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The use of expansionary 5-rewrite rules in various typed A-calculi has become
increasingly common in recent years as their advantages over contractive n-rewrite rules
have become apparent. Not only does one obtain simultaneously a decision procedure for
An-equality and a rational reconstruction of the long ##-normal forms, but expansions
retain key properties such as strong normalisation and confluence when combined with
algebraic rewrite systems, are supported by a categorical theory of reduction and
generalise more easily to other type constructors.

This paper considers a type constructor for which a decision procedure for #n-equality
has been sought for a long time, namely the coproduct. Categorical models of reduction
are used to derive a new 5-rewrite rule for the coproduct which turns out to be
substantially more complex than that for the exponent or product. Not only is there a
facility for expanding terms of sum type analogous to that for the product and
exponential, but also the ability to permute the order in which different subterms of sum
type occur.

These different aspects of n-conversion for the sum type are reflected in our analysis.
The rewrite relation is decomposed into two parts, a strongly normalising and confluent
fragment resembling that found in the calculus without coproducts and a relation which
generalises the “commuting conversions” appearing in the literature. This second
fragment is proved decidable by constructing for each term its (finite) set of
quast-normal reducts. Finally decidability, confluence and quasi-normal forms for the full
relation are derived by embedding the whole relation into this generalised commuting
conversion relation.

1. Introduction

Extensional equality for terms of the simply typed A-calculus requires 5-conversion, whose
interpretation as a rewrite rule has traditionally been as a contraction Az.frz = f with
the side condition = &FV(f). When combined with the usual f-reduction, the resulting
rewrite relation is strongly normalising and confluent, and thus reduction to normal form
provides a decision procedure for the associated equational theory.

However, n-contractions behave badly when combined with other rewrite rules and the
key property of confluence is often lost. For example, if the calculus is extended by a unit
type 1 with associated rewrite rule t =% (providing ¢ has type 1), then the divergence

Ar:l.x<= Azl fe = f (1)
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cannot be completed.

Another area where 7-contractions cannot be used is in the combination of type theor-
ies and algebraic rewrite systems. Properties of such rewrite systems such as confluence
and strong normalisation, preserved when combined with g-reduction (V. Breazu-Tannen
1988; V. Breazu-Tannen and J. Gallier 1994), are typically lost in the presence of a con-
tractive n-rewrite rule. For example, if we regard 1 as a base type with constants f : 1—1
and #* : 1 and with rewrite rule fx =%, then = is confluent while the divergence above
shows that the combination of = with the contractive n-rewrite rule is not confluent.

These problems led several authors (Y. Akama 1993; R. Di Cosmo and D. Kesner 1994;
C. B. Jay and N. Ghani 1995) to accept the old proposal (G. Huet 1976; G. E. Mints
1979; D. Prawitz 1971) that n-conversion be interpreted as an expansion f = Az.fz and
the resulting rewrite relation has been shown confluent. In these works infinite reduction
sequences such as

f = Ax.fe = de.Qy.fy)e = ...

are avoided by imposing syntactic restrictions to limit the possibilities for expansion,;
namely A-abstractions cannot be expanded, nor can terms which are applied. This re-
stricted expansion relation is strongly normalising, confluent and generates the same
equational theory as the unrestricted expansionary rewrite relation. Thus fn-equality
can be decided by reduction to normal form in this restricted fragment and, in addition,
the normal forms of this restricted rewrite relation are exactly Huet’s long fn-normal
forms (G. Huet 1976; D. Prawitz 1971). In addition, n-expansions generalise well to the
powerfull members of the A-cube (N. Ghani 1995a; N. Ghani 1996) and, most pleasingly
of all, these properties tend to be maintained if one adds algebraic rewrite rules (R. Di
Cosmo and D. Kesner 1994).

In addition to these practical arguments, the category-theoretic analysis of reduction (N.
Ghani 1995b; C. B. Jay 1992; D. E. Rydeheard and J. G. Stell 1987; R. A. G. Seely 1987)
provides another argument in favour of interpreting 7 as an expansion. In this analysis,
the introduction and elimination rules of a type constructor form a pair of locally adjoint
functors (J. Gray 1974; C. B. Jay 1988) whose local unit and counit are respectively an
expansionary (not contractive) n-rewrite rule and contractive S-rewrite rule. The associ-
ated local triangle laws assert the existence of looping reductions — for the exponential
the triangle laws are

Azt = dy.(Aetly = Aytly/z] = At
tu = (Aztr)u = tu

(2)

Thus even the restrictions on 5-expansion required to obtain strong normalisation have
a categorical formulation, preventing exactly those expansions occurring in the triangle
laws 2.

This paper considers a type constructor for which a decision procedure for Gn-equality has
been sought for a long time, namely the coproduct or sum type. The categorical approach
to rewriting outlined above 1s used to derive a new n-rewrite rule for the coproduct which
turns out to be substantially more complex than that for the exponent or product. Not
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only is there a facility for expanding terms of sum type analogous to that for the product
and exponential, but also the ability to permute the order in which different subterms of
sum type occur.

These different aspects of n-expansion for the sum type are reflected in our analysis. After
defining the calculus, an expansionary 7- and a contractive g-rewrite rule is derived for
each type constructor by interpreting the associated introduction and elimination rules
as forming an adjoint pair. This rewrite relation is then decomposed into two fragments,
the first of which contains f-redexes, commuting conversions and limited possibilities for
n-expansion and is proven strongly normalising and confluent. The normal forms of this
fragment satisfy similar structural criteria to the long fn-normal forms of the simply
typed A-calculus, and so may be thought of as their generalisation to this calculus.

The second part of the decomposition is called the conversion relation and permutes the
order in which subterms of sum type may be eliminated — examples of which are the
‘commuting conversions’ appearing in the literature (D. Prawitz 1971; J. Y. Girard et al.
1989). Each term has a finite set of possible permutations, and so in general unique normal
forms do not exist for the conversion relation. Instead, each term has a (finite) set of quasi-
normal reducts and terms equivalent in the equational theory generated by the conversion
relation have the same set of quasi-normal reducts. Confluence and decidability of the
conversion relation are corollaries to these results. Finally by appropriately embedding
the whole relation in the conversion relation, confluence and decidability of the full rewrite
relation 1s proved.

Historically the use of expansionary 7-rewrite rules for products and exponentials can
be traced back to (G. E. Mints 1979), although the proof that they form a strongly
normalising relation had to wait a decade for the papers mentioned above. The last year
has seen the successful application of 7-expansions to more powerful theories in the A-
cube (N. Ghani 1995a; N. Ghani 1996), and currently research focuses on combining
these powerful type theories with algebraic rewrite systems. In (N. Ghani 1995b), the
methods presented in this paper are used to define, and prove decidable, a sound and
complete equational theory for the (I, ®, —)-fragment of intuitionistic linear logic.

Several authors have attempted to apply n-expansions to the problem of fn-equality
for coproducts. A partial solution was provided by (D. Dougherty 1993) but in this
approach confluence can only be proved for terms of ground type. At the time of writing,
the research presented here remains the only proof of the decidability of the theory of
coproducts, although one other interesting result is (D. Dougherty and R. Subrahmanyam
1995) which extends (H. Friedman 1975) in providing a proof system for deriving a set
of equations which is sound and complete for all “set-theoretic” models of a A-calculus
with exponentials and coproducts. This theory has been proved decidable by proving it
is equivalent to the one presented here (D. Dougherty and R. Subrahmanyam 1995).

The rest of this paper is organised as follows. Section 2 contains notation required later,
section 3 a definition of the term calculus and section 4 uses categorical methods to
derive a rewrite relation which generates a sound and complete equality. Section 5 defines
the conversion relation, while sections 6 and 7 prove the conversion relation decidable.
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Section 8 defines, and proves strongly normalising, the extension of f-reduction while
section 9 combines these results to prove the full relation is decidable. Finally we make
some concluding remarks in section 10.

2. Notation

While basic knowledge of term rewriting is assumed (N. Dershowitz and J.P. Jouannaud
1990; G. Huet 1980), an introduction to occurrences is given — a full development may

be found in (G. Huet 1980).

Occurrences are sequences of natural numbers which are used to index the subterms of
a term and their analysis forms the technical core of this paper. Let N* be the set of
sequences of natural numbers with the empty sequence denoted ¢, while u - v denotes
the concatenation of u with v. If u # ¢, then u™ is the sequence obtained by omitting
the last element of u, while u~ is the sequence obtained by omitting the first element.
The prefiz partial ordering is defined v < v iff Jw.v = v - w and in such a case define
(u-w)/u = w. These operations on sequences are extended pointwise to sets of sequences,
eg. Xfu={w|u we X}

Now let 7 be the terms of some calculus. Given any t € 7, its set of occurrences is
denoted 0(¢) C N™, while the subterm indexed at occurrence o € 0(¢) is denoted ¢/o.
These are defined as follows:

— If ¢ is a variable, then 0(¢) = {¢} and t/e = ¢
— Ift = F(to,...,tn), then 0(t) = {e} U {i-o|i < n,o €0(t;)} and

t/a:{t fo=c¢

tifjoo ifo#ecando=1i -0~

When no danger of confusion exists, the distinction between an occurrence and the
subterm so indexed may be blurred. As we shall see later, the conversion relation 1is
not left linear in that different occurrences in the redex, which index syntactically equal
subterms, may be mapped to the same occurrence in the reduct. To formalise this, a
set X of occurrences is said to be consistent iff given any members 0,0’ of X, then
t/oc = t/¢’, and if X is non-empty, the subterm so indexed is denoted ¢/X. Finally
t[o;+u;];ez denotes the textual replacement of terms w; at occurrences o; and is defined
as expected (G. Huet 1980).

Given a rewrite relation R, if there is a rewrite t =gt’ we call t the redez and t' the
reduct. The set of one-step R-reducts of a term ¢ is denoted ¢/R = {t' | (¢,t') € R}, the
reflexive closure of R is denoted R and the reflexive transitive closure of R is denoted
R*. The equational theory generated by a homogeneous relation R is the least equivalence
relation containing R, and if two elements ¢t and ¢ are related in this theory we say t
and t' are R-equivalent and write t =g t'. If R is an equivalence relation, the equivalence
class of an element ¢ is denoted [t]g, while if a term ¢ is R-strongly normalising, its
R-rank is denoted [t|g. Some rewrite relations do not have normal forms and in these
circumstances we use the more categorical notion of a quasi-normal form. A term ¢ is an
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Table 1. Term Judgements of ABCC
z €Var(A) U Con(A)
z: A
e:A €:B t: A1 X Ay
(e,e/y: Ax B W
t:A; t: A1 +A4 w:C v:C z;€Var(4;)

in;(¢) : A1 + Ao case(t,z1.u,z2.v) : C
e: B z€Var(4) e:A=B € : A

Az.e: A—B ee’ : B

R-quasi-normal form iff whenever ¢ =75’ then there is reduction sequence ¢’ =7t and
the set of R-quasi-normal reducts of a term ¢ is denoted R(t).

3. Almost Bicartesian Closed Logic

Although this paper is primarily concerned with the definition and decidability of G7-
equality for coproducts, in order to maintain continuity with previous work and to avoid
certain trivial simplifications, a calculus which includes products, terminal object and
exponentials is studied. This calculus is called “Almost Bicartesian Closed” as it corres-
ponds to the internal language of bicartesian closed categories, without an initial object.
We have verified separately that the techniques developed here are sufficient to cope with
the addition of an initial object.

The types of “Almost Bicartesian Logic”, denoted ABCC, are freely generated by the
syntax

T::B|1|T—|—T|T—>T|T><T

where B is any base type. For each type T', there are constants Con(T), including the
special constant * € C'on(1), and an infinite set of variables Var(7T') such that if 7" # 71",
then Var(T') and Var(7") are disjoint. This explicit typing of variables means contexts
are not required to assign a type to a term and so the term judgements of ABCC are
taken to be of the form ¢ : T'. These judgements are generated by the inference rules of

Table 1.

Familiarity with calculi such as that above is assumed (J. Y. Girard et al. 1989; H.
Barendregt 1984). Given any term judgement ¢ : 7', we say t is a term of type 7. The
free variables of a term ¢ are denoted FV(¢) and substitution of terms for free variables
of the same type 1s defined as expected. A term is called an introduction term if 1t is a
A-abstraction, pair, injection or the constant *. If a term is not an introduction term,
then it is a neutral term. An occurrence o € 0(%) is negative iff the subterm so indexed is
either applied to another subterm, projected or the first argument of a case-expression
— occurrences which are not negative are said to be positive.

Lemma 3.1. If there are typing judgements ¢t : 7 and ¢ : 7", then T = 7",
Proof. Induction on the typing derivations. ]
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The redex of the proposed 7-rewrite rule for the sum type i1s expressed as a substitution
and this may be formalised in terms of occurrences. Firstly, the variables bound at an
occurrence o € 0(¢) are defined as follows:

0 ifo=c¢
{z}UBV(c™,t") ift=Azt ando #¢

BY(o,t) =< {x1} UBV(s™,t') ift= case(u,z;.vy,r5.v5) and o > 1
{z2} UBY(c™, ') ift = case(u, r;.v1,22.v2) and o > 2
BV(c™,t/%) otherwise ;o =1i-0~

and the free occurrences of a term are FO(¢t) = {¢ € 0(¢) | FV(t/c) N BV(o,¢) = 0}.
One easily proves by induction that if X C FO(?) is a non-empty, consistent set of free
occurrences then, given a fresh variable z, ¢ = t[o—=z]ex [z := (t/X)].

4. A Rewrite Relation for ABCC

In (C. B. Jay and N. Ghani 1995) extensional rewrite relations for the product, unit
and exponential were derived by constructing categorical models of reduction and taking
introduction and elimination to be (locally) adjoint functors. When applied to coproducts
this approach again generates a contractive G-rewrite rule and an expansionary n-rewrite
rule.

To see this, let C(X) is the category whose objects are terms of type X and whose
morphisms are rewrites between terms. Assuming the variables z, y and z have the right
type, the introduction and elimination rules for the coproduct, once extended to rewrites,
form functors between the categories displayed in equation 3. When these functors are
taken to constitute an adjoint pair

case(z,x._,y..)
C(C) x C(C) T C(C) (3)
(i (z)/2], [in2(y)/2])

the associated unit and counit form the following expansionary 7-rewrite rule and con-

tractive B-rewrite rules.

(Bs1) case(ing(z),z.u,y.v) = u
(Bt .2) case(ing(z), z.u,y.v) = v
(n4) t = case(z,z.t[iny(x)/z], y.t[ina(y)/2])

These reduction rules, when closed under substitution and taken together with the re-
duction rules for the exponential, product and unit connectives, generate expansionary
rewrite relation, denoted =, which is defined in Table 2. The fresh variables are as-
sumed to have appropriate types and the capture of free variables is avoided by assuming
z,y & FV(¢) in the rewrite rule n4 and « € FV(¢) in n—.

Lemma 4.1. If there is a typing judgement ¢ : T and a rewrite t =t then there is a
typing judgement ¢’ : 7.

Proof. The proof is by induction on the rewrite ¢t =t'. ]
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Table 2. The Expansionary Rewrite Relation
Bx mofa, by = a
Bx 2 m{a,b) = b
7% c = (moc,mc) ifc:Ax B
B— Azt)u = tlu/z]
n— t = Jdz.ix ift: A—B
m a = * ifa:l
B4 1 case(ing (t),z.u,y.v) = ult/z]
B4 2 case(ing(t),z.u,y.v) =  v[t/y]
i tlu/z] = case(uw,w.t[ini(z)/z],y.t[linz(y)/z]) Huw:A+ B

The equational theory generated by the expansionary rewrite relation is called 8n-equality
and matches that suggested by the traditional categorical semantics for ABCC.

Lemma 4.2. Bn-equality is sound and complete for models of ABCC in cartesian closed
categories with coproducts.

Proof. Soundness is by induction on the term structure, while completeness follows
from the construction of a free model,e.g. a category C whose objects are types and whose
morphisms are Gn-equivalence classes of terms:

CXY)={[tlg,y |t: XY}

The rest of the proof follows the standard techniques, e.g. see (J.Lambek and P.Scott).
U

The n4-rewrite rule is highly non-local in that consistent sets of free conversions may
be expanded to the head of the term and is thus significantly more complex than the
n-rewrite rules for the exponential and product. As terms typically contain many such
ssets of subterms, unique normal forms cannot be associated to terms; rather each term
has a set of quasi-normal reducts, one for each of the different permutations in which
subterms may be expanded. For example, the term (case(t, z.z, y.y), case(t’, =’ .z’ y'.y/))
has two normal forms

case(t, z.case(t’ 2’ (x, '),y (z,y)), y.case(t’, 2’ (y, 2"), v/ (y,y))) (4)
and

case(t', ' .case(t,z.(z' z),y.(z',y)), v .case(t, z.(y, ), y.(v, ¥))) (5)
depending on the order in which the subterms ¢ and ¢’ are expanded. To accommodate
this feature, the ni-rewrite rule is decomposed into two parts:

— The following special case of the ni-rewrite rule is obtained by setting ¢ to be the
variable z in the definition of 4 given in Table 2.

u = case(u, z.im (2), y.ins(y)) ifu: A4+ B (6)

This rewrite rule is similar to the other n-rewrite rules of Table 2 in that terms of
sum type are converted into negatively occurring subterms of the reduct. Indeed,
once suitable restrictions have been imposed upon the applicability of the expansions
in equation 6, and when taken together with the f-redexes and commuting conver-
sions, the resulting rewrite relation is strongly normalising and confluent. The proof
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of normalisation is essentially an adaptation of that in (C. B. Jay and N. Ghani
1995), although a couple of innovations are required to cope with some new technical
problems.

— The second part of the decomposition is a generalisation of the “commuting con-
versions” appearing in (D. Prawitz 1971; J. Y. Girard et al 1989). A conversion
is a negative occurrence of sum type, or equivalently, the first argument of a case-
expression. The conversion relation develops an algebra of these conversions, allowing
them to be identified, discarded or expanded to the head of a term, e.g. the two normal
forms in equations 4 and 5 are interconvertable in the conversion relation. Although
not strongly normalising, each term has a (finite, enumerable) set of quasi-normal
reducts and terms equivalent in the equational theory generated by the conversion
relation have the same set of quasi-normal reducts. Confluence and decidability of
the conversion relation are corollaries to these results.

Finally the whole expansionary rewrite relation i1s shown confluent and decidable by
embedding it into the conversion relation. As the conversion relation is the main technical
innovation in this paper, it is here that we begin.

5. The Conversion Relation

The n4-rewrite rule of Table 2 extracts consistent sets of free occurrences and inserts
injections at their occurrences in the redex; when these occurrences are negative, new
G4-redexes are created by this process. The conversion relation restricts the ny-rewrite
rule to extract only negative occurrences, and then contracts these resulting G-redexes.
This idea is formalised by (i) defining the set of conversions of a term; (ii) giving a
recursive definition of the result of contracting the S-redexes mentioned above; and (iii)
giving a calculus for deriving the rewrites of the conversion relation.

The set of conversions of a term ¢ i1s defined by
C(t) = {0 € 0(t)|o is a negative occurrence of sum type }

The free conversions of ¢ are simply those occurrences which are both free and conversions,
i.e. FC(t) = C(¢) N FO(t). Every conversion has a binding which consists of the pair of
variables bound by the arms of the case-expression associated to the conversion, e.g. the
binding of the conversion 0 in the term case(t, z.u, y.v) consists of the pair # and y. These
variable bindings play an important role in avoiding variable capture and henceforth
whenever sets of conversions are considered, the subterms so indexed are assumed to
have the same type and have the same binding.

Given a set X C C(t) of conversions, the result of contracting the S-redexes formed upon
insertion of left injections at these occurrences is called the first residue, denoted ¢ \1 X,
while the result of contracting the g-redexes formed upon insertion of right injections is
called the second residue and is denoted ¢ \2X. These terms are recursively defined as
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Table 3. The Conversion Relation
X CFC(t) X consistent X #0
Expansion (& X):t =ccase(t/X,z.t\1X,y.t\2X)

z g FV() y¢FV(t)
Weakening (€,0) : case(u,r.t,y.t) =ct

(0,X) :t; =¢ t;
(5.0, X) : T(to, ., tn) =e T(to,. .- tn)[j1}]

Congruence
follows:
t fX=0
t\;X = v \i X; if 0 € X and ¢t = case(u, z.v1,y.v2)

F(tl \ina"'atn \zXn) le7£®, 0 QX andt:F(t1,~~~,tn)
where i = 1 or 2 and X,, = X/n.

Lemma 5.1. Given a set of conversions X C C(¢) binding the variables #; and zs, then
for i = 1 or 2 there is a reduction sequence [o—in;(z;)],ex ="t \;X.

Proof. Induction over ¢. ]

The conversion relation is defined via a series of inference rules for deriving triples of the
form (o, X) : ¢ =>. ' where o is the occurrence at which the actual redex occurs and
X is the set of conversions to be expanded, i.e. X C FC(t/0). We call (o, X'} the label
of the rewrite, and, when not required, the label part of the rewrite is omitted. These
triples are generated by the inference rules of Table 3, where in the Ezpansion clause
x,y are the variables bound by each ¢ € X and to avoid variable capture we assume
z,y & FV(t) UBV(o,t). These conditions can always be met, if necessary by a change of
bound variables.

The Ezpansion clause requires the set X of conversions to be free and consistent so that
the redex may be expressed as a substitution and hence in a form compatible with the
ny-rewrite rule of Table 2. In addition, this set is required to be non-empty to prevent
expansions of the form u = case(t, z.u, y.u) which would allow terms to grow arbitrary
large, new free variables to be introduced and other undesirable features. However these
terms remain identified in the equational theory generated by the conversion relation
because redex and reduct have been inverted and included under the Weakening clause.

Lemma 5.2. Given a triple (o, X) : ¢ =.t', then ¢t = ¢ in the expansionary rewrite
relation.

Proof. The lemma is proved by induction on o. If ¢ = ¢ and the rewrite is of the form
case(u,z.t,y.t) =t then, given a variable z not free in ¢

t = tlu/z] =, case(u,z.t[ing(x)/2],ytlinz(y)/2]) = case(u,x.t,y.t)
However, if X in non-empty then

t =  Alo—Z]eex[z =t/ X]
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=4, case(t/X, xt[o—in (2)],ex, y-t[o—inz(y)]sex)
=%  case(t/X, 2.t \1X,yt\2X)

where the equality in the first line holds because X is a non-empty, consistent set of free
conversions, and the last line is by lemma 5.1. Finally if ¢ # € then, as both relations
are congruences, the lemma follows by induction. ]

The conversion relation is so named because the relation generalises the commuting
conversions occurring in the literature (J. Y. Girard ef al. 1989; D. Prawitz 1971). Com-
muting conversions are formed when negative occurrences index case-expressions — an
example is given in in equation 7. The reader is invited to check that this rewrite may
be derived as a conversion rewrite with label (¢, {00}).

p:  case(case(t,x.u,yv), 2 o'y ) = (7
case(t, z.case(u, z’.u', y' V'), y.case(v, 2’ ',y V"))

The rewrite relation =>, is defined to be the least congruence containing the redex given
in equation 7. Note that =, is strongly normalising and confluent and so has unique
normal forms.

The technical core of the analysis of the conversion relation uses the structure of a
rewrite r : ¢ =.t’, represented in the label r, to define a relation 7 C €(¢) x C(¢') which
relates conversions in the redex, called ancestors, to conversions in the reduct, called
descendants. As we have seen, the action of a (consistent) set of conversions X C C(¢)
is to produce two residues, namely ¢ \1 X and ¢ \2X. This action induces a partitioning
of the set of conversions C(¢) into (i) those conversions which are sub-conversions of
(unique) members of X; (ii) those conversions which have descendants in one or both
of the residues; and (iii) those conversions which fit into neither of these categories and
hence have no descendants.

If a conversion o has a descendant in the residue ¢ \; X, then this descendant will be
unique and is given by the partial function €;(X, o) (which is undefined if ¢ has no
descendant).

Q(X/i,07) if0€ X and o > i

undefined if0€ X and o ¢

0 if0g X ando=0

i.Q;(X/i,c”) otherwise ,c =i -0~

Note that in general the domain of ©; will differ from Q.

Lemma 5.3. Let X C C(¢) and 7 €C(t) be in the domain of Q;(X). Then Q;(X, 7)€
C(t \;X) is a conversion, indexing the subterm

N\ X)/Qi(X,7) = (t/7) \i(X/7)
In addition the partial function €;(X) : C(t)—C(t \;X) is surjective, injective on its

domain, maps free conversions to free conversions and is strictly monotonic, i.e. for con-
versions o, 7 in 1ts domain:

o>riff (X, 0) > (X, 1)
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Bn-Equality P

Proof. The proof is by induction on the definition of €;. O

The conversion tracking function promised at the beginning of this section can now
be constructed. Given a rewrite r : ¢ =.t', and a conversion ¢ € C(t), define its set of
descendants 7(o) C C(t') as follows:

If ri1s a LL 6ak6ning, ‘hen
T(T) = {

{77} otherwise
— If r is an Ezpansion of the non-empty set of conversions X, then

F(r) = {0.7/0} if thereisaoc e X withrt >0
"= {1.2:(X,7),2.Q4(X, 7)}  otherwise

where, since X 1is consistent, ¢ in the first clause is necessarily unique and those
functions undefined in the second clause are deleted.
— If r i1s induced by a congruence then

—r {0} ifo=0oroc#j -0~
(JrwX)o)=1 | 7, - :
J{w,X/j)(e7) otherwise
The function 7 is extended pointwise to sets of conversions. Note that a single conversion
may have more than one descendant and the ordering on conversions is not necessarily

preserved. Both of these points can be seen in equation 7 where 7(00) = {0} while
7(0) = {10,20}. Another interesting reduction is

(6,{0,10}) : case(t, x.case(t, x.u, y.v),y.5) =case(t, z.u, y.s) (8)

which shows how a conversion, e.g. any inside v in the redex, may have no descendants,
and how a conversion in the reduct may have more than one ancestor. However, 7 is
surjective, i.e. all conversions in a reduct have at least one ancestor in the redex. Thus
the possibilities for further rewriting, which are determined by the conversions of the
reduct, may be traced back to the associated redex, and hence we may directly construct
the quasi-normal reducts of a term and deduce confluence and decidability.

Lemma 5.4. Given a rewrite r : ¢ =.t’, and a conversion o € C(¢), then 7(c) C C(¢') and
the set

ri(r) = {oec(t) | T eF(o)}
1s non-empty.

Proof. Induction on the rewrite. ]

6. A Decidability Result

Given a rewrite r : ¢ =.t' and a set of conversions X C C(t), we give conditions under
which r may be localised to its action on an individual conversion and to its action on
the residues, 1.e. find conditions under which rewrites of the following form exist

r/o’ itjo =.t' /o’ and r\;X 1t \;X =t \;F(X)
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where 0 € X and o’ € F(o). As these localised rewrites have smaller redexes, we obtain
a recursive decomposition of the conversion relation which will be the key to the con-
struction of quasi-normal forms.

Equation 7 shows that a rewrite cannot always be localised to a conversion — 7(0) =
{10, 20}, but no rewrite exists between the corresponding subterms. This problem occurs
as the conversion 0 is mapped into the residues while one of its sub-conversions is ex-
panded to the head of the term and is thus ‘removed’ from the original conversion. The
key to localising a rewrite to a conversion lies in ensuring that the layer structure on
conversions, formed by the embedding of conversions inside each other, is preserved. A
rewrite (7, X) : ¢t =1’ is said to preserve a conversion ¢ € C(t) iff Yw € X. (7 < 0 < w),
i.e. no subconversions of ¢ are expanded outside of . This generates a subrelation of the
conversion relation where all conversions are preserved.

=p={r:t =.t" | r preserves c(t)}

As mentioned above, the commuting conversion in equation 7 is an example of a rewrite
which does not preserve the conversion layer structure. In fact, this redex fully describes
all the cases in which = -reduction fails to preserve a conversion.

Lemma 6.1. The conversion relation may be decomposed as follows:
=, =(=pU =)
Proof. Induction on the structure of a conversion rewrite. ]

Lemma 6.2. Let r : t =.t' preserve o € C(t). Then forall ¢’ € F(o) there is a rewrite
r/o :t/oc =.t'/o’. In addition, if r preserves all conversions in C(¢), then /o preserves
all conversions in C(t/c).

Proof. Induction on r. ]

We now consider the conditions which must be satisfied by a set of conversions X C C(¢)
such that a rewrite r : ¢ =.t' induces rewrites of the residues r\; X : ¢ \; X =.t' \;7(X).
If r is of the form case(t, z.u, y.u) =.u, and X contains a conversion inside one of the
subterms u, then in order to maintain the shape of the redex, X must also contain the
“sister” conversion inside the other arm. Similar considerations apply if 7 is an expansion
(6,Y), where if X contains a conversion occurring inside an element of Y then, in order
to maintain consistency, X must contain the sister conversions inside the other elements

of Y.

These conditions are easily formalised in terms of the conversion tracking function. Given
a rewrite r, a set of conversions X is r-closed iff r_lF(X) = X.

Lemma 6.3. Let 7 : t =, ¢ X be an r-closed set of conversions. Then there are either
rewrites 7 \; X : ¢ \; X =.t' \;7(X) or rewrites in the reverse direction. In addition, if r
preserves all conversions then so do the residual rewrites.

Proof. The proof is by induction on r. ]

An example of the need to reverse the direction of the residual rewrite is the following. If
r represents an expansion of conversions Y C C(t), then the obvious candidate for »\; X
is the basic expansion of the descendants of ¥ in the residue ¢ \; X, namely ;(X,Y).
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However this set may be empty, in which case the direction of the residual rewrite must
be reversed and taken to be a Weakening.

Equivalence in the conversion relation can now be proved decidable but, because of the
conditions required by preservation and closure, this is done firstly for the subrelation
=,. For each term, we construct its finite set of =>,-quasi normal forms and show that
=p-equivalent terms have the same set of =>,-quasi-normal forms.

If a term is a =>p-quasi-normal form containing free conversions, then the term must be
a case-expression, as otherwise a rewrite to such a term would exist, but not one in the
other direction. Thus the construction of =,-quasi-normal forms is essentially a process
of expanding as many conversions as possible. However as a non-free conversion may have
a free =>,-descendant, we must consider not just free conversions but also potentially
free conversions, and secondly, as these quasi-normal forms are to be =,-reducts, only
mimmal conversions are expanded. The construction of =>,-quasi-normal forms also
performs two other tasks, namely checking for possible applications of Weakening and
also ensuring that as much identification of conversions occurs as is possible.

The construction of =,-quasi-normal forms is presented in Table 4 in terms of a function
NF, which maps a term to its set of =>,-quasi-normal reducts. In this table, the following
definitions are used:

— The set of minimal conversions of a term are given by:
MC(t) = {oec(t) | Ao’ ec(t).0’ < a}

— The set of potentially free conversions of a term are given by:

PFC(t) = {0 €C(t) | Yu ENF,(t/0).BV(0, ) N FV(u)

0}

— The set of potentially free conversions of a term are MPFC(¢) = PFC(¢) N MC(¢).

— MPFC(¢) is equipped with an equivalence relation determining which conversions are
to be identified:

g ~ 02 iff NFp(t/O'l) = NFp(t/O'z)
Note that for any o €C(¢), ¢ # ¢ and hence the size of the term ¢/o is less than the size
of t. Hence PFC(¢), which is defined in terms of NF,(¢/0), is well defined. The set of terms
NF,(t) is clearly non-empty, finite, enumerable and the minimality condition ensures that
if ' € NFp(t) then t =7¢'.
Lemma 6.4. Let r:t =, .

— If ¢ €¢(t) and o' € 7(o), then o € MPFC(t) iff ¢’ € MPFC(¢') and for such a minimal
potentially free conversion o, [¢]. is r-closed and 7([¢]~) = [0']~.
— The sets NF,(t) and NF,(¢') are equal.

Proof. The lemma is proved simultaneously by induction on the sum of the sizes of
the terms in question. That ¢ is minimal iff ¢’ is follows by induction on the definition
of the function 7 and the fact that r preserves all conversions. By lemma 6.2 there is a
rewrite t/o =,t'/o’ and so by the induction hypothesis NF,(¢/c) = NF,(¢'/¢’). Thus for
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Table 4. The Function NF,

— If ¢t is a variable then NF,(t) = {t}.
— If ¢t is not a variable and MPFC(¢t) = @, then

t= T(to, . ,tn) o EI\IFP(ti)
T(co, ... an) ENFy(E)

— If ¢t is not a variable and o € MPFC(¢), then either

WFp(t \1[o]~) = WFp(t \2[o]~) uw€WFy(t\1[o]~)
uENFp (i \1[0]~)

or

WFp (2 \1[0]n) # WFp (¢ \2[0]~)  Bi €TF,(t \i[o]n) o ENFL(t/0)
case(o,z.01,y.02) ENFp(2)

where z,y are the variables bound by the set of conversions [o]~.

any element u of NF,(¢/c), FV(u) C FV(¢/o) NFV(t'/o") and hence
z€BV(o,t)NFV(u) iff z€BV(o,t)NFV(t'/o")
iff  xeBV(o',t)NFV(t' /o)
iff zeBV(o' ') NFV(u)
where the equality
BV(o,t) NFV(t' /o) = BV(o', ') NFV(t' /o)

may be proved by induction on the rewrite r. Thus ¢ is potentially free iff ¢ is. Finally,
given T € r~'F[o]., there is a 7' € MPFC(¥') and a w € [0]~ such that ¢/7 =, /7" and
t/w =pt' /7. Thus by the induction hypothesis

NF,(t/7) = NF,(t'/7") = NF,(t/w) = NF,(t/0)

and so [¢]~ is r-closed. The equation 7([o].) = [0']~ may be proved similarly by direct
calculation.

For the second half of the lemma there are two possibilities. Firstly if MPFC(¢) = (), then
by the first part of this lemma MPFC(¢') = () and so the lemma follows by the induction
hypothesis. If however there is a o € MPFC(¢) then, because [¢]. is r-closed, by lemmas
6.2 and 6.3 there are rewrites

t/o :>pt//0/ and t\1[o]~ :>pt/\ﬁ([a]~) and t\s[o]~ :>pt/\2F([U]N)

where o’ €7(o) and the directions of the second and third reductions may be reversed.
For each of these rewrites, the set of normal forms of the left hand side is the same as
those of the right hand side. It is now routine to check that the sets of terms NF,(¢) and
NF,(t') are equal. ]

Lemma 6.5. The relation =, is confluent and has a decidable equational theory, while
if t' €NF,(¢) then ¢’ is a =>,-quasi-normal form.

Proof. By lemma 6.4 any :>;—span with redex t has a :>;—co—span to any element of
NF,(t). Thus =, is confluent while the associated equational theory may be decided by
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Table 5. Definition of NF and NF°

I— If t is a variable
WFC(¢) = {t}
— If t is a case-expression
a €ENF(u) B; €WF(v;)
ucase(o, z.81,y.02) ENF°(case(u, z.v1,y.v2))

— If t is not a case-expression or a variable
= T(to, e tn) o EI\IFO(ti)
T(co,...,an) ENF(T)

— WF(t) is defined

i) = | ) 1F(e)

aelFe(t)

comparing the quasi-normal forms just constructed. Finally, if o € NF,(¢) and « :>;o/,
then by lemma 6.4 NF,(a’) = NF,(¢) and so o :>;oz. Thus « is a =p-quasi-normal form.

O

7. Decidability of =.-Equivalence

By lemma 6.1 any =.-reduction can be expressed as a sequence of commuting conver-
sions given in equation 7 and =>,-reductions. Thus the construction of =.-quasi-normal
forms is a process of combining the =-,-quasi-normal forms just defined with the normal
forms of the commuting conversion relation. This is a three stage process which firstly
recursively normalises all minimal conversions and then contracts all g-commuting con-
versions. Such terms are stable and only have =>,-reducts to other stable terms — hence
the procedure is completed by using operator NF, defined in the last section.

Recall that =, is the least congruence on terms containing the reductions in equation 7.
This relation is well known to be strongly normalising (D. Prawitz 1971) and local con-
fluence is easily shown — thus we may define u(t) to be the unique = ,-normal form of
t. The functions NF and NF’ which map terms to sets of terms are defined simultaneously
in Table 5. An alternative definition of NF’(¢), which will be used later, is the following:

WF(t) = {p(tlo—aslwemc() | op ENF(t/0)}

A term is stable iff Vo € C(¢).PFC(t/a) = 0. Stable terms are important as they are both
=,-normal forms and closed under =>,-reduction. Hence the = .-quasi-normal reducts
of a stable term ¢ will be the set NF,(¢).

Lemma 7.1. If r : t =.t' and ¢ is stable, then r preserves all conversions and ¢’ is stable.
In addition, if « €NF°(¢) then « is stable and any o’ ENF({) is a =.-quasi-normal form.

Proof. By stability no conversion in ¢ contains a free subconversion and hence ¢ must
be a = ,-normal form. Thus any reduct of { must be a =,-reduct. If there is a con-
version in t' containing a potentially free sub-conversion, then there is also a conversion
in ¢ containing a minimal potentially free sub-conversion. Thus by lemma 6.4 there is
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a conversion in ¢ also containing a minimal potentially free conversion and so the redex
can’t be stable.

That the function NF’ creates stable terms is proved by induction on the term structure,
using the first half of this lemma to establish the result for case-expressions. Also by the
first half of this lemma all =.-reducts of o’ are actually =,-reducts, and because o' is
a = — p-quasi-normal, there must be a reduction in the reverse direction. Thus o' is a
= .-quasi-normal form. ]
Proving that ¢ =. ¢/, then NF°(t) = NF°(t') by explicitly considering each quasi-normal
form of each term is too time consuming. A simpler approach is to show that there
are =,-equivalent members of NF’(¢) and NF°(¢') and the key is the following technical
lemma which relates commuting conversions to = .-reduction.

Lemma 7.2. If t =, ', then p(t) =% pu(t').

Proof. The proof follows the same pattern as lemma 9.3. Note that the notion of a
full parallel rewrite is modified to prevent only the introduction of new pu-redexes. O
Lemma 7.3. Given a term ¢ and two terms o, o’ € NF°(t) then o = o'. Thus given
terms o €NF°(t) and o' €NF’(t'), if @ =, o' then the sets NF(¢) and NF(¢') are equal.

Proof. The first part of the lemma is proved by induction on the term ¢ with the only
interesting part being if ¢ is a case-expression, say case(t’, z.u,y.v). Then « and o' are
of the form

a = pi(case(ag, .51, y.62)) and o = p(case(al, x.5],y.35))

By the induction hypothesis 3; :>; Bi and oy =, ay, and since oy is a =,-quasi-normal
form and =-, is confluent, there is a reduction sequence aq :>;oz6. The lemma now
follows from lemma 7.2.

For the second half of the lemma, given a term g € NF(¢), there is a term oy € NF°()
such that ag €NF,(a1). By the first part of this lemma a1 =, o =, o’ and so ag ENF(t').
Thus we have shown that NF(¢) C NF(¢') and as the argument is symmetric, the reverse
containment also holds. ]

Lemma 7.4. The terms case(t, z.u, y.u) and u have the same set of normal forms.

Proof. If ag €NF(t) and ay €NF°(u), then by lemma 7.2
plcase(ag, x.a1, y.a1)) = play) = a;

The redex is a member of NF’(case(t, z.u, y.u)), and hence the reduction sequence is
actually a :>;—reduction sequence. In addition the reduct is a member of NF’(u) and so
the lemma now follows from lemma 7.3. ]

Lemma 7.5. The terms
tg = case(case(t, x1.u1, ¥2.U2), Y1.91, Ya2.v2)
and

t; = case(t, xy.case(uy, y1.v1, Y2.v2), La.case(uz, y1.v1, Y2.02))

have the same set of quasi-normal reducts.
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Proof. Let o €NF°(case(t, x1.u1, x2.us)) and oy, ENF’(v;). Then given an o ENF,(a),
by lemma 7.2 there is a reduction
p(case(a, yi1.ay,, ya.0v,)) =, plcase(a’, yr.ay,, y2.0,))

where the reduct is a member of NF’(¢p). Now o« must be of the form

p(case(ay, #1.0q,, Ta.00y, )
where a; ENF(t) and o, ENF°(u;). Again by lemma 7.2, if a;l ENF,(vy,) then there is a
:>;—reduction sequence:
pease(o, Y1 .y, , Y2.0y, )
= pcase(case(ay, T1.00,, T2.00, ), Y1.Qyy s Y2.00,)
pease(ay, ry.case(ay,, Y1.0y,, Y2.00,), Ta.case(tuy,, Y1.Qy,, Y2.00,))

=
=

Sk S %

pecase(ay, ar:l.case(oz;1 YL Qo Y2.005), xz.case(a;2, Y1.Qyy s Y2.00,))

As the reduct of this sequence is a member of NF°(¢1), we have shown that there are
=p-equivalent members of NF°(¢y) and NF’(¢1). Hence by lemma 7.3 the normal forms
of tg and t; are equal. ]

Lemma 7.6. Let X C MC(¢) be a non-empty consistent set of minimal free conversions.
Then there is a term o € NF°(¢) and o € NF(case(t/X, .t \1 X, y.t \2X)) such that
« :>; o'. Thus these terms have the same set of quasi-normal reducts.

Proof. Let ax €NF(t/X) and define the term

to = tlo—asloermrc(r)

where «, are chosen members of NF(¢/0) such that if e € X, oy = ax. Then X C MC(t)
is a set of minimal, free consistent conversions and so there is a rewrite

to =p case(ax, z.tg \1 X, y.t0 \2X)
and hence by lemma 7.2 there is also a reduction sequence

pto = pease(ax, z.pu(to \1X), y.u(to \2X))
Now for any conversion 7€ C(t), 7 is minimal iff ;( X, 7) (when defined) is minimal and,
providing this is the case, (¢t \;X)/Q(X,7) =t/r. Thus
to\iX = tlo—aslemom \iX
= (t\iX)[Qu(X, 0)—as]oermrc(n)
= (¢ \iX)[U/Haa']a'eMc(t\,X)
and hence p(to \;X)€NF°(t \;X). Thus the term u(to) is a member of NF’(¢) and =,-

rewrites to a member of NF°(case(t/X, x.t \1 X, y.t \2X)) and so the lemma follows from
lemma 7.3. U

Theorem 7.7. If r:1 = t' then NF(¢) = NF(t'). Hence the conversion relation is confluent
and conversion-equivalence decidable.
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Table 6. The Rewrite Relation =g
Bx.i 7 (U, u1) = Y
B4, x mcase(t,z.u,y.v) = case(t,z.miu,y.mv)
B— Az )t = t[t'/2]
Oy, — case(t,zu,yv)t' = case(t,z.ut’, yot')
B4 1 case(ing (t),z.u,y.v) = ult/z]
B4 2 case(ing(t),z.u,y.v) =  v[t/y]
B+ ¢ case(case(t, r.u,y.v), s’ u',y' ') =
case(t, z.case(u, z'.u',y' v'), y.case(v, 2’ ', y' V"))

Proof. Induction on the label r of the rewrite r:¢ =, ¢’ is used to show that NF’(¢) and
NF’(t') have =s,-equivalent members. If the rewrite is a top-level rewrite then the lemma
follows by lemmas 6.1, 7.4, 7.5, and 7.6. If however r is a rewrite of a strict subterm then
the lemma follows easily by the induction hypothesis and lemma 7.2. Decidability follows
as one can prove t =, t' by enumerating and comparing the sets NF(¢) and NF(¢'), while
given a span from ¢, a co-span can be constructed to any member of NF(?). ]

8. An Extension of f-reduction

A rewrite relation consisting of [-reductions, commuting conversions and restricted 7-
expansions is defined which, when taken together with the conversion relation, generates
the same equational theory as the full expansionary rewrite relation. This extension of
B-reduction is proved strongly normalising and confluent by generalising the proof in (C.
B. Jay and N. Ghani 1995) for the fragment without coproducts.

Firstly define the rewrite relation =5 to be the least congruence containing the re-
ductions of Table 6. The rewrite relation =5 is known to be strongly normalising and
confluent (D. Prawitz 1971). As mentioned before, a limited form of n-expansion is defined
via the following function on terms:

(mot, mit) if ¢ is of product type
(1) = case(t, z.im (2),y.ins(y)) if ¢ is of sum type
M= « if ¢ is of unit type

Axv.tx if ¢ 1s of function type

The n-expansion of terms of sum type given above is a special case of the n;-rewrite
rule in Table 2 and converts a (sub)term of sum type into a conversion which may then
be expanded by the conversion relation. Uncontrolled 5-expansion is clearly not strongly
normalising and so restrictions must be imposed on their scope and in particular the
expansions appearing in the triangle laws must be prevented. For the sum type, these
triangle laws assert that expanding an injection term or a negative occurrence, i.e. the
first argument of a case-expression, forms a looping reduction. However these restrictions
are insufficient to obtain a strongly normalising relation as the n-expansion of a case-
expression of sum type reduces to the term obtained by expanding the arms of the
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Table 7. The Restricted Rewrite Relation
t expandable t =g t! t=rt!
t=>rn(t) t=7t t=rt
U =Fr u! v =F v’
(u,v) =7 (u',v) (u,v) =7 (u,v")
t=rt t=rt
Tol =7 Tt ™t =7 mt!
t=rt u=ru
tu =71ty tu =7 tu
t=>rt t=rt
Azt =7 Aot case(t,r.u, y.v) =7 case(t’, v.u,y.v)
U =Fr u! v =F v’
case(t,z.u,y.v) =7 case(t,z.u',y.v) case(t,z.u,yv) =1 case(t,r.u,y.v')
t=rt' t=rt'
ing(t) =7 inq (¢') ing (t) =7 inz (')

case-expression. If these arms are injections, a reduction loop may be formed, e.g.

case(t, v.imy (z), y.ins(y)) =, n(case(t, z.im (), y.ins(y)))
=5 case(t, z.n(ini(2)), y.n(ina(y))) (9)
:>Za case(t, z.imy (z), y.ins (y))

Such terms are called quasi-introduction terms and the set of terms which may not be
n-expanded is enlarged to include them. The quasi-introduction terms of sum type are
defined by the syntax:

q = 1iny (1) | ina(t) | case(t, z.q,y.q")

where ¢ ranges over arbitrary terms and ¢, ¢’ over arbitrary quasi-introduction terms of
sum type. Given any quasi-introduction term of sum type, the introduction terms at its
leafs are extracted by the function Arm which is defined as follows:

Armi(t) = Arm(ty) U Arm(ts)  if t = case(u, x4y, y.t2)
L {t) otherwise

Because the n-expansion of terms such as case(u,z.A2’.{1,y.0y £2) do not create a re-
duction loop as in equation 9, such terms are regarded as expandable and so the quasi-
introduction terms of product, exponential and unit type are defined to be just the
introduction terms of that type.

A term is ezpandable providing it is neither a quasi-introduction term nor of base type.
The reduction relation =7 is defined simultaneously with a subrelation =7 which 1s
guaranteed not to be a top-level expansion — hence a negative occurrence may be =z-
rewritten when a = r-reduction may create a reduction loop. The definitions of these
relations are contained in Table 7. Note that if ¢ is a quasi-introduction term, then so
are its = r-reducts and () :>Z; t. In addition, = r-normal forms satisfy the following
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structural properties which make them the natural candidate for the generalisation of
long pBr-normal form to this calculus.

Lemma 8.1. The normal forms of = # are exactly those terms which are F-normal
forms and each of whose subterms are either of base type, occur negatively, or a quasi-
introduction term.

Proof. The proof is by induction on term structure. ]

The relations =7 and = are not congruences and this complicates normalisation and

confluence proofs. The following lemma characterises how substitutivity may fail.

Lemma 8.2. Let ¢, u and u’ be terms such that ¢t == ¢’ and v = ', where R €

{Z,F}. Then

— There is a rewrite t[u/z] = t'[u/z] unless u is a quasi-introduction term and ¢’
is obtained by expanding an occurrence of x in ¢. In this case there are reduction
sequences t[n(u)/z] =% t'[u/x] =% tlu/z].

— There is a rewrite t[u/z] =% ¢[u’/z] unless v’ = n(u) and either ¢ = x or there are
negative occurrences of x in t. In this latter case ¢[u’/z] and t[u/z] have a common
=%-reduct.

Proof. Induction on the definition of the rewrites. ]

The obvious next step would be to hypothesise that both =7 and = # are locally con-
fluent. Unfortunately this is not the case:

(Az.t)u —I> (Az.n(t))u

1) 4
(/2] —= n(0)[u/z]

In these examples the bottom arrow is =%, but not =%, and so =z is not locally
confluent. However local confluence of = £ can be proved in conjunction with a slight
variant for =7.
Lemma 8.3. The relation = is locally confluent and given any divergence ¢ =71 %;
(where i = 1,2), there is a term ¢’ such that t; =5 ¢’ or {; = ¢’ and similarly, either
to =5t orty = pt.

Proof. The proof is by simultaneous induction on the term ¢, with the tricky cases

handled by lemma 8.2. ]

The substitutivity lemma 8.2 also allows us to give a simple definition of the =% reducts
of a variable via a function A, which maps variables to sets of terms:

A(z) ={z} z has base type
A(z) = {z,*} z has unit type
A(z) = {2} U {{a[moz/x], &'[m12/y]) | « € A(x) and &’ € A(y)} = has prod. type
A(z) = {z}U{dz.a[za/y] | € A(z) and o’ € A(y)} z has fun. type

and if z has sum type, then

A(z) = {z} U{case(z, z.iny (@), y.inz(’)) | « € A(z) and o/EA(y)}
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Table 8. Definition of Validity
— If t is a variable, constant, application or projection
t/=1 C V(X)
teV(X)
— If t is a pair
u €V(X:) (wo,u1)/=7 CV(Xo x X1)
(up,u1) €V (Xo x X1)

— If t is a A-abstraction
YueV(X)itu/z]eV(Y) dzit/=7 CV(X=Y)
Az teV(X—=Y)

— If ¢ is an injection

teEV(X;) ing(t)/=7 C V(X1 + X>)
in;(¢¥) V(X1 + X2)
— If t = case(to, ®1.u1,72.u2) Is a case-expression of function type
u; EV(X—=Y) if tp = in;(v) then w;[Tv/z;]€ V(T)
t/=>7C V(X=Y) case(to,r1.u1s,2.uzs) € V(X;)
case(to, 1 .u1, w2.u2) EV(X—=Y)

— If t = case(to,®1.u1,72.u2) Is a case-expression of product type
u, EV(X xY) if tp = in;(v) then w;[Tv/z;]€ V(T)
t/:>zg V(X X Y) case(to,xl.mul,xg.mug)EV(Xi)
case(tg,z.u, y.v) € V(X x X1)

— If ¢t = case(to, ®1.u1,72.u2) Is a case-expression not of function or
product type

u, €V(X) t/=7 CV(X) ifto=in(v) then v;[Tv/z;]€ V(T)
case(to, x1.U1, l’g.ug) € V(X)

where the variables # and y have the appropriate type. The function A is extended to
terms by:

A(t) = {tolt/=] [toe A(2)}
Lemma 8.4. The function A gives the rewrites of a variable, i.e. A(z) = 2/ =% .
Proof. The proof is by induction on the type of z. ]

The relation = £ is proved strongly normalising by extending the proof of strong norm-
alisation for fragment without coproducts presented in (C. B. Jay and N. Ghani 1995).
The set of valid terms of type T' is denoted V(T') and defined by induction over T'. For
each type T, V(T') consists of those terms which can be shown valid by the inference
rules in Table 8, where ¢{/R is the set of one-step R-reducts of . Notice that in order to
prove case(in, (1), z.u, y.v) valid, we must not only prove that the reduct u[t/x] is valid,
but also that u[Zt/z] is valid, where 7 is the operator on terms defined by

I(t) = (Az.x)t

This is because a reduction u =z v’ will not always induce one u[t/z] =7 u'[t/z] but,
because Z(t) is a neutral term, there will always be a rewrite u[Zt/z] =7 u'[Zt/z]. In
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particular this will be needed to prove lemma 8.7. Notice also that as variables have no
=7z-reducts, the valid terms of a given type contain all the variables of that type.

The valid terms of a given type are shown to satisfy the following validity predicates
defined over sets of terms P:

— VI1: If t€ P then ¢ is = r-strongly normalising
— V2:IftePand t =5 t' then t' is valid

— V3:If t€ P then A(t) C P

— V4:If t€ P then Z(t)e P

Although the predicate V4 has been included as a separate predicate, if P is the set of
valid terms of some type, then V4 is actually a consequence of the first three validity
predicates.

Lemma 8.5. Assume the valid terms of a given type satisfy the validity predicates V1-3
and let ¢ be a valid term of that type. Then the term Z(2) is also valid.

Proof. We prove the stronger assertion that if z is any variable having the same
type as t, then for any o € A(z) the term (Az.«)(t) is valid. By V3 the term « is valid
and so by V1 the terms « and ¢ are strongly normalising and hence the sum of their
normalisation ranks may be used as an induction rank. The =z-reducts of (Az.a)(?)
induced by reductions of & or ¢ are valid by the induction hypothesis while the only
other =rz-reduct is «[t/x] which is a member of A(¢) and so valid by V3. ]

We now establish the validity predicates for terms of sum type.

Lemma 8.6. Assume V(X) and V(V) satisfy V1, V2 and V3. Then the set of valid
quasi-introduction terms of type X + Y satisfies V1 and V2. Also if u: X and v:Y are
valid, then so are in; (u) and ins(v).

Proof. Since quasi-introduction terms are non-expandable and closed under reduction,
the first part of the lemma follows by induction on validity. The second half follows by
induction on the normalisation ranks of v and v. ]

Lemma 8.7. Assume V(X)) and V (V") satisfy the validity predicates V1-3 and let ¢ be
a valid term of type X + Y.

— Ift = case(tg, z.u,y.v), n(u) =% «and p(v) =% 3 then case(ty, z.a,y.3) is valid.
— All terms ¢’ € A(t) are valid.

Proof. The proof is by simultaneous induction on the validity of ¢.

(i) By the induction hypothesis the terms n(u) and n(v) are both valid, quasi-introduction
terms and hence so are o and . Thus the sum of their normalisation ranks forms an
inner induction rank. Those =z-reducts of case(ty, z.«,y.5) induced by reductions
of proper subterms are valid by the induction hypothesis and this leaves two cases. If
to is an introduction term, and say case(ini(s), z.«,y.8) =1 «[s/x] then note first
that u[Zs/#] is valid. By induction so is n(u[Zs/x]) = n(u)[Zs/x] and, as «a[Ts/x]
is a reduct of this term, it is also valid. Hence «a[s/#] is valid. Similarly if ¢y is a
case-expression, the result of a commuting conversion is shown valid by applying the
induction hypothesis to the term obtained by contracting the top level commuting
conversion 1in .
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(ii) We must prove that case(t, z.in; (u), y.ina(v)) is valid where v € A(z) and v € A(y).
By the induction hypothesis u and v are valid and strongly normalising and hence the
sum of their normalisation ranks forms an inner induction rank. The validity of inj («)
and ing(v) follow by lemma 8.6 from the validity of v and v while those = z-reducts
induced by reductions of proper subterms are valid by the induction hypothesis. The
result of a top-level commuting conversion is valid by the first half of this lemma
and, finally, if ¢ is an injection, say im;(¢g), then ¢y is a valid term of type X and
hence by lemma 8.5 so is Ttg. By V3 u[Zty/#] is also valid and hence by lemma 8.6
ing (u)[Ztog/x] is valid.

U

Corollary 8.8. Assume V(X) and V(Y) satisfy the validity predicates V1-3. Then so
do the valid terms of type X + Y.

Proof. Let t be a term. The lemma 1s established by induction on the validity of ¢. All
=7z-reducts are valid and, by the induction hypothesis, strongly normalising. The only
other reduct is a valid quasi-introduction term which is strongly normalising by lemma
8.6. Thus all reducts of ¢ are strongly normalising and hence so is . The = z-reducts of

a term are valid by definition, while the result of a basic expansion is valid from lemma
8.7. Finally, V3 has just been established in lemma 8.7. ]

Lemma 8.9. The set of valid terms of every type satisfy the three validity predicates
V1, V2 and V3.

Proof. The proof is by induction on the type of a term. Terms of base type are
proved strongly normalising by induction on their validity and because such terms have
no expansions the predicates V2 and V3 are also satisfied. Similar remarks apply to
terms of unit type as their only expansion is the valid constant * which is also a normal
form and so strongly normalising. Terms of sum type have just been shown to satisfy
the validity predicates while the arguments for terms of function and product type are

similar to those of (C. B. Jay and N. Ghani 1995). ]

Before showing all terms are valid, the criteria for proving a case-expression valid is
simplified.
Lemma 8.10. The term case(t, z1.u1, z2.uz) is valid iff ¢ is strongly normalising, w1, us
are valid, and in addition if ¢ =% ¢’ and in;a € Arm(t") then w;[Za/x;] is valid.

Proof. The proof is by induction with rank the quadruple of numbers (a, b, ¢, d), where
a is the complexity of the type of the case-expression, b is the = z-normalisation rank of
t, c1s the size of t and d is the sum of the = F-normalisation ranks of u; and us. There are
two proof obligations. Firstly if the case-expression is of sum or function type, the clauses
pertaining to commuting conversions are easily established by the induction hypothesis.
Secondly, those =-z-reducts induced by reductions of proper subterms are valid by the
induction hypothesis with the second part of the induction hypothesis following from
lemma 8.2, while a basic G-reduction has a valid reduct by assumption. Finally, if ¢ is a
case-expression then the result of a basic commuting conversion i1s shown valid by first
using the induction hypothesis to prove the arms valid and then once more for the whole
term. U
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Finally, all terms are shown valid in the traditional manner:

Lemma 8.11. Let ¢ be a term and w; be valid terms. Then the term t[u;/«;] is a valid
term.

Proof. The proof 1s by induction on ¢ and follows the standard pattern. The only
interesting part is for the term case(t’, z.u, y.v). The terms ufu;/x;], v[u;/x;] and ¢'[u; /2]
are valid and thus strongly normalising by the induction hypothesis. Thus if ¢'[u; /z;] =%
" and iny (o) € Arm(t""), we may deduce Za is valid and thus by the induction hypothesis

(ulw; /e )Tee)x] = ulusfas, Toofx]

is a valid term. Similar considerations apply to right injections and so the lemma is
proven. U

Theorem 8.12. The relations =+ and =7 are strongly normalising and = 1s confluent.

Proof. As variables are valid, all terms are proven valid by instantiating lemma 8.11
with the identity substitution. Hence all terms are = z-strongly normalising. Confluence
now follows from local confluence proved in lemma 8.3 and strong normalisation. of = r.

O

9. Decidability of fn-Equality

The expansionary rewrite relation defined in Table 2 has been decomposed into the
strongly normalising and confluent relation = and the decidable conversion relation.
The rest of this paper proves that the expansionary rewrite relation is itself decidable by
showing that if two terms are Gn-equivalent, then their = z-normal forms are equivalent
in the conversion relation.

The easiest proof strategy would be to consider the F-reductions of a term in isola-
tion from the possibilities for n-expansion that exist within the term, i.e. prove that
n-expansion preserves f-normal forms and that if ¢ =, ¢, then 8(t) =, B(t') and
n(t) =. n(t'), where 8(t) denotes the B-normal form of ¢ and n(t) denotes the n-normal
form of ¢{. Unfortunately, unlike the restricted expansions of the calculus without cop-
roducts, the n-expansions contained in = do not form a confluent relation, e.g. the
reducts of the span below cannot be rewritten to the same term using restricted expan-
sions alone.

n(case(z, z.x, y.y))<case(z, v.x,y.y) = case(z, z.n(z), y.n(y))

Our solution is to define a function which picks a particular -normal form for a term by
preventing the n-expansion of all case-expressions. The conversion relation may also map
positive occurrences to negative occurrences, e.g. in the following rewrite the subterms
z and y occur positively in the redex but negatively in the reduct:

(case(z,x.x,y.y))w = case(z, r.xw, y.yw)
Such reductions cannot be lifted to their n-normal forms, i.e. there is no reduction

(case(z, x.n(x), y.n(y)))w /= case(z,z.2w, y.yw)



On-Equality for Coproducts 25

The solution to this second problem is to increase those occurrences in a term which may
be =z-rewritten but not = z-rewritten. Rather than present another series of relations,
we define the fully n-expanded form of a term directly via the simultaneous definition of
a pair of functions nF and nZ.

nI(z) = «
nZ(x¥) = =«

nZ(uv) nZ(u)nF(v)
( z.t) Az.nF(t)

nZ(mit) minZ(t)

771(<U v)) (nF(u), nF(v))

nZ(iny(t)) in; (nF (1))

nZ(case(t,z.u,y.v)) = case(nZ(t),z.nL(u),y.nI(v))
and
case(nZ(t'), z.nF(u),ynF(v)) tis case(t’,z.u,y.v)
nF@) =< A" ()I(t)/z] t is a projection, application, variable

¢ otherwise

where z is any variable having the same type as ¢t and A™(z) is the = z-normal form of
z (the superscript m is to distinguish the term A™(z) from the set of terms A(z)). To
maintain the strength on the equational theory, the n-expansion of case-expressions is
simulated by a rewrite relation =5 which is defined to be the least congruence containing
the reductions

case(t, v Az’ u,y. Az’ v) =5 Aa'.case(t,r.u,y.v)
case(t, z.(uy,v1),y.{uz,v2)) =5 (case(t,z.ui,y.uz),case(t,z.v1,y.v3))

The rewrite relation =5 is strongly normalising and confluent and so has unique normal
forms. In addition, if two terms are =-s-equivalent, then they are also equivalent in the
conversion relation because :>5_1 C =.. We now give an algorithm for the calculation
of = r-normal forms.

Lemma 9.1. The = z-normal form of a term ¢ may be calculated by: (i) calculating the
B-normal form of ¢; (ii) applying the function nF; and (iii) calculating the =-s-normal
form of the result.

Proof. Let #t denote the result of applying the algorithm in the lemma to ¢t. The
lemma is proved by showing that f§t is an = z-normal form and is also = z-equivalent
to t. Firstly #f is a S-normal form as both nF and = preserve S-normal forms, while
induction on the structure of ¢ is used to show that if ¢ is a S-normal form, then #t is
an = r-normal form. Secondly, because there is always a reduction sequence t = nF(t)
and a term is always = z-equivalent to its =>s-reducts, we may conclude that t = ft.

O

We define a relation — by parallelising the conversion relation and prove that if { —
" then B(t) — B(t'). In order to prove this, the parallelised conversion relation must
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Table 9. The Parallel Conversion Relation
— Identity

Z =z

— Expansion
X CFC(t) is consistent ¢/X —u t\;X — v,

t — case(u, z.v1, y.v2)

where z,y are the variables bound by X. If however X is empty, then
z,y &FV¥(t) and u is any term of the appropriate type.
— A congruence rule for each term constructor

! '
WY = UGy e sy Un = Uy

T(ugy. . yun) = T(uh, ... ul)

n

— A parallel conversion t — t’ is said to be full, and written ¢ — t', iff the
left branch of any expansion or elimination congruence does not

itself end in an expansion.

permit the expansion of empty sets of conversions and so a parallelised version of the
weakening clause is not needed. Parallel conversion, denoted —, is defined to be the least
congruence defined by the inference rules in Table 9. The full parallel conversion relation,
denoted — ¢, is the subrelation of — obtaining by insisting that the left-branch of any
instance of expansion or a elimination congruence must not itself be an expansion. These
restrictions ensure that —; does not introduce new commuting conversions and hence
— ¢ will preserve f-normal forms.

Lemma 9.2. Parallel expansion is closed under substitution, i.e. if ¢ = ¢’ and u — '
then t{u/z] — t'[u'/z]. In addition if ¢ is a B-normal form and ¢ —; ¢’ then ¢ is also a
B-normal form. Finally if ¢ — ¢', there is a term ¢ such that ¢ —; t" and ¢’ :>Z; .

Proof. The proofs are all by induction on the term ¢. ]
Lemma 9.3. Let ¢ — t'. Then 3(t) — B(t').

Proof. 'We prove that if ¢ —; ¢’ then 3(t) —; B(¢') by induction on firstly the -
normalisation rank of £ and secondly the depth of the rewrite. The lemma then follows
from lemma 9.2 since — can be embedded in —;.

If ¢ is a B-normal form then by lemma 9.2 ¢’ is also a B-normal form. For the inductive
step consider a parallel conversion of the form:

X CFC(t) is consistent /X —;u t\;X —p v

t —; case(u, z.v1,y.v2)

If X is empty, then by the induction hypothesis there are rewrites 8(t) —; £(v;) and
hence a parallel conversion

B(t) =7 Blvi)
B(t) — case(u, z.8(v1),y.0(v2))

where we rely on 3-reduction not to introduce new free variables. If however X is non-

empty there are four subcases. Firstly if /X is not a S-normal form, then by the induction
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hypothesis there is a parallel rewrite §(¢/X) —; 8(u) and hence a rewrite

B(t/X) > ﬁ(u) t\iX = U4
X —pB(t/X)] — case(B(u), z.v1,y.v2)

which embeds to a full parallel conversion rewrite and the lemma then follows by the

induction hypothesis. If however ¢/X is a 3-normal form then consider the case where
/X is an injection, say inj(r). Then by fullness, u must also be an injection, say inj ()
where 7 — ¢ r'. Now by lemma 5.1, the result of contracting the 3;-redexes in ¢ associated
to X is (¢ \1 X)[r/#] and thus there are reductions

t ——» case(ini (1), z.v1, y.v2)
7 7|
(t \1X)[r/z] ————> w1’ /2]
where the bottom rewrite follows as parallel rewriting is closed under substitution. This
rewrite can then be extended to a full rewrite to which the induction hypothesis may
be applied. A third possibility is that ¢/X is a case expression, in which case a similar
argument works — namely carry out the commuting conversions in ¢ and at the top
level of ¢ and then apply the induction hypothesis. Finally, if none of these cases are

applicable; then an inductive argument proves there is free consistent set of conversions

B(X) CFC(A(t)) such that
B)/B(X) = p(t/X) =t/X and B(t) \; B(X) = Bt \; X)

and thus there 1s a rewrite
B)/B(X) = Bt/X) — Blu) B) \iB(X) = Bt \iX) — B(vi)
B(t) — case(B(u), z.6(v1),y.0(v2))

which extends to a full parallel conversion rewrite which proves the lemma. Note that if

B(X) is empty the proof is still valid as one of the conditions on the variables z, y bound
by conversions X C FC(¢) is that z, y ¢ FV(¢) and so z, y ¢ FV(5(¢)). If however the parallel
rewrite has as last rule a congruence,
to = 1y, ..ty =t
T(toy .. tn) =5 TG, ... 1)

then there are three possibilities. If there is an immediate subterm which is not a -
normal form, then the induction hypothesis may be used on each of the subterms so that
T(B(to),. .., B(tn)) — T(B(y),...,B(t,)) and then the induction hypothesis invoked
again. On the other hand if the only redex is a top level redex, then by fullness there is a
also a redex at the top level of ¢'. There is a parallel rewrite between the terms obtained
by performing these reductions and the lemma then follows by the induction hypothesis.

O

The second part of the embedding theorem concerns the interaction between the con-
version relation and the n-expansions implicit in the function nF. The key lemma is the
following:
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Lemma 9.4. Given a conversion o € FC(¢) there is a consistent set of free conversions
o™ C FC(yR(t)) such that

nR(t)/" = nZ(t/o) and nR() \so " = nR(t \io)
where Re{Z, F}.

Proof. The lemma is proved by induction on the definition of the functions nF and

nZ. I

Note that the n-rule for products duplicates its argument and hence the requirement that
o™ be a set of conversions.

Lemma 9.5. Assume ¢ — t'. Then nR(t) — nR(t') where R e {Z, F}.
Proof. The lemma is proved simultaneously by induction on the rewrite ¢t — ¢'. O

Theorem 9.6. If two terms are equivalent in the conversion relation, then so are their
= normal forms. Thus the expansionary rewrite relation is decidable and confluent.

Proof. The first half of the lemma is trivial as =5 1s contained in the inverse of the
conversion relation.

Thus terms equivalent in the equational theory have = r-normal forms which are equival-
ent in the conversion relation which has already been shown to be decidable and confluent.
Thus the expansionary rewrite relation is confluent and Gn-equality is decidable. O

10. Conclusions and Further Work

In this paper an extensional equality for terms of ABCC was given. Each term has
a finite set of quasi-normal reducts which are computable in two stages; firstly by gn-
normalisation and secondly by expanding as many conversions as possible. As terms
equivalent in the equational theory have the same set of quasi-normal reducts, comparison
of these normal forms provides a decision procedure for equality of terms.

There are several directions in which this research may be extended. Firstly the inability
to define a unique normal form is closely linked to form of the case-expression which
permits the elimination of one term at a time. An alternate, parallel elimination, allowing
the concurrent elimination of several terms should permit the definition of unique normal
forms and this is the subject of current work.

In a different direction, expansionary 7-rewrite rules have already been applied to the
more expressive members of the A-cube (N. Ghani 1995a; N. Ghani 1996) and current
research focuses on the addition of algebraic rewrite systems to these theories and also
the more general Pure Type Systems. The techniques developed in this paper also seem
to be applicable to the bang ! operator from linear logic although research here is at a
preliminary stage.
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