
Deterministic Regular LanguagesAnne Br�uggemann-KleinInstitut f�ur InformatikUniversit�at FreiburgRheinstr. 10{12, 7800 FreiburgGermany Derick WoodDepartment of Computer ScienceUniversity of WaterlooWaterloo, Ontario N2L 3G1CanadaAbstractThe ISO standard for Standard Generalized Markup Language (SGML) provides a syn-tactic meta-language for the de�nition of textual markup systems. In the standard theright hand sides of productions are called content models and they are based on regularexpressions. The allowable regular expressions are those that are \unambiguous" as de�nedby the standard. Unfortunately, the standard's use of the term \unambiguous" does notcorrespond to the two well known notions, since not all regular languages are denoted by\unambiguous" expressions. Furthermore, the standard's de�nition of \unambiguous" issomewhat vague. Therefore, we provide a precise de�nition of \unambiguous expressions"and rename them deterministic regular expressions to avoid any confusion. A regular ex-pression E is deterministic if the canonical �-free �nite automaton ME recognizing L(E) isdeterministic. A regular language is deterministic if there is a deterministic expression thatdenotes it. We give a Kleene-like theorem for deterministic regular languages and we char-acterize them in terms of the structural properties of the minimal deterministic automatarecognizing them. The latter result enables us to decide if a given regular expression de-notes a deterministic regular language and, if so, to construct an equivalent deterministicexpression.Classi�cation: Automata and formal languages, esp. formal models in document processing1 IntroductionDocument processing systems like editors, formatters, and retrieval systems deal with many dif-ferent types of documents, like books, articles, memos, dictionaries, or letters, in addition touser-de�ned document types or customized versions of \public" types. Recently, the StandardGeneralized Markup Language (SGML) [ISO86] has been established as a common platform forthe syntactic speci�cation of document types and conforming documents. SGML is an ISO stan-dard and has been endorsed by a number of publishing houses throughout North America andEurope, by the European Community, and by the U.S. Department of Defense.Document types in SGML are de�ned by context free grammars that are a mixture of Harrisonand Ginsburg's bracketed grammars [GH67] and LaLonde's regular right side grammars [LaL77].Regular expressions form the right-hand sides of productions, but not all regular expressions areallowed, only those that are \unambiguous" in the sense of Clause 11.2.4.3 of the standard. Theintent of the standard is to make it easier for a human to write regular expressions that can beinterpreted unambiguously. To achieve this the standard requires each regular expression to be\unambiguous" in the sense that \an element : : : that occurs in the document instance must be



2 of 12able to satisfy only one primitive content token without looking ahead in the document instance."In other words, only such regular expressions are valid that permit us to uniquely determine whichappearance of a symbol in an expression should match a symbol in an input word without lookingbeyond that symbol in the input word. This requirement speci�es exactly the class of deterministicexpressions that we investigate here.An alternative motivation for our study is that the theory of regular languages has become acornerstone in practical applications involving e.g. speci�cation, pattern matching, and the con-struction of scanners and parsers. Perhaps the most frequently occurring task is to construct, to aspeci�cation in the form of a regular expression, an automaton that can recognize the speci�ed ob-jects. Usually, one �rst constructs a non-deterministic �nite automaton with �-transitions (�-NFA)in time linear in the size of E, eliminates the �-transitions in quadratic time, and �nally convertsthe resulting NFA into a deterministic �nite automaton (DFA) [HU79]. The intermediate step canbe avoided by directly constructing an �-free automaton [BEGO71, ASU86]. It has been claimed[BS86] that this NFA is the canonical representation because it has a natural connection with thederivatives [Brz64] of the original expression. Since it takes exponential time in the worst case toconvert an NFA into a DFA, it is natural to ask for which regular expressions E the canonicalNFAME is already deterministic. Such expressions are exactly what we have called deterministicabove. It can be tested in linear time whether a regular expression is deterministic, and if so, thecanonical deterministic automaton can also be constructed in linear time [Bru92].In this paper, we �rst give a rigorous de�nition of deterministic regular expressions. Then, weinvestigate the deterministic regular languages, i.e. regular languages that can be denoted by adeterministic expression. As we will see, the deterministic regular languages are a proper subclassof the regular languages; for example, for each n � 1, the expression (0 + 1)�0(0 + 1)n denotes aregular language that is not deterministic.First, we state a Kleene-like theorem for the class of deterministic regular languages. Next, wecharacterize the deterministic regular languages in terms of the minimal deterministic automatathat recognize them. To each regular language L, the minimal deterministic �nite automaton MLrecognizing L is uniquely determined. We show that deterministic regular languages L can besymbolized by structural properties of ML. For a state q of ML, let the orbit O(q) of q denotethe strongly connected component of q, i.e. the states of ML that can be reached from q andvice versa. Some states of O(q), called gates, connect the orbit to the outside world. Now L isdeterministic if and only if all orbits of ML de�ne deterministic regular languages and if for eachorbit O(q), all gates of O(q) have identical connections to the outside.Then we show that any deterministic regular language de�ned by a DFA M with a single orbitis of the form vnL�, where L is deterministic and vnL� denotes the set of words w such thatvw is in L� (the Brzozowski derivative of L� by v). Furthermore, a minimal DFA recognizing Lcan be constructed from M . Together, these results yield an algorithm that decides, given aDFA M , whether its language is deterministic and, if so, constructs an equivalent deterministicexpression. The decision algorithm runs in time quadratic in the size of M , but the correspondingdeterministic expression can be exponential in the size of M .To give an example, for each word w, the language ��w�� of all words over � containing w as asubword is a deterministic regular language.Most proofs in this paper are just sketches. The complete proofs can be found in the full ver-sion [BW91].
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Figure 1 The Glushkov automata corresponding to (a + b)�a + � = (a1 + b2)�a3 + � and(b�a)� = (b�1a2)�.2 Deterministic regular expressionsThe notion of a symbol in a word being satis�ed or matched by a symbol in a regular expression hasbeen explained by a number of authors [BEGO71, ASU86, Hen68]. We paraphrase here the descrip-tion of Hennie [Hen68]. If a word is denoted by an expression, it must be possible to spell out thatword by tracing an appropriate \path" through the expression. If we indicate positions in expres-sions by subscripts, then the word abba is denoted by the expression (a+b)�a+� = (a1+b2)�a3+�because it corresponds to the path that starts at a1, visits b2 twice, and �nally arrives at a3. Theset of subscripted symbols in an expression E is denoted by pos(E). Of course, the structure of theexpression restricts the positions adjacent symbols of a word can be matched with. For instance,if a symbol in a word is matched by a3 in (a1 + b2)�a3 + �, then no further symbol of the wordcan be matched with a symbol in the expression. These restrictions have �rst been formalized byGlushkov [Glu61].This description suggests viewing a regular expression E as an automaton ME whose states cor-respond to the positions or occurrences of symbols in E and whose transitions connect positionsthat can be consecutive on a path through E. We callME the Glushkov automaton of E. Figure 1shows the two Glushkov automata corresponding to the expressions (a+b)�a+� = (a1+b2)�a3+�and (b�a)� = (b�1a2)�. In addition to the states of ME that correspond to positions in E, the truestates, there is one unnamed state in the Glushkov automata of Figure 1 which acts as the initialstate.In general, Glushkov automata are non-deterministic, as (a+b)�a+� = (a1+b2)�a3+� illustrates.After matching an input symbol a with a1, a further a can either be matched by a1 or a3. Thus,there is a transition on a from a1 to a1 and to a3 in the Glushkov automaton. This example leadsnaturally to a precise de�nition of what the SGML standard means by a deterministic expression.De�nition 2.1 A regular expression E is deterministic if ME is deterministic, i.e., if ME is aDFA. A regular language is deterministic if there is some deterministic expression that denotes it.Figure 1 illustrates that (a+ b)�a+ � is not a deterministic expression. Nevertheless, the languagedenoted by (a + b)�a + � is a deterministic regular language, since it is also denoted by (b�a)�,which is a deterministic expression.We de�ne ME inductively, rather than in terms of the formalism introduced by Glushkov [Glu61]that has been used by a number of authors [BEGO71, ASU86, BS86].



4 of 12ME has the form ME = (QE _[fqIg;�; �E; qI; FE), with QE comprising the true states correspond-ing to positions in E, qI the new initial state, � the input alphabet, �E : (QE [fqIg)�� �! 2QEthe transition function, and FE � QE [ fqIg the set of �nal states. To simplify the discussion, wefollow the general convention that regular expressions are built from symbols in � and the emptystring symbol �, but not the empty set symbol ;. (Nevertheless, we consider the empty set to bea deterministic regular language.) To identify two states in an automaton means to replace themby a new state that has exactly the transitions that both of the old ones had.De�nition 2.2 Given a regular expression E, we de�ne the construction of ME, illustrated inFigure 2, inductively as follows.[E = � or a] M� and Ma are illustrated in Figure 2.[E = F +G] In ME the initial states of MF and MG are identi�ed. LetQE = QF _[QG; (disjoint union, possibly after renaming states)FE = FF [ FG;�E(q; a) = 8><>: �F (q; a) if q 2 QF�G(q; a) if q 2 QG�F (qI ; a) [ �G(qI; a) if q = qI:[E = FG] In ME a copy of the initial state of MG is identi�ed with each �nal state of MF .Let QE = QF _[QG; (disjoint union, possibly after renaming states)FE = ( FF [ (FG n fqIg) if qI 2 FG,FG otherwise,�E(q; a) = 8><>: �F (q; a) if q 2 (QF [ fqIg) n FF ,�F (q; a) [ �G(qI ; a) if q 2 FF ,�G(q; a) if q 2 QG.[E = F �] In ME all transitions from qI in MF are added to the �nal states of ME. LetQE = QF ; FE = FF [ fqIg;�E(q; a) = ( �F (q; a) [ �F (qI; a) if q 2 FF ,�F (q; a) otherwise.Proposition 2.1 ME recognizes the language denoted by E.Glushkov automata have some peculiar structural properties that are worth investigating.First, the initial state of ME has no incoming transitions. This makes the construction correctin the sense of Proposition 2.1. Furthermore, the states directly connected to the initial statecorrespond exactly to the positions of E that can match the �rst character of a word of E, andthe �nal states in ME (besides sI) correspond exactly to the ones that match the last characterof a word of E. Thus, the initial state has transitions to �rst positions in E, and the �nal statesin ME (besides sI) are �nal positions of E.Second, for a subexpression F of E, the structure of MF is retained in ME. Each true stateof MF is also a true state of ME, and all transitions between true states in MF belong alsoto ME. Furthermore, among all positions of F , exactly the �nal ones are �nal states of ME orhave transitions in ME to positions outside of F . These conditions are even ful�lled uniformly,meaning that either all or none of the �nal positions of F are �nal in E, and that either all or
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Figure 2 The inductive de�nition of ME.



6 of 12none have a transition in ME on an a 2 � to a position y of E outside of F . Hence, the �nalpositions of F are an interface of MF to the surrounding parts of ME.Finally, we will be especially interested in maximal starred subexpressions of E, i.e. subexpressionsof the form F � that are not subexpressions of another starred subexpression G� of E. For suchan F �, any transitions in ME between positions of F � are already transitions in MF � . In thissense, MF � is closed within ME.Proposition 2.2 Given a regular expression E, we can decide if it is deterministic in time linearin the size of E.Proof The Glushkov automaton can be constructed from E in such a way that a new transition isintroduced at each computation step [Bru92]. As soon as we encounter a transition that makes theautomaton under construction non-deterministic, we stop and report E to be non-deterministic.At this point, only time linear in the size of E has been spent. 2Book et al. [BEGO71] have de�ned a regular expression E to be unambiguous if the Glushkovautomaton ME is unambiguous, i.e. if for each word w there is at most one computation of MEthat accepts w, or, equivalently, at most one path through E that spells out w. They have shownthat each regular language can be denoted by an unambiguous regular expression. A deterministicexpression E is an unambiguous one where for each word w the corresponding path through Ecan be computed incrementally from w with just one symbol of look-ahead. Thus, deterministicregular expressions are related to unambiguous ones in the same way that LL(1) grammars arerelated to unambiguous context-free grammars. This analogy can be made precise: It is possibleto translate a regular expression E in a natural way into an equivalent context-free grammar GEsuch that E is deterministic if and only if GE is LL(1).3 The characterization theoremWe �rst state without proof a Kleene-like theorem for deterministic regular languages. We thenconsider the cyclic structure of ME that we capture in terms of orbits. The structure of the orbitsis essentially preserved under minimization, and, hence, orbits turn out to be exactly the righttool for characterizing deterministic regular languages.We begin by de�ning three functions for languages that can also be adapted to apply to regularexpressions. These functions are: �rst(L), the set of symbols that appear as the �rst symbol ofsome word in L; last(L), the set of symbols that appear as the last symbol of some word in L;and followlast (L), the set of symbols that follow a pre�x of some word in L, where the pre�x isalso a word in L. More formally we have:De�nition 3.1 For L � ��, let�rst(L) = fa 2 � j aw is in L for some word wg;last (L) = fa 2 � j wa is in L for some word wg;followlast (L) = fa 2 � j vaw is in L; for some word v in L n f�g and some word wg:Theorem 3.1 The deterministic regular languages are the smallest class D of languages thatsatis�es the following conditions.1. ;, �, and fag are in D.2. If A;B 2 D and �rst(A) \ �rst(B) = ;, then A [B 2 D.3. If A;B 2 D, � =2 A, and followlast (A) \ �rst(B) = ;, then AB 2 D.



7 of 124. If A 2 D, then A n f�g 2 D.5. If A 2 D and followlast (A) \ �rst(A) = ;, then A� 2 D.It is well known that, for each regular language L, the minimum-state deterministic automatonMLrecognizing L is uniquely determined. We argue that, by examining the cyclic structure of ML,we can decide whether L is deterministic. Furthermore, for a deterministic regular language L,we can construct a deterministic expression for L from ML.For each DFA M = (Q;�; �; q0; F ) recognizing L, the equivalence class construction [ASU86] re-sults in a DFAM = (Q;�; �; [q0]; F ) which is isomorphic to ML.1 For a deterministic expression Edenoting a language L, a minimum-state DFA ML can be constructed directly from ME via theequivalence class construction. For a non-deterministic expression E, however, the NFA ME has�rst to be converted to a DFA via the subset construction [ASU86]. Thus, we are looking forproperties of ME that are preserved under state minimization, but not under subset construction.We start from the structural properties of ME noted in Section 2.De�nition 3.2 Let M = (Q;�; �; qI; F ) be an NFA. For q 2 Q, the strongly connected compo-nent of q, i.e. the states of M that can be reached from q and from which q can be reached as well,is called the orbit of q and denoted by O(q). We consider the orbit of q to be trivial if O(q) = fqgand there are no transitions from q to itself in M .De�nition 3.3 A state q in an NFA M = (Q;�; �; qI; F ) is called a gate of its orbit if eitherq is a �nal state or there are q0 2 Q n O(q) and a 2 � with q a�! q0. The NFA M has the orbitproperty if each orbit of M is homogeneous with respect to its gates, i.e. if, for all gates q1 and q2with O(q1) = O(q2), we have:� q1 is a �nal state if and only if q2 is a �nal state.� q1 a�! q if and only if q2 a�! q, for all q 2 Q n O(q1) = Q n O(q2) and for all a 2 �.In Figure 3, both automata have three orbits, namely f1g, f2; 3g, and f4g. The singleton orbitsare trivial, and each state is a gate of its orbit. The left automaton ful�lls the orbit property, theright one does not.Now we can formulate a necessary condition for a regular language to be deterministic.Theorem 3.2 The minimal DFA ML recognizing a deterministic regular language L has theorbit property.This gives us our �rst example of a regular language that is not deterministic. The rightmostautomaton in Figure 3 is the minimal DFA for the language denoted by (a+ b)�(ac+ bd), and itdoes not have the orbit property. Thus, this language cannot be deterministic.The proof of Theorem 3.2 is in two steps. First, we describe the orbits of the Glushkov NFA MEconstructed in De�nition 2.2 and show that ME has the orbit property for all regular expressions.Next, we show that the orbit property is preserved under state minimization. Thus, if a language Lis symbolized by a deterministic regular expression E, the minimal automaton ML = ME has theorbit property.Lemma 3.3 Let E be a regular expression and x 2 pos(E). If there is no starred subexpressionF � of E with x 2 pos(F ), then O(x) = fxg and O(x) is trivial. On the other hand, if F � isthe maximal starred subexpression of E with x 2 pos(F ), then O(x) = pos(F ), and O(x) is nottrivial. Finally, the orbit of the initial state qI is trivial.1Some minor technicalities are involved here, because the transition functions of M and M are only partiallyde�ned. The details are in the full version.
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Figure 3 Two NFAs, one ful�lls the orbit property, the other one does not.Lemma 3.4 Let E be a regular expression. Then,1. ME has the orbit property and2. if F � is a maximal starred subexpression of E with pos(F ) 6= ;, then the last positions of Fare the gates of the orbit pos(F ).Figure 4 shows the Glushkov automaton for a�(bca�)� = a1(b2c3a�4)�. The gates of orbit f2; 3; 4g arethe states 3 and 4, i.e. the last position of the maximal starred subexpression (bca�)� = (b2c3a�4)�.Now, consider a deterministic automaton M and its minimization M . If states p1; : : : ; pn of Mform an orbit in M , then the equivalence classes [p1]; : : : ; [pn] belong to the same orbit in M ,which may, however, contain further elements. Figure 4 shows the Glushkov automaton ME forE = a�(bca�)� = a1(b2c3a�4)� and the minimal automaton ME. All states of ME besides state 2are equivalent, f1g is an orbit of ME, but [1] does not form a complete orbit in ME. Nevertheless,the orbit of [1] in ME is completely generated by another orbit of ME, namely f2; 3; 4g. Thisis a general phenomenon, namely, for each orbit K of M , there is an orbit C of M that fullygenerates K, i.e.K = f[q] j q 2 Cg. C is called a lift of K. Now, if a lifted orbit C is homogeneouswith respect to its gates, then so is K. Thus, we have the following lemma, which concludes theproof of Theorem 3.2.Lemma 3.5 The orbit property is preserved under state minimization.The orbit property has gained us a necessary condition for a regular language to be deterministic.Another necessary condition evolves if we examine the orbits themselves in isolation.De�nition 3.4 LetM be a DFA. For q 2 QM , let the orbit automatonMq of q, be the automatonobtained by restricting the state set to O(q) with initial state q and �nal states the gates of O(q)in M . We say the orbit of q is deterministic if L(Mq) is deterministic. A regular language L issaid to be an orbit language if and only if there is a DFA M with a single orbit that recognizes L.Theorem 3.6 For each deterministic language L, the minimal DFA recognizing L has onlydeterministic orbit languages.For the proof, again we �rst look at the orbit languages of Glushkov automata and then considerstate minimization. Let E be a deterministic expression, and let q be a state of ME with a non-trivial orbit. Then, q is a position of a maximal starred subexpression F � of E. Let L be the
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Figure 4 The Glushkov automaton for the expression a�(bca�)� = a1(b2c3a�4)� and its minimiza-tion.language of F �, and let v be a word that leads from the initial state to q in MF � . Since MF � isclosed within ME, the orbit language of q in ME is also the orbit language of q in MF �, which inturn isvnL := fw 2 �� j vw 2 Lg:The language vnL is known as the derivative of L by v [Brz64]. Thus, a non-trivial orbit languageof ME is a derivative of a language denoted by a maximal starred subexpression of E.The proof of the next proposition is in the full paper.Proposition 3.7 The derivative of a deterministic regular language is also deterministic.As a corollary, we have:Lemma 3.8 Let E be a deterministic regular expression. Then, all orbit languages of ME aredeterministic regular languages.Again, this property is preserved under minimization, as can be seen from the next lemma.Lemma 3.9 Let M be a DFA and M be its reduction. Then, for each state of M there is anequivalent state q in M such that1. the orbit of q in M is a lift of the orbit of [q] in M , and2. the orbit languages of q in M and [q] in M are identical.This concludes the proof of Theorem 3.6.The necessary conditions for a minimal DFA to recognize a deterministic regular language as givenin Theorems 3.2 and 3.6 are also su�cient:Theorem 3.10 Let L be a regular language and M be the minimal DFA recognizing L. Then,L is a deterministic regular language if and only if M has the orbit property and all orbits of Mare deterministic.Proof We show the implication from right to left by induction on the number of orbits of M .Let M = (Q;�; �; qI; F ) have more than one orbit. Furthermore, let q1; : : : ; qn be the distinctstates outside O(qI) that are reachable in one step from a gate of O(qI). All gates of O(qI) havean ai-transition to qi, and no other outgoing transitions from gates of O(qI) to the outside exist.The ai are pairwise distinct and MqI has no ai-transition from a �nal state.Let Mi be the automaton whose states are the states of M that are reachable from qi as the initialstate. Because Mi has fewer orbits than M , Mi is deterministic. Furthermore,L(M) = L(MqI )(a1L(M1) [ : : : [ anL(Mn))
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Figure 5 An a; b-consistent DFA and its a; b-cut.or L(M) = L(MqI )(a1L(M1) [ : : : [ anL(Mn) [ f�g);and a deterministic expression for M can be constructed from deterministic expressions for MqIand M1; : : : ;Mn. 2Theorem 3.10 is the �rst step of a decision algorithm for deterministic regular languages:Theorem 3.11 Given a DFA M , we can decide in time quadratic in the size of M whether thelanguage of M is deterministic. If so, an equivalent deterministic expression can be constructed.If a minimal DFA M has the orbit property, then its orbit automata are also minimal. Thisprecludes to apply Theorem 3.10 directly for the orbit automata. On the other hand, we knowalready that each deterministic orbit language of M has the form vnL(F �), where F � is a deter-ministic expression. To conclude the proof of Theorem 3.11, we show how a minimal DFA forL(F ) can be constructed from M .De�nition 3.5 A DFA M is a-consistent, for a 2 �, if there is a state fM(a) in M such thatall �nal states of M have an a-transition to fM(a).De�nition 3.6 Let M be ai-consistent, for ai 2 �, 1 � i � n, n � 1. The a1; : : : ; an-cutM(a1; : : : ; an) of M is constructed as follows.1. A new state q0 is added to M and it is connected to fM (ai) with an ai-transition, for all i.2. All transitions with ai from each �nal state are removed from M .3. Finally, q0 is made initial and �nal.Figure 5 gives an example of an a; b-consistent DFA and its a; b-cut.Theorem 3.12 Let M be a minimal DFA recognizing a language L. Assume that M consists ofa single, non-trivial orbit. Let a1; : : : ; an be the elements of � for which M is consistent. Then,L is deterministic if and only if1. n � 1.2. L(M(a1; : : : ; an)) is deterministic.If L is deterministic and a1; : : : ; an 2 � are chosen as above, we can construct a word v 2 �� withL = L(M) = vnL(M(a1; : : : ; an))�;
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Figure 6 The minimal DFA for (0 + 1)�0(0 + 1).and a deterministic expression for language L can be constructed from a deterministic expressionfor language L(M(a1; : : : ; an)).In lieu of a proof, we illustrate Theorem 3.12 with two examples. The language recognized by theleft automaton in Figure 5 is deterministic, because the a; b-cut is denoted by the deterministicregular expression a + b(� + cc) + �. One deterministic expression for the whole language isc(a+ b(�+ cc))�.Figure 6 shows the minimal DFA recognizing (0 + 1)�0(0 + 1). It consists of a single orbit withtwo gates, 00 and 01, but is neither 0- nor 1-consistent. Thus, (0 + 1)�0(0 + 1) does not denote adeterministic language. The same is true for (0 + 1)�0(0 + 1)n for each n � 1.References[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques,and Tools. Addison-Wesley Series in Computer Science, Addison-Wesley, Reading, Mas-sachusetts, 1986.[BEGO71] Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Ambiguity in graphs andexpressions. IEEE Transactions on Computers, C-20(2):149{153, February 1971.[Bru92] Anne Br�uggemann-Klein. Regular expressions into �nite automata. In Imre Simon, ed-itor, Latin '92, pages 87{98, Springer-Verlag, Berlin, 1992. Lecture Notes in ComputerScien0ce 583.[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481{494,October 1964.[BS86] Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theoret-ical Computer Science, 48:117{126, 1986.[BW91] Anne Br�uggemann-Klein and Derick Wood. On the expressive power of SGML documentgrammars. In preparation, 1991.[GH67] Seymour Ginsburg and Michael M. Harrison. Bracketed context-free languages. Journal ofComputer and System Sciences, 1(1):1{23, March 1967.[Glu61] V.M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys, 16:1{53,1961.[Hen68] Frederick C. Hennie. Finite-State Models for Logical Machines. John Wiley, New York, 1968.[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Languagesand Computation. Addison-Wesley Series in Computer Science, Addison-Wesley, Reading,Massachusetts, 1979.



12 of 12[ISO86] ISO 8879. Information processing|text and o�ce systems|standard generalized markuplanguage (SGML). October 1986. International Organization for Standardization.[LaL77] Wilf R. LaLonde. Regular right part grammars and their parsers. Communications ofthe ACM, 20(10):731{741, October 1977.


