Chapter 1

Proof of Correctness of Object
Representations

Grant Malcolm and Joseph A. Goguen

1.1 Introduction

This paper presents an algebraic account of implementation that is applicable to
the object paradigm. The key to its applicability is the notion of state: objects have
local states that are observable only through their outputs. That is, objects may
be viewed as abstract machines with hidden local state (as in [9]). Consequently,
a correct implementation need only have the required visible behaviour.

We use hidden order sorted algebra to formalise the object paradigm [4, 5, 8].
Advantages of an algebraic approach include a high level of intellectual rigour, a
large body of supporting mathematics, and simple, efficient proofs using only equa-
tional logic. A wide variety of extensions to equational logic have been developed
to treat various programming features, while preserving its essential simplicity. For
example, order sorted equational logic uses a notion of subsort to treat computa-
tions that may raise exceptions or fail to terminate.

Hidden sorted logic extends standard equational logic to capture an important
distinction between immutable data types, such as booleans and integers, and mu-
table objects, such as program variables and database entities. The terms abstract
data types and abstract object classes refer to these two kinds of entity. The former
represent ‘visible” data values; the latter represent data stored in a hidden state. In
hidden sorted equational logic, an equation of hidden sort need not be satisfied in
the usual sense, but only up to observability, in that only its visible consequences
need hold. Thus, hidden sorted logic allows greater freedom in implementations.

The simplicity of the underlying logic is important, because we want a tractable
approach in which implementations are as easily expressible and provable as pos-
sible. A specification is just a set of sentences in some logical system: that is, a
theory. An algebraic specification is then a set of equations. An implementation is
expressed by a theory morphism, which says how to interpret a theory into its im-
plementation in such a way that each model of the concrete theory gives a model of
the abstract theory. In this respect, our approach is similar to the seminal work of

2 Grant Malcolm and Joseph A. Goguen

Hoare on data refinement [15], in which correctness of implementation is expressed
by a mapping from concrete variables to the abstract objects which they represent.

The following section introduces notation for hidden order sorted specifications,
and summarises the main algebraic notions and results used in this paper. Order
sorted algebra is the basis for the semantics of the executable specification language
OBJ [13], and hidden order sorted algebra is the basis for an algebraic semantics of
the object oriented language FOOPS [16]. Our examples of implementations use
the notation of these languages. Section 1.3 presents implementations of hidden
order sorted specifications, and a technique for proving correctness. We believe
this technique leads to proofs that are simpler than those of other approaches.
Section 1.3.3 applies this technique to the implementation of collections of objects.

This paper is dedicated with warm affection to Tony Hoare, whose work on data
representation and on concurrency has been an inspiration to us.

1.2 Hidden order sorted algebra

Many sorted algebra (hereafter, ‘MSA’) was developed by the ADJ group [12] into
a form suitable for abstract data types in computer science. The logic of MSA
is first order equational logic, which is relatively simple. The following subsec-
tion summarises the main definitions and results of MSA, while Subsections 1.2.2
and 1.2.3 describe order sorted specification and hidden order sorted specification.

1.2.1 Many sorted algebra

An unsorted algebra is a set with ‘structure’ described by some operations and
equations. The set is referred to as the carrier of the algebra. MSA extends
this traditional view by defining an algebra to have any number of carriers. For
example, what we might call a ‘list algebra’ is a quadruple (C,n,®,e), where
the carriers are Cg1¢ and Crigy, and n: Cg1g — Crigt 18 a unary function, and
@ : Crist XCList — CList 18 an associative binary operation with neutral element
e € CLigt ; that is, the following equations are satisfied for all x,y,2 € CList:

rd(y@z) = (zdy)H=
echbr = x
rThe = x
This specification of list algebras has three components: the carriers, named by

the ‘sorts’” E1t and List; the operations 7, & and e; and the three equations
above. We address each of these aspects in turn.

Definition 1 Given aset S, an S-sorted set is a collection (A;)ses of sets indexed
by elements of 5. All set theoretic operations can be extended to operations on

Proof of Correctness of Object Representations 3

S-sorted sets; for example, if A and B are S-sorted sets, then AU B is defined
by (AUB), = A;U B, and A C B means that A; C B, for each s € 5.

An S-sorted function f: A — B is a collection of functions indexed by S
such that fs: Ay — B, for each s € S. Similarly, an S-sorted relation R from
A to B is a collection of relations indexed by S such that R, is from A, to B,
for each s € 5. We write the identity relation on an S-sorted set A as id4.

For example, the carrier of a list algebra is an {E1t,List}-sorted set.

Definition 2 A many sorted signature is a pair (5,%), where S is a set of sorts
and ¥ is an (S*x.S5)-sorted set of operation names. Thus, if [€ S* and s € S
then 3 ; is a set of operation names. If 3 is clear from the context, we sometimes
write f:[—s instead of f € ¥;, to emphasise that f is intended to denote an
operation mapping the sorts denoted by [to the sort denoted by s. Usually we
abbreviate (5,%) to X. Elements of ¥jj, are referred to as constants of sort s.

An operation can be declared to have more than one type, e.g., we might have
f € YisNYpy where [s is different from ') s". In this case, f is said to be
overloaded.

Signatures provide a uniform notation for specifying the carriers and operations
of many sorted algebras. Later sections consider implementing one specification
by another; in order to compare two specifications, we use signature morphisms,
which view one algebraic structure in terms of another.

Definition 3 A signature morphism ¢ : (5,X) — (5,Y) is a pair (¢1,¢2),
where ¢1 : S—5" maps sorts in S to sorts in S, and ¢ maps the operation
names of ¥ to operation names of ¥’ in such a way that for each f € ¥;; we
have ¢2(f) € X'gr(1),61(s) » Where ¢7(l) denotes ¢, applied componentwise to the

list I5ie., ¢ [] =[] and &7 (s1) = (¢1 5)(47 1).

A useful example of a signature morphism is the inclusion of one signature in
another: if S'C 5" and ¥ C ¥', then there is an inclusion ¢ : (5,%) — (57, ¥).

Signatures may be thought of as specifying algebras with no equations, and so
we may speak of the algebras of a signature. An algebra for a signature X is an
S-sorted set with the structure specified by the operation names of .

Definition 4 For a many sorted signature Y. a Y-algebra A is given by the
following data: an S-sorted set, usually denoted A, called the carrier of the
algebra; an element Ay € A, for each s € S and f € Xj,; and for each non-
empty list [€ S*, and each s € S and f € Y, an operation A; : A} — A,
where if [=sl...sn then A; = A, x--- xA,,.

Given Y-algebras A and B, a Y-homomorphism h: A — B is an S-sorted
function A — B such that:

e given a constant [€ Xy, then hy(Ay) = By;

e given a non-empty list [= sl...sn and f € ¥;, and av € Ay for ¢ =

L,...,n, then hs(Af(al,...;an)) = Bf(hs(al),... hs,(an)).

4 Grant Malcolm and Joseph A. Goguen

Thus, an algebra for a signature interprets the sort names as sets and the operation
names as operations, while homomorphisms preserve the structure of the algebra
in that they distribute over the operations of the algebra.

Given any signature, we can construct an algebra whose carriers are sets of terms
built up from the given operation names viewed as symbols of an alphabet.

Definition 5 Given a many sorted signature Y, the term algebra Ty is con-
structed as follows. Let UY be the set of all operation names in ¥; Ty is the
least S-sorted set of strings over the alphabet (UX)U {(,)} such that:

o for each constant symbol f € Xy, the string [€ (Tx),;
o for each non-empty list [= sl...sn € S*, and each f € ¥;,, and all
tr€ (Ts),; for 1 =1,...,n, the string f(t1...1n) € (Tx),.

We show that Ty is a Y-algebra by showing how the operation names of ¥ are
interpreted: for each constant f € Xjj,, the constant (Tg)f is the string f €
1%) ; for each non-empty list [= sl...sn € S* and operation name [€ ¥,
50 pty p .
the operation (Tx),: (Ts), — (Ts), maps a tuple of strings ¢1...%n to the string
f(tl...tn). The special symbols ‘(" and ‘)’ are used to emphasise that the carriers

of Ts are sets of strings; from now on we write *f(1,...,tn)" for ‘f(t1.. .tn)’.

This shows that Ty is a Y-algebra. In fact, if ¥ contains no overloaded symbols,
it has the special property of being an initial Y-algebra.

Definition 6 An initial Y-algebra is a Y-algebra A such that for each -algebra
B there is exactly one ¥-homomorphism A — B.

Proposition 7 If ¥ contains no overloaded operation names, then Ty is an initial
Y-algebra. For any Y-algebra A, the unique ¥-homomorphism h : Ty — A 1is
defined recursively as follows:

o for each constant symbol f &€ Xy, let hy(f) = Ay;

e for each non-empty list [= sl...sn and f € ¥, and t1 € (Ty)
i=1,....n,let hs(f(t1,...,tn)) = (Af)(hsa(tl),..., hs(in)).

for

st

The homomorphism % assigns a value in A to terms by interpreting the operation
names of Y as the corresponding operations on A. If ¥ contains overloaded
operations, an initial algebra can still be constructed as a term algebra where the
operation names are distinguished by ‘tagging’ them with their result sorts [7].

Let us now consider algebras with equations. An equation is usually presented
as two terms (the left- and right-hand sides) which contain variables. For example,
one of the equations for list algebras was (& y)PHz = «B(ydz), where x, y and
z are variables that range over CLig¢ . Because variables only serve as placeholders
for values of the sorts that they range over, any signature of constant symbols can
be used to provide variables.

Proof of Correctness of Object Representations 5

Definition 8 A ground signature is a signature (5,%) such that for all [€ S*
and s € S, if [#[] then ¥, =0, and such that the ¥, are disjoint; i.e., the
operation names of ground signatures are distinct constants.

We assume disjointness so that distinct variables cannot be identified.

Ground signatures are essentially the same thing as S-sorted sets, because any
S-sorted set X can be viewed as a ground signature by taking X;, to be X|
if [=[] and the empty set otherwise. Moreover, a ground signature ¥ can be
viewed as the S-sorted set (X[,)ses. This determines a bijection between ground
signatures and S-sorted sets; we take advantage of this by sometimes treating
ground signatures as S-sorted sets. Now it is a simple matter to characterise terms
containing variables:

Definition 9 Given a many sorted signature (5,%) and a ground signature (.5, X)
such that ¥ and X are disjoint, terms with variables from X are elements of
Tsux . Now Tyux can be viewed as a Y-algebra if we forget about the constants
in X : when we view Tyux as a Y-algebra, we write it as Tx(X).

A Y-equation is a triple (X,/,r), where (5, X) is a ground signature, and [
and r are terms in Tx(X) of the same sort; i.e., [,r € Tx(X), for some s € 5.
We write such an equation in the form (VX)[=r.

A specification is a triple (S,%, F), where (S,%) is a signature and E is a
set of ¥-equations. We usually abbreviate (9, %, F) to (X, F).

Algebras of a specification are Y-algebras that satisfy the equations; we turn
now to what it means for an algebra to satisfy an equation. The first issue is how
to interpret the left- and right-hand sides of an equation in an arbitrary Y-algebra.
Because Ty (X) is a Y-algebra, there is a homomorphism Ty — Tx(X), which is
the inclusion of variable-free terms into terms with variables. However, Ty is not
in general a (YUX)-algebra, because we do not know how to interpret the variables
in X . If we can assign values to those variables, then we can assign values to terms
containing those variables.

Proposition 10 Given a Y-algebra A and an S-sorted function 6 : X — A (often
called an ‘interpretation of variables’), there is a unique Y-homomorphism 8 :
Ts(X) — A such that é(e(:z;)) = 0(x) for all variables x, where ¢: X — Tx(X)
maps x € X to the string « € Ty (X);. The homomorphism is defined as follows:

e for each = € X, let 0,(x) = 0,(x);
o for each constant symbol f € ¥y, let 0,(f) = Ay;

e for each non-empty list [= sl...sn, f € Y;,, and all t7 € Tx(X)y for
i=1,...,n,let 6,(f(tl,...,tn)) = Af(0a(tl),.... 0 (tn)).

Equations have an implicit universal quantification over the variables. An alge-
bra satisfies a given equation iff the left- and right-hand sides of the equation are
equal under all interpretations of the variables:

6 Grant Malcolm and Joseph A. Goguen

Definition 11 A Y-algebra A satisfies a Y-equation (VX) ! = r iff 8(I) = 0(r)
for all : X — A. We write A |E e to indicate that A satisfies the equation e.
For a set E of equations, we write A |5 F iff A | e for each ¢ € E. Given a
specification (X, F), a (¥, F)-algebra is a ¥-algebra A such that A = E.

Just as each signature has an initial algebra, each specification has an initial
algebra. The initial algebra is constructed from the term algebra by identifying
terms that are ‘equal’ as a consequence of the given equations. This identification
is achieved using the notion of congruence.

Each equation gives rise to a relation in the following way: given a Y-algebra
A let e be a Y-equation (VX) [= r, and define the relation R(e): A ~ A by
a R(e) b iff @ = 0(l) and b= O(r) for some § : X — A. In other words, a is
related to b iff @ is an instance of the left-hand side and b is an instance of the
right-hand side, under some interpretation of the variables. We seek an equivalence
relation that contains all the relations derived from the equations of a specification,
and that allows the substitution of equals for equals.

Definition 12 Given a signature ¥ and a Y-algebra A, a ¥-congruence is an S-
sorted equivalence relation R such that the following substitutivity property
holds: for all f € ¥, and x,y € A;, if « Ry then Af(x) Rs Af(y), where if
[=sl...sn,then © € A; means v = xl...a2n with at € Ay;, and * R; y means
xt Rg; y2 for e =1,...,n.

If £ isa setof Y-equations and A is a Y-algebra, then =4 g denotes the least
Y-congruence on A which contains each equation in E'; that is, for each e € F,
R(e) € =45. We usually write =g instead of =7 5.

The Y-congruence =g allows the identification of terms which are equal as a result
of the equations F'.

Proposition 13 Given a specification (¥, F') where ¥ contains no overloaded oper-
ations, the initial (X, F)-algebra is the quotient term algebra Ty p = Ty /=5g.
That is, the carriers of T% p are sets of equivalence classes under =g ; specifically,
(Ter), = {lt]|t e (Tx),}, where [t] denotes the equivalence class of ¢ under
=p . The structure of Ty g as a Y-algebra is given by:

e for each constant symbol f € ¥, let (TE,E)f = [f];
e for each non-empty list [= sl...sn, f € ¥, and [ti] € (Tyg)
i=1,m et (Top) ([t .. [tn]) = [(Tx) (1, ... tn)].

for

st

The last equation is well-defined by the substitutivity property of the congruence
=p . By construction, Tk g satisfies the equations .

The above proposition refers to ‘the’ initial (X, F)-algebra, but a specification
may have more than one initial algebra. However, any two initial (X, F')-algebras
are isomorphic, because the unique homomorphisms from each algebra to the other
are inverses. Thus all initial algebras are ‘abstractly the same’. ADJ [12] define

Proof of Correctness of Object Representations 7T

an abstract data type to be the collection of initial algebras of a specification.
Such a collection is an equivalence class, since being isomorphic is an equivalence
relation, and this equivalence class may be represented by 7% . The importance of
initiality is that it gives a canonical interpretation of a specification as an abstract
data type. Moreover, completeness results state that a Y-equation is satisfied by
all (X, E)-algebras iff it can be proved using the equations E and the standard
properties of equality: reflexivity, symmetry, transitivity and substitutivity. This
allows the use of equational deduction in prototyping and proving properties of
specifications, for example, using OBJ [13].

1.2.2 Order sorted algebra

Partial operations and error handling play an important réle in many computer
science applications. A partial operation produces well-defined values only on some
subsort of its domain. For example, division in a field produces a well-defined value
only when the denominator is not zero. Order sorted algebra (hereafter, ‘OSA’) is
a variation on MSA that allows algebras with partial operations. It also provides
a model of inheritance that is useful in formalising the object paradigm. This
subsection summarises definitions and results of OSA that are relevant to this
paper. A comprehensive survey is given by Goguen and Diaconescu in [7].

Both OSA and MSA are based on the notion of S-sorted sets, but whereas in
MSA S is aset, in OSA S is a partially ordered set. It S is a set of sort names,
the partial order indicates the subsort relations between the carriers of algebras.
For a partially ordered set (5, <), we refer to < as the subsort ordering. We
sometimes extend this ordering to lists over S of equal length by sl...sn <
sl/...sn’ iff si < st/ for 1 =0,...,n.

Definition 14 Given a partial order (5, <), an equivalence class of the transitive
symmetric closure of < is called a connected component, and two elements of
the same connected component are said to be connected. A partial order (5, <)
is locally filtered iff any two connected sorts have a common supersort, that is,
iff whenever s and s’ are connected, there is an s” such that s,s" <s”.

The notion of local filtering allows many results of MSA to extend to OSA [7].

Definition 15 An (5, <)-sorted set is an S-sorted set A such that whenever s <
s then A; C Ay . An (9, <)-sorted function f: A — B isan S-sorted function
such that whenever s < s’ then f; C fo. An (9, <)-sorted relation R from A
to B is an S-sorted relation such that if s < s and z € A, and y € B,, then
x Ry y iff @ Ry y. We sometimes abbreviate (.5, <)-sorted’ to ‘S-sorted’.

Most definitions of MSA apply, mutatis mutandis, to OSA; the main differences
concern monotonicity.

8 Grant Malcolm and Joseph A. Goguen

Definition 16 An order sorted signature is a triple (5, <, ¥)where (5,<) is a
locally filtered partial order and (5,%) is a many sorted signature which satisfies
the monotonicity requirement: if f € Y¥;,,NY¥yy and [<!’ then s < .
We usually abbreviate (5, <,Y¥) to just X.

An order sorted signature morphism ¢: (5, <, Y) — (5, <", YY) is a many
sorted signature morphism such that ¢; : (5,<) — (5, <) is monotonic. A
signature morphism ¢ preserves overloading iff whenever f € ¥; ;N Yy o then
¢ applied to f € X, gives the same result as ¢, applied to f € Xy .

Monotonicity is also needed for the algebras of an order sorted signature.

Definition 17 Given an order sorted signature (S5,<,¥), an order sorted X-
algebra is a many sorted ¥-algebra A such that A is an (5, <)-sorted set and A
is monotonic, in the sense that for all f e ¥, NYpy if [<" and s <" then
At Ay — A, isequal to Ay : Ay — Ay on Ay

For order sorted Y-algebras A and B, an order sorted >-homomorphism
h : A — B is a many sorted Y-homomorphism which satisfies the restriction
condition: if s < s’ then h, = h5’|AS where h5’|AS denotes the restriction of

hsl . AS/ — BS/ to AS .

The construction of the term algebra is as in MSA, but requires the carrier of
Ts to be (5, <)-sorted, so that (Ty)s € (Ty)s whenever s < s'. In general, Ty
is not an initial ¥-algebra unless ¥ satisfies a regularity condition [11]:

Definition 18 An order sorted signature X is regular iff for any f € 3y 4 and
10 <11 there is a least pair (I,s) such that [0 <1 and f € ¥;,.

The importance of regularity is that terms can be parsed as having a least sort.
Goguen and Diaconescu [7] note that regularity is not essential, in that OSA can be
developed in greater generality under the assumption only of local filtering. The
construction of an initial algebra is then more complicated, and we do not give
details here, as all specifications in this paper are regular.

Unlike in MSA, the left- and right-hand sides of an equation need not have the
same sort; their sorts need only be connected.

Definition 19 Given an order sorted signature (5,<,Y), a ¥-equation is a triple
(X,l,r), where X is a ground signature disjoint from ¥ with [€ Tx(X), and
r € Ix(X), for some connected s,s’ € S. We use the notation (V.X)[=r.

The definitions of satisfaction of equations and congruence in OSA are as in MSA,
but with ‘S-sorted’ everywhere changed to ‘(.S, <)-sorted’. An order sorted spec-
ification is an order sorted signature together with a set £ of ¥-equations, and
a (X, E)-algebra is a Y-algebra which satisfies all equations in E. The quotient
term algebra Ty g is constructed as in MSA, dividing by the least (.5, <)-sorted
Y-congruence which extends the equations of the specification. If the signature is
regular, this gives an initial (X, F)-algebra.

Proof of Correctness of Object Representations 9

We end our summary of OSA with ‘retract’ specifications, which allow opera-
tions to be applied to arguments which may lie outside their domain of definition,
possibly resulting in values that are ‘ill-defined’ in the sense that they involve the
special ‘retract’ operations. This allows order sorted specifications to model partial
operations (see [11, 7] for a full treatment).

Definition 20 Given an order sorted specification P = (S, <, %, F), we write P®
for its retract extension (S5,<,X% E®), where X% is ¥ extended with an
operation 7 g : s1—s2 for each sl,s2 € S such that s2 < s1, and E® is F
extended with an equation (V.5 :s2) ry (5) =5 for each s2 < sl as above.

We wish the result of adding retracts to be a conservative extension of the given
specification; that is, for all t1,{2 € Ty, t1 =g t2 iff t1 =ge 12, i.e., the new
equations added by the introduction of retracts do not cause distinct terms of
Ts to become identified. Goguen and Meseguer [11] give sufficient conditions on
specifications for adding retracts to be conservative. These conditions go beyond
the scope of the present paper, but we note that all our example specifications are
such that their retract extensions are conservative.

1.2.3 Hidden order sorted algebra

Hidden sorted algebra was developed as a variation on MSA for objects with local
states [5, 8]. In a hidden sorted specification, the set of sort names is partitioned
into ‘visible’” and ‘hidden’ sorts. Operations which return hidden sorted values
correspond to the internal operations of an object, while visible sorted values cor-
respond to an object’s inputs and outputs. This subsection summarises the basic
definitions of hidden sorted algebra, and then combines it with OSA to give hidden
order sorted algebra (hereafter, ‘HOSA”).

Definition 21 A hidden sorted signature is a triple (5, V,X), where (5,Y) is a
many sorted signature and V C 5. The elements of V' are referred to as visible
sorts, and elements of S — V' as hidden sorts.

A hidden sorted signature morphism ¢ : (5, V,¥) — (5, V', ¥) is a many
sorted signature morphism which maps visible sorts to visible sorts and hidden
sorts to hidden sorts, i.e., s € V iff ¢1(s) € V'.

A hidden sorted specification is a hidden sorted signature together with a
set £ of ¥-equations (in the sense of MSA).

We might refer to the above as ‘pre-signature’ and ‘pre-signature morphism’ (and
similarly for the HOSA definitions below), since Goguen and Diaconescu [8] give
extra restrictions on signatures which correspond to aspects of object oriented
computation and make hidden sorted algebra an institution [1]. We do not make
these extra restrictions here as they are not necessary for our results. However, we
note that in [8] a hidden sorted specification includes a fixed ‘data algebra” D for
the visible sorts such that for any ¥-algebra A, D, = A, for all visible sorts v.

10 Grant Malcolm and Joseph A. Goguen

The definition of satisfaction differs from MSA in that only the visible conse-
quences of an equation need hold. The notion of ‘visible consequence’ is made
precise by defining contexts for terms:

Definition 22 Given a term t € (Ty),, a context for ¢ of sort s’ is a term
¢ € Tx({z})s where z is a new variable of sort s, i.e., a context is just a term
which contains a distinguished variable. We write Tx[z] instead of Tx({z}), and
if ¢ is a context for t, we write c[t] for the result of substituting ¢ for z in c.

Contexts of visible sort can be considered experiments which, applied to an ob-
ject’s hidden state, give visible outputs. The definition of satisfaction for HSA says
that two states are distinguished iff they give different results for some experiment,
and an equation is behaviourally satisfied if its left- and right-hand sides always
instantiate to states that cannot be distinguished by any experiment.

Definition 23 A Y-algebra A behaviourally satisfies a Y-equation ¢ of the
form (VX)I =7 (denoted A |=, ¢)iff A= (VX) ¢[l] = ¢[r] for all v € V and
¢ € Tx[z], . Implicitly, the variable z has the same sort as [and r. For a set £
of Y-equations, we write A =, F iff A=, e forall ec E.

If an equation has visible sort, then behavioural satisfaction is the same as satisfac-
tion in MSA, because for ¢ we can always choose the ‘empty context’ z € Tx[z], .
Behavioural satisfaction of equations can also be expressed more abstractly:

Proposition 2/ A =, E iff (=4r)|y C id4|, where R|, is the restriction of an
S-sorted relation R to the visible sorts of V' i.e., R|, is the V-sorted relation
(RU)UEV .

This can be read as saying that FE does not identify distinct elements of A of
visible sort, which we might summarise by saying there is ‘no confusion’.

A behavioural (¥, F)-algebra is a ¥-algebra A such that A =, E. The
notion of implementation that we use in the following sections is based on the idea
that an object is implemented by a behavioural algebra of its specification.

We now give the hidden sorted version of OSA.

Definition 25 An HOSA signature is a quadruple (5,V, <, ¥) where (5, <,Y)
is an order sorted signature, and the visible sorts V' C S partition the partially
ordered set S in the sense that whenever s < s’ then s ¢V iff s’ ¢ V.

An HOS signature morphism ¢ : (5,V, <, %) — (5, V', <)Y is an order
sorted signature morphism which maps visible sorts to visible sorts and hidden
sorts to hidden sorts in the sense that s € V iff ¢1(s) € V.

The definitions of algebra, equation, specification and retract are as in OSA,
but satisfaction of equations in HOSA only requires that the visible consequences
of an equation hold. Because of the order-sortedness of HOSA signatures, defin-
ing satisfaction in terms of contexts would require contexts that contain retracts.

Proof of Correctness of Object Representations 11

Burstall and Diaconescu [1] give an abstract categorical definition of behavioural
satisfaction for OSA, which is beyond the scope of the present paper. Moreover,
their definitions of HOSA signature, etc., are different from those given here; for
example, they require that the visible sorts have a fixed interpretation (cf. the
comments after Definition 21). Because of these differences, we say instead that
a Y-algebra A behaviourally satisfies F iff there is no confusion in the sense
of Proposition 24 (i.e., (=4.5)|,y C idaly). A behavioural (3, F)-algebra is a
Y-algebra A such that A behaviourally satisfies £'.

This definition of satisfaction generalises the definition for OSA, in that given an
order sorted specification (5, <, ¥, F), we can construct the HOSA specification
(5,9,<,%, E) where all sorts are visible; then for any (9, <,¥)-algebra A, we
have AEFE iff Al E.

Section 1.3 considers implementations using a translation from terms of the ab-
stract specification to terms of the concrete specification; this states how programs
of the abstract specification are to be ‘compiled’. The simplest way to achieve such
a translation is by a signature morphism: if we know how to translate operations
of the abstract specification, then we can translate terms built from those oper-
ations. Often the abstract signature is contained in the concrete; that is, all the
sorts and operations of the abstract specification are available in the concrete one.
In that case all terms over the abstract signature are also terms over the concrete
signature. However, non-inclusion translations are sometimes useful (see Subec-
tion 1.3.2). The following states how an arbitrary signature morphism extends to
a translation of terms.

Proposition 26 Every signature morphism ¢ : ¥ — ¥’ which preserves overloading
can be extended to a function ¢ such that ¢ : (Ix), — (TE/)¢1(S) for all s € 5.
This extension is defined as follows:

o for each constant symbol f € Xy, let ¢(f) = ¢2(f);
e for each non-empty list | = sl...sn, f € ¥, and all &1 € (Tx)y for

i=1,...,m,let 6(f(tL,....tn)) = (62(F)(S(tL), ..., (tn)).

If ¢ is an inclusion of S into S’ then ¢ is an S-sorted function Ty — Ty and if
Y C Y then ¢ is the unique inclusion homomorphism Ty — 7%/, so that terms
of 1Ty are also terms of 7%y .

Moreover, ¢ extends to ¢% : Txe — Twie by setting @3 (rs1.0) = Ty (1) (52) -
Finally, ¢ extends to ¢, : Tx(X), — Tx/(X')4,(5) for each s € S, where X[, =
{r € X5 | ¢1(s) = &'} ; thus, ¢ may change the sort but not the name of a variable.
Note that because all the variables of X are distinct (cf. Definition 8), ¢ cannot
identify distinct variables.

1.3 Implementation

This section defines implementation for HOSA specifications and presents a tech-
nique for proving correctness of implementation that is illustrated in two examples.

12 Grant Malcolm and Joseph A. Goguen

Let us now fix two HOSA specifications, A = (SA, <4, VA, XA, EA) and C =
(SC,<¢, VC,XC,EC), where A is for ‘abstract” and C is for ‘concrete’, plus a
signature morphism ¢ : XA — (' which preserves overloading. We also use the
following abbreviations:

Notation 27 Write TA for the carrier of the term algebra Tx4; TA® for that
of Tyae (cf. Definition 20); TA[z] for the contexts in Txa[z] and TA[z]® for
Tsaez] (cf. Definition 22); TA; for the terms of sort s, etc., and similarly for C';
and ¢ for ¢: TA — TC as well as for ¢® : TA® — TC® (cf. Proposition 26).

What do we mean by ‘A is implemented by "7 If we ignore hidden and or-
der sortedness, the answer is straightforward: all ground equalities in A, when

translated by ¢, should hold in C'; i.e.,
(1.1) ty =ga ty implies (1) =gc ¢(t2) forall t1,t € TA .

The intuitive meaning is that if ¢; is some program that gives result ¢ in the
abstract specification, then its translation should give the corresponding result in
the implementation. More formally, (1.1) states that the ¢-translations of the
ground consequences of the equations KA are entailed by EC'. It can be shown
that this is equivalent to requiring the ¢-translations of ground instances of the
equations in KA to be entailed by EC', i.e., that

(1.2) ¢(0(lhs)) =gc ¢(0(rhs)) for each (VX)lhs=rhs € EA and 0: X—TA .

This is equivalent to (1.1), but has a form that is generally easier to prove.
If we take hidden sortedness into account, we need only consider equalities of
visible sort, so that the requirement (1.1) for implementation becomes

(1.3) ty =ga ty implies (1) =gc ¢(t2) forall v € VA and ty,15 € TA, .

This is the definition given by Henniker in [14], though only for signature inclusions.
Henniker also proposes a method for proving implementation correctness based on
induction over the structure of contexts, by restating this condition in terms of
behavioural equivalence.

Definition 28 t,t' € TC are A-behaviourally equivalent, written ¢ ~ ¢’ iff for
all v € VA and ¢ € TA[z],, we have ¢(c)[t] =gc ¢(c)[t'], where ¢(c)[t] denotes
the ¢-translation of ¢ with the term ¢ substituted for z. Implicitly, if the variable
z has sort s, then ¢ and t' have sort ¢q(s).

It can be shown that (1.3) is equivalent to:
(1.4) ty =ga ty implies @(t1) ~ o(ty) for all s € SA and t1,15 € TA; .
Henniker shows that (1.3), and therefore (1.4), is equivalent to:

(1.5) @¢(0(lhs)) ~ ¢(A(rhs)) for each (VX)lhs=rhs € EA and 0: X—TA.

Proof of Correctness of Object Representations 13

The equivalence of (1.1) and (1.2) is mirrored in that of (1.4) and (1.5). Both
(1.2) and (1.5) have a form that simplifies the proof obligations. However, proofs
of (1.5) can still be surprisingly complicated (e.g., see [14]).

The situation is more complex for OSA because the definition of implemen-
tation has to consider well-definedness of terms, which may amount to termina-
tion of programs. Schoett [17] defines implementation for partial algebras, and
gives a necessary and sufficient condition in terms of a congruence between mod-
els of the abstract and concrete specifications. Schoett’s definition is stronger
than that given below: he restricts attention to terms all of whose subterms
are equal to a well-defined value (in our setting this means that they contain
no retract operations). For example, consider an abstract specification of stacks
with operations top, pop, empty and push (as in Section 1.3.2 below), where
top requires a non-empty stack as argument, and should satisfy the equation
(VX : Nat, S : Stack) top push(X,S5) = X. The term top push(0, pop empty)
can be viewed in two ways: it either gives the value 0, or else is undefined. The
first view corresponds to lazy evaluation, where terms with ill-defined subterms
can still have well-defined values; the second view, implicit in Schoett’s definition,
corresponds to call-by-value, where any term with an undefined subterm is itself
undefined. In Schoett’s call-by-value approach, an implementation of stacks may
allow top push(0, pop empty) to take any value at all. We consider ‘lazy’ im-
plementation important because many programming languages either have lazy
evaluation or else facilities for error handling.

Our definition of implementation in HOSA is that ' implements A iff whenever
a visible sorted term of TA® gives a well-defined value (i.e., a term of TA), then
the ¢-translation of that term gives the corresponding value in TC'.

Definition 29 A specification C' is a partial behavioural implementation of a
specification A via the signature morphism ¢ (we write ¢ : AC C')iff ¢t =gy0 1’
implies ¢(t) =gce ¢(t') for all v € VA, t € TAY and ' € TA,. We say that C
behaviourally implements A iff the above implication is an equivalence.

This definition of partial implementation generalises (1.3) to the order sorted case.
The difference between partial implementation and implementation is that in the
latter the mapping ¢ from TA® to TC® | or more properly from Tsje pio to
Tsco mee , is injective on the visible sorts in the sense that it doesn’t confuse dis-
tinct data values. Consequently, ‘trivial” implementations, in which all equations
are satisfied, are not allowed. If our definitions for HOSA had followed [8], in par-
ticular by requiring a fixed interpretation for visible data sorts, then ¢ : A C C
would imply that ¢ is injective on visible sorts because of their fixed interpreta-
tion. In the following, we concentrate on proofs of partial implementation, i.e., on
showing that terms equal in the abstract specification are equal in the concrete.

We note that if ¢ is a signature inclusion and ¢ : A C ' then any behavioural
algebra of C 1is also a behavioural algebra of A.

14 Grant Malcolm and Joseph A. Goguen
1.3.1 Proofs of partial implementation

One way to show that C' implements A is to construct an intermediate relation
R on C terms such that (a) if t =540 ' then the ¢-translations of ¢ and ¢’
are related by R, and (b) the restriction of R to visible sorted ¢-translations is
contained in =pse . Such a relation bridges the gap between the antecedent and
consequent in Definition 29. If R is also a ¥ A®-congruence, then (a) holds iff R
extends the ground instances of the equations in KA® . This is the intuition behind
Proposition 31 below, which is our main technical result. Its statement uses the
following:

Notation 30 If R is a relation on T'C®, then the relation R? on TA® is defined
for ¢,4' € TA® by: t R® ' iff &(1) R ¢(1).

Proposition 31 ¢ : AT C if there exists an equivalence relation R on TC® such
that R? is a ¥ A®-congruence and

(1.6) O(lhs) R® O(rhs) for each (VX)lhs=rhs € EA® and 0: X—TA®
(1.7) if ¢t R®¢" then () =pee ¢(') forall v € VA, t € TAY and t' € TA,.

Proof: The relation =g4e is by definition the least ¥ A®-congruence satisfying
(1.6), so =p4e € R?. To show that ¢: ACC,fix ve VA, t € TAY | ¢/ € TA,;
if t =p40 ' then because =g 0 C R?, we have t R® t', and since t and ' are
of visible sort, (1.7) gives ¢(t) =gce ¢(t') as desired.

A weaker, but very useful version of this result is obtained by strengthening (1.6):

Proposition 32 For any relation R on TC® | condition (1.6) of Proposition 31
follows from

(1.8) =gce C R,
(1.9) é(lhs) R? é(rhs) for each (VX)lhs=rhs € FA and f: X—TA® .

Proof: FEA® consists of EA plus equations of the form (V.S : 52) ry (5) =

By construction, KC® contains the equation (VS': ¢1(52)) 74, (s1),61(s2)(S) = ’,
so for any 0 : {S}—>TA®, we have ¢(0(ra 52(S))) = g, (s1),61(s2)(0(0 () =g
#(0(S)). Therefore by (1.8), O(rs.2(S)) R? 6(S), and Combmmg this with ()
gives (1.6).

The weakening of Proposition 31 by replacing (1.6) with (1.8) and (1.9) is useful
because with (1.8), in proving that two terms are related by R we may freely
rewrite those terms using the equations of FC® ; moreover, the example relations
R that we use below satisfy (1.8), so that in proving partial implementation, we
may concentrate on proving (1.9), ignoring the retract equations.

To use these results, we need a suitable relation R. A likely candidate is be-
havioural equivalence, which we could define as in Definition 28; but the following
relation is more general :

Proof of Correctness of Object Representations 15

Definition 33 For t,t' € TC?, equivalence up to definition, denoted t ~ ¢/,
is defined by: t =gce t" < 1/ =gce t” for all 1" € TC.

Note that if t,¢' € TC', then t ~ ' iff t =gce .

Definition 34 For any relation R on T'C?, behavioural R-equivalence is de-

fined for ¢,1' € TC® by t R1' iff ¢(c)[t] R ¢(c)[t'] forall v € VA and ¢ € TA[Z]?.

Two natural choices for R in this definition are =gce and ~. The first is
sufficient for the examples given below, but the second is more general. FEach
choice satisfies condition (1.8):

Proposition 35 When R is =gge or ~, then =gce C R.

We note that behavioural =gce-equivalence is the same as =@ for visible sorts,
because if ¢ and ¢’ are of visible sort, then we may take ¢ to be the empty context,
that is, ¢ = 2, so that ¢t =gce t'.

In the sequel, we use only behavioural ~-equivalence, which we denote ~, and
refer to simply as behavioural equivalence i.e.,

(1.10) t~t i (Yo e V)(Vee TA[Z]D) 6(c)[t] = é(c)[t] -

However, the results of this section can equally well be developed for behavioural
=pce-equivalence.

The reader may check that = satisfies all requirements of Proposition 31 except
(1.6). From Propositions 32 and 35, we obtain:

Corollary 36 ¢ : AE (' if all equations of KA are behaviourally satisfied by ',
i.e., if O(lhs) ~? O(rhs) for each (VX)lhs=rhs in FA and 0: X— TA®.

This result can still lead to complicated proofs by context induction. A simpler
proof method is obtained by splitting the signature of A® in two: suppose that
YA® = GUD . (The letters stand for ‘Generators’ and ‘Defined functions’ to sug-
gest the decomposition that we have in mind; however, we make no assumptions
about GG or D.) Typically, in proving that an equation is behaviourally satisfied,
we wish to show that it holds in contexts made from defined functions only. This
agrees with the intuition behind behavioural equivalence, that two terms are be-
haviourally equivalent if the same visible information can be extracted from each of
them. Extracting information corresponds to applying a defined function, whereas
constructors may be thought of as adding new information. This gives a notion of
behavioural equivalence that is easier to check:

Definition 37 For t,t' € TC®, we define t — ' iff ¢(c)[t] ~ &(c)[t'] for all
v € VA and ¢ € TD]z],, where T'D[z], denotes the set Tp[z], of contexts built
from the operations of D .

16 Grant Malcolm and Joseph A. Goguen

A useful consequence of this definition is that terms of hidden sort are behaviourally
equivalent iff their images under each operation of D are behaviourally equivalent.
This is used in Subsections 1.3.2 and 1.3.3, in examples where all derived functions
are unary, an assumption that allows us to state the property concisely:

Proposition 38 If all the operations of D) have only one argument, then for o €
SA—VA and t,t' € TCY , we have t — ' iff (¢ f)(t) — (o2 f)(') for each
re SA and fe Dy, .

The relation — is an equivalence relation, it contains =p-e , and its restric-
tion to visible sorts is the same as behavioural equivalence; moreover, —¢ is a
D-congruence, so to use Proposition 32, we need only show that it is also a G-
congruence. In fact, there is a nice relationship between our two notions of be-

havioural equivalence: from D C Y A%, it follows that ~ C —;

; moreover, if —

is also a G-congruence then the following proposition shows that — C &, and so

— =R,

Proposition 39 — =~ if t — t' implies (¢2 f)(x) — (¢2 f)(y) for all f € G
and t,1' € TC%;‘(I)'

Proof: We have already noted that — D a, so it suffices to show that — C ~.
Now —? is a D-congruence, so if it is also a (G-congruence (as stated in the

condition above), then because ¥A® = G U D, it is a ¥A%-congruence. So:

t—1t

= { —® is a congruence }
(Vo € VA)(Ve e TA[Z]Y) ¢(c)[t] — o(c)[t’]

= { ~lvac~}
(Vo € VA)(Ve € TA[2])) é(c)[t] ~ ¢(c)[t]

& {(1.10) }
t =t

Corollary 36 and Proposition 39 together give the following sufficient condition
for implementation:

Proposition 40 ¢ : AC C if 0(lhs) —* 0(rhs) for each (VX)lhs=rhs in EA and
0: X—TA® and if ¢t — ¢ implies (¢a f)(t) — (¢ f)(¢') for all f € G;, and
t,t' e TCh .

The following subsection shows that this proposition is especially useful when
the operations of D are defined by structural induction over terms of G, because
the second condition of the proposition then follows straightforwardly from the
first.

Proof of Correctness of Object Representations 17
1.3.2 A stack object

We now give an example proof of partial implementation using the technique devel-
oped in the previous subsection. The abstract specification defines a sort of stacks;
a subsort relation makes operations top and pop defined only on non-empty stacks.
The concrete specification implements stacks by means of arrays and pointers. This
example, adapted from [4], is well-known, but we present it here to demonstrate
that the proof we give is every bit as trivial as one could hope (cf. the statement
in [3] that ‘putting context induction into practise was less straightforward than
expected’).

The OBJ code which defines the abstract specification of stacks is given in the
following two modules:

obj NAT 1is obj STACK is pr NAT .

sort Nat . sorts NeStack Stack .

op O : -> Nat . subsort NeStack < Stack .

op s : Nat -> Nat . op empty : -> Stack .

op p : Nat -> Nat . op push : Nat Stack -> NeStack .

var N : Nat . op ‘top_ : NeStack -> Stack .

eq p(0) = 0. op pop_ : NeStack -> Stack .

eq p(s()) = N . var S : Stack . var I : Nat .
endo eq top push(I,S) = I .

eq pop push(I,S) = S .
endo

The OBJ keyword sort precedes the declaration of a sort name, and the keyword
op precedes the declaration of an operation name; these declarations define the
signature of the module. Equations are preceded by the keyword eq; these and
the signature constitute the specification of the module. The keyword pr (for
‘protecting’) indicates that one module inherits the declarations of another; thus
the module STACK contains all the declarations of the module NAT.

In order to demonstrate the use of signature morphisms in implementation, we
give a concrete implementation of stacks using arrays and pointers that does not
distinguish a subsort of non-empty stacks. The OBJ code for the concrete specifi-
cation is given below:

obj ARR is pr NAT .
sort Arr .
op nil : -> Arr .
op put : Nat Arr Nat -> Arr .
op _[_] : Arr Nat -> Nat .

var I M N : Nat . var A : Arr .

eq nil[N] = 0 .

eq put(I,A,M)[N] = if M == N then I else A[N] fi .
endo

obj STACK is pr ARR .

18 Grant Malcolm and Joseph A. Goguen

sort Stack .

op <<_;_>> : Nat Arr -> Stack .

op 1st_ : Stack -> Nat .

op 2nd_ : Stack -> Arr .

op empty : -> Stack .

op push : Nat Stack -> Stack .

op top_ : Stack -> Nat .

op pop- : Stack -> Stack .

var I N : Nat . var S : Stack . var A : Arr .

eq 1st << N ; A > = N.
eq 2nd << N ; A> = A .
eq empty = << 0 ; nil >> .
eq push(I,S) = << s(ist 3) ; put(I, 2nd S, s(lst S)) >> .
eq top S = (2nd S)[1st S]
eq pop S = << p(lst S) ; 2nd S >> .
endo

The signature morphism ¢ from the abstract to the concrete specification maps
both NeStack and Stack to the single sort Stack, and leaves the names of the
operations unchanged. Note that the types of the operations are changed, because
¢ identifies NeStack and Stack. Specifically, ¢ is defined as follows

Nat Nat

Stack, NeStack Stack
empty : -> Stack

push : Nat Stack -> NeStack
top : NeStack -> Nat

pop : NeStack -> Stack

empty : -> Stack
push : Nat Stack -> Stack
top : Stack -> Nat

1171 11

pop : Stack -> Stack

If welet XA denote the signature of the abstract module, then ¥ A® also contains
the retract operation

T NeStack,Stack : Stack -> NeStack .

Because ¢ identifies Stack and NeStack, this operation is mapped to (cf. Propo-
sition 26) the operation

T Stack,Stack : otack -> Stack .

But by Definition 20, the retract extension of the concrete specification includes
the equation (VS : Stack) rstack,stack(S) = S, which means that rsiack stack 18
the identity function in the concrete specification, so we may safely ignore retracts
in what follows. Moreover, since the names of the operations are unchanged by
this mapping, we can denote the ¢-translation of a term by the term itself.

We now prove that the implementation of STACK is a partial behavioural imple-
mentation, where the set of visible sorts is {Nat}. For G, the set of generators,
we take {empty,push}; for D, the set of defined functions, we take {top,pop}.

Proof of Correctness of Object Representations 19

By Proposition 40, there are two proof obligations. The first is that the left- and
right-hand sides of each equation are related by —:

(1.11) top push(I,S) — I
(1.12) pop push(I,S) — S

The second proof obligation is that — is preserved by the operations of . Since
empty is a constant and — 1is reflexive, we need only consider push:

(1.13) x1-—x2 and s1— s2 imply push(xl,s1)— push(x2,s2).

Requirement (1.11) is trivial, since the left-hand side is equal, in the concrete
specification, to I. To show (1.12) and (1.13), we use the following:

Lemma /1 << 1st s ; put(x,2nd s,n) >> — s if for all z > 0 it is not the
case that p'(1st s) =gce n (i.e., if n > 1st s).

This can be proved by induction on the structure of contexts; only contexts built
from top and pop need be considered.

Now, to show (1.12): note that pop push(I,S) is equal in the concrete speci-
fication to << 1st S ; put(I, 2nd S, s(ist S)) >> and by Lemma 41, this
is related to S.

Similarly, (1.13) is demonstrated as follows:

push(xl,s1) — push(x2,s2)

= { Proposition 38 }
top push(xl,sl) — top push(x2,s2) A
pop push(xl,sl) — pop push(x2,s2)

= { top push(X,S) reducesto X }
x1—x2 A pop push(xl,sl) — pop push(x2,s2)
< {(1.12) }

x1—x2 A s1-—s2

This concludes the proof of partial implementation. Lemma 41, which relates
pop push(I,S) to S, is the only part of the proof that is not extremely trivial:
the remainder of the proof consists of rewriting terms by using equations.

1.3.3 Several stack objects

Hidden sorted specification is well suited to the object paradigm because objects
may be thought of as automata with hidden local states, whose behaviour is observ-
able only through their visible inputs and outputs. The object oriented language
FOOPS [10] distinguishes between sorts and classes: the former refer to abstract
data types; the latter to abstract object classes. Thus, a FOOPS specification

20 Grant Malcolm and Joseph A. Goguen

distinguishes between hidden sorts for classes, and visible data sorts. A class of
objects is specified by declaring some methods, operations that modify the state
of an object, and some attributes, which give access to parts of an object’s state.
A method is typically defined by equations which state how that method modifies
an object’s attributes. Our proof technique is particularly useful in this context
because the operations in a FOOPS specification are divided into methods and
attributes, which correspond to generators and defined functions. In the following
example, we do not give all formal details, but rather the broad outlines of the
proof. In particular, we do not consider order sortedness.

The abstract specification (adapted from [10]) describes a class Stackvar of stack
variables. The signature comprises that of NAT, as in the previous subsection, the
class Stackvar, and the following operations:

me push : Nat Stackvar -> Stackvar .
me pop : Stackvar -> Stackvar .

at top : Stackvar -> Nat

at rest : Stackvar -> Stackvar .

The FOOPS keyword ‘me’ declares a method; ‘at’ an attribute. The attribute rest
is intended to represent the ‘tail” of a stack variable. Note that this attribute has
object values: one may think of stack variables as linked lists, whose state consists
of a natural number (its top), and a pointer to another stack variable (its rest).

The methods push and pop are defined by the following equations, where N is a
variable ranging over Nat, and SV is a variable ranging over Stackvar:

top pop SV = +top rest SV .
rest pop SV = rest rest SV .
top push(N,SV) = N .

rest push(N,SV) = SV !

The postfix operation ! in the last equation is a polymorphic operation that exists
for all FOOPS classes. Its operational semantics is that SV ! creates a copy of
the object SV that has the same attributes. That is, for any attribute a and object
o, we have a(o !) = a(o) .

We show that this specification is implemented by a concrete specification which
uses the abstract data type of stacks as defined in the previous subsection (though,
for the sake of simplicity, we ignore its order sorted aspects). The concrete specifi-
cation comprises the class name Stackvar, and two operations, one which assigns
a value to a stack variable, and one which gives the value held by a stack variable:

me :=_ : Stackvar Stack -> Stackvar .

at val_ : Stackvar -> Stack .

The assignment method (:=) is defined by the following equation, where SV is a
variable ranging over Stackvar, and S is a variable ranging over the sort Stack:

val (SV :=38) = S .

Proof of Correctness of Object Representations 21

Thus stack variables in the concrete specification may be thought of as cells which
hold values of sort Stack.

The concrete implementation of the methods push and pop, and attributes top
and rest, is defined by the following equations.

push(N,SV) = SV := push(N, val SV)
pop SV = SV := pop val SV .

top SV = +top val SV .

rest SV = SV ! := pop val SV .

The operations push, etc., in the right-hand sides of these equations are the oper-
ations from STACK. The last equation perhaps requires some explanation. In the
abstract specification, the attribute rest returns an object that is different from
its argument (hence !”), with value the ‘tail’ of its argument (hence ‘pop’).

The visible equations of the abstract specification hold in the concrete as a
result of these equations, so a proof of partial implementation need only consider
the hidden equations:

rest pop SV = rest rest SV .
rest push(N,SV) = SV !

We use Proposition 40, with generators G = {push, pop} and defined functions
D = {top,rest}. This division is natural, because G contains all the methods of
the abstract specification, and D all the attributes. The proof obligations are:

(1.14) rest pop SV — rest rest SV

(1.15) rest push(N,SV) — SV !

(1.16) SVi—SV2 = push(N,SV1) — push(N,SV2)
(1.17) Svi—8SV2 = pop SV1 — pop SV2

We use the following lemma.
Lemma 42 1f val SV1 = wval SV2 then SV1.— SV2.

This lemma can be proved by induction on the structure of contexts built from D :
since D contains only two operations, there are only two cases to consider.
Now (1.14) and (1.15) are easy consequences. To show (1.16):

push(N, SV1) — push(N, SV2)

= { Proposition 38 }
top push(N,SV1) — top push(N,SV2) A
rest push(N,SV1) — rest push(N,SV2)

4 { first conjunct trivial, definition of push }
rest (SV1 := push(N, val SV1)) —
rest (SV2 := push(N, val SV2))

22 Grant Malcolm and Joseph A. Goguen

4 { definition of rest }
(SV1i:= push(N,val SV1))! = val SV1 —
(SV2:= push(N,val SV2))! = val SV2

<= { see below }
SV1 — SV2

The last step uses the fact that SV := val SV’ — SV’ , which is a consequence of
Lemma42. Finally, (1.17) follows straightforwardly from Proposition 38 and (1.14);
we conclude that the partial implementation is correct.

1.4 Conclusion

We have given a definition of implementation for hidden order sorted specifica-
tions, and a technique for proving correctness of partial implementation by proving
behavioural satisfaction of equations in the concrete specification. This technique
leads to proofs based on term rewriting which seem much simpler than other proofs
in the literature. Our approach is directly applicable to the object paradigm by
associating visible sorts with data types, and hidden sorts with object classes.

Hidden sorted algebra leads to an abstract treatment of states of objects, and to
a similarly abstract treatment of object implementation. The treatment of object
implementation given by Costa et al [2] uses a concrete description of state in
object specifications. Showing correctness of object implementation then requires
a mapping from the states of the one object to the states of the other. In contrast,
hidden sorted algebra provides a unified treatment of states, abstract data types
and behaviour, abstracting away from details of how states are represented.

One question not addressed in this paper is concurrency. Hidden sorted specifi-
cations can be thought of as specifying networks of concurrent, interacting objects.
Our approach to implementation is obviously applicable to serial evaluation by
term rewriting (as in OBJ), but less obviously to concurrent models of computation.
Goguen and Diaconescu [8] give a construction for the concurrent interconnection
of collections of objects, and show how such interconnections can be enriched with
interactions between component objects. We hope to develop a sheaf-theoretic
semantics for FOOPS objects (as in [6]) which addresses such issues and extends
our notion of implementation to concurrent, interacting systems.

Acknowledgements

The research reported in this paper has been supported in part by grants from the Sci-
ence and Engineering Research Council, ESPRIT Working Group 6071, IS-CORE, and
Fujitsu Laboratories Limited, and a contract with the Information Technology Promo-
tion Agency, Japan, as part of the R & D of Basic Technology for Future Industries
“New Models for Software Architecture” project sponsored by NEDO (New Energy and
Industrial Technology Development Organization).

References

(1]

Rod Burstall and Razvan Diaconescu. Hiding and Behaviour: an Institutional Approach.
This volume.

José Felix Costa, Amilcar Sernadas, and Cristina Sernadas. Inductive objects. INESC,

Lisbon, 1992.

Marie Claude Gaudel and I. Privara. Context induction: an exercise. Technical Report 687,

LRI, Univ. Paris Sud, 1991.

Joseph Goguen. An algebraic approach to refinement. In Dines Bjorner, C.A.R. Hoare,
and Hans Langmaack, editors, Proceedings, VDM’90: VDM and Z - Formal Methods in
Software Development, pages 12-28. Springer, 1990. Lecture Notes in Computer Science,
Volume 428.

Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe,
and Ralph F. Wachter, editors, Topology and Category Theory in Computer Science, pages
357-390. Oxford, 1991. Proceedings of a Conference held at Oxford, June 1989.

Joseph Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structures
m Computer Science, 11:159-191, 1992. Given as lecture at Engeler Festschrift, Zurich,
7 March 1989, and at U.K.-Japan Symposium on Concurrency, Oxford, September 1989;
draft as Report CSLI-91-155, Center for the Study of Language and Information, Stanford
University, June 1991.

Joseph Goguen and Razvan Diaconescu. A survey of order sorted algebra, 1992. Submitted
to Mathematical Structures in Computer Science.

Joseph Goguen and Razvan Diaconescu. Towards an algebraic semantics for the object
paradigm. In Proceedings, Tenth Workshop on Abstract Data Types. Springer, to appear
1993.

Joseph Goguen and José Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. In M. Nielsen and E.M. Schmidt, editors, Proceedings,
9th International Conference on Automata, Languages and Programming, pages 265-281.
Springer, 1982. Lecture Notes in Computer Science, Volume 140.

Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational pro-
gramming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research
Directions in Object-Oriented Programming, pages 417-477. MIT, 1987.

23

24

[11]

[12]

[13]

[14]

Grant Malcolm and Joseph A. Goguen

Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical Computer Science,

105(2):217-273, 1992.

Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to the
specification, correctness and implementation of abstract data types. Technical Report RC
6487, IBM T.J. Watson Research Center, October 1976. In Current Trends in Programming
Methodology, IV, Raymond Yeh, editor, Prentice-Hall, 1978, pages 80-149.

Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications of Algebraic Speci-
fication using OBJ. Cambridge, to appear 1993. Also to appear as Technical Report from
SRI International.

Rolf Henniker. Context induction: a proof principle for behavioural abstractions. In A. Mi-
ola, editor, Design and Implementation of Symbolic Computation Systems. Springer-Verlag
Lecture Notes in Computer Science 429, 1990.

C.A R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271-281,
1972.

Lucia Rapanotti and Adolfo Socorro. Introducing FOOPS. Oxford University Computing
Laboratory, 1992.

Oliver Schoett. Behavioural correctness of data representations. Science of Computer Pro-
grammaing, pages 43-57, 1990.

