
Chapter 1Proof of Correctness of ObjectRepresentationsGrant Malcolm and Joseph A. Goguen1.1 IntroductionThis paper presents an algebraic account of implementation that is applicable tothe object paradigm. The key to its applicability is the notion of state: objects havelocal states that are observable only through their outputs. That is, objects maybe viewed as abstract machines with hidden local state (as in [9]). Consequently,a correct implementation need only have the required visible behaviour.We use hidden order sorted algebra to formalise the object paradigm [4, 5, 8].Advantages of an algebraic approach include a high level of intellectual rigour, alarge body of supporting mathematics, and simple, e�cient proofs using only equa-tional logic. A wide variety of extensions to equational logic have been developedto treat various programming features, while preserving its essential simplicity. Forexample, order sorted equational logic uses a notion of subsort to treat computa-tions that may raise exceptions or fail to terminate.Hidden sorted logic extends standard equational logic to capture an importantdistinction between immutable data types, such as booleans and integers, and mu-table objects, such as program variables and database entities. The terms abstractdata types and abstract object classes refer to these two kinds of entity. The formerrepresent `visible' data values; the latter represent data stored in a hidden state. Inhidden sorted equational logic, an equation of hidden sort need not be satis�ed inthe usual sense, but only up to observability, in that only its visible consequencesneed hold. Thus, hidden sorted logic allows greater freedom in implementations.The simplicity of the underlying logic is important, because we want a tractableapproach in which implementations are as easily expressible and provable as pos-sible. A speci�cation is just a set of sentences in some logical system: that is, atheory. An algebraic speci�cation is then a set of equations. An implementation isexpressed by a theory morphism, which says how to interpret a theory into its im-plementation in such a way that each model of the concrete theory gives a model ofthe abstract theory. In this respect, our approach is similar to the seminal work of1

2 Grant Malcolm and Joseph A. GoguenHoare on data re�nement [15], in which correctness of implementation is expressedby a mapping from concrete variables to the abstract objects which they represent.The following section introduces notation for hidden order sorted speci�cations,and summarises the main algebraic notions and results used in this paper. Ordersorted algebra is the basis for the semantics of the executable speci�cation languageOBJ [13], and hidden order sorted algebra is the basis for an algebraic semantics ofthe object oriented language FOOPS [16]. Our examples of implementations usethe notation of these languages. Section 1.3 presents implementations of hiddenorder sorted speci�cations, and a technique for proving correctness. We believethis technique leads to proofs that are simpler than those of other approaches.Section 1.3.3 applies this technique to the implementation of collections of objects.This paper is dedicated with warm a�ection to Tony Hoare, whose work on datarepresentation and on concurrency has been an inspiration to us.1.2 Hidden order sorted algebraMany sorted algebra (hereafter, `MSA') was developed by the ADJ group [12] intoa form suitable for abstract data types in computer science. The logic of MSAis �rst order equational logic, which is relatively simple. The following subsec-tion summarises the main de�nitions and results of MSA, while Subsections 1.2.2and 1.2.3 describe order sorted speci�cation and hidden order sorted speci�cation.1.2.1 Many sorted algebraAn unsorted algebra is a set with `structure' described by some operations andequations. The set is referred to as the carrier of the algebra. MSA extendsthis traditional view by de�ning an algebra to have any number of carriers. Forexample, what we might call a `list algebra' is a quadruple (C; �;�; e) , wherethe carriers are CElt and CList , and � : CElt ! CList is a unary function, and� : CList�CList ! CList is an associative binary operation with neutral elemente 2 CList ; that is, the following equations are satis�ed for all x; y; z 2 CList :x� (y � z) = (x� y)� ze� x = xx� e = xThis speci�cation of list algebras has three components: the carriers, named bythe `sorts' Elt and List ; the operations � , � and e ; and the three equationsabove. We address each of these aspects in turn.De�nition 1 Given a set S , an S-sorted set is a collection (As)s2S of sets indexedby elements of S . All set theoretic operations can be extended to operations on

Proof of Correctness of Object Representations 3S-sorted sets; for example, if A and B are S-sorted sets, then A [B is de�nedby (A[B)s = As [Bs , and A � B means that As � Bs for each s 2 S .An S-sorted function f : A ! B is a collection of functions indexed by Ssuch that fs : As ! Bs for each s 2 S . Similarly, an S-sorted relation R fromA to B is a collection of relations indexed by S such that Rs is from As to Bsfor each s 2 S . We write the identity relation on an S-sorted set A as idA .For example, the carrier of a list algebra is an fElt; Listg-sorted set.De�nition 2 Amany sorted signature is a pair (S;�) , where S is a set of sortsand � is an (S��S)-sorted set of operation names. Thus, if l 2 S� and s 2 Sthen �l;s is a set of operation names. If � is clear from the context, we sometimeswrite f : l!s instead of f 2 �l;s to emphasise that f is intended to denote anoperation mapping the sorts denoted by l to the sort denoted by s . Usually weabbreviate (S;�) to � . Elements of �[];s are referred to as constants of sort s .An operation can be declared to have more than one type, e.g., we might havef 2 �l;s \ �l0;s0 where l; s is di�erent from l0; s0 . In this case, f is said to beoverloaded.Signatures provide a uniform notation for specifying the carriers and operationsof many sorted algebras. Later sections consider implementing one speci�cationby another; in order to compare two speci�cations, we use signature morphisms,which view one algebraic structure in terms of another.De�nition 3 A signature morphism � : (S;�) ! (S 0;�0) is a pair (�1; �2) ,where �1 : S!S 0 maps sorts in S to sorts in S 0 , and �2 maps the operationnames of � to operation names of �0 in such a way that for each f 2 �l;s wehave �2(f) 2 �0��1(l);�1(s) , where ��1(l) denotes �1 applied componentwise to thelist l ; i.e., ��1 [] = [] and ��1 (s l) = (�1 s)(��1 l) .A useful example of a signature morphism is the inclusion of one signature inanother: if S � S 0 and � � �0 , then there is an inclusion � : (S;�)! (S 0;�0) .Signatures may be thought of as specifying algebras with no equations, and sowe may speak of the algebras of a signature. An algebra for a signature � is anS-sorted set with the structure speci�ed by the operation names of � .De�nition 4 For a many sorted signature � , a �-algebra A is given by thefollowing data: an S-sorted set, usually denoted A , called the carrier of thealgebra; an element Af 2 As for each s 2 S and f 2 �[];s ; and for each non-empty list l 2 S� , and each s 2 S and f 2 �l;s , an operation Af : Al ! As ,where if l = s1 . . . sn then Al = As1� � � � �Asn .Given �-algebras A and B , a �-homomorphism h : A ! B is an S-sortedfunction A! B such that:� given a constant f 2 �[];s , then hs(Af) = Bf ;� given a non-empty list l = s1 . . . sn and f 2 �l;s and ai 2 Asi for i =1; . . . ; n , then hs(Af(a1; . . . ; an)) = Bf (hs1(a1); . . . ; hsn(an)) .

4 Grant Malcolm and Joseph A. GoguenThus, an algebra for a signature interprets the sort names as sets and the operationnames as operations, while homomorphisms preserve the structure of the algebrain that they distribute over the operations of the algebra.Given any signature, we can construct an algebra whose carriers are sets of termsbuilt up from the given operation names viewed as symbols of an alphabet.De�nition 5 Given a many sorted signature � , the term algebra T� is con-structed as follows. Let [� be the set of all operation names in � ; T� is theleast S-sorted set of strings over the alphabet ([�) [f(;)g such that:� for each constant symbol f 2 �[];s , the string f 2 (T�)s ;� for each non-empty list l = s1 . . . sn 2 S� , and each f 2 �l;s , and allti 2 (T�)si for i = 1; . . . ; n , the string f(t1 . . . tn) 2 (T�)s .We show that T� is a �-algebra by showing how the operation names of � areinterpreted: for each constant f 2 �[];s , the constant (T�)f is the string f 2(T�)s ; for each non-empty list l = s1 . . . sn 2 S� and operation name f 2 �l;s ,the operation (T�)f : (T�)l ! (T�)s maps a tuple of strings t1 . . . tn to the stringf(t1 . . . tn) . The special symbols `(' and `)' are used to emphasise that the carriersof T� are sets of strings; from now on we write `f(t1; . . . ; tn)' for `f(t1 . . . tn)'.This shows that T� is a �-algebra. In fact, if � contains no overloaded symbols,it has the special property of being an initial �-algebra.De�nition 6 An initial �-algebra is a �-algebra A such that for each �-algebraB there is exactly one �-homomorphism A! B .Proposition 7 If � contains no overloaded operation names, then T� is an initial�-algebra. For any �-algebra A , the unique �-homomorphism h : T� ! A isde�ned recursively as follows:� for each constant symbol f 2 �[];s , let hs(f) = Af ;� for each non-empty list l = s1 . . . sn and f 2 �l;s and ti 2 (T�)si fori = 1; . . . ; n , let hs(f(t1; . . . ; tn)) = (Af)(hs1(t1); . . . ; hsn(tn)) .The homomorphism h assigns a value in A to terms by interpreting the operationnames of � as the corresponding operations on A . If � contains overloadedoperations, an initial algebra can still be constructed as a term algebra where theoperation names are distinguished by `tagging' them with their result sorts [7].Let us now consider algebras with equations. An equation is usually presentedas two terms (the left- and right-hand sides) which contain variables. For example,one of the equations for list algebras was (x�y)�z = x�(y�z) , where x, y andz are variables that range over CList . Because variables only serve as placeholdersfor values of the sorts that they range over, any signature of constant symbols canbe used to provide variables.

Proof of Correctness of Object Representations 5De�nition 8 A ground signature is a signature (S;�) such that for all l 2 S�and s 2 S , if l 6= [] then �l;s = ; , and such that the �l;s are disjoint; i.e., theoperation names of ground signatures are distinct constants.We assume disjointness so that distinct variables cannot be identi�ed.Ground signatures are essentially the same thing as S-sorted sets, because anyS-sorted set X can be viewed as a ground signature by taking Xl;s to be Xsif l = [] and the empty set otherwise. Moreover, a ground signature � can beviewed as the S-sorted set (�[];s)s2S . This determines a bijection between groundsignatures and S-sorted sets; we take advantage of this by sometimes treatingground signatures as S-sorted sets. Now it is a simple matter to characterise termscontaining variables:De�nition 9 Given a many sorted signature (S;�) and a ground signature (S;X)such that � and X are disjoint, terms with variables from X are elements ofT�[X . Now T�[X can be viewed as a �-algebra if we forget about the constantsin X : when we view T�[X as a �-algebra, we write it as T�(X) .A �-equation is a triple (X; l; r) , where (S;X) is a ground signature, and land r are terms in T�(X) of the same sort; i.e., l; r 2 T�(X)s for some s 2 S .We write such an equation in the form (8X) l = r .A speci�cation is a triple (S;�; E) , where (S;�) is a signature and E is aset of �-equations. We usually abbreviate (S;�; E) to (�; E) .Algebras of a speci�cation are �-algebras that satisfy the equations; we turnnow to what it means for an algebra to satisfy an equation. The �rst issue is howto interpret the left- and right-hand sides of an equation in an arbitrary �-algebra.Because T�(X) is a �-algebra, there is a homomorphism T� ! T�(X) , which isthe inclusion of variable-free terms into terms with variables. However, T� is notin general a (�[X)-algebra, because we do not know how to interpret the variablesin X . If we can assign values to those variables, then we can assign values to termscontaining those variables.Proposition 10 Given a �-algebra A and an S-sorted function � : X ! A (oftencalled an `interpretation of variables'), there is a unique �-homomorphism �� :T�(X) ! A such that ��(�(x)) = �(x) for all variables x , where � : X ! T�(X)maps x 2 Xs to the string x 2 T�(X)s . The homomorphism is de�ned as follows:� for each x 2 Xs , let ��s(x) = �s(x) ;� for each constant symbol f 2 �[];s , let ��s(f) = Af ;� for each non-empty list l = s1 . . . sn , f 2 �l;s , and all ti 2 T�(X)si fori = 1; . . . ; n , let ��s(f(t1; . . . ; tn)) = Af (��s1(t1); . . . ; ��sn(tn)) .Equations have an implicit universal quanti�cation over the variables. An alge-bra satis�es a given equation i� the left- and right-hand sides of the equation areequal under all interpretations of the variables:

6 Grant Malcolm and Joseph A. GoguenDe�nition 11 A �-algebra A satis�es a �-equation (8X) l = r i� ��(l) = ��(r)for all � : X ! A . We write A j= e to indicate that A satis�es the equation e .For a set E of equations, we write A j= E i� A j= e for each e 2 E . Given aspeci�cation (�; E) , a (�; E)-algebra is a �-algebra A such that A j= E .Just as each signature has an initial algebra, each speci�cation has an initialalgebra. The initial algebra is constructed from the term algebra by identifyingterms that are `equal' as a consequence of the given equations. This identi�cationis achieved using the notion of congruence.Each equation gives rise to a relation in the following way: given a �-algebraA let e be a �-equation (8X) l = r , and de�ne the relation R(e) : A � A bya R(e) b i� a = ��(l) and b = ��(r) for some � : X ! A . In other words, a isrelated to b i� a is an instance of the left-hand side and b is an instance of theright-hand side, under some interpretation of the variables. We seek an equivalencerelation that contains all the relations derived from the equations of a speci�cation,and that allows the substitution of equals for equals.De�nition 12 Given a signature � and a �-algebra A , a �-congruence is an S-sorted equivalence relation R such that the following substitutivity propertyholds: for all f 2 �l;s and x; y 2 Al , if x Rl y then Af (x) Rs Af(y) , where ifl = s1 . . . sn , then x 2 Al means x = x1 . . .xn with xi 2 Asi , and x Rl y meansxi Rsi yi for i = 1; . . . ; n .If E is a set of �-equations and A is a �-algebra, then �A;E denotes the least�-congruence on A which contains each equation in E ; that is, for each e 2 E ,R(e) � �A;E . We usually write =E instead of �T�;E .The �-congruence =E allows the identi�cation of terms which are equal as a resultof the equations E .Proposition 13 Given a speci�cation (�; E) where � contains no overloaded oper-ations, the initial (�; E)-algebra is the quotient term algebra T�;E = T�==E .That is, the carriers of T�;E are sets of equivalence classes under =E ; speci�cally,(T�;E)s = f[t] j t 2 (T�)sg , where [t] denotes the equivalence class of t under=E . The structure of T�;E as a �-algebra is given by:� for each constant symbol f 2 �[];s , let (T�;E)f = [f] ;� for each non-empty list l = s1 . . . sn , f 2 �l;s , and [ti] 2 (T�;E)si fori = 1; . . . ; n , let (T�;E)f ([t1]; . . . ; [tn]) = [(T�)f (t1; . . . ; tn)] .The last equation is well-de�ned by the substitutivity property of the congruence=E . By construction, T�;E satis�es the equations E .The above proposition refers to `the' initial (�; E)-algebra, but a speci�cationmay have more than one initial algebra. However, any two initial (�; E)-algebrasare isomorphic, because the unique homomorphisms from each algebra to the otherare inverses. Thus all initial algebras are `abstractly the same'. ADJ [12] de�ne

Proof of Correctness of Object Representations 7an abstract data type to be the collection of initial algebras of a speci�cation.Such a collection is an equivalence class, since being isomorphic is an equivalencerelation, and this equivalence class may be represented by T�;E . The importance ofinitiality is that it gives a canonical interpretation of a speci�cation as an abstractdata type. Moreover, completeness results state that a �-equation is satis�ed byall (�; E)-algebras i� it can be proved using the equations E and the standardproperties of equality: reexivity, symmetry, transitivity and substitutivity. Thisallows the use of equational deduction in prototyping and proving properties ofspeci�cations, for example, using OBJ [13].1.2.2 Order sorted algebraPartial operations and error handling play an important rôle in many computerscience applications. A partial operation produces well-de�ned values only on somesubsort of its domain. For example, division in a �eld produces a well-de�ned valueonly when the denominator is not zero. Order sorted algebra (hereafter, `OSA') isa variation on MSA that allows algebras with partial operations. It also providesa model of inheritance that is useful in formalising the object paradigm. Thissubsection summarises de�nitions and results of OSA that are relevant to thispaper. A comprehensive survey is given by Goguen and Diaconescu in [7].Both OSA and MSA are based on the notion of S-sorted sets, but whereas inMSA S is a set, in OSA S is a partially ordered set. If S is a set of sort names,the partial order indicates the subsort relations between the carriers of algebras.For a partially ordered set (S;�) , we refer to � as the subsort ordering. Wesometimes extend this ordering to lists over S of equal length by s1 . . . sn �s10 . . . sn0 i� si � si0 for i = 0; . . . ; n .De�nition 14 Given a partial order (S;�) , an equivalence class of the transitivesymmetric closure of � is called a connected component, and two elements ofthe same connected component are said to be connected. A partial order (S;�)is locally �ltered i� any two connected sorts have a common supersort, that is,i� whenever s and s0 are connected, there is an s00 such that s; s0 � s00 .The notion of local �ltering allows many results of MSA to extend to OSA [7].De�nition 15 An (S;�)-sorted set is an S-sorted set A such that whenever s �s0 then As � As0 . An (S;�)-sorted function f : A! B is an S-sorted functionsuch that whenever s � s0 then fs � fs0 . An (S;�)-sorted relation R from Ato B is an S-sorted relation such that if s � s0 and x 2 As and y 2 Bs , thenx Rs y i� x Rs0 y . We sometimes abbreviate `(S;�)-sorted' to `S-sorted'.Most de�nitions of MSA apply, mutatis mutandis, to OSA; the main di�erencesconcern monotonicity.

8 Grant Malcolm and Joseph A. GoguenDe�nition 16 An order sorted signature is a triple (S;�;�)where (S;�) is alocally �ltered partial order and (S;�) is a many sorted signature which satis�esthe monotonicity requirement: if f 2 �l;s \ �l0;s0 and l � l0 then s � s0 .We usually abbreviate (S;�;�) to just � .An order sorted signature morphism � : (S;�;�)! (S 0;�0;�0) is a manysorted signature morphism such that �1 : (S;�) ! (S 0;�0) is monotonic. Asignature morphism � preserves overloading i� whenever f 2 �l;s \�l0;s0 then�2 applied to f 2 �l;s gives the same result as �2 applied to f 2 �l0;s0 .Monotonicity is also needed for the algebras of an order sorted signature.De�nition 17 Given an order sorted signature (S;�;�) , an order sorted �-algebra is a many sorted �-algebra A such that A is an (S;�)-sorted set and Ais monotonic, in the sense that for all f 2 �l;s \ �l0;s0 if l � l0 and s � s0 thenAf : Al ! As is equal to Af : Al0 ! As0 on Al .For order sorted �-algebras A and B , an order sorted �-homomorphismh : A ! B is a many sorted �-homomorphism which satis�es the restrictioncondition: if s � s0 then hs = hs0jAs where hs0jAs denotes the restriction ofhs0 : As0 ! Bs0 to As .The construction of the term algebra is as in MSA, but requires the carrier ofT� to be (S;�)-sorted, so that (T�)s � (T�)s0 whenever s � s0 . In general, T�is not an initial �-algebra unless � satis�es a regularity condition [11]:De�nition 18 An order sorted signature � is regular i� for any f 2 �l1;s1 andl0 � l1 there is a least pair (l; s) such that l0 � l and f 2 �l;s .The importance of regularity is that terms can be parsed as having a least sort.Goguen and Diaconescu [7] note that regularity is not essential, in that OSA can bedeveloped in greater generality under the assumption only of local �ltering. Theconstruction of an initial algebra is then more complicated, and we do not givedetails here, as all speci�cations in this paper are regular.Unlike in MSA, the left- and right-hand sides of an equation need not have thesame sort; their sorts need only be connected.De�nition 19 Given an order sorted signature (S;�;�) , a �-equation is a triple(X; l; r) , where X is a ground signature disjoint from � with l 2 T�(X)s andr 2 T�(X)s0 for some connected s; s0 2 S . We use the notation (8X) l = r .The de�nitions of satisfaction of equations and congruence in OSA are as in MSA,but with `S-sorted' everywhere changed to `(S;�)-sorted'. An order sorted spec-i�cation is an order sorted signature together with a set E of �-equations, anda (�; E)-algebra is a �-algebra which satis�es all equations in E . The quotientterm algebra T�;E is constructed as in MSA, dividing by the least (S;�)-sorted�-congruence which extends the equations of the speci�cation. If the signature isregular, this gives an initial (�; E)-algebra.

Proof of Correctness of Object Representations 9We end our summary of OSA with `retract' speci�cations, which allow opera-tions to be applied to arguments which may lie outside their domain of de�nition,possibly resulting in values that are `ill-de�ned' in the sense that they involve thespecial `retract' operations. This allows order sorted speci�cations to model partialoperations (see [11, 7] for a full treatment).De�nition 20 Given an order sorted speci�cation P = (S;�;�; E) , we write P
for its retract extension (S;�;�
; E
) , where �
 is � extended with anoperation rs1;s2 : s1!s2 for each s1; s2 2 S such that s2 � s1 , and E
 is Eextended with an equation (8S : s2) rs1;s2(S) = S for each s2 � s1 as above.We wish the result of adding retracts to be a conservative extension of the givenspeci�cation; that is, for all t1; t2 2 T� , t1 =E t2 i� t1 =E
 t2 , i.e., the newequations added by the introduction of retracts do not cause distinct terms ofT� to become identi�ed. Goguen and Meseguer [11] give su�cient conditions onspeci�cations for adding retracts to be conservative. These conditions go beyondthe scope of the present paper, but we note that all our example speci�cations aresuch that their retract extensions are conservative.1.2.3 Hidden order sorted algebraHidden sorted algebra was developed as a variation on MSA for objects with localstates [5, 8]. In a hidden sorted speci�cation, the set of sort names is partitionedinto `visible' and `hidden' sorts. Operations which return hidden sorted valuescorrespond to the internal operations of an object, while visible sorted values cor-respond to an object's inputs and outputs. This subsection summarises the basicde�nitions of hidden sorted algebra, and then combines it with OSA to give hiddenorder sorted algebra (hereafter, `HOSA').De�nition 21 A hidden sorted signature is a triple (S; V;�) , where (S;�) is amany sorted signature and V � S . The elements of V are referred to as visiblesorts, and elements of S � V as hidden sorts.A hidden sorted signature morphism � : (S; V;�)! (S 0; V 0;�0) is a manysorted signature morphism which maps visible sorts to visible sorts and hiddensorts to hidden sorts, i.e., s 2 V i� �1(s) 2 V 0 .A hidden sorted speci�cation is a hidden sorted signature together with aset E of �-equations (in the sense of MSA).We might refer to the above as `pre-signature' and `pre-signature morphism' (andsimilarly for the HOSA de�nitions below), since Goguen and Diaconescu [8] giveextra restrictions on signatures which correspond to aspects of object orientedcomputation and make hidden sorted algebra an institution [1]. We do not makethese extra restrictions here as they are not necessary for our results. However, wenote that in [8] a hidden sorted speci�cation includes a �xed `data algebra' D forthe visible sorts such that for any �-algebra A , Dv = Av for all visible sorts v .

10 Grant Malcolm and Joseph A. GoguenThe de�nition of satisfaction di�ers from MSA in that only the visible conse-quences of an equation need hold. The notion of `visible consequence' is madeprecise by de�ning contexts for terms:De�nition 22 Given a term t 2 (T�)s , a context for t of sort s0 is a termc 2 T�(fzg)s0 where z is a new variable of sort s , i.e., a context is just a termwhich contains a distinguished variable. We write T�[z] instead of T�(fzg) , andif c is a context for t , we write c[t] for the result of substituting t for z in c .Contexts of visible sort can be considered experiments which, applied to an ob-ject's hidden state, give visible outputs. The de�nition of satisfaction for HSA saysthat two states are distinguished i� they give di�erent results for some experiment,and an equation is behaviourally satis�ed if its left- and right-hand sides alwaysinstantiate to states that cannot be distinguished by any experiment.De�nition 23 A �-algebra A behaviourally satis�es a �-equation e of theform (8X) l = r (denoted A j=b e) i� A j= (8X) c[l] = c[r] for all v 2 V andc 2 T�[z]v . Implicitly, the variable z has the same sort as l and r . For a set Eof �-equations, we write A j=b E i� A j=b e for all e 2 E .If an equation has visible sort, then behavioural satisfaction is the same as satisfac-tion in MSA, because for c we can always choose the `empty context' z 2 T�[z]v .Behavioural satisfaction of equations can also be expressed more abstractly:Proposition 24 A j=b E i� (�A;E)jV � idAjV where RjV is the restriction of anS-sorted relation R to the visible sorts of V i.e., RjV is the V -sorted relation(Rv)v2V .This can be read as saying that E does not identify distinct elements of A ofvisible sort, which we might summarise by saying there is `no confusion'.A behavioural (�; E)-algebra is a �-algebra A such that A j=b E . Thenotion of implementation that we use in the following sections is based on the ideathat an object is implemented by a behavioural algebra of its speci�cation.We now give the hidden sorted version of OSA.De�nition 25 An HOSA signature is a quadruple (S; V;�;�) where (S;�;�)is an order sorted signature, and the visible sorts V � S partition the partiallyordered set S in the sense that whenever s � s0 then s 2 V i� s0 2 V .An HOS signature morphism � : (S; V;�;�) ! (S 0; V 0;�0;�0) is an ordersorted signature morphism which maps visible sorts to visible sorts and hiddensorts to hidden sorts in the sense that s 2 V i� �1(s) 2 V 0 .The de�nitions of algebra, equation, speci�cation and retract are as in OSA,but satisfaction of equations in HOSA only requires that the visible consequencesof an equation hold. Because of the order-sortedness of HOSA signatures, de�n-ing satisfaction in terms of contexts would require contexts that contain retracts.

Proof of Correctness of Object Representations 11Burstall and Diaconescu [1] give an abstract categorical de�nition of behaviouralsatisfaction for OSA, which is beyond the scope of the present paper. Moreover,their de�nitions of HOSA signature, etc., are di�erent from those given here; forexample, they require that the visible sorts have a �xed interpretation (cf. thecomments after De�nition 21). Because of these di�erences, we say instead thata �-algebra A behaviourally satis�es E i� there is no confusion in the senseof Proposition 24 (i.e., (�A;E)jV � idAjV). A behavioural (�; E)-algebra is a�-algebra A such that A behaviourally satis�es E .This de�nition of satisfaction generalises the de�nition for OSA, in that given anorder sorted speci�cation (S;�;�; E) , we can construct the HOSA speci�cation(S; S;�;�; E) where all sorts are visible; then for any (S;�;�)-algebra A , wehave A j= E i� A j=b E .Section 1.3 considers implementations using a translation from terms of the ab-stract speci�cation to terms of the concrete speci�cation; this states how programsof the abstract speci�cation are to be `compiled'. The simplest way to achieve sucha translation is by a signature morphism: if we know how to translate operationsof the abstract speci�cation, then we can translate terms built from those oper-ations. Often the abstract signature is contained in the concrete; that is, all thesorts and operations of the abstract speci�cation are available in the concrete one.In that case all terms over the abstract signature are also terms over the concretesignature. However, non-inclusion translations are sometimes useful (see Subec-tion 1.3.2). The following states how an arbitrary signature morphism extends toa translation of terms.Proposition 26 Every signature morphism � : �! �0 which preserves overloadingcan be extended to a function � such that � : (T�)s ! (T�0)�1(s) for all s 2 S .This extension is de�ned as follows:� for each constant symbol f 2 �[];s , let �(f) = �2(f) ;� for each non-empty list l = s1 . . . sn , f 2 �l;s , and all ti 2 (T�)si fori = 1; . . . ; n , let �(f(t1; . . . ; tn)) = (�2(f))(�(t1); . . . ; �(tn)) .If �1 is an inclusion of S into S 0 then � is an S-sorted function T� ! T�0 and if� � �0 then � is the unique inclusion homomorphism T� ! T�0 , so that termsof T� are also terms of T�0 .Moreover, � extends to �
 : T�
 ! T�0
 by setting �
2 (rs1;s2) = r�1(s1);�1(s2) .Finally, � extends to �s : T�(X)s ! T�0(X 0)�1(s) for each s 2 S , where X 0s0 =fx 2 Xs j �1(s) = s0g ; thus, � may change the sort but not the name of a variable.Note that because all the variables of X are distinct (cf. De�nition 8), � cannotidentify distinct variables.1.3 ImplementationThis section de�nes implementation for HOSA speci�cations and presents a tech-nique for proving correctness of implementation that is illustrated in two examples.

12 Grant Malcolm and Joseph A. GoguenLet us now �x two HOSA speci�cations, A = (SA;�A; VA;�A;EA) and C =(SC;�C; V C;�C;EC) , where A is for `abstract' and C is for `concrete', plus asignature morphism � : �A ! �C which preserves overloading. We also use thefollowing abbreviations:Notation 27 Write TA for the carrier of the term algebra T�A ; TA
 for thatof T�A
 (cf. De�nition 20); TA[z] for the contexts in T�A[z] and TA[z]
 forT�A
 [z] (cf. De�nition 22); TAs for the terms of sort s , etc., and similarly for C ;and � for � : TA! TC as well as for �
 : TA
 ! TC
 (cf. Proposition 26).What do we mean by `A is implemented by C'? If we ignore hidden and or-der sortedness, the answer is straightforward: all ground equalities in A , whentranslated by � , should hold in C ; i.e.,t1 =EA t2 implies �(t1) =EC �(t2) for all t1; t2 2 TA :(1.1)The intuitive meaning is that if t1 is some program that gives result t2 in theabstract speci�cation, then its translation should give the corresponding result inthe implementation. More formally, (1.1) states that the �-translations of theground consequences of the equations EA are entailed by EC . It can be shownthat this is equivalent to requiring the �-translations of ground instances of theequations in EA to be entailed by EC , i.e., that�(��(lhs)) =EC �(��(rhs)) for each (8X) lhs=rhs 2 EA and � : X!TA :(1.2)This is equivalent to (1.1), but has a form that is generally easier to prove.If we take hidden sortedness into account, we need only consider equalities ofvisible sort, so that the requirement (1.1) for implementation becomest1 =EA t2 implies �(t1) =EC �(t2) for all v 2 VA and t1; t2 2 TAv :(1.3)This is the de�nition given by Henniker in [14], though only for signature inclusions.Henniker also proposes a method for proving implementation correctness based oninduction over the structure of contexts, by restating this condition in terms ofbehavioural equivalence.De�nition 28 t; t0 2 TC are A-behaviourally equivalent, written t � t0 , i� forall v 2 VA and c 2 TA[z]v , we have �(c)[t] =EC �(c)[t0] , where �(c)[t] denotesthe �-translation of c with the term t substituted for z . Implicitly, if the variablez has sort s , then t and t0 have sort �1(s) .It can be shown that (1.3) is equivalent to:t1 =EA t2 implies �(t1) � �(t2) for all s 2 SA and t1; t2 2 TAs :(1.4)Henniker shows that (1.3), and therefore (1.4), is equivalent to:�(��(lhs)) � �(��(rhs)) for each (8X) lhs=rhs 2 EA and � : X!TA :(1.5)

Proof of Correctness of Object Representations 13The equivalence of (1.1) and (1.2) is mirrored in that of (1.4) and (1.5). Both(1.2) and (1.5) have a form that simpli�es the proof obligations. However, proofsof (1.5) can still be surprisingly complicated (e.g., see [14]).The situation is more complex for OSA because the de�nition of implemen-tation has to consider well-de�nedness of terms, which may amount to termina-tion of programs. Schoett [17] de�nes implementation for partial algebras, andgives a necessary and su�cient condition in terms of a congruence between mod-els of the abstract and concrete speci�cations. Schoett's de�nition is strongerthan that given below: he restricts attention to terms all of whose subtermsare equal to a well-de�ned value (in our setting this means that they containno retract operations). For example, consider an abstract speci�cation of stackswith operations top, pop, empty and push (as in Section 1.3.2 below), wheretop requires a non-empty stack as argument, and should satisfy the equation(8X : Nat; S : Stack) top push(X;S) = X . The term top push(0, pop empty)can be viewed in two ways: it either gives the value 0, or else is unde�ned. The�rst view corresponds to lazy evaluation, where terms with ill-de�ned subtermscan still have well-de�ned values; the second view, implicit in Schoett's de�nition,corresponds to call-by-value, where any term with an unde�ned subterm is itselfunde�ned. In Schoett's call-by-value approach, an implementation of stacks mayallow top push(0, pop empty) to take any value at all. We consider `lazy' im-plementation important because many programming languages either have lazyevaluation or else facilities for error handling.Our de�nition of implementation in HOSA is that C implements A i� whenevera visible sorted term of TA
 gives a well-de�ned value (i.e., a term of TA), thenthe �-translation of that term gives the corresponding value in TC .De�nition 29 A speci�cation C is a partial behavioural implementation of aspeci�cation A via the signature morphism � (we write � : A v C) i� t =EA
 t0implies �(t) =EC
 �(t0) for all v 2 VA , t 2 TA
v and t0 2 TAv . We say that Cbehaviourally implements A i� the above implication is an equivalence.This de�nition of partial implementation generalises (1.3) to the order sorted case.The di�erence between partial implementation and implementation is that in thelatter the mapping � from TA
 to TC
 , or more properly from T�A
;EA
 toT�C
 ;EC
 , is injective on the visible sorts in the sense that it doesn't confuse dis-tinct data values. Consequently, `trivial' implementations, in which all equationsare satis�ed, are not allowed. If our de�nitions for HOSA had followed [8], in par-ticular by requiring a �xed interpretation for visible data sorts, then � : A v Cwould imply that � is injective on visible sorts because of their �xed interpreta-tion. In the following, we concentrate on proofs of partial implementation, i.e., onshowing that terms equal in the abstract speci�cation are equal in the concrete.We note that if � is a signature inclusion and � : A v C then any behaviouralalgebra of C is also a behavioural algebra of A .

14 Grant Malcolm and Joseph A. Goguen1.3.1 Proofs of partial implementationOne way to show that C implements A is to construct an intermediate relationR on C terms such that (a) if t =EA
 t0 then the �-translations of t and t0are related by R , and (b) the restriction of R to visible sorted �-translations iscontained in =EC
 . Such a relation bridges the gap between the antecedent andconsequent in De�nition 29. If R is also a �A
-congruence, then (a) holds i� Rextends the ground instances of the equations in EA
 . This is the intuition behindProposition 31 below, which is our main technical result. Its statement uses thefollowing:Notation 30 If R is a relation on TC
 , then the relation R� on TA
 is de�nedfor t; t0 2 TA
 by: t R� t0 i� �(t) R �(t0) .Proposition 31 � : A v C if there exists an equivalence relation R on TC
 suchthat R� is a �A
-congruence and��(lhs) R� ��(rhs) for each (8X) lhs=rhs 2 EA
 and � : X!TA
 ;(1.6) if t R� t0 then �(t) =EC
 �(t0) for all v 2 VA; t 2 TA
v and t0 2 TAv :(1.7)Proof: The relation =EA
 is by de�nition the least �A
-congruence satisfying(1.6), so =EA
 � R� . To show that � : A v C , �x v 2 VA , t 2 TA
v , t0 2 TAv ;if t =EA
 t0 then because =EA
 � R� , we have t R� t0 , and since t and t0 areof visible sort, (1.7) gives �(t) =EC
 �(t0) as desired.A weaker, but very useful version of this result is obtained by strengthening (1.6):Proposition 32 For any relation R on TC
 , condition (1.6) of Proposition 31follows from=EC
 � R ;(1.8) ��(lhs) R� ��(rhs) for each (8X) lhs=rhs 2 EA and � : X!TA
 :(1.9)Proof: EA
 consists of EA plus equations of the form (8S : s2) rs1;s2(S) = S .By construction, EC
 contains the equation (8S 0 : �1(s2)) r�1(s1);�1(s2)(S0) = S 0 ,so for any � : fSg!TA
 , we have �(��(rs1;s2(S))) = r�1(s1);�1(s2)(�(��(S))) =EC
�(��(S)) . Therefore by (1.8), ��(rs1;s2(S)) R� ��(S) , and combining this with (1.9)gives (1.6).The weakening of Proposition 31 by replacing (1.6) with (1.8) and (1.9) is usefulbecause with (1.8), in proving that two terms are related by R we may freelyrewrite those terms using the equations of EC
 ; moreover, the example relationsR that we use below satisfy (1.8), so that in proving partial implementation, wemay concentrate on proving (1.9), ignoring the retract equations.To use these results, we need a suitable relation R . A likely candidate is be-havioural equivalence, which we could de�ne as in De�nition 28; but the followingrelation is more general :

Proof of Correctness of Object Representations 15De�nition 33 For t; t0 2 TC
 , equivalence up to de�nition, denoted t ' t0 ,is de�ned by: t =EC
 t00 , t0 =EC
 t00 for all t00 2 TC .Note that if t; t0 2 TC , then t ' t0 i� t =EC
 t0 .De�nition 34 For any relation R on TC
 , behavioural R-equivalence is de-�ned for t; t0 2 TC
 by t eR t0 i� �(c)[t]R �(c)[t0] for all v 2 VA and c 2 TA[z]
v .Two natural choices for R in this de�nition are =EC
 and ' . The �rst issu�cient for the examples given below, but the second is more general. Eachchoice satis�es condition (1.8):Proposition 35 When R is =EC
 or ' , then =EC
 � eR .We note that behavioural =EC
-equivalence is the same as =EC
 for visible sorts,because if t and t0 are of visible sort, then we may take c to be the empty context,that is, c = z , so that t =EC
 t0 .In the sequel, we use only behavioural '-equivalence, which we denote � , andrefer to simply as behavioural equivalence i.e.,t � t0 i� (8v 2 V)(8c 2 TA[z]
v) �(c)[t] ' �(c)[t0] :(1.10)However, the results of this section can equally well be developed for behavioural=EC
-equivalence.The reader may check that � satis�es all requirements of Proposition 31 except(1.6). From Propositions 32 and 35, we obtain:Corollary 36 � : A v C if all equations of EA are behaviourally satis�ed by C ,i.e., if ��(lhs) �� ��(rhs) for each (8X) lhs=rhs in EA and � : X!TA
 .This result can still lead to complicated proofs by context induction. A simplerproof method is obtained by splitting the signature of A
 in two: suppose that�A
 = G[D . (The letters stand for `Generators' and `De�ned functions' to sug-gest the decomposition that we have in mind; however, we make no assumptionsabout G or D .) Typically, in proving that an equation is behaviourally satis�ed,we wish to show that it holds in contexts made from de�ned functions only. Thisagrees with the intuition behind behavioural equivalence, that two terms are be-haviourally equivalent if the same visible information can be extracted from each ofthem. Extracting information corresponds to applying a de�ned function, whereasconstructors may be thought of as adding new information. This gives a notion ofbehavioural equivalence that is easier to check:De�nition 37 For t; t0 2 TC
 , we de�ne t ^ t0 i� �(c)[t] ' �(c)[t0] for allv 2 VA and c 2 TD[z]v , where TD[z]v denotes the set TD[z]v of contexts builtfrom the operations of D .

16 Grant Malcolm and Joseph A. GoguenA useful consequence of this de�nition is that terms of hidden sort are behaviourallyequivalent i� their images under each operation of D are behaviourally equivalent.This is used in Subsections 1.3.2 and 1.3.3, in examples where all derived functionsare unary, an assumption that allows us to state the property concisely:Proposition 38 If all the operations of D have only one argument, then for h 2SA � VA and t; t0 2 TC
h , we have t ^ t0 i� (�2 f)(t) ^ (�2 f)(t0) for eachr 2 SA and f 2 Dh;r .The relation ^ is an equivalence relation, it contains =EC
 , and its restric-tion to visible sorts is the same as behavioural equivalence; moreover, ^� is aD-congruence, so to use Proposition 32, we need only show that it is also a G-congruence. In fact, there is a nice relationship between our two notions of be-havioural equivalence: from D � �A
 , it follows that � � ^ ; moreover, if ^is also a G-congruence then the following proposition shows that ^ � � , and so^ = � .Proposition 39 ^ = � if t ^ t0 implies (�2 f)(x) ^ (�2 f)(y) for all f 2 Gl;sand t; t0 2 TC
��1(l) .Proof: We have already noted that ^ � � , so it su�ces to show that ^ � � .Now ^� is a D-congruence, so if it is also a G-congruence (as stated in thecondition above), then because �A
 = G [D , it is a �A
-congruence. So:t ^ t0) f ^� is a congruence g(8v 2 VA)(8c 2 TA[z]
v) �(c)[t]^ �(c)[t0]) f ^jVA � ' g(8v 2 VA)(8c 2 TA[z]
v) �(c)[t] ' �(c)[t0], f (1.10) gt � t0Corollary 36 and Proposition 39 together give the following su�cient conditionfor implementation:Proposition 40 � : A v C if ��(lhs) ^� ��(rhs) for each (8X) lhs=rhs in EA and� : X!TA
 , and if t ^ t0 implies (�2 f)(t) ^ (�2 f)(t0) for all f 2 Gl;s andt; t0 2 TC
��1(l) .The following subsection shows that this proposition is especially useful whenthe operations of D are de�ned by structural induction over terms of G , becausethe second condition of the proposition then follows straightforwardly from the�rst.

Proof of Correctness of Object Representations 171.3.2 A stack objectWe now give an example proof of partial implementation using the technique devel-oped in the previous subsection. The abstract speci�cation de�nes a sort of stacks;a subsort relation makes operations top and pop de�ned only on non-empty stacks.The concrete speci�cation implements stacks by means of arrays and pointers. Thisexample, adapted from [4], is well-known, but we present it here to demonstratethat the proof we give is every bit as trivial as one could hope (cf. the statementin [3] that `putting context induction into practise was less straightforward thanexpected').The OBJ code which de�nes the abstract speci�cation of stacks is given in thefollowing two modules:obj NAT is obj STACK is pr NAT .sort Nat . sorts NeStack Stack .op 0 : -> Nat . subsort NeStack < Stack .op s : Nat -> Nat . op empty : -> Stack .op p : Nat -> Nat . op push : Nat Stack -> NeStack .var N : Nat . op top_ : NeStack -> Stack .eq p(0) = 0 . op pop_ : NeStack -> Stack .eq p(s(N)) = N . var S : Stack . var I : Nat .endo eq top push(I,S) = I .eq pop push(I,S) = S .endoThe OBJ keyword sort precedes the declaration of a sort name, and the keywordop precedes the declaration of an operation name; these declarations de�ne thesignature of the module. Equations are preceded by the keyword eq; these andthe signature constitute the speci�cation of the module. The keyword pr (for`protecting') indicates that one module inherits the declarations of another; thusthe module STACK contains all the declarations of the module NAT.In order to demonstrate the use of signature morphisms in implementation, wegive a concrete implementation of stacks using arrays and pointers that does notdistinguish a subsort of non-empty stacks. The OBJ code for the concrete speci�-cation is given below:obj ARR is pr NAT .sort Arr .op nil : -> Arr .op put : Nat Arr Nat -> Arr .op _[_] : Arr Nat -> Nat .var I M N : Nat . var A : Arr .eq nil[N] = 0 .eq put(I,A,M)[N] = if M == N then I else A[N] fi .endoobj STACK is pr ARR .

18 Grant Malcolm and Joseph A. Goguensort Stack .op <<_;_>> : Nat Arr -> Stack .op 1st_ : Stack -> Nat .op 2nd_ : Stack -> Arr .op empty : -> Stack .op push : Nat Stack -> Stack .op top_ : Stack -> Nat .op pop_ : Stack -> Stack .var I N : Nat . var S : Stack . var A : Arr .eq 1st << N ; A >> = N .eq 2nd << N ; A >> = A .eq empty = << 0 ; nil >> .eq push(I,S) = << s(1st S) ; put(I, 2nd S, s(1st S)) >> .eq top S = (2nd S)[1st S] .eq pop S = << p(1st S) ; 2nd S >> .endoThe signature morphism � from the abstract to the concrete speci�cation mapsboth NeStack and Stack to the single sort Stack, and leaves the names of theoperations unchanged. Note that the types of the operations are changed, because� identi�es NeStack and Stack. Speci�cally, � is de�ned as follows.Nat 7! NatStack; NeStack 7! Stackempty : -> Stack 7! empty : -> Stackpush : Nat Stack -> NeStack 7! push : Nat Stack -> Stacktop : NeStack -> Nat 7! top : Stack -> Natpop : NeStack -> Stack 7! pop : Stack -> StackIf we let �A denote the signature of the abstract module, then �A
 also containsthe retract operationr NeStack,Stack : Stack -> NeStack .Because � identi�es Stack and NeStack, this operation is mapped to (cf. Propo-sition 26) the operationr Stack,Stack : Stack -> Stack .But by De�nition 20, the retract extension of the concrete speci�cation includesthe equation (8S : Stack) rStack,Stack(S) = S , which means that rStack,Stack isthe identity function in the concrete speci�cation, so we may safely ignore retractsin what follows. Moreover, since the names of the operations are unchanged bythis mapping, we can denote the �-translation of a term by the term itself.We now prove that the implementation of STACK is a partial behavioural imple-mentation, where the set of visible sorts is fNatg . For G , the set of generators,we take fempty; pushg ; for D , the set of de�ned functions, we take ftop; popg .

Proof of Correctness of Object Representations 19By Proposition 40, there are two proof obligations. The �rst is that the left- andright-hand sides of each equation are related by ^ :top push(I; S) ^ I(1.11) pop push(I; S) ^ S(1.12)The second proof obligation is that ^ is preserved by the operations of G . Sinceempty is a constant and ^ is reexive, we need only consider push:x1^ x2 and s1^ s2 imply push(x1; s1)^ push(x2; s2):(1.13)Requirement (1.11) is trivial, since the left-hand side is equal, in the concretespeci�cation, to I . To show (1.12) and (1.13), we use the following:Lemma 41 << 1st s ; put(x,2nd s,n) >> ^ s if for all i � 0 it is not thecase that pi(1st s) =EC
 n (i.e., if n > 1st s).This can be proved by induction on the structure of contexts; only contexts builtfrom top and pop need be considered.Now, to show (1.12): note that pop push(I; S) is equal in the concrete speci-�cation to << 1st S ; put(I, 2nd S, s(1st S)) >> and by Lemma 41, thisis related to S .Similarly, (1.13) is demonstrated as follows:push(x1,s1)^ push(x2,s2), f Proposition 38 gtop push(x1,s1)^ top push(x2,s2) ^pop push(x1,s1)^ pop push(x2,s2), f top push(X,S) reduces to X gx1^ x2 ^ pop push(x1,s1)^ pop push(x2,s2)(f (1.12) gx1^ x2 ^ s1^ s2This concludes the proof of partial implementation. Lemma 41, which relatespop push(I,S) to S, is the only part of the proof that is not extremely trivial:the remainder of the proof consists of rewriting terms by using equations.1.3.3 Several stack objectsHidden sorted speci�cation is well suited to the object paradigm because objectsmay be thought of as automata with hidden local states, whose behaviour is observ-able only through their visible inputs and outputs. The object oriented languageFOOPS [10] distinguishes between sorts and classes: the former refer to abstractdata types; the latter to abstract object classes. Thus, a FOOPS speci�cation

20 Grant Malcolm and Joseph A. Goguendistinguishes between hidden sorts for classes, and visible data sorts. A class ofobjects is speci�ed by declaring some methods, operations that modify the stateof an object, and some attributes, which give access to parts of an object's state.A method is typically de�ned by equations which state how that method modi�esan object's attributes. Our proof technique is particularly useful in this contextbecause the operations in a FOOPS speci�cation are divided into methods andattributes, which correspond to generators and de�ned functions. In the followingexample, we do not give all formal details, but rather the broad outlines of theproof. In particular, we do not consider order sortedness.The abstract speci�cation (adapted from [10]) describes a class Stackvar of stackvariables. The signature comprises that of NAT, as in the previous subsection, theclass Stackvar, and the following operations:me push : Nat Stackvar -> Stackvar .me pop : Stackvar -> Stackvar .at top : Stackvar -> Nat .at rest : Stackvar -> Stackvar .The FOOPS keyword `me' declares a method; `at' an attribute. The attribute restis intended to represent the `tail' of a stack variable. Note that this attribute hasobject values: one may think of stack variables as linked lists, whose state consistsof a natural number (its top), and a pointer to another stack variable (its rest).The methods push and pop are de�ned by the following equations, where N is avariable ranging over Nat, and SV is a variable ranging over Stackvar:top pop SV = top rest SV .rest pop SV = rest rest SV .top push(N,SV) = N .rest push(N,SV) = SV ! .The post�x operation ! in the last equation is a polymorphic operation that existsfor all FOOPS classes. Its operational semantics is that SV ! creates a copy ofthe object SV that has the same attributes. That is, for any attribute a and objecto , we have a(o !) = a(o) .We show that this speci�cation is implemented by a concrete speci�cation whichuses the abstract data type of stacks as de�ned in the previous subsection (though,for the sake of simplicity, we ignore its order sorted aspects). The concrete speci�-cation comprises the class name Stackvar, and two operations, one which assignsa value to a stack variable, and one which gives the value held by a stack variable:me _:=_ : Stackvar Stack -> Stackvar .at val_ : Stackvar -> Stack .The assignment method (:=) is de�ned by the following equation, where SV is avariable ranging over Stackvar, and S is a variable ranging over the sort Stack:val (SV := S) = S .

Proof of Correctness of Object Representations 21Thus stack variables in the concrete speci�cation may be thought of as cells whichhold values of sort Stack.The concrete implementation of the methods push and pop, and attributes topand rest, is de�ned by the following equations.push(N,SV) = SV := push(N, val SV) .pop SV = SV := pop val SV .top SV = top val SV .rest SV = SV ! := pop val SV .The operations push, etc., in the right-hand sides of these equations are the oper-ations from STACK. The last equation perhaps requires some explanation. In theabstract speci�cation, the attribute rest returns an object that is di�erent fromits argument (hence `!'), with value the `tail' of its argument (hence `pop').The visible equations of the abstract speci�cation hold in the concrete as aresult of these equations, so a proof of partial implementation need only considerthe hidden equations:rest pop SV = rest rest SV .rest push(N,SV) = SV ! .We use Proposition 40, with generators G = fpush; popg and de�ned functionsD = ftop; restg . This division is natural, because G contains all the methods ofthe abstract speci�cation, and D all the attributes. The proof obligations are:rest pop SV ^ rest rest SV(1.14) rest push(N,SV) ^ SV !(1.15) SV1^ SV2) push(N; SV1)^ push(N; SV2)(1.16) SV1^ SV2) pop SV1^ pop SV2(1.17)We use the following lemma.Lemma 42 If val SV1 = val SV2 then SV1^ SV2 .This lemma can be proved by induction on the structure of contexts built from D :since D contains only two operations, there are only two cases to consider.Now (1.14) and (1.15) are easy consequences. To show (1.16):push(N; SV1)^ push(N; SV2), f Proposition 38 gtop push(N,SV1)^ top push(N,SV2) ^rest push(N,SV1)^ rest push(N,SV2), f �rst conjunct trivial, de�nition of push grest (SV1 := push(N, val SV1))^rest (SV2 := push(N, val SV2))

22 Grant Malcolm and Joseph A. Goguen, f de�nition of rest g(SV1:= push(N,val SV1))! := val SV1 ^(SV2:= push(N,val SV2))! := val SV2(f see below gSV1^ SV2The last step uses the fact that SV := val SV'^ SV' , which is a consequence ofLemma 42. Finally, (1.17) follows straightforwardly from Proposition 38 and (1.14);we conclude that the partial implementation is correct.1.4 ConclusionWe have given a de�nition of implementation for hidden order sorted speci�ca-tions, and a technique for proving correctness of partial implementation by provingbehavioural satisfaction of equations in the concrete speci�cation. This techniqueleads to proofs based on term rewriting which seemmuch simpler than other proofsin the literature. Our approach is directly applicable to the object paradigm byassociating visible sorts with data types, and hidden sorts with object classes.Hidden sorted algebra leads to an abstract treatment of states of objects, and toa similarly abstract treatment of object implementation. The treatment of objectimplementation given by Costa et al [2] uses a concrete description of state inobject speci�cations. Showing correctness of object implementation then requiresa mapping from the states of the one object to the states of the other. In contrast,hidden sorted algebra provides a uni�ed treatment of states, abstract data typesand behaviour, abstracting away from details of how states are represented.One question not addressed in this paper is concurrency. Hidden sorted speci�-cations can be thought of as specifying networks of concurrent, interacting objects.Our approach to implementation is obviously applicable to serial evaluation byterm rewriting (as in OBJ), but less obviously to concurrent models of computation.Goguen and Diaconescu [8] give a construction for the concurrent interconnectionof collections of objects, and show how such interconnections can be enriched withinteractions between component objects. We hope to develop a sheaf-theoreticsemantics for FOOPS objects (as in [6]) which addresses such issues and extendsour notion of implementation to concurrent, interacting systems.AcknowledgementsThe research reported in this paper has been supported in part by grants from the Sci-ence and Engineering Research Council, ESPRIT Working Group 6071, IS-CORE, andFujitsu Laboratories Limited, and a contract with the Information Technology Promo-tion Agency, Japan, as part of the R & D of Basic Technology for Future Industries\New Models for Software Architecture" project sponsored by NEDO (New Energy andIndustrial Technology Development Organization).

References
[1] Rod Burstall and R�azvan Diaconescu. Hiding and Behaviour: an Institutional Approach.This volume.[2] Jos�e Felix Costa, Amilcar Sernadas, and Cristina Sernadas. Inductive objects. INESC,Lisbon, 1992.[3] Marie Claude Gaudel and I. Privara. Context induction: an exercise. Technical Report 687,LRI, Univ. Paris Sud, 1991.[4] Joseph Goguen. An algebraic approach to re�nement. In Dines Bjorner, C.A.R. Hoare,and Hans Langmaack, editors, Proceedings, VDM'90: VDM and Z { Formal Methods inSoftware Development, pages 12{28. Springer, 1990. Lecture Notes in Computer Science,Volume 428.[5] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe,and Ralph F. Wachter, editors, Topology and Category Theory in Computer Science, pages357{390. Oxford, 1991. Proceedings of a Conference held at Oxford, June 1989.[6] Joseph Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structuresin Computer Science, 11:159{191, 1992. Given as lecture at Engeler Festschrift, Z�urich,7 March 1989, and at U.K.-Japan Symposium on Concurrency, Oxford, September 1989;draft as Report CSLI-91-155, Center for the Study of Language and Information, StanfordUniversity, June 1991.[7] Joseph Goguen and R�azvan Diaconescu. A survey of order sorted algebra, 1992. Submittedto Mathematical Structures in Computer Science.[8] Joseph Goguen and R�azvan Diaconescu. Towards an algebraic semantics for the objectparadigm. In Proceedings, Tenth Workshop on Abstract Data Types. Springer, to appear1993.[9] Joseph Goguen and Jos�e Meseguer. Universal realization, persistent interconnection andimplementation of abstract modules. In M. Nielsen and E.M. Schmidt, editors, Proceedings,9th International Conference on Automata, Languages and Programming, pages 265{281.Springer, 1982. Lecture Notes in Computer Science, Volume 140.[10] Joseph Goguen and Jos�e Meseguer. Unifying functional, object-oriented and relational pro-gramming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, ResearchDirections in Object-Oriented Programming, pages 417{477. MIT, 1987.23

24 Grant Malcolm and Joseph A. Goguen[11] Joseph Goguen and Jos�e Meseguer. Order-sorted algebra I: Equational deduction for multipleinheritance, overloading, exceptions and partial operations. Theoretical Computer Science,105(2):217{273, 1992.[12] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to thespeci�cation, correctness and implementation of abstract data types. Technical Report RC6487, IBM T.J. Watson Research Center, October 1976. In Current Trends in ProgrammingMethodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages 80{149.[13] Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Kokichi Futatsugi, and Jean-PierreJouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications of Algebraic Speci-�cation using OBJ. Cambridge, to appear 1993. Also to appear as Technical Report fromSRI International.[14] Rolf Henniker. Context induction: a proof principle for behavioural abstractions. In A. Mi-ola, editor, Design and Implementation of Symbolic Computation Systems. Springer-VerlagLecture Notes in Computer Science 429, 1990.[15] C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271{281,1972.[16] Lucia Rapanotti and Adolfo Socorro. Introducing FOOPS. Oxford University ComputingLaboratory, 1992.[17] Oliver Schoett. Behavioural correctness of data representations. Science of Computer Pro-gramming, pages 43{57, 1990.

