
Math. Struct. in Comp. Science (), vol. 11, pp. 1{000 Copyright c Cambridge University Press��-Equality for CoproductsNEIL GHANILIENS-DMI, Ecole Normale Superieure, 45 Rue D'Ulm, 75230 Paris Cedex 05, France.email: ghani@ens.frReceived 3 May 0The use of expansionary �-rewrite rules in various typed �-calculi has becomeincreasingly common in recent years as their advantages over contractive �-rewrite ruleshave become apparent. Not only does one obtain simultaneously a decision procedure for��-equality and a rational reconstruction of the long ��-normal forms, but expansionsretain key properties such as strong normalisation and conuence when combined withalgebraic rewrite systems, are supported by a categorical theory of reduction andgeneralise more easily to other type constructors.This paper considers a type constructor for which a decision procedure for ��-equalityhas been sought for a long time, namely the coproduct. Categorical models of reductionare used to derive a new �-rewrite rule for the coproduct which turns out to besubstantially more complex than that for the exponent or product. Not only is there afacility for expanding terms of sum type analogous to that for the product andexponential, but also the ability to permute the order in which di�erent subterms of sumtype occur.These di�erent aspects of �-conversion for the sum type are reected in our analysis.The rewrite relation is decomposed into two parts, a strongly normalising and conuentfragment resembling that found in the calculus without coproducts and a relation whichgeneralises the \commuting conversions" appearing in the literature. This secondfragment is proved decidable by constructing for each term its (�nite) set ofquasi-normal reducts. Finally decidability, conuence and quasi-normal forms for the fullrelation are derived by embedding the whole relation into this generalised commutingconversion relation.1. IntroductionExtensional equality for terms of the simply typed �-calculus requires �-conversion, whoseinterpretation as a rewrite rule has traditionally been as a contraction �x:fx ) f withthe side condition x 62 FV(f). When combined with the usual �-reduction, the resultingrewrite relation is strongly normalising and conuent, and thus reduction to normal formprovides a decision procedure for the associated equational theory.However, �-contractions behave badly when combined with other rewrite rules and thekey property of conuence is often lost. For example, if the calculus is extended by a unittype 1 with associated rewrite rule t)� (providing t has type 1), then the divergence�x : 1: �( �x : 1:fx ) f (1)



Neil Ghani 2cannot be completed.Another area where �-contractions cannot be used is in the combination of type theor-ies and algebraic rewrite systems. Properties of such rewrite systems such as conuenceand strong normalisation, preserved when combined with �-reduction (V. Breazu-Tannen1988; V. Breazu-Tannen and J. Gallier 1994), are typically lost in the presence of a con-tractive �-rewrite rule. For example, if we regard 1 as a base type with constants f : 1!1and � : 1 and with rewrite rule fx)�, then ) is conuent while the divergence aboveshows that the combination of ) with the contractive �-rewrite rule is not conuent.These problems led several authors (Y. Akama 1993; R. Di Cosmo and D. Kesner 1994;C. B. Jay and N. Ghani 1995) to accept the old proposal (G. Huet 1976; G. E. Mints1979; D. Prawitz 1971) that �-conversion be interpreted as an expansion f ) �x:fx andthe resulting rewrite relation has been shown conuent. In these works in�nite reductionsequences such as f ) �x:fx ) �x:(�y:fy)x ) : : :are avoided by imposing syntactic restrictions to limit the possibilities for expansion;namely �-abstractions cannot be expanded, nor can terms which are applied. This re-stricted expansion relation is strongly normalising, conuent and generates the sameequational theory as the unrestricted expansionary rewrite relation. Thus ��-equalitycan be decided by reduction to normal form in this restricted fragment and, in addition,the normal forms of this restricted rewrite relation are exactly Huet's long ��-normalforms (G. Huet 1976; D. Prawitz 1971). In addition, �-expansions generalise well to thepowerfull members of the �-cube (N. Ghani 1995a; N. Ghani 1996) and, most pleasinglyof all, these properties tend to be maintained if one adds algebraic rewrite rules (R. DiCosmo and D. Kesner 1994).In addition to these practical arguments, the category-theoretic analysis of reduction (N.Ghani 1995b; C. B. Jay 1992; D. E. Rydeheard and J. G. Stell 1987; R. A. G. Seely 1987)provides another argument in favour of interpreting � as an expansion. In this analysis,the introduction and elimination rules of a type constructor form a pair of locally adjointfunctors (J. Gray 1974; C. B. Jay 1988) whose local unit and counit are respectively anexpansionary (not contractive) �-rewrite rule and contractive �-rewrite rule. The associ-ated local triangle laws assert the existence of looping reductions | for the exponentialthe triangle laws are �x:t ) �y:(�x:t)y ) �y:t[y=x] � �x:ttu ) (�x:tx)u ) tu (2)Thus even the restrictions on �-expansion required to obtain strong normalisation havea categorical formulation, preventing exactly those expansions occurring in the trianglelaws 2.This paper considers a type constructor for which a decision procedure for ��-equality hasbeen sought for a long time, namely the coproduct or sum type. The categorical approachto rewriting outlined above is used to derive a new �-rewrite rule for the coproduct whichturns out to be substantially more complex than that for the exponent or product. Not



��-Equality for Coproducts 3only is there a facility for expanding terms of sum type analogous to that for the productand exponential, but also the ability to permute the order in which di�erent subterms ofsum type occur.These di�erent aspects of �-expansion for the sum type are reected in our analysis. Afterde�ning the calculus, an expansionary �- and a contractive �-rewrite rule is derived foreach type constructor by interpreting the associated introduction and elimination rulesas forming an adjoint pair. This rewrite relation is then decomposed into two fragments,the �rst of which contains �-redexes, commuting conversions and limited possibilities for�-expansion and is proven strongly normalising and conuent. The normal forms of thisfragment satisfy similar structural criteria to the long ��-normal forms of the simplytyped �-calculus, and so may be thought of as their generalisation to this calculus.The second part of the decomposition is called the conversion relation and permutes theorder in which subterms of sum type may be eliminated | examples of which are the`commuting conversions' appearing in the literature (D. Prawitz 1971; J. Y. Girard et al.1989). Each term has a �nite set of possible permutations, and so in general unique normalforms do not exist for the conversion relation. Instead, each term has a (�nite) set of quasi-normal reducts and terms equivalent in the equational theory generated by the conversionrelation have the same set of quasi-normal reducts. Conuence and decidability of theconversion relation are corollaries to these results. Finally by appropriately embeddingthe whole relation in the conversion relation, conuence and decidability of the full rewriterelation is proved.Historically the use of expansionary �-rewrite rules for products and exponentials canbe traced back to (G. E. Mints 1979), although the proof that they form a stronglynormalising relation had to wait a decade for the papers mentioned above. The last yearhas seen the successful application of �-expansions to more powerful theories in the �-cube (N. Ghani 1995a; N. Ghani 1996), and currently research focuses on combiningthese powerful type theories with algebraic rewrite systems. In (N. Ghani 1995b), themethods presented in this paper are used to de�ne, and prove decidable, a sound andcomplete equational theory for the (I;
;!)-fragment of intuitionistic linear logic.Several authors have attempted to apply �-expansions to the problem of ��-equalityfor coproducts. A partial solution was provided by (D. Dougherty 1993) but in thisapproach conuence can only be proved for terms of ground type. At the time of writing,the research presented here remains the only proof of the decidability of the theory ofcoproducts, although one other interesting result is (D. Dougherty and R. Subrahmanyam1995) which extends (H. Friedman 1975) in providing a proof system for deriving a setof equations which is sound and complete for all \set-theoretic" models of a �-calculuswith exponentials and coproducts. This theory has been proved decidable by proving itis equivalent to the one presented here (D. Dougherty and R. Subrahmanyam 1995).The rest of this paper is organised as follows. Section 2 contains notation required later,section 3 a de�nition of the term calculus and section 4 uses categorical methods toderive a rewrite relation which generates a sound and complete equality. Section 5 de�nesthe conversion relation, while sections 6 and 7 prove the conversion relation decidable.



Neil Ghani 4Section 8 de�nes, and proves strongly normalising, the extension of �-reduction whilesection 9 combines these results to prove the full relation is decidable. Finally we makesome concluding remarks in section 10.2. NotationWhile basic knowledge of term rewriting is assumed (N. Dershowitz and J.P. Jouannaud1990; G. Huet 1980), an introduction to occurrences is given | a full development maybe found in (G. Huet 1980).Occurrences are sequences of natural numbers which are used to index the subterms ofa term and their analysis forms the technical core of this paper. Let N � be the set ofsequences of natural numbers with the empty sequence denoted �, while u � v denotesthe concatenation of u with v. If u 6= �, then u+ is the sequence obtained by omittingthe last element of u, while u� is the sequence obtained by omitting the �rst element.The pre�x partial ordering is de�ned u � v i� 9w:v = u � w and in such a case de�ne(u �w)=u= w. These operations on sequences are extended pointwise to sets of sequences,e.g. X=u = fw j u �w 2 Xg.Now let T be the terms of some calculus. Given any t 2 T , its set of occurrences isdenoted O(t) � N �, while the subterm indexed at occurrence � 2 O(t) is denoted t=�.These are de�ned as follows:| If t is a variable, then O(t) = f�g and t=� = t| If t = F (t0; : : : ; tn), then O(t) = f�g [ fi � �ji � n; � 2 O(ti)g andt=� = � t if � = �ti=�� if � 6= � and � = i � ��When no danger of confusion exists, the distinction between an occurrence and thesubterm so indexed may be blurred. As we shall see later, the conversion relation isnot left linear in that di�erent occurrences in the redex, which index syntactically equalsubterms, may be mapped to the same occurrence in the reduct. To formalise this, aset X of occurrences is said to be consistent i� given any members �; �0 of X, thent=� = t=�0, and if X is non-empty, the subterm so indexed is denoted t=X. Finallyt[�i ui]i2I denotes the textual replacement of terms ui at occurrences �i and is de�nedas expected (G. Huet 1980).Given a rewrite relation R, if there is a rewrite t)Rt0 we call t the redex and t0 thereduct. The set of one-step R-reducts of a term t is denoted t=R = ft0 j (t; t0) 2 Rg, thereexive closure of R is denoted R+ and the reexive transitive closure of R is denotedR�. The equational theory generated by a homogeneous relation R is the least equivalencerelation containing R, and if two elements t and t0 are related in this theory we say tand t0 are R-equivalent and write t =R t0. If R is an equivalence relation, the equivalenceclass of an element t is denoted [t]R, while if a term t is R-strongly normalising, itsR-rank is denoted jtjR. Some rewrite relations do not have normal forms and in thesecircumstances we use the more categorical notion of a quasi-normal form. A term t is an



��-Equality for Coproducts 5Table 1. Term Judgements of ABCCx2Var(A) [ Con(A)x : Ae : A e0 : Bhe; e0i : A�B t : A1 � A2�it : Ait : Aiini(t) : A1 + A2 t : A1 + A2 u : C v : C xi2Var(Ai)case(t; x1:u; x2 :v) : Ce : B x2Var(A)�x:e : A!B e : A!B e0 : Aee0 : BR-quasi-normal form i� whenever t)�Rt0, then there is reduction sequence t0 )�Rt andthe set of R-quasi-normal reducts of a term t is denoted R(t).3. Almost Bicartesian Closed LogicAlthough this paper is primarily concerned with the de�nition and decidability of ��-equality for coproducts, in order to maintain continuity with previous work and to avoidcertain trivial simpli�cations, a calculus which includes products, terminal object andexponentials is studied. This calculus is called \Almost Bicartesian Closed" as it corres-ponds to the internal language of bicartesian closed categories, without an initial object.We have veri�ed separately that the techniques developed here are su�cient to cope withthe addition of an initial object.The types of \Almost Bicartesian Logic", denoted ABCC, are freely generated by thesyntax T := B j 1 j T + T j T!T j T � Twhere B is any base type. For each type T , there are constants Con(T ), including thespecial constant � 2 Con(1), and an in�nite set of variables Var(T ) such that if T 6= T 0,then Var(T ) and Var(T 0) are disjoint. This explicit typing of variables means contextsare not required to assign a type to a term and so the term judgements of ABCC aretaken to be of the form t : T . These judgements are generated by the inference rules ofTable 1.Familiarity with calculi such as that above is assumed (J. Y. Girard et al. 1989; H.Barendregt 1984). Given any term judgement t : T , we say t is a term of type T . Thefree variables of a term t are denoted FV(t) and substitution of terms for free variablesof the same type is de�ned as expected. A term is called an introduction term if it is a�-abstraction, pair, injection or the constant �. If a term is not an introduction term,then it is a neutral term. An occurrence � 2 O(t) is negative i� the subterm so indexed iseither applied to another subterm, projected or the �rst argument of a case-expression| occurrences which are not negative are said to be positive.Lemma 3.1. If there are typing judgements t : T and t : T 0, then T = T 0.Proof. Induction on the typing derivations.



Neil Ghani 6The redex of the proposed �-rewrite rule for the sum type is expressed as a substitutionand this may be formalised in terms of occurrences. Firstly, the variables bound at anoccurrence � 2 O(t) are de�ned as follows:BV(�; t) = 8>>>><>>>>: ; if � = �fxg [ BV(��; t0) if t = �x:t0 and � 6= �fx1g [ BV(��; t0) if t = case(u; x1:v1; x2:v2) and � � 1fx2g [ BV(��; t0) if t = case(u; x1:v1; x2:v2) and � � 2BV(��; t=i) otherwise ; � = i � ��and the free occurrences of a term are FO(t) = f� 2 O(t) j FV(t=�) \ BV(�; t) = ;g.One easily proves by induction that if X � FO(t) is a non-empty, consistent set of freeoccurrences then, given a fresh variable z, t = t[� z]�2X [z := (t=X)].4. A Rewrite Relation for ABCCIn (C. B. Jay and N. Ghani 1995) extensional rewrite relations for the product, unitand exponential were derived by constructing categorical models of reduction and takingintroduction and elimination to be (locally) adjoint functors. When applied to coproductsthis approach again generates a contractive �-rewrite rule and an expansionary �-rewriterule.To see this, let C(X) is the category whose objects are terms of type X and whosemorphisms are rewrites between terms. Assuming the variables x; y and z have the righttype, the introduction and elimination rules for the coproduct, once extended to rewrites,form functors between the categories displayed in equation 3. When these functors aretaken to constitute an adjoint pairC(C)� C(C) case(z; x: ; y: ) ->�( [in1(x)=z]; [in2(y)=z]) C(C) (3)the associated unit and counit form the following expansionary �-rewrite rule and con-tractive �-rewrite rules.(�+;1) case(in1(x); x:u; y:v) ) u(�+;2) case(in2(x); x:u; y:v) ) v(�+) t ) case(z; x:t[in1(x)=z]; y:t[in2(y)=z])These reduction rules, when closed under substitution and taken together with the re-duction rules for the exponential, product and unit connectives, generate expansionaryrewrite relation, denoted ), which is de�ned in Table 2. The fresh variables are as-sumed to have appropriate types and the capture of free variables is avoided by assumingx; y 62 FV(t) in the rewrite rule �+ and x 62 FV(t) in �!.Lemma 4.1. If there is a typing judgement t : T and a rewrite t)t0, then there is atyping judgement t0 : T .Proof. The proof is by induction on the rewrite t)t0.



��-Equality for Coproducts 7Table 2. The Expansionary Rewrite Relation��;1 �0ha; bi ) a��;2 �1ha; bi ) b�� c ) h�0c; �1ci if c : A� B�! (�x:t)u ) t[u=x]�! t ) �x:tx if t : A!B�1 a ) � if a :1�+;1 case(in1(t); x:u; y:v) ) u[t=x]�+;2 case(in2(t); x:u; y:v) ) v[t=y]�+ t[u=z] ) case(u; x:t[in1(x)=z]; y:t[in2(y)=z]) if u : A+ BThe equational theory generated by the expansionary rewrite relation is called ��-equalityand matches that suggested by the traditional categorical semantics for ABCC.Lemma 4.2. ��-equality is sound and complete for models ofABCC in cartesian closedcategories with coproducts.Proof. Soundness is by induction on the term structure, while completeness followsfrom the construction of a free model,e.g. a category C whose objects are types and whosemorphisms are ��-equivalence classes of terms:C(X;Y ) = f [t]�� j t : X!Y gThe rest of the proof follows the standard techniques, e.g. see (J.Lambek and P.Scott).The �+-rewrite rule is highly non-local in that consistent sets of free conversions maybe expanded to the head of the term and is thus signi�cantly more complex than the�-rewrite rules for the exponential and product. As terms typically contain many suchssets of subterms, unique normal forms cannot be associated to terms; rather each termhas a set of quasi-normal reducts, one for each of the di�erent permutations in whichsubterms may be expanded. For example, the term hcase(t; x:x; y:y); case(t0; x0:x0; y0:y0)ihas two normal formscase(t; x:case(t0; x0:hx; x0i; y0:hx; y0i); y:case(t0; x0:hy; x0i; y0:hy; y0i)) (4)and case(t0; x0:case(t; x:hx0; xi; y:hx0; yi); y0:case(t; x:hy0; xi; y:hy0; yi)) (5)depending on the order in which the subterms t and t0 are expanded. To accommodatethis feature, the �+-rewrite rule is decomposed into two parts:| The following special case of the �+-rewrite rule is obtained by setting t to be thevariable z in the de�nition of �+ given in Table 2.u ) case(u; x:in1(x); y:in2(y)) if u : A+ B (6)This rewrite rule is similar to the other �-rewrite rules of Table 2 in that terms ofsum type are converted into negatively occurring subterms of the reduct. Indeed,once suitable restrictions have been imposed upon the applicability of the expansionsin equation 6, and when taken together with the �-redexes and commuting conver-sions, the resulting rewrite relation is strongly normalising and conuent. The proof



Neil Ghani 8of normalisation is essentially an adaptation of that in (C. B. Jay and N. Ghani1995), although a couple of innovations are required to cope with some new technicalproblems.| The second part of the decomposition is a generalisation of the \commuting con-versions" appearing in (D. Prawitz 1971; J. Y. Girard et al. 1989). A conversionis a negative occurrence of sum type, or equivalently, the �rst argument of a case-expression. The conversion relation develops an algebra of these conversions, allowingthem to be identi�ed, discarded or expanded to the head of a term, e.g. the two normalforms in equations 4 and 5 are interconvertable in the conversion relation. Althoughnot strongly normalising, each term has a (�nite, enumerable) set of quasi-normalreducts and terms equivalent in the equational theory generated by the conversionrelation have the same set of quasi-normal reducts. Conuence and decidability ofthe conversion relation are corollaries to these results.Finally the whole expansionary rewrite relation is shown conuent and decidable byembedding it into the conversion relation. As the conversion relation is the main technicalinnovation in this paper, it is here that we begin.5. The Conversion RelationThe �+-rewrite rule of Table 2 extracts consistent sets of free occurrences and insertsinjections at their occurrences in the redex; when these occurrences are negative, new�+-redexes are created by this process. The conversion relation restricts the �+-rewriterule to extract only negative occurrences, and then contracts these resulting �-redexes.This idea is formalised by (i) de�ning the set of conversions of a term; (ii) giving arecursive de�nition of the result of contracting the �-redexes mentioned above; and (iii)giving a calculus for deriving the rewrites of the conversion relation.The set of conversions of a term t is de�ned byC(t) = f� 2 O(t)j� is a negative occurrence of sum type gThe free conversions of t are simply those occurrences which are both free and conversions,i.e. FC(t) = C(t) \ FO(t). Every conversion has a binding which consists of the pair ofvariables bound by the arms of the case-expression associated to the conversion, e.g. thebinding of the conversion 0 in the term case(t; x:u; y:v) consists of the pair x and y. Thesevariable bindings play an important role in avoiding variable capture and henceforthwhenever sets of conversions are considered, the subterms so indexed are assumed tohave the same type and have the same binding.Given a set X � C(t) of conversions, the result of contracting the �-redexes formed uponinsertion of left injections at these occurrences is called the �rst residue, denoted t n1X,while the result of contracting the �-redexes formed upon insertion of right injections iscalled the second residue and is denoted t n2X. These terms are recursively de�ned as



��-Equality for Coproducts 9Table 3. The Conversion RelationExpansion X � FC(t) X consistent X 6= ;h�;Xi : t )c case(t=X;x:t n1X;y:t n2X)Weakening x 62 FV (t) y 62 FV (t)h�;;i : case(u;x:t; y:t) )c tCongruence h�;Xi : tj )c t0jhj:�;Xi : T (t0; : : : ; tn) )c T (t0; : : : ; tn)[j t0j]follows:t niX = 8<: t if X = ;vi niXi if 0 2 X and t = case(u; x:v1; y:v2)F (t1 niX1; � � � ; tn niXn) if X 6= ;; 0 62 X and t = F (t1; � � � ; tn)where i = 1 or 2 and Xn = X=n.Lemma 5.1. Given a set of conversions X � C(t) binding the variables x1 and x2, thenfor i = 1 or 2 there is a reduction sequence t[� ini(xi)]�2X )� t niX.Proof. Induction over t.The conversion relation is de�ned via a series of inference rules for deriving triples of theform h�;Xi : t )c t0 where � is the occurrence at which the actual redex occurs andX is the set of conversions to be expanded, i.e. X � FC(t=�). We call h�;Xi the labelof the rewrite, and, when not required, the label part of the rewrite is omitted. Thesetriples are generated by the inference rules of Table 3, where in the Expansion clausex; y are the variables bound by each � 2 X and to avoid variable capture we assumex; y 62 FV(t) [ BV(�; t). These conditions can always be met, if necessary by a change ofbound variables.The Expansion clause requires the set X of conversions to be free and consistent so thatthe redex may be expressed as a substitution and hence in a form compatible with the�+-rewrite rule of Table 2. In addition, this set is required to be non-empty to preventexpansions of the form u ) case(t; x:u; y:u) which would allow terms to grow arbitrarylarge, new free variables to be introduced and other undesirable features. However theseterms remain identi�ed in the equational theory generated by the conversion relationbecause redex and reduct have been inverted and included under the Weakening clause.Lemma 5.2. Given a triple h�;Xi : t)ct0, then t = t0 in the expansionary rewriterelation.Proof. The lemma is proved by induction on �. If � = � and the rewrite is of the formcase(u; x:t; y:t) )c t then, given a variable z not free in tt = t[u=z] )�+ case(u; x:t[in1(x)=z]; y:t[in2(y)=z]) = case(u; x:t; y:t)However, if X in non-empty thent = t[� z]�2X [z := t=X]



Neil Ghani 10)�+ case(t=X; x:t[� in1(x)]�2X ; y:t[� in2(y)]�2X ))� case(t=X; x:t n1X; y:t n2X)where the equality in the �rst line holds because X is a non-empty, consistent set of freeconversions, and the last line is by lemma 5.1. Finally if � 6= � then, as both relationsare congruences, the lemma follows by induction.The conversion relation is so named because the relation generalises the commutingconversions occurring in the literature (J. Y. Girard et al. 1989; D. Prawitz 1971). Com-muting conversions are formed when negative occurrences index case-expressions | anexample is given in in equation 7. The reader is invited to check that this rewrite maybe derived as a conversion rewrite with label h�; f00gi.� : case(case(t; x:u; y:v); x0:u0; y0:v0)) (7)case(t; x:case(u; x0:u0; y0:v0); y:case(v; x0:u0; y0:v0))The rewrite relation )� is de�ned to be the least congruence containing the redex givenin equation 7. Note that )� is strongly normalising and conuent and so has uniquenormal forms.The technical core of the analysis of the conversion relation uses the structure of arewrite r : t)ct0, represented in the label r, to de�ne a relation r � C(t) � C(t0) whichrelates conversions in the redex, called ancestors, to conversions in the reduct, calleddescendants. As we have seen, the action of a (consistent) set of conversions X � C(t)is to produce two residues, namely t n1X and t n2X. This action induces a partitioningof the set of conversions C(t) into (i) those conversions which are sub-conversions of(unique) members of X; (ii) those conversions which have descendants in one or bothof the residues; and (iii) those conversions which �t into neither of these categories andhence have no descendants.If a conversion � has a descendant in the residue t n iX, then this descendant will beunique and is given by the partial function 
i(X;�) (which is unde�ned if � has nodescendant). 
i(X;�) =8>><>>: 
i(X=i; ��) if 0 2 X and � � iunde�ned if 0 2 X and � 6� i0 if 0 62 X and � = 0i:
i(X=i; ��) otherwise ; � = i � ��Note that in general the domain of 
1 will di�er from 
2.Lemma 5.3. Let X � C(t) and � 2 C(t) be in the domain of 
i(X). Then 
i(X; � ) 2C(t niX) is a conversion, indexing the subterm(t niX)=
i(X; � ) = (t=� ) ni(X=� )In addition the partial function 
i(X) : C(t)!C(t n iX) is surjective, injective on itsdomain, maps free conversions to free conversions and is strictly monotonic, i.e. for con-versions �; � in its domain: � > � i� 
i(X;�) > 
i(X; � )



��-Equality for Coproducts 11Proof. The proof is by induction on the de�nition of 
i.The conversion tracking function promised at the beginning of this section can nowbe constructed. Given a rewrite r : t)ct0, and a conversion � 2 C(t), de�ne its set ofdescendants r(�) � C(t0) as follows:| If r is a Weakening, then r(� ) = � ; if � � 0f��g otherwise| If r is an Expansion of the non-empty set of conversions X, thenr(� ) = � f0:�=�g if there is a � 2 X with � � �f1:
1(X; � ); 2:
2(X; � )g otherwisewhere, since X is consistent, � in the �rst clause is necessarily unique and thosefunctions unde�ned in the second clause are deleted.| If r is induced by a congruence thenhj � !;Xi(�) = � f�g if � = 0 or � 6= j � ��j � h!;X=ji(��) otherwiseThe function r is extended pointwise to sets of conversions. Note that a single conversionmay have more than one descendant and the ordering on conversions is not necessarilypreserved. Both of these points can be seen in equation 7 where r(00) = f0g whiler(0) = f10; 20g. Another interesting reduction ish�; f0; 10gi : case(t; x:case(t; x:u; y:v); y:s))case(t; x:u; y:s) (8)which shows how a conversion, e.g. any inside v in the redex, may have no descendants,and how a conversion in the reduct may have more than one ancestor. However, r issurjective, i.e. all conversions in a reduct have at least one ancestor in the redex. Thusthe possibilities for further rewriting, which are determined by the conversions of thereduct, may be traced back to the associated redex, and hence we may directly constructthe quasi-normal reducts of a term and deduce conuence and decidability.Lemma 5.4. Given a rewrite r : t)ct0, and a conversion �2C(t), then r(�) � C(t0) andthe set r�1(� ) = f� 2 C(t) j � 2 r(�)gis non-empty.Proof. Induction on the rewrite.6. A Decidability ResultGiven a rewrite r : t)ct0 and a set of conversions X � C(t), we give conditions underwhich r may be localised to its action on an individual conversion and to its action onthe residues, i.e. �nd conditions under which rewrites of the following form existr=�0 : t=� )c t0=�0 and r niX : t niX )c t0 nir(X)



Neil Ghani 12where � 2 X and �0 2 r(�). As these localised rewrites have smaller redexes, we obtaina recursive decomposition of the conversion relation which will be the key to the con-struction of quasi-normal forms.Equation 7 shows that a rewrite cannot always be localised to a conversion | r(0) =f10; 20g, but no rewrite exists between the corresponding subterms. This problem occursas the conversion 0 is mapped into the residues while one of its sub-conversions is ex-panded to the head of the term and is thus `removed' from the original conversion. Thekey to localising a rewrite to a conversion lies in ensuring that the layer structure onconversions, formed by the embedding of conversions inside each other, is preserved. Arewrite h�;Xi : t)t0 is said to preserve a conversion � 2 C(t) i� 8! 2 X::(� < � < !),i.e. no subconversions of � are expanded outside of �. This generates a subrelation of theconversion relation where all conversions are preserved.)p = fr : t)ct0 j r preserves C(t)gAs mentioned above, the commuting conversion in equation 7 is an example of a rewritewhich does not preserve the conversion layer structure. In fact, this redex fully describesall the cases in which )c-reduction fails to preserve a conversion.Lemma 6.1. The conversion relation may be decomposed as follows:)�c = ()p [ )�)�Proof. Induction on the structure of a conversion rewrite.Lemma 6.2. Let r : t)ct0 preserve � 2 C(t). Then forall �0 2 r(�) there is a rewriter=� : t=�)ct0=�0. In addition, if r preserves all conversions in C(t), then r=� preservesall conversions in C(t=�).Proof. Induction on r.We now consider the conditions which must be satis�ed by a set of conversions X � C(t)such that a rewrite r : t)ct0 induces rewrites of the residues r niX : t niX )ct0 nir(X).If r is of the form case(t; x:u; y:u))cu, and X contains a conversion inside one of thesubterms u, then in order to maintain the shape of the redex, X must also contain the\sister" conversion inside the other arm. Similar considerations apply if r is an expansionh�; Y i, where if X contains a conversion occurring inside an element of Y then, in orderto maintain consistency, X must contain the sister conversions inside the other elementsof Y .These conditions are easily formalised in terms of the conversion tracking function. Givena rewrite r, a set of conversions X is r-closed i� r�1r(X) = X.Lemma 6.3. Let r : t )c t0 X be an r-closed set of conversions. Then there are eitherrewrites r niX : t niX )ct0 nir(X) or rewrites in the reverse direction. In addition, if rpreserves all conversions then so do the residual rewrites.Proof. The proof is by induction on r.An example of the need to reverse the direction of the residual rewrite is the following. Ifr represents an expansion of conversions Y � C(t), then the obvious candidate for r niXis the basic expansion of the descendants of Y in the residue t n iX, namely 
i(X;Y ).



��-Equality for Coproducts 13However this set may be empty, in which case the direction of the residual rewrite mustbe reversed and taken to be a Weakening.Equivalence in the conversion relation can now be proved decidable but, because of theconditions required by preservation and closure, this is done �rstly for the subrelation)p. For each term, we construct its �nite set of )p-quasi normal forms and show that)p-equivalent terms have the same set of )p-quasi-normal forms.If a term is a )p-quasi-normal form containing free conversions, then the term must bea case-expression, as otherwise a rewrite to such a term would exist, but not one in theother direction. Thus the construction of )p-quasi-normal forms is essentially a processof expanding as many conversions as possible. However as a non-free conversion may havea free )p-descendant, we must consider not just free conversions but also potentiallyfree conversions, and secondly, as these quasi-normal forms are to be )p-reducts, onlyminimal conversions are expanded. The construction of )p-quasi-normal forms alsoperforms two other tasks, namely checking for possible applications of Weakening andalso ensuring that as much identi�cation of conversions occurs as is possible.The construction of )p-quasi-normal forms is presented in Table 4 in terms of a functionNFp which maps a term to its set of )p-quasi-normal reducts. In this table, the followingde�nitions are used:| The set of minimal conversions of a term are given by:MC(t) = f�2C(t) j6 9�02C(t):�0 < �g| The set of potentially free conversions of a term are given by:PFC(t) = f�2C(t) j 8u2NFp(t=�):BV(�; t) \ FV(u) = ;g| The set of potentially free conversions of a term are MPFC(t) = PFC(t) \ MC(t).| MPFC(t) is equipped with an equivalence relation determining which conversions areto be identi�ed: �1 � �2 i� NFp(t=�1) = NFp(t=�2)Note that for any �2C(t), � 6= � and hence the size of the term t=� is less than the sizeof t. Hence PFC(t), which is de�ned in terms of NFp(t=�), is well de�ned. The set of termsNFp(t) is clearly non-empty, �nite, enumerable and the minimality condition ensures thatif t0 2 NFp(t) then t)�pt0.Lemma 6.4. Let r : t)p t0.| If � 2 C(t) and �0 2 r(�), then � 2 MPFC(t) i� �0 2 MPFC(t0) and for such a minimalpotentially free conversion �; [�]� is r-closed and r([�]�) = [�0]�.| The sets NFp(t) and NFp(t0) are equal.Proof. The lemma is proved simultaneously by induction on the sum of the sizes ofthe terms in question. That � is minimal i� �0 is follows by induction on the de�nitionof the function r and the fact that r preserves all conversions. By lemma 6.2 there is arewrite t=�)pt0=�0 and so by the induction hypothesis NFp(t=�) = NFp(t0=�0). Thus for



Neil Ghani 14Table 4. The Function NFp| If t is a variable then NFp(t) = ftg.| If t is not a variable and MPFC(t) = ;, thent = T (t0; : : : ; tn) �i2NFp(ti)T (�0; : : : ; �n)2NFp(t)| If t is not a variable and �2MPFC(t), then eitherNFp(t n1[�]�) = NFp(t n2[�]�) u2NFp(t n1[�]�)u2NFp(t n1[�]�)or NFp(t n1[�]�) 6= NFp(t n2[�]�) �i2NFp(t ni[�]�) �2NFp(t=�)case(�;x:�1; y:�2)2NFp(t)where x; y are the variables bound by the set of conversions [�]�.any element u of NFp(t=�), FV(u) � FV(t=�) \ FV(t0=�0) and hencex2BV(�; t) \ FV(u) i� x2BV(�; t) \ FV(t0=�0)i� x2BV(�0; t0) \ FV(t0=�0)i� x2BV(�0; t0) \ FV(u)where the equality BV(�; t) \ FV(t0=�0) = BV(�0; t0) \ FV(t0=�0)may be proved by induction on the rewrite r. Thus � is potentially free i� �0 is. Finally,given � 2 r�1r[�]�, there is a � 0 2 MPFC(t0) and a ! 2 [�]� such that t=� )pt0=� 0 andt=!)pt0=� 0. Thus by the induction hypothesisNFp(t=� ) = NFp(t0=� 0) = NFp(t=!) = NFp(t=�)and so [�]� is r-closed. The equation r([�]�) = [�0]� may be proved similarly by directcalculation.For the second half of the lemma there are two possibilities. Firstly if MPFC(t) = ;, thenby the �rst part of this lemma MPFC(t0) = ; and so the lemma follows by the inductionhypothesis. If however there is a � 2 MPFC(t) then, because [�]� is r-closed, by lemmas6.2 and 6.3 there are rewritest=�)pt0=�0 and t n1[�]� )pt0 n1r([�]�) and t n2[�]� )pt0 n2r([�]�)where �0 2 r(�) and the directions of the second and third reductions may be reversed.For each of these rewrites, the set of normal forms of the left hand side is the same asthose of the right hand side. It is now routine to check that the sets of terms NFp(t) andNFp(t0) are equal.Lemma 6.5. The relation )p is conuent and has a decidable equational theory, whileif t02NFp(t) then t0 is a )p-quasi-normal form.Proof. By lemma 6.4 any )�p-span with redex t has a )�p-co-span to any element ofNFp(t). Thus )p is conuent while the associated equational theory may be decided by



��-Equality for Coproducts 15Table 5. De�nition of NF and NFo| If t is a variable NFo(t) = ftg| If t is a case-expression �2NF(u) �i2NFo(vi)�case(�;x:�1; y:�2)2NFo(case(u; x:v1; y:v2))| If t is not a case-expression or a variablet = T (t0; : : : ; tn) �i2NFo(ti)T (�0; : : : ; �n)2NFo(t)| NF(t) is de�ned NF(t) = [�2NFo(t) NFp(�)comparing the quasi-normal forms just constructed. Finally, if �2 NFp(t) and �)�p�0,then by lemma 6.4 NFp(�0) = NFp(t) and so �0 )�p�. Thus � is a )p-quasi-normal form.7. Decidability of )c-EquivalenceBy lemma 6.1 any )c-reduction can be expressed as a sequence of commuting conver-sions given in equation 7 and )p-reductions. Thus the construction of )c-quasi-normalforms is a process of combining the )p-quasi-normal forms just de�ned with the normalforms of the commuting conversion relation. This is a three stage process which �rstlyrecursively normalises all minimal conversions and then contracts all �-commuting con-versions. Such terms are stable and only have )p-reducts to other stable terms | hencethe procedure is completed by using operator NFp de�ned in the last section.Recall that )� is the least congruence on terms containing the reductions in equation 7.This relation is well known to be strongly normalising (D. Prawitz 1971) and local con-uence is easily shown | thus we may de�ne �(t) to be the unique )�-normal form oft. The functions NF and NFo which map terms to sets of terms are de�ned simultaneouslyin Table 5. An alternative de�nition of NFo(t), which will be used later, is the following:NFo(t) = f�(t[� ��]�2MC(t)) j ��2NF(t=�)gA term is stable i� 8�2C(t):PFC(t=�) = ;. Stable terms are important as they are both)�-normal forms and closed under )p-reduction. Hence the )c-quasi-normal reductsof a stable term t will be the set NFp(t).Lemma 7.1. If r : t)ct0 and t is stable, then r preserves all conversions and t0 is stable.In addition, if �2NFo(t) then � is stable and any �02NF(t) is a )c-quasi-normal form.Proof. By stability no conversion in t contains a free subconversion and hence t mustbe a )�-normal form. Thus any reduct of t must be a )p-reduct. If there is a con-version in t0 containing a potentially free sub-conversion, then there is also a conversionin t0 containing a minimal potentially free sub-conversion. Thus by lemma 6.4 there is



Neil Ghani 16a conversion in t also containing a minimal potentially free conversion and so the redexcan't be stable.That the function NFo creates stable terms is proved by induction on the term structure,using the �rst half of this lemma to establish the result for case-expressions. Also by the�rst half of this lemma all )c-reducts of �0 are actually )p-reducts, and because �0 isa )� p-quasi-normal, there must be a reduction in the reverse direction. Thus �0 is a)c-quasi-normal form.Proving that t =c t0, then NFo(t) = NFo(t0) by explicitly considering each quasi-normalform of each term is too time consuming. A simpler approach is to show that thereare )p-equivalent members of NFo(t) and NFo(t0) and the key is the following technicallemma which relates commuting conversions to )c-reduction.Lemma 7.2. If t)c t0, then �(t))�c �(t0).Proof. The proof follows the same pattern as lemma 9.3. Note that the notion of afull parallel rewrite is modi�ed to prevent only the introduction of new �-redexes.Lemma 7.3. Given a term t and two terms �; �0 2 NFo(t) then �)�p �0. Thus giventerms �2NFo(t) and �02NFo(t0), if � =p �0 then the sets NF(t) and NF(t0) are equal.Proof. The �rst part of the lemma is proved by induction on the term t with the onlyinteresting part being if t is a case-expression, say case(t0; x:u; y:v). Then � and �0 areof the form � � �(case(�0; x:�1; y:�2)) and �0 � �(case(�00; x:�01; y:�02))By the induction hypothesis �i )�p �0i and �0 =p �00, and since �00 is a )p-quasi-normalform and )p is conuent, there is a reduction sequence �0 )�p�00. The lemma nowfollows from lemma 7.2.For the second half of the lemma, given a term �0 2 NF(t), there is a term �1 2 NFo(t)such that �02NFp(�1). By the �rst part of this lemma �1 =p � =p �0 and so �02NF(t0).Thus we have shown that NF(t) � NF(t0) and as the argument is symmetric, the reversecontainment also holds.Lemma 7.4. The terms case(t; x:u; y:u) and u have the same set of normal forms.Proof. If �02NF(t) and �12NFo(u), then by lemma 7.2�(case(�0; x:�1; y:�1)))�c �(�1) = �1The redex is a member of NFo(case(t; x:u; y:u)), and hence the reduction sequence isactually a )�p-reduction sequence. In addition the reduct is a member of NFo(u) and sothe lemma now follows from lemma 7.3.Lemma 7.5. The termst0 = case(case(t; x1:u1; x2:u2); y1:v1; y2:v2)and t1 = case(t; x1:case(u1; y1:v1; y2:v2); x2:case(u2; y1:v1; y2:v2))have the same set of quasi-normal reducts.



��-Equality for Coproducts 17Proof. Let �2NFo(case(t; x1:u1; x2:u2)) and �vi2NFo(vi). Then given an �02NFp(�),by lemma 7.2 there is a reduction�(case(�; y1:�v1; y2:�v2)))�p �(case(�0; y1:�v1; y2:�v2))where the reduct is a member of NFo(t0). Now � must be of the form�(case(�t; x1:�u1; x2:�u2))where �t2NF(t) and �ui2NFo(ui). Again by lemma 7.2, if �0ui2NFp(�ui) then there is a)�p-reduction sequence:�case(�; y1:�v1; y2:�v2)= �case(case(�t; x1:�u1; x2:�u2); y1:�v1; y2:�v2))�p �case(�t; x1:case(�u1 ; y1:�v1; y2:�v2); x2:case(�u2 ; y1:�v1; y2:�v2)))�p �case(�t; x1:case(�0u1 ; y1:�v1; y2:�v2); x2:case(�0u2 ; y1:�v1; y2:�v2))As the reduct of this sequence is a member of NFo(t1), we have shown that there are)p-equivalent members of NFo(t0) and NFo(t1). Hence by lemma 7.3 the normal formsof t0 and t1 are equal.Lemma 7.6. Let X � MC(t) be a non-empty consistent set of minimal free conversions.Then there is a term � 2 NFo(t) and �0 2 NFo(case(t=X; x:t n1X; y:t n2X)) such that�)�p �0. Thus these terms have the same set of quasi-normal reducts.Proof. Let �X2NF(t=X) and de�ne the termt0 = t[� ��]�2MC(t)where �� are chosen members of NF(t=�) such that if �2X;�� = �X . Then X �MC(t0)is a set of minimal, free consistent conversions and so there is a rewritet0 )p case(�X ; x:t0 n1X; y:t0 n2X)and hence by lemma 7.2 there is also a reduction sequence�t0 )�c �case(�X ; x:�(t0 n1X); y:�(t0 n2X))Now for any conversion � 2C(t), � is minimal i� 
i(X; � ) (when de�ned) is minimal and,providing this is the case, (t niX)=
i(X; � ) = t=� . Thust0 niX = t[� ��]�2MC(t) niX= (t niX)[
i(X;�) ��]�2MC(t)= (t niX)[�0 ��0 ]�02MC(tniX)and hence �(t0 niX)2NFo(t niX). Thus the term �(t0) is a member of NFo(t) and )p-rewrites to a member of NFo(case(t=X; x:t n1X; y:t n2X)) and so the lemma follows fromlemma 7.3.Theorem 7.7. If r : t)c t0 then NF(t) = NF(t0). Hence the conversion relation is conuentand conversion-equivalence decidable.



Neil Ghani 18Table 6. The Rewrite Relation )���;i �ihu0; u1i ) ui�+;� �icase(t; x:u; y:v) ) case(t; x:�iu; y:�iv)�! (�x:t)t0 ) t[t0=x]�+;! case(t; x:u; y:v)t0 ) case(t; x:ut0; y:vt0)�+;1 case(in1(t); x:u; y:v) ) u[t=x]�+;2 case(in2(t); x:u; y:v) ) v[t=y]�+;+ : case(case(t; x:u; y:v); x0:u0; y0:v0))case(t; x:case(u; x0:u0; y0:v0); y:case(v; x0:u0; y0:v0))Proof. Induction on the label r of the rewrite r : t)c t0 is used to show that NFo(t) andNFo(t0) have )p-equivalent members. If the rewrite is a top-level rewrite then the lemmafollows by lemmas 6.1, 7.4, 7.5, and 7.6. If however r is a rewrite of a strict subterm thenthe lemma follows easily by the induction hypothesis and lemma 7.2. Decidability followsas one can prove t =c t0 by enumerating and comparing the sets NF(t) and NF(t0), whilegiven a span from t, a co-span can be constructed to any member of NF(t).8. An Extension of �-reductionA rewrite relation consisting of �-reductions, commuting conversions and restricted �-expansions is de�ned which, when taken together with the conversion relation, generatesthe same equational theory as the full expansionary rewrite relation. This extension of�-reduction is proved strongly normalising and conuent by generalising the proof in (C.B. Jay and N. Ghani 1995) for the fragment without coproducts.Firstly de�ne the rewrite relation )� to be the least congruence containing the re-ductions of Table 6. The rewrite relation )� is known to be strongly normalising andconuent (D. Prawitz 1971). As mentioned before, a limited form of �-expansion is de�nedvia the following function on terms:�(t) = 8>><>>: h�0t; �1ti if t is of product typecase(t; x:in1(x); y:in2(y)) if t is of sum type� if t is of unit type�x:tx if t is of function typeThe �-expansion of terms of sum type given above is a special case of the �+-rewriterule in Table 2 and converts a (sub)term of sum type into a conversion which may thenbe expanded by the conversion relation. Uncontrolled �-expansion is clearly not stronglynormalising and so restrictions must be imposed on their scope and in particular theexpansions appearing in the triangle laws must be prevented. For the sum type, thesetriangle laws assert that expanding an injection term or a negative occurrence, i.e. the�rst argument of a case-expression, forms a looping reduction. However these restrictionsare insu�cient to obtain a strongly normalising relation as the �-expansion of a case-expression of sum type reduces to the term obtained by expanding the arms of the



��-Equality for Coproducts 19Table 7. The Restricted Rewrite Relationt expandablet)F �(t) t)� t0t)I t0 t)I t0t)F t0u)F u0hu; vi )I hu0; vi v )F v0hu; vi )I hu; v0it)I t0�0t)I �0t0 t)I t0�1t)I �1t0t)I t0tu)I t0u u)F u0tu)I tu0t)F t0�x:t)I �x:t0 t)I t0case(t; x:u; y:v))I case(t0; x:u; y:v)u)F u0case(t; x:u; y:v) )I case(t; x:u0; y:v) v )F v0case(t; x:u; y:v))I case(t; x:u; y:v0)t)F t0in1(t))I in1(t0) t)F t0in2(t))I in2(t0)case-expression. If these arms are injections, a reduction loop may be formed, e.g.case(t; x:in1(x); y:in2(y)) )� �(case(t; x:in1(x); y:in2(y))))� case(t; x:�(in1(x)); y:�(in2(y))))�� case(t; x:in1(x); y:in2(y)) (9)Such terms are called quasi-introduction terms and the set of terms which may not be�-expanded is enlarged to include them. The quasi-introduction terms of sum type arede�ned by the syntax: q := in1(t) j in2(t) j case(t; x:q; y:q0)where t ranges over arbitrary terms and q; q0 over arbitrary quasi-introduction terms ofsum type. Given any quasi-introduction term of sum type, the introduction terms at itsleafs are extracted by the function Arm which is de�ned as follows:Arm(t) = � Arm(t1) [Arm(t2) if t = case(u; x:t1; y:t2)ftg otherwiseBecause the �-expansion of terms such as case(u; x:�x0:t1; y:�y0:t2) do not create a re-duction loop as in equation 9, such terms are regarded as expandable and so the quasi-introduction terms of product, exponential and unit type are de�ned to be just theintroduction terms of that type.A term is expandable providing it is neither a quasi-introduction term nor of base type.The reduction relation )F is de�ned simultaneously with a subrelation )I which isguaranteed not to be a top-level expansion | hence a negative occurrence may be )I-rewritten when a )F -reduction may create a reduction loop. The de�nitions of theserelations are contained in Table 7. Note that if t is a quasi-introduction term, then soare its )F-reducts and �(t))�� t. In addition, )F-normal forms satisfy the following



Neil Ghani 20structural properties which make them the natural candidate for the generalisation oflong ��-normal form to this calculus.Lemma 8.1. The normal forms of )F are exactly those terms which are �-normalforms and each of whose subterms are either of base type, occur negatively, or a quasi-introduction term.Proof. The proof is by induction on term structure.The relations )I and )F are not congruences and this complicates normalisation andconuence proofs. The following lemma characterises how substitutivity may fail.Lemma 8.2. Let t; t0; u and u0 be terms such that t)R t0 and u)R u0, where R 2fI;Fg. Then| There is a rewrite t[u=x])R t0[u=x] unless u is a quasi-introduction term and t0is obtained by expanding an occurrence of x in t. In this case there are reductionsequences t[�(u)=x])�I t0[u=x])�I t[u=x].| There is a rewrite t[u=x] )�I t[u0=x] unless u0 = �(u) and either t = x or there arenegative occurrences of x in t. In this latter case t[u0=x] and t[u=x] have a common)�I-reduct.Proof. Induction on the de�nition of the rewrites.The obvious next step would be to hypothesise that both )I and )F are locally con-uent. Unfortunately this is not the case:(�x:t)u I- (�x:�(t))ut[u=x]I? F- �(t)[u=x]?IIn these examples the bottom arrow is )�F , but not )�I, and so )I is not locallyconuent. However local conuence of )F can be proved in conjunction with a slightvariant for )I.Lemma 8.3. The relation )F is locally conuent and given any divergence t )I ti(where i = 1; 2), there is a term t0 such that t1 )�I t0 or t1 )F t0 and similarly, eithert2 )�I t0 or t2 )F t0.Proof. The proof is by simultaneous induction on the term t, with the tricky caseshandled by lemma 8.2.The substitutivity lemma 8.2 also allows us to give a simple de�nition of the )�F reductsof a variable via a function �, which maps variables to sets of terms:�(z) = fzg z has base type�(z) = fz; �g z has unit type�(z) = fzg [ fh�[�0z=x]; �0[�1z=y]i j �2�(x) and �02�(y)g z has prod. type�(z) = fzg [ f�x:�0[z�=y] j �2�(x) and �02�(y)g z has fun. typeand if z has sum type, then�(z) = fzg [ fcase(z; x:in1(�); y:in2(�0)) j �2�(x) and �02�(y)g



��-Equality for Coproducts 21Table 8. De�nition of Validity| If t is a variable, constant, application or projectiont=)I � V (X)t2V (X)| If t is a pair ui2V (Xi) hu0; u1i=)I � V (X0 � X1)hu0; u1i2V (X0 � X1)| If t is a �-abstraction 8u2V (X):t[u=x]2V (Y ) �x:t=)I � V (X!Y )�x:t2V (X!Y )| If t is an injection t2V (Xi) ini(t)=)I � V (X1 + X2)ini(t)2V (X1 +X2)| If t = case(t0; x1:u1; x2:u2) is a case-expression of function typeui2V (X!Y ) if t0 = ini(v) then ui[Iv=xi]2V (T )t=)I� V (X!Y ) case(t0; x1:u1s; x2:u2s)2V (Xi)case(t0; x1:u1; x2:u2)2V (X!Y )| If t = case(t0; x1:u1; x2:u2) is a case-expression of product typeui2V (X � Y ) if t0 = ini(v) then ui [Iv=xi]2V (T )t=)I� V (X � Y ) case(t0; x1:�iu1; x2:�iu2)2V (Xi)case(t0; x:u; y:v)2V (X0�X1)| If t = case(t0; x1:u1; x2:u2) is a case-expression not of function orproduct type ui2V (X) t=)I � V (X) if t0 = ini(v) then ui [Iv=xi]2V (T )case(t0; x1:u1; x2:u2)2V (X)where the variables x and y have the appropriate type. The function � is extended toterms by: �(t) = ft0[t=z] j t02�(z)gLemma 8.4. The function � gives the rewrites of a variable, i.e. �(z) = z=)�F .Proof. The proof is by induction on the type of z.The relation )F is proved strongly normalising by extending the proof of strong norm-alisation for fragment without coproducts presented in (C. B. Jay and N. Ghani 1995).The set of valid terms of type T is denoted V (T ) and de�ned by induction over T . Foreach type T , V (T ) consists of those terms which can be shown valid by the inferencerules in Table 8, where t=R is the set of one-step R-reducts of t. Notice that in order toprove case(in1(t); x:u; y:v) valid, we must not only prove that the reduct u[t=x] is valid,but also that u[It=x] is valid, where I is the operator on terms de�ned byI(t) = (�x:x)tThis is because a reduction u )F u0 will not always induce one u[t=x])F u0[t=x] but,because I(t) is a neutral term, there will always be a rewrite u[It=x] )F u0[It=x]. In



Neil Ghani 22particular this will be needed to prove lemma 8.7. Notice also that as variables have no)I-reducts, the valid terms of a given type contain all the variables of that type.The valid terms of a given type are shown to satisfy the following validity predicatesde�ned over sets of terms P :| V1: If t2P then t is )F-strongly normalising| V2: If t2P and t)F t0 then t0 is valid| V3: If t2P then �(t) � P| V4: If t2P then I(t)2PAlthough the predicate V4 has been included as a separate predicate, if P is the set ofvalid terms of some type, then V4 is actually a consequence of the �rst three validitypredicates.Lemma 8.5. Assume the valid terms of a given type satisfy the validity predicates V1-3and let t be a valid term of that type. Then the term I(t) is also valid.Proof. We prove the stronger assertion that if x is any variable having the sametype as t, then for any �2�(x) the term (�x:�)(t) is valid. By V3 the term � is validand so by V1 the terms � and t are strongly normalising and hence the sum of theirnormalisation ranks may be used as an induction rank. The )I-reducts of (�x:�)(t)induced by reductions of � or t are valid by the induction hypothesis while the onlyother )I-reduct is �[t=x] which is a member of �(t) and so valid by V3.We now establish the validity predicates for terms of sum type.Lemma 8.6. Assume V (X) and V (Y ) satisfy V1, V2 and V3. Then the set of validquasi-introduction terms of type X + Y satis�es V1 and V2. Also if u :X and v :Y arevalid, then so are in1(u) and in2(v).Proof. Since quasi-introduction terms are non-expandable and closed under reduction,the �rst part of the lemma follows by induction on validity. The second half follows byinduction on the normalisation ranks of u and v.Lemma 8.7. Assume V (X) and V (Y ) satisfy the validity predicates V1-3 and let t bea valid term of type X + Y .| If t = case(t0; x:u; y:v), �(u) )�F � and �(v) )�F � then case(t0; x:�; y:�) is valid.| All terms t02�(t) are valid.Proof. The proof is by simultaneous induction on the validity of t.(i) By the induction hypothesis the terms �(u) and �(v) are both valid, quasi-introductionterms and hence so are � and �. Thus the sum of their normalisation ranks forms aninner induction rank. Those )I-reducts of case(t0; x:�; y:�) induced by reductionsof proper subterms are valid by the induction hypothesis and this leaves two cases. Ift0 is an introduction term, and say case(in1(s); x:�; y:�) )I �[s=x] then note �rstthat u[Is=x] is valid. By induction so is �(u[Is=x]) = �(u)[Is=x] and, as �[Is=x]is a reduct of this term, it is also valid. Hence �[s=x] is valid. Similarly if t0 is acase-expression, the result of a commuting conversion is shown valid by applying theinduction hypothesis to the term obtained by contracting the top level commutingconversion in t.



��-Equality for Coproducts 23(ii)We must prove that case(t; x:in1(u); y:in2(v)) is valid where u2�(x) and v2�(y).By the induction hypothesis u and v are valid and strongly normalising and hence thesum of their normalisation ranks forms an inner induction rank. The validity of in1(u)and in2(v) follow by lemma 8.6 from the validity of u and v while those )I-reductsinduced by reductions of proper subterms are valid by the induction hypothesis. Theresult of a top-level commuting conversion is valid by the �rst half of this lemmaand, �nally, if t is an injection, say in1(t0), then t0 is a valid term of type X andhence by lemma 8.5 so is It0. By V3 u[It0=x] is also valid and hence by lemma 8.6in1(u)[It0=x] is valid.Corollary 8.8. Assume V (X) and V (Y ) satisfy the validity predicates V1-3. Then sodo the valid terms of type X + Y .Proof. Let t be a term. The lemma is established by induction on the validity of t. All)I-reducts are valid and, by the induction hypothesis, strongly normalising. The onlyother reduct is a valid quasi-introduction term which is strongly normalising by lemma8.6. Thus all reducts of t are strongly normalising and hence so is t. The )I-reducts ofa term are valid by de�nition, while the result of a basic expansion is valid from lemma8.7. Finally, V3 has just been established in lemma 8.7.Lemma 8.9. The set of valid terms of every type satisfy the three validity predicatesV1, V2 and V3.Proof. The proof is by induction on the type of a term. Terms of base type areproved strongly normalising by induction on their validity and because such terms haveno expansions the predicates V2 and V3 are also satis�ed. Similar remarks apply toterms of unit type as their only expansion is the valid constant � which is also a normalform and so strongly normalising. Terms of sum type have just been shown to satisfythe validity predicates while the arguments for terms of function and product type aresimilar to those of (C. B. Jay and N. Ghani 1995).Before showing all terms are valid, the criteria for proving a case-expression valid issimpli�ed.Lemma 8.10. The term case(t; x1:u1; x2:u2) is valid i� t is strongly normalising, u1; u2are valid, and in addition if t)�I t0 and ini�2Arm(t0) then ui[I�=xi] is valid.Proof. The proof is by induction with rank the quadruple of numbers (a; b; c; d), wherea is the complexity of the type of the case-expression, b is the )F -normalisation rank oft, c is the size of t and d is the sum of the)F-normalisation ranks of u1 and u2. There aretwo proof obligations. Firstly if the case-expression is of sum or function type, the clausespertaining to commuting conversions are easily established by the induction hypothesis.Secondly, those )I-reducts induced by reductions of proper subterms are valid by theinduction hypothesis with the second part of the induction hypothesis following fromlemma 8.2, while a basic �-reduction has a valid reduct by assumption. Finally, if t is acase-expression then the result of a basic commuting conversion is shown valid by �rstusing the induction hypothesis to prove the arms valid and then once more for the wholeterm.



Neil Ghani 24Finally, all terms are shown valid in the traditional manner:Lemma 8.11. Let t be a term and ui be valid terms. Then the term t[ui=xi] is a validterm.Proof. The proof is by induction on t and follows the standard pattern. The onlyinteresting part is for the term case(t0; x:u; y:v). The terms u[ui=xi], v[ui=xi] and t0[ui=xi]are valid and thus strongly normalising by the induction hypothesis. Thus if t0[ui=xi])�It00 and in1(�)2Arm(t00), we may deduce I� is valid and thus by the induction hypothesis(u[ui=xi])[I�=x] = u[ui=xi; I�=x]is a valid term. Similar considerations apply to right injections and so the lemma isproven.Theorem 8.12. The relations)F and)I are strongly normalisingand)F is conuent.Proof. As variables are valid, all terms are proven valid by instantiating lemma 8.11with the identity substitution. Hence all terms are )F-strongly normalising. Conuencenow follows from local conuence proved in lemma 8.3 and strong normalisation. of)F .9. Decidability of ��-EqualityThe expansionary rewrite relation de�ned in Table 2 has been decomposed into thestrongly normalising and conuent relation )F and the decidable conversion relation.The rest of this paper proves that the expansionary rewrite relation is itself decidable byshowing that if two terms are ��-equivalent, then their )F-normal forms are equivalentin the conversion relation.The easiest proof strategy would be to consider the �-reductions of a term in isola-tion from the possibilities for �-expansion that exist within the term, i.e. prove that�-expansion preserves �-normal forms and that if t =c t0, then �(t) =c �(t0) and�(t) =c �(t0), where �(t) denotes the �-normal form of t and �(t) denotes the �-normalform of t. Unfortunately, unlike the restricted expansions of the calculus without cop-roducts, the �-expansions contained in )F do not form a conuent relation, e.g. thereducts of the span below cannot be rewritten to the same term using restricted expan-sions alone. �(case(z; x:x; y:y))(case(z; x:x; y:y))�case(z; x:�(x); y:�(y))Our solution is to de�ne a function which picks a particular �-normal form for a term bypreventing the �-expansion of all case-expressions. The conversion relation may also mappositive occurrences to negative occurrences, e.g. in the following rewrite the subtermsx and y occur positively in the redex but negatively in the reduct:(case(z; x:x; y:y))w )ccase(z; x:xw; y:yw)Such reductions cannot be lifted to their �-normal forms, i.e. there is no reduction(case(z; x:�(x); y:�(y)))w 6 )ccase(z; x:xw; y:yw)



��-Equality for Coproducts 25The solution to this second problem is to increase those occurrences in a term which maybe )I-rewritten but not )F-rewritten. Rather than present another series of relations,we de�ne the fully �-expanded form of a term directly via the simultaneous de�nition ofa pair of functions �F and �I.�I(x) = x�I(�) = ��I(uv) = �I(u)�F(v)�I(�x:t) = �x:�F(t)�I(�it) = �i�I(t)�I(hu; vi) = h�F(u); �F(v)i�I(ini(t)) = ini(�F(t))�I(case(t; x:u; y:v)) = case(�I(t); x:�I(u); y:�I(v))and�F(t) = 8<: case(�I(t0); x:�F(u); y:�F(v)) t is case(t0; x:u; y:v)�m(z)[�I(t)=z] t is a projection, application, variablet otherwisewhere z is any variable having the same type as t and �m(z) is the )F-normal form ofz (the superscript m is to distinguish the term �m(z) from the set of terms �(z)). Tomaintain the strength on the equational theory, the �-expansion of case-expressions issimulated by a rewrite relation )� which is de�ned to be the least congruence containingthe reductionscase(t; x:�x0:u; y:�x0:v) )� �x0:case(t; x:u; y:v)case(t; x:hu1; v1i; y:hu2; v2i) )� hcase(t; x:u1; y:u2); case(t; x:v1; y:v2)iThe rewrite relation )� is strongly normalising and conuent and so has unique normalforms. In addition, if two terms are )�-equivalent, then they are also equivalent in theconversion relation because )�1� � )c. We now give an algorithm for the calculationof )F-normal forms.Lemma 9.1. The )F-normal form of a term t may be calculated by: (i) calculating the�-normal form of t; (ii) applying the function �F ; and (iii) calculating the )�-normalform of the result.Proof. Let ]t denote the result of applying the algorithm in the lemma to t. Thelemma is proved by showing that ]t is an )F-normal form and is also )F-equivalentto t. Firstly ]t is a �-normal form as both �F and )� preserve �-normal forms, whileinduction on the structure of t is used to show that if t is a �-normal form, then ]t isan)F-normal form. Secondly, because there is always a reduction sequence t)F �F(t)and a term is always )F-equivalent to its )�-reducts, we may conclude that t =F ]t.We de�ne a relation � by parallelising the conversion relation and prove that if t �t0 then �(t) � �(t0). In order to prove this, the parallelised conversion relation must



Neil Ghani 26Table 9. The Parallel Conversion Relation| Identity z � z| Expansion X � FC(t) is consistent t=X � u t niX � vit� case(u; x:v1; y:v2)where x; y are the variables bound by X. If however X is empty, thenx; y 62FV(t) and u is any term of the appropriate type.| A congruence rule for each term constructoru0 � u00; : : : ; un � u0nT (u0; : : : ; un)� T (u00; : : : ; u0n)| A parallel conversion t� t0 is said to be full, and written t�f t0, i� theleft branch of any expansion or elimination congruence does notitself end in an expansion.permit the expansion of empty sets of conversions and so a parallelised version of theweakening clause is not needed. Parallel conversion, denoted �, is de�ned to be the leastcongruence de�ned by the inference rules in Table 9. The full parallel conversion relation,denoted �f , is the subrelation of � obtaining by insisting that the left-branch of anyinstance of expansion or a elimination congruence must not itself be an expansion. Theserestrictions ensure that �f does not introduce new commuting conversions and hence�f will preserve �-normal forms.Lemma 9.2. Parallel expansion is closed under substitution, i.e. if t � t0 and u � u0then t[u=x]� t0[u0=x]. In addition if t is a �-normal form and t �f t0 then t0 is also a�-normal form. Finally if t� t0, there is a term t00 such that t�f t00 and t0 )�� t00.Proof. The proofs are all by induction on the term t.Lemma 9.3. Let t� t0. Then �(t) � �(t0).Proof. We prove that if t �f t0 then �(t) �f �(t0) by induction on �rstly the �-normalisation rank of t and secondly the depth of the rewrite. The lemma then followsfrom lemma 9.2 since � can be embedded in �f .If t is a �-normal form then by lemma 9.2 t0 is also a �-normal form. For the inductivestep consider a parallel conversion of the form:X � FC(t) is consistent t=X �f u t niX �f vit�f case(u; x:v1; y:v2)If X is empty, then by the induction hypothesis there are rewrites �(t) �f �(vi) andhence a parallel conversion �(t) �f �(vi)�(t)� case(u; x:�(v1); y:�(v2))where we rely on �-reduction not to introduce new free variables. If however X is non-empty there are four subcases. Firstly if t=X is not a �-normal form, then by the induction



��-Equality for Coproducts 27hypothesis there is a parallel rewrite �(t=X) �f �(u) and hence a rewrite�(t=X) �f �(u) t niX �f vit[X �(t=X)]� case(�(u); x:v1; y:v2)which embeds to a full parallel conversion rewrite and the lemma then follows by theinduction hypothesis. If however t=X is a �-normal form then consider the case wheret=X is an injection, say in1(r). Then by fullness, u must also be an injection, say in1(r0)where r �f r0. Now by lemma 5.1, the result of contracting the �+-redexes in t associatedto X is (t n1X)[r=x] and thus there are reductionst f-- case(in1(r0); x:v1; y:v2)(t n1X)[r=x]��? -- v1[r0=x]��?where the bottom rewrite follows as parallel rewriting is closed under substitution. Thisrewrite can then be extended to a full rewrite to which the induction hypothesis maybe applied. A third possibility is that t=X is a case expression, in which case a similarargument works | namely carry out the commuting conversions in t and at the toplevel of t0 and then apply the induction hypothesis. Finally, if none of these cases areapplicable, then an inductive argument proves there is free consistent set of conversions�(X) � FC(�(t)) such that�(t)=�(X) = �(t=X) = t=X and �(t) ni�(X) = �(t niX)and thus there is a rewrite�(t)=�(X) = �(t=X) � �(u) �(t) ni�(X) = �(t niX)� �(vi)�(t)� case(�(u); x:�(v1); y:�(v2))which extends to a full parallel conversion rewrite which proves the lemma. Note that if�(X) is empty the proof is still valid as one of the conditions on the variables x; y boundby conversions X � FC(t) is that x; y 62FV(t) and so x; y 62FV(�(t)). If however the parallelrewrite has as last rule a congruence,t0 �f t00; : : : ; tn �f t0nT (t0; : : : ; tn)�f T (t00; : : : ; t0n)then there are three possibilities. If there is an immediate subterm which is not a �-normal form, then the induction hypothesis may be used on each of the subterms so thatT (�(t0); : : : ; �(tn)) � T (�(t00); : : : ; �(t0n)) and then the induction hypothesis invokedagain. On the other hand if the only redex is a top level redex, then by fullness there is aalso a redex at the top level of t0. There is a parallel rewrite between the terms obtainedby performing these reductions and the lemma then follows by the induction hypothesis.The second part of the embedding theorem concerns the interaction between the con-version relation and the �-expansions implicit in the function �F . The key lemma is thefollowing:



Neil Ghani 28Lemma 9.4. Given a conversion � 2 FC(t) there is a consistent set of free conversions�R � FC(�R(t)) such that�R(t)=�R = �I(t=�) and �R(t) ni�R = �R(t ni�)where R2fI;Fg.Proof. The lemma is proved by induction on the de�nition of the functions �F and�I.Note that the �-rule for products duplicates its argument and hence the requirement that�R be a set of conversions.Lemma 9.5. Assume t� t0. Then �R(t)� �R(t0) where R2fI;Fg.Proof. The lemma is proved simultaneously by induction on the rewrite t� t0.Theorem 9.6. If two terms are equivalent in the conversion relation, then so are their)� normal forms. Thus the expansionary rewrite relation is decidable and conuent.Proof. The �rst half of the lemma is trivial as )� is contained in the inverse of theconversion relation.Thus terms equivalent in the equational theory have)F-normal forms which are equival-ent in the conversion relation which has already been shown to be decidable and conuent.Thus the expansionary rewrite relation is conuent and ��-equality is decidable.10. Conclusions and Further WorkIn this paper an extensional equality for terms of ABCC was given. Each term hasa �nite set of quasi-normal reducts which are computable in two stages; �rstly by ��-normalisation and secondly by expanding as many conversions as possible. As termsequivalent in the equational theory have the same set of quasi-normal reducts, comparisonof these normal forms provides a decision procedure for equality of terms.There are several directions in which this research may be extended. Firstly the inabilityto de�ne a unique normal form is closely linked to form of the case-expression whichpermits the elimination of one term at a time. An alternate, parallel elimination, allowingthe concurrent elimination of several terms should permit the de�nition of unique normalforms and this is the subject of current work.In a di�erent direction, expansionary �-rewrite rules have already been applied to themore expressive members of the �-cube (N. Ghani 1995a; N. Ghani 1996) and currentresearch focuses on the addition of algebraic rewrite systems to these theories and alsothe more general Pure Type Systems. The techniques developed in this paper also seemto be applicable to the bang ! operator from linear logic although research here is at apreliminary stage.11. AcknowledgementsI would like to thank my �rst supervisor Barry Jay who �rst introduced me to theapplications of category theory in term rewriting. Roberto Di Cosmo has provided many
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