;body: closure(iteration: integer)){ ifelse(lower+N > upper,{ for(lower, upper, body) },{ cobegin $PARALLEL ({ for(lower, lower+N-1, body) },{ forall $BLOCKED (lower+N, upper, body) }) }) }Straightforward modi�cations to this implementation would allow consecutive it-erations to execute in parallel, while iterations separated by P (the number ofprocessors) execute in sequence. We will refer to this implementation as $CYCLIC.In some cases vector processors can exploit the parallelism in a forall loopby invoking vector instructions. We would expect the compiler to recognize a$VECTOR annotation and produce vector instructions for the loop.8 On a vectormultiprocessor, such as the Alliant FX, a single program can use both the paralleland vector implementations of forall.In addition to the many parallel implementations of forall there are also validsequential implementations. For example, we can implement forall using thebuilt-in sequential for operation as follows:7There are several techniques that could be used to select a value for N at the point of use of theforall construct. We could add a parameter to the de�nition of the forall construct, howeverdoing so would change the interface to the forall construct, and would require that we supply avalue for N even in the case of a sequential implementation. Alternatively, we could use a form ofmacro substitution to de�ne values for parameters in annotations.8We claim no particular advantage over vectorizing compilers in this case, however this exampledoes illustrate how control abstraction can be used to represent �ne-grain parallelism explicitly.

Parallel Programming with Control Abstraction � 21implement forall $SEQUENTIAL(lower, upper: integer; body: closure(iteration: integer)){ for(lower, upper, body) }We can also construct a sequential implementation by modifying the parallel divide-and-conquer implementation of forall to select a sequential implementation ofcobegin. Although either approach results in a sequential implementation, the useof the built-in for operation has two advantages: the implementation of forall nolonger requires an implementation of cobegin, and we avoid any overhead associ-ated with invoking the user-de�ned cobegin operation.These examples illustrate the power of control abstraction when used to de�neparallel control ow mechanisms. With control abstraction, the de�nition of acontrol construct represents potential parallelism, while the implementation spec-i�es the parallelism that is actually exploited during execution. The programmercan vary the parallelism in a program by using annotations to select among theimplementations for a set of control constructs, and thereby tune the program toa speci�c architecture or set of inputs. In the following section, we use severalexample programs to illustrate this process.3. PARALLEL PROGRAMMING WITH CONTROL ABSTRACTIONIn this section we use concrete example programs to illustrate the issues that arisewhen writing parallel programs with control abstraction. We �rst show how toselect a parallel implementation for Quicksort based on prede�ned control abstrac-tions. We then use Gaussian elimination to illustrate the process of representingapplication-speci�c parallelism with control abstraction, including the interactionsbetween control abstraction and explicit synchronization. We use a simple modelof a light bulb to illustrate how to expose data dependences within closures so theymay be incorporated directly into a control abstraction. In our �nal example, weexamine the relationship between control abstraction and data abstraction in thecontext of a parallel program for subgraph isomorphism.3.1 Selecting Parallelism with Prede�ned Control ConstructsIn this section we illustrate the use of annotations to select a particular paralleliza-tion for Quicksort using the prede�ned control construct cobegin. There are twopotential sources of parallelism we consider.9 When the input array is partitioned,the search for an element in the bottom half of the array that belongs in the tophalf can occur in parallel with a similar search that takes place in the top half.Similarly, the two recursive calls to Quicksort on each half of the array can occurin parallel. One possible implementation appears in Figure 3.In this particular implementation we chose to exploit the coarse-grain parallelismavailable during the recursive calls (using the $PARALLEL annotation to select theparallel implementation of the second cobegin) and chose not to exploit the �ner-grain parallelism available during partitioning of the elements. We could experimentwith �ne-grain parallelismby simply changing the $SEQUENTIAL annotation to selectthe parallel implementation of the �rst cobegin.9In our examples, we assume a sequential implementation for any control construct for which noannotation is given.

22 � Crowl and LeBlancvar sorting: array[1..SIZE] of integer;implement quicksort $COARSE (lower, upper: integer){ var rising, falling, key: integer;if(lower < upper,{ rising := lower;falling := upper;key := sorting[lower];while({ cobegin $SEQUENTIAL ({ repeat({ rising +:= 1;reply key >= sorting[rising] }) },{ repeat({ falling -:= 1;reply key < sorting[falling] }) });reply rising <= falling },{ swap sorting[rising] and sorting[falling] });sorting[lower] := sorting[falling];sorting[falling] := key;cobegin $PARALLEL ({ quicksort(lower, falling) },{ quicksort(falling+1, upper) }) }) }Fig. 3. Implementation of QuicksortCurrent parallelizing compilers could probably �nd the �ne-grain parallelism au-tomatically (there are no overlapping writes to variables), even though this par-allelism may not be useful on many multiprocessors. The more important sourceof parallelism available in the recursive calls would be much more di�cult to �ndautomatically.3.2 Representing Application-Speci�c ParallelismThere are two distinct approaches to deriving a parallel program with control ab-straction. One approach begins with a sequential algorithm, and exposes any par-allelism that does not violate the data dependences inherent in the problem. Thealternative approach expresses all parallelism in the problem, and adds explicitsynchronization that enforces data dependences. We will illustrate these two alter-natives using Gaussian elimination as an example. We then show how to incorpo-rate explicit synchronization within a control construct, and discuss the bene�ts ofdoing so.To solve a set of linear equations using Gaussian elimination, we �rst compute anupper triangular matrix from the coe�cient matrixM, producing a modi�ed vectorof unknowns, which we then determine using back-substitution. In this example wewill concentrate on the control constructs needed to compute the upper triangularmatrix, which is calculated by eliminating (zeroing) the entries below the diagonal.To eliminate an entry Mi;j, we replace row Mi with Mi�Mj �Mi;j=Mj;j, whereMj is known as the pivot row. We refer to this operation as reducing row i withj. We cannot perform this operation until row Mj is stable, i.e., Mj;k = 0; 8k < j.In addition, all previous entries in row i must already be eliminated, i.e., Mi;k =0; 8k < j. These two constraints limit the amount of parallelism that we can expectto achieve.3.2.1 Parallelizing a Sequential Program. A straightforward derivation of a par-allel program for Gaussian elimination begins with the sequential algorithm for

Parallel Programming with Control Abstraction � 23upper triangulation.10var system: array[1..SIZE] of array[1..SIZE] of real;for(1, SIZE-1, (pivot: integer){ for(pivot+1, SIZE, (reduce: integer){ var fraction := system[reduce][pivot]/ system[pivot][pivot];for(pivot, SIZE, (variable: integer){ system[reduce][variable]-:= fraction * system[pivot][variable] }) }) })A simple parallel implementation of this algorithm replaces the inner two forloops with parallel forall loops.11 This implementation exhibits very �ne-grainparallelism, as the innermost loop consists of a small number of arithmetic op-erations and a single assignment statement. Vector processors could exploit theparallelism in the inner loop using the $VECTOR annotation. To port the programto a vector multiprocessor, we would use a parallel implementation for the outerforall and a vector implementation for the inner forall.Many multiprocessors lack vector units and could not pro�tably exploit the par-allelism in the inner loop. On these machines we could select an implementationthat does not attempt to exploit �ne-grain parallelismby choosing the $SEQUENTIALannotation for the innermost loop. The resulting program, which has a sequentialloop nested within a parallel loop nested within a sequential loop, exhibits a seriesof phases separated by the selection of a pivot. The partial order of execution isillustrated in �gure 4.?0 CCCCCCW0 AAAU0 -0 ����0 ������� ����-AAAUCCCCCCW
??0 CCCCCCW0 AAAU0 -0 ���� ����-AAAU

???0 AAAU0 -0 ���� -AAAU
????0 AAAU0 - -

?????0
??????Fig. 4. Phased Implementation of Gaussian Elimination10We choose pivot equations in index order; numerically robust programs choose pivot equationsbased on the data.11Iterations of the outermost loop cannot be executed in parallel because of the constraint thatan equation cannot be used as a pivot until it has been reduced completely.

24 � Crowl and LeBlancOur experiments with this implementation on the BBN Buttery showed thatprocessors spend too much time waiting for other processors to complete each phase.These empirical results suggest a need for more parallelism in the implementation.3.2.2 Understanding an Application's Parallelism. An alternative implementa-tion of Gaussian elimination can be derived using the synchronization constraintsof the problem, rather than the implicit synchronization that comes from serializ-ing the outermost loop in the sequential algorithm. The problem constraints arethat pivot equations must be applied to a given equation in order, and an equationmust be reduced completely before it can be used as a pivot. In our notation, theseconstraints (shown in �gure 5) are expressed as follows:" reduce j with i ! # reduce j with k [i; j; k : 1 � i < j � size ^ i < k � size]" reduce j with i ! # reduce k with j [i; j; k : 1 � i < j � size ^ j < k � size]?00 -0 -0 -0 -
@@@RAAAAAAAUBBBBBBBBBBNCCCCCCCCCCCCCCW

??00 -0 -0 -@@@RAAAAAAAUBBBBBBBBBBN
???00 -0 -@@@RAAAAAAAU

????00 -@@@R
?????0

??????Fig. 5. Precedence Constraints for Gaussian EliminationRather than enforce these precedence constraints with serial execution, we canadmit greater parallelism in the implementation and enforce the constraints withexplicit synchronization. In this new implementation,we process all rows in parallel,and use condition variables to enforce the synchronization constraints.

Parallel Programming with Control Abstraction � 25var system: array[1..SIZE] of array[1..SIZE] of real;var done: array[1..SIZE] of condition;signal(done[1]);forall $DIVIDED (2, SIZE, (reduce: integer){ for(1, reduce-1, (pivot: integer){ wait(done[pivot]);var fraction := system[reduce][pivot]/ system[pivot][pivot];forall(pivot, SIZE, (variable: integer){ system[reduce][variable]-:= fraction * system[pivot][variable] }) });signal(done[reduce]) })In this fully-parallel implementation, all rows are processed in parallel. The forloop ensures that all entries of a row are eliminated in sequence, as is required bythe problem constraints. As with the previous implementation, a particular pivotrow is applied to all the entries in a row in parallel.It is important to note that we cannot derive this particular version of the pro-gram from the sequential algorithm simply by selecting an appropriate combinationof implementation choices for the forall construct. These two implementationchoices represent a tradeo� between the execution overhead of explicit synchro-nization and the bene�ts of additional parallelism.3.2.3 Incorporating Explicit Synchronization in Control Constructs. There is aserious problem with the second implementation of Gaussian elimination givenabove: we cannot select the use of explicit synchronization in tandem with theparallelism we plan to exploit. In particular, we would have to remove the explicitsynchronization if we changed the annotation associated with the outermost loopto $SEQUENTIAL. The problem is that we have embedded parallelism in the loopcontrol construct, and synchronization in the body of the loop.To solve this problemwe de�ne a new control construct, triangulate, that movessynchronization from the body of the loop into the control construct. Triangulatetakes two parameters: the number of equations in the system, and a closure contain-ing the work to be performed for each pivot and reduction row pair. The constructencapsulates the possible parallelism and required synchronization in selecting pairsof pivot and reduction equations. The triangulate construct invokes the closurewith the appropriate pairings, while maintaining the synchronization necessary forcorrect execution. We de�ne triangulate as follows:define triangulate(size: integer; work: closure(pivot, reduce: integer))# triangulate(size, work) ! # work(i, j) [i; j : 1 � i < j � size]" work(i, j) ! # work(k, j) [i; j; k : 1 � i < j � size ^ i < k � size]" work(i, j) ! # work(j, k) [i; j; k : 1 � i < j � size ^ i < k � size]This construct has several implementations, including all of those discussedabove. For example, we can create a sequential implementation of triangulatesimply by selecting a sequential implementation of forall as follows:

26 � Crowl and LeBlancimplement triangulate $SEQUENTIAL(size: integer; work: closure(pivot, reduce: integer)){ for(1, size-1, (pivot: integer){ forall $SEQUENTIAL (pivot+1, size, (reduce: integer){ work(pivot, reduce) }) }) }Choosing the $DIVIDED annotation for forall produces triangulate $PHASED,which corresponds to the execution in �gure 4. In addition, we can imple-ment triangulate $PHASED_BLOCKED by selecting the $BLOCKED implementationof forall. To exploit more of the parallelism allowed by the problem's synchro-nization constraints, we can use the following implementation based on explicitsynchronization:implement triangulate $SYNCHED(size: integer; work: closure(pivot, reduce: integer)){ var done: array[1..size] of condition;signal(done[1]);forall $DIVIDED (2, size, (reduce: integer){ for(1, reduce-1, (pivot: integer){ wait(done[pivot]);work(pivot, reduce) });signal(done[reduce]) }) }This implementation admits greater parallelism than triangulate $PHASED, butmay incur higher execution overhead due to synchronization. As before, we canreplace forall $DIVIDED with forall $BLOCKED or forall $CYCLIC to obtaintriangulate $SYNCHED_BLOCKED and triangulate $SYNCHED_CYCLIC.This triangulate construct is similar to the built-in task generatorGenOnHalfArray in BBN's Uniform System (Thomas and Crowther 1988). A Uni-form System task generator accepts a pointer to a procedure and executes theprocedure in parallel for each value produced by the generator. Thus, generatorsare a limited form of control abstraction. The Uniform System provides generatorsfor manipulating arrays and matrices, including GenOnHalfArray, which generatesthe indices for the lower triangular portion of a matrix.define GenOnHalfArray(size: integer; work: closure(index1, index2: integer))# GenOnHalfArray(size, work) ! # work(i, j) [i; j : 1 � i < j � size]" work(i, j) ! " GenOnHalfArray(size, work) [i; j : 1 � i < j � size]This generator provides the parallelism of our triangulate construct, but with-out the synchronization constraints. As a result, the Uniform System implementa-tion must include explicit synchronization within the body of the work. Using ournotation and closures, Gaussian elimination using GenOnHalfArray looks like this:

Parallel Programming with Control Abstraction � 27var system: array[1..SIZE] of array[1..SIZE] of real;var pivot_done: array[1..SIZE] of condition;var element_done: array[1..SIZE, 1..SIZE] of condition;signal(pivot_done[1]);GenOnHalfArray $DIVIDED (SIZE, (pivot, reduce: integer){ wait(pivot_done[pivot]);if(pivot > 1, { wait(element_done[reduce][pivot-1]) });var fraction := system[reduce][pivot] / system[pivot][pivot];forall $DIVIDED (pivot, SIZE, (variable: integer){ system[reduce][variable]-:= fraction * system[pivot][variable] })signal(element_done[reduce][pivot]);if(pivot = reduce-1, { signal(pivot_done[reduce]) }) })This implementation uses explicit synchronization to provide the serialization im-plicit in the for loop in triangulate $SYNCHED. Given the limited facilities for cre-ating new generators in the Uniform System, and the existence of GenOnHalfArray,this implementation is reasonable for the Uniform System. Nevertheless, a moree�cient implementation is possible if the correct control construct is available orcan be created easily.Our original phased implementation of Gaussian elimination (based on thesequential algorithm), and the implementations based on triangulate andGenOnHalfArray illustrate the tradeo� between explicit synchronization and thesynchronization implicit in sequential control constructs. For example, the syn-chronization implicit in the outermost sequential loop of our original phased im-plementation unnecessarily limits the amount of parallelism in the program. Onthe other hand, the explicit synchronization used in the Uniform System programis both expensive and unnecessary. The triangulate $SYNCHED implementationis a balanced combination of explicit and implicit synchronization. It uses explicitsynchronization to remove the limit on parallelism imposed by the phased imple-mentation, and a sequential for loop to serialize the application of pivots to asingle equation, thus avoiding the extraneous explicit synchronization required inthe Uniform System implementation.When rewritten to use triangulate, the fully parallel code to form the uppertriangular matrix looks like this:var system: array[1..SIZE] of array[1..SIZE] of real;triangulate $SYNCHED (SIZE, (pivot, reduce: integer){ var fraction := system[reduce][pivot] / system[pivot][pivot];forall $DIVIDED (pivot, SIZE, (variable: integer){ system[reduce][variable]-:= fraction * system[pivot][variable] }) })By selecting an appropriate implementation for triangulate and the forallconstruct embedded in its body, we can describe all of the previous paralleliza-tions of this problem. The programmer can select thirty �ve di�erent implemen-tations of this program by varying the two annotations to select a divide-and-conquer, blocked, cyclic, sequential, or vector implementation of forall, and a syn-chronized divide-and-conquer, synchronized blocked, synchronized cyclic, phased

28 � Crowl and LeBlancdivide-and-conquer, phased blocked, phased cyclic, or sequential implementationof triangulate. In our experience, triangulate $SYNCHED_CYCLIC and forall$SEQUENTIAL produce the most e�cient implementation for the Buttery. (See�gure 6 for a performance comparison of triangulate $SYNCHED_CYCLIC andtriangulate $PHASED_CYCLIC on the Buttery.) We would expect triangulate$SYNCHED_CYCLIC and forall $VECTOR to be the most appropriate combinationfor the Alliant. We can execute this same program on a Sun workstation by usingtriangulate $SEQUENTIAL and forall $SEQUENTIAL.
Seconds phased cyclicsynched cyclicProcessors1248

163264
1 2 3 4 6 8 12 16 24 32 48

sequentialideal
Fig. 6: Performance of triangulate annotations for Gaussian Elimination on a 128� 128 matrixon the BBN Buttery.In this simple example, the implementation of triangulate is more than half thesize of the entire program. We expect that the amount of code dedicated to imple-menting control constructs in complete applications will be a much smaller fractionof the total code, especially when programmers have access to a library of controlabstractions. Even in cases where the control constructs are a signi�cant portionof the code, control abstraction isolates changes due to parallelism from the mainlogic of the program, including any required changes in synchronization.3.3 Splitting Closures to Expose Data DependencesIn the previous example we were able to separate synchronization from the mainbody of computation (reducing a single equation in the matrix) and embed it in thetriangulate control construct. The code to reduce an equation was una�ected bythis change, since the dependences in the code body were between entire iterations.Our next example illustrates how to expose data dependences within a computationso as to isolate synchronization in the control construct.

Parallel Programming with Control Abstraction � 29Our example implements a simple model of an incandescent light bulb. Themodel accepts as input an initial temperature and a history of the source currentand voltage. It produces as output the history of power dissipated (P), �lamenttemperature (T), and luminance of the light bulb (L). The sequential code for thisexample is:var P, T, L: array[0..N] of real;T[0] := AMBIENT_TEMPERATURE;for(1, N, (time: integer){ P[time] := Power(Current(time), Voltage(time));T[time] := Temperature(T[time-1], P[time]);L[time] := Luminance(T[time]) })This example has a loop-carried data dependence between iteration i and iter-ation i + 1 in the calculation of temperature. We cannot use forall to specifyparallelism in this example because we would violate this dependence. One pos-sible approach is to insert explicit synchronization around the second statementin the loop, which contains the data dependence. Unfortunately, the presence ofsynchronization within the body of the loop would then be separate from the im-plementation of the loop, which is where we select the parallelism to exploit.In order to move the synchronization into a control construct, we must split thebody of the loop and expose the dependence to the loop construct. We thereforede�ne a new forall construct that uses a form of pipelining. It accepts the loopin three pieces, corresponding to the statements that can execute in parallel beforeand after the data dependence, and the statements containing the data dependence.define forall3(lower, upper: integer;head, body, tail: closure(iteration: integer))# forall3(lower, upper, head, body, tail) ! # head(i)[i : lower � i � head]" head(i) ! # body(i) [i : lower � i � head]" body(i) ! # tail(i) [i : lower � i � head]" body(i) ! # body(i+ 1) [i : lower � i < head]" tail(i) ! " forall3(lower, upper, head, body, tail)[i : lower � i � head]For every iteration, the implementation of forall3 must execute headi, bodyi,and taili in sequence. In addition, the implementation must execute bodyi beforebodyi+1. Within these constraints, the construct admits several di�erent parallelimplementation. One implementation that might be produced by a parallelizingcompiler executes all of the heads in parallel, each of the bodies in sequence, andall of the tails in parallel.implement forall3 $PHASED(lower, upper: integer;head, body, tail: closure(iteration: integer)){ forall $DIVIDED (lower, upper, head);for(lower, upper, body);forall $DIVIDED (lower, upper, tail) }

30 � Crowl and LeBlancAn alternative implementation that allows heads and tails to execute in parallel,thereby allowing even greater parallelism, uses explicit synchronization to enforcethe dependence:implement forall3 $SYNCHED(lower, upper: integer;head, body, tail: closure(iteration: integer)){ var done: array[lower..upper+1] of condition;signal(done[lower]);forall $DIVIDED (lower, upper, (i: integer){ head(i);wait(done[i]); body(i); signal(done[i+1]);tail(i) }) }Using this control construct, we can write our light bulb example as follows:var P, T, L: array[0..N] of real;T[0] := AMBIENT_TEMPERATURE;forall3 $SYNCHED (1, N,(time: integer){ P[time] := Power(Current(time), Voltage(time)) },(time: integer){ T[time] := Temperature(T[time-1], P[time]) },(time: integer){ L[time] := Luminance(T[time]) })By splitting the closure (which represents the loop body) to expose the datadependence, and de�ning a control abstraction that respects that dependence, wehave isolated synchronization within the control construct. Once again, we canselect the appropriate degree of synchronization and parallelism in tandem.3.4 Data and Control AbstractionIn this section we use subgraph isomorphism, a well-known NP-complete problem,as an example to illustrate the relationship between data and control abstractionin parallel programs. Given two graphs, one small and one large, the problem is to�nd one or more isomorphisms from the small graph to arbitrary subgraphs of thelarge graph. An isomorphism is a mapping from each vertex in the small graph toa unique vertex in the large graph, such that if two vertices are connected by anedge in the small graph, then their corresponding vertices in the large graph arealso connected by an edge.3.4.1 Subgraph Isomorphism Algorithm and Data Representation. Before de-scribing the interactions between data and control abstraction in subgraph iso-morphism, we �rst describe the algorithm and data representation.In our representation of graphs, each vertex has an integer label from 1 to themaximum number of vertices. We represent each graph by an array, where eachelement of the array corresponds to a vertex v, and contains the set of labels forthe neighbors of v.

Parallel Programming with Control Abstraction � 31type SmallVertex = 1..MaxSmallVertex;type LargeVertex = 1..MaxLargeVertex;type SmallGraph = array[SmallVertex] of set of SmallVertex;type LargeGraph = array[LargeVertex] of set of LargeVertex;var smallG: SmallGraph;var largeG: LargeGraph;Our algorithm is based on Ullman's sequential tree-search algorithm (Ull-man 1976). This algorithm postulates a mapping from one vertex in the small graphto a vertex in the large graph. This mapping constrains the possible mappings forother vertices of the small graph. The algorithm then postulates a mapping fora second vertex in the small graph, again constraining the possible mappings forthe remaining vertices of the small graph. This process continues until an isomor-phism is found, or until the constraints preclude such a mapping, at which pointthe algorithm postulates a di�erent mapping for an earlier vertex.The search for isomorphisms takes the form of a tree, where each node in thesearch tree is a partial isomorphism. For each vertex i in the small graph, a partialisomorphism contains the set of vertices j in the large graph to which we are stillconsidering the possibility of mapping vertex i. When every vertex of the smallgraph has exactly one possible mapping to a vertex in the large graph, then theisomorphism is complete. If some vertex has no postulated mapping, then thepartial isomorphism is invalid, and we prune that node from the search tree.We represent nodes in the search tree, which correspond to postulated mappingsof vertices in the small graph to vertices in the large graph, with an array of sets.Each element of the array corresponds to a vertex in the small graph, and the setcontains the vertices in the large graph to which the vertex in the small graph mightbe mapped.type PartialIsomorph = array[SmallVertex] of set of LargeVertex;var root: PartialIsomorph;The children of a node are constructed by selecting one possible mapping at thenext level of the tree and then removing any conicting mappings. Since the vertexi in the small graph may map to only one vertex j in the large graph, we remove allother mappings for the small graph vertex. In addition, no two vertices in the smallgraph may map to the same vertex in the large graph, so we remove the postulatedlarge graph vertex from the possible mappings of all other small graph vertices.Since the search space is very large, it is prudent to eliminate possible mappingsearly, before they are postulated in the search. We do this by applying a set of �ltersto the partial isomorphisms, reducing the number of elements in each mapping set,and pruning nodes in the search tree before they are visited. In our implementationwe use only two �lters, vertex distance and vertex connectivity. The vertex distance�lter eliminates mappings where the distance between two vertices in the smallgraph is less than the distance between the two corresponding vertices in the largegraph. The vertex connectivity �lter ensures that the possible mappings of a vertexin the small graph are consistent with the possible mappings of its neighbors.There are many ways to exploit parallelism in the implementation of subgraphisomorphism. The coarsest granularity of parallelism occurs in the tree search itself;we can search each subtree of the root node in parallel with depth-�rst, sequential

32 � Crowl and LeBlancsearch at the remaining levels.12 At each node of the tree, several �lters must beapplied so as to prune the search tree, and this set of �lters could be executed inparallel.13 We can also exploit parallelism when applying a �lter to a candidatemapping. We will examine these alternative parallelizations in greater detail inSection 4. In this section we focus on the interactions between control and dataabstraction in the implementation of the distance �lter.3.4.2 Iterators for Abstract Data Types. We begin our discussion of data andcontrol abstraction with a straight-forward parallel implementation of the distance�lter. This implementation has several problems, which we resolve over the nextfew sections through successive re�nement using control abstraction.We use the distance �lter to ensure that no two vertices in the small graphseparated by a distance x map to two vertices in the large graph separated by adistance y > x.14 We rely on two precomputed arrays containing shortest-paths,smallDist and largeDist, to store distance information. For a set of possiblemappings between vertices in the small graph to vertices in the large graph, and agiven mapping from a particular vertex in the small graph to a vertex in the largegraph, we eliminate any other possible mappings between vertices in the smallgraph to vertices in the large graph that violate the distance �lter. The followingis a straight-forward parallel implementation of the distance �lter:implement distance_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall(1, MaxSmallVertex, (i: SmallVertex){ forall(1, MaxLargeVertex, (j: LargeVertex){ if(j in mapping[i],{ if(smallDist[smallV,i] < largeDist[largeV,j],{ remove_element(j, mapping[i]) }) }) }) }) }There is a problem with this implementation of the distance �lter. If we selecta parallel implementation of the innermost forall, we must pay the overhead ofstarting each parallel task that results. Since many postulated mappings are sparse,the �rst if condition is often false, and the corresponding task immediately termi-nates. In such cases, the overhead of creating parallel tasks may not be justi�ed.The problem is that we want to iterate over the elements of a set, but foralliterates over the integer representation for vertices in the set and then tests for setmembership. A better approach is to combine data abstraction and control abstrac-tion by de�ning an iterator for sets, as in CLU. The resulting forall_elementsconstruct executes a closure for each element of a set.12We could choose to implement search parallelism at any depth in the search tree, rather thansolely at the root. We do not consider these other forms of search parallelism in this paper.13Our implementation uses only two �lters, but others are possible.14Two vertices in the small graph can map to vertices in the large graph separated by a distancey < x because the isomorphism may ignore edges in the large graph that shorten the distance. Ify > x, then there must be some path between the two verticies in the small graph for which thereis no corresponding path between the corresponding vertices in the large graph, which impliesthat an edge in the small graph has no corresponding edge in the large graph.

Parallel Programming with Control Abstraction � 33define forall_elements(members: set of integer;work: closure(member: integer))# forall_elements(members, work) ! # work(i) [i : i 2 members]" work(i) ! " forall_elements(members, work) [i : i 2 members]Given an implementation of forall_elements, we can rewrite the distance �lteras follows:implement distance_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall(1, MaxSmallVertex, (i: SmallVertex){ forall_elements(mapping[i], (j: LargeVertex){ if(smallDist[smallV,i] < largeDist[largeV,j],{ remove_element(j, mapping[i]) }) }) }) }Given this version of the distance �lter, we can choose to iterate over the possibleelements of a set in sequence, and then apply the distance �lter to each actualelement in parallel. By doing so, we avoid the overhead of creating parallel threadsof control for each possible element of a set.3.4.3 Conditional Iterators. The last implementation of the distance �lter usesiteration over the elements of a set to avoid creating a task for every potentialelement of a sparse set. Nonetheless, this implementation still su�ers from theproblem noted above; the �rst statement of the closure passed to forall_elementsis an if condition, which may cause a newly created task to terminate immediately.Unfortunately, we cannot evaluate this condition in terms of the members of theset alone, and therefore cannot fold the test into a simple iterator. We can de�nea conditional iterator, however, which solves the problem. Conditional iteratorsaccept a condition to apply to elements of a data abstraction, as well as the work toperform on each element that satis�es the condition. With a conditional iterator,we can evaluate the conditions in sequence, avoiding the overhead of creating aparallel task for each if statement, while creating a parallel task for those elementsthat pass the test.define forall_elements_cond(members: set of integer;test: closure(member: integer): boolean;work: closure(member: integer))# forall_elements_cond(members, test, work) ! # test(i)[i : i 2 members]" test(i) ! # work(i) [i : i 2 members ^ test(i)]" work(i) ! " forall_elements_cond(members, test, work)[i : i 2 members ^ test(i)]" test(i) ! " forall_elements_cond(members, test, work)[i : i 2 members ^ : test(i)]Given an implementation of forall_elements_cond, the distance �lter becomes:implement distance_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph)

34 � Crowl and LeBlanc{ forall(1, MaxSmallVertex, (i: SmallVertex){ forall_elements_cond(mapping[i],(j: LargeVertex){ reply smallDist[smallV,i] < largeDist[largeV,j] },(j: LargeVertex){ remove_element(j, mapping[i]) }) }) }The performance bene�ts of using a conditional iterator in place of an iteratordepend on the time required to evaluate the condition and the time required to op-erate on those elements that meet the condition. In this particular example, it couldbe that the time spent on elements that meet the condition is very small (compa-rable to the time required to apply the condition to an element), and therefore thetasks created by forall_elements_cond are too �ne-grain for the architectures ofinterest. If so, the implementation based on forall_elementswould su�ce. How-ever, if the condition is easy to evaluate, but the operation on elements that meetthe condition is time-consuming, it would be worthwhile to separate the choice ofparallelism for evaluating conditions from the choice of parallelism for operating onelements using forall_elements_cond.3.4.4 Conditional Modi�cation of Abstract Data Types. All of our implementa-tions of the distance �lter are based on a set abstract data type, which must exportthe remove_element operation. As in Multilisp (Halstead 1985), we assume thatdata synchronization is embedded in data abstractions. Thus, the remove_elementimplementation must provide any synchronization needed to manage multiple in-vocations of remove_element. Unfortunately, there is no explicit coordination be-tween the two set operations forall_elements_cond and remove_element, so theimplementation of remove_element cannot know whether forall_elements_condinvokes remove_element in parallel or not. Thus, we cannot select parallelism andsynchronization together.As an alternative, we can combine the selection of parallelism and synchronizationwithin a single operation that removes those elements of a set that meet a speci�edcondition. This new operation, remove_elements_cond, applies a condition to eachelement of a set, and removes those elements that satisfy the condition.define remove_elements_cond(var members: set of integer;test: closure(member: integer): boolean)# remove_elements_cond(members,test) ! # test(i) [i : i 2 members]" test(i) ! " remove_elements_cond(members,test) [i : i 2 members]The distance �lter, using remove_elements_cond, is as follows:implement distance_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall(1, MaxSmallVertex, (i: SmallVertex){ remove_elements_cond(mapping[i], (j: LargeVertex){ reply smallDist[smallV,i] < largeDist[largeV,j] }) }) }In this �nal implementation we have two sources of parallelism, the implementationof forall and the implementation of remove_elements_cond. Since the parallel

Parallel Programming with Control Abstraction � 35tasks generated by forall operate on di�erent partial isomorphisms (correspondingto mapping[i]), there is no need to synchronize operations on these sets. Sincethe parallel tasks in remove_elements_cond all operate on the same set, we createa control construct that encapsulates both the parallelism and synchronization forthat set operation.3.4.5 Representation-Dependent Control Abstractions. Given a packed imple-mentation of sets, in which each element is represented by a single bit in a 32-bitword, an implementation of remove_elements_cond might process each word ofthe representation in parallel, and each bit in a word in sequence. This implemen-tation o�ers substantial parallelism and yet requires no explicit synchronization.However, it depends both on the representation of sets, and the knowledge thatno other operation is concurrently modifying the same set. This knowledge, whichis available to remove_elements_cond, is not available if the iterator and removaloperation are separated.In addition to the standard primitive operations on sets, such as create,add_element, and remove_element, we have added a variety of more com-plicated operations, including forall_elements, forall_elements_cond, andremove_elements_cond. We can use these operations to implement other set op-erations, such as intersect, which given two sets S1 and S2, assigns S1 \ S2 toS1:implement intersect(var S1: set of integer; S2: set of integer){ remove_elements_cond(S1,(i:integer){ reply not membership(i, S2) }) }In building this rich variety of set operations there is a tradeo� to be made be-tween representation-independent implementations and representation-dependentimplementations. Given the power of control abstraction, the designer of adata abstraction might be tempted to provide a small set of primitive opera-tions that exploit the underlying representation (such as create, membership, andadd_element), and rely on control abstraction and representation-independent op-erations to provide all other operations. While this approach may simplify theimplementation of the abstract data type, it precludes certain optimizations in theimplementation of the control abstractions. For example, given a bit-vector rep-resentation of sets, the representation-independent implementation of intersectgiven above must evaluate the condition separately for every element in the setand remove those elements that meet the condition. In contrast, a representation-dependent implementation of intersect can exploit the bit-vector representationfor sets, using logical \and" to implement intersection, and thereby avoid evaluat-ing conditions and handling individual elements. In general, we will want a richset of operations on each data type, so as to cope with the myriad parallelizationswe might choose to exploit, and many of these operations will want to exploit therepresentation so as to maximize the potential for parallelism.In summary, control abstraction encourages data representation-independent pro-gramming, which users of abstractions desire for architectural adaptability. Design-ers of abstractions must be careful to include a su�ciently rich variety of operationsso that implementors of abstractions can take advantage of the parallelism inherentin the representation.

36 � Crowl and LeBlanc4. PERFORMANCE TUNING WITH CONTROL ABSTRACTIONWhen implementing a parallel program, programmers must strike a delicate balancebetween the costs and bene�ts of parallelism. The potential bene�ts include fasterexecution due to parallel hardware, and better load balancing properties due toa �ne-grain decomposition of work. The costs include the overhead of processmanagement, synchronization, and communication. A signi�cant change in any ofthese costs a�ects the decision about the appropriate granularity of parallelism inan application.There are several situations where programmers must make decisions about howto parallelize a program:|When implementing the program for the �rst time.|When there is a dramatic change in the number of available processors.|When porting the program from one machine to another.|When exploiting special hardware features, such as vector processors.|When optimizing the program for a particular class of input values.The ease with which a programmer can tune the parallelization of a program tospeci�c circumstances depends on the ease with which alternative parallelizationscan be selected or implemented. The signi�cance of program tuning depends onwhether there is one best parallelization (and tuning therefore consists of a one-time search for that parallelization) or whether there is no single best parallelization(and therefore tuning is an ongoing e�ort that changes with circumstances).In this section, we use subgraph isomorphism as an example application to il-lustrate the bene�ts of control abstraction during performance tuning. Subgraphisomorphism is representative of a large class of search problems, but more im-portantly, it contains many di�erent sources of parallelism, and there is no obviousbest choice. In fact, our experiments show that the best parallelization for subgraphisomorphism depends on the speci�c machine, the speci�c input, and the speci�cproblem (the number of isomorphisms required). As a result, performance tuningis an on-going process, and the ability to change parallelizations easily is crucial forthis application.4.1 Parallelizations of Subgraph IsomorphismOur algorithm for subgraph isomorphism has four primary sources of parallelism:(1) searching subtrees of a partial isomorphism in parallel (search parallelism), (2)applying multiple �lters to a node of the search tree in parallel (�lter parallelism),(3) applying a �lter to all the vertices of a graph in parallel (graph parallelism), and(4) operating on all the elements in a set of vertices in parallel (set parallelism).We describe each of these sources of parallelism below, but our experiments focusprimarily on the tradeo�s between search parallelism and graph parallelism.4.1.1 Search Parallelism. The coarsest grain of parallelism we consider ariseswhen examining the various possible mappings for the �rst small vertex. Given theset of possibilities in mapping[smallV], we need to examine each postulated map-ping. We can choose to examine each mapping in parallel using forall_elementsas follows:

Parallel Programming with Control Abstraction � 37implement search $PARALLEL(smallV: SmallVertex; mapping: PartialIsomorph){ forall_elements $DIVIDED (mapping[smallV],(postulate: LargeVertex){ examine(smallV, postulate, mapping) }) }Alternatively, we can choose not to exploit parallelism in traversing the search treesimply by selecting a sequential implementation of forall_elements.Search parallelism is relatively coarse grain, and therefore is suitable for mostmultiprocessors. Search parallelism is also speculative however, in that we mightnot need to search every subtree of the root in order to �nd the required numberof solutions. In particular, if we only need one solution, and if the solution space isdense (as in the case where the smaller graph has few edges and the larger graph isalmost fully connected), then a solution will usually be found in the �rst subtree.In this case, any time spent searching other subtrees is wasted.4.1.2 Filter Parallelism. When we arrive at a node in the search tree, we mustexamine a single proposed mapping and propagate the constraints of that mapping.We must �rst enforce the minimal constraints of the proposed mapping: the vertexin the small graph must be mapped to a unique vertex in the large graph, and noother vertex in the small graph may be mapped to the same vertex in the largegraph. Next, we must check to see if the partial isomorphism is a leaf in the searchtree. If so, we report the isomorphism.15 Otherwise, we apply better constraints.implement examine(smallV: SmallVertex; largeV: LargeVertex;mapping: PartialIsomorph){ minimal_constraints(smallV, largeV, mapping);ifelse(smallV = MaxSmallVertex,{ report_possible_isomorphism(mapping) },{ constrain(smallV, largeV, mapping) }) }We use two non-trivial constraints, vertex connectivity and vertex distance, to�lter possible mappings. Each �lter deletes those postulated mappings associatedwith a node in the search tree that violate the constraints imposed by the �lter,thereby pruning the search space below the node. Since these �lters only removeelements from sets of possible mappings, we may execute them in parallel.implement constrain(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ cobegin $PARALLEL ({ distance_filter(smallV, largeV, mapping) },{ connect_filter(smallV, largeV, mapping) });if(no_empty_mapping(mapping),{ search(smallV+1, mapping) }) }Given only two �lters, each node in the search tree can exploit at most two-wayparallelism by executing the �lters in parallel. This parallelism is not without cost15The constraint �lters may leave some invalid isomorphisms at the leaves of the search tree. Aseparate check eliminates these leaf nodes before they are reported.

38 � Crowl and LeBlanchowever, since executing the �lters in sequence may allow the second �lter to avoidexamining any postulated mappings removed by the �rst �lter.4.1.3 Graph Parallelism. Each �lter removes potential mappings based on somerelationship between the candidate vertex in the small graph and other vertices inthe small graph. For a given candidate vertex, we can examine constraints on theremaining vertices of the small graph in parallel. We can exploit this parallelism bychoosing a parallel implementation of forall in the distance �lter and a parallelimplementation of forall_elements in the connectivity �lter:implement distance_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall $BLOCKED (1, MaxSmallVertex, (smallRel: SmallVertex){ remove_elements_cond(mapping[smallRel],(largeRel: LargeVertex){ reply smallDist[smallV,smallRel]< largeDist[largeV,largeRel] }) }) }implement connect_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall_elements $BLOCKED (smallG[smallV],(smallRel: SmallVertex){ intersect(mapping[smallRel], largeG[largeV] }) }These implementations of �lters o�er many opportunities to exploit parallelism,but each parallel thread of control is relatively �ne-grain. This source of parallelismmay only be appropriate on machines and software systems that support �ne-grainparallelism.4.1.4 Set Parallelism. The �nest grain of parallelism we consider arises when re-moving mappings that violate the constraints of a �lter from the set of possiblemappings for a small vertex. Given that we can represent the set of possible map-pings as a vector of booleans, we can exploit parallelism in set operations in threeways. First, we can apply vector parallelism and operate on individual booleanvalues separately but in parallel. Second, we can pack multiple boolean values intoa single machine word and use the bit operations common to most architectures tooperate on multiple boolean values together and in parallel. Third, we can use bothof the above and vectorize word-parallel operations. We refer to these implemen-tations using the annotations $VECTOR, $WORD, and $WORD_VECTOR, respectively.implement distance_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall(1, MaxSmallVertex, (smallRel: SmallVertex){ remove_elements_cond $VECTOR (mapping[smallRel],(largeRel: LargeVertex){ reply smallG[smallV,smallRel]< largeG[largeV,largeRel] }) }) }

Parallel Programming with Control Abstraction � 39implement connect_filter(smallV: SmallVertex; largeV: LargeVertex;var mapping: PartialIsomorph){ forall_elements(smallG[smallV],(smallRel: SmallVertex){ intersect $WORD (mapping[smallRel], largeG[largeV] }) }The proper choice of annotation for set parallelism depends on the machine ar-chitecture and the exact implementation of the algorithm. The architecture mayor may not have vector processors or the appropriate instructions for operating onthe bits in a word. In addition, the cost of communication for a given machinedetermines the savings associated with using a packed representation of sets incommunication operations. The algorithm determines the frequency with which wemust pack and unpack sets into words, which could o�set any savings from parallelset operations.4.1.5 Summary of Parallelizations of Subgraph Isomorphism. We have identi�edfour main sources of parallelism in our algorithm, and each source of parallelism hasmultiple implementations. Table I summarizes the set of choices that a programmerfaces when choosing a speci�c implementation of subgraph isomorphism.Operation Control Construct Annotationssearch forall_elements $SEQUENTIAL $BLOCKED $CYCLIC $DIVIDEDconstrain cobegin $SEQUENTIAL $PARALLELdistance_filter forall $SEQUENTIAL $BLOCKED $CYCLIC $DIVIDEDremove_elements_cond $SEQUENTIAL $VECTOR $WORD $WORD_VECTORconnect_filter forall_elements $SEQUENTIAL $BLOCKED $CYCLIC $DIVIDEDintersect $SEQUENTIAL $VECTOR $WORD $WORD_VECTORTable I. Annotations for Parallelizations of Subgraph Isomorphism.Choosing the best parallelization from among this myriad set of choices is adaunting task for the programmer. Search parallelism is coarse grain, and thereforelikely to be worthwhile on most machines. However, search parallelism is alsospeculative, and may be of no value in cases where the solution space of a particularproblem instance is dense. Graph parallelism is �ne grain, and therefore may notbe worth exploiting on hardware and software architectures that don't support �ne-grain parallelism e�ciently. On the other hand, graph parallelism may be requiredin order to exploit a large number of processors. The tradeo� between sequentialand parallel application of �lters depends on the cost and bene�ts of parallelismversus the reduction in work that comes from the serial application of �lters. Thechoices for set parallelism depend on the capabilities and costs of the machine, andthe frequency of certain set operations in the program.Control abstraction did not create this di�cult problem for the programmer, sincethese choices are inherent in the subgraph isomorphism algorithm. The majority ofthese choices would typically be ignored by the programmer or determined by theprogramming environment. Rather than choose a speci�c parallelization based onlimitations of the programming environment, or implicit assumptions about the ma-

40 � Crowl and LeBlancchine or the input, we specify the alternatives explicitly using control abstraction,and use experimentation (where appropriate) to analyze the tradeo�s involved.4.2 Experimental Comparison of ParallelizationsIn order to explore the tradeo�s between the various sources of parallelism describedin the previous section, we performed a number of experiments with implementa-tions of subgraph isomorphism. These experiments cover a wide range of inputs,problem instances, machines, and parallelizations. The machines we used in thisstudy include a 20 processor Sequent Balance, a 19 processor Sequent Symmetry, a7 processor IBM 8CE, a 39 processor BBN Buttery, a 21 processor BBN TC2000,an 8 processor Silicon Graphics Iris multiprocessor workstation (a member of thePower Series), and a 32 processor Kendall Square Research KSR-1. We used ran-domly generated inputs, where the small graph has 32 nodes, the large graph has128 nodes, and the probability that a given leaf in the search tree represents a validisomorphism is either 10�5, 10�21, 10�35, or zero, representing a range of denseand sparse solution spaces. The problem instances vary between searching for onesolution and searching for 256 solutions.We implemented subgraph isomorphism in Natasha, a prototype parallel pro-gramming language that supports control abstraction. The Natasha program forsubgraph isomorphism, which uses control abstraction and annotations, only runson the BBN Buttery. Therefore, we used conditional compilation of a single sourcecode program to mimic the e�ect of the Natasha compiler and runtime.In the following discussion, we do not consider �lter parallelism at all. Also, wedon't examine the tradeo�s involved in the application of word parallelism. In ourresults, we report the minimumexecution time (in seconds) achieved over the entirerange of processors on a given machine, including word parallelism in those caseswhere it helps, and ignoring it in those cases where it does not help.4.2.1 Tuning to a Particular Class of Inputs. Graph parallelism reduces the timeneeded to move from the root of the search tree to a leaf, while search parallelismexpands the number of paths between the root and leaves that can be considered inparallel. Due to the speculative nature of search parallelism, we would expect it tobe most e�ective when searching for a single solution in a sparse solution space. Ina very dense solution space, we would expect every subtree to contain a solution,and therefore we should minimize the time spent on the path from the root nodeto any leaf using graph parallelism if we only need one solution. Thus, assumingwe only require one solution, we might want to use search parallelism for one classof inputs (sparse solution space), and graph parallelism for another (dense solutionspace).The results in table II con�rm this hypothesis. On the 8CE, Buttery, and Iris,graph parallelism performs better than search parallelism when the solution spaceis dense (that is, when the probability that a leaf node represents an isomorphismis 10�5). When the solution space is sparse, search parallelism dominates graphparallelism on all three machines. When there are no solutions to be found, thetwo parallelizations are comparable in performance.Given that graph parallelism is four times faster than search parallelism in onecase, while search parallelism is 67 times faster than graph parallelism in anothercase, there is clearly enormous bene�t to having both parallelizations in the source

Parallel Programming with Control Abstraction � 41solution density: 10�5 10�21 10�35 08CE graph 0.29 13.80 163.87 0.66search 1.12 11.09 3.09 0.59Buttery graph 0.73 33.72 541.51 1.77search 2.33 3.76 8.00 1.49Iris graph 0.02 1.10 13.25 0.05search 0.08 0.74 0.24 0.04Table II. Searching for one solution while varying solution space.code. In addition, the ability to move easily from one parallelization to the otheris essential if we expect to tune the program to a given class of inputs.4.2.2 Changing the Problem Instance. When searching for a single solution in adense solution space (where the probability that a leaf node is a solution is 10�5),it is best to minimize the time spent on the path from the root to a leaf node usinggraph parallelism. If we require multiple solutions however, a single subtree mightnot contain all the solutions we need, and therefore search parallelism might be ofsome bene�t. The results in table III con�rm this hypothesis.solutions desired: 1 128 256Buttery graph 0.73 4.04 7.20search 2.33 2.98 3.26Iris graph 0.02 0.09 0.17search 0.08 0.11 0.13Symmetry graph 0.32 1.31 2.32search 1.32 1.67 1.80Table III. Searching a dense solution space for a varying number of solutions.We can see that on each of the three machines in table III, graph parallelismperforms much better than search parallelism when only one solution is required.However, if we require 256 solutions, search parallelism performs better. Clearlythere is a crossover point, and as seen in table III, this point is di�erent on thedi�erent machines. (The crossover point is below 128 solutions on the Buttery, andabove 128 solutions on the Symmetry and Iris.) Thus, for a given class of inputs,we would like to vary the parallelization depending on the number of solutionsrequired, with the choice of parallelization also depending on the machine.4.2.3 Porting to a New Machine. When porting a program from one machineto another, we must reconsider all of the architectural assumptions that underlieour choice of parallelization. Any two machines are likely to di�er in the numberof processors, the speed of the processors, and the cost of communication. Thesedi�erences may be signi�cant enough that the best parallelization for one machinemay not be the best for another.As seen in table IV, if we require 128 solutions, then whether searching in a sparseor dense solution space, the choice between graph and search parallelism depends onthe machine. For this problem, search parallelism performs best on machines with

42 � Crowl and LeBlanca large number of processors (such as the KSR-1 and the Buttery), while graphparallelism performs best on machines with a small number of processors (such asthe 8CE and Iris). On the Symmetry, search parallelism performs best when thesolution space is sparse, and graph parallelism performs best when the solutionspace is dense. On the Balance, graph parallelism performs best when the solutionspace is dense, and the two parallelizations are comparable when the solution spaceis sparse. The reverse situation occurs on the TC2000, where search parallelismperforms best when the solution space is sparse, and the two parallelizations arecomparable when the solution space is dense.8CE Balance Buttery Iris KSR1 Symmetry TC2000sparse graph 24.67 91.67 75.73 2.06 10.68 29.77 11.04search 36.05 86.73 12.60 2.59 2.24 15.84 3.78dense graph 1.06 4.21 4.04 0.09 0.46 1.31 0.55search 1.53 6.52 2.98 0.11 0.26 1.67 0.52Table IV. Searching for 128 solutions.There are a variety of reasons why each machine performs best using a particularparallelization under particular circumstances, and a complete discussion of theseresults is beyond the scope of this paper. (See (Crowl et al. 1993) for a completeanalysis of subgraph isomorphism and an explanation for each of these performanceresults, and (Crovella and LeBlanc 1993) for a description of the tool we developedto aid in this analysis.) Here we note only that a primary source of overhead undergraph parallelization is load imbalance, while the primary source of overhead undersearch parallelization is wasted speculation. For machines with a large number ofprocessors, such as the KSR1, the degree of load imbalance under graph parallelismgrows quite large, as do the bene�ts of speculation. In contrast, a machine with asmaller number of processors, such as the Iris, can exploit graph parallelismwithoutintroducing signi�cant load imbalance, but does not have enough processors to fullyexploit speculation.4.2.4 Exploiting Multiple Sources of Parallelism. In the experiments describedabove, we compared the performance of search parallelism versus graph parallelism.Although we used set parallelism in conjunction with search or graph parallelismon some machines, we did not consider search parallelism in tandem with graphparallelism. It is possible that such a combination performs best on all machines,or on all inputs for a given machine.The results of experiments using this hybrid form of parallelization indicate thatit performs best when the solution space is neither very sparse nor very dense.16When the solution space is very dense, speculative parallelism is of no help, andtherefore the implementation that uses only graph parallelism performs best. Whenthe solution space is very sparse, we have to examine most of the search tree, and the16The number of processors assigned to each source of parallelism was determined statically.Varying the number of processors assigned to each source of parallelism would bias the resultstowards graph or search parallelism, but would not a�ect our primary conclusion regarding thesuitability of the hybrid parallelization.

Parallel Programming with Control Abstraction � 43coarse-grain implementation based on search parallelism introduces less overheadthan the �ne-grain implementation based on graph parallelism. These observationshold on all of the machines in our study. Thus, a combination of search and graphparallelism, with or without set parallelism, is not the best parallelization for thisproblem in all cases.4.3 Summary of ResultsOur experimental results clearly indicate that there is no one best parallelizationfor subgraph isomorphism. In fact, whenever we vary the input, the problem, or themachine, we may require a new parallelization. This conclusion points out the needfor multiple parallelizations, and the ability to change the parallelization easily.Using control abstraction, we can specify potential parallelism early in the pro-gramming process without worrying about a detailed analysis of the costs and ben-e�ts associated with each source of parallelism. Later, we can use a combination ofanalysis and experimentation to tune the implementation of control constructs tospeci�c circumstances. Any implementations created during the course of programdevelopment, tuning, or porting can remain in place as documentation of the alter-natives, and can be used in future experiments. Thus, control abstraction helps todocument the design space of parallelizations, facilitate the analysis of this space,and simplify the task of optimizing the parallelization for speci�c circumstances.5. IMPLEMENTATION OF CONTROL ABSTRACTIONThe examples in the previous sections demonstrate the power of control abstrac-tion for expressing parallelism, and the need for exibility in tuning parallelizations.Programmers use parallelism to improve performance however, and if control ab-straction is to be used frequently, it must be cheap. We now consider the per-formance implications of control abstraction using our prototype implementationof the Natasha programming language (Crowl 1991). Natasha uses the primitivemechanisms for control abstraction described in section 2. The Natasha compileruses the C language as an intermediate form, and relies on GNU's gcc compiler togenerate machine code. We have implemented a runtime environment for Natashaon the BBN Buttery.5.1 Natasha CompilerAny programming language that uses closures and operation invocation to imple-ment the most basic control mechanisms might appear to sacri�ce performance forexpressibility. However, with an appropriate combination of language and compiler,user-de�ned control constructs can be as e�cient as language-de�ned constructs(Kranz et al. 1986). Several straightforward optimizations, taken together, canessentially eliminate the execution overhead due to the control abstraction mecha-nisms. These optimizations include the following.Invocations as procedure calls: Since an invocation may execute concurrentlywith its caller after executing its reply, a conservative implementation of invocationrequires a separate thread of control for each invocation. This approach is pro-hibitively expensive. We can reduce this cost by recognizing when an operation hasno statements after the reply, and therefore can be implemented as a procedure.Delayed replies: In those cases where an operation replies early, it is often safeto delay the reply until the invocation completes. This delay admits a procedure

44 � Crowl and LeBlancimplementation for the operation, which exchanges parallelism for the e�ciency ofsequential execution. We can safely delay a reply if no statement following the replyrequires resources (such as synchronization variables) that statements following theinvocation release. Since it may be di�cult to detect whether delaying a reply issafe, we use two di�erent forms of reply in Natasha: one indicates that the replymay not be delayed in any implementation, and the other indicates that the replymay be delayed in some implementations. An annotation determines whether areply that may be delayed is actually delayed in a given implementation. Thisoptimization, together with the previous optimization, allow 98% of the (static)invocations in our examples to be implemented as procedure calls.In-line substitution: Even if we avoid creating a new thread of control for eachoperation invocation, the overhead of a procedure call for each invocation remains.We can eliminate this overhead by identifying the implementation of operations (ei-ther through static typing or type analysis), which makes it possible to use in-linesubstitution. In-line substitution is especially important for the e�cient executionof sequential control constructs. When the compiler can determine the implementa-tion of a construct statically, it can replace the invocation with the implementation,and propagate the closure parameter through to its use. Using this technique, wecan convert control constructs that use a procedure call implementation into anequivalent set of machine branch instructions.Stack allocation of closures: Closures in Smalltalk and Lisp require that theirenvironments remain in existence for the lifetime of the closure. As a result, thestandard implementation of closures uses heap allocation for all operation activa-tions that contain closures. Since the cost of dynamic allocation can be substantial,the widespread use of closures could have severe performance implications. Fortu-nately there are several language-dependent approaches to reducing the cost ofclosure environments. One approach is to analyze the program to determine if aclosure is used after normal termination of its environment. If not, the compilermay allocate the environment on an activation stack (Kranz et al. 1986). Anotherapproach restricts the assignment of closures such that the environment is guaran-teed to exist (much like Algol68 reference variables). A third approach, which weused in our implementation for expedience, simply de�nes as erroneous any pro-gram that invokes a closure after its environment has been destroyed. Each of theseapproaches enables stack allocation for closures, signi�cantly reducing the overheadassociated with their use.Our prototype compiler performs all of the above optimizationswith the followingexceptions:|When performing in-line substitution, the compiler does not propagate closureparameters through to their use in user-de�ned control constructs. This opti-mization would require global ow analysis in the compiler.|The compiler relies on gcc to in-line closures and procedures. Since the gcccompiler implements in-line procedures at the assembly code level, the in-linedroutine does not participate in the optimizations applied to the calling environ-ment by gcc.|The programmermust specify those replies that may be delayed safely. To requirethe compiler to detect those replies automatically would again require global owanalysis.

Parallel Programming with Control Abstraction � 45Even with these optimizations, the Natasha compiler does not produce code com-parable to an optimizing C compiler. Most of the remaining ine�ciencies are dueto the simplistic structure of our prototype compiler, the use of C as an interme-diate language, and the interactions between our compiler and the optimizationsemployed by gcc. In particular, the following optimizations signi�cantly improvethe quality of the resulting code, but cannot be incorporated into our prototypeeasily:|Convert *(&(var)) to var.17|Represent Natasha activation variables as C activation variables (rather thanmembers of a structure within the activation).18|Represent Natasha global variables as C global variables.When applied manually to the intermediate code produced by the Natasha com-piler, these optimizations bring the execution time of a Natasha program to within2% of the execution time of a comparable C program.5.2 Natasha Runtime EnvironmentThe Natasha runtime environment is responsible for implementing a shared ad-dress space for each application program, and for task creation and scheduling.Our runtime environment on the Buttery implements non-preemptive schedulingand blocking synchronization. Since the Buttery is a distributed-shared-memorymultiprocessor, the physical memory associated with the shared address space is dis-tributed among the processors. In addition, each processor has its own schedulingqueues. Our implementation exploits the following optimizations in the manage-ment of tasks.Eager task creation: For each early reply, we must create a new task to representthe process that continues execution within the callee. The referencing environ-ment for this new task is the activation record for the enclosing operation, whichis created when the operation is invoked. In order to execute the newly createdtask on a di�erent processor than the one executing the caller, and to ensure thatlocal variables are stored in local memory on the Buttery, we would have to copythe activation record to another processor. To avoid this copy operation, the run-time environment creates a new task when an operation containing an early replyis invoked. The currently executing task blocks, and the newly created task per-forms the operation. When the new task encounters an early reply, the runtimeenvironment unblocks the calling task, and both tasks proceed in parallel.Sharing stacks when possible: Since tasks may block, while waiting on other tasksor synchronization variables, we must allocate a separate stack for each task. How-ever, if a task cannot block, either because it accesses no synchronization variablesor because it invokes no operations containing an early reply, we avoid allocat-ing a separate stack and use the scheduler's stack to execute the task. The Lynximplementation also uses this technique (Scott 1987).17This optimization, when performed in isolation, can increase execution time because the com-piler no longer eliminates some common sub-expressions.18Both this optimizationand the previousone are required to promoteNatasha activationvariablesto registers.

46 � Crowl and LeBlancDirect access to scheduler queues: We expect the runtime environment to provideimplementations of common control constructs that exploit direct access to sched-uler queues. For example, our runtime environment on the Buttery provides bothblocked and cyclic implementations of forall, thereby allowing the programmer toselect a distribution of iterations among processors using annotations. These im-plementations exploit knowledge of the structure and location of scheduler queuesto manipulate those queues directly, resulting in a very e�cient implementation.Task generators: Control operations, such as forall, often require the creation ofa large number of tasks. Rather than create all tasks at the beginning of the loop, weplace a task generator on the scheduling queue. Scheduling a task on a processorinvolves generating the task from the description on the queue. This techniquedistributes task creation overhead among all processors, and avoids allocating spacefor tasks that are not able to run due to a lack of processors.LIFO scheduling: During execution, a program based on our model creates a treeof parallel tasks, where each branch in the tree is the result of an early reply. AFIFO scheduling strategy roughly corresponds to a breadth-�rst traversal of thistree of tasks. Under FIFO, the number of active tasks grows very quickly, and themajority of tasks consume storage without actually executing. One solution to thisproblem is to use LIFO scheduling (Halstead 1990), which encourages a depth-�rstexecution. LIFO scheduling reduces the number of active tasks, and the storageneeded to represent tasks. On machines with processor caches LIFO schedulingcan also minimize cache corruption between tasks, by returning the processor to arecently executed task before other tasks can evict its data from the local cache.Avoiding the scheduler: When the currently executing task creates a new task,we block the current task and transfer control to the new task, without invokingthe scheduler. This optimization is possible because the original task must block(awaiting an early reply from the new task), and the new task must run next underLIFO scheduling.Load balancing: It is often advantageous for an idle processor to balance theworkload by shifting work from another processor to itself. In our implementation,when a processor has an empty scheduling queue, it may take tasks from anotherprocessor's queue. In contrast to Concert Multilisp and Mul-T (Halstead 1990), weremove tasks from the end of the LIFO queue rather than the front, since tasks atthe end of the LIFO queue are likely to be high in the task tree, and therefore aremore likely to generate additional tasks for the local work queue. Mohr has shownthat the increased cost of queuing operations that results from removing tasks fromboth ends of the queue is more than compensated by the e�ciency of executinglarger subtrees of tasks locally (Mohr 1991).5.3 Performance EvaluationTo evaluate the e�ectiveness of our parallel implementation of Natasha, we com-pared the performance of the Natasha program for Gaussian elimination againstan existing hand-tuned parallel program written in C (LeBlanc 1988). As seen in�gure 7, the unoptimized Natasha program executes between three and four timesslower than the hand-tuned C program.To obtain a more realistic estimate of the performance of production qualityimplementations, we applied a set of optimizations to the Natasha program, eachwell within present compiler technology, but beyond the scope of our prototype

Parallel Programming with Control Abstraction � 47compiler. We �rst applied the optimizations described at the end of section 5.1 tothe inner loop. Since the lack of these optimizations in the code inhibits induc-tion variable elimination, we also manually applied induction variable elimination.These optimizations had some e�ect for a small number of processors, but were ofno help on the maximum number of processors, where communication dominates.An examination of the C code produced by the Natasha compiler showed that thetranslation to C introduces two unnecessary copies of the pivot row when reducingan equation; one from the parameter to the activation record, and another fromthe activation record to the argument list of the reduction operation. We removedthese redundant copy operations. Since our prototype compiler does not propagateclosure parameters through to their use during in-line substitution of user-de�nedcontrol constructs, we applied this optimization manually to triangulate. Finally,we modi�ed the code to copy only the non-zero portion of the pivot row; thisoptimization requires a language that can pass sub-arrays as parameters. Theexecution time of the resulting hand-optimized Natasha program is within 4% ofthe time required by the original C program.Since all of the optimizations we applied by hand are well within current compilertechnology, we would expect a production-quality implementation of Natasha to becompetitive with hand-tuned C programs for parallel programming.Seconds
Processors641282565121024

8 12 16 24 32 48
original Natasha programwith simple optimizationseliminating induction variablesremoving redundant copiesin-lining user constructspassing sub-arraysexisting hand-tuned C programFig. 7: Performance of Natasha implementation of Gaussian Elimination on an 800� 800 matrixon the BBN Buttery.6. CONCLUSIONSIn this paper we have demonstrated the bene�ts of using control abstraction forparallel programming. These bene�ts include the following:

48 � Crowl and LeBlanc|Programmers are not limited to a �xed set of control constructs. New constructscan be created and stored in a library for use by others.|Programmers can use constructs that reect the potential parallelism of an al-gorithm, isolating �nal decisions on parallelism and synchronization within theimplementation of constructs, and away from the rest of the algorithm.|Programmers can use control abstraction to de�ne operations on abstract datatypes, facilitating representation-dependent parallelism.|Each control construct can have multiple implementations, corresponding to dif-ferent parallelizations. In tuning a program for a speci�c architecture, or inporting a program to a new architecture, programmers can experiment with al-ternative parallelizations by selecting implementations from a library of controlconstructs.We introduced a small set of primitive mechanisms for control abstraction, andde�ned a notation for specifying control ow in control constructs in terms of thosemechanisms. We showed how to de�ne and implement new control constructs,verifying that the implementations meet the de�nitions. We used a number ofconcrete example programs to illustrate the issues that arise when writing parallelprograms with control abstraction, and showed how control abstraction makes iteasy to tune programs for a speci�c architecture. We also described the implemen-tation of a programming language based on our primitive mechanisms for controlabstraction, and outlined a number of optimizations that allow an implementationof these mechanisms to be competitive with procedural languages.When properly employed, control abstraction can greatly reduce the e�ort neededto make changes to the source code, whether debugging, tuning, porting, or oth-erwise modifying parallel programs. However, programmers with little or no expe-rience using control abstraction are likely to be unaware of the costs and bene�tsof control abstraction. Just as data abstraction requires a change in programmingmethodology, so does the introduction of control abstraction. Our experience withparallel programming using control abstraction has led to the following insights.Use control abstraction early in the programming process. In principle, abstrac-tion is always good because it delays commitment (Thimbleby 1988), which localizesthe program's assumptions and reduces the e�ort needed to change a program. Inpractice, abstraction mechanisms have a cost, and delayed commitment may not beworth this cost if there is an obvious best implementation. Since most sequentialmachines share the same von Neumann type architecture, there often is a best im-plementation. In contrast, there are several common type architectures for parallelmachines (Snyder 1986), and the performance of a given exploitation of parallelismmay vary widely among these type architectures. When employed early in the de-sign of a program, control abstraction simpli�es the process of adapting programsamong di�erent type architectures.Use precise control constructs. When the control constructs used to specify par-allelism do not precisely express the parallelism appropriate to an algorithm, wemust either introduce explicit synchronization to restrict excessive parallelism, oruse control constructs that admit less parallelism than the algorithm permits. Thede�nition of a control construct should admit the widest possible range of par-allelizations, while each implementation strikes a di�erent balance between theoverhead of explicit synchronization and the potential performance bene�ts of par-

Parallel Programming with Control Abstraction � 49allelism.Embed synchronization in control constructs. The need for explicit synchroniza-tion depends on the degree of parallelism in the implementation. By embeddingsynchronization within a control construct, we can select the appropriate synchro-nization in tandem with the parallelism. If, in the development of a program, itbecomes necessary to introduce synchronization into the body of work passed to acontrol construct, the construct should be redesigned to expose any dependences,so that synchronization can be embedded in the implementation of the construct.Integrate control and data abstractions. Where appropriate, programmers shoulduse data abstraction and control abstraction together. The designer of a dataabstraction should provide a rich set of control abstractions that operate on thedata, so as to allow the implementor of the abstraction su�cient latitude to exploitthe parallelism inherent in the representation.Reuse code. A library of correctly-implemented and well-understood data andcontrol abstractions is the programmer's most e�ective productivity tool. Althoughwe may require an application-speci�c control construct now and then, we onlyneed to build implementations for the architecture at hand, ignoring many possiblesources of parallelism. The set of implementations will naturally expand duringprogram tuning and porting, and each implementation remains available for usein the future. A program's investment in architectural adaptability is primarilyin the constructs it uses, and secondarily in the set of implementations for thoseconstructs, since changing a control construct is a serious undertaking, whereasusing an alternative implementation of a construct is not.Experiment with alternative parallelizations. It may be di�cult to predict theperformance implications of each implementation of a control construct in an ap-plication. Fortunately, it is easy to experiment with alternative parallelizationssimply by changing the annotations on each construct. In our experiments, we�rst examined the performance implications of each source of parallelism in iso-lation (starting with coarse-grain parallelism and then moving towards �ne-grainparallelism), so as to understand the tradeo�s involved in each potential source ofparallelism. Based on our understanding of these tradeo�s, we examined reason-able combinations of implementations so as to develop a performance model of theinteractions between di�erent sources of parallelism. Control abstraction greatlyfacilitates our ability to conduct the numerous experiments needed to understandthe performance implications of all possible implementations over a wide range ofmachines.Based on our experiences in implementing a language with control abstraction,and developing a range of application programs on a wide variety of shared-memorymultiprocessors, we conclude that the large bene�ts and modest costs of controlabstraction argue for its inclusion in explicitly parallel programming languages.ACKNOWLEDGMENTSMark Crovella implemented subgraph isomorphism on the KSR-1 and, togetherwith Michael Scott, was instrumental in the analysis of this application. Theauthors would like to thank Mark, Michael, Ricardo Bianchini, Timothy Budd,Margaret Burnett, Alan Cox, Robert Fowler, Michael Quinn, C�esar Quiroz, andJack Veenstra for their many helpful comments on this paper. We would also like

50 � Crowl and LeBlancto thank Argonne National Laboratories for the use of their TC2000, InternationalBusiness Machines for providing the 8CE, Sequent Computer Systems for providingthe Balance and Symmetry, and Donna Bergmark and the Cornell Theory Centerfor their assistance and the use of their KSR-1. We are also indebted to the anony-mous referees, whose many suggestions substantially improved the paper.ReferencesAlbert, Eugene, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, J. 1988 (July).Compiling Fortran 8x array features for the Connection Machine computer system.In Proceedings of the ACM/SIGPLAN PPEALS 1988, pages 42{56.Alverson, Gail A. and David Notkin. 1992.Abstracting data-representation and partitioning-scheduling in parallel programs.In Suzuki, N., editor, Shared Memory Multiprocessing, pages 315{338. MIT Press.Alverson, Gail A. 1990 (October).Abstraction for e�ectively portable shared memory parallel programs.Technical Report 90-10-09, Department of Computer Science and Engineering, Uni-versity of Washington.Ph.D. Dissertation.Andrews, Gregory R., Ronald A. Olsson, Michael H. Co�n, Irving J. P. Elsho�, KelvinNilsen, Titus Purdin, and G. Townsend. 1988 (January).An overview of the SR language and implementation.ACM Transactions on Programming Languages and Systems, 10(1):51{86.American National Standards Institute. 1990 (June).American National Standard Programming Language: Fortran 90, X3J3/s8.115.Black, Andrew P., Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.1987 (January).Distribution and abstract types in Emerald.IEEE Transactions on Software Engineering, 13(1):65{76.Budd, Timothy A. 1984 (July).An APL compiler for a vector processor.ACM Transactions on Programming Languages and Systems, 6(3):297{313.Burton, F. Warren. 1984 (April).Annotations to control parallelism and reduction order in the distributed evaluationof functional programs.ACM Transactions on Programming Languages and Systems, 6(2):159{174.Co�n, Michael H. and Gregory R. Andrews. 1989 (September).Towards architecture-independent parallel programming.Technical Report 89{21a, Department of Computer Science, University of Arizona.Co�n, Michael H. 1990 (August).Par: An approach to architecture-independent parallel programming.PhD thesis, University of Arizona.. 1992.Parallel Programming: A New Approach.Summit, New Jersey: Silicon Press.

Parallel Programming with Control Abstraction � 51Crovella, Mark and Thomas LeBlanc. 1993 (May).Performance debugging using parallel performance predicates.In Proceedings of the 3rd ACM/ONR Workshop on Parallel and Distributed Debug-ging, pages 140{150.Crowl, Lawrence A. and Thomas J. LeBlanc. 1992 (April).Control abstraction in parallel programming languages.In Proceedings of the 1992 International Conference on Computer Languages, pages44{53.Crowl, Lawrence, Mark Crovella, Thomas LeBlanc, and Michael Scott. 1993 (April).Beyond data parallelism: The advantages of multiple parallelizations in combina-torial search.Technical Report 451, Computer Science Department, University of Rochester.Crowl, Lawrence A. 1991 (May).Architectural adaptability in parallel programming.Technical Report 381, Computer Science Department, University of Rochester.Ph.D. Dissertation.Goldberg, Adele and David Robson. 1983.Smalltalk-80, The Language and Its Implementation.Reading, Massachusetts: Addison-Wesley.Goldman, Ron, Richard P. Gabriel, and Carol Sexton. 1990.Qlisp: An interim report.In Ito, Takayasu and Robert H. Halstead, J, editors, Parallel Lisp: Languages andSystems, number 441 in Springer-Verlag Lecture Notes in Computer Science, pages161{181.Halstead, Robert H., J. 1985 (October).Multilisp: A language for concurrent symbolic computation.ACM Transactions on Programming Languages and Systems, 7(4):501{538.. 1990.New ideas in parallel Lisp: Language design, implementation, and programmingtools.In Ito, Takayasu and Robert H. Halstead, J, editors, Parallel Lisp: Languages andSystems, number 441 in Springer-Verlag Lecture Notes in Computer Science, pages2{57.Hewitt, Carl E. and Russel R. Atkinson. 1979 (January).Speci�cation and proof techniques for serializers.IEEE Transactions on Software Engineering, SE-5(1):10{23.Hil�nger, Paul N. 1982.Abstraction Mechanisms And Language Design. ACM Distinguished Dissertation.MIT Press.Hudak, Paul. 1986 (August).Para-functional programming.Computer, 19(8):60{70.. 1988 (January).Exploring parafunctional programming: Separating the what from the how.IEEE Software, 5(1):54{61.

52 � Crowl and LeBlancKranz, David, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and NormanAdams. 1986 (June).ORBIT: An optimizing compiler for Scheme.In Proceedings of the SIGPLAN '86 Symposium on Compiler Construction, pages219{233.Lamport, Leslie. 1978 (July).Time, clocks, and the ordering of events in a distributed system.Communications of the ACM, 21(7):558{565.Leasure, B. 1990 (August).PCF Fortran: Language De�nition 3.1.Parallel Computing Forum, Champagne, Illinois.LeBlanc, Thomas J. 1988.Problem decomposition and communication tradeo�s in a shared-memory multi-processor.In Schultz, Martin, editor, Numerical Algorithms for Modern Parallel ComputerArchitectures, number 13 in IMA Volumes in Mathematics and its Applications,pages 145{163. Springer-Verlag.Liskov, Barbara H., Alan Snyder, R. R. Atkinson, and J. C. Scha�ert. 1977 (August).Abstraction mechanisms in CLU.Communications of the ACM, 20(8):564{576.Liskov, Barbara H., Maurice P. Herlihy, and Lucy Gilbert. 1986 (January).Limitations of synchronous communication with static process structure in lan-guages for distributed computing.In Conference Record of the Thirteenth Annual ACM Symposium on Principles ofProgramming Languages, pages 150{159.Metcalf, Michael and John Reid. 1990.Fortran 90 Explained.Oxford University Press.Miller, Russ and Quentin F. Stout. 1989 (September).An introduction to the portable parallel programming language Seymor.In Proceedings of the Thirteenth Annual International Computer Software and Ap-plications Conference, pages 94{101. IEEE Computer Society.Mohr, Eric. 1991 (October).Dynamic partitioning of parallel Lisp programs.Technical Report YALEU/DCS/RR-869, Department of Computer Science, YaleUniversity.(Ph.D. dissertation).Polychronopoulos, Constantine D. and David J. Kuck. 1987 (December).Guided self-scheduling: A practical scheduling scheme for parallel supercomputers.IEEE Transactions on Software Engineering, C-36(12).Sabot, Gary Wayne. 1988.The Paralation Model: Architecture-Independent Parallel Programming.MIT Press.Scott, Michael L. 1987 (January).Language support for loosely-coupled distributed programs.IEEE Transactions on Software Engineering, SE-13(1):88{103.

Parallel Programming with Control Abstraction � 53Snyder, Lawrence. 1984 (July).Parallel programming and the Poker programming environment.Computer, 17(7):27{36.. 1986.Type architectures, shared memory, and the corollary of modest potential.In Annual Review of Computer Science.Steele, Guy L., J and W. Daniel Hillis. 1986 (August).Connection Machine Lisp: Fine-grained parallel symbolic processing.In Proceedings of the 1986 ACM Conference on Lisp and Fuctional Programming,pages 279{297.Thimbleby, Harold. 1988 (May).Delaying commitment.IEEE Software, 5(3):78{86.Thomas, Robert H. and Will Crowther. 1988 (August).The Uniform System: An approach to runtime support for large scale shared mem-ory parallel processors.In Proceedings of the 1988 International Conference on Parallel Processing, pages245{254.Ullman, Je�rey R. 1976.An algorithm for subgraph isomorphism.Journal of the ACM, 23:31{42.

