Deterministic Regular Languages

Anne Briggemann-Klein Derick Wood
Institut fur Informatik Department of Computer Science
Universitat Freiburg University of Waterloo
Rheinstr. 10-12, 7800 Freiburg Waterloo, Ontario N2L 3G1
Germany Canada
Abstract

The ISO standard for Standard Generalized Markup Language (SGML) provides a syn-
tactic meta-language for the definition of textual markup systems. In the standard the
right hand sides of productions are called content models and they are based on regular
expressions. The allowable regular expressions are those that are “unambiguous” as defined
by the standard. Unfortunately, the standard’s use of the term “unambiguous” does not
correspond to the two well known notions, since not all regular languages are denoted by
“unambiguous” expressions. Furthermore, the standard’s definition of “unambiguous” is
somewhat vague. Therefore, we provide a precise definition of “unambiguous expressions”
and rename them deterministic regular expressions to avoid any confusion. A regular ex-
pression F is deterministic if the canonical e-free finite automaton Mg recognizing L(F) is
deterministic. A regular language is deterministic if there is a deterministic expression that
denotes it. We give a Kleene-like theorem for deterministic regular languages and we char-
acterize them in terms of the structural properties of the minimal deterministic automata
recognizing them. The latter result enables us to decide if a given regular expression de-
notes a deterministic regular language and, if so, to construct an equivalent deterministic
expression.

Classification: Automata and formal languages, esp. formal models in document processing

1 Introduction

Document processing systems like editors, formatters, and retrieval systems deal with many dif-
ferent types of documents, like books, articles, memos, dictionaries, or letters, in addition to
user-defined document types or customized versions of “public” types. Recently, the Standard
Generalized Markup Language (SGML) [[SO86] has been established as a common platform for
the syntactic specification of document types and conforming documents. SGML is an [SO stan-
dard and has been endorsed by a number of publishing houses throughout North America and
Europe, by the Furopean Community, and by the U.S. Department of Defense.

Document types in SGML are defined by context free grammars that are a mixture of Harrison
and Ginsburg’s bracketed grammars [GH67] and Lal.onde’s regular right side grammars [Lal.77].
Regular expressions form the right-hand sides of productions, but not all regular expressions are
allowed, only those that are “unambiguous” in the sense of Clause 11.2.4.3 of the standard. The
intent of the standard is to make it easier for a human to write regular expressions that can be
interpreted unambiguously. To achieve this the standard requires each regular expression to be
“unambiguous” in the sense that “an element ... that occurs in the document instance must be

able to satisty only one primitive content token without looking ahead 1n the document instance.”
In other words, only such regular expressions are valid that permit us to uniquely determine which
appearance of a symbol in an expression should match a symbol in an input word without looking
beyond that symbol in the input word. This requirement specifies exactly the class of deterministic
expressions that we investigate here.

An alternative motivation for our study is that the theory of regular languages has become a
cornerstone in practical applications involving e.g. specification, pattern matching, and the con-
struction of scanners and parsers. Perhaps the most frequently occurring task is to construct, to a
specification in the form of a regular expression, an automaton that can recognize the specified ob-
jects. Usually, one first constructs a non-deterministic finite automaton with e-transitions (e-NFA)
in time linear in the size of E, eliminates the ¢-transitions in quadratic time, and finally converts
the resulting NFA into a deterministic finite automaton (DFA) [HUT79]. The intermediate step can
be avoided by directly constructing an ¢-free automaton [BEGOT71, ASU86]. It has been claimed
[BS86] that this NFA is the canonical representation because it has a natural connection with the
derivatives [Brz64] of the original expression. Since it takes exponential time in the worst case to
convert an NFA into a DFA, it is natural to ask for which regular expressions F the canonical
NFA Mg is already deterministic. Such expressions are exactly what we have called deterministic
above. It can be tested in linear time whether a regular expression is deterministic, and if so, the
canonical deterministic automaton can also be constructed in linear time [Bru92].

In this paper, we first give a rigorous definition of deterministic regular expressions. Then, we
investigate the deterministic regular languages, i.e. regular languages that can be denoted by a
deterministic expression. As we will see, the deterministic regular languages are a proper subclass
of the regular languages; for example, for each n > 1, the expression (0 + 1)*0(0 4+ 1)" denotes a
regular language that is not deterministic.

First, we state a Kleene-like theorem for the class of deterministic regular languages. Next, we
characterize the deterministic regular languages in terms of the minimal deterministic automata
that recognize them. To each regular language L, the minimal deterministic finite automaton M,
recognizing L is uniquely determined. We show that deterministic regular languages L can be
symbolized by structural properties of My. For a state ¢ of My, let the orbit O(q) of ¢ denote
the strongly connected component of ¢, i.e. the states of My that can be reached from ¢ and
vice versa. Some states of O(q), called gates, connect the orbit to the outside world. Now L is
deterministic if and only if all orbits of My define deterministic regular languages and if for each
orbit O(q), all gates of O(q) have identical connections to the outside.

Then we show that any deterministic regular language defined by a DFA M with a single orbit
is of the form v\L*, where L is deterministic and v\L* denotes the set of words w such that
vw is in L* (the Brzozowski derivative of L* by v). Furthermore, a minimal DFA recognizing L
can be constructed from M. Together, these results yield an algorithm that decides, given a
DFA M, whether its language is deterministic and, if so, constructs an equivalent deterministic
expression. The decision algorithm runs in time quadratic in the size of M, but the corresponding
deterministic expression can be exponential in the size of M.

To give an example, for each word w, the language ¥*w¥* of all words over ¥ containing w as a
subword is a deterministic regular language.

Most proofs in this paper are just sketches. The complete proofs can be found in the full ver-

sion [BW91].

Figure 1 The Glushkov automata corresponding to (a + b)*a + ¢ = (a1 + b2)*as + € and
(b*a)* = (biaz)*.

2 Deterministic regular expressions

The notion of a symbol in a word being satisfied or matched by a symbol in a regular expression has
been explained by a number of authors [BEGOT71, ASU86, Hen68]. We paraphrase here the descrip-
tion of Hennie [Hen68]. If a word is denoted by an expression, it must be possible to spell out that
word by tracing an appropriate “path” through the expression. If we indicate positions in expres-
sions by subscripts, then the word abba is denoted by the expression (a+b)*a+e€ = (a;+by)*as+¢€
because it corresponds to the path that starts at aq, visits by twice, and finally arrives at as. The
set of subscripted symbols in an expression E is denoted by pos(FE). Of course, the structure of the
expression restricts the positions adjacent symbols of a word can be matched with. For instance,
if a symbol in a word is matched by as in (aq 4 b2)*as + €, then no further symbol of the word
can be matched with a symbol in the expression. These restrictions have first been formalized by

Glushkov [Glu61].

This description suggests viewing a regular expression E as an automaton My whose states cor-
respond to the positions or occurrences of symbols in £ and whose transitions connect positions
that can be consecutive on a path through F. We call Mg the Glushkov automaton of . Figure 1
shows the two Glushkov automata corresponding to the expressions (a4 b)*a+¢ = (a1 +b2)*as + ¢
and (b*a)* = (bjaz)*. In addition to the states of Mg that correspond to positions in F, the true
states, there is one unnamed state in the Glushkov automata of Figure 1 which acts as the initial
state.

In general, Glushkov automata are non-deterministic, as (a 4+ b)*a+ ¢ = (a1 + b2)"as + € illustrates.
After matching an input symbol @ with aq, a further @ can either be matched by a; or as. Thus,
there is a transition on @ from a; to a; and to as in the Glushkov automaton. This example leads
naturally to a precise definition of what the SGML standard means by a deterministic expression.

Definition 2.1 A regular expression F is deterministic if Mg is deterministic, i.e., if Mg is a
DFA. A regular language is deterministic if there is some deterministic expression that denotes it.

Figure 1 illustrates that (a« + b)*a + € is not a deterministic expression. Nevertheless, the language
denoted by (a + b)*a + € is a deterministic regular language, since it is also denoted by (b*a)*,
which is a deterministic expression.

We define My inductively, rather than in terms of the formalism introduced by Glushkov [Glu61]
that has been used by a number of authors [BEGOT1, ASU86, BS86].

Mpg has the form Mg = (QQrUqry, 2, 08, q1, F'E), with (Jg comprising the true states correspond-
ing to positions in F, ¢; the new initial state, ¥ the input alphabet, g : (QrU{q}) x ¥ — 29
the transition function, and Fz C Q5 U {qs} the set of final states. To simplify the discussion, we
follow the general convention that regular expressions are built from symbols in ¥ and the empty
string symbol ¢, but not the empty set symbol (. (Nevertheless, we consider the empty set to be
a deterministic regular language.) To identify two states in an automaton means to replace them
by a new state that has exactly the transitions that both of the old ones had.

Definition 2.2 Given a regular expression F, we define the construction of My, illustrated in
Figure 2, inductively as follows.

[l =cora] M.and M, are illustrated in Figure 2.
[/ = F+ G] In Mg the initial states of My and Mg are identified. Let

Qr=QrUQg, (disjoint union, possibly after renaming states)

Fy = FpU Fo,
5E(Q7 Cl) = 5G(Q7 Cl) if q < QG

or(qr,a)Udal(qr,a) if ¢ =qr.

[l) = FG] In Mg a copy of the initial state of M is identified with each final state of M.
Let

Qr=QrUQg, (disjoint union, possibly after renaming states)

FE:{ FrU (Fa\{q}) if qr € Fg,

Fq otherwise,
op(g;a) if ¢ € (QrU{al})\ Fr,
6p(q,a) = § o0r(q,a)Uéc(qr,a) if g € Iy,
5G(Q7 Cl) if qc QG-

[£/ = F*] In Mg all transitions from ¢; in My are added to the final states of Mp. Let
Qr = Qr, I'e = I'r U{q},

) orlq,a) Udp(qr,a) if ¢ € P,
bulga) = { or(q,a) otherwise.

Proposition 2.1 Mg recognizes the language denoted by .

Glushkov automata have some peculiar structural properties that are worth investigating.

First, the initial state of Mg has no incoming transitions. This makes the construction correct
in the sense of Proposition 2.1. Furthermore, the states directly connected to the initial state
correspond exactly to the positions of F that can match the first character of a word of K, and
the final states in Mg (besides sy) correspond exactly to the ones that match the last character
of a word of K. Thus, the initial state has transitions to first positions in F, and the final states
in Mg (besides sj) are final positions of E.

Second, for a subexpression F' of E, the structure of My is retained in Mp. Each true state
of Mp is also a true state of Mg, and all transitions between true states in My belong also
to Mg. Furthermore, among all positions of I, exactly the final ones are final states of Mg or
have transitions in Mg to positions outside of F'. These conditions are even fulfilled uniformly,
meaning that either all or none of the final positions of F' are final in F, and that either all or

Figure 2 The inductive definition of M.

none have a transition in Mg on an a € 2 to a position y of /£ outside of /. Hence, the final
positions of F' are an interface of My to the surrounding parts of M.

Finally, we will be especially interested in maximal starred subexpressions of F, i.e. subexpressions
of the form F* that are not subexpressions of another starred subexpression GG* of E. For such
an F*, any transitions in Mg between positions of [are already transitions in Mpg«. In this
sense, My« is closed within Mpg.

Proposition 2.2 Given a regular expression F, we can decide if it is deterministic in time linear
in the size of F.

Proof The Glushkov automaton can be constructed from F in such a way that a new transition is
introduced at each computation step [Bru92]. As soon as we encounter a transition that makes the
automaton under construction non-deterministic, we stop and report £ to be non-deterministic.
At this point, only time linear in the size of £ has been spent. a

Book et al. [BEGOT1] have defined a regular expression £ to be unambiguous if the Glushkov
automaton Mg is unambiguous, i.e. if for each word w there is at most one computation of Mg
that accepts w, or, equivalently, at most one path through F that spells out w. They have shown
that each regular language can be denoted by an unambiguous regular expression. A deterministic
expression £ is an unambiguous one where for each word w the corresponding path through £
can be computed incrementally from w with just one symbol of look-ahead. Thus, deterministic
regular expressions are related to unambiguous ones in the same way that LL(1) grammars are
related to unambiguous context-free grammars. This analogy can be made precise: It is possible
to translate a regular expression F in a natural way into an equivalent context-free grammar Gg
such that E is deterministic if and only if G'g is LL(1).

3 The characterization theorem

We first state without proof a Kleene-like theorem for deterministic regular languages. We then
consider the cyclic structure of Mg that we capture in terms of orbits. The structure of the orbits
is essentially preserved under minimization, and, hence, orbits turn out to be exactly the right
tool for characterizing deterministic regular languages.

We begin by defining three functions for languages that can also be adapted to apply to regular
expressions. These functions are: first(L), the set of symbols that appear as the first symbol of
some word in L; last(L), the set of symbols that appear as the last symbol of some word in L;
and followlast(L), the set of symbols that follow a prefix of some word in L, where the prefix is
also a word in L. More formally we have:

Definition 3.1 For L C ¥*, let
first(L) ={a € ¥ | aw is in L for some word w},

last(L) = {a € ¥ | wa is in L for some word w},
followlast (L) = {a € ¥ |vaw is in L, for some word v in L \ {€} and some word w}.

Theorem 3.1 The deterministic reqular languages are the smallest class D of languages that
satisfies the following conditions.

1. 0, ¢, and {a} are in D.
2. If A, B €D and first(A)N first(B) =0, then AU B € D.
3. If A,BeD, c¢ A, and followlast(A) N first(B) =0, then AB € D.

4. IfA€eD, then A\ ¢y €D.
5. If A € D and followlast(A) N first(A) = 0, then A* € D.

It is well known that, for each regular language L, the minimum-state deterministic automaton M,
recognizing L is uniquely determined. We argue that, by examining the cyclic structure of M,
we can decide whether [is deterministic. Furthermore, for a deterministic regular language L.
we can construct a deterministic expression for L from Mj,.

For each DFA M = (Q, X, 6, qo, F') recognizing L, the equivalence class construction [ASU86]| re-
sultsina DFA M = (Q, X, 8, [qo], F') which is isomorphic to M.} For a deterministic expression ¥
denoting a language [, a minimum-state DFA M} can be constructed directly from Mg via the
equivalence class construction. For a non-deterministic expression £, however, the NFA My has
first to be converted to a DFA via the subset construction [ASU86]. Thus, we are looking for
properties of My that are preserved under state minimization, but not under subset construction.
We start from the structural properties of Mg noted in Section 2.

Definition 3.2 Let M = (Q, X, 6, ¢z, F') be an NFA. For ¢ €), the strongly connected compo-
nent of ¢, i.e. the states of M that can be reached from ¢ and from which ¢ can be reached as well,
is called the orbit of ¢ and denoted by O(¢). We consider the orbit of ¢ to be trivial if O(q) = {¢}
and there are no transitions from ¢ to itself in M.

Definition 3.3 A state ¢ in an NFA M = (Q, X, 0, ¢z, F') is called a gate of its orbit if either
q is a final state or there are ¢’ € Q \ O(q) and a € X with ¢ —¢/. The NFA M has the orbit
property if each orbit of M is homogeneous with respect to its gates, i.e. if, for all gates ¢; and ¢

with O(¢1) = O(q2), we have:
e ¢ is a final state if and only if ¢ is a final state.

e ¢4 —qifand only if gg—— ¢, for all g € Q\ O(q1) = Q \ O(qz) and for all a € X.

In Figure 3, both automata have three orbits, namely {1}, {2,3}, and {4}. The singleton orbits
are trivial, and each state is a gate of its orbit. The left automaton fulfills the orbit property, the
right one does not.

Now we can formulate a necessary condition for a regular language to be deterministic.

Theorem 3.2 The minimal DFA My recognizing a deterministic reqular language L has the
orbit property.

This gives us our first example of a regular language that is not deterministic. The rightmost
automaton in Figure 3 is the minimal DFA for the language denoted by (a + b)*(ac + bd), and it
does not have the orbit property. Thus, this language cannot be deterministic.

The proof of Theorem 3.2 is in two steps. First, we describe the orbits of the Glushkov NFA Mg
constructed in Definition 2.2 and show that Mg has the orbit property for all regular expressions.
Next, we show that the orbit property is preserved under state minimization. Thus, if a language L
is symbolized by a deterministic regular expression £, the minimal automaton M; = Mg has the
orbit property.

Lemma 3.3 Let E be a regular expression and x € pos(F). If there is no starred subexpression
F* of E with € pos(F), then O(x) = {x} and O(x) is trivial. On the other hand, if F* is
the maximal starred subexpression of E with x € pos(F'), then O(x) = pos(F'), and O(z) is not
trivial. Finally, the orbit of the initial state gy is trivial.

1Some minor technicalities are involved here, because the transition functions of M and M are only partially
defined. The details are in the full version.

(a+ b);@%%D (a+ b)*(ac+ bdwo

Figure 3 Two NFAs, one fulfills the orbit property, the other one does not.

Lemma 3.4 Let E be a regular expression. Then,
1. Mg has the orbit property and

2. if I is a maximal starred subexpression of K with pos(F') # 0, then the last positions of F'
are the gates of the orbit pos(F').

Figure 4 shows the Glushkov automaton for a*(bca*)* = aq(bzcsaj)*. The gates of orbit {2,3,4} are
the states 3 and 4, i.e. the last position of the maximal starred subexpression (beca*)* = (bgesa})™.

Now, consider a deterministic automaton M and its minimization M. If states pq,...,p, of M
form an orbit in M, then the equivalence classes [pi],...,[p.] belong to the same orbit in M,
which may, however, contain further elements. Figure 4 shows the Glushkov automaton Mg for
E = a*(bca™)" = ai(bycza;)” and the minimal automaton Mp. All states of Mg besides state 2
are equivalent, {1} is an orbit of Mg, but [1] does not form a complete orbit in Mg. Nevertheless,
the orbit of [1] in Mg is completely generated by another orbit of Mg, namely {2,3,4}. This
is a general phenomenon, namely, for each orbit K of M, there is an orbit C' of M that fully
generates K, i.e. K = {[¢]|q € C}. Cis called a lift of K. Now, if a lifted orbit ' is homogeneous
with respect to its gates, then so is K. Thus, we have the following lemma, which concludes the
proof of Theorem 3.2.

Lemma 3.5 The orbit property is preserved under state minimization.

The orbit property has gained us a necessary condition for a regular language to be deterministic.
Another necessary condition evolves if we examine the orbits themselves in isolation.

Definition 3.4 Let M be a DFA. For ¢ € Qar, let the orbit automaton M, of ¢, be the automaton
obtained by restricting the state set to O(¢) with initial state ¢ and final states the gates of O(q)
in M. We say the orbit of ¢ is deterministic if 1.(M,) is deterministic. A regular language L is
said to be an orbit language if and only if there is a DFA M with a single orbit that recognizes L.

Theorem 3.6 For each deterministic language L, the minimal DFA recognizing L has only
deterministic orbit languages.

For the proof, again we first look at the orbit languages of Glushkov automata and then consider
state minimization. Let £ be a deterministic expression, and let ¢ be a state of My with a non-
trivial orbit. Then, ¢ is a position of a maximal starred subexpression ™ of E. Let L be the

Figure 4 The Glushkov automaton for the expression a*(bca™)* = aq(bgesa})” and its minimiza-
tion.

language of F™*, and let v be a word that leads from the initial state to ¢ in Mp«. Since Mg« is
closed within Mg, the orbit language of ¢ in Mg is also the orbit language of ¢ in Mg+, which in
turn is

o\L :={we ¥ |vwe L},

The language v\ L is known as the derivative of L by v [Brz64]. Thus, a non-trivial orbit language
of Mg is a derivative of a language denoted by a maximal starred subexpression of F.

The proof of the next proposition is in the full paper.
Proposition 3.7 The derivative of a deterministic reqular language is also deterministic.
As a corollary, we have:

Lemma 3.8 Let F be a deterministic reqular expression. Then, all orbit languages of Mg are
deterministic reqular languages.

Again, this property is preserved under minimization, as can be seen from the next lemma.

Lemma 3.9 Let M be a DFA and M be ils reduction. Then, for each state of M there is an
equivalent state q in M such that

1. the orbit of ¢ in M is a lift of the orbit of [q] in M, and

2. the orbit languages of ¢ in M and [q] in M are identical.

This concludes the proof of Theorem 3.6.

The necessary conditions for a minimal DFA to recognize a deterministic regular language as given
in Theorems 3.2 and 3.6 are also sufficient:

Theorem 3.10 Let L be a reqular language and M be the minimal DFA recognizing L. Then,
L is a deterministic reqular language if and only if M has the orbit property and all orbits of M
are deterministic.

Proof We show the implication from right to left by induction on the number of orbits of M.
Let M = (Q,%,6,q1, F') have more than one orbit. Furthermore, let ¢q,...,¢, be the distinct
states outside O(qs) that are reachable in one step from a gate of O(gr). All gates of O(qs) have
an a;-transition to ¢;, and no other outgoing transitions from gates of O(qs) to the outside exist.
The a; are pairwise distinct and M, has no a;-transition from a final state.

Let M; be the automaton whose states are the states of M that are reachable from ¢; as the initial
state. Because M; has fewer orbits than M, M, is deterministic. Furthermore,

L(M)=L(M,)(a:L(My)U...Ua,L(M,))

Figure 5 An a,b-consistent DFA and its «, b-cut.

L(M) = L(M,,)(a;L(M}) U ... U a,L(M,) U {c}),

and a deterministic expression for M can be constructed from deterministic expressions for M,

and My,..., M,. a
Theorem 3.10 is the first step of a decision algorithm for deterministic regular languages:

Theorem 3.11 Giwven a DFA M, we can decide in time quadratic in the size of M whether the
language of M s deterministic. If so, an equivalent deterministic expression can be constructed.

If a minimal DFA M has the orbit property, then its orbit automata are also minimal. This
precludes to apply Theorem 3.10 directly for the orbit automata. On the other hand, we know
already that each deterministic orbit language of M has the form v\L(F*), where F™* is a deter-
ministic expression. To conclude the proof of Theorem 3.11, we show how a minimal DFA for
L(F') can be constructed from M.

Definition 3.5 A DFA M is a-consistent, for a € ¥, if there is a state fa(a) in M such that
all final states of M have an a-transition to fas(a).

Definition 3.6 Let M be a;-consistent, for a; € ¥, 1 < ¢ < n, n > 1. The ay,...,a,-cut
M(ay, ..., a,) of M is constructed as follows.

1. A new state ¢o is added to M and it is connected to fys(a;) with an a;-transition, for all i.
2. All transitions with «; from each final state are removed from M.

3. Finally, go is made initial and final.
Figure 5 gives an example of an a, b-consistent DFA and its «a, b-cut.

Theorem 3.12 Let M be a minimal DFA recognizing a language L. Assume that M consists of
a single, non-trivial orbit. Let ay,...,a, be the elements of X for which M is consistent. Then,
L is deterministic if and only if

1. n>1.
2. L(M(ay,...,a,)) is deterministic.
If L is deterministic and aq,...,a, € ¥ are chosen as above, we can construct a word v € ¥* with

L=LM)=uv\L(M(ay,...,a,))",

Figure 6 The minimal DFA for (04 1)*0(0 + 1).

and a deterministic expression for language L can be constructed from a deterministic expression

for language L(M(ay, ..., a,)).

In lieu of a proof, we illustrate Theorem 3.12 with two examples. The language recognized by the
left automaton in Figure 5 is deterministic, because the a, b-cut is denoted by the deterministic
regular expression a + b(e + c¢) + €. One deterministic expression for the whole language is

cla+ be+ ce))™.
Figure 6 shows the minimal DFA recognizing (0 + 1)*0(0 + 1). It consists of a single orbit with

two gates, 00 and 01, but is neither 0- nor 1-consistent. Thus, (0 + 1)*0(0 4 1) does not denote a
deterministic language. The same is true for (04 1)*0(0 + 1)™ for each n > 1.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Series in Computer Science, Addison-Wesley, Reading, Mas-
sachusetts, 1986.

[BEGOT71] Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Ambiguity in graphs and
expressions. IEEE Transactions on Computers, C-20(2):149-153, February 1971.

[Bru92] Anne Briiggemann-Klein. Regular expressions into finite automata. In Imre Simon, ed-
itor, Latin 92, pages 87-98, Springer-Verlag, Berlin, 1992. Lecture Notes in Computer
ScienQce 583.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481-494,
October 1964.

[BS86] Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theoret-
tcal Computer Science, 48:117-126, 1986.

[BW91] Anne Briiggemann-Klein and Derick Wood. On the expressive power of SGML document
grammars. In preparation, 1991.

[GH67] Seymour Ginsburg and Michael M. Harrison. Bracketed context-free languages. Journal of
Computer and System Sciences, 1(1):1-23, March 1967.

[Glu61] V.M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1-53,
1961.

[Hen68] Frederick C. Hennie. Finite-State Models for Logical Machines. John Wiley, New York, 1968.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Series in Computer Science, Addison-Wesley, Reading,
Massachusetts, 1979.

[ISO86] ISO 8879. Information processing—text and office systems—standard generalized markup
language (SGML). October 1986. International Organization for Standardization.

[Lal.77] Wilf R. Lalonde. Regular right part grammars and their parsers. Communications of
the ACM, 20(10):731-741, October 1977.

