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1 IntroductionThe tile model [32, 35] is a formalism for modular descriptions of the dynamic evolution of con-current systems. The idea is that a set of rules de�nes the behaviour of certain basic modules,which may interact through their interfaces. Roughly speaking, we consider a module to be justan open (e.g., partially speci�ed) con�guration of the system. Then, the behaviour of a wholesystem is de�ned as a coordinated evolution of its submodules. The name \tile" is due to thegraphic representation of such rules. Graphically, a tile has the form� //s��a ��� b� //s0 �and textually it is written s a�!b s0, stating that the initial con�guration s of the system evolves tothe �nal con�guration s0 producing an e�ect b, which can be observed by the rest of the system.However, such a step is allowed if and only if the subcomponents of s (which is in general anopen con�guration) evolve to the subcomponents of s0, producing the trigger a. The vertices� of the tile are called interfaces. Tiles can be composed horizontally (through side e�ects),vertically (computational evolutions of a certain component), and in parallel (concurrent steps)to generate larger steps. It is evident that the tile model extends rewriting logic [50] (in the non-conditional case), taking into account rewriting with side e�ects and rewriting synchronization, andcan be naturally equipped with observational equivalences and congruences based on e�ects. Infact, in (non-conditional) rewriting systems, both triggers and e�ects are just identities; thereforerewriting steps may be applied freely, i.e., without interacting with the rest of the system. Thus,unconditional rewriting logic is obviously embedded in the tile formalism as a special case. Themain goal of this paper is to investigate this connection in the opposite direction extending theresults of [58] to the case in which con�gurations and e�ects rely on common auxiliary structures(e.g., for tupling, projecting or permuting interfaces). This is useful because there exist severallanguages based on rewriting logic, and the implementation of a conservative mapping of tiles intorewriting logic supports the execution of tile speci�cations. The nature of such structures will bemore evident after a brief survey of the motivation for the introduction of tile systems, and of thetechniques and tools employed in their semantical characterization.The rich compositional nature of the tile model is the result of a progressive exploration ofmathematical structures allowing for �nitary descriptions of complex context-dependent transitionsystems. In Computer Science, (labelled) transition systems are one of the most widely usedformalisms, intuitively arising from the operational understanding of a computational system.First, an abstract description of the system is de�ned, whose set of con�gurations (i.e., the feasibleassignments to memory cells, registers, data structures, etc.) gives the set of states S of thetransition system. Then, a transition relation T � S � S is de�ned, representing the possibleevolutions of the system. A set of actions (or labels)A is sometimes introduced to take into accountalso observational aspects: T becomes a ternary relation T � S �A�S, and an external observermay have discriminating capabilities over di�erent evolutions between the same pair of states. Inmany cases, taking advantage of a possible compositional structure over the states, the relationT can be inductively de�ned according to that structure. As an example, the states of a Petrinet [66] are multisets of places, an elementary evolution is a transition t that rewrites a multiset utto a multiset vt, and a transition can �re (i.e., be executed) in every state u with ut � u, leadingto the state v = u 	 ut � vt, where � , 	 , and � respectively denote multiset inclusion,di�erence and union. Thus, evolutions of a multiset are de�ned in terms of its subsets, anddisjoint subsets may concurrently evolve. Another signi�cant paradigm is given by term rewritingsystems [50], where the states are terms of an algebra, and elementary evolutions are rewritingsteps obtained (by closure under substitution and contextualization) from a set of rewriting rules(with free variables). Also the well-known structural operational semantics approach (SOS) [65]4



is a relevant generalization of this kind of methodology. We are especially interested in SOSspeci�cations for process description algebras [2, 39, 59], where states are terms of a free algebra {whose operators re
ect the basic composition aspects of the system { and a set of inference rules(guided by the structure of the states) inductively de�nes the transition relation. In recent years,the expressiveness and properties of a variety of SOS rule formats have been investigated andcompared [67, 5, 37, 4]. Context systems [43], and structured transition systems [22, 26] are twointeresting developments of the SOS approach. In the former, the transition relation is extended tocontexts (that is, terms where free variables may occur) instead of closed terms, thus characterizingthe behaviour of partially speci�ed components of a system. In the latter, also transitions areequipped with an algebraic structure, usually by lifting the structure de�ned on the states in sucha way that computationally equivalent evolutions are identi�ed in the algebra of transitions. Asimilar methodology is also at the basis of rewriting logic [51, 53]: a logic theory is associated to aterm rewriting system, in such a way that each computation represents a sequent entailed by thetheory. The entailment relation is speci�ed by means of simple inference rules, accordingly to theterm algebra under consideration. As an important result, equivalent computations correspond tothe same sequent, and therefore deduction becomes equivalent to concurrent computing.The tile model [32, 35] allows expressing rewrite rules with side e�ects, extending both the SOSapproach and also context systems to a framework where the rules have a very general format,and, as already noticed, trigger and e�ects extends also rewriting systems with a mechanism ofrewriting synchronization. This aspect is very important when modelling process algebras viaa rewrite system, because the behaviour of most process algebras depends on the interactionbetween agents and \the rest of the world". By analogy with rewriting logic, the tile model alsocomes equipped with a purely logical presentation [35], where tiles are just considered as special(proof) sequents subject to certain inference rules. Since rewriting logic can be considered asa semantic framework for the study of concurrent systems with state changes, tile logic can bethought of as a logic of concurrent systems with conditional state changes and synchronization.Given a tile system, the associated tile logic is obtained by adding some auxiliary tiles and thenfreely composing in all possible ways (i.e., horizontally, vertically and in parallel) both auxiliaryand basic tiles. Auxiliary tiles may be necessary to represent consistent rearrangements of theinterfaces due to the topological structure of the actual con�guration. To give a formal de�nitionof auxiliary structure we assume the existence of the categories of con�gurations and e�ects (e.g.,states in S and actions in A of the associated transition systems are arrows of categories). Theadvantages of using category theory in computer science are well summarized in [36]. We justremark here the following aspects: (a) suitable classes of (structure-preserving) functors betweencategories (representing transition systems) o�er an immediate de�nition of simulation morphismbetween the underlying systems; (b) considering categories \in the small" (i.e., objects are statesand arrows are computations), a commuting diagram may identify \computationally equivalentbehaviours", also from a concurrent viewpoint; (c) considering categories \in the large" (i.e.,objects are categorical models and arrows are simulation functors), isomorphisms may be usedto characterize equivalent models; (d) universal constructions (i.e., adjunctions, (co)re
ections,etc.) may be used to de�ne a notion of optimal model; (e) (co)limits often summarize usefulcompositions also from a model theoretic viewpoint.Moreover, categories generalize transition systems in an obvious way: states are objects andtransitions are arrows equipped with a partial composition operator ; (associative and with iden-tities), corresponding to the intuitive sequential composition of transitions for expressing computa-tions (identities represent idle components of the system). As an example, monoidal categories cane�ectively model Petri net behaviours [57]; in particular, for each Petri net N , there exists a freelygenerated strictly symmetric strict monoidal category T [N ] such that the monoidal operation 
de�nes parallel composition of Best-Devillers processes, and the functoriality axiom (of tensorproduct 
 ) expresses a basic fact about the true concurrency of the model. A second example,showing that the use of categories o�er a general and convenient characterization also of con�gu-rations, is given by Lawvere theories. An algebraic theory [44, 45, 40] is just a cartesian categoryhaving natural numbers as objects. The free algebraic theory associated to a (one-sorted) signature� is called the Lawvere theory for �, and is denoted with Th[�] (also L�): the arrows from m to5



n are in a one-to-one correspondence with n-tuples of terms of the free �-algebra with (at most)m variables, and composition is term substitution. In a certain sense, a Lawvere theory is just analternative presentation of a signature, because the additional structure (for tupling, projectingand permuting the elements of a tuple) is generated in a completely free way: only the operatorsof the signature contain information, whereas the other constructors add nothing but auxiliarystructure. From this point of view, the use of a wires and boxes notation turns out to be very usefulfor a visual and intuitive understanding of the role played by auxiliary structure: variables arerepresented by wires (we assume an implicit total order of the variables involved) and the operatorof the signature are denoted by boxes labelled with the name of the operator. For instance, theterm f(x1; g(x2); h(x1; a)) over the signature � = fa : 0 �! 1; g : 1 �! 1; h : 2 �! 1; f : 3 �! 1gand variables x1 < x2 admits the following graphical representation:x1 ����///////////////x2 // g // f // �a // h @@�������It should be obvious that wire duplications (e.g., of x1) and crossing of wires (e.g., of x2 and a copyof x1) are auxiliary, in the sense that they belong to any wires and boxes model, independently fromthe underlying signature. It follows that, if we use the wires and boxes notation for con�gurationsand e�ects, then this kind of operations (e.g., rearrangements of wires) belongs to both dimensions(i.e., they are shared). Moreover, consistent rearrangements of wires on both dimensions do notchange the meaning of a rule, but only its interface. To illustrate this point, let us consider asimple tile system where the above signature � is the signature of con�gurations, and �0 = fs :1 �! 1; t : 2 �! 1g is the signature of e�ects, having the following basic tiles:a // y1 ��2222222222x1 //�� g // y2��t��z1 // w1 x1 **UUUUUUUUUUUUUUUU ��777777777777777777 x2 //�� f // y1��x3 ??~~~~~��t�� s��z1 ((QQQQQQQQQQ z2 // h // w1Then, it should be clear that the con�guration f(a; x1; g(x2)) should be able to evolve to h(x1; x2),producing an e�ect s (as a result of the horizontal composition, or synchronization, of the twotiles). However, we cannot compose the tiles in the obvious way without rearranging the interfaces,because the arguments of trigger t are separated by a variable in the initial (input) interface of thesecond tile (notice the crossing of wires), while the �rst tile applies only to adjacent arguments(notice that it is always possible to put an idle component in parallel with the �rst tile to modelthe second argument of f). Thus we have the following na��ve characterization of auxiliary tiles:Auxiliary tiles coincide with the consistent rearrangements of interfaces in both di-mensions, where consistency means that the composition of the wire transformationsinduced by the initial con�guration and the e�ect of the tile is equivalent to the com-position of the wire transformations due to the trigger and the �nal con�guration.6



Algebraic theories provide a clear mathematical representation of auxiliary constructors as suitablenatural transformations, whose components are called symmetries, duplicators, and dischargers.This result will be very useful to relate our na��ve de�nition with a more formal de�nition.Lawvere theories introduce a very general notion of model (i.e., chosen functor from Th[�] toa cartesian category with chosen products C) and model morphism (i.e., natural transformationbetween two models). This fact has been well-exploited in the categorical semantics of rewritingsystems. In fact, in the �eld of term rewriting, the states are terms over a certain signature(i.e., arrows of the associated Lawvere theory), and rewriting steps are transitions between twoterms (with variables). It has been shown in [50], that a rewriting theory R yields a cartesian2-category1 LR, which does for R what a Lawvere theory does for a signature (i.e., models canbe de�ned as 2-product-preserving 2-functors). Gadducci and Montanari pointed out in [33],that if also side-e�ects are to be taken into consideration during the rewriting process, then doublecategories [25, 1, 41] should be considered as a natural model. A double category can be informallydescribed as the superposition of a horizontal and a vertical category of cells, the former de�ninge�ect propagations, and the latter describing state evolutions. Then, in the same way as theterm algebra is freely generated by a signature, and the initial model of rewriting logic is freelygenerated from the rules of the rewriting system, the tiles freely generate a (monoidal) doublecategory which constitutes the natural operational characterization2 in the spirit of initial modelsemantics.In this paper we consider two main interesting cases of shared auxiliary structures. In particularthe notions of Process Tile Logic and Term Tile Logic are introduced:� Flat (e.g., any two sequents having the same \border" are identi�ed, thus no emphasis isgiven upon the axiomatization of logic proofs) versions of process tile logic have been shownto be especially useful for de�ning compositional models of computation of mobile calculi,and causal and located concurrent systems [27, 28]. The auxiliary tiles of process tile logicexpress consistent permutations of interfaces along the horizontal and vertical structures.� Term tile logic should represent the obvious extension of term rewriting logic. Connectionsbetween the two logics are particularly interesting because in both logics the underlying carte-sian category structure manifests itself at the level of syntax, allowing the use of the standardterm notation with term substitution as composition. The auxiliary tiles of term tile logicallow consistent permutations of interfaces along the horizontal and vertical structures (asfor process tile logic), consistent free copying, and consistent projections on subcomponents.The natural semantics of process and term tile logics are given in terms of suitable classes ofdouble categories whose equational axioms identify intuitively equivalent tile computations. Forthis purpose, we introduce the notions of Symmetric strict monoidal double categories and Carte-sian double categories (\with consistently chosen products"). As far as we know these de�nitionsare new, because all the previous attempts (based on internal constructions) for analogous notionshave led to asymmetric models, where the auxiliary structure (i.e., symmetries, duplicators, anddischargers) is fully exploited in one dimension only. We believe that this should not be the case,both conceptually and for the kind of applications we have in mind; therefore we propose a broadernotion of double cartesianity by developing an alternative approach, following the idea of hyper-transformations [25] for many-fold categories, and exploiting the results for double categories. Inparticular, we de�ne the notion of generalized transformations, which act in both dimensions, andassert the coherence of the two ways of transforming the structure. Then, we instantiate thede�nition to the special cases of symmetries, duplicators, and dischargers, in a similar way as it1A 2-category [41, 46] is a category C such that, for any two objects a, and b, the class C[a; b] of arrows froma to b in C, forms a (vertical) category. The arrows of these hom-categories are called cells and satisfy particularcomposition properties. As an example, the category Cat of categories and functors is a 2-category. Actually,Cat[C;C0] is the category having the functors from C to C0 as objects, and the natural transformations betweensuch functors as arrows.2The tiles are cells, the contexts are arrows of the 1-horizontal category, the side-e�ects are the arrows of thevertical 1-category, and 0-objects model connections between the somehow syntactic horizontal category and thedynamic vertical evolution. 7



happens for the 1-dimensional case. Moreover, by doing that, we give evidence for the usefulnessof axiomatizing the resulting double categories, thus allowing for the de�nition of more signi�cantmodels than the 
at ones. Actually such models could also take into account the structure ofproofs. This approach motivates the following formal characterization of auxiliary tiles:Auxiliary tiles for process and term tile logic are suitable generalized transformationsrespecting some coherence equations, where coherence means that they are uniquelyde�ned.The comparison between tile logic and rewriting logic is carried out by embedding their correspond-ing categorical models in a recently developed, more general framework, called partial membershipequational logic [54, 56, 10]. In doing so, we extend the result of [58], by de�ning an extendedversion of 2-categories, called 2EVH-categories, providing a systematic connection between mod-els of tile logic and of rewriting logic. The idea is to \stretch" double cells into ordinary 2-cellsas pictured below, mantaining the capability to distinguish between con�gurations and e�ects,whereas the auxiliary structure becomes shared, i.e., it belongs to both classes.� //s��a ��� b� //s0 � � ��b� 00s ..a + �� BBs0Doing this, 2EVH-categories are able to simulate { in the sense that the algebraic structure of theoriginal double categories is recoverable in terms of operations on 2-cells { the structure of doublecategories, where both the horizontal and vertical 1-categories share some non-trivial structureother than objects. In this 
attening process we must be careful about two issues, namely, thepossible identi�cation of distinct double cells, and the possible existence of 2-cells having correcthorizontal-vertical partition of the source and vertical-horizontal partition of the target, but whichdo not represent any double cell. From the facts that: (1) each arrow of a 2-category can beviewed as an identity 2-cell, (2) each auxiliary operator is a shared arrow, and (3) auxiliary tilesare consistent (in the sense that the composition of s with b is equivalent to the composition of awith s0), it follows that 2EVH-categories allow for a third characterization of auxiliary tiles:Auxiliary tiles coincide with the possible square-shaped decompositions of the identity2-cells associated to auxiliary constructors.We will show that the three di�erent de�nitions of auxiliary tiles that we have sketched in thisintroduction coincide.Partial membership equational logic is particularly suitable for the modelling and the embed-ding of categorical structures, �rstly because the sequential composition of arrows is a partialoperation (e.g., it is de�ned if and only if the target of the �rst argument is equal to the sourceof the second argument), and secondly because membership predicates over a poset of sorts allowmodelling the objects as a subset of the arrows and arrows as a subset of cells (as it is usuallydone in category theory). Moreover, the tensor product construction illustrated in [58] can be eas-ily formulated in partial membership equational logic and this allows for a convenient de�nitionof monoidal double categories as the tensor product of the theory of categories (twice) with thetheory of monoids.Though the results are very satisfying from a theoretical perspective, they cannot be applieddirectly to rewriting implementations of tile systems, because we are interested only in correctcomputations. Indeed, we need suitable meta-strategies to control the possible nondeterminismcontained in a tile speci�cation and in its translation. This could be summarized by saying that\the rewriting engine must be able to �lter rewriting computations". To overcome this di�culty,we make use of the re
ective capabilities [17, 18] of the rewriting logic language Maude [15] tode�ne suitable internal strategies [19], which help the user control the computation and collect(some of) the possible (correct) results. The key point is that the internal strategies de�ned here8



for simulating tile systems can also be thought of as general meta-strategies for rewriting systemsin general. We have experimented with Maude some executable tile speci�cations of interestingCCS-like process calculi, and have successfully developed and applied general internal strategiesto �lter and collect tile computations.The structure of the paper is as follows. In Section 2 we recall some basic facts about algebraictheories, rewriting logic, and tile logic (Section 2.1), and then we introduce the new tile modelsbased on process-like and term structures of con�gurations and e�ects. Each model is presentedin its 
at version �rst, then is equipped with an algebra of proofs, and then naturally equivalentproof terms are equated to characterize the natural semantic framework of the logic.In Section 3, we introduce suitable categorical models for process and term tile logic, devel-oping the notion of generalized transformation and diagonal categories to deal with symmetries,duplicators and dischargers. As a result, we propose a precise characterization of symmetric strictmonoidal double categories and cartesian double categories with chosen products.In Section 4 and 5 we present the full comparison between tile logic and rewriting logic throughpartial membership equational logic, then showing how to map tiles into ordinary rewrite rules.As a result of this comparison, we obtain a correct rewriting implementation of tile logic, inwhich di�erent tile sequents having the same \border" cannot always be distinguished. Thisimplementation requires a meta-layer to control the rewritings, so that only tile proofs are accepted.In Section 6 we present some general meta-strategies (written in the Maude language) ful�llingthis last requirement.In Section 7 we apply the previous results to show how Maude { thanks to its re
ective capa-bilities and, in particular, to the possibility of de�ning internal strategy languages { can in factbe used to prototype and execute tile rewriting systems. In particular, we de�ne executable im-plementations of some CCS-like process calculi (namely, �nite CCS and located CCS), preservingtheir original semantics.
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2 Tile LogicTiles are rewrite rules with side-e�ects, extending the SOS approach to open systems and alsoto heterogeneous systems. A generic tile has the form s a�!b s0, stating that the partially speci�edcon�guration s may evolve to s0 producing an observable e�ect b, but this rewriting step is allowedif and only if the subcomponents of s evolve to the subcomponents of s0 producing the observationa, which is the trigger of the rule. The notions of con�guration and observation are very generalhere, the only requirement is that they come equipped with operations of parallel and sequentialcomposition. In fact, tiles can be combined by means of three composition operators, extendingthose de�ned on their border: parallel ( 
 ), horizontal ( � ), and vertical ( � ) composition.Parallel composition intuitively corresponds to the concurrent rewriting of disjoint componentsof the system. Vertical composition models successive rewriting, i.e., computations. Horizontalcomposition synchronizes evolutions of a con�guration and its subcomponents.Although tile systems are essentially monoidal double categories [25], the tile model allows fora purely logical presentation, where tiles are considered as sequents (subject to certain inferencerules and normalization axioms), in the style of rewriting logic. Then, deduction in the tile logicexactly corresponds to computing in the tile model (i.e., applying composition rules in all possibleways, starting from a set of basic tiles), and the axioms of tile logic identify equivalent proofs of asequent entailed by the logic.The simplest possible interpretation of structured con�gurations and observations is consideredin [11, 12], consisting of P/T net markings. As an important result, horizontal composition in thetile model yields a notion of transition synchronization, an important feature for compositionality,missing in ordinary nets (where only token synchronization is provided), and usually achievedthrough complex constructions. As an another example, tile models for most process algebras [35]have process terms as con�gurations, and elements of the free monoid on observable actions (whichare unary symbols) as observations. However, when either causality aspects or bound names aretaken into account, it is possible to consider more general horizontal and vertical structures, dealingwith (local and global) names.Since models of computation based on the notion of free and bound names are widespread,the notion of name sharing is essential for several applications, ranging from logic programming,�-calculus and process algebra with restriction (or name hiding mechanisms) to mobile processes(where local names may be communicated to the external world, thus becoming global names).We can think of names as links to communication channels, or to objects, or to locations, or toremote shared resources, or, also, to some cause in the event history of the system. In general,names can be freely �-converted, because the only important information they o�er is sharing.The wires and boxes notation presented in the introduction can give an intuitive understandingof a name sharing mechanism. Let us consider a certain signature � with constants 0, 1 and 2,and binary operators f and g. Then the con�gurations c1 and c2 in the picture below can modelquite di�erent systems.0 // � ��=====c1 � f // �0 // � @@����� � ��>>>>>c2 � 0 // � ��===== @@����� f // �� @@�����In a value-oriented interpretation, both c1 and c2 yield the same term f(0; 0). Instead, in areference-oriented interpretation, c1 and c2 de�ne di�erent situations: in the former the two sub-components of the f box are uncorrelated, while in the latter they point to the same sharedlocation. The di�erence becomes even more clear, if we assume a tile system in which the con�g-uration 0 may be rewritten either to 1, producing an e�ect e1, or to 2, with e�ect e2 6= e1, andthe con�guration f(x1; x2) may be rewritten to g(z1; z2) only if x1 yields e1 and x2 yields e2 as10



triggers, becoming z1 and z2, i.e., the basic tiles of the system are as follows:0 // y1��e1��1 // w1 0 // y1��e2��2 // w1 x1�� ''PPPPPPPPPPe1�� x2�� // f // y1��z1 ((QQQQQQQQQQ e2��z2 // g // w1Then, c1 may be rewritten, while c2 cannot; in fact, if we try to rewrite 0 with the �rst tile, thesame e�ect e1 is propagated to both arguments of f , and the con�guration is stuck, because wecannot apply the third tile, and similarly if we try to rewrite 0 with the second tile.Term graphs [24] are a reference-oriented generalization of the ordinary (value-oriented) notionof term, where the sharing of subterms can be speci�ed also for closed (i.e., without variables)terms3. The distinction is made very precisely by the axiomatization of algebraic theories: termsand term graphs di�er by two axioms, representing, in a categorical setting, the naturality oftransformations for copying and discharging arguments [20]. Term graphs have been shown usefulin [27] to de�ne a tile model for the (asynchronous) �-calculus [60] (one of the most studied mobilecalculi), and in [28] to represent both the operational and the abstract semantics of CCS [59] withlocations [9] within the tile model. In both cases, 
at versions of the tile model are used, and thegeneral notion of tile bisimilarity [35] is employed to quotient out con�gurations, thus recoveringthe ordinary abstract semantics.In this section we introduce two versions of tile logic, called Process Tile Logic, and Term TileLogic. They model two speci�c situations in which the structure of con�gurations and observationsare quite similar, and a set of auxiliary tiles seems to capture precisely their similarity.Con�guration and observation in process tile logic are de�ned in terms of a subclass of directed,acyclic hyper-graphs, where each node has at most one entering (exiting) arc. The \process" ter-minology is taken from net theory, due to the characterization of concatenable (deterministic)processes of P/T nets via symmetric strict monoidal categories [23]. Here con�gurations maymodel states of a great variety of distributed systems (at a certain level of abstraction), and ob-servations may exactly model causal dependencies between the resources consumed and generatedby concurrent and cooperative evolutions of distributed agents. Models proposed in [27, 28] areessentially 
at process tile logic modelsa equipped with \ad-hoc" notions of sharing and garbagecollection. Auxiliary tiles for process tile logic are essentially tiles for consistent permutations ofinterfaces.Term tile logic is the natural generalization of term rewriting logic. Here, both con�gurationsand observations are term algebras. Thanks to the work of Lawvere relating algebraic theories andcartesian categories, and to classical results on cartesianity (with chosen products) as enrichedmonoidality, the auxiliary structure which allows the generation of the term algebra starting froma signature is characterized by three natural transformations called symmetries, duplicators, anddischargers. Similarly, auxiliary tiles of term tile logic are the consistent generalization of suchtransformations w.r.t. the two dimensions of tile systems.Intuitively, in process and term tile logic, con�gurations and observations have in common theauxiliary structure, i.e., the possibility of re-arranging the interfaces as explained in the introduc-tion. Moreover, auxiliary tiles model exactly the consistent re-arrangements, in the sense thatgiven any auxiliary tile s a�!b s0, the composition of the transformation induced by s followed bythe one induced by b should yield the same result as the transformation induced by a followed bythe one induced by s0. An important requirement is that there should be a unique auxiliary tilefor each possible bidimensional transformation, i.e., all the possible decompositions of the proofterms of auxiliary tiles yielding the same border should be equivalent.3Terms can share variables, but shared subterms of a closed term can be freely copied, always yielding anequivalent term. 11



Notice that, although auxiliary tiles for process and term tile logic are introduced in thissection, their characterization, and in particular the axioms we propose, are based on the researchconcerning generalized transformations, which is the subject of Section 3. However, for the sakeof an easier presentation, and to a�ord a better intuitive understanding of the main ideas withthe minimum machinery possible, we have chosen to reverse the \mathematically natural" orderof the two formalizations.2.1 Background2.1.1 Algebraic TheoriesWe recall here some basic de�nitions from graph theory, used to recast the usual notion of term overa signature in a more general setting, where suitable equivalence classes of monoidal (hyper)graphsequipped with auxiliary arrows are considered.De�nition 2.1 [(Hyper)Signatures] A many-sorted hyper-signature � over a set S of sorts is afamily f�w;w0gw;w02S� of sets of operators. A many-sorted signature is just a hyper-signature suchthat �w;w0 6= ; =) w0 2 S, i.e., a family f�w;sgw2S�;s2S . If S is a singleton, we denote the hyper-signature (signature)� is called one-sorted and is simply denoted by the family f�n;mgn;m2lIN(f�ngn2lIN). 2De�nition 2.2 [Graphs] A graph G is a 4-tuple (OG; AG; @0; @1), where OG is the set of objects,AG is the set of arrows, and @0; @1 : AG �! OG are functions, called respectively source andtarget. We use the standard notation f : a �! b to denote an arrow f with source a and targetb. A graph G is re
exive if there exists an identity function id : OG �! AG such that 8a 2 OG,@0(id(a)) = a = @1(id(a)); it is with pairing if OG is a monoid; it is monoidal if it is re
exive,both OG and AG are monoids, and the functions @0,@1, and id are monoid homomorphisms (i.e.,preserve the monoidal operator and the neutral element). 2It is immediate that a many-sorted hyper-signature � over S may be seen as a graph withpairing G� such that its objects are strings on S (i.e., OG� = S�, string concatenation :: is themonoidal operator, and the empty string � is the neutral element), and its arcs are labelled withoperators of the signature (i.e., f : w �! w0 2 AG� i� f 2 �w;w0).For simplicity, throughout the paper we will consider one-sorted hyper-signature only, but theresults extend immediately to the many-sorted case.De�nition 2.3 [Graph Theories] Given a one-sorted (hyper)signature �, the associated graphtheory G(�) is the monoidal graph with objects the elements of the additive monoid of naturalnumbers (i.e., 0 is the neutral element, and the monoidal operation 
 is de�ned as n
m = n+m),and arrows those generated by the following inference rules:(generators) f 2 �n;mf : n �! m 2G(�) (pairing) t : n �! m; t0 : n0 �! m0 2G(�)t 
 t0 : n
 n0 �! m 
m0 2G(�)(identities) n 2 lINidn : n �! n 2G(�)Monoidality implies that 
 is associative on arrows, id0 is the neutral element of the monoidof arrows, and that the monoidality axiom idn
m = idn 
 idm holds for all n;m 2 lIN. 2This view is very useful to de�ne a chain of further structural enrichments on graphs, �nallyleading to the usual algebraic notion of terms over a signature. We are particularly interested inthis �nal level, and also in the intermediate level corresponding to symmetric theories. For thesake of simplicity, we treat here one-sorted signatures only, but the extension to the many-sortedcase should follow immediately. 12



De�nition 2.4 [Monoidal Theories, Symmetric Theories] Given a (hyper)signature �, the asso-ciated monoidal theory M(�) is the monoidal graph with objects the elements of the additivemonoid of natural numbers (i.e., 0 is the neutral element, and the monoidal operation 
 isde�ned as n
m = n +m), and arrows those generated by the following inference rules:(generators) f 2 �n;mf : n �! m 2M(�) (pairing) t : n �! m; t0 : n0 �! m0 2M(�)t 
 t0 : n
 n0 �! m 
m0 2M(�)(identities) n 2 lINidn : n �! n 2M(�) (composition) t : n �! m; t0 : m �! k 2M(�)t; t0 : n �! k 2M(�)Moreover, 
 is associative on arrows with identity id0, the composition operator ; is associative,and the arrows of M(�) satisfy the identity axiom (8t : n �! m), idn; t = t = t; idm, and thefunctoriality axiom (s 
 t); (s0 
 t0) = (s; s0) 
 (t; t0) (whenever compositions s; s0 and t; t0 arede�ned).The symmetric theory S(�) associated to the (hyper)signature � is the monoidal graph gener-ated by the same inference rules and axioms given forM(�), together with the following inferencerule: (symmetries) n;m 2 lIN
n;m : n
m �! m
 n 2 S(�)Moreover, the arrows of S(�) satisfy the naturality axiom (8t : n �! m; t0 : n0 �! m0),(t
 t0); 
m;m0 = 
n;n0 ; (t0 
 t);and the coherence axioms (8n;m; k 2 lIN),
n
m;k = (idn 
 
m;k); (
n;k 
 idm); and 
n;m; 
m;n = idn
m: 2Actually, a (symmetric) monoidal theory is just a particular (symmetric) strict monoidal cat-egory [46], namely the free such category generated by the signature �.De�nition 2.5 [Algebraic Theories] Given a signature �, the associated algebraic theory A(�)is the monoidal graph generated by the same inference rules and axioms given for S(�) togetherwith the following inference rules:(duplicators) n 2 lINrn : n �! n
 n 2 A(�) (dischargers) n 2 lIN!n : n �! 0 2 A(�)Moreover, the arrows of A(�) verify the naturality axioms (8t : n �! m),t;rm = rn; (t
 t); and t; !m =!n;and the coherence axioms (8n;m 2 lIN),rn
m = (rn 
rm); (idn 
 
n;m 
 idm); r0 = id0 =!0; !n
m =!n
!m;rn; (1n 
rn) = rn; (rn 
 1n); rn; 
n;n = rn; and rn; (1n
!n) = idn: 2It can be considered categorical folklore that a cartesian category can actually be decomposedinto a symmetric monoidal category, together with a family of suitable natural transformations,usually denoted as diagonals and projections. Then, Def. 2.5 can be proved equivalent to theclassical Lawvere theory construction Th[�], dating back to the early work of Lawvere [44]. Aclassical result states the equivalence of these theories with the usual term algebra.13



De�nition 2.6 [�-Algebra] Given a signature � = f�ngn2lIN, a �-algebra is a set A, togetherwith an assignment of a function Af : An �! A for each f 2 �n. 2As usual, we write T� to denote the �-algebra of ground �-terms, and T�(X) to denote the�-algebra of �-terms with variables in a set X.Proposition 2.7 Let � be a signature. Then, for all n;m 2 lIN, there exists a one-to-one corre-spondence between the set A(�)[n;m] of arrows from n to m in A(�) and the m-tuples of elementsof the term algebra T�(X) over a set X of n variables.We believe that the constructive de�nition of algebraic theories separates very nicely the aux-iliary structure from the �-structure (better than the ordinary description involving the meta-operation of substitution). Moreover, the naturality axioms of r and ! allow a controlled form ofduplication and discharging of information.2.1.2 Rewriting LogicRewriting logic [50, 51, 53] is an elegant and expressive semantic framework for the speci�cation oflanguages and systems, and it is a good candidate as a logical framework in which many other logicscan be represented [48, 49]. A workshop [55] has been recently dedicated to a great miscellany ofdi�erent aspects of rewriting logic, relating many di�erent subjects (object-oriented programming,re
ection, external and internal strategies, di�erent categorical interpretations of rewriting logic,semantic basis for language implementations, actor systems). Here we just sketch an introductorydescription of the subject and the original 2-algebraic semantics as proposed by Meseguer in [50].A short summary of the re
ective capabilities of rewriting logic will be given in Section 6.2.Let � be a signature. Given a set E of �-equations (i.e., sentences of the form t = t0 witht; t0 2 T�(X)), T�;E (resp. T�;E(X)) denotes the �-algebra of equivalence classes of ground �-terms modulo the equations in E (the �-algebra of equivalence classes of �-terms with variablesin X modulo the equations in E). We denote the congruence modulo E by =E , and theE-equivalence class of a �-term t by [t]E, or just [t].De�nition 2.8 [Rewrite Theory] A labelled rewrite theory R is a 4-tuple (�; E; L;R) where � isa signature, E is a set of �-equations, L is the set of labels, and R � L � T�;E(X) � T�;E(X) isthe set of labelled rewrite rules. For (r; [t]; [t0]) 2 R we use the notation r : [t]) [t0]. 2Rewrite rules inRmaybe understood as basic sequents entailed byR. More complex deductionin the logic of R can be obtained by a �nite application of four simple rules.De�nition 2.9 [Rewriting Sequents] Let R = (�; E; L;R) be a rewrite theory. We say that Rentails a 
at sequent [t] ) [t0], written R ` [t] ) [t0] i� [t] ) [t0] can be obtained by a �nitenumber of applications of the following rules of deduction.Re
exivity [t] 2 T�;E(X)[t]) [t]Congruence [t1]) [t01]; : : : ; [tn]) [t0n]; f 2 �n[f(t1; : : : ; tn)]) [f(t01; : : : ; t0n)]Replacement[w1]) [w01]; : : : ; [wn]) [w0n]; r : [t(x1; : : : ; xn)]) [t0(x1; : : : ; xn)] 2 R[t(~w=~x)]) [t0(~w=~x)]14



Transitivity [t1]) [t2]; [t2]) [t3][t1]) [t3]where t(~w=~x) denotes the simultaneous substitution of wi for xi in t. 2A rewrite theory is just a static description of \what a system can do". The meaning of thetheory should be given by computational models of its actual behaviour. Taking advantage ofthe correspondence between deductions in rewriting logic and (concurrent) computations, it isnatural, in the spirit of initial model semantics, to de�ne the initial model TR of R as a systemwhose states are E-equivalence classes of �-terms, and whose transitions are equivalence classesof terms representing proofs in rewriting deduction, i.e., concurrent rewritings using the rules inR. The rules for generating such proof terms are obtained from the rules of deduction of Def. 2.9by decorating the sequents with appropriate proof terms.De�nition 2.10 [Proof Terms of Rewrite Logic] Let R = (�; E; L;R) be a rewrite theory suchthat each rewrite rule has a di�erent label. We say that R entails the proof term � : [t] ) [t0],written R ` � : [t]) [t0] (or just R ` �), i� the proof term � is generated by a �nite number ofapplications of the following decorated rules of deduction.Identities [t] 2 T�;E(X)[t] : [t]) [t]�-structure �1 : [t1]) [t01]; : : : ; �n : [tn]) [t0n]; f 2 �nf(�1; : : : ; �n) : [f(t1; : : : ; tn)]) [f(t01; : : : ; t0n)]Replacement�1 : [w1]) [w01]; : : : ; �n : [wn]) [w0n]; r : [t(x1; : : : ; xn)]) [t0(x1; : : : ; xn)] 2 Rr(�1; : : : ; �n) : [t(~w=~x)]) [t0(~w=~x)]Composition � : [t1]) [t2]; � : [t2]) [t3]� � � : [t1]) [t3]Each of the rules presented above de�nes a di�erent operation, taking certain proof termsas arguments and returning a resulting proof term. In other words, proof terms form an alge-braic structure PR(X) consisting of a graph with nodes T�;E(X), with identity arrows, and withoperations f (for each f 2 �), r (for each rewrite rule), and � (for composing arrows). 2Notice that we use diagrammatic order for the sequential composition of proofs, and that thecomposition operator is denoted by the same symbol of vertical composition of natural trans-formations to enhance the relations with the categorical semantics described at the end of thissection.De�nition 2.11 [Model TR(X)] Given a rewrite theory R, the model TR(X) of R is the quotientof the algebra of proof terms PR(X) modulo the following equations (when composition of arrowsis involved, we always implicitly assume that the corresponding source and target match):CategoryAssociativity: 8�; �; 
; � � (� � 
) = (� � �) � 
15



TR(X)n h[w1]; : : : ; [wn]i��h�1 ;:::;�ni [t(~w)]��[t(~�)] //r(~w) $$r(~�) [t0(~w)]��[t0(~�)]h[w01]; : : : ; [w0n]i [t(~w0)] //r( ~w0) [t0(~w0)] TR(X)Figure 1: Graphical representation of the Exchange law as a natural transformation.Identities: 8� : [t]) [t0]; � � [t0] = � = [t] � �Functoriality of the �-algebraic structure (8f 2 �n)Preservation of composition:8�1; : : : ; �n; �1; : : : ; �n; f(�1 � �1; : : : ; �n � �n) = f(�1; : : : ; �n) � f(�1; : : : ; �n)Preservation of identities:8[t1]; : : : ; [tn]; f([t1]; : : : ; [tn]) = [f(t1; : : : ; tn)]E-axioms (8t(x1; : : : ; xn) = t0(x1; : : : ; xn) 2 E)8�1; : : : ; �n; t(�1; : : : ; �n) = t0(�1; : : : ; �n)Exchange (8r : [t(x1; : : : ; xn)]) [t0(x1; : : : ; xn)] 2 R)�1 : [w1]) [w01]; : : : ; �n : [wn]) [w0n]r(�![w]) � t0(~�) = r(~�) = t(~�) � r(�![w0])Note that the set X of variables is actually a parameter of these constructions, and we neednot assume X to be �xed and countable. In particular, for X = ; we adopt the notation TR. 2The Category equations make TR(X) a category. The Functoriality equations make eachoperator f of � a functor. The E-axioms equations extend axioms in E also to proof terms.The Exchange law is particularly relevant, because it states that the simultaneous rewriting ofa \context" t via r and of its \subcomponents" w1; : : : ; wn via �1; : : : ; �n is equivalent to thesequential composition r(�![w]) � t0(~�) (�rst rewriting on top and then on subcomponents) and alsoto the sequential composition t(~�) � r(�![w0]) (�rst rewriting the subcomponents and then the topof the term). It follows that each proof term in TR(X) is a description of a concurrent computa-tion, according to an equational theory of true concurrency. Moreover, since [t(x1; : : : ; xn)] and[t0(x1; : : : ; xn)] can be regarded as functors from TR(X)n to TR(X), the exchange law asserts thatr is a natural transformation. This situation is illustrated in Fig. 1.Lemma 2.12 ([51]) For each rewrite rule r : [t(x1; : : : ; xn)] ) [t0(x1; : : : ; xn)] in R, the familyof morphisms fr(�![w]) : [t(~w=~x)] ) [t0(~w=~x)] j �![w] 2 T�;E(X)ng de�nes a natural transformationfrom the functor [t(x1; : : : ; xn)] : TR(X)n �! TR(X) to the functor [t0(x1; : : : ; xn)] : TR(X)n �!TR(X).The category TR(X) is a very particular model of the rewrite theory R, in that its objects arethe elements of a very particular �-algebra, namely T�;E(X). The general notion of model, calledR-System, is de�ned as follows. 16



De�nition 2.13 [R-System] Given a rewrite theory R = (�; E; L;R), an R-System S is a cate-gory S together with:1. a family of functors fSf : Sn �! S j f 2 �ng satisfying the equations in E (i.e., for anyt(x1; : : : ; xn) the functor St is inductively de�ned in the obvious way from the functors Sf ,and for each E-equation t(x1; : : : ; xn) = t0(x1; : : : ; xn) the identity of functors St = St0holds);2. for each rewrite rule r : [t(~x)]) [t0(~x)] in R, a natural transformation Sr from St to St0 .An R-homomorphism F : S �! S 0 between two R-systems is then a functor from S to S 0such that it is a �-algebra homomorphism (i.e., for each f 2 �n, Sf ;F = Fn;S 0f ), and such thatF \preserves" R (i.e., for each rewrite rule r : [t(x1; : : : ; xn)]) [t0(x1; : : : ; xn)] in R we have thatSr ;F = Fn;S 0r). This de�nes a category R-Sys of models for the rewrite theory R. 2The following theorem [51] characterizes the relevance of the models TR and TR(X).Theorem 2.14 (Initial and Free Model of R) TR is an initial object in the category R-Sys.More generally, TR(X) has the following universal property: given an R-system S, each functionF : X �! jSj extends uniquely to an R-homomorphism F̂ : TR(X) �! S.Given an equational theory T = (�; E) let us denote by Alg�;E the category of T -algebras,and by LT the Lawvere theory of T , having natural numbers as objects, and where an equivalenceclass [t(x1; : : : ; xn)] is viewed as an arrow [t(x1; : : : ; xn)] : n �! 1 (from n placeholders for the nordered variables of t to the placeholder for the result), arrow composition being substitution (thatis, given n arrows [ui(y1; : : : ; ym)] : m �! 1, for i = 1; : : : ; n, and an arrow [t(x1; : : : ; xn)] : n �! 1,the composition between h[u1]; : : : ; [un]i : m �! n and [t(x1; : : : ; xn)]m h[u1 ];:::;[un ]i�! n [t]�! 1yields [t(~u=~x)] : m �! 1 as a result). In particular, for T = (�; ;), we have LT ' A(�), thanksto Proposition 2.7.Lawvere made the seminal discovery that, given a �-algebra A satisfying E, the function map-ping each E-equivalence class [t(x1; : : : ; xn)] to its functional interpretation A[t] : An �! A in the�-algebra A de�nes exactly a product-preserving functor Â : LT �! Set. Moreover, if we choosecanonical set-theoretic products in the targets of such functors, and denote by Mod(LT ;Set) thecategory with objects those functors and morphisms natural transformations between them, thenthe assignment A 7�! Â corresponds to an isomorphism of categories Alg�;E 'Mod(LT ;Set).This situation generalizes very naturally to the case of rewriting logic: it su�ces to change the\ground" on which models exist from the category Set to the 2-category Cat. Hence, models forrewriting logic are algebraic structures on categories (i.e., sets with additional structure) ratherthan on sets. Indeed, given a rewrite theory R the 2-category with 2-products LR has naturalnumbers as objects, E-equivalence classes of terms [t(x1; : : : ; xn)] as arrows [t(x1; : : : ; xn)] : n �!1, and equivalence classes of proof terms [�] : [t(x1; : : : ; xn)]) [t0(x1; : : : ; xn)] as cells, with verticalcomposition given by [�]� [
] = [��
], and horizontal composition �; � given by [t(~�=~x)��(~v=~x)] :[t(~u=~x)] ) [t0(~v=~x)]. As illustrated in Fig. 2, the exchange law states the coherence between ;and � .As a matter of fact, given an R-systems S, the assignment to each rule r : [t] ) [t0] in R ofa natural transformation Sr from the functor St : Sn �! S to St0 : Sn �! S extends naturallyto a 2-product preserving 2-functor Ŝ : LR �! Cat, and the assignment S 7�! Ŝ yields anisomorphism of 2-categories R�Sys 'Mod(LR;Cat), where Mod(LR;Cat) is the category ofcanonical 2-product preserving 2-functors from LR to Cat. This result can be summarized bysaying that LR does for R-systems what in the Set case LT does for T -algebras, i.e., LR extendsthe result of Lawvere to systems with state changes.More recently, alternative semantics have been proposed for rewriting logic. In [21] it is noticedthat when the rules of R are not right linear { that is, there is a repeated occurrence of a variable17



m //hw1;:::;wni n ))t 55t0+r� 1m **hw1;:::;wni 44hw01;:::;w0ni+~� n //t0 1 = m **hw1 ;:::;wni 44hw01 ;:::;w0ni+~� n ))t 55t0+r 1 = m **hw1 ;:::;wni 44hw01 ;:::;w0ni+~� n //t� 1m //hw01 ;:::;w0ni n ))t 55t0+r 1[r(~w=~x) � t0(~�=~x)] = [~�; r](= [r(~�=~x)]) = [t(~�=~x) � r( ~w0=~x)]Figure 2: Graphical representation of the Exchange law in LR.in the righthand side of a rule { then LR is in a sense too abstract. This is made clear byassociating a poset of partial orders of events to LR and observing that it is not a prime algebraicdomain. A uniform construction for a sesqui-category model (similar to LR but satisfying fewerequations, and in particular such that the exchange axiom is not imposed) is then provided, andit is shown that its associated poset is a prime algebraic model. In this way, the relationshipbetween rewriting logic models and event structures is clari�ed, and useful connections with otherconcurrency models are provided. In [64] the treatment of conditional rules in the functorialmodel for conditional rewriting logic of [51] is generalized and reformulated in terms of weightedlimits rather than 2-limits, i.e., using inserters instead of subequalizers (which however coincidein Cat). For simplicity, in what follows we restrict ourselves to the original semantics proposedby Meseguer [50], and to rewrite theories with an empty set of equations (i.e., E = ;).2.1.3 Algebraic Tile LogicThe rule format of algebraic rewriting systems [35] extends the one of rewriting systems to dealwith side-e�ects viewed as basic (unary) actions, in the style of SOS semantics for several processalgebras. In this sense, each rule should be considered as a description of a possible behaviour ofa module depending on the behaviours of its sub-components (i.e., the system evolves if and onlyif all of its active modules synchronize their actions).De�nition 2.15 [Algebraic Rewriting System] An algebraic rewriting system (ARS for short) Ris a quadruple h�H ;�V ; N;Ri, where �H and �V are signatures, N is a set of rule names, andR is a function R : N �! A(�H) � G(�V ) � G(�V ) � A(�H ) such that for all d 2 N , ifR(d) = hs; a; b; ti, then we have s : n �! m, t : k �! l, a : n �! k, and b : m �! l for somenatural numbers n, m, k, and l. 2As usual, we will write such a rule d as a sequent d : s a�!b t or, graphically, as the tilen //s��a d m�� bk //t lthus making explicit the source and target of each operator. It follows that a term rewritingsystem is just an ARS with �V = ;, and a context system [43] is an ARS where �V containsunary operators only and R : N �! �H �G(�V )�G(�V )��H . The actual behaviour of a largesystem can be recovered from the behaviour of its modules (as speci�ed by the rules of the givenARS) by regarding the rewriting system as a logical theory, and its rules as basic sequents entailedby that theory. Then, some simple inference rules allow us to obtain many other \structured"18



sequents. A proof of a sequent is given by the sequence of inference rules applied to prove it. It ispossible to decorate the sequents with proof terms to obtain a more concrete framework, in whichit is possible to distinguish between di�erent proofs of the same 
at sequent. To be more concise,we show the decorated version only (the rules for 
at sequents are just the same, but withoutproof terms).De�nition 2.16 [Algebraic Tile Logic] Let R = h�H ;�V ; N;Ri be an ARS. We say that Rentails the class Pa(R) of decorated algebraic sequents � : s a�!b t, written R `a � : s a�!b t, obtainedby a �nite number of applications of the following deduction rules4:Basic Proof SequentsGenerators: (gen) d : s a�!b t 2 R(N )d : s a�!b t 2 Pa(R)Identities: (v-ref) a : n �! k 2M(�V )1a : idn a�!a idk 2 Pa(R) (h-ref) t : n �! m 2 A(�H)1t : t //idnidm t 2 Pa(R)Auxiliary Sequents (v-swap) a : n �! k; b : m �! l 2M(�V )
a;b : 
n;m //a
bb
a 
k;l 2 Pa(R)(v-dup) a : n �! k 2M(�V )ra : rn //aa
a rk 2 Pa(R) (v-dis) a : n �! k 2M(�V )!a :!n a�!id0 !k 2 Pa(R)Composition RulesParallel composition: (par) � : s a�!b t 2 Pa(R); � : s0 a0�!b0 t0 2 Pa(R)�
 � : s 
 s0 //a
a0b
b0 t
 t0 2 Pa(R)Sequential compositions:(hor) � : s a�!b t 2 Pa(R); � : s0 b�!c t0 2 Pa(R)� � � : s; s0 a�!c t; t0 2 Pa(R) (vert) � : s a�!b t 2 Pa(R); � : t a0�!b0 t0 2 Pa(R)� � � : s //a;a0b;b0 t0 2 Pa(R)Moreover, we say that R entails the class Sa(R) of 
at algebraic sequents s a�!b t (writtenR `fa s a�!b t) i� there exists a decorated algebraic sequent � 2 Pa(R) such that � : s a�!b t. 2While Pa(R) gives a very precise but too concrete description ofR, 
at sequents are sometimestoo abstract, identifying too much. However, a natural equivalence over proof terms can beexpressed by means of a simple set of axioms, in such a way that computationally equivalentderivations are identi�ed.4Notice that the e�ects of basic tiles are in G(�V ), but those of generated tiles are in M(�V ).19



De�nition 2.17 [Abstract Algebraic Tile Logic] Let R = h�H ;�V ; N;Ri be an ARS. We say thatR entails the class Aa(R) of abstract algebraic sequents, whose elements are equivalence classes ofproof terms in Pa(R) modulo the following set of axioms on proof terms:Associativity Axioms for 
 , � , and � .Identity Axioms (for each � : s a�!b t 2 Pa(R)):1a � � = � = � � 1b 1s � � = � = � � 1tMonoidality Axioms (for each s; t 2 A(�H ), � 2 Pa(R), and a; b 2M(�V )):1s
t = 1s 
 1t 1id0 
 � = � = �
 1id0 1a
b = 1a 
 1bFunctoriality Axioms:Identities (for each n 2 lIN, and composable arrows s; t 2 A(�H) and a; b 2M(�V )):1s;t = 1s � 1t 1idn = 1idn 1a;b = 1a � 1bCompositions (whenever both sides are de�ned):(�
 �) � (
 
 �) = (� � 
) 
 (� � �) (� 
 �) � (
 
 �) = (� � 
) 
 (� � �)(� � �) � (
 � �) = (� � 
) � (� � �)Auxiliary operators (for each n 2 lIN, and composable arrows a; b 2M(�V ) and c; d 2M(�V )):
(a;b);(c;d) = 
a;c � 
b;d 
idn ;idm = 1
n;mra;b = ra � rb ridn = 1rn!a;b =!a�!b !idn = 1!nNaturality Axioms (for each � : s a�!b t; �0 : s0 a0�!b0 t0 2 Pa(R)):(�
 �0) � 
b;b0 = 
a;a0 � (�0 
 �) � � rb = ra � (�
 �) ��!b =!aCoherence Axioms (for each a; b; c 2M(�V )):
a
b;c = (1a 
 
b;c) � (
a;c 
 1b) ra � 
a;a = rara
b = (ra 
rb) � (1a 
 
a;b 
 1b) ra � (1a 
ra) = ra � (ra 
 1a)!a
b =!a
!b ra � (1a
!a) = 1a
id0 ;id0 = 1id0 = rid0 =!id0 
a;b � 
b;a = 1a
b 2Algebraic tile logic allows de�ning a suitable notion of behavioural equivalence which is remi-niscent of the well-known technique of bisimulation.De�nition 2.18 [Tile Bisimulation] Let R = h�H ;�V ; N;Ri be an ARS. A symmetric equiva-lence relation � � A(�H ) �A(�H ) is a tile bisimulation for R if, whenever s � t for generics; t 2 A(�H ), then for any sequent s a�!b s0 entailed by R, there exists t0 2 A(�H ) such that alsot a�!b t0 is entailed by R, with s0 � t0. 2Tile bisimulations are closed under union. The maximal tile bisimulation is called strong tilebisimulation and is denoted by �st . For some conditions on R ensuring that �st is acongruence we refer the interested reader to [35]. An algebraic theory for CCS recovering theordinary strong congruence via tile bisimulation has been de�ned in [32, 35]. In Section 7.1 wewill adapt such a model to give an executable speci�cation in term tile logic.20



2.2 Na��ve Process Tile LogicThe main limitation of algebraic tile logic is that con�gurations and e�ects can share only objects,even when their structure is very similar. As shown in the introduction, using the wires and boxesnotation, it would be desirable to have a model where consistent re-arrangements of interfaces areallowed by default. In this section we de�ne process tile logic, where all the consistent overlappingsof wires are always introduced for free.Flat versions of tile logic based on (richer) symmetric monoidal categories on both dimensionshave been extensively used in [27, 28] They o�er a very general speci�cation framework. Weformalize here this kind of situations, allowing also for the de�nition of more general versionsthan just 
at ones (e.g., introducing proof terms for the sequents entailed by the logic, togetherwith suitable axioms, which identify intuitively equivalent tile deductions; in particular, all theauxiliary tiles with the same border are identi�ed). As already said, for simplicity, we will consideronly one-sorted hyper-signatures.De�nition 2.19 [Process Tile Rewrite System] A process tile rewrite system (pTRS for short)R is a quadruple h�H ;�V ; N;Ri, where �H = Si;j2lIN�H;i;j and �V = Si;j2lIN�V;i;j are hyper-signatures, N is a set of rule names andR is a function R : N �! S(�H)�S(�V )�S(�V )�S(�H),such that 8d 2 N , if R(d) = hh; u; v; gi, then the arrows h and v have the same source, the arrowsg and u have the same target, the source of u is equal to the target of h, and the source of g isequal to the target of v (i.e., they can correctly compose a tile). 2In the following we will write a generic rule r such that R(r) = hh; v; u; gi either as the tilen //h��v r m�� uk //g l(for appropriate natural numbers n, m, k and l) or as the sequent r : h v�!u g. As an example,it is now possible to de�ne a pTRS for the system presented in the introduction using the wiresand boxes notation. In fact, let us consider a pTRS where �H = fa : 0 �! 1; g : 1 �! 1; h :2 �! 1; f : 3 �! 1g, �V = fs : 1 �! 1; t : 2 �! 1g, and N = fr1; r2g, with r1 : a 
 g id1�!t id1,and r2 : f //(
1;1
id1);(id1
t)s h . Notice that a symmetry appears in the trigger of r2. Now letus suppose that an auxiliary tile � : 
1;1 id2�!
1;1 id2 is also introduced. Then, the three tiles can becomposed to obtain a new tile for rewriting the con�guration (a
 id1
 g); f : 2 �! 1 (intuitivelycorresponding to f(a; x1; g(x2))), into h : 2 �! 1 (i.e., h(x1; x2)) without triggers and yielding ane�ect s : 1 �! 1. The scheme of composition is the following:��� //r1 ��� //�
1id1 ��� //r2 ������ //1id1
t ���� // � // � // �2.2.1 The Inference Rules for Process Tile LogicAt this point, it should be clear that rules in R can be interpreted as labelled sequents in anadequate logic of tiles. Starting from a pTRS, it should be possible to derive all the tiles obtainedby (�nite) application of some inference rules, in the same way as it happens for rewriting logicand algebraic tile logic. In a certain sense, the inference rules de�ne the free compositions of the21



basic tiles in R according to the three operations (parallel composition, horizontal composition,and vertical composition) of tile systems. Moreover, some auxiliary tiles should be added in orderto allow for consistent reorderings of con�gurations and side-e�ects. In what follows, we willdenote by Sym (ranged over by s; s0; s1; : : :) the subcategory of S(�) having exactly the possiblecompositions (parallel and sequential) of identities and symmetries as arrows. It can be easilynoticed that, for any arrow s 2 Sym, the source and target of s coincide. Given n 2 lIN, we denoteby Symn the subcategory Sym[n; n] of arrows from n to n in Sym. Since Sym does not dependon the signature �, we assume that Sym is a subcategory of both S(�H) and S(�V ).De�nition 2.20 [Process Tile Sequents] Let R = h�H ;�V ; N;Ri be a pTRS. We say that Rentails the class Sp(R) of 
at process sequents obtained by a �nite number of applications of thefollowing inference rules:Basic SequentsGenerators and Identities:(gen) r : h v�!u g 2 R(N )h v�!u g 2 Sp(R) (v-ref) v : n �! k 2 S(�V )idn v�!v idk 2 Sp(R) (h-ref) h : n �! m 2 S(�H)h //idnidm h 2 Sp(R)Auxiliary SequentsSymmetries: (swap) n 2 lIN; s1; s2; s3; s4 2 Symn; s1; s2 = s3; s4s1 s2�!s3 s4 2 Sp(R)Composition RulesParallel composition: (par) h v�!u g 2 Sp(R); h0 v0�!u0 g0 2 Sp(R)h
 h0 //v
v0u
u0 g 
 g0 2 Sp(R)Sequential compositions:(hor) h v�!u g 2 Sp(R); h0 u�!u0 g0 2 Sp(R)h;h0 v�!u0 g; g0 2 Sp(R) (vert) h v�!u g 2 Sp(R); g v0�!u0 g0 2 Sp(R)h //v;v0u;u0 g0 2 Sp(R)For any sequent h v�!u g 2 Sp(R) we write R `fp h v�!u g, to be read as \R entails the (
atprocess sequent) h v�!u g". 2The auxiliary inference rule (swap) extensively adds all the sequents needed for simulating anyinterface re-arrangement. It is possible to obtain the same result starting from a reduced set ofauxiliary sequents and using the composition rules. As an example, we could replace rule (swap)by two simpler rules:(swap) n 2 lIN; s 2 Symns s�!idn idn 2 Sp(R) (swap') n 2 lIN; s 2 Symnidn idn�!s s 2 Sp(R)In fact, let n 2 lIN, and consider any s1; s2; s3; s4 2 Symn , such that s1; s2 = s3; s4. SinceSymn � S(�H), we can apply the rule (h-ref) to entail the sequents s1 idn�!idn s1, s4 idn�!idn s4, and22



s1; s2 idn�!idn s1; s2 = s1; s2 idn�!idn s3; s4. Next, the two new rules (swap) and (swap') yield respectivelythe sequents s3 s3�!idn idn and idn idn�!s2 s2. Finally we can compose the entailed sequents via rules (hor)and (vert) to let R entail the sequent s1 s3�!s2 s4 (see the composition scheme in the picture below).� //s1�� � //�� ��� s2� //s1�� � //s2 ���� //s3��s3 � //s4�� ���� // � //s4 �But it is possible to do much better: taking advantage of the compositional structure of Sym,we can have the following �nite characterization of basic auxiliary tiles, consisting of only twoauxiliary sequents:(swap) 
1;1 
1;1�!id2 id2 2 Sp(R) (swap') id2 id2�!
1;1 
1;1 2 Sp(R)Another interesting result is that not only the horizontal swapping of e�ects (as the one inalgebraic tile logic) can be easily recovered, but also the vertical swapping of con�gurations is nowentailed, i.e., the following proposition can be easily proved.Proposition 2.21 Let R = h�H ;�V ; N;Ri be a pTRS. Then, for any two e�ects v : n �! k; u :m �! l 2 S(�V ), and for any two con�gurations h : n �! m; g : k �! l 2 S(�H), the sequents
n;m //v
uu
v 
k;l and h
 g //
n;k
m;l g 
 h are both entailed by R.We remark that the class of sequents Sp(R) is 
at, in the sense that we are not able todistinguish how a certain sequent has been entailed.2.2.2 Proof Terms for Process Tile LogicA more concrete version of process tile logic can be de�ned if we decorate the sequents with proofterms. Then, proof terms can be axiomatized in order to capture equivalent proofs accordingto the intuitive double symmetric structure. However, the resulting equivalence classes makefewer identi�cations than those induced by the 
at version (where two sequents having the sameborder are always identi�ed). We remark that the resulting logic is the same as before (seeProposition 2.23), the only di�erence is that proof terms are now made explicit.De�nition 2.22 [Process Tile Logic] Let R = h�H ;�V ; N;Ri be a pTRS. We say that R entailsthe class Pp(R) of decorated (process) sequents obtained by a �nite number of applications of thefollowing inference rules:Basic Proof SequentsGenerators and Identities:r : h v�!u g 2 R(N )r : h v�!u g 2 Pp(R) v : n �! k 2 S(�V )1v : idn v�!v idk 2 Pp(R) h : n �! m 2 S(�H)1h : h //idnidm h 2 Pp(R)Auxiliary Proof Sequents 23



Symmetries:�1;1 : 
1;1 //
1;1id2 id2 2 Pp(R) �01;1 : id2 //id2
1;1 
1;1 2 Pp(R)Composition RulesParallel composition: � : h v�!u g 2 Pp(R); �0 : h0 v0�!u0 g0 2 Pp(R)�
 �0 : h
 h0 //v
v0u
u0 g 
 g0 2 Pp(R)Sequential compositions:� : h v�!u g 2 Pp(R); � : h0 u�!u0 g0 2 Pp(R)� � � : h;h0 v�!u0 g; g0 2 Pp(R) � : h v�!u g 2 Pp(R); � : g v0�!u0 g0 2 Pp(R)� � � : h //v;v0u;u0 g0 2 Pp(R)For any sequent � : h v�!u g 2 Pp(R) we write R `p �. 2With proof terms decorating the sequents of the logic, it is possible to use an algebraic notationto subsume complex entailment in the logic. As an example, consider the following recursivede�nition: �0;k = 1idk�1;k+1 = ((�1;1 
 1id1) � 1id1

1;k) � �1;k�n+1;k = ((1idn 
 �1;k) � 1
n;k
id1 ) � (�n;k 
 1id1)It follows that for any n;m 2 lIN, then �n;m : 
n;m //
n;midm
n idm
n 2 Pp(R). An analogous con-struction yields the sequents �0n;m : idn
m //idn
m
n;m 
n;m 2 Pp(R), for any n;m 2 lIN. Furthermore,the swappings of con�guration and e�ects can be easily constructed as follows:� for any two e�ects v : n �! k; u : m �! l 2 S(�V ) then
v;u = �n;m � 1
m;n � 1v
u � �0k;l : 
n;m //v
uu
v 
k;l 2 Pp(R);� for any two con�gurations h : n �! m; g : k �! l 2 S(�H) then�h;g = �n;k � 1
k;n � 1h
g � �0m;l : h
 g //
n;k
m;l g 
 h 2 Pp(R):We remark that, in general the cells 1
n;m and 1
n;m are di�erent.n
m //
n;m��idn
m 1
n;m m
 n�� idm
nn
m //
n;m m
 n 6= n
m��
n;m //idn
m1
n;m n
m�� 
n;mm 
 n //idm
n m
 nProposition 2.23 Given a pTRS R, then R `fp h v�!u g () 9� : h v�!u g 2 Pp(R).24



2.2.3 Axiomatizing Process Tile LogicThe axiomatization we propose aims at the identi�cation of intuitively equivalent tile computationin process tile logic. As an example, all compositions of auxiliary tiles (and identities) yielding thesame 
at sequent must be identi�ed. Since the axiomatization is rather long we prefer to sketchhere the more interesting properties and to refer the reader to Appendix A for the complete listof axioms.De�nition 2.24 [Abstract Process Tile Logic] Let R = h�H ;�V ; N;Ri be a pTRS. We say thatR entails the class Ap(R) of abstract process sequents, whose elements are equivalence classes ofproof terms in Pp(R) modulo the set of axioms described below (see also Appendix A for thecomplete list of axioms):Associativity Axioms as in Def. 2.17.Identity Axioms as in Def. 2.17.Monoidality Axioms as in Def. 2.17.Functoriality Axioms for identities and composition as in Def. 2.17.Functoriality Axioms for derived operators 
 and �, stating that the swapping of two e�ects(con�gurations) respects identities and sequential composition.Naturality Axioms for derived operators 
 and � (for any sequents � : h u�!v g; �0 : h0 u0�!v0 g0 2Pp(R)): (�
 �0) � 
u;u0 = 
v;v0 � (�0 
 �) (�
 �0) � �g;g0 = �h;h0 � (�0 
 �)Uniqueness Axioms stating that any two compositions of basic auxiliary sequents (�1;1 and�01;1) and identity sequents of con�guration and e�ects (1h and 1v) yielding the same 
at sequentare identi�ed. In Appendix A it is shown that these axioms can be partitioned in two mainsubclasses: naturality axioms for � and �0, and coherence axioms for 
, �, �, and �0. 2Abusing the notation, we will write R `p � to denote the entailment of the abstract processsequent of � and not just the decorated sequent �.2.3 Na��ve Term Tile LogicIn this section we aim at de�ning a tile format where con�gurations and side-e�ects are just (tuplesof) terms over two distinct signatures, and composition becomes just substitution. Since we wantto use a compact notation, to �x the correspondence on the vertices of the tiles, we should decoratethe arrows with assignments rather than with terms, as the following example illustrates.Example 2.25 Suppose that the vertical signature consists of a binary operator � representingthe product of natural numbers, and that the horizontal signature consists of a binary operator+ representing the sum of natural numbers. The cells below should both represent di�erentways of computing (n+ 1)�m, for a generic input pair (n;m), also preserving the input m, i.e.,the result should be the pair h(n + 1)�m;mi:2 //hx+1;yi��hx�y;yi A 2�� hz�w;wi2 //hz+w;wi 2 (x; y) //hz:=x+1;w:=yi��hz:=x�y;w:=yi B 2�� hx:=z�w;y:=wi2 //hx:=z+w;y:=wi 2Tile A is ambiguous, because it does not give any information about the correspondence be-tween the variables z and w and the terms over x and y. For instance, a horizontal-vertical com-putation could compute hz �w;wi[x+ 1=w; y=z] = h(x+ 1)� y; y + 1i, while a vertical-horizontalcomputation could give hz + w;wi[x� y=w; y=z] = hy + x � y; x � yi, and the results would not25



match. However, the horizontal-vertical computation hz � w;wi[x+ 1=z; y=w] = h(x + 1) � y; yiand the vertical-horizontal computation hz +w;wi[x� y=z; y=w] = hx� y + y; yi are compatible,but only if we assume that the term sequences labelling the arrows are ordered. On the otherhand, tile B gives the correct correspondence by making explicit the substitutions, but it becomesquite verbose. Moreover, in the latter case we should add �-conversion, to match variable nameswhen composing the tiles. We prefer to introduce a more compact, easy to understand, standardnotation. Thus we impose a total order on the variable names, and assume a standard order(i.e., from left to right) on term sequences decorating the arrows. Furthermore, since names donot matter, we assume that for sequences of terms involving n (ordered) variables, a canonical(ordered) set of names Xn = fx1 < � � � < xng is used. In the previous example the canonical,non-ambiguous tile is 2 //hx1+1;x2i��hx1�x2;x2i 2�� hx1�x2;x2i2 //hx1+x2 ;x2i 2 2As we have done for process tile logic, in what follows we will consider the simpler case ofone-sorted signatures. The extension to the many-sorted case should not present any particulardi�culty apart from a more complex notation.De�nition 2.26 [Term Tile Rewrite System] A term (tile) rewrite system (tTRS for short) R isa quadruple h�H ;�V ; N;Ri, where �H = Si2lIN �H;i and �V = Si2lIN �V;i are signatures (each� ;i containing the function symbols of arity i), N is a set of (rule) names, and R is a functionR : N �! [n;m;k2lIN(T�H (Xn))m � (T�V (Xn))k � T�V (Xm) � T�H (Xk)where Xl = fx1; :::; xlg is a �xed (totally ordered by xi < xj i� i < j) set of variables. 2To shorten the notation we will write a generic rule r such that R(r) = h~h;~v; u; gi with~h 2 T�H (Xn)m, and ~v 2 T�V (Xn)k either as the tilen //~h��~v r m�� uk //g 1or as the sequent r : n / h~hi //h~vihui hgi , thus making explicit the number of variables in the\north-western" corner of the tile (the values m and k can be easily recovered from the lengths ofthe term vectors decorating the tile). Abusing the notation, we denote by � the empty vector ofterms over T�H (Xn) and T�V (Xn) for each n 2 lIN.Rules in R can be interpreted as labelled sequents in a logic of tiles. Starting from a tTRS, itshould be possible to derive all the tiles obtained by (�nite) application of some inference rules,that de�ne the free composition of the basic tiles in R according to the three operations (parallelcomposition, horizontal composition, and vertical composition) of tile systems. Moreover someauxiliary tiles should be added in order to allow for consistent reorderings, duplications, anddischarging of the variables, state components, and side-e�ects.26



Example 2.27 Consider the standard tile de�ned in Ex. 2.25, and suppose that one wants tocompute (n + 1) � n, which has only one argument (n = m). We do not want to rede�ne aninstantiation of our rule for that particular case, because this would undermine the modularity ofthe speci�cation. The simplest solution consists in allowing the user to duplicate its input. Butthis must happen consistently in both the horizontal and vertical dimensions. This can be doneby introducing a simple rule 1 / hx1; x1i //hx1;x1ihx1;x2i hx1; x2i . Informally, both its initial con�gurationand trigger (term vector hx1; x1i) duplicate a variable, and both its �nal con�guration and e�ectconsider the resulting copies as distinct variables (term vector hx1; x2i). To obtain the expectedsequent we may then consider the horizontal identity 2/ hx1; x2i //hx1�x2;x2ihx1�x2;x2i hx1; x2i relative to thehorizontal source hx1�x2; x2i of the basic sequent 2/ hx1 + 1; x2i //hx1�x2;x2ihx1�x2;x2i hx1 + x2; x2i . We cannow vertically compose the two auxiliary sequents, thus obtaining 1/ hx1; x1i //hx1�x1;x1ihx1�x2;x2i hx1; x2i ,which may be horizontally composed with the original sequent. The result is the desired sequent1 / hx1 + 1; x1i //hx1�x1;x1ihx1�x2;x2i hx1 + x2; x2i . 22.3.1 The Inference Rules for Term Tile LogicDe�nition 2.28 [Term Tile Sequents] Let R = h�H ;�V ; N;Ri be a tTRS. We say that R entailsthe class St(R) of 
at term sequents obtained by a �nite number of applications of the followingdeduction rules.Basic SequentsGenerators: (gen) r : n / h~hi //h~vihui hgi 2 R(N )n / h~hi //h~vihui hgi 2 St(R)Identities:(v-ref) ~v 2 (T�V (Xn))kn / hx1; :::; xni //h~vih~vi hx1; :::; xki 2 St(R) (h-ref) ~h 2 (T�H (Xn))mn / h~hi //hx1 ;:::;xnihx1;:::;xmi h~hi 2 St(R)Auxiliary SequentsSymmetries:(swap) 2 / hx2; x1i //hx2 ;x1ihx1 ;x2i hx1; x2i 2 St(R) (swap') 2 / hx1; x2i //hx1 ;x2ihx2 ;x1i hx2; x1i 2 St(R)Duplicators:(dup) 1 / hx1; x1i //hx1;x1ihx1;x2i hx1; x2i 2 St(R) (dup') 1 / hx1i //hx1ihx1;x1i hx1; x1i 2 St(R)Dischargers:(dis) 1 / h�i //h�ih�i h�i 2 St(R) (dis') 1 / hx1i //hx1ih�i h�i 2 St(R)27



Composition RulesParallel composition:(par) n / h~hi //h~vih~ui h~gi 2 St(R); n0 / h~h0i //h~v0ih~u0i h~g0i 2 St(R)(n+ n0) / h~h; ~h0[xi+n=xi]n0i=1i //h~v;~v0[xi+n=xi]n0i=1ih~u; ~u0[xi+m=xi]m0i=1i h~g; ~g0[xi+k=xi]k0i=1i 2 St(R)(where ���~h��� = m, j~vj = k, ���~h0��� = m0, and ���~v0��� = k0)Sequential compositions:(hor) n / h~hi //h~vih~ui h~gi 2 St(R); m / h~h0i //h~uih~u0i h~g0i 2 St(R); ���~h��� = m; j~uj = kn / h~h0[hi=xi]mi=1i //h~vih~u0i h~g0[gi=xi]ki=1i 2 St(R)(vert) n / h~hi //h~vih~ui h~gi 2 St(R); k / h~gi //h~v0ih~u0i h~g0i 2 St(R); j~vj = k; j~uj = ln / h~hi //h~v0[vi=xi]ki=1ih~u0 [ui=xi]li=1i h~g0i 2 St(R)where the notation ~s[ti=xi]ni=1 denotes the simultaneous substitution of the variables x1; : : : ; xnwith the corresponding terms t1; : : : ; tn in all the terms of the tuple ~s. For any sequent n /h~hi //h~vih~ui h~gi 2 St(R) we write R `ft n / h~hi //h~vih~ui h~gi , to be read as \R entails the (
at)sequent n / h~hi //h~vih~ui h~gi ". 2We brie
y comment on the above inference rules, showing also some examples of deduction inthe style of Ex. 2.27. The �rst rule (gen) says that R entails all the 
at versions (i.e., without thelabel) of the rules in R(N ). Rules (v-ref) and (h-ref) de�ne idle vertical and horizontal componentsof the system, respectively (we could have used a more �nitary approach by de�ning (v-ref) and(h-ref) only for the operators of the signatures and deriving the sequents for generic terms bycomposing the \basic" auxiliary sequents).Then, some auxiliary tiles are added \for free". They are necessary to guarantee the complete-ness of S(R) w.r.t. all the permutations, tuplings and projections of con�gurations and e�ects,and are independent from the particular tTRS. We can divide the auxiliary rules in three sub-classes: symmetries, duplicators, and dischargers. Rules (swap) and (swap') de�ne basic consistentswappings of adjacent variables according to the fact that a swapping in one dimension shall besimulated in the other dimension via an analogous swapping. The term-tile framework allows usinga term-like notation instead of symmetries 
 as in Section 2.2, but the rules (swap) and (swap')de�ne exactly the same basic sequents 
1;1 //
1;1id2 id2 2 Sp(R), and id2 //id2
1;1 
1;1 2 Sp(R) ofprocess tile logic. Analogously to process tile logic, more complex swappings can be entailed byR. As an example, for any n;m 2 lIN, the sequent(n+m) / hxn+1; :::; xn+m; x1; :::; xni //hxn+1;:::;xn+m;x1;:::;xnihx1 ;:::;xn+mi hx1; :::; xn+mi(swapping the �rst n variables of the interface with the successive m variables), is in St(R).Also the swapping of either side-e�ects or con�gurations can be handled as in process tile logic.28



As an example, this means that, for any two e�ects v 2 T�V (Xn), and u 2 T�V (Xm) then thesequent (n+m) / hxn+1; :::; xn+m; x1; :::; xni //hv;u[xn+i=xi]mi=1ihu;u[xm+i=xi]ni=1i hx2; x1iis in St(R).The second class of auxiliary rules contains the rules for \making consistent copies". Rules(dup) and (dup') duplicate a variable of the interface in both horizontal and vertical dimension.A particular application of rule (dup) has been shown in Ex. 2.27. Using the notation of algebraictheories, rules (dup) and (dup') should be rewritten asr1 r1�!id2 id2 2 St(R) id1 id1�!r1 r1 2 St(R)For instance, suitably composing the basic auxiliary tiles for duplication and swapping, togetherwith identities, we can conclude that for any n 2 lIN the tTRS R entails the sequentn / hx1; : : : ; xn; x1 : : : ; xni //hx1;:::;xn;x1:::;xnihx1;:::;x2ni hx1; : : : ; x2niduplicating n variables. Moreover, St(R) contains also the sequents for the duplication ofany e�ect and any con�guration. As an example, we illustrate this result for a generic con�gu-ration h 2 T�H (Xn). From rule (h-ref) we get the sequent n / hhi //hx1 ;:::;xnihx1i hhi , which canbe horizontally composed with the basic sequent of (dup') to obtain n / hhi //hx1 ;:::;xnihx1;x1i hh; hi .Similarly, we can (horizontally) compose the basic sequent of rule (swap) together with theparallel composition of the identity sequents for h (with itself). The resulting sequent is n /hh; hi //hx1;:::;xn;x1;:::;xnihx1;x2i hh; h[xi+n=xi]ni=1i . The two results can now be vertically composed, yield-ing the sequent n / hhi //hx1;:::;xn;x1;:::;xnihx1 ;x1i hh; h[xi+n=xi]ni=1i .Example 2.29 Consider a vertical signature with a unary operator v( ). A similar construc-tion to the one illustrated above yields the sequent 1 / hx1; x1i //hv(x1)ihv(x1);v(x2)i hx1; x2i . By verti-cal composition with the basic sequent 1 / hx1; x1i //hx1;x1ihx1;x2i hx1; x2i we derive also the sequent1 / hx1; x1i //hv(x1);v(x1)ihv(x1);v(x2)i hx1; x2i . Making a backward interpretation, this sequent states that,whenever the same e�ects are required for two distinct components, the system can match thecondition with just one component being able to produce the same e�ect twice. 2The last class of auxiliary rules introduce dischargers. Rules (dis) and (dis') consistentlydischarge variables in both dimensions. Analogously to symmetries and duplicators, they can becomposed to get more complex rules for projecting a con�guration, etc.The composition rules de�ne a general scheme for combining sequents which are \already"entailed in order to get new ones. The parallel composition de�ned by the rule (par) is a to-tal operation. It describes how to put in parallel any two sequents. Intuitively, they are putside by side, the variables of the \second" sequent being renamed with standard fresh variables(they are dependent upon the variables used in the \�rst" sequent). For instance, if we put29



in parallel the elementary idle sequent 2 / hx1i //hx1ihx1i hx1i with itself, we obtain the sequent2 / hx1; x2i //hx1;x2ihx1;x2i hx1; x2i . Horizontal sequential composition, described by the rule (hor), ispartial. It applies exclusively if the side-e�ects produced by the �rst sequent correspond exactly(for instance, no arbitrary renamings of the variables are allowed) to the triggers required by thesecond sequent. The horizontal composition of two composable sequents yields the sequent ob-tained by taking the same trigger of the �rst sequent, the same side-e�ects of the second sequentand consistently substituting the variables involved in the components of the second sequents withthe corresponding components of the �rst sequent. Similarly for the vertical composition. Theseoperations have been extensively used in the previous examples.2.3.2 Proof Terms for Term Tile LogicAs for Sp(R), the resulting class of sequents St(R) is 
at. We provide a more concrete inferencesystem by decorating the entailed sequents with proof terms. Then proof terms can be axiomatizedin order to capture equivalent proofs according to the intuitive cartesian structure. However, theresulting equivalence classes make fewer identi�cations than those induced by the 
at version(where two sequents having the same border are always identi�ed). We remark that the resultinglogic is the same as before (see Proposition 2.31).De�nition 2.30 [Term Tile Logic] Let R = h�H ;�V ; N;Ri be a tTRS. We say that R entails theclass Pt(R) of decorated term sequents obtained by a �nite number of applications of the followinginference rules:Basic Proof Sequents r : n / h~hi //h~vihui hgi 2 R(N )r : n / h~hi //h~vihui hgi 2 Pt(R)~v 2 (T�V (Xn))k1~v : n / hx1; :::; xni //h~vih~vi hx1; :::; xki 2 Pt(R) ~h 2 (T�H (Xn))m1~h : n / h~hi //hx1;:::;xnihx1;:::;xmi h~hi 2 Pt(R)Auxiliary Proof SequentsSymmetries:�1;1 : 2 / hx2; x1i //hx2 ;x1ihx1 ;x2i hx1; x2i 2 Pt(R) �01;1 : 2 / hx1; x2i //hx1 ;x2ihx2 ;x1i hx2; x1i 2 Pt(R)Duplicators:�1 : 1 / hx1; x1i //hx1;x1ihx1;x2i hx1; x2i 2 Pt(R) �1 : 1 / hx1i //hx1ihx1;x1i hx1; x1i 2 Pt(R)Dischargers:�1 : 1 / h�i //h�ih�i h�i 2 Pt(R)  1 : 1 / hx1i //hx1ih�i h�i 2 Pt(R)30



Composition RulesParallel composition:� : n / h~hi //h~vih~ui h~gi 2 Pt(R); �0 : n0 / h~h0i //h~v0ih~u0i h~g0i 2 Pt(R)�
 �0 : (n+ n0) / h~h; ~h0[xi+n=xi]n0i=1i //h~v;~v0[xi+n=xi]n0i=1ih~u; ~u0[xi+m=xi]m0i=1i h~g; ~g0[xi+k=xi]k0i=1i 2 Pt(R)(where ���~h��� = m, j~vj = k, ���~h0��� = m0, and ���~v0��� = k0)Sequential compositions:� : n / h~hi //h~vih~ui h~gi 2 Pt(R); �0 : m / h~h0i //h~uih~u0i h~g0i 2 Pt(R); ���~h��� = m; j~uj = k� � �0 : n / h~h0[hi=xi]mi=1i //h~vih~u0i h~g0[gi=xi]ki=1i 2 Pt(R)� : n / h~hi //h~vih~ui h~gi 2 Pt(R); �0 : k / h~gi //h~v0ih~u0i h~g0i 2 Pt(R); j~vj = k; j~uj = l� � �0 : n / h~hi //h~v0 [vi=xi]ki=1ih~u0[ui=xi]li=1i h~g0i 2 Pt(R)For any sequent � : n / h~hi //h~vih~ui h~gi 2 Pt(R) we say that R entails �, written either R `t � ormore verbosely, R `t � : n / h~hi //h~vih~ui h~gi . 2The inference rules are the same as those in Def. 2.28 (
at version). The only di�erence is thatnow each sequent is decorated with a proof term uniquely describing the deduction process whichled to that particular sequent.Proposition 2.31 Given a tTRS R, thenR `ft n / h~hi //h~vih~ui h~gi () 9� : n / h~hi //h~vih~ui h~gi 2 Pt(R):Proof terms allow the algebraic de�nition of some interesting classes of sequents. For instance�n;m, �0n;m, 
v;u, and �h;g can be de�ned exactly as in process tile logic (see page 24). Similarly,the sequents �n : n / hx1; : : : ; xn; x1 : : : ; xni //hx1 ;:::;xn;x1:::;xnihx1 ;:::;x2ni hx1; : : : ; x2niand �n : n / hx1; : : : ; xni //hx1;:::;xnihx1;:::;xn;x1:::;xni hx1; : : : ; xn; x1 : : : ; xnifor the duplication of interfaces can be de�ned as follows:�0 = 1id0�n+1 = ((�n 
 �1) � (1idn

n;1
id1)) � (1idn 
 �n;1 
 1id1)�0 = 1id0�n+1 = ((�n 
 �1) � (1r1
rn)) � (1idn 
 �n;1 
 1id1)31



Furthermore, the sequents for duplicating con�gurations and e�ects can be constructed throughthe following expressions:� for any e�ect ~v 2 (T�V (Xn))k, thenr~v = (1~v � �k)� (�n �1~v
~v) : n/ hx1; :::; xn; x1; :::; xni //h~vih~v;~v[xn+i=xi]ni=1i hx1; ; :::; xk; x1; :::; xki� for any con�guration ~h 2 (T�H (Xn))m, then�~h = (1~h � �m) � (�n � 1~h
~h) : n / h~hi //hx1;:::;xn;x1;:::;xnihx1;:::;xm;x1;:::;xmi h~h;~h[xn+i=xi]ni=1iDischargers also admit a similar generalization, yielding the sequents:�n : n / h�i //h�ih�i h�i  n : n / hx1; : : : ; xni //hx1;:::;xnih�i h�i!~v = (1~V �  k) � �n : n / h�i //h~vih�i h�i y~h = (1~h �  m) � �n : n / h~hi //h�ih�i h�iwhere �0 = 1id0�n+1 = �n 
 �1 0 = 1id0 n+1 =  n 
  12.3.3 Axiomatizing Term Tile LogicThe class Pt(R) turns out to be too concrete, in the sense that sequents that intuitively shouldrepresent the same rewriting may have di�erent representations.The following axiomatization identi�es intuitively equivalent tile computations in term tilelogic. As in the case of process tile logic, all the compositions of auxiliary tiles (and identities)yielding the same 
at sequents are identi�ed. However, the list of axioms is quite long, so that weprefer to give a briefer and informal description of the more interesting properties. We refer theinterested reader to Appendix B for the complete axiomatization.De�nition 2.32 [Abstract Term Tile Logic] Let R = h�H ;�V ; N;Ri be a tTRS. We say that Rentails the class At(R) of abstract term sequents, whose elements are equivalence classes of proofterms in Pt(R) modulo the set of axioms described below (see also Appendix B for the completelist of axioms):Associativity Axioms as in Def. 2.17.Identity Axioms as in Def. 2.17.Monoidality Axioms as in Def. 2.17.Functoriality Axioms for identities and composition as in Def. 2.17.Functoriality Axioms for derived operators 
 and �, stating that the swapping of two e�ects(con�gurations) respects identities and sequential composition.Functoriality Axioms for derived operators r and �, stating that the duplication of e�ects(con�gurations) respects identities and sequential composition.Functoriality Axioms for derived operators ! and y, stating that the discharging of e�ects (con-�gurations) respects identities and sequential composition.32



Naturality Axioms for derived operators 
 and � (for any sequents � : h u�!v g; �0 : h0 u0�!v0 g0 2Pt(R)): (�
 �0) � 
u;u0 = 
v;v0 � (�0 
 �) (�
 �0) � �g;g0 = �h;h0 � (�0 
 �)Naturality Axioms for derived operators r and � (for any sequents � : h u�!v g 2 Pt(R)):� � ru = rv � (� 
 �) � � �g = �h � (�
 �)Naturality Axioms for derived operators ! and y (for any sequents � : h u�!v g 2 Pt(R)):��!u =!v � � yg = yhUniqueness Axioms, stating that any two compositions of basic auxiliary sequents (�1;1, �01;1,�1, �1, �1 and  1) and identity sequents of con�guration and e�ects (1h and 1v) yielding the same
at sequent are identi�ed. In Appendix B it is shown that these axioms can be partitioned in twomain subclasses: naturality axioms, and coherence axioms. 2Abusing the notation, we will write R `t � to denote the entailment of the abstract termsequent of � and not just the decorated sequent �.The comparison with rewriting logic suggested us to look at cartesian double categories as thebasis on which to interpret the algebraic structures of the models. Unfortunately, the notion ofcartesian double categories is not present (at least to our knowledge) in the literature. Thus, anexploration of the subject has been necessary as part of this research. If we assume the existenceof a double category LD(R) with chosen double products, where the objects are natural numbers,the horizontal (vertical) arrows are the terms over the horizontal (vertical) signature and the cellsare (equivalence classes of) proof terms, then a very general notion of term tile model could begiven in terms of double-product-preserving double functor from LD(R) to a generic cartesiandouble category. Keeping this concept in mind, we will explore a suitable de�nition of cartesiandouble categories with chosen products (Section 3) and its relationship to cartesian 2-categories(Section 4). After that we will eventually show how it is possible to derive the double categoryLD(R) via a free construction (Def. 5.8).
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3 Double CategoriesAs far as we know, all previous attempts { based on internal constructions { for the de�nition ofsymmetric, and, more generally, of cartesian double categories have led to an asymmetric model,where the cartesian structure is fully exploited only in one dimension. We believe that this shouldnot be the case, both conceptually and for the kind of applications to models of concurrencythat we are developing; therefore, in this section, we propose a broader notion of symmetric andcartesian double category that behaves the same in the horizontal and vertical dimension and �tsvery well our concurrency applications.For the 1-dimensional case there is a suitable equational characterization of cartesian categories(with chosen products) in terms of monoidal categories equipped with three natural transforma-tions, called symmetry, duplicator and discharger. In the same way, we look for correspondingnotions in the double case.The �rst problem is that the internal de�nition of natural transformation could be misleading:since double categories have two di�erent notions of sequential composition, it is not clear whichof them to use for a general notion of double natural transformation.Ehresmann [25] proposed another way of expressing natural transformations in terms of func-tors toward higher fold categories. The key point is that a natural transformation is in some sensea functorial collection of commuting squares in the target category, also called quartets. Thisnotion can be generalized to n-fold categories by constructing the 2n-fold category of quartets ofquartets... (n times) in all the di�erent n dimensions. Once a notion of multiple functor betweencategories of di�erent folds has been given, then the notion of hypertransformation arises natu-rally as a multiple functor between the source n-fold category and the 2n-fold category which isgenerated by the target n-fold category. This means that a hypertransformation between n-foldcategories is de�ned upon 2n n-fold functors.Since double categories are 2-fold categories, this means that we need to de�ne the 4-fold cat-egory of horizontal quartets of vertical quartets, and that the hypertransformations are de�nedupon 22 = 4 double functors. This yields a de�nition of transformations which act in both dimen-sions, asserting the correctness of the two ways of transforming the structure (�rst horizontallyand then vertically, or vice versa). However, we propose the equivalent de�nition of generalizednatural transformation as a more concrete rephrasing of the hyper-approach for the 2-fold case.A generalized transformation involves four double functors, two \horizontal" transformations andtwo \vertical" transformations.We can then instantiate this notion of generalized transformation to deal with symmetries,duplicators, and dischargers. This study involves the complete case analysis of the possible com-binations. As an interesting result, we �nd out that each transformation generates two di�erentnotions. However, the two possible generalized symmetries are shown to be equivalent (the reasonis that symmetries are isomorphisms).The axiomatization of the basic components of the generalized transformations in order tostate their \coherence" (in the sense that all the horizontal, vertical and parallel composition ofthe basic components and possibly some identity cells, yielding cells with the same border, mustbe identi�ed) is a more subtle problem. The solution that we propose relies on the characterizationof diagonal categories. We start by considering two particular subclasses of cells, having eitherboth sources or both targets equal to identities. Then, in addition to the horizontal and verticalcompositions, we de�ne two diagonal compositions (one for each subclass) between cells A and Bsuch that the \upper-left" vertex of B is equal to the \lower-right" vertex of A. These operationscan always be de�ned in a double category, and allow expressing the coherence axioms of ourgeneralized transformations as the intuitive rephrasing of the well-knownKelly-MacLane coherenceaxioms.Hopefully this work could provide suitable notions of symmetric monoidal and cartesian doublecategories. Our main motivation is that their explicit axiomatizations can be used to enrich theexpressive power of models based on rewrite rules with side e�ects and rewriting synchronizationsuch as the tile model [32, 35]. Although in Section 2 we equipped the tile model with a purelylogical presentation, where the tiles are just considered as special sequents subject to certain34



inference rules, tile systems can be more generally seen as monoidal double categories wherethe tiles are just cells, the con�gurations are arrows of the 1-horizontal category, and the side-e�ects are arrows of the vertical 1-category, objects being just variables which are used to connectthe somehow syntactic horizontal category with the dynamic vertical evolution. Moreover, theaxiomatization of symmetric monoidal and cartesian double categories that we propose allows thede�nition of more signi�cative models than the 
at ones. Actually such models could take intoaccount the structure of the proof.In Section 3.1 we give some preliminary de�nitions regarding double categories, and in Sec-tions 3.2 and 3.3 we introduce the concepts of generalized inverse of a cell and of diagonal categories.Section 3.4 formalizes and explains the notion of generalized transformation, which is essential inthe rest of the paper. In Sections 3.5 and 3.6 we incrementally enrich the basic monoidal structureof cells, �rst with generalized symmetries and then with generalized dischargers and generalizedduplicators, also presenting their complete axiomatization.3.1 NotationA double category is an internal category in Cat. Due to the speci�c structure of Cat, doublecategories admit the following na��ve presentation (adapted from [41]).De�nition 3.1 [Double Category] A double category D consists of a collection a; b; c; ::: of objects(also called 0-cells), a collection h; g; f; ::: of horizontal arrows (also called horizontal 1-cells), acollection v; u; w; ::: of vertical arrows (also called vertical 1-cells) and a collection A;B;C; ::: ofdouble cells (also called cells). Objects and horizontal arrows form the horizontal 1-category H,with identity ida for each object a, and composition � .a //h b � b //g c = a //h�g c a //ida aObjects and vertical arrows form also a category, the vertical 1-category V, with identity ida foreach object a, and composition � . To shorten the notation, and because, when we considerlower-dimensional objects to be included in higher dimensional ones the notions indeed coincide,sometimes we will refer to both ida and ida either with the object name a or with ida.a��vb� = a�� v�ub��u cc a�� idaaCells are assigned horizontal source and target (which are vertical 1-cells, i.e. arrows in the vertical1-category) and vertical source and target (which are horizontal 1-cells, i.e. arrows in the horizontal1-category); furthermore sources and targets must be compatible, in the sense that, given a cell A,if h is the vertical source, g is the vertical target, v is the horizontal source, and u is the horizontaltarget, then h and v have the same source object, g and u have the same target object, the targetof h is equal to the source of u, and the target of v is equal to the source of g. Graphically theseconstraints can be represented by the diagram:a //hA��v b�� uc //g d35



To shorten the notation we simply write A : h v�!u g. In addition, cells can be composed bothhorizontally ( � ) and vertically ( � ) as follows: given B : f u�!w k, and C : g z�!s h0, then A �B :(h � f) v�!w (g � k), and A �C : h v�z�!u�s h0 are cells. Both compositions can be pictured by the followingpastings of diagrams:a //h��v A b //f��u B a0 =�� w a //h�f��v A�B a0�� wc //g d //k c0 c //g�k c0 a //h��v A b�� uc //g��z C d�� sa0 //h0 b0 = a //hA�C��v�z b�� u�sa0 //h0 b0Moreover, given a fourth cell D : k s�!t f 0 the exchange law holds:(A �C) � (B �D) = (A �B) � (C �D)� //�� A ��� � //�� B ���� //�� C ��� � � //�� D ���� // � � // � = � //�� A � //�� B ���� // � //� �� //�� C � //�� D ���� // � // �Under these rules, cells form both a horizontal category D� and a vertical category D�, withidentities 1v : a v�!v c and 1h : h a�!b h, respectively. Given 1h : h a�!b h and 1g : g b�!c g, the equation1h � 1g = 1h�g must hold (and similarly for vertical composition of horizontal identities).a //h��a 1h b //g��b 1g c�� ca //h b //g c = a //h�g��a 1h�g c�� ca //h�g c a //a��v 1v a�� vb //b��u 1u b�� uc //c c = a //a1v�u��v�u a�� v�uc //c cFurthermore, horizontal and vertical identities of identities coincide, i.e. 1ida = 1ida and are simplydenoted by 1a. 2A double category D has two possible interpretations as an internal category in Cat. That is,due to the symmetric role played by the horizontal and vertical dimensions of a double category,it is possible to adopt a transposed approach in the internal construction:1. As the internal category (V;D�; s�; t�; � ; i�), where5 the functors s� and t� map eacharrow onto its corresponding horizontal source and target respectively, functor � de�neshorizontal composition of cells, and functor i� maps each (vertical) arrow of V onto its5Remember that category V has objects in O and arrows in V equipped with composition � , and that theobjects of category D� are horizontal arrows, while its morphisms are cells equipped with vertical composition � .36



(horizontal) identity cell. This corresponds to picture a generic cell A : h �! g of D� asbelow (in D�) h��A s�(h) //hA)��s�(A) t�(h)�� t�(A)g s�(g) //g t�(g) (in D�)2. As the internal category (H;D�; s�; t�; � ; i�) where the functors s� and t� map each arrowof D� to its corresponding horizontal source and target, the functor � de�nes verticalcomposition of cells according to the source and target projections s� and t�, and i�(h) = 1hfor each horizontal arrow h 2 H.Given two double categories D and E , a double functor F : D �! E is a 4-tuple of functions6mapping objects to objects, horizontal and vertical arrows to horizontal and vertical arrows, andcells to cells, preserving identities and compositions of all kinds. We denote by DCat the categoryof double categories and double functors.3.2 InverseSince double categories have two operators of composition, the de�nition of the inverse of a cell isnot straightforward. We propose the following:De�nition 3.2 [Generalized Inverse] Let A : h v�!u g be a cell in a double category D. We say thatcell A has a �-inverse i� there exists a cell A� such that A �A� = 1v, and A� �A = 1u (i.e., A� isthe inverse of A w.r.t. the horizontal composition �, and this implies the existence of the inversesof the horizontal arrows on the border of A). Similarly, the �-inverse A�, if it exists, satis�es theequations A �A� = 1h, A� �A = 1g (this implies the existence of the inverses of the vertical arrowson the border of A).Then, A has a generalized inverse i� A has both a �-inverse and a �-inverse, and there existsa cell A�1 such that7, A�1 � A� = 1g�1 , A� � A�1 = 1h�1 (i.e., A�1 is the �-inverse of A�),A�1 �A� = 1u�1 , and A� �A�1 = 1v�1 (i.e., A�1 is also the �-inverse of A�). 2a��v //hA b�� uc //g d b��u //h�1A� a�� vd //g�1 cc��v�1 //gA� d�� u�1a //h b d��u�1 //g�1A�1 c�� v�1b //h�1 aFor instance, it follows that (A � A�) � (A� � A�1) = (A � A�) � (A� � A�1) = 1a, and that(A�1)�1 = A.6Since a double category is a cat-object in Cat, a double functor can be equivalently de�ned as a pair (F0; F1)of functors satisfying the conditions of internal functoriality. The two notions coincide, because each functor in(F0; F1) is a pair of mappings on objects and arrows preserving the category structure.7This de�nition can be summarized by saying that the �-inverse of the �-inverse (A�)� of cell A is equal to the�-inverse of the �-inverse (A�)� of A and it is denoted by A�1 .37



3.3 Diagonal CategoriesSometimes, due to the particular kind of cells involved, it is possible to adopt a more conciseand convenient notation. This fact follows by observing that for any double category, it is alwayspossible to characterize two suitable diagonal subcategories.In fact, those cells having identities as both horizontal and vertical target are the arrows of adiagonal category whose composition / is de�ned uniquely as pictured below.a //h��v A b�� bb //b b / b //g��u B c�� cc //c c = a //�� A b //�� 1g c��b //�� 1u b //�� B c��c // c // c = (A � 1g) � (1u �B)In a similar way, we could also de�ne a diagonal composition . for those cells having identitiesas both horizontal and vertical source:a //a��a A a�� va //h b . b //b��b B b�� ub //g c = a //�� A a //�� 1v a��a //�� 1h b //�� B b��b // b // c = (A � 1v) � (1h �B)3.4 Transformations between Double FunctorsLet F;G : D �! E be two double functors. Following the internal construction approach, aninternal natural transformation is an arrow in Cat which veri�es the naturality conditions w.r.t.one composition and which is functorial w.r.t. the other composition. Thus, it is essential tospecify what the internal representations of D and E are.In [25] the notion of hypertransformation is proposed as the generalization of natural trans-formations to the n-fold case. We propose the following de�nition of generalized natural trans-formation as a more concrete rephrasing of the hyper-view8 for double categories. As a matterof notation, we call natural comp-transformation a transformation which satis�es the naturalityrequirement w.r.t. the composition operator comp and which is functorial w.r.t. the remainingcomposition operator. A generalized natural transformation is the key to expressing relationshipsbetween natural �-transformations and �-transformations (which are the two possible notions ofinternal transformations suggested by the internal category viewpoint).De�nition 3.3 [Generalized Natural Transformation] Let D and E be double categories. Givena 4-tuple (F00; F10; F01; F11) of double functors from D to E , a generalized natural transformationis a 5-tuple (�0 ; �1 ; � 0; � 1; �) which is pictured as the cellF00��� 0 //�0� F01�� � 1F10 //�1 F11where:8In the original approach, emphasis was given to showing that the category MCat of multiple functors iscartesian closed. 38



� for i = 0; 1, the symbol �i denotes a natural �-transformation from Fi0 to Fi1, i.e., �i isalso a functor from the category V of vertical arrows (that is, the objects of D�) of D to thecategory E �,� for i = 0; 1, the symbol � i denotes a natural �-transformation from F0i to F1i i.e., � i de�nesalso a functor from the category H of horizontal arrows (that is, the objects of D�) of D tothe category E�, and� the symbol � de�nes both a natural transformation from �0 to �1 (seen as functors fromV to E �) and also from � 0 to � 1 (seen as functors from H to E�). 2To shorten the notation, we will denote the generalized transformation just by �, using a �gureto represents also its components.We now explain more in detail the previous de�nition. First, consider the double functorsF00; F01 : D �! E . A natural �-transformation �0 : F00 ) F01 : D �! E is a functor (i.e.an arrow in Cat) from the category V of objects of D� to E �, which satis�es the equations ofinternal natural transformations. Thus, the functor �0 is a natural transformation from F00 toF01 w.r.t. horizontal composition, i.e., for each cell A of D we have the naturality law F00A��0 ;u =�0 ;v � F01A.a //h��v A b�� uc //g d F00a��F00v //F00hF00A F00b��F00u //�0 ;b�0 ;u F01b�� F01uF00c //F00g F00d //�0 ;d F01d = F00a��F00v //�0 ;a�0 ;v F01a��F01v //F01hF01A F01b�� F01uF00c //�0 ;c F01c //F01g F01dIt also follows that, for each horizontal arrow h : a �! b in D, then F00h��0 ;b = �0 ;a�F01h, e.g.,the object component of functor �0 de�nes a natural transformation between the components ofF00 and F01 on the horizontal 1-category.Consider two more double functors F10; F11 : D �! E and a natural �-transformation �1 :F10 ) F11 : D �! E between them. Then, �1 also de�nes a functor from V to E � and satis�esthe naturality equation w.r.t. horizontal composition. Notice that the functors �0 and �1 havethe same source and target categories. The generalized natural transformation � acts as a naturaltransformation � : �0 ) �1 : V �! E � between them. Thus, the transformation � associates toeach object a of V (i.e., an object of D) an arrow �a of E � (i.e., a cell of E) in such a way that theequation �0 ;v � �c = �a � �1 ;v holds for each arrow v : a �! c in V.a��vc F00a //�0 ;a��F00v �0 ;v F01a�� F01vF00c //�0 ;c��s�(�c) �c F01c�� t�(�c)F10c //�1 ;c F11c = F00a //�0 ;a��s�(�a) �a F01a�� t�(�a)F10a��F10v �1 ;v //�1 ;a F11a�� F11vF10c //�1 ;c F11cThis implies that F00v � s�(�c) = s�(�a) �F10v, and F01v � t�(�c) = t�(�a) �F11v, i.e., s�(�) (respec-tively, t�(�)) is a natural transformation between the (projections on the vertical 1-category of)functors F00 and F10 (F01 and F11, respectively).A similar reasoning can be applied to the orthogonal representations of D and E , de�ning twonatural �-transformations � 0 : F00 ) F10 : D �! E and � 1 : F01 ) F11 : D �! E which arefunctors from the category H of objects of D� to E� satisfying F00A � � 0;g = � 0;h � F10A (seepicture below), and F01A � � 1;g = � 1;h � F11A for each cell A of D.39



a��v //hA b�� uc //g d F00a //F00h��F00v F00A F00b�� F00uF00c //F00g��� 0;c � 0;g F00d�� � 0;dF10c //F10g F10d = F00a //F00h��� 0;a � 0;h F00b�� � 0;bF10a //F10h��F10v F10A F10b�� F10uF10c //F10g F10dThe generalized transformation � also de�nes a natural transformation from � 0 to � 1. Thus, foreach arrow h : a �! b of H we get:a //h b F00a��� 0;a //F00h� 0;h F00b��� 0;b //s�(�b)�b F01b�� � 1;bF10a //F10h F10b //t�(�b) F11b = F00a��� 0;a //s�(�a)�a F01a��� 1;a //F01h� 1;h F01b�� � 1;bF10a //t�(�a) F11a //F11h F11bIt follows that, for each object a 2 O, the shape of the cell �a isF00a��� 0;a //�0 ;a�a F01a�� � 1;aF10a //�1 ;a F11aAs an example, it follows directly from the de�nition that, given a cell A, all the cell pastingson the right of the picture yield identical results.� //h��v A ��� u� //g � � //�� F00A � //�� �0 ;u�� ��� � //�� �0 ;v � //�� F01A�� ���� //�� � 0;g � //�� �d�� ��� = � //�� �c � //�� � 1;g�� ���� // � //= � � // � //= �� //�� � 0;h � //�� �b�� ��� � //�� �a � //�� � 1;h�� ���� //�� F10A � //�� �1 ;u�� ��� = � //�� �1 ;v � //�� F11A�� ���� // � // � � // � // �All the naturality equations are faithfully represented by the commuting hypercube picturedbelow (to ease the interpretation, we draw vertical arrows as dotted lines):40



a ��h>>>>��v A b�� uc ��g >>>> d ��� ��==== && ////F00A �xx �� ��====F01A��� && //��� ��==== //F10A ��� ��====F11A �xx ����� // ���� ��==== // � ��====� ��==== //88 � // � �ff ��====� //88 �ffThe hypercube contains 16 vertices, 24 faces, and 8 cubes. Each vertex is the image of one of thefour corner objects of cell A through one of the four functors under consideration. There are eightempty faces whose border involves either only vertical or only horizontal arrows. All the other16 faces are cells of the double category E . Four cells are the image of A w.r.t. the four di�erentfunctors (see �gure). Four cells are the components at h and g of the natural �-transformations�0and �1 . Four cells are the components at v and u of the natural �-transformations � 0 and � 1. Theremaining four cells are the components at the objects of the generalized natural transformation�. Each cube has two empty faces. The other four faces commute, in the sense that they give anaturality equation. It follows that the hypercube yields eight equations for each cell A. However,the naturalities of � are both replicated for the two components of each transformation, therefore,there are six distinct equations. The functoriality axioms are given by composing the hypercubes,either one below the other or one in front of the other.Remark 3.4 The notion of generalized transformation generalizes �- and �-transformations. In-deed, a �-transformation � : F ) G : D �! E yields a corresponding generalized transformation1�. Similarly, a �-transformation � : F ) H : D �! E yields a corresponding generalizedtransformation 1�: F��1F //�1� G�� 1GF //� G F��� //1F1� F�� �H //1H HRemark 3.5 �- and �-transformations are instances of a more general pattern. Notice that, ifwe restrict ourselves to only two generic double functors F and G, then the allowed generalizednatural transformations where the four double functors are chosen from the set fF;Gg have 24 = 16possible shapes. Only six of them do not involve transformations from G to F :F�� //1 F��F // F F�� //2 F��F // G F�� //3 F��G // G F�� //4 G��F // G F�� //5 G��G // G G�� //6 G��G // G3.5 Symmetric Monoidal Double CategoriesAs a matter of notation, in what follows we favour the horizontal dimension, by using the commonsymbols associate to ordinary symmetries, duplicators and dischargers to denote �-transformationsrather than �-transformations.De�nition 3.6 [(Strict) Monoidal Double Category] A (strict) monoidal double category, sMD inthe following, is a triple (D;
; e), where: 41



� D is the underlying double category,� 
 : D � D �! D is a double functor called the tensor product, and� e is an object of D called the unit object,such that the following diagrams commute:D �D � D //
�1��1�
 D � D�� 
D �D //
 D D //h1;ei ##1 FFFFFFFFF D �D��
 Doohe;1i{{ 1xxxxxxxxxDwhere double functor 1 : D �! D is the identity on D, the double functor e : D �! D (with someabuse of the notation) is the constant double functor which associates the object e and identitieson e respectively to each object and each morphism/cell of D, and h ; i denotes the pairing ofdouble functors induced by the cartesian product of double categories. These equations state thatthe tensor product 
 is associative on both objects, arrows and cells, and that e is the unit for
 .A monoidal double functor is a double functor which preserves tensor product and unit ob-ject. We denote by sMDCat the category of monoidal double categories and monoidal doublefunctors. 2Let X : D�D �! D�D be the double functor which swaps the arguments, i.e., such that foreach A;B 2 D, X(A;B) = (B;A). In the 1-dimensional case, a symmetry is a natural isomorphismbetween the tensor product 1 
 2 (the functor 
) and the swapped tensor product 2 
 1 (thefunctor 
 � X) which veri�es some additional coherence axioms [46]. A double symmetry is ageneralized natural transformation, with a generalized inverse, and it veri�es some similar axioms.De�nition 3.7 [Symmetric, strict Monoidal Double Categories] A symmetric, strict monoidaldouble category, SsMD for short, is a tuple (D;
; e; �) such that the triple (D;
; e) is a sMD, and� is the generalized natural transformation pictured below.
��� //
� 
 �X�� 1
 �X //1 
 �XThis means that all the following equations have to be satis�ed:� Naturality of 
 and �:For any pair of cells A, A0 in D,a��v //hA b�� uc //g d a0��v0 //h0A0 b0�� u0c0 //g0 d0(A
 A0) � 
u;u0 = 
v;v0 � (A0 
 A) (A 
A0) � �g;g0 = �h;h0 � (A0 
 A):42



� Functoriality of 
 and �:For any vertical arrows v : a �! c, v0 : a0 �! c0, w : c �! d, and w0 : c0 �! d0 in D,
v�w;v0�w0 = 
v;v0 � 
w;w0 :For any horizontal arrows h : a �! b, h0 : a0 �! b0, f : b �! c, and f 0 : b0 �! c0 in D,�h�f;h0�f 0 = �h;h0 � �f;f 0 :For any pair of objects a and a0 in D:
ida;ida0 = 1
a;a0 ; �ida;ida0 = 1�a;a0 :� Naturality of �:For any vertical arrows v : a �! c and u : b �! d in D,
v;u � �c;d = �a;b � 1u
v:For any horizontal arrows h : a �! b and g : c �! d in D,�h;g � �b;d = �a;c � 1g
h:� Kelly-MacLane coherence axioms9 for 
, � and �:For any vertical arrows v : a �! c, u : b �! d, and w : a0 �! c0 in D,
u
w;v = (1u 
 
w;v) � (
u;v 
 1w);
v;u � 
u;v = 1v
u:For any horizontal arrows h : a �! b, g : c �! d, and f : a0 �! b0 in D,�f
g;h = (1f 
 �g;h) � (�f;h 
 1g);�h;g � �g;h = 1h
g :For any objects a, b, and c in D,�a
b;c = (1a 
 �b;c) / (�a;c 
 1b);�a;b / �b;a = 1a
b: 29For instance, considering 
 and translating the more general de�nition of symmetric monoidal category intothe special case of symmetric strict monoidal category it could seem that also the axiom 
ide ;v = 1v should bestated. However it is immediate to show that the others are su�cient to guarantee this constraint. In fact, sincee
 e = e, it follows that 
ide ;v = 
ide
ide;v = (1e
 
ide ;v) � (
ide;v 
 1e) = 
ide;v � 
ide ;v. Thus, composing with
v;ide , we obtain 1ide
v = 
ide ;v . Finally, recalling that ide 
 v = v we can conclude that 
ide ;v = 1v.43



The generalized inverse of �a;b can be easily de�ned in terms of �, 
 and � as follows:� the �-inverse of �a;b is ��a;b = �b;a � 1�a;b,� the �-inverse of �a;b is ��a;b = �b;a � 1
a;b , and� the generalized inverse of �a;b is ��1a;b = 1�b;a � (�a;b � 1
b;a) = 1
b;a � (�a;b � 1�b;a).Remark 3.8 The above notation could be somehow misleading, because the generalized inverse��1a;b of �a;b is not �b;a as one might expect from the second coherence axiom for �. The fact isthat �a;b � 1
b;a 6= 1�a;b ; thus, 1
b;a 6= ��a;b. In some sense, the cell �b;a is just the diagonal inverseof �a;b.De�nition 3.9 [Category SsMDCat] We denote by SsMDCat the category of SsMD's andmonoidal double functors preserving all the symmetries. 2Proposition 3.10 The forgetful functor from SsMDCat to Set, mapping a SsMD into its setof objects has a left adjoint which maps each set S into the free SsMD on S (denoted by DSymS )whose objects are the elements of the free monoid S
 over S.The following representation theorem states the correspondence between double symmetriesand ordinary symmetries.Theorem 3.11 For any set S, the double category DSymS is isomorphic to the double categoryof quartets over the free symmetric strict monoidal category SymS on S.It is easy to show that the axiomatization of proof sequents for the process tile logic as givenin Def. 2.24 makes Ap(R) into a SsMD (where �0n;m = ��1m;n). In this sense, the models of processtile logic could be adequately represented as symmetries-preserving monoidal double functors fromAp(R) to generic SsMD's.3.6 Cartesian Double Categories (with consistently chosen products)A fairly general notion of double products should require the products to exist according to allthe four possible compositions that we have seen: horizontal ( � ), vertical ( � ), and diagonal( / , and . ).We recall the ordinary de�nition of cartesian category.De�nition 3.12 [Terminal Object, Products, Cartesian Category] Let C be a category. We saythat an object t of C is terminal if for any object c of C there is exactly one arrow from c to t.We say that C has binary products, if for any pair of objects a; b 2 C there exists an object utogether with two projections �a : u �! a and �b : u �! b satisfying the following condition: foreach object c and arrows f : c �! a and g : c �! b in C, there exists a unique arrow q : c �! usuch that f = q; �a and g = q; �b. The category C has canonical binary products (also calledchosen binary products) if a speci�c product diagram is given for each pair of objects.The category C is cartesian if it has a terminal object and all (binary) products. 2Pursuing the analogy with the 1-dimensional case, we propose the following de�nitionsDe�nition 3.13 [Double Product] Given a Double category D, we say that D has all double(binary) products if the categories D�, D�, D/, and D. all have (binary) products.We say that D has a double terminal object if the categories D�, D�, D/, and D. all have aterminal object. 2De�nition 3.14 [Cartesian Double Category] A double category D is called a cartesian doublecategory if it has all binary double products and a double terminal object. 244



However, we are interested in a much tighter notion of product, similar to the choice of a\canonical product". In fact, the more liberal de�nition does not establish any correspondencebetween the same notions on the di�erent dimensions, but simply states their existence. Thus weadopt the convention that not only the products are chosen in all the four dimensions, but thatthey are also consistently chosen. For simplicity, from now on, we will consider only this kind ofcartesian double categories, thus avoiding to always specify that they have \consistently chosenproducts".Remark 3.15 In general there are many di�erent kinds of cartesian double categories with par-tially chosen products, where only some of the categories D�, D�, D/, and D. have chosen products.In this sense, the more general de�nition could be called with least chosen products and the de�-nition which we will discuss could be also called with most chosen products.Let � : D �! D�D be the double functor which makes a copy of the argument: i.e., such thatfor each A 2 D; �(A) = (A;A). A duplicator is a natural transformation between the identityand the tensor product of two copies of the argument and veri�es some additional coherenceaxioms involving symmetries and dischargers. A discharger is a natural transformation betweenthe identity and the constant functor mapping each element into the unit of the tensor product.Thus, double duplicators and double dischargers are generalized natural transformations verifyingsimilar coherence axioms.De�nition 3.16 [Cartesian Double Categories with Consistently Chosen Products] A cartesiandouble category is a tuple (D, 
, e, �, �, � , �,  ) such that (D;
; e; �) is a SsMD enriched withthe generalized natural transformations �, � , �, and  pictured below.1D��� //r� 
 ���� 1
 �� //1 
 �� 1D��1 //1� 1D�� �1D //r 
 �� 1D��y //!� e�� 1e //1 e 1D��1 //1 1D�� y1D //! eThis means that all the following equations have to be satis�ed:� Naturality of r, !, y, and �:For any cell A in D, a��v //hA b�� uc //g dA � ru = rv � (A
 A); A�!u =!v; A � yg = yh; A � �g = �h � (A 
A):� Functoriality of r, !, y, and �:For any vertical arrows v : a �! c and w : c �! d in D,rv�w = rv � rw; !v�w =!v�!w:For any horizontal arrows h : a �! b and f : b �! d in D,�h�f = �h � �f ; yh�f = yh � yf :For any object a in D,rida = 1ra ; !ida = 1!a ; yida = 1ya; �ida = 1�a :45



� Naturality of �, �,  , and � :For any vertical arrow v : a �! c in D,rv � �c = �a � 1v
v; !v � �c = �a; 1v �  c =  a; 1v � �c = �a � rv:For any horizontal arrow h : a �! b in D,�h � �b = �a � 1h
h; yh � �b = �a; 1h �  b =  a; 1h � �b = �a � �h:� Kelly-MacLane coherence axioms for r, !, �, and y:For any vertical arrows v : a �! c, u : b �! d, and for any horizontal arrows h : a �! b,g : c �! d in D,rv
u = (rv 
ru) � (1v 
 
v;u 
 1u); �h
g = (�h 
 �g) � (1h 
 �h;g 
 1g);!v
u =!v
!u; yh
g = yh 
 yg ;ride = 1e =!ide ; �ide = 1e = yide ;rv � (rv 
 1v) = rv � (1v 
rv); �h � (�h 
 1h) = �h � (1h 
 �h);rv � 
v;v = rv; �h � �h;h = �h;rv � (1v
!v) = 1v; �h � (1h 
 yh) = 1h:� Kelly-MacLane coherence axioms for �, �, � , and  :For any objects a and b in D,�a
b = (�a 
 �b) / (1a 
 �a;b 
 1b); �a
b = (�a 
 �b) . (1a 
 ��1a;b 
 1b);�a
b = �a 
 �b;  a
b =  a 
  b;�e = 1e = �e; �e = 1e =  e;�a / (�a 
 1a) = �a / (1a 
 �a); �a . (�a 
 1a) = �a . (1a 
 �a);�a / �a;a = �a; �a . ��1a;a = �a;�a / (1a 
 �a) = 1a; �a . (1a 
  a) = 1a:� double coherence axioms for �, �, � , and  :For any objects a in D, �a � �a = ra; �a � �a = �a; a � �a =!a;  a � �a = ya: 2Since most of the axioms are either just a rephrasing of those for the 1-dimensional case orare induced by the de�nition of generalized transformations, we assume that only the last fourdouble coherence axioms need some comment. They are needed in order to ensure the coherence ofour structure (in the sense that auxiliary cells are uniquely identi�ed by looking at their border).When we considered the symmetric generalization, we should have also required similar axioms for� and ��1. But since symmetries de�ne isomorphisms there was no need to introduce explicitly��1, because its existence was implied by the presence of �, 
 and �. Duplicators and dischargersare not isomorphisms; thus, we need to introduce both kinds of tiles: � and � , and � and  . Indoing this we need to ensure that their compositions do not introduce any unnecessary additionalstructure. For instance, the vertical composition � � � returns a generalized transformation1D��� //1��� 1D�� �
 �� //1 
 ��that is already present as the identity of �. 46



De�nition 3.17 [Category CDCat] We call CDCat the category of cartesian double categoriesand monoidal double functors preserving all the symmetries, duplicators and dischargers. 2Proposition 3.18 The forgetful functor from CDCat to Set, mapping each cartesian doublecategory into its set of objects has a left adjoint which maps each set S into the free cartesiandouble category on S (denoted by DCartS) whose objects are the elements of the free monoid S
over S.Theorem 3.19 For any set S, the double category DCartS is isomorphic to the double categoryof quartets over the free cartesian category CartS on S.Similarly to the case of process tile logic, it is possible to show that the axiomatization ofproof sequents for term tile logic stated in Def. 2.32 makes At(R) into a cartesian double category,de�ning a suitable initial model for term tile logic.
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4 Relating Double Categories with Extended 2-CategoriesThe de�nition of cartesian double categories adopted in Section 3 imposes strong restrictions onthe way in which the various products are chosen. However, these restrictions are not arbitrarilyimposed. They are motivated by the observation that symmetries, duplicators and dischargers arein some sense shared between the two dimensions, and thus must be chosen in a consistent way.Since 2-categories are one of the most natural frameworks to interpret the semantics of arewriting system, we believe that a consistent mapping from cartesian double categories to 2-categories could o�er a good theoretical support for implementing term tile rewrite systems. Infact, rewriting logic is the semantic basis of several language implementation e�orts [7, 30, 15]. Inparticular, the language Maude [15, 52], developed at SRI International, is based on rewriting logicand is e�ciently implemented. Maude comes also equipped with the important feature of user-de�nable internal execution strategies [19] which allow the meta-control of rewriting computations.This is very important because a correct embedding of double categories into 2-categories heavilydepends on the execution of suitable (internal) rewriting strategies.To build a bridge from tiles to ordinary 2-cells we make use of a recent speci�cation methodol-ogy, called (one-kinded) partial membership equational logic [56]. The features of partial member-ship equational logic (partiality, poset of sorts, membership assertions) o�er a natural frameworkfor the speci�cation of categorical structures. In [58] two of the authors presented an extendedversion of 2-categories, called 2VH-categories, able to include appropriately the structure of doublecategories. The theory of 2VH-categories can be easily expressed as a theory in partial member-ship equational logic, as well as the theories of 2-categories and double categories. Moreover,in [58] a notion of tensor product of theories is explicitly de�ned using the formulae of partialmembership equational logic. The tensor product construction allows a very elegant de�nition ofdouble categories (the tensor product of the theory of categories with itself) and their monoidalversion (the tensor product of the theory of double categories with the theory of monoids).In this section we introduce a richer version of 2VH-categories, able to include in an appro-priate sense the structure of symmetric strict monoidal double categories and cartesian doublecategories (and more generally, double categories with shared structure) by putting in evidencewhat the auxiliary common structure is (thus avoiding the explicit de�nition of the numerousaxioms presented in Section 3).4.1 Partial Membership Equational LogicThis section de�nes the basic notions of partial membership equational logic (PMEqtl) [56, 10, 54].This is a logic of partial algebras with subsorts and subsort polymorphism whose sentences areHorn clauses on equations t = t0 and membership assertions t : s. We treat here the one kindedcase, in which the poset of sorts has a single connected component. A more detailed expositionfor the many-kinded case can be found in [56].4.1.1 Partial Algebras and Membership Equational TheoriesDe�nition 4.1 [Partially Ordered Signature] A partially ordered signature (po-signature) is atriple 
 = (S;�;�), with (S;�) a poset with a top element >, and � = f�kgk2lIN a family of setsof operators, indexed by natural numbers. (S;�) is called the poset of sorts of 
. 2De�nition 4.2 [Partial 
-Algebra] Given a po-signature 
 = (S;�;�), a partial 
-algebra Aassigns:1. to each s 2 S a set As, in such a way that whenever s � s0, we have As � As0 ;2. to each f 2 �k, k � 0, a partial function Af : Ak> ��! A>.Given two partial 
-algebras A and B, an 
-homomorphism from A to B is a function h :A> ! B> such that: 48



1. for each s 2 S, h(As) � Bs (hence, for each s 2 S the function h restricts to a functionhjs : As ! Bs);2. for each f 2 �k, k � 0, and ~a 2 Ak>, if Af (~a) is de�ned, then Bf (hk(~a)) is also de�ned andequal to h(Af (~a)).This determines a category PAlg
. 2De�nition 4.3 [Declaration, Formula and Sentence] Let 
 = (S;�;�) be a po-signature. Givena set of variables X = fx1; : : : ; xmg, a variable declaration ~X is a sequencex1 : s1; : : : ; xm : smwhere for each i = 1; : : : ;m, si is a set of sorts fsi1; : : : ; sikig.Atomic 
-formulas are either equations t = t0where t; t0 2 T�(X) (with T�(X) the usual free �-algebra on variablesX) or membership assertionsof the form t : swhere t 2 T�(X), and s 2 S.General 
-sentences are then Horn clauses of the form8 ~X t = t0 ( u1 = v1 ^ : : : ^ un = vn ^ w1 : s1 ^ : : : ^ wm : smor of the form 8 ~X t : s( u1 = v1 ^ : : : ^ un = vn ^ w1 : s1 ^ : : : ^ wm : smwhere the t, t0, ui, vi and wj are all terms in T�(X). 2De�nition 4.4 [Theory, Model] Given a partial 
-algebra A and a variable declaration ~X, wecan de�ne assignments a : ~X ! A in the obvious way (if x : s and s 2 s, then we must havea(x) 2 As) and then we can de�ne a partial function a : T�(X) ��! A>, extending a in theobvious way. For atomic sentences we then de�ne satisfaction byA; a j= t = t0meaning that a(t) and a(t0) are both de�ned and a(t) = a(t0) (that is, we take an existence equationinterpretation) and by A; a j= t : smeaning that a(t) is de�ned and a(t) 2 As.Satisfaction of Horn clauses is then de�ned in the obvious way. Given a set � of 
-sentences,we then de�ne PAlg
;� as the full subcategory of PAlg
 determined by those partial 
-algebrasthat satisfy all the sentences in �. In other words, the pair T = (
;�) is a theory, and PAlgT =PAlg
;� is the category of its models. 2As an example, we recall the de�nition of the theory of categories from [58]. The theory ispresented in a self-explanatory Maude-like notation [15], which will be used extensively in the restof the paper. In the following, we will denote theories either by their Maude name (e.g., CAT), orby their indexed notation (e.g., TCAT ). 49



Example 4.5 [Categories] The theory of categories TCAT is a theory in PMEqtl. Its poset of sortsis fObject; Arrowg with Object � Arrow. There are two unary domain and codomain operationsd(_) and c(_), and a binary composition operation _;_. The binary composition operator isde�ned i� the codomain of the �rst argument is equal to the domain of the second argument. Asusual in many presentation, here objects are identi�ed with the corresponding identity arrows.Moreover, to shorten the notation, we writecmb  1 � � �  n iff �1 and � � � and �m .where each  i is a membership assertion, as a shorthand forcmb  1 if �1 and � � � and �m ....cmb  n if �1 and � � � and �m .cmb/ceq �1 if  1 and � � � and  n ....cmb/ceq �m if  1 and � � � and  n .where the use of the symbol ceq, rather than cmb, in the last m sentences depends on the kindof each sentence �i (equation or membership assertion). This and most of the other shorthandsthat we use are also summarized in Appendix D. Then the theory of categories can be de�ned asfollows.fth CAT issorts Object Arrow .subsort Object < Arrow .ops d(_) c(_) _;_ .vars f g h : Arrow .a : Object .mbs d(f) c(f) : Object .eq d(a) = a .eq c(a) = a .cmb f;g : Arrow iff c(f) = d(g) .ceq d(f;g) = d(f) if c(f) = d(g) .ceq c(f;g) = c(g) if c(f) = d(g) .ceq a;f = f if d(f) = a .ceq f;a = f if c(f) = a .ceq (f;g);h = f;(g;h) if c(f) = d(g) and c(g) = d(h) .endfthIt is easy to check that a model of CAT is exactly a category, and that a CAT-homomorphism isexactly a functor. 2De�nition 4.6 [Signature and Theory Morphism] Given two po-signatures 
 = (S;�;�) and
0 = (S0;�0;�0), a signature morphism H : 
! 
0 is given by:1. a monotonic function H : (S;�)! (S0;�0), and2. an lIN-indexed family of functions fHk : �k ! �0kgk2lIN.Such a signature morphism induces a forgetful functor UH : PAlg
0 ! PAlg
, where for eachA0 2 PAlg
0 we have:1. for each s 2 S, UH (A0)s = A0H(s); 50



2. for each10 f 2 �k, UH (A0)f = A0H(f) \ (A0H(>) � : : :� A0H(>)| {z }k �A0H(>));3. for each 
0-homomorphism h0 : A0 ! B0, UH (h0) = h0jH(>) : A0H(>) ! B0H(>), which iswell-de�ned as a restriction of h0 because h0 is sort-preserving.Given theories (
;�) and (
0;�0), a theory morphism H : (
;�) ! (
0;�0) is a signaturemorphism H : 
 ! 
0 such that UH (PAlg
0;�0) � PAlg
;�, so that UH restricts to a forgetfulfunctor UH : PAlg
0;�0 ! PAlg
;�. 2The reader is referred to [56] for proof-theoretical conditions on � and �0 ensuring that asignature morphism H : 
! 
0 is a theory morphism H : (
;�)! (
0;�0).Proposition 4.7 (Free Construction Associated to a Theory Morphism [56]) Given atheory morphism H : (
;�)! (
0;�0), its associated forgetful functor UH : PAlg
0;�0 ! PAlg
;�has a left adjoint FH : PAlg
;� ! PAlg
0;�0 .De�nition 4.8 [Conservative, Complete and Persistent Morphisms] A theory morphism H :(
;�) ! (
0;�0) is conservative (resp. complete, persistent) w.r.t. sort s if, for each algebraA 2 PAlg
;�, the component (�A)s : As ! (UH (FH (A))s corresponding to s of the unit of theadjunction associated to H is injective (resp. surjective, bijective). The morphismH is conserva-tive (resp. complete, persistent) if it is conservative (resp. complete, persistent) w.r.t. all s 2 S.2De�nition 4.9 [Subalgebra] Given a po-signature 
 = (S;�;�) and a partial 
-algebra A, an
-subalgebra B of A is an S-sorted family of subsets fBs � Asgs2S such that:1. it is closed under the operations of �, that is, for each f 2 �k, and for each ~b 2 Bk>, if Af (~b)is de�ned, then Af (~b) 2 B>;2. it is closed under subsorts, in the sense that for each sort s 2 S we have Bs = As \B>.It is clear that B with such operations and sorts is itself an 
-algebra, and that the inclusionfunction B � A is an 
-homomorphism. 2Lemma 4.10 For any set � of Horn sentences in partial membership equational logic, the categoryPAlg
;� is closed under 
-subalgebras, i.e., if A 2 PAlg
;� and B is an 
-subalgebra of A, thenB 2 PAlg
;�.Example 4.11 [Subcategories] For the theory CAT of Example 4.5, the subalgebras of a categoryC are exactly its subcategories. 2Note that the notion of 
-subalgebra is strictly stronger than that of 
-monomorphism. It iseasy to check that, in the category PAlg
, m : C ! A is a monomorphism i� the associatedfunction m : C> ! A> is injective. Of course, by taking the smallest image of m, any suchmonomorphism always factors through an isomorphism and an inclusion C �! B ,! A, where Bis a weak subalgebra, as de�ned below.De�nition 4.12 [Weak Subalgebra] Given a signature 
 = (S;�;�) and a partial 
-algebra A,a weak 
-subalgebra of A is a partial 
-algebra B such that B> � A> and such that the inclusionmap B ,! A is an 
-homomorphism. 2In general, given a set � of Horn sentences in PMEqtl, and a partial algebra A 2 PAlg
;�, aweak subalgebra B of A need not satisfy the sentences �. For example, given a nonempty categoryC, the weak subalgebra with same arrows and objects as C, but with all operations everywhereunde�ned is not a category. However, for (
;�) = CAT, the following relationship happens to holdbetween subalgebras and weak subalgebras.Example 4.13 Given a category C, if D � C is a weak subalgebra and D itself is a category, thenD � C is a subalgebra, that is, a subcategory. 210Notice that UH(A0)f = A0H(f) would not be correct in general, since UH(A0)> = A0H(>) , where H(>) is notnecessarily >. 51



4.1.2 The Tensor Product ConstructionGiven a signature 
 = (S;�;�) and a category C with �nite limits and a with suitable posetof canonical inclusions I, in [58] it is shown how to de�ne partial 
-algebras in C, denoted byPAlg
(C) and PAlg
;�(C). It is evident that categories PAlg
 and PAlg
;� are just the specialcase PAlg
(Set) and PAlg
;�(Set). Noticing that PAlg
 and PAlg
;� are categories withlimits, and that 
-subalgebra inclusions A � B constitute a poset category of canonical inclusions,it is possible to de�ne the category PAlgT (PAlgT 0 ) for any two theories T = (
;�) and T 0 =(
0;�0). Moreover, in a way analogous to algebraic theories [45, 29], to lim theories [31], and tosketches [42], in [58] the construction of a tensor theory T 
 T 0 in partial membership equationallogic is given such thatPAlgT
T 0 ' PAlgT (PAlgT 0) ' PAlgT 0 (PAlgT ):Notice that we could have chosen a bigger poset of subalgebra inclusions, yielding a looserde�nition of PAlgT (PAlgT 0 ). A natural choice would have been the set of weak subalgebrainclusions. This would yield a notion of tensor product of theories equivalent to the tensor productof their corresponding sketches. However, as we have already pointed out, the notion of weaksubalgebra is too loose, giving rise in general to somewhat unintuitive models; for this reasonwe favor instead the notion of tensor product associated to subalgebras. Nevertheless, in thespecial case T 0 = CAT, because of the property mentioned in Example 4.13, the de�nition ofPAlgT (PAlgTCAT ) is the same whether we choose subalgebras or instead weak subalgebras ascanonical inclusions in PAlgTCAT .The explicit de�nition of T 
 T 0 is as follows.De�nition 4.14 [Tensor Product] Let T = (
;�) and T 0 = (
0;�0) be theories in partial mem-bership equational logic, with 
 = (S;�;�) and 
0 = (S0;�0;�0). Then their tensor productT 
 T 0 is the theory with signature 


0 having:1. poset of sorts (S;�)� (S0;�0);2. signature �
 �0, with an operator11 f l 2 (�
�0)n for each f 2 �n, and with an operatorgr 2 (� 
�0)m for each g 2 �0m. In particular, for f a constant in �0 we get a constant f lin (� 
�0)0.The axioms of T 
 T 0 are the following:A. Inherited Axioms.For each axiom in � � = 8(x1 : s1; : : : ; xm : sm) '(~x)( c(~x)with si = fsi1; : : : ; silig; 1 � i � m, we introduce an axiom�l = 8(x1 : sl1; : : : ; xm : slm) 'l(~x)( cl(~x)with sli = f(si1;>0); : : : ; (sili ;>0)g; 1 � i � m, and with 'l, cl the obvious translations of ',c obtained by replacing each f 2 � by its corresponding f l.Similarly, we de�ne for each axiom � 2 �0 the axiom �r and impose all these axioms.11Here, superscripts l and r of operators stand respectively for left and right.52



B. Subalgebra Axioms.For each f 2 �n and each s0 2 S0; s0 6= >0, we introduce the axiom:8(x1 : (>; s0); : : : ; xn : (>; s0))f l(x1; : : : ; xn) : (>; s0)( f l(x1; : : : ; xn) : (>;>0):For each g 2 �0m and each s 2 S; s 6= >, we introduce the axiom:8(x1 : (s;>0); : : : ; xm : (s;>0))gr(x1; : : : ; xm) : (s;>0)( gr(x1; : : : ; xm) : (>;>0):For each (s; s0) 2 S � S0 with s 6= > and s0 6= >0, we have the axiom:8x : (>;>0) x : (s; s0)( x : (>; s0) ^ x : (s;>0):C. Homomorphism Axioms.For each f 2 �n; g 2 �0m; n+m � 0, we introduce the axiom:8~x f l(gr( ~x1 ); : : : ; gr( ~xn )) = gr(f l( ~x 1); : : : ; f l( ~x m))(( V1�i�n gr( ~xi ) : (>;>0) ^ V1�j�m f l( ~x j) : (>;>0):where ~x = fxij : (>;>0)g1�i�n1�j�m;~xi = fxij : (>;>0)g1�j�m; 1 � i � n~x j = fxij : (>;>0)g1�i�n; 1 � j � m: 2The essential property of T 
 T 0 is expressed in the following theorem, whose proof will begiven elsewhere.Theorem 4.15 (Models of the Tensor Product) Let T , T 0 be theories in partial membershipequational logic. Then we have the following isomorphisms of categories:PAlgT
T 0 ' PAlgT (PAlgT 0) ' PAlgT 0 (PAlgT ):A useful property of the tensor product of theories is its functoriality in the category of theories.Therefore, if H : T1 ! T2 and G : T 01 ! T 02 are theory morphisms, we have an associated theorymorphism: H 
G : T1 
 T 01 ! T2 
 T 02:It can be shown that the tensor product of theories is associative and commutative up toisomorphism, that is, that we have natural isomorphisms of theories T 
 T 0 ' T 0 
 T and T 
(T 0 
 T 00) ' (T 
 T 0) 
 T 00 giving a symmetric monoidal category structure to the category oftheories.Example 4.16 [Double categories] A double category has been de�ned [25] as a category structureon Cat, that is, as an object of PAlgTCAT (PAlgTCAT ) = DCat. The theory CAT 
 CAT thenaxiomatizes double categories in partial membership equational logic.Spelling out the speci�cation of T 
T 0 for the case of T = T 0 = CAT we get the following posetof sorts, where Square is the top (see Figure refdcatposet):53



CellHarrow 88qqqqqq VarrowffMMMMMMObjectffMMMMMM 88qqqqqqFigure 3: The poset of sorts for TDCAT .(Object; Object) = Object; (Arrow; Arrow) = Square;(Arrow; Object) = Harrow; (Object; Arrow) = Varrow;Object � Harrow � Square; Object � Varrow � Square:For the operations in 

 
0 we adopt the intuitive North-East-West-South notation:dl = w; cl = e; dr = n; cr = s; ( ; )l = � ; ( ; )r = � :The presentation of double categories in Maude-like notation is thus as follows [58].fth DCAT issorts Object Harrow Varrow Square .subsorts Object < Harrow Varrow < Square .ops n(_) e(_) w(_) s(_) _*_ _�_ .vars f h : Harrow .u v : Varrow .A B C D : Square .*** Inherited Axioms: Horizontalmbs w(A) e(A) : Varrow .eq w(v) = v .eq e(v) = v .cmb A*B : Square iff e(A) = w(B) .ceq w(A*B) = w(A) if e(A) = w(B) .ceq e(A*B) = e(B) if e(A) = w(B) .ceq v*A = A if w(A) = v .ceq A*v = v if e(A) = v .ceq (A*B)*C = A*(B*C) if e(A) = w(B) and e(B) = w(C) .*** Inherited Axioms: Verticalmbs n(A) s(A) : Harrow .eq n(h) = h .eq s(h) = h .cmb A�B : Square iff s(A) = n(B) .ceq n(A�B) = n(A) if s(A) = n(B) .ceq s(A�B) = s(B) if s(A) = n(B) .ceq h�A = A if n(A) = h .ceq A�h = h if s(A) = h .ceq (A�B)�C = A�(B�C) if s(A) = n(B) and s(B) = n(C) .*** Subalgebra Axiomscmb A : Object if A : Harrow and A : Varrow .mbs w(h) e(h) n(v) s(v) : Object .mb f*h : Harrow .mb u�v : Varrow . 54



*** Homomorphism Axiomseq n(w(A)) = w(n(A)) .eq n(e(A)) = e(n(A)) .eq s(w(A)) = w(s(A)) .eq s(e(A)) = e(s(A)) .ceq w(A�B) = w(A)�w(B) if s(A) = n(B) .ceq e(A�B) = e(A)�e(B) if s(A) = n(B) .ceq n(A*B) = n(A)*n(B) if e(A) = w(B) .ceq s(A*B) = s(A)*s(B) if e(A) = w(B) .ceq (A*B)�(C*D) = (A�C)*(B�D)if e(A) = w(B) and e(C) = w(D) and s(A) = n(C) and s(B) = n(D) .endfthNotice that in the above axiomatization we do not present the literal instances of the axioms,but equivalent forms. For example, we get w(h) : Object from w(h): Varrow (by inheritedaxioms), plus w(h): Harrow (by the subalgebra axiom properly speaking), plus the subalgebraaxiom forcing Harrow \ V arrow = Object. 2In the following, we enrich our Maude-like notation with the tensor product construction. Thepresentation of double categories thus becomes much simpler:fth DCAT is CAT 
 CAT renamed by (sorts (Object,Object) to Object . (Arrow,Arrow) to Square .(Arrow,Object) to Harrow . (Object,Arrow) to Varrow .ops d(_) left to w(_) . d(_) right to n(_) .c(_) left to e(_) . c(_) right to s(_) ._;_ left to _*_ . _;_ right to _�_ ) .endfth4.1.3 2-Categories and 2VH-Categories2-Categories [41] are probably the best known kind of enriched category. In particular, theyyield models of rewriting logic in a very natural way [50]. It should be clear that they can beconsidered as the special case of double categories whose vertical arrows coincide with objects.In 2-categories, squares are called cells, and horizontal arrows are called arrows. Moreover, thenorth and south source and target of a cell A are denoted by d(A) and c(A), while the west andeast source and target become l(A) and r(A). Also, horizontal composition is denoted ; andvertical composition is denoted � . The explicit Maude-like de�nition of 2-categories [58] will beuseful in the following.fth 2CAT is including DCAT renamed by (sorts Square to Cell . Harrow to Arrow . Varrow to Object .ops w(_) to l(_) . e(_) to r(_) . n(_) to d(_) . s(_) to c(_) ._*_ to _;_ . _�_ to _�_ ) .endfthThe extended version of a 2-category proposed in [58], called a 2VH-category, includes thedouble category structure and has the poset of sorts shown in Figure 4.The idea is that the theory 2CAT is imported in 2VHCAT as such, without any renaming. Inaddition, new sorts Harrow, Varrow and Square are introduced, which correspond to the homony-mous sorts of double categories. The basic intuition is that, if we are given a 2-category withsubcategories Harrow and Varrow of Arrow such that they are disjoint except for objects, andsuch that the horizontal and vertical components can be recovered from their composition, thenwe can form a double category by considering squares with horizontal and vertical sides, and wecan de�ne their horizontal and vertical composition by using the already existing cell composition55



CellArrow 88qqqqqqq SquareffMMMMMMHarrow 44hhhhhhhhhhhhhOO VarrowjjVVVVVVVVVVVVV OOObjectffMMMMMM 88qqqqqqFigure 4: The poset of sorts for T2VHCAT .>2cell 88ppppppp DcellggNNNNNNNNBasicOOArrowOOHarrow 55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk � Horizontal 77ooooooo VerticalffNNNNNN VarrowOO�HmixOO � Mix 88ppppppggOOOOOOO VmixOO�ObjectkkWWWWWWWWWWWWWWWW OO 33hhhhhhhhhhhhhhFigure 5: The poset of sorts for T2EVHCAT .of the 2-category. We omit the complete description of T2VHCAT (see [58]), but we focus on aparticular axiom of the speci�cation, namelyvar t : Arrow .cmb t : Object if t : Harrow and t : Varrow .As a consequence, no shared structure between the horizontal and vertical dimensions canbe de�ned, except for objects. In the cases of symmetric double categories and cartesian doublecategories this is clearly too restrictive. We are therefore led to the de�nition of a more 
exibletheory of 2EVH-categories, in which the problem is elegantly solved. Then, analogous results tothose in [58] can be proved in the extended setting.4.2 Extended 2VH-CategoriesBasically, we could think of auxiliary constructors (i.e., symmetries, duplicators and dischargers)as shared structure between the horizontal and vertical categories. In this sense it would be naturalto introduce a subsort of both Harrow and Varrow containing the auxiliary constructors (and theobjects). However this solution contradicts the subalgebra axiom stating that the only arrowswhich are both horizontal and vertical are the identities. The fact is that we need to representtwo disjoint copies of auxiliary constructors, one for each dimension considered.The poset of sorts that we propose is shown in Figure 5. The sort Mix includes the auxiliarystructure which is thus shared between the sorts Horizontal and Vertical. The sort Arrow isthe union of the two. The sorts Harrow and Hmix (respectively Varrow and Vmix) are isomorphic56



copies of sorts Horizontal and Mix (respectively Vertical and Mix). The representation of theposet given in Figure 5, suggests us to call internal the sorts Mix, Horizontal, and Vertical andto call lateral, or external their isomorphic copies Harrow, Varrow, Hmix, and Vmix. The sort Basiccontains identity cells and possibly the cells of some 2-computads (see Section refcompsec). Theintuition is that, if we are given a cartesian 2-category such that the subcategories Horizontal andVertical of Arrow are disjoint, except for objects and auxiliary arrows, then we can constructa cartesian double category by considering double cells whose horizontal and vertical sides areisomorphic to the two partitions of Arrow. Moreover, it is possible to de�ne their horizontal andvertical composition in terms of the existing cell composition of 2-categories.Since the sorts Horizontal and Vertical share Mix arrows, it follows that more than onedouble cell can correspond to the same 2-cell representation, namely, when they di�er only in theway in which the source and target arrows of the cell are decomposed into the composition ofHorizontal and Vertical arrows. Moreover there are some cells that don't generate any doublecell. Thus, it is possible to de�ne a total mapping from Dcell onto 2cell, but in general thismapping is neither injective, nor surjective. However, the isomorphisms between lateral copiesand internal sorts easily follows from the de�nition of the more general mapping.We present the Maude-like de�nition of the theory T2EVHCAT , alternating the source codewith some explanations and examples. We start by giving the formal translation of Figure 5 and�xing the variable notation for each subsort.fth 2EVHCAT isincluding 2CAT renamed by (sort Cell to 2cell) .sorts Mix Horizontal Vertical Basic >Hmix Harrow Vmix Varrow Dcell .subsorts Object < Hmix Mix Vmix .Mix < Horizontal Vertical < Arrow < Basic < 2cell .Hmix < Harrow . Vmix < Varrow .Harrow Varrow < Dcell .2cell Dcell < > .vars a : Object .m : Mix .h h0 h00 g g0 g00 f : Horizontal .v v0 v00 u u0 u00 w : Vertical .t t0 : Arrow .s : Basic .hm : Hmix .vm : Vmix .ha : Harrow .va : Varrow .p : Dcell .l l0 l00 : 2cell .The sequential composition of two Horizontal (resp. Vertical) arrows is also a Horizontal(resp. Vertical) arrow. Notice that the sort Arrow contains all the existing compositions amongHorizontal and Vertical arrows. Arrows having sort Mix can act as either Horizontal orVertical arrows, depending on the circumstances. The only arrows which are both Horizontaland Vertical are those of sort Mix.cmb t;t0 : Horizontal iff r(t) = l(t0) and t : Horizontal and t0 : Horizontal .cmb t;t0 : Vertical iff r(t) = l(t0) and t : Vertical and t0 : Vertical .cmb t : Mix iff t : Horizontal and t : Vertical .We de�ne a mechanism to construct the double cells starting from the Basic cells. Informally,we want to distinguish between all the possible double cells which are generated by di�erentdecomposition of the border of the same 2-cell. The partial operation mk(_:_,_,_,_) solves this57



problem. Its �rst argument is a 2cell element, its second and last arguments are Horizontalarrows, and the remaining arguments are Vertical arrows. If s is the Basic cellb ""us+a <<h yyyy ##v dc ;;gxxxxwhere h and g are Horizontal, and u and v are Vertical (we use dotted arrows just to emphasizevertical arrows), then mk(s:h,u,v,g) is a Dcell. Since the sort Basic contains all the identitycells (which are in sort Arrow), and Horizontal and Vertical can share more structure thanjust Object (the sort Mix), it follows that the decomposition of many cells is not unique. Asan example, let m : a �! b be an arrow having sort Mix, then there are four possible ways inwhich the identity cell on m can be decomposed along the correct horizontal-vertical pattern, eachcorresponding to a (di�erent, if m is not also an Object) Dcell, namely m1 = mk(m:m,b,m,b),m2 = mk(m:m,b,a,m), m3 = mk(m:a,m,m,b), and m4 = mk(m:a,m,a,m) pictured below.b ""bm1+a <<m yyyy ""m bb <<byyyy b ""bm2+a <<m xxxx ##a ba ;;mwwww a ##mm3+a ;;a wwww ""m bb <<byyyy a ##mm4+a ;;a wwww ##a ba ;;mwwwwTo shorten the notation, we will use two additional derived operators, mkh(_) and mkv(_), whichare \specialized" versions of the more general mk(_:_,_,_,_). The intuition is that, given aHorizontal arrow h, then mkh(h) is the Dcell representing the vertical identity of h, and similarlyfor a Vertical arrow v then mkv(v) denotes the corresponding Dcell. In the example above m2= mkh(m) and m3 = mkv(m). The other two kinds of decompositions return cells having the\same" Mix arrows as both horizontal and vertical sources (targets), which are the basic ingredientsfor the construction of generalized transformations as de�ned in Section 3. We remark that allthe isomorphisms between internal and lateral sorts described earlier are given by mkh(_) andmkv(_). The inverses can be easily de�ned using a projection operator �cell(_), returning the2cell associated to a Dcell.ops mk(_:_,_,_,_) mkh(_) mkv(_) �cell(_) .cmb mk(s:h,u,v,g) : Dcell iff h;u = d(s) and v;g = c(s) .eq mkh(h) = mk(h:h,r(h),l(h),h) .eq mkv(v) = mk(v:l(v),v,v,r(v)) .mb mkh(h) : Harrow .mb mkv(v) : Varrow .mb mkh(m) : Hmix .mb mkv(m) : Vmix .mb mk(a:a,a,a,a) : Object .eq mk(a:a,a,a,a) = a .ceq �cell(mk(l:h,u,v,g)) = l iff mk(l:h,u,v,g) : Dcell .mb �cell(p) : 2cell .mb �cell(ha) : Horizontal .mb �cell(va) : Vertical .mb �cell(hm) : Mix .mb �cell(vm) : Mix .cmb mk(�cell(p):h,u,v,g) : Dcell iff h;u = d(�cell(p)) and v;g = c(�cell(p)).Next, we de�ne the double category structure over the cells generated via the mk(_:_,_,_,_)operation. As usual, we will refer to the sources and targets of double cells with the self-explanatory\cardinal-point" notation n(_), s(_), e(_), and w(_). We begin by de�ning the sort of the fourprojections for each kind of arrows (we omit some axioms because they are redundant). Then,58



we explicitly de�ne which are the sources and targets of the Dcell obtained via a mk(_:_,_,_,_)construction. Eventually we formalize the correctness of the previous de�nitions w.r.t. the operator�cell(_) and the sources and targets of the 2cells. Notice that, once either the source d(_) orthe target c(_) of a 2cell has been de�ned, then the axioms of 2-categories give also the valueof the source l(_) and target r(_) of the 2cell under consideration.ops n(_) e(_) w(_) s(_) .mb n(p) : Harrow .mb s(p) : Harrow .mb w(p) : Varrow .mb e(p) : Varrow .mb w(ha) : Object .mb e(ha) : Object .mb n(va) : Object .mb s(va) : Object .ceq n(mk(l:h,u,v,g)) = mkh(h) if mk(l:h,u,v,g) : Dcell .ceq s(mk(l:h,u,v,g)) = mkh(g) if mk(l:h,u,v,g) : Dcell .ceq w(mk(l:h,u,v,g)) = mkv(v) if mk(l:h,u,v,g) : Dcell .ceq e(mk(l:h,u,v,g)) = mkv(u) if mk(l:h,u,v,g) : Dcell .eq d(�cell(p)) = �cell(n(p));�cell(e(p)) .eq c(�cell(p)) = �cell(w(p));�cell(s(p)) .ceq mk(�cell(p):h,u,v,g) = piff h = �cell(n(p)) and u = �cell(e(p)) andv = �cell(w(p)) and g = �cell(s(p)) .We now de�ne horizontal ( � ) and vertical ( � ) composition operations between composableDcells in terms of the given compositions between underlying 2cells. As before, we �rst expressthe membership axioms, and then give the equational de�nitions.ops _*_ _�_ .cmb mk(l0:h0,u,v,g0)*mk(l00:h00,w,u,g00) : Dcellif mk(l0:h0,u,v,g0) : Dcell and mk(l00:h00,w,u,g00) : Dcell .cmb mk(l0:h,u0,v0,g)�mk(l00:g,u00,v00,f) : Dcellif mk(l0:l0:h,u0,v0,g) : Dcell and mk(l00:g,u00,v00,f) : Dcell .cmb mkh(h0)*mkh(h00) : Harrowif r(h0) = l(h00) .cmb mkv(v0)�mkv(v00) : Varrowif r(v0) = l(v00) .ceq mk(l0:h0,u,v,g0)*mk(l00:h00,w,u,g00) =mk((h0;l00)�(l0;g00):(h0;h00),w,v,(g0;g00))if mk(l0:h0,u,v,g0) : Dcell and mk(l00:h00,w,u,g00) : Dcell .ceq mk(l0:h,u0,v0,g)�mk(l00:g,u00,v00,f) =mk((l0;u00)�(v0;l00):h,(u0;u00),(v0;v00),f)if mk(l0:h,u0,v0,g) : Dcell and mk(l00:g,u00,v00,f) : Dcell .endfthThis concludes the presentation of the theory T2EVHCAT .4.3 Monoids and SymmetriesFor the expressiveness of our approach it is essential to add a monoidal structure to the modelpresented above. In fact, the shared structures on which we focus rely on the notions of symmetry,duplicator and discharger, and therefore on the notion of monoidal categories. Nevertheless, thisextension is almost e�ortless, thanks to the tensor product construction of [58] (see Def. 4.14). Itsu�ces to introduce a theory MON of (strict) monoids and then to apply the tensor construction.59



fth MON issort Monoid .ops 1 _
_ [assoc id: 1] .vars i j : Monoid .mb i
j : Monoid .endfthWe remark that 1 is implicitly de�ned as a constant of sort Monoid (which is the only onede�ned) and that we exploit the possibility given by Maude of declaring the associativity andidentity axioms as attributes of the 
 operator. As explained in Appendix D, if a binary operatorf(_,_) is declared to be associative, then the Maude engine matches equations regardless of howparentheses are left- or right-associated, and the simpler syntax f(t1,t2 : : :,tn) can be used for anyn 2 lIN. The membership assertion mb i 
 j : Monoid just speci�es that the monoidal operationis total. Then, the theory of (strict) monoidal extended 2VH-categories can be expressed in aMaude-like notation as follows:fth MON2EVHCAT is MON 
 2EVHCAT renamed by (sorts (Monoid,Object) to Object . (Monoid,Mix) to Mix .(Monoid,Hmix) to Hmix . (Monoid,Vmix) to Hmix .(Monoid,Harrow) to Harrow . (Monoid,Varrow) to Harrow .(Monoid,Horizontal) to Horizontal . (Monoid,Vertical) to Vertical .(Monoid,Arrow) to Arrow . (Monoid,Basic) to Basic .(Monoid,2cell) to 2cell . (Monoid,Dcell) to Dcell .(Monoid,>) to > .ops 1 left to 1 . _
_ left to _
_ .d(_) right to d(_) . c(_) right to c(_) .l(_) right to l(_) . r(_) right to r(_) ._;_ right to _;_ . _�_ right to _�_ .n(_) right to n(_) . s(_) right to s(_) .w (_)right to w(_) . e(_) right to e(_) ._*_ right to _*_ . _�_ right to _�_ .mk(_:_,_,_,_) right to mk(_:_,_,_,_) . �cell(_) right to �cell(_) .mkh(_) right to mkh(_) . mkv(_) right to mkv(_) . ) .endfthIn the same way, it is easy to de�ne the monoidal theories of categories, 2-categories anddouble categories by very similar tensor product constructions between MON and CAT, 2CAT andDCAT, called MONCAT, MON2CAT and MONDCAT respectively (also illustrated in [58]).fth MONCAT is MON 
 CAT renamed by (sorts (Monoid,Object) to Object .(Monoid,Arrow) to Arrow .ops 1 left to 1 . _
_ left to _
_ .d(_) right to d(_) . c(_) right to c(_) . _;_ right to _;_ . ) .endfthfth MON2CAT is MON 
 2CAT renamed by (sorts (Monoid,Object) to Object . (Monoid,Arrow) to Arrow .(Monoid,Cell) to Cell .ops 1 left to 1 . _
_ left to _
_ .d(_) right to d(_) . c(_) right to c(_) .l(_) right to l(_) . r(_) right to r(_) ._;_ right to _;_ . _�_ right to _�_ . ) .endfthfth MONDCAT is MON 
 DCAT renamed by ( 60



sorts (Monoid,Object) to Object .(Monoid,Harrow) to Harrow . (Monoid,Varrow) to Harrow .(Monoid,Arrow) to Arrow . (Monoid,Square) to Square .(Monoid,Cell) to Cell .(Monoid,>) to > .ops 1 left to 1 . _
_ left to _
_ .n(_) right to n(_) . s(_) right to s(_) .w (_)right to w(_) . e(_) right to e(_) ._*_ right to _*_ . _�_ right to _�_ . ) .endfthThe �rst shared structure that we want to introduce in our model is given by the permutationsover the arguments of a monoidal product, called symmetries. For each pair a, b of Objects weintroduce an arrow sym(a,b) of sort Mix, which plays the role of the symmetry for a and b. Thenaturality axiom schema is de�ned for each pair of Arrows t and t0, and the coherence axioms arestated to equate all the di�erent compositions of symmetries leading to the same �nal result.fth SYMCAT isincluding MONCAT .op sym(_,_) .vars a a0 b b0 : Object .t t0 : Arrow .mb sym(a,b) : Arrow .eq d(sym(a,b)) = a
b .eq c(sym(a,b)) = b
a .ceq (t
t0);sym(b,b0) = sym(a,a0);(t0
t)if d(t) = a and d(t0) = a0 and c(t) = b and c(t0) = b0 .eq sym(a,1) = a .eq sym(1,a) = a .eq sym(a
b,c) = (a
sym(b,c));(sym(a,c)
b) .eq sym(a,b);sym(b,a) = a
b .endfthA similar construction applies to the case of 2-categories. In this case, the Maude-like de�nitionshould include MON2CAT instead on MONCAT, the source and target functions d(_) and c(_) shouldbe renamed by l(_) and r(_), and the naturality axiom should involve two variables of sortCell, l and l0. Notice that, apart from the renaming of some operators, the di�erence betweenthe de�nitions of SYMCAT and SYM2CAT is given by the naturality axiom, which applies to genericarrows in SYMCAT and to generic cells in SYM2CAT. Since every arrow of SYM2CAT is also a cell, itfollows that, in SYM2CAT, the naturality of the symmetries holds also for generic arrows. Thus wepropose the following shorter notation for the de�nition of SYM2CAT:fth SYM2CAT isincluding MON2CAT .including SYMCAT renamed by ( ops d(_) to l(_) . c(_) to r(_) .) .vars a a0 b b0 : Object .l l0 : Cell .ceq (l
l0);sym(b,b0) = sym(a,a0);(l0
l)if l(l) = a and l(l0) = a0 and r(l) = b and r(l0) = b0 .endfthIn a certain sense, using this notation, we are able to de�ne the union of the two importedaxiomatizations. Apart from a more compact description of the resulting theory, a very importantfeature of this approach consists in emphasizing the conceptual extension w.r.t. previously de�nedtheories. In SYM2CAT the only axiom which really needs to be added is the naturality on cells.61



Notice that such an extension is consistent with the naturality axiom on arrows which is importedfrom SYMCAT, but makes it redundant.The case of symmetric monoidal double categories (the theory SYMDCAT) is more involvedand requires all the axioms presented in Section 3.5 for the generalized symmetries, plus someadditional axioms induced by the membership logic. We leave as an exercise for the really veryinterested reader to translate the description of symmetric (strict) monoidal double categories intoMaude-like notation.The (strict monoidal) extended version of 2VH-categories gives the opportunity of represent-ing symmetries as arrows of sort Mix, and then de�ning the generalized symmetries via themk(_:_,_,_,_) operation. As before, we can avoid repeating the axiomatization for the sym-metries by importing it from SYMCAT, the only di�erence is that now the symmetries have sortMix. Then, we can also de�ne the induced transformations 
, � and � (respectively 
(_,_),�(_,_), and �(_,_)) acting on Dcells.fth SYM2EVHCAT isincluding MON2EVHCAT .including SYM2CAT .ops 
(_,_) �(_,_) �(_,_) .vars a a0 b b0 : Object .ha ha0 : Harrow .va va0 : Varrow .mb sym(a,b) : Mix .ceq �(ha,ha0) = mk((�cell(ha)
�cell(ha0));sym(b,b0):(�cell(ha)
�cell(ha0)),sym(b,b0),sym(a,a0),(�cell(ha0)
�cell(ha)))iff w(ha) = a and e(ha) = b and w(ha0) = a0 and e(ha0) = b0 .ceq 
(va,va0) = mk((�cell(va)
�cell(va0));sym(b,b0):sym(a,a0),(�cell(va0)
�cell(va)),(�cell(va)
�cell(va0)),sym(b,b0))iff n(va) = a and s(va) = b and n(va0) = a0 and s(va0) = b0 .eq �(a,b) = mk(sym(a,b):sym(a,b),(a
b),sym(a,b),(a
b)) .endfthTheorem 4.17 The obvious signature morphism from SYMDCAT to SYM2EVHCAT is a theory mor-phism.Proof (Sketch). We need to prove that the axioms of symmetric monoidal double categoriescan be derived from the axioms of SYM2EVHCAT. We graphically hint at the part of the naturalityproof. From the axiomb
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ceq t;dup(b) = dup(a);(t
t) if l(t) = a and r(t) = b .ceq t;dis(b) = dis(a) if l(t) = a and r(t) = b .eq dup(1) = 1 .eq dis(1) = 1 .eq dup(a
b) = (dup(a)
dup(b));(a
sym(a,b)
b) .eq dis(a
b) = dis(a)
dis(b) .eq dup(a);(dup(a)
a) = dup(a);(a
dup(a)) .eq dup(a);sym(a,a) = dup(a) .eq dup(a);(a
dis(a)) = a .endfthAs for the symmetric 2-categories, the theory of cartesian 2-categories can be de�ned simplyadding the naturalities on cells.fth CART2CAT isincluding SYM2CAT .including CARTCAT renamed by ( ops d(_) to l(_) . c(_) to r(_) .) .vars a b : Object .l : Cell .ceq l;dup(b) = dup(a);(l
l) if l(l) = a and r(l) = b .ceq l;dis(b) = dis(a) if l(l) = a and r(l) = b .endfthThe de�nition of cartesian double categories is subject to the explicit axiomatization givenin Section 3.6. As for the symmetric strict monoidal case it is possible to derive the neededaxiomatization from the one of cartesian extended 2VH-categories given below. Here, duplicatorsand dischargers are shared arrows (i.e., have sort Mix) and the additional double transformationsare de�ned in terms of ordinary duplicators and dischargers via the mk(_:_,_,_,_) operator.fth CART2EVHCAT isincluding SYM2EVHCAT .including CART2CAT .ops r(_) �(_) !(_) y(_)�(_) �(_) �(_)  (_) .vars a b : Object .ha : Harrow .va : Varrow .mb dup(a) dis(a): Mix .ceq r(ha) = mk((�cell(ha);dup(b)):�cell(ha),dup(b),dup(a),(�cell(ha)
�cell(ha)))iff w(ha) = a and e(ha) = b .ceq �(va) = mk((�cell(va);dup(b)):dup(a),(�cell(va)
�cell(va)),�cell(va),dup(b))iff n(va) = a and s(va) = b .eq �(a) = mk(dup(a):dup(a),(a
a),dup(a),(a
a)) .eq �(a) = mk(dup(a):a,dup(a),a,dup(a)) .ceq !(ha) = mk((�cell(ha);dis(b)):�cell(ha),dis(b),dis(a),1)iff w(ha) = a and e(ha) = b .ceq y(va) = mk((�cell(va);dis(b)):dis(a),1,�cell(va),dis(b))iff n(va) = a and s(va) = b .eq �(a) = mk(dis(a):dis(a),1,dis(a),1) .eq  (a) = mk(dis(a):a,dis(a),a,dis(a)) .endfthTheorem 4.19 The obvious signature morphism between CARTDCAT and CART2EVHCAT is a theorymorphism. 64



The theory morphism above can be speci�ed in Maude-like notation as:view CE from CARTDCAT to CART2EVHCAT issort Square to Dcell .endviewAs in the case of symmetric double categories, an analogous result holds for the cartesian case.Theorem 4.20 The theory morphism CE from CARTDCAT to CART2EVHCAT is persistent w.r.t. sortsObjects, Harrow, and Varrow and it is complete.
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5 ComputadsThe notion of computad [68, 69] allows a compact presentation of double categories which arefreely generated from a �nitary structure (i.e., from the computad). From the point of view ofpresenting a speci�cation this is very relevant, because it is only necessary to deal with a �nite setof rules which can then be composed in all possible ways to derive the more structured rules, butstill mantaining a modular approach to the system description.De�nition 5.1 A computad is a triple hH;V; T i, where H and V are categories with the same setof objects O, and T is a set of cells, each of which has assigned two pairs of compatible arrows,in H and V , as vertical and horizontal source and target, respectively. Given two computadshH;V; T i and hH 0; V 0; T 0i, a c-morphism is a triple hFh; Fv; Fdi such that Fh : H �! H 0 andFv : V �! V 0 are functors which agree on objects, and Fd : T �! T 0 is a function such that foreach rule s 2 T the horizontal (vertical) source and target of Fd(s) are the images through12 Fv(Fh) of the horizontal (vertical) source and target of s.A computad is symmetric (cartesian) if both H and V are symmetric monoidal categories(cartesian categories) with symmetries 
 = f
a;bga;b2O and � = f�a;bga;b2O, respectively (withduplicators r = fraga2O , � = f�aga2O , and dischargers ! = f!aga2O and y = fyaga2O, respec-tively); c-morphisms then preserve the additional symmetric monoidal (cartesian) structure. 2The Maude-like de�nition of symmetric (cartesian) computad is obtained by replacing MONCATwith SYMCAT (CARTCAT) in the theory CTD de�ned in [58].fth SYMCTD isincluding SYMCAT renamed by (sort Arrow to Harrow .ops d(_) to w(_) . c(_) to e(_) . _;_ to _*_ .sym(_,_) to 
(_,_) .) .including SYMCAT renamed by (sort Arrow to Varrow .ops d(_) to n(_) . c(_) to s(_) . _;_ to _�_ ._
_ to _�_ . sym(_,_) to �(_,_) .) .sort Rule .subsorts Harrow Varrow < Rule .vars A B : Rule .a b : Object .h g : Harrow .v u : Varrow .mbs w(A) e(A) : Varrow .mbs n(A) s(A) : Harrow .eq n(h) = h .eq s(h) = h .eq w(v) = v .eq e(v) = v .eq n(w(A)) = w(n(A)) .eq n(e(A)) = e(n(A)) .eq s(w(A)) = w(s(A)) .eq s(e(A)) = e(s(A)) .mb h
g : Harrow .mb v�u : Harrow .eq a�b = a
b .cmb A
B : Rule iff A : Harrow and B : Harrow .12We remind the reader that the horizontal source and target of a rule s are arrows in V , whereas the verticalsource and target of s are arrows in H. 66



cmb A�B : Rule iff A : Varrow and B : Varrow .cmb A*B : Rule iff A : Harrow and B : Harrow and e(A) = w(B) .cmb A�B : Rule iff A : Varrow and B : Varrow and s(A) = n(B) .cmb A : Object if A : Harrow and A : Varrow .cmb 
(A,B) : Rule iff A : Object and B : Object .cmb �(A,B) : Rule iff A : Object and B : Object .endfthA very similar construction applies to the cartesian case.fth CARTCTD isincluding CARTCAT renamed by (sort Arrow to Harrow .ops d(_) to w(_) . c(_) to e(_) . _;_ to _*_ .sym(_,_) to 
(_,_) .dup(_) to r(_,_) . dis(_) to !(_) .) .including CARTCAT renamed by (sort Arrow to Varrow .ops d(_) to n(_) . c(_) to s(_) . _;_ to _�_ ._
_ to _�_ . sym(_,_) to �(_,_) .dup(_) to �(_,_) . dis(_) to y(_) .) .sort Rule .subsorts Harrow Varrow < Rule .vars A B : Rule .a b : Object .h g : Harrow .v u : Varrow .mbs w(A) e(A) : Varrow .mbs n(A) s(A) : Harrow .eq n(h) = h .eq s(h) = h .eq w(v) = v .eq e(v) = v .eq n(w(A)) = w(n(A)) .eq n(e(A)) = e(n(A)) .eq s(w(A)) = w(s(A)) .eq s(e(A)) = e(s(A)) .mb h
g : Harrow .mb v�u : Harrow .eq a�b = a
b .cmb A
B : Rule iff A : Harrow and B : Harrow .cmb A�B : Rule iff A : Varrow and B : Varrow .cmb A*B : Rule iff A : Harrow and B : Harrow and e(A) = w(B) .cmb A�B : Rule iff A : Varrow and B : Varrow and s(A) = n(B) .cmb A : Object if A : Harrow and A : Varrow .cmb 
(A,B) : Rule iff A : Object and B : Object .cmb r(A) : Rule iff A : Object .cmb !(A) : Rule iff A : Object .cmb �(A,B) : Rule iff A : Object and B : Object .cmb �(A) : Rule iff A : Object .cmb y(A) : Rule iff A : Object .endfthA brief explanation is necessary. We import two separated symmetric (respectively, cartesian)structures for both horizontal and vertical arrows. At this level, only the objects are shared. In67



particular, notice that the two monoidal operators are di�erent, except when applied to objects.However, they will be identi�ed when generating the associated symmetric (respectively, cartesian)double category. Moreover, the operations apply to elements of sort Rule if and only if thoseelements belong to some subsort of Rule. Many of the results presented in [58] for the monoidalcase can then be extended to the symmetric and cartesian cases.Proposition 5.2 Let SD be the signature morphism from SYMCTD to SYMDCAT mapping the sortRule to the sort Square, the operator � to the operator 
, and for the rest relating homonymoussorts and operators, and, analogously, let CD be the signature morphism from CARTCTD to CARTDCATmapping the sort Rule to the sort Square, the operator � to the operator 
, and for the rest relatinghomonymous sorts and operators. Then, both SD and CD are theory morphisms.The theory morphisms above may be represented in Maude-like notation as follows:view SD from SYMCTD to SYMDCAT issort Rule to Square .op _�_ to _
_ .endviewview CD from CARTCTD to CARTDCAT issort Rule to Square .op _�_ to _
_ .endviewThus, we may compose SD with SE and CD with CE to get theory morphisms from SYMCTD toSYM2EVHCAT and from CARTCTD to CART2EVHCAT, respectively.view SVH from SYMCTD to SYM2EVHCAT is SD ; SEendviewview CVH from CARTCTD to CART2EVHCAT is CD ; CEendviewProposition 5.3 The forgetful functor USD : SymDCat �! SymCtd associated to the theorymorphism SD has a left adjoint FSD : SymCtd �! SymDCat. Similarly, the forgetful functorUSVH : Sym2EVHCat �! SymCtd has a left adjoint FSVH : SymCtd �! Sym2EVHCat.Furthermore, FSVH is given by the composition of the functor FSD with the left adjoint FSE to theforgetful functor USE : Sym2EVHCat �! SymDCat.Proposition 5.4 The forgetful functor UCD : CartDCat �! CartCtd has a left adjoint FCD :CartCtd �! CartDCat. Similarly, the forgetful functor UCVH : Cart2EVHCat �! CartCtdhas a left adjoint FCVH : CartCtd �! Cart2EVHCat. Furthermore, FCVH is given bythe composition of the functor FCD with the left adjoint FCE to the forgetful functor UCE :Cart2EVHCat �! CartDCat.5.1 VH-computadsTaking advantage of the sort Basic, it is possible to follow an alternative construction, stillobtaining an analogous result. The idea is to reduce each cartesian (respectively symmetric)computad to a suitable cartesian (respectively symmetric) 2-computad, calledVH-computad, whichcan then be used to freely generate the associated cartesian (respectively symmetric) 2EVH-category.De�nition 5.5 A VH-computad is a quadruple hA;H; V;Di, where H and V are lluf13 subcate-gories of the category A (i.e., H, V , and A have exactly the same objects), and D is a set of cells.13A lluf subcategory of a category C is just a subcategory of C having exactly the same objects as C.68



Each cell has assigned a pair of compatible arrows in A as vertical source and target, respectively.Given two computads hA;H; V;Di and hA0;H 0; V 0; D0i, a vh-morphism is a pair hF; Fdi such thatF : A �! A0 is a functor with F (H) � H 0 and F (V ) � V 0, and Fd : D �! D0 is a function suchthat for each rule d 2 D the horizontal (vertical) source and target of Fd(d) are the images throughF of the (vertical) source and target of d. A vh-computad is cartesian (respectively, symmetric)if both A, H, and V are cartesian (respectively, symmetric) categories. 2fth SYMVHCTD isincluding SYMCAT renamed by (ops d(_) to l(_) . c(_) to r(_) .) .sorts Mix Horizontal Vertical HV VH 2rule .subsorts Object < Mix < Horizontal Vertical < Arrow < 2rule .ops d(_) c(_) .vars A A0 : 2rule .h : Horizontal .v : Vertical .mb sym(a,b) : Mix .eq d(h) = h .eq c(h) = h .eq d(v) = v .eq c(v) = v .eq l(d(A)) = l(A) .eq l(c(A)) = l(A) .eq r(d(A)) = r(A) .eq r(c(A)) = r(A) .cmb A : Mix iff A : Horizontal and A : Vertical .endfthfth CARTVHCTD isincluding CARTCAT renamed by (ops d(_) to l(_) . c(_) to r(_) .) .sorts Mix Horizontal Vertical HV VH 2rule .subsorts Object < Mix < Horizontal Vertical < Arrow < 2rule .ops d(_) c(_) .vars A A0 : 2rule .h : Horizontal .v : Vertical .mb sym(a,b) : Mix .mb dup(a) : Mix .mb dis(a) : Mix .eq d(h) = h .eq c(h) = h .eq d(v) = v .eq c(v) = v .eq l(d(A)) = l(A) .eq l(c(A)) = l(A) .eq r(d(A)) = r(A) .eq r(c(A)) = r(A) .cmb A : Mix iff A : Horizontal and A : Vertical .endfthNotice that the theories SYMVHCTD and CARTVHCTD only di�er in the the imported theories.Proposition 5.6 Let S2VH be the signature morphism from SYMVHCTD to SYM2EVHCAT mappingthe sort 2rule into the sort Basic, and for the rest relating homonymous sorts and operators.69



Analogously, let C2VH be the signature morphism from CARTVHCTD to CART2EVHCAT mappingthe sort 2rule into the sort Basic, and for the rest relating homonymous sorts and operators.Then, S2VH and C2VH are theory morphisms.Theorem 5.14 establishes the relevance of these alternative constructions.5.2 Term Tile Rewriting Systems and ComputadsIn this section we establish the correspondence between term tile logic and the free cartesian (dou-ble category) model which is its natural interpretation. We start by explaining how to translatea generic tTRS into a suitable computad. As an important result the free cartesian double cat-egory arising from the computad entails the same 
at sequents of the term tile logic associatedto the term tile rewrite system. Then, we show that the extended logic de�ned upon the samecomputad in the theory of cartesian 2EVH-categories also coincides with the cartesian tile logicwhen considering their 
at version (instead, the same is not necessarily true whenever proof termsare considered).De�nition 5.7 Let R = h�H ;�V ; N;Ri be a tTRS. The associated cartesian computad Ctd(R)is the triple hT�H (X); T�V (X); TRi, where the set of tiles TR is such thatn //~h��~v r m�� uk //g 1 2 TR () r : n / h~hi //h~vihui hgi 2 R 2De�nition 5.8 Given a tTRS R, the cartesian tile logic of R is the cartesian double categoryLD(R) = FCE (Ctd(R)) freely generated from the computad Ctd(R) by the left adjoint functorFCE described in Proposition 5.4. For � 2 FCE (Ctd(R))Square we also write R `c � (R `fc for
at sequents). 2Theorem 5.9 Given a tTRS R = h�H ;�V ; N;Ri, then R `c �()R `t �.De�nition 5.10 Given a tTRS R = h�H ;�V ; N;Ri the extended logic of R is the cartesian2EVH-category FCVH (Ctd(R)) = FCE (FCD(Ctd(R))) freely generated from Ctd(R) by the leftadjoint functor described in Proposition 5.4. For � 2 FCVH (Ctd(R))Dcell we also write R `e �(R `fe for 
at sequents). 2Corollary 5.11 Given a tTRS R = h�H ;�V ; N;Ri, then R `ft h v�!u g ()R `fe h v�!u g.The relevance of this result is that we can use an implementation of rewriting logic to deduce thesame 
at sequents which are entailed in term tile logic. Since there are several available languagesdesigned for dealing with rewriting logic speci�cations, we can actually build tools which workwith term tile logic as well. From this perspective, the following result introduces a further stepin the translation from tile logic to rewriting logic. In fact, it shows that it is possible to startwith a suitable 2-computad instead of from the double computad and the result does not change.Next, we de�ne how to construct a VH-Computad starting from a given tile-computad.De�nition 5.12 Let R = h�H ;�V ; N;Ri be a tTRS. The associated cartesian vh-computadCvh(R) is the quadruple hT�H[�V (X); T�H (X); T�V (X); DRi, where the set of basic cells DR issuch that DR = 8><>: r̂ : n ((u(~h) 66g(~v)+ 1 ������� r : n / h~hi //h~vihui hgi 2 R9>=>; 270



An important property of Cvh(R) is that the source of each cell in DR is representable asthe sequential composition of an arrow in H and an arrow in V , and the target is the sequentialcomposition of an arrow in V and an arrow in H.De�nition 5.13 Given a tTRS R, the cartesian VH-logic of R is the cartesian 2EVH-categoryFC2VH (Cvh(R)) freely generated fromCvh(R) by the left adjoint functor associated to the theorymorphism of proposition 5.6. For � 2 FC2VH (Ctd(R))Dcell we also write R `cVH � (R `fcVHfor 
at sequents). 2Theorem 5.14 Given a tTRS R = h�H ;�V ; N;Ri, then R `ft h v�!u g ()R `fcVH h v�!u g.Completely analogous results hold for process tile logic.The constraint imposed on the extended logics that the rewrite proof must be a Square canbe enforced at the meta-level of the rewriting system by means of a particular internal strategy.Moreover, if { as it is the case of the examples we have studied { the term tile rewrite system isuniform, then the internal strategy becomes very simple and may be inserted in a standard waydirectly in the speci�cation layer (see Section 6.6).De�nition 5.15 [Uniform Systems] A cartesian (respectively symmetric strict monoidal) doublecategory D is uniform if the 2EVH-category FCE (D) (respectively FSE (D)) satis�es the followingconditional membership axiom:(8A : 2cell; h; g : Horizontal; v; u : Vertical).mk(A : h; u; v; g) : Dcell( d(A) = h;u^ c(A) = v; gA tTRS (respectively pTRS) R is uniform if its associated cartesian (respectively symmetricstrict monoidal) double category is uniform. 2
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6 Dealing with NondeterminismThe theoretical results presented in the previous sections show that there is a strong relationshipbetween the sequents which are derivable in the two (not so far apart) worlds of term tile logicand term rewriting logic. Unfortunately, these results cannot be applied directly in rewritingimplementations of tile systems, because of the implicit nondeterminism in the speci�cation. Forinstance, the fact that a sequent is entailed by the inference rules of rewriting logic does not implythat in an actual implementation of the system the particular rewriting computation leading tothat sequent will be performed. Therefore, we are in need of a methodological approach whichcould drive the computation along the correct paths. In this section we illustrate in detail theproblems arising in a non-Church-Rosser system, and how they can be solved by means of internalstrategies in re
ective languages. In particular we will use Maude to de�ne these strategies as ageneral layer to be placed on top of the speci�cation layer.6.1 Nondeterministic Rewriting SystemsIn most cases, the behaviour of a process in a concurrent system is dependent upon the behavioursof the other processes cooperating in the same system. For instance, in some critical states,a process must have the opportunity of checking incoming communications from many sources,without, at least in principle, granting a privilege to some source or to a particular kind of input.Thus, a speci�cation language for concurrent systems cannot leave out of consideration somemechanism for expressing (guarded) non-deterministic choices in the body of a process. Such amechanism should allow dealing with the possible interactions between each process and the \restof the world".We can distinguish between three implementations { namely conditional choice, don't knownondeterminism, and don't care nondeterminism { of the mechanism described above, each corre-sponding to a di�erent language construct14. Just to �x the notation, we introduce some abstractde�nitions, assuming that both the description of the statements of our language, and the notionof state of the system, are elsewhere de�ned and known \a priori" by the reader (i.e., a statementcan involve some communication on a given channel, or some assignment to a shared variable,while the state can be thought of as either local, private to the process, or global, assuming theknowledge of a snapshot of the whole system at a given moment). Then, a guard is a predicateover the collection of states. The evaluation Gd(st) of a guard Gd in a state st can give threepossible results: true, false, or undecided. The evaluation of the empty guard � returns true in anystate st. If Gd(st) = true, then we say that the state st satis�es the guard Gd. If Gd(st) = falsethen we say that the guard Gd fails in the state st. Otherwise, we say that state st postponesthe guard Gd. Now we analyze in some detail the di�erences between the three approaches listedabove. Each construct is a �nite collection of clauses. The �rst component of a clause is a guardand the second component is a statement, which is called the body of the clause.1. Conditional choice. This approach provides the user with a powerful control tool on theexecution, because the programmer knows which clause will be chosen if more than one issatis�ed. We denote this construct by(Gd1 ! Stat1;Gd2 ! Stat2; : : : ;Gdn! Statn);where the symbol \!" is read as then. The behaviour of the conditional choice statementis as follows. Its guards Gd1, Gd2, : : : , Gdn are evaluated in the current state st. If aguard fails, then the corresponding clause is \deleted". If all clauses are deleted, then thechoice statement fails. If the state st satis�es the �rst remaining guard, say Gdi, then theconditional choice statement is replaced by the body Stati of the corresponding clause. Ifthere are no satis�ed guards (i.e., all the remaining guards are postponed by state st and14Although the syntax used for each construct has been conveniently adapted from a concurrent constraintlanguage [38], the notions considered here are very general and widely used [6] in computer science.72



there's at least one clause left), then the statement suspends until all the guards will fail orat least one will be satis�ed.2. Don't care nondeterminism. This construct is especially useful in concurrent program-ming, where processes should be able to react to incoming information arriving from di�erentsources. If the conditional choice operator is used instead, then the sources are totally or-dered w.r.t. the implicit priority given by the listing order of the clauses. At the semanticlevel this represents an unfair policy. The syntax is(Gd1!Stat1;Gd2!Stat2; : : : ;Gdn!Statn)where the symbol \!" is read commit, and where the overall construct is sometimes referredto as a committed choice. The behaviour of committed choice is as follows. Its guards Gd1,Gd2,: : : , Gdn are evaluated in the current state st. As in the case of conditional choicestatement, if a guard fails, then the corresponding clause is \deleted", and if all clausesare deleted, then the choice statement fails. But if any (not necessarily the �rst) of theremaining guards, say Gdi, is satis�ed by state st, then the committed choice is replaced bythe body Stati of the corresponding clause. Here, the main assumption is that whatever willbe the selected choice, the system will continue behaving in the expected way. For instance,this approach is well suited whenever the Church-Rosser property holds.3. Don't know nondeterminism. Sometimes it is not enough to explore just one branch, be-cause many problems (e.g., in Arti�cial Intelligence or in Operations Research) are currentlysolvable only by resorting to some sort of search or by collecting the successful computa-tions. In this case, the nondeterminism expressed by the constructor leads to a parallelexploration of the enabled branches. However, performance considerations suggest alterna-tive ways when exploring the nondeterministic tree of choices (i.e., depth �rst equipped withbacktracking instead of breadth �rst). The relevant point is that, under some assumption(i.e., �niteness of the tree) the user may explore all the branches, and collect all the solutions.The syntax of this construct is(Gd1?Stat1;Gd2?Stat2; : : : ;Gdn?Statn)where the symbol \?" is read as wait. The behaviour of the nondeterministic choice constructis as follows. Its guards Gd1, Gd2,: : : , Gdn are evaluated in the current state st. As for theprevious statements, if a guard fails, then the corresponding clause is \deleted", and if allclauses are deleted, then the whole statement fails. However, if only one clause remainsand it is satis�ed by the current store st, then the choice statement is said to be determinateand it is replaced with the body of the corresponding clause. Otherwise, if there are moreclauses left, the statement is said to be nondeterminate and the alternative computationpaths are explored concurrently (in this case, also suspended guards are carried on).In some sense, all the above descriptions are partial speci�cations of di�erent informal oper-ational semantics of some system evolving through states. Now suppose that the system comesequipped with a general notion of success and failure, which is represented by a partial predicateok( ), de�ned over the collection of states. We say that a state st is �nal i� ok(st) 2 ftrue; falseg.Moreover, a computation c of the system is successful i� c reaches a �nal state st such that ok(st) =true and for every state st0 visited by c, then ok(st) 6= false. A successful computation c is min-imal i� for every state st0 6= st visited by c, ok(st) 62 ftrue; falseg. A computation c is failing ifok(st) = false for some state st visited by c. Obviously, one would be interested in discharging allthe failing computations. This means that as soon as a failure is detected the system should stopand a new run, where di�erent choices are made, should be considered. \Don't know" nondeter-minism is very important in this case, because it allows exploring the possible computation, thuscapturing all the successful computations. In this sense, if a successful computation exists, then it73



is surely captured by \don't know" nondeterminism. To ensure that \don't care" nondeterminismalso leads always to a successful computation it is necessary that all the enabled choices lead tosuccess. If conditional choice is considered, then it is necessary that the �rst enabled choice (w.r.t.the listing order) leads to success.In (conditional) rewriting logic, a similar problem arises whenever multiple (local) rewritingsare enabled for the same term, and some of them may lead to undesired computations. As anexample the rewriting rulescrl [choice] : t(X) => t1(X) if G1(X) ....crl [choice] : t(X) => tn(X) if Gn(X) .describe a system in which the term t(X) de�nes the nondeterministic choice(G1(X) � t1(X); : : : ; Gn(X) � tn(X))where the value of � 2 f!; !; ?g, depends on the rewriting engine.Maude has a default interpreter for rewrite theories that applies rules in a top-down fashionand ensure fairness in the choice of rules to be applied. This amounts to a form of \don't care"nondeterminism in which the user has virtually no control on the application of the rules. Butsince Maude is a re
ective language it is possible to give the user full control of the rewriting byimporting the metalevel of some speci�cation, and then guiding the computation with suitable(meta-programmed) strategies [19].6.2 Internal Strategies in Rewriting LogicGiven a logical theory T in a logic, a strategy is any computational way of looking for certainproofs of some theorems of T . In particular, we assume the existence of a strategy language S(T )associated with T in which strategies controlling deduction in T can be de�ned. If such a languageis external to the logic, then control becomes an extralogical feature of the system. If strategiescan be de�ned inside the logic that they control, we are in a much better situation, since formalreasoning within the system can be applied to the strategies themselves. As an example, considera metacircular interpreter with a �xed strategy. If such strategy remains outside the logic, this willmake such an interpreter less 
exible, and will complicate formal reasoning about its correctness,whereas strategies de�ned within the \same" logic can be represented and can be reasoned aboutat the object level. Thus, an internal strategy language [17, 13] is a theory-transforming function Sthat sends each theory T to another theory S(T ) in the same logic, whose deductions simulatecontrolled deductions of T . In our opinion, re
ective logics are intrinsically suitable for de�ninginternal strategy languages of this kind, since control statements at the metalevel may be expressedwithin the logic.Given a logic, we say that it is re
ective [18, 19] relative to a class C of theories if we can �ndinside C a universal theory U where all the other theories in the class C can be simulated, in thesense that there exists a representation function ( ` ) : ST2CfTg � s(T ) �! s(U ), where s(T )denotes the set of meaningful sentences in the language of a theory T , such that for each T 2 Cand ' 2 s(T ), T ` '() U ` T ` ':Since U itself is representable (U 2 C), representation can be iterated, so that we get a re
ectivetower T ` '() U ` T ` '() U ` U ` T ` ' � � � :If a re
ective logic has an internal strategy language, then the strategies S(U ) for the universaltheory are particularly important, since they represent, at the object level, strategies for computing74



in the universal theory. A metacircular interpreter for such a language can then be regarded as theimplementation of a particular strategy in S(U ), and reasoning about the properties of such aninterpreter can then be carried out inside the logic itself. The class of �nitely presentable rewritetheories has universal theories (in the precise sense that there is a �nitely presented rewrite theoryU such that can simulate all other �nitely presented rewrite theories, including itself), makingrewriting logic re
ective [17, 13].A rewrite theory T consists of a signature � of operators, a set E of equations, and a set oflabelled rewrite rules. The deductions of T are rewrites moduloE using such rules (also the proofsof the deductions could be taken into account, but we restrict ourselves to consider the simplercase). Moreover, since the meaningful sentences in the language of a rewrite theory T are rewritesequents t) t0, where t and t0 are �-terms, the general notion of re
ection presented above maybe restated in the following form. The class C is that of �nitely presentable rewrite theories. LetU be a universal �nitely presentable theory. The representation function used in [17, 13] ( ` )encodes a pair consisting of a rewrite theory T in C and a sentence t ) t0 in T as a sentencehT ; ti ) hT ; t0i in U , in such a way thatT ` t) t0 () U ` hT ; ti ) hT ; t0i;where the function ( ) recursively de�nes the representation of rules, terms, etc. as terms in U .6.3 Collective Strategies in MaudeMaude is a logical language based on rewriting logic. For our present purposes the key point isthat the Maude implementation supports an arbitrary number of levels of re
ection and givesthe user access to important re
ective capabilities, including the possibility of de�ning and usinginternal strategy languages, their implementation and proof of correctness relying on the notionof a basic re
ective kernel, that is, some basic functionality provided by the universal theory U .The idea is to �rst de�ne a strategy language kernel as a functionMeta-Level of rewrite theories,that sends T to a de�nitional extension of U that de�nes how rewriting in T is accomplished at themetalevel. For instance, a typical semantic de�nition that one wants to have in Meta-Level(T ) isthat of meta-apply(t; l), that simulates, at the metalevel, one step of rewriting at the top of a termt using the rule labelled l in T . Proving the correctness of such a small strategy language kernelis then easily done, by using the correctness of U itself as a universal theory. The next step is tode�ne a strategy language of choice, say Strategy, as a function sending each theory T to a theorythat extends Meta-Level(T ) by additional strategy expressions and corresponding semantic rules,all of which are recursive de�nitional extensions of those in the kernel in an appropriate sense, sothat their correctness can then be reduced to that of the kernel.6.3.1 The KernelThe Maude implementation supports meta-programming of strategies via a module META-LEVELde�ned in [14, 19], but, for e�ciency reasons, the module META-LEVEL is built-in. In particular,META-LEVEL provides sorts Term and Module, so that the representations t and T of a term t anda module T have sorts t : Term and T : Module. Then the declarationprotecting META-LEVEL[T] .imports the module META-LEVEL, declares a new constant T of sort Module, and adds an equationmaking T equal to the representation of T in META-LEVEL. Therefore, we can regard META-LEVELas a module-transforming operation that maps a module T to another module META-LEVEL[T]that is a de�nitional extension of U . Here, for simplicity, we adopt a restricted version of suchmeta-level (e.g., we are not interested in partial instantiation of the rules to be applied during themeta-rewriting). In particular the following operations are de�ned:75



� meta-reduce(t) takes the meta-representation t of a term t and evaluates as follows: (a)�rst t is converted to the term it represents; (b) then this term is fully reduced using theequations in T ; (c) the resulting term tr is converted to a meta-term tr which is returned asa result.� meta-apply(t,l,n) takes the meta-representation of a term t and of a rule label l, and anatural number in Peano representation and is evaluated as follows: (a) �rst t is convertedto the term it represents; (b) then this term is fully reduced using the equations in T ; (c) theresulting term tr is matched against all rules with label l, with matches that fail to satisfythe condition of their rule discarded; (d) the �rst n successful matches are discarded; (e) ifthere is an (n+1)-th match, its rule is applied using that match; otherwise, {error*,empty}is returned; (f) if a rule is applied, the resulting term t0 is fully reduced using the equationsin T ; (g) the resulting term t0r is converted to a meta-term t0r which is returned as a result,paired with the match used in the reduction (the operator {_,_} is used to construct theterm).To make easier the notation, we have used a simpler syntax than the one of the Maude im-plementation, where meta-reduce has an additional argument representing the module T (in themeta-notation) whose equations are used to reduce the term t, and where meta-apply has twoadditional arguments: (1) the meta-representation of the module T as for meta-reduce and (2) aset of assignments (possibly empty) de�ning a partial substitution � for the variables in the rulesof T labelled by l.META-LEVEL can be considered in our terminology as a kernel internal strategy language forrewriting logic. We describe below the part of the signature of the module META-LEVEL that isrelevant for our presentation (omitting the semantic equations). Since in all the applications thatwe consider only the meta-level of one module is necessary, we give here a parametric de�ni-tion of META-LEVEL, assuming that all the operations (e.g., meta-reduce, meta-apply, etc.) areinstantiated by the parameter T of sort Module.mod META-LEVEL[T :: Module] issorts Qid Term TermList Label Nat Assignment Substitution ResultPair.subsorts Qid < Term < TermList .Assignment < Substitution .op 0 : -> Nat .op suc(_) : Nat -> Nat .op pred(_) : Nat -> Nat .op _[_] : Qid TermList -> Term .op _,_ : TermList TermList -> TermList [assoc] .op error* : -> Term .op _<-_ : Qid Term -> Assignment .op empty : -> Substitution .op _;_ : Substitution Substitution -> Substitution [assoc comm id: empty] .op f_,_g : Term Substitution -> ResultPair .op extTerm : ResultPair -> Term .op extSubs : ResultPair -> Substitution .op meta-apply : Term Label Nat -> ResultPair .op meta-reduce : Term -> Term .vdotsendmSome examples on the use of the meta-notation are presented in Appendix D, together withthe description of our Maude-like notation and the main di�erences with the Maude syntax. Werefer the reader to [14] for an extensive introduction to the subject.76



6.3.2 Collection of RewritingsIn many cases we need to have good ways of controlling the rewriting inference process { which inprinciple could go in many undesired directions { by means of adequate strategies. Maude o�ersthe possibility of making these strategies internal to the logic, i.e., they can be de�ned by rewriterules, and can be reasoned about as rules in any other theory.We illustrate this idea by partially specifying a basic internal strategy language which isable to support \don't know nondeterministic" speci�cations. In Maude it becomes a module-transforming operation ND-SEM which maps a module T to another module ND-SEM[T] that ex-tends the strategy kernel META-LEVEL, previously de�ned. Basically we de�ne three di�erentfunctionalities, whose correctness can be easily derived from the correctness of meta-apply. The�rst functionality, called first, takes as arguments (the meta-representations of) a term t, a la-bel l, and a natural number n and it evaluates to the sequence15 of terms containing the �rst nsuccessful rewritings of t in the theory T using rules with label l. If no rewrite is possible then theempty list nilSeq is returned. If only m rewritings are possible, with m < n, then the sequencecontains only the corresponding m terms.mod ND-SEM[T :: Module] isprotecting META-LEVEL [T] .sort TermSequence .subsort Term < TermSequence .op nilSeq : -> TermSequence .op seq : TermSequence TermSequence -> TermSequence [assoc id: nilSeq] .op first : Term Label Nat -> TermSequence .op firstAux : Term Label Nat Nat -> TermSequence .vars t : Term .l : Label .n m : Nat .eq first(t,l,0) = nilSeq .eq first(t,l,suc(n)) = firstAux(t,l,suc(0),suc(n)) .ceq firstAux(t,l,n,m) = nilSeq if n > m .ceq firstAux(t,l,suc(n),m) =if meta-apply(t,l,n) == error*, emptythen nilSeqelse seq(extTerm(meta-apply(t,l,n)),firstAux(t,l,suc(suc(n)),m))fiif n < m .A second functionality, called last, is given for collecting an unbounded number of possiblerewritings. Since the presentation of the theory T is �nite and also the term t that one wantsto rewrite is a �nite term, it follows that there are always a �nite number of possible (one step)rewritings for the term t in T . However, it is common that the number of possible rewritings isunknown by the user, so that the first operation does not give much help. We de�ne last as afunction taking as arguments the meta-representations of a term t of T and of a rule label l, anda natural number n. The evaluation of this construct returns the sequence of terms containingall the successful rewritings of t in T using rules with label l, execept the �rst n ones. This canbe immediately generalized (when n = 0) to a function allRew taking as arguments the meta-representations of t and l and returning all the successful rewritings of t in T using rules withlabel l.op last : Term Label Nat -> TermSequence .15Here we discuss sequences with repetitions. If one is interested (for e�ciency reasons, or whatever else) tosequences without repetitions, then the simple axiom eq seq(t, TL, t) = seq(t, TL) should be added for anyterm t and any term sequence TL. 77



op allRew : Term Label -> TermSequence .eq last(t,l,n) =if meta-apply(t,l,n) == error*, emptythen nilSeqelse seq(extTerm(meta-apply(t,l,n)),last(t,l,suc(n)))fi .eq allRew(t,l) = last(t,l,0) .endmNow it is easy to de�ne a new layer which includes di�erent policies for visiting the tree of non-deterministic rewritings. Notice that the speci�cation level is not a�ected by the meta-extensions.We add a transformation TREE which maps a module T to another module TREE[T], extend-ing ND-SEM[T] with a breadth-�rst and a depth-�rst visit mechanism for the nondeterministicrewriting trees in T .A strategy expression [19] has either the form rewWith(t,S), where S is the rewriting strategythat we wish to compute, or failure, which means that something goes wrong. As the compu-tation of a given strategy proceeds, t gets rewritten according to S and S itself is reduced intothe remaining strategy to be computed. In case of termination S becomes the trivial strategyidle. In what follows, we assume the existence of a user-de�nable predicate ok(_) as describedin Section 6.1.mod TREE[T :: Module] isprotecting ND-SEM [T] .sort TermSet .subsort Term < TermSet .op emptySet : -> TermSet .op set : TermSet TermSet -> TermSet [assoc comm id: emptySet] .op isIn : Term TermSet -> Bool .vars t t0 : Term .TS : TermSet .ceq set(t,t0) = tif meta-reduce('_==_[t,t0]) == 'true .eq isIn(t,emptySet) = false .ceq isIn(t,set(t0,TS)) = trueif meta-reduce('_==_[t,t0]) == 'true .ceq isIn(t,set(t0,TS)) = isIn(t,TS)if meta-reduce('_=/=_[t,t0]) == 'true .sorts Strategy StrategyExpression .op idle : -> Strategy .op rewWith : Term Strategy -> StrategyExpression .op failure : -> StrategyExpression .op rewWithBF : TermSequence TermSet Label -> StrategyExpression .op breadth : Label -> Strategy .vars TL : TermSequence .l : Label .eq rewWith(t,breadth(l)) = rewWithBF(t,emptySet,l) .eq rewWithBF(nilSeq,TS,l) = failure .eq rewWithBF(t,TS,l) =if isIn(t,TS)then failure 78



else (if meta-reduce('ok[t]) == 'truethen rewWith(t, idle)else (if meta-reduce('ok[t]) == 'falsethen failureelse rewWithBF(allRew(t,l), set(t,TS),l)fi)fi)fi .eq rewWithBF(seq(t,TL),TS,l) =if isIn(t,TS)then rewWithBF(TL,TS,l)else (if meta-reduce('ok[t]) == 'truethen rewWith(t,idle)else (if meta-reduce('ok[t]) == 'falsethen rewWithBF(TL,set(t,TS),l)else rewWithBF(seq(TL,allRew(t,l)),set(t,TS),l)fi)fi)fi .We brie
y comment on the breadth-�rst algorithm. The expression rewWith(t,breadth(l))means that the user wants to rewrite a term t in T using rules with label l, and exploring allthe possibilities \in parallel" until a solution is found. This corresponds to the evaluation of theexpression rewWithBF(t,emptySet,l). The function rewWithBF takes as arguments a sequenceof terms TL, a set of terms TS, and a label l. TS represents the set of already visited terms.The sequence TL contains the terms that have not yet been \checked". If the �rst argument isthe empty sequence of terms, then the function evaluates to failure, which means that no solutionis reachable (i.e., that all the possible computations fail). If there is at least one term t in thesequence, such that t 62 TS and ok(t) = false, then the possible rewritings of t in T via ruleswith label l are appended to the rest of the list (i.e., the sequence of terms is managed as a queue).If ok(t) = true then t is a solution and the evaluation returns rewWith(t,idle) and we are done.op depth : Label -> Strategy .op rewWithDF : TermSequence TermSet Label -> StrategyExpression .eq rewWith(t,depth(l)) = rewWithDF(t,emptySet,l) .eq rewWithDF(nilSeq,TS,l) = failure .eq rewWithDF(t,TS,l) =if isIn(t,TS)then failureelse (if meta-reduce('ok[t]) == 'truethen rewWith(t,idle)else (if meta-reduce('ok[t]) == 'falsethen failureelse rewWithDF(allRew(t,l),set(t,TS),l)fi)fi)fi .eq rewWithDF(seq(t,TL),TS,l) =if isIn(t,TS)then rewWithDF(TL,TS,l)else (if meta-reduce('ok[t]) == 'truethen rewWith(t,idle) 79



else (if meta-reduce('ok[t]) == 'falsethen rewWithDF(TL,set(t,TS),l)else rewWithDF(seq(allRew(t,l),TL),set(t,TS),l)fi)fi)fi .The implementation of the strategy depth(l) for the depth-�rst visit of the tree is very similarto the previous one, except that the sequence of terms TL in rewWithDF(TL,TS,l) is managedas a stack intead of a queue.Notice that this solution does not correspond exactly to the classical notion of depth-�rst visit,because once a term t is selected from the stack, all of its possible rewriting are calculated. Toimprove the e�ciency of the depth-�rst visit, we propose the following variant: the stack containspairs of the form (t; i), where t is a term and i is an integer. When such a pair is selected, it meansthat only the �rst i � 1 rewritings of t have been already inspected and the i-th rewriting ti of t(if any) should be the next. The advantage is that the stack is shorter, because all rewritings arecomputed by need. We use the name depthBT for this strategy, because it implements a sort ofbacktracking mechanism. Since this strategy yields the same result as the depth strategy, in whatfollows we do not specify which one is used when a depth-�rst visit is involved.sorts Pair PairSequence .subsort Pair < PairSequence .op pair : Term Nat -> Pair .op nilPair : -> Pair .op seqPair : PairSequence PairSequence -> PairSequence [assoc id : nilPair] .op depthBT : Label -> Strategy .op rewWithBT : PairSequence TermSet Label -> StrategyExpression .var PL : PairSequence .eq rewWith(t,depthBT(l)) = rewWithBT(pair(t,0),emptySet,l) .eq rewWithBT(nilSeq,TS,l) = failure .eq rewWithBT(pair(t,n),TS,l) =if isIn(t,TS)then failureelse (if meta-reduce('ok[t]) == 'truethen rewWith(t,idle)else (if meta-reduce('ok[t]) == 'falsethen failureelse (if meta-apply(t,l,n) == error*,emptythen failureelse rewWithBT(seqPair(pair(extTerm(meta-apply(t,l,n)),0),pair(t,suc(n))),set(t,TS),l)fi)fi)fi)fi .eq rewWithBT(seqPair(pair(t,n),PL),TS,l) =if isIn(t,TS)then rewWithDF(PL,TS,l)else (if meta-reduce('ok[t]) == 'true80



then rewWith(t,idle)else (if meta-reduce('ok[t]) == 'falsethen rewWithBT(PL,set(t,TS),l)else (if meta-apply(t,l,n) == error*,emptythen rewWithBT(PL,set(t,TS),l)else rewWithBT(seqPair(pair(extTerm(meta-apply(t,l,n)),0),pair(t,suc(n)),PL),set(t,TS),l)fi)fi)fi)fi .In both cases (breadth-�rst or depth-�rst visits) the solution is processed in a deterministicway, i.e., if multiple solutions are reachable, then each strategy selects only one of them. It isalso possible to de�ne a nondeterministic visit of the tree (in the sense that the speci�cationis nondeterministic, not the Maude-execution). Since we look for some control mechanism overnondeterministic computations, we could use a rewriting rule with label aux instead of an equation.op nondet : Label -> Strategy .op rewWithND : TermSequence TermSet Label -> StrategyExpression .var TL0 : TermSequence .eq rewWith(t,nondet(l)) = rewWithND(t,emptySet,l) .eq rewWithND(nilSeq,TS,l) = failure .rl [aux] : rewWithND(seq(TL,t,TL0),TS,l) =>if isIn(t,TS)then rewWithND(seq(TL,TL0),TS,l)else (if meta-reduce('ok[t]) == 'truethen rewWith(t,idle)else (if meta-reduce('ok[t]) == 'falsethen rewWithND(seq(TL,TL0),set(t,TS),l)else rewWithND(seq(TL,allRew(t,l),TL0),set(t,TS),l)fi)fi)fi .If we add an appropriate notion of success, then the module ND-SEM[TREE[T]] would allowcollecting the nondeterministic visits to the (nondeterministic) tree of rewritings in T , and themodule TREE[TREE[T]] allows di�erent mechanisms for exploring the resulting tree of nondeter-ministic application of the meta-level rule aux. For instance, it could be possible to collect all thesolutions of the initial nondeterministic system (whereas TREE[T] allows �nding only one solution)by de�ning a very simple notion of meta-success via a predicate ok at the meta-level. The ideais to use one of the strategies at the meta-meta-level to explore all the possible nondeterministicvisits of the tree, �nding a success i� every application of the rule aux at the meta-level leads toa meta-success. The notion of meta-success that we are looking for is given by a meta-term ofthe type rewInWithND(LT, TS, l) where LT is a TermList such that all the terms in LT aresuccessful (and LT is not empty).As an example consider the followingmodule Ex de�ning the (�nite) nondeterministic transitionsystem below, where the only states with success are s(3), s(4) and s(10).81



s(1)||xxxxxxxx �� ""DDDDDDDDs(2)||xxxxxxxx �� s(3)�� ""DDDDDDDD s(4) ""DDDDDDDDs(5) s(6)�� s(7) s(8) s(9)s(10)mod EX issort State .ops s : Nat -> State .ok : State -> Bool .rl [choice] : s(1) => s(2) .rl [choice] : s(1) => s(3) .rl [choice] : s(1) => s(4) .rl [choice] : s(2) => s(5) .rl [choice] : s(2) => s(6) .rl [choice] : s(3) => s(7) .rl [choice] : s(3) => s(8) .rl [choice] : s(4) => s(9) .rl [choice] : s(6) => s(10) .eq ok(s(3)) = true .eq ok(s(4)) = true .eq ok(s(10)) = true .endmExecuting the query rew s(1) gives state s(5) as a result, which is not a solution (thiscorresponds to executing a run of the system which can terminate in any �nal state). Executingthe meta-queriesMaude> rew rewWith('s['1], breadth('choice)) .Maude> rew rewWith('s['1], depth('choice)) .Maude> rew rewWith('s['1], nondet('choice)) .leads respectively to the list of resultsrewWith('s['3], idle)rewWith('s['10], idle)rewWith('s['3], idle)All of them are acceptable solutions, and we can also observe that the nondeterministic strategy forthe reductions gives the same result as the depth-�rst strategy. However, none of these strategiesleads to state s(4), which is a reachable solution. But all the executions (in TREE[TREE[EX]]) ofthe meta-meta-queries 82



Maude> rew rewWith('rewWith['_[_][''s,''1], 'nondet[''choice]], breadth('aux)) .Maude> rew rewWith('rewWith['_[_][''s,''1], 'nondet[''choice]], depth('aux)) .Maude> rew rewWith('rewWith['_[_][''s,''1], 'nondet[''choice]], nondet('aux)) .give as a result the same (meta-meta-)termrewWith('rewWithND[('seq[('_[_][''s, ''10]),('_[_][''s, ''3]),('_[_][''s, ''4])]),('set[('_[_][''s, ''1]),('_[_][''s, ''2]),('_[_][''s, ''5]),('_[_][''s, ''6])]),''choice],idle)collecting all the successful reachable states of the system in the (meta-meta-)term notation('seq[('_[_][''s, ''10]), ('_[_][''s, ''3]), ('_[_][''s, ''4])])A better solution to the problem of collecting the \solutions" of the system can be given byanalyizing the nature of the nondeterministic rule aux. It is possible to distinguish two casesdepending on the selected term t. If t is successful, then the rule discharges all the other possiblesolutions and chooses t as the �nal state. If t is not successful (and it is not yet visited) then thecomputation proceeds by exploring also the rewritings of t. Whenever we are looking for the wholeset of solutions, we need either to apply rule aux to a selected term t that is not successful, or tostop as soon as we reach a sequence of successful terms only. Notice that there is only one solutionand that all the computation paths leading to that solution have always the same length. It followsthat we can de�ne a simpler speci�cation by using a (conditional) equation and a (conditional)rewrite rule. The strategy that we obtain can be described as: \Expand any term that is not asolution, and eventually choose one of the solutions (if it exists)". Then, at the meta-meta-level,we need only one step of rewriting to �nd a solution, and the set of meta-solutions can be collectedvia the function allRew. Moreover, the notion of success at the meta-level is simpler and moreintuitive. We make use of an auxiliary predicate okSeq to recognise the sequences of solutions.op okSeq : TermSequence -> Bool .eq okSeq(nilSeq) = true .ceq okSeq(t) = trueif meta-reduce('ok[t]) == 'true .ceq okSeq(t) = falseif meta-reduce('ok[t]) =/= 'true .eq okSeq(seq(t,TL)) = okSeq(t) and okSeq(TL) .eq rewWith(t,nondet(l)) = rewWithND(t,emptySet,l) .eq rewWithND(nilSeq,TS,l) = failure .ceq rewWithND(seq(TL,t,TL0),TS,l) =if isIn(t,TS)then rewWithND(seq(TL,TL0),TS,l)else if meta-reduce('ok[t]) == 'falsethen rewWithND(seq(TL,TL0),set(t,TS),l)else rewWithND(seq(TL,allRew(t,l),TL0),set(t,TS),l)fifiif meta-reduce('ok[t]) =/= 'true .crl [aux] : rewWithND(seq(TL,t,TL0),TS,l) =>83



rewWith(t,idle)if okSeq(seq(TL,t,TL0)) .op ok : StrategyExpression -> Bool .eq ok(rewWith(t,idle)) = true .If we consider the module ND-SEM[TREE[EX]] where EX is the module de�ned in the previousexample, then the meta-meta-queryMaude> rew allRew('rewWith['_[_][''s, ''1], 'nondet[''choice]], 'aux) .gives as result the sequence of meta-termsseq('rewWith[('_[_][''s, ''3]), 'idle],'rewWith[('_[_][''s, ''4]), 'idle],'rewWith[('_[_][''s, ''10]), 'idle])The results presented in this section can be summarized as follows. Given a nondeterministicrewriting speci�cation T , equipped with a general notion of \success", then:� the module ND � SEM[T ] allows collecting and analyzing all the possible one-step rewritingsof a term (modulo the equations of T );� the module TREE[T ] allows analyzing one solution among those reachable from a term, de-pending on the adopted strategy among the three proposed;� the module ND � SEM[TREE[T ]] allows collecting and analyzing all the possible (subtree-topmost) solutions reachable from a term. Notice that each solution (if any) is reachablewith only one step of rewriting. In Section 7 we will illustrate some application of thisprocedure to the executable implementation of two tile systems for CCS-like process calculi.Furthermore, if we assume that we are interested only in solutions which di�er from the \initial"term, then we could change the equationseq rewWith(t,depth(l)) = rewWithDF(t,emptySet,l) .eq rewWith(t,breadth(l)) = rewWithBF(t,emptySet,l) .eq rewWith(t,nondet(l)) = rewWithND(t,emptySet,l) .which are contained in the module TREE[T ] by the following equationseq rewWith(t,depth(l)) = rewWithDF(allRew(t,l),t,l) .eq rewWith(t,breadth(l)) = rewWithBF(allRew(t,l),t,l) .eq rewWith(t,nondet(l)) = rewWithND(allRew(t,l),t,l) .Then, the module TREE[TREE[T ]] would allow us to collect and analyze all the possible so-lutions of the system. The result is an abstract view of the system T equipped with one-stepnondeterministic rewritings from one solution to its reachable solutions.6.4 Nondeterminism and Term Tile SystemsThe general strategies that we have presented apply immediately to the translations of uniform tilesystems. All we need to specify is the right notion of success, which is user-de�nable case by case.For instance, a general notion of success for uniform tile systems consists of VH con�gurations aswe will see in Section 6.6. In fact, a typical query in a tile system could be something like \deriveall (some of) the tiles with a given horizontal source ~h and vertical target ~u":84



n //~h m�� ~un0 ) n��~v1m1 //~g1 n0 ; n��~v2m2 //~g2 n0 � � � n��~vimi //~gi n0But also more constrained queries are feasible like \derive all (some of) the tiles with a givenvertical source ~h and horizontal target ~u which have the identity as horizontal source". In bothcases, our strategies have been succesfully implemented and tested.A surprising thing, in the translation of a tile system, is that queries start with a horizontaltarget rather than with a source. The obvious explanation consists in the use of terms to de�ne thevertical arrows. In this case this is the only correct procedure. However in some of the examplesthat we have considered when developing this approach, especially in the case of CCS-like processalgebras [35], we realized that the vertical and horizontal dimension could be swapped in such away that the intuitive queries are of the kind \derive all one-step transitions for a given agentP". This is possible because the vertical signature consists of unary actions. So we can reversethe vertical arrow in the tile rewrite system and then rotate clockwise by 90 degrees the tileswhen implementing the system, as illustrated below for the tiles de�ning the action of a pre�xcomponent of the system:1 //�:��id pr� 1�� �1 //id 1 =) 1 //�:pr� 11 //idOOid 1OO � =) 1 //id��id pr� 1�� �:1 //� 1If we examine the 2-cell translations, then the motivation for this kind of swapping of arrows isclear: 1 ((�(�:P ) 66P+ 1 =) 1 ((�:P 66�(P )+ 1The cell on the left states that if we try to force the process �:P to perform a � action, itsucceeds. The other cell states that the process �:P may perform the action �. Consequently,an implementation using the �rst kind of rules can only be used to test CCS process, whereas animplementation based on the second kind of rules may generate all the possible evolutions of thesystem.6.5 Non Uniform CaseIf the tTRS is not uniform, then also the actual proof term decorating the derivation has tobe taken into account. Consequently, the meta-strategies also need to be changed in order torecord not only the state, but also the derivation steps which led to that state. This meansthat the structure of the meta-state would become very large very fast during the execution, andthat the computations would be a�ected by becoming very slow. Since at present we don't haveany meaningful examples of non-uniform systems, we are not really interested in having such animplementation.6.6 Uniform CaseIn this section we show how it is possible to make use of the membership assertions to directlymodel uniform cartesian theories.Let R = h�H ;�V ; N;Ri be a generic tTRS, where �H and �V are two (one-sorted) disjointsignatures and R(N ) is a set of rules having the form85



UHV 55kkkkkkkkkkkkkkkkkk � QHV << V HaaDDDDDDDD � QVHiiHOO 33hhhhhhhhhhhhhhhhhhhhhhhhhh � QHOO 33VOOkkVVVVVVVVVVVVVVVVVVVVVVVVVV � QVOOkk WiiSSSSSSSSSSSSSSSSSSbb =={{{{{{{{ 55Figure 6: The poset of sorts for bR.n //~h��~v r m�� uk //g 1where ~h 2 (T�H (Xn))m, ~v 2 (T�V (Xn))k, u 2 T�V (Xm), and g 2 T�H (Xk), such that the cartesiantile logic of R (i.e., the cartesian double category freely generated from Ctd(R) by the left adjointfunctor described in Proposition 5.4) is uniform.Then, we de�ne a rewrite theory bR, where the poset of its sorts is the one illustrated in Fig. 6.We brie
y comment on their meaning: the sort W informally contains the variables of the systemas constants; the sort H contains the terms over the signature �H and variables in W (similarlyfor the sort V); the sort HV contains those terms over the signature �H[V and variables in W suchthat they are decomposable as terms over the signature �V applied to terms over the signature�H (similarly for VH); the sorts QH, QV, QHV, and QVH are quoted versions of the correspondingsorts described before (we will denote the quoted version of a signature �S by �S0 , adopting theconvention that all the operators of the latter are syntactically quoted version of the operatorsin �S , i.e., f 2 �S;n i� f 0 2 �S0 ;n). The sort U contains terms over the signature �H[V [H0[V 0and variables in W. As summarized above, we introduce the following operations and membershipassertions:op h : Un -> U .op v : Um -> U .op qh : Un -> U .op qv : Um -> U .vars X1 ... Xmax : U .cmb h(X1,...,Xn) : H iff X1 ... Xn : H .cmb v(X1,...,Xm) : V iff X1 ... Xn : V .cmb h(X1,...,Xn) : VH iff X1 ... Xn : VH .cmb v(X1,...,Xm) : HV iff X1 ... Xn : HV .cmb qh(X1,...,Xn) : QH iff X1 ... Xn : QH .cmb qv(X1,...,Xm) : QV iff X1 ... Xn : QV .cmb qh(X1,...,Xn) : QVH iff X1 ... Xn : QVH .cmb qv(X1,...,Xm) : QHV iff X1 ... Xn : QHV .86



for each h 2 �H;n and v 2 �V;m. After that we add two operations which allow translating a terminto its quoted version and viceversa.quote : U -> U .unquote : U -> U .cmb quote(X1) : QH iff X1 : H .cmb quote(X1) : QV iff X1 : V .cmb quote(X1) : QHV iff X1 : HV .cmb quote(X1) : QVH iff X1 : VH .cmb quote(X1) : W iff X1 : W .eq quote(h(X1,...,Xn)) = qh(quote(X1),...,quote(Xn)) .eq quote(v(X1,...,Xm)) = qv(quote(X1),...,quote(Xm)) .ceq quote(X1) = X1 if X1 : W .cmb unquote(X1) : H iff X1 : QH .cmb unquote(X1) : V iff X1 : QV .cmb unquote(X1) : HV iff X1 : QHV .cmb unquote(X1) : VH iff X1 : QVH .cmb unquote(X1) : W iff X1 : W .eq unquote(qh(X1,...,Xn)) = h(unquote(X1),...,unquote(Xn)) .eq unquote(qv(X1,...,Xm)) = v(unquote(X1),...,unquote(Xm)) .ceq unquote(X1) = X1 if X1 : W .The rewriting rules are just the quoted versions of the rules in R:rl [qr] : quote(u(~h)) => quote(g(~v)) .We then add an operator top(_) to indicate the term to be rewritten, and two rules to begin andto end the rewriting computation.top : U -> U .crl [start] : top(X1) => top(quote(X1)) if X1 : HV .crl [end] : top(X1) => top(unquote(X1)) if X1 : QVH .The following result may be easily proved via a simple inspection of the rules in R̂.Theorem 6.1 Given a uniform cartesian tile rewrite system R thenR `ft ~h ~v�!u g() R̂ ` top(u(~h)) ) top(g(~v)):In Section 7 this translation is applied to the tTRS for �nite CCS, and an example of executionis illustrated in detail.
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7 Maude as a Semantic FrameworkIn this section we will show how Maude { thanks to its re
ective capabilities and, in particular,thanks to the possibility of de�ning internal strategy languages { can in fact be used to prototypeand execute tile rewriting systems.7.1 Finite CCSMilner's Calculus for Communicating Systems (CCS) [59] is among the best well-known and stud-ied concurrency models. In the recent literature, several ways in which CCS can be conservativelyrepresented in rewriting logic have been proposed [47, 70]. We present here an executable imple-mentation of CCS arising from the translation in term tile logic of the tile rewriting system givenin [35] for �nite CCS.De�nition 7.1 [Calculus of Communicating Systems] Let � (ranged over by �) be the set ofbasic actions, and let �� be the set of complementary actions (where �( ) is an involutive functionsuch that � = ��� and � \ �� = ;). We denote by � (ranged over by �) the set � [ ��. Let � 62 �be a distinguished action, and let Act = � [ f�g (ranged over by �) be the set of CCS actions.Then, a �nite CCS process is any term generated by the following grammar:P ::= nil j �:P j Pn� j P [�=�] j P + P j P jP:We let P , Q, R, : : : range over the set Proc of CCS processes. 2Assuming the reader reasonably familiar with the notation, we give an informal descriptionof CCS algebra operators: the constant nil yields the inactive process (i.e., it cannot performany action); the process �:P is a process behaving like P , but only after the execution of thecommunication � (�: is called a pre�x operator); the process Pn� is the process P with the �and �� actions blocked by the restriction operator n�; the process P [�=�] behaves like P withactions � and �� relabelled by � and ��; the process P + Q is the nondeterministic (guarded) sumof processes P and Q; �nally, the process P jQ is the parallel composition of processes P and Q.Notice that the only di�erence w.r.t. the traditional CCS operators is given by the relabelling, forwhich we adopt a �nitary approach, thus allowing a much simpler representation in the Maudelanguage. However, the non �nitary case could also be handled as well in our framework.Example 7.2 Assuming � = fai j i 2 lINg, then the operator [�] with � = f[ai=ai+1] j i 2 lINgcannot be de�ned by a �nite application of relabellings in the process algebra of Def. 7.1. However,since a �nite process can only perform �nitely many actions, then for each �nite CCS process P ,it is possible to \simulate" P [�] in the process algebra of Def. 7.1. 2Given a process P , its dynamic behaviour is usually described by a transition system, presentedin the SOS style, where the transition relation is freely generated from a set of inference rules.The rules for CCS are usually presented via inference schemes that are parametric w.r.t. either theaction performed, or the operator involved, or the underlying processes (i.e., there are three familiesof operators indexed by actions, namely f�: j � 2 Actg, f n� j � 2 �g, and f [�=�] j �; � 2 �g).De�nition 7.3 [Operational Semantics of CCS] The CCS transition system is the relation T �Proc�Act� Proc inductively generated from the following set of axioms and inference rules�:P ��! P P ��! QPn� ��! Qn� � 62 f�; ��g P ��! QP [�=�] �[�=�]�! Q[�=�]P ��! QP + R ��! Q P ��! QR+ P ��! Q88



P ��! QP jR ��! QjR P ��! Q; P 0 ���! Q0P jP 0 ��! QjQ0 P ��! QRjP ��! RjQwhere P ��! Q means that (P; �;Q) 2 T , and the action �[�=�] is de�ned as follows:�[�=�] = 8<: � if � = ��� if � = ��� otherwise : 2The operational meaning is that a CCS process P may perform an action � becoming theprocess Q i� it is possible to inductively construct a sequence of rule applications to concludethat P ��! Q. More generally, a CCS process P0 may evolve to process Pn i� there exists acomputation P0 �1�! P1 : : : Pn�1 �n�! Pn. In [35] it is shown how to associate an algebraic (tile)rewriting system to CCS. We adapt Gadducci and Montanari's de�nition to settle the followingtTRS for CCS.De�nition 7.4 [Term Tile System for Finite CCS] The tTRS associated to CCS is the tupleRCCS = h�A;�P ; N;Ri, where �A = f� : 1 �! 1 j � 2 Actg, �P is the signature of CCSprocesses, and the rules are the following:act� : 1 / hx1i //hx1ih�:x1i h�(x1)i res�;� : 1 / h�(x1)i //hx1n�ihx1n�i h�(x1)i (if � 62 f�; ��g)rel�;�;� : 1 / h�(x1)i //hx1 [�=�]ihx1 [�=�]i hti with t = 8<: �(x1) if � = ���(x1) if � = ���(x1) otherwiseh+� : 2 / h�(x1); x2i //hx1ihx1+x2i h�(x1)i +i� : 2 / hx1; �(x2)i //hx2ihx1+x2i h�(x1)ic� : 2 / h�(x1); x2i //hx1jx2ihx1jx2i h�(x1)i b�: 2 / hx1; �(x2)i //hx1 jx2ihx1 jx2i h�(x1)ik� : 2 / h�(x1); ��(x2)i //hx1jx2ihx1jx2i h� (x1)i 2Here, the vertical dimension is associated to process descriptions, whereas the horizontal di-mension represents the (opposite of the) dynamic evolution of the system16. For the reader alreadyacquainted with the tile system of Gadducci and Montanari, the previous de�nition may appearsomewhat odd, because the two dimensions are reversed in a counterintuitive way. The reason isthat the direct translation of our system in a Maude module allows collecting the possible evo-lutions of a process, whereas the ordinary de�nition would allow only testing executable actions.The following example should help making our motivation more clear.16We say opposite, because the direction of the arrows representing the actions performed by the system is theopposite from that of their computationally intuitive direction.89



Example 7.5 Let us consider the simple process �:nil. and let us suppose that we have anexecutable module both for our system and for the tile system de�ned in [35, 58]. In our case thequery is uniquely determined, and the system can give only one answer:0 //id0 0�� nil1�� �:x11 ) 0��nil1 //�(x1) 1which corresponds to the proof sequent 1nil � act�. In the other case, there are as many possiblequeries as the actions in Act, but only one of them enables the rewriting.0 //nil 1 //�:x1 1�� �(x1)1 ) 0��id00 //nil 1 i� � = � 2Given a process P0 (i.e., an arrow from 0 to 1 in the process dimension) the comparison betweenthe two models can be graphically extended to computations P0 �1�! P1 : : :Pn�1 �n�! Pn:0 ��P0>>>>>>>��P1�� Pn�1������ww Pnpppppppppppppp1 //�n 1 ::: 1 //�1 1oocomputation_ _ _ 0 //P0 ��P1>>> >>> ��Pn�1...... ...... ��Pn ))))))))))))))))))))) 1�� �11... �� computation����1�� �n1where dashed arrows represent the direction of computational evolutions of processes.Analogously to [35], the following result holds, establishing the correspondence from the set-theoretic view of the traditional SOS semantics for CCS, and the sequents entailed by term tilelogic.Proposition 7.6 For any CCS agents P and Q, and action �:P ��! Q 2 T () RCCS `ft 0 / hi //hP ihQi h�(x1)i :Moreover, the tTRS RCCS guarantees the following result:Proposition 7.7 The tTRS RCCS is uniform.From Proposition 7.7 it follows immediately that a suitable implementation of RCCS can beobtained by taking the rewriting system R̂CCS de�ned in Section 6.6, and considering a successpredicate de�ned by means of the assertion:ceq ok(top(t)) = true if t : VH . 90



Then, the meta-strategies de�ned in Section 6.3 for collecting the correct rewritings can bedirectly applied. We give the complete description of the resulting module CCS.mod CCS is protecting MACHINE-INT .sorts W H V HV VH U QH QV QHV QVH .subsorts W < H V < HV VH < U .W < QH QV < QHV QVH < U .sorts Channel Act .subsort Channel < Act .op a : MachineInt -> Channel .op bar : Channel -> Channel .op tau : -> Act .op nil : -> U .op pre : Act U -> U .op res : U Channel -> U .op rel : U Channel Channel -> U .op plus : U U -> U .op par : U U -> U .op exec : U Act -> U .op qnil : -> U .op qpre : Act U -> U .op qres : U Channel -> U .op qrel : U Channel Channel -> U .op qplus : U U -> U .op qpar : U U -> U .op qexec : U Act -> U .vars P Q : U .A : Act .C D : Channel .eq bar(bar(A)) = A .mb nil : H .cmb pre(A,P) : H if P : H .cmb res(P,C) : H if P : H .cmb rel(P,C, D) : H if P : H .cmb plus(P,Q) : H if P : H and Q : H .cmb par(P,Q) : H if P : H and Q : H .cmb exec(P,A) : V if P : V .mb nil : VH .cmb pre(A,P) : VH if P : VH .cmb res(P,C) : VH if P : VH .cmb rel(P,C, D) : VH if P : VH .cmb plus(P,Q) : VH if P : VH and Q : VH .cmb par(P,Q) : VH if P : VH and Q : VH .cmb exec(P,A) : HV if P : HV . 91



mb qnil : QH .cmb qpre(A,P) : QH if P : QH .cmb qres(P,C) : QH if P : QH .cmb qrel(P,C, D) : QH if P : QH .cmb qplus(P,Q) : QH if P : QH and Q : QH .cmb qpar(P,Q) : QH if P : QH and Q : QH .cmb qexec(P,A) : QV if P : QV .mb qnil : QVH .cmb qpre(A,P) : QVH if P : QVH .cmb qres(P,C) : QVH if P : QVH .cmb qrel(P,C, D) : QVH if P : QVH .cmb qplus(P,Q) : QVH if P : QVH and Q : QVH .cmb qpar(P,Q) : QVH if P : QVH and Q : QVH .cmb qexec(P,A) : QHV if P : QHV .op quote : U -> U .cmb quote(P) : QH if P : H .cmb quote(P) : QV if P : V .cmb quote(P) : QHV if P : HV .cmb quote(P) : QVH if P : VH .cmb quote(P) : W if P : W .eq quote(nil) = qnil .eq quote(pre(A,P)) = qpre(A,quote(P)) .eq quote(res(P,C)) = qres(quote(P),C) .eq quote(rel(P,C, D)) = qrel(quote(P),C,D) .eq quote(plus(P,Q)) = qplus(quote(P),quote(Q)) .eq quote(par(P,Q)) = qpar(quote(P),quote(Q)) .eq quote(exec(P,A)) = qexec(quote(P),A) .ceq quote(P) = P if P : W .op unquote : U -> U .cmb unquote(P) : H if P : QH .cmb unquote(P) : V if P : QV .cmb unquote(P) : HV if P : QHV .cmb unquote(P) : VH if P : QVH .cmb unquote(P) : W if P : W .eq unquote(qnil) = nil .eq unquote(qpre(A,P)) = pre(A,unquote(P)) .eq unquote(qres(P,C)) = res(unquote(P),C) .eq unquote(qrel(P,C, D)) = rel(unquote(P),C,D) .eq unquote(qplus(P,Q)) = plus(unquote(P),unquote(Q)) .eq unquote(qpar(P,Q)) = par(unquote(P),unquote(Q)) .eq unquote(qexec(P,A)) = exec(unquote(P),A) .ceq unquote(P) = P if P : W .op top : U -> U .crl [qr] : top(P) => top(quote(P)) if P : VH .92



rl [qr] : qpre(A,P) => qexec(P,A) .crl [qr] : qres(qexec(P,A),C) => qexec(qres(P,C),A)if A =/= C and A =/= bar(C) .crl [qr] : qrel(qexec(P,A),C,D) => qexec(qrel(P,C,D),A)if A =/= C, A =/= bar(C) .crl [qr] : qrel(qexec(P,A),C,D) => qexec(qrel(P,C,D),D)if A == C .crl [qr] : qrel(qexec(P,A),C,D) => qexec(qrel(P,C,D),bar(D))if A == bar(C) .rl [qr] : qplus(qexec(P,A),Q) => qexec(P,A) .rl [qr] : qplus(Q,qexec(P,A)) => qexec(P,A) .rl [qr] : qpar(qexec(P,A),Q) => qexec(qpar(P,Q),A) .rl [qr] : qpar(Q,qexec(P,A)) => qexec(qpar(Q,P),A) .crl [qr] : qpar(qexec(P,C),qexec(Q,D)) => qexec(qpar(Q,P),tau)if C == bar(D) .crl [qr] : top(P) => top(unquote(P)) if P : QHV .op ok : U -> Bool .ceq ok(top(P)) = true if P : HV .endmThe code exactly corresponds to the translation illustrated in section 6.6, but we use a moreverbose syntax for the operators of the tTRS. In particular, we assume that:� the denumerable set of basic actions is fa(i) j i 2 lINg,� the special action � is denoted by tau,� the inactive process nil is denoted by nil,� the action pre�x �:P is denoted by pre(�; P ),� the restriction Pn� is denoted by res(P ; �)� the relabelling P [�=�] is denoted by rel(P ; �; �),� the nondeterministic sum P + Q is denoted by plus(P ;Q),� the parallel composition P jQ is denoted by par(P ;Q), and� the dynamic evolution �(P ) is denoted by exec(P ; �).Notice that the sort W is necessary for executing partially speci�ed queries (in this case theprocess variable that are used must be declared as constants having sort W).In order to apply the internal strategies for collecting the behaviours of a process, the de�nitionof the function allRew in module ND-SEMmust be slightly changed. The reason is that the functionmeta-apply apply the rewriting only on top of the term, whereas the rules for CCS can occur in aproper subterm. Therefore, we de�ne a new allRew that evaluates all the possible rewritings of theterm and also of every proper subterm, by a recursive exploration of each argument, accomplishedby the auxuliary function allRewAux (it receives an additional numeric parameter n, indicatingthat we want to collect all the possible rewritings of the n-th argument of t, if it exists).93



vars t : Term .l : Label .n : Nat .op allRew : Term Qid -> TermSequence .op allRewAux : TermList Qid Nat -> TermSequence .eq allRew(t,l) = seq(last(t,l,0), allRewAux(t,l,suc(0))) .eq allRewAux(t,l,n) =if getArgument(t,n) == error*then nilSeqelse seq(replaceSeq(t,allRew(getArgument(t,n),l),n),allRewAux(t,l,suc(n)))fi .Two additional function getArgument and replaceSeq must be de�ned to extract the n-thargument from t and to replace it with all its possible rewritings according to rules labelled by l.op getArgument : Term Nat -> Term .op getArgumentAux : TermList Nat -> Term .vars F : Qid .RL RL0 : TermList .t0 : Term .eq getArgument(F,n) = error* .eq getArgument(F[RL],n) = getArgumentAux(RL,n) .eq getArgumentAux(t,n) =if n == suc(0)then telse error*fi .eq getArgumentAux((t,RL),n) =if n == suc(0)then telse (if n > 0then getArgumentAux(RL,pred(n))else error*fi)fi .op replaceSeq : Term TermSequence Nat -> TermSequence .op replaceTerm : Term Term Nat -> Term .op replaceTermAux : TermList Term Nat -> TermList .eq replaceSeq(t,nilSeq,n) = nilSeq .eq replaceSeq(t,t0,n) = replaceTerm(t,t0,n) .eq replaceSeq(t,seq(t0,TL),n) =seq(replaceTerm(t,t0,n),replaceSeq(t,TL,n)) .eq replaceTerm(F,t,n) = error* .eq replaceTerm(F[RL],t,n) = F[replaceTermAux(RL,t,n)] .eq replaceTermAux(t,t0,n) =if n == suc(0)then t0else error* 94



fi .eq replaceTermAux((t,RL),t0,n) =if n == suc(0)then (t0, RL)else (if n > 0then (t, replaceTermAux(RL,t0,pred(n)))else error*fi)fi .Example 7.8 We show the result of a computation in ND-SEM[TREE[CCS]], collecting the suc-cessful states reachable from the process (a1:nil + a2:nil)j�a1:nil. We use a meta-meta-query tocollect all the interesting solutions. The meta-meta-notation could require some acquaintance withmeta-translations, but some tools will soon be available to perform automatic translations. Forthe moment, we hope that the indentation su�ces to make easier the reading.Maude> rew allRew('rewWith[('_[_][''top,('_[_][''par, ('_,_[('_[_][''plus, ('_,_[('_[_][''pre, ('_,_[('_[_][''a, ''1]), ''nil])]),('_[_][''pre, ('_,_[('_[_][''a, ''2]), ''nil])])])]),('_[_][''pre, ('_,_[('_[_][''bar, ('_[_][''a, ''1])]), ''nil])])])])]),('convnondet[''qr])], 'caux) .rewrites: 26822 in 719ms cpu (729ms real) (37252 rewrites/second)result TermSequence:seq(*** a1(nil j�a1:nil)'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil,('_[_][''pre, ('_,_[('_[_][''bar, ('_[_][''a, ''1])]),''nil])])])]),('_[_][''a, ''1])])])]), 'idle],*** a1(�a1(nil j nil))'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil, ''nil])]),('_[_][''bar, ('_[_][''a, ''1])])])]),('_[_][''a, ''1])])])]), 'idle],*** �a1(a1(nil j nil))'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil, ''nil])]),('_[_][''a, ''1])])]),95



('_[_][''bar, ('_[_][''a, ''1])])])])]), 'idle],*** � (nil j nil)'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil, ''nil])]),''tau])])]), 'idle],*** a2(nil j�a1:nil)'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil,('_[_][''pre, ('_,_[('_[_][''bar, ('_[_][''a, ''1])]),''nil])])])]),('_[_][''a, ''2])])])]), 'idle],*** a2(�a1(nil j nil))'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil, ''nil])]),('_[_][''bar, ('_[_][''a, ''1])])])]),('_[_][''a, ''2])])])]), 'idle],*** �a1(a2(nil j nil))'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''exec, ('_,_[('_[_][''par, ('_,_[''nil, ''nil])]),('_[_][''a, ''2])])]),('_[_][''bar, ('_[_][''a, ''1])])])])]), 'idle],*** �a1((a1:nil + a2:nil) j nil)'rewWith[('_[_][''top, ('_[_][''exec, ('_,_[('_[_][''par, ('_,_[('_[_][''plus, ('_,_[('_[_][''pre, ('_,_[('_[_][''a, ''1]),''nil])]),('_[_][''pre, ('_,_[('_[_][''a, ''2]),''nil])])])]),''nil])]),('_[_][''bar, ('_[_][''a, ''1])])])])]), 'idle],*** (a1:nil + a2:nil) j �a1:nil'rewWith[('_[_][''top,('_[_][''par, ('_,_[('_[_][''plus, ('_,_[('_[_][''pre, ('_,_[('_[_][''a, ''1]), ''nil])]),('_[_][''pre, ('_,_[('_[_][''a, ''2]), ''nil])])96



])]),('_[_][''pre, ('_,_[('_[_][''bar, ('_[_][''a, ''1])]), ''nil])])])])]), 'idle])Notice that all the possible interleaving computations of the initial process are collected (thelast answer corresponds to the idle computation). 27.2 Concurrent and Located CCSIn the spirit of true concurrent semantics, the notion of concurrency cannot be reduced to nonde-terminism via interleaving as it happens for the implementation that we have considered in the lastsection. To overcome this problem, one possibility is to de�ne a relation representing those pairs ofevents that can occur in any order, i.e., the commuting diamonds of the transition system [8, 26].From an operational point of view, this corresponds to de�ning a concrete concurrent machineimplementing the calculus. As an alternative, it could be possible to de�ne a model where thenotion of observation captures causal dependencies between events or between the places wherethey occur (e.g., their locations). In [28], a uniform treatment for both the operational and theabstract concurrent semantics of a CCS-like process calculus is provided by means of tile logic.In particular, term graphs are used to model the structure of con�gurations and e�ects of theresulting (
at) tile systems. As discussed in Section 2.1.1, the term graph structure is essentiallya weak cartesian category where two naturality axioms are missing. From another perspective,a weak cartesian category is just a particular symmetric strict monoidal category. Thus, theirsystems should be placed somewhere in between process tile logic and term tile logic. In thissection we propose a graph-like presentation of those systems which can be easily formulated interm tile logic and hence can be implemented in Maude. Although we are convinced that it ispossible to generalize this procedure, here we deal only with our case-study.De�nition 7.9 [Simple Process Calculus] Let �, �, and Act be as in Def. 7.1. Let Loc be atotally ordered (by <) denumerable set of locations, ranged over by l. Then a located process P isa term generated by the following grammar:G ::= nil j �:G j G+ G j GjGP ::= G j l :: P j P jPwhere, for the sake of simplicity, we distinguish the ground processes (i.e., processes withoutlocations), ranged over by G, G0, and so on. 2Locations [9] are introduced to allow the external observer to see an action together with thelocation where it takes place. As an example, this approach distinguishes process �:�:nil+�:�:nilfrom �:nilj�:nil, because the second process can perform � and � separately in di�erent places,while the �rst process cannot. The operational semantics is de�ned by a transition system whoselabels consist of actions together with strings of locations, denoted by u. In a synchronization, thestrings associated to the synchronizing actions are paired (in the strong version) or erased (in theweak case). We call a generic label of the transition system a denotation, and denote by Den theset of denotations (ranged over by k). In lk, the location l is concatenated with each string in k.As a matter of notation, we use loc(P ) and loc(k) to indicate the set of location names occurringin process P or in denotation k. It follows that loc(G) = ; for any ground process G.De�nition 7.10 [Operational Semantics] The transition algebra TA of our simple process calculusis de�ned by the following axioms and inference rules:[�; l; Gi : �:G ��!l l :: G t : P ��!k P 0; l 62 loc(k)l :: t : l :: P ��!lk l :: P 097



t : G1 ��!k G2th+G : G1 +G ��!k G2 t : G1 ��!k G2G+it : G+G1 ��!k G2t : P1 ��!k P2; loc(k) \ loc(P ) = ;tbP : P1jP ��!k P2jP t : P1 ��!k P2; loc(k) \ loc(P ) = ;P ct : P jP1 ��!k P jP2t1 : P1 ��!u1 P 01; t2 : P2 ���!u2 P 02; loc(u1) \ loc(P 02) = ; = loc(u2) \ loc(P 01)t1kt2 : P1jP2 ��!u1;u2P 01jP 02 2To de�ne the concurrent operational semantics, a concurrency relation � is de�ned on the alge-bra of transitions and computations to identify the commuting diamonds of the system, followingthe approach proposed in [26].De�nition 7.11 [Concurrency Relation] Let ( then � then ) be a quaternary relation on tran-sition proof terms, de�ned as the least commutative17 relation de�ned by the following structuralrules: (t1bP2 then Q1ct2 � P1ct2 then t1bQ2) (t1 then t2 � t3 then t4)(l :: t1 then l :: t2 � l :: t3 then l :: t4)(t1 then t2 � t3 then t4)(t1h+G then t2 � t3h+G then t4) (t1 then t2 � t3 then t4)(G+it1 then t2 � G+it3 then t4)(t1 then t2 � t3 then t4)(t1bP then t2bP � t3bP then t4bP ) (t1 then t2 � t3 then t4)(P ct1 then P ct2 � P ct3 then P ct4)(t1 then t2 � t3 then t4)(t1kt then t2bQ � t3bP then t4kt) (t1 then t2 � t3 then t4)(tkt1 then Qct2 � P ct3 then tkt4)(t1 then t2 � t3 then t4); (t01 then t02 � t03 then t04)(t1kt01 then t2kt02 � t3kt03 then t4kt04)where ti : Pi �i�!ki Qi, t0i : P 0i �0i�!k0i Q0i, and t : P ��!k Q, 2The axiom identi�es the basic diamonds, consisting of two transitions performed by two pro-cesses composed in parallel. Then the inductive rules propagate the diamonds in all the possiblecontexts. In their paper [28], Ferrari and Montanari propose a tile rewrite system such that atranslation f] [g from transitions in TA to (freely generated) tiles can be inductively de�ned withthe property that any diamond (t1 then t2 � t3 then t4) implies f]t1[g � f]t2[g = f]t3[g � f]t4[g. Here we17Namely, (t1 then t2 � t3 then t4) i� (t3 then t4 � t1 then t2).98



give a graphical representation of their tile system, using hypergraphs to model con�gurations ande�ects18. The labels of horizontal hyperarcs are taken over the signature �S = f+ : 2 �! 1; ! :0 �! 1; � : 1 �! 0gS�2Actf�h : 1 �! 1g, and vertical hyperarcs are labelled over the signature�D = fT : 2 �! 2gS�2Actf�v : 1 �! 1g. Notice that each hyperarc is labelled with an operatorwhose arity and multiplicity exactly matches the number of source and target nodes. Each nodeintuitively represents a place where actions may occur, i.e., a location.We brie
y comment on the rules19 of the strong tile rewrite system for the simple process calcu-lus of Def. 7.9. The �rst rule simply states that a \pre�x" hyperarc can execute the correspondingaction evolving to a new location. The link to the old location is maintained, because other agentscould be already attached there. � Prefix��h ��v� �! �Two rules are needed to deal with the nondeterministic sum. Whenever the \left" (\right")process makes a move, then the other process is eliminated via a nil binding �. The locationspromoted by the evolving process are propagated forward.���������������� + ����������������� ~~~~~ Suml��v �v� �� �� �
� + �� {{{{{ Sumr��v �v� �� �� �Rule Comp� is the most important. It states that if two processes share the same location andone of them is making a move, then its subprocesses will be allocated to a new location, whereasthe parallel process will remain linked to the old location. We do not need to distinguish betweena Compl� (left) and a Compr� (right), because they can be obtained one from the other usingauxiliary permutation tiles. Rule Synch� allows synchronizing two parallel complementary moves.The resulting action T states that the two \new" locations will be both correlated to the two \old"locations where the complementary actions took place.18Each hyperarc is represented with a labelled box connected to its source and target nodes. Unlabelled arcrepresents sharing (or aliasing) in the style of assignments (see Section 2).19The only auxiliary tiles needed here are permutation tiles.
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As we have done in the example of �nite CCS, also in the Maude implementation of this simplecalculus, we \rotate" the rules moving e�ects to the horizontal dimension and con�gurations to thevertical one, then stretching the tiles to ordinary rewrite rules on mixed (vertical and horizontal)structure. Moreover, sharing is directly modelled with multiple pointers to the same node name(instead of using a special hyperarc r and imposing the coherence axioms). Permutations areavoided as well, through explicit name management. Let us take a standard denumerable set ofnodes fn(i) j i 2 lINg (sort Node). The operator ls constructs lists of nodes (sort NodeList),where the empty list is denoted by nil. Similarly, the operator set constructs sets of nodes (sortNodeSet), the constant empty representing the empty set of nodes.mod LOCCCS is protecting MACHINE-INT.sorts Node NodeList NodeSet .subsorts Node < NodeSet NodeList .op n : MachineInt -> Node .op nil : -> NodeList .op ls : NodeList NodeList -> NodeList [assoc id: nil] .op empty : -> NodeSet .op set : NodeSet NodeSet -> NodeSet [assoc comm id: empty] .var E : Node .eq set(E,E) = E .A hyperarc (sort Edge) is then a triple consisting of a list of source nodes, a label (of sortLabel) and a list of target nodes. The operator edge allows constructing generic hyperarcs. Ahypergraph (sort EdgeMSet) is just a (multi)set collection of hyperarcs (constructor ms and neutralelement zero). We make use of a top operator top to mark the whole actual con�guration of thesystem (sort State).sorts Label Edge EdgeMSet State .subsort Edge < EdgeMSet .op edge : NodeList Label NodeList -> Edge .op zero : -> EdgeMSet .op ms : EdgeMSet EdgeMSet -> EdgeMSet [assoc comm id: zero] .op top : EdgeMSet -> State .We de�ne also some useful operators which allow extracting information of various kinds.*** proj(NL) returns the set of nodes contained in the node list NLop proj : NodeList -> NodeSet .*** sources(MS) returns the set of source nodes contained in the hypergraph MSop sources : EdgeMSet -> NodeSet .*** targets(MS) returns the set of target nodes contained in the hypergraph MSop targets : EdgeMSet -> NodeSet .*** vertices(MS) returns the set of nodes contained in the hypergraph MSop vertices : EdgeMSet -> NodeSet .*** isIn(E,ES) = true iff the node E is in the set of nodes ESop isIn : Node NodeSet -> Bool .*** children(E,MS) returns the set of chidren of node E in the hypergraph MSop children : Node EdgeMSet -> NodeSet .*** desc(E,MS) returns the set of descendants of node E in the hypergraph MSop desc : Node EdgeMSet -> NodeSet .op descaux : NodeSet EdgeMSet NodeSet Node -> NodeSet .101



vars E0 : Node .ES ES0 : NodeSet .EL EL0 : NodeList .MS : EdgeMSet .F : Label .eq isIn(E,empty) = false .eq isIn(E,E) = true .ceq isIn(E,E0) = false if E =/= E0 .eq isIn(E,set(E,ES)) = true .ceq isIn(E,set(E0,ES)) = isIn(E,ES) if E =/= E0 .eq proj(nil) = empty .eq proj(E) = E .eq proj(ls(E,EL)) = set(E,proj(EL)) .eq sources(zero) = empty .eq sources(edge(EL,F,EL0)) = proj(EL) .eq sources(ms(edge(EL,F,EL0),MS)) = set(proj(EL),sources(MS)) .eq targets(zero) = empty .eq targets(edge(EL,F,EL0)) = proj(EL0) .eq targets(ms(edge(EL,F,EL0),MS)) = set(proj(EL0),targets(MS)) .eq vertices(MS) = set(sources(MS),targets(MS)) .eq children(E,zero) = empty .ceq children(E,edge(EL,F,EL0)) = emptyif not(isIn(E,proj(EL))) .ceq children(E,edge(EL,F,EL0)) = proj(EL0)if isIn(E,proj(EL)) .ceq children(E,ms(edge(EL,F,EL0),MS)) = children(E,MS)if not(isIn(E,proj(EL))) .ceq children(E,ms(edge(EL,F,EL0),MS)) = set(proj(EL0),children(E,MS))if isIn(E,proj(EL)) .eq desc(E,MS) = descaux(children(E,MS),MS,empty,E) .eq descaux(empty,MS,ES,E0) = ES .ceq descaux(E,MS,ES,E0) = ESif isIn(E,set(E0,ES)) .ceq descaux(E,MS,ES,E0) = descaux(children(E,MS),MS,set(E,ES),E0)if not(isIn(E,set(E0,ES))) .ceq descaux(set(E,ES0),MS,ES,E0) = descaux(ES0,MS,ES,E0)if isIn(E,set(E0,ES)) .ceq descaux(set(E,ES0),MS,ES,E0) =descaux(set(children(E,MS),ES0),MS,set(E,ES),E0)if not(isIn(E,set(E0,ES))) .The label of a hyperarc can be either of sort HSign (associated to �S), or of sort VSign (asso-ciated to �D). We �x a denumerable set of basic actions fa(i) j i 2 lINg and their complementaryactions fbar(a(i)) j i 2 lINg (sort Channel), together with a special action tau. Given an action� we denote the associated pre�x operators �h in �S and �v in �D respectively by h(�) and v(�).Regarding the other operators, + is denoted by plus, ! is denoted by dis, � is denoted by codisand T is denoted by t. A special horizontal operator alias is introduced to propagate possiblerenamings caused by rule Suml� and Sumr�. 102



sorts Channel Act HSign VSign .subsort Channel < Act .subsorts HSign VSign < Label .op a : MachineInt -> Channel .op bar : Channel -> Channel .op tau : -> Act .op v : Act -> VSign .op t : -> VSign .op h : Act -> HSign .op plus : -> HSign .op dis : -> HSign .op codis : -> HSign .op alias : -> HSign .vars BA : Channel .Ea : Node .EL00 : NodeList .eq bar(bar(BA)) = BA .eq ms(edge(EL,F,Ea),edge(Ea,alias,E)) =ms(edge(EL,F,E),edge(Ea,alias,E)) .eq ms(edge(EL,F,ls(Ea,EL0)),edge(Ea,alias,E)) =ms(edge(EL,F,ls(E,EL0)),edge(Ea,alias,E)) .eq ms(edge(EL,F,ls(EL0,Ea,EL00)),edge(Ea,alias,E)) =ms(edge(EL,F,ls(EL0,E,EL00)),edge(Ea,alias,E)) .eq ms(edge(EL,F,ls(EL0,Ea)),edge(Ea,alias,E)) =ms(edge(EL,F,ls(EL0,E)),edge(Ea,alias,E)) .eq ms(edge(nil,dis,E), edge(nil,dis,E)) = edge(nil,dis,E) .eq ms(edge(E,codis,nil),edge(E,codis,nil)) = edge(E,codis,nil) .ceq top(ms(MS,edge(Ea,alias,E))) = top(MS)if not(isIn(Ea,vertices(MS))) .Example 7.12 As an example we show the hypergraph and its Maude representation (assuminga standard procedure assigning names to nodes, for which we only give an intuitive description)associated with the process (a1:nil + a2:nil)j�a1:nil:! � (a1)h � EEEEEE! � (a2)h � + �! � (�a1)h � �����ms(edge(nil,dis,n(1)), edge(n(1),h(a(1)),n(2)),edge(nil,dis,n(3)), edge(n(3),h(a(2)),n(4)), edge(ls(n(2),n(4)),plus,n(5)),edge(nil,dis,n(6)), edge(n(6),h(bar(a(1))),n(7)), edge(n(7),alias,n(5))) . 2We are now ready to translate the tiles into rewrite rules. Since we are interested in applyingthe nondeterministic strategies shown in Section 6.3, we use the same label step for all the rules.103



vars BA0 : Channel .Mu : Act .Eb : Node .*** Prefix(Mu)rl [step] : top(ms(edge(E0,h(Mu),E),MS)) =>top(ms(edge(E0,v(Mu),E),edge(nil,dis,E),MS)) .*** Suml(Mu)rl [step] : top(ms(edge(E0,v(Mu),Ea),edge(ls(Ea,Eb),plus,E),MS)) =>top(ms(edge(Eb,codis,nil),edge(E0,v(Mu),E),edge(Ea,alias,E),MS)) .*** Sumr(Mu)rl [step] : top(ms(edge(E0,v(Mu),Ea),edge(ls(Eb,Ea),plus,E),MS)) =>top(ms(edge(Eb,codis,nil),edge(E0,v(Mu),E),edge(Ea,alias,E),MS)) .*** Synch(BA)crl [step] : top(ms(edge(E,v(BA),Ea),edge(E0,v(BA0),Eb),MS)) =>top(ms(edge(ls(E,E0),t,ls(Ea,Eb)),MS))if bar(BA) == BA0 .In this representation, the other tiles become either trivial or special cases of the previous ones,and therefore are omitted.The problem is that not all the rewritings are correct: we have to �lter computations. Thiscan be done at the meta-level using the strategies for collecting rewritings. All that is needed isa good notion of success. In particular, we have just to check if the actual state is acyclic anddecomposable as an hypergraph with labels in HSign followed by an hypergraph with labels inVSign. We de�ne the predicate ok as follows:op ok : State -> Bool .op okHV : EdgeMSet -> Bool .op acyclic : EdgeMSet -> Bool .op acycaux : NodeSet EdgeMSet -> Bool .*** disjoint(ES,ES0) = true iff ES \ ES0 = ;op disjoint : NodeSet NodeSet -> Bool .*** horiz(MS) = true iff all the hyperarcs of MS have label in HSignop horiz : EdgeMSet -> Bool .vars H : HSign .V : VSign .EL000 : NodeList .eq horiz(zero) = true .eq horiz(edge(EL,H,EL0)) = true .eq horiz(edge(EL,V ,EL0)) = false .eq horiz(ms(MS,edge(EL,H,EL0))) = horiz(MS) .104



eq horiz(ms(MS,edge(EL,V ,EL0))) = false .eq disjoint(empty,ES0) = true .ceq disjoint(E,ES0) = trueif not(isIn(E,ES0)) .ceq disjoint(E,ES0) = falseif isIn(E,ES0) .ceq disjoint(set(E,ES),ES0) = disjoint(ES,ES0)if not(isIn(E,ES0)) .ceq disjoint(set(E,ES),ES0) = falseif isIn(E,ES0) .ceq okHV(ms(MS,edge(EL,V ,EL0))) = okHV(MS)if disjoint(proj(EL0),sources(MS)) .ceq okHV(MS) = trueif horiz(MS) .ceq okHV(ms(MS,edge(EL,V ,EL0),edge(EL00,H,EL000))) = falseif not(disjoint(proj(EL0),proj(EL00))) .eq acyclic(MS) = acycaux(sources(MS),MS) .eq acycaux(empty,MS) = true .ceq acycaux(E,MS) = trueif disjoint(E,desc(E,MS)) .ceq acycaux(E,MS) = falseif not(disjoint(E,desc(E,MS))) .ceq acycaux(set(E,ES),MS) = acycaux(ES,MS)if disjoint(E,desc(E,MS)) .ceq acycaux(set(E,ES),MS) = falseif not(disjoint(E,desc(E,MS))) .ceq ok(top(MS)) = trueif and(okHV(MS),acyclic(MS)) .endmIt can be proved that successful states reachable in LOCCCS starting from the representation ofa process P are exactly the behaviours of P in the tile system of Ferrari and Montanari.Example 7.13 We show the result of a computation in ND-SEM[TREE[LOCCCS]], collecting thesuccessful states reachable from the hypergraph representation of the process (a1:nil+a2:nil)j�a1:nilillustrated in the example 7.12. We use a meta-meta-query to collect all the possible (topmost)solutions.Maude> rew allRew('rewWith['_[_][''top, '_[_][''ms, '_,_['_[_][''edge, '_,_[''nil, ''dis, '_[_][''n,''1]]],'_[_][''edge, '_,_[''nil, ''dis, '_[_][''n,''3]]],'_[_][''edge, '_,_[''nil, ''dis, '_[_][''n,''6]]],'_[_][''edge, '_,_['_[_][''n,''1],'_[_][''h,'_[_][''a, ''1]],'_[_][''n,''2]]],'_[_][''edge, '_,_['_[_][''n,''3],'_[_][''h,'_[_][''a, ''2]],'_[_][''n,''4]]],'_[_][''edge, '_,_['_[_][''n,''6],'_[_][''h,'_[_][''bar,'_[_][''a, ''1]]],105



'_[_][''n,''7]]],'_[_][''edge, '_,_['_[_][''ls, '_,_['_[_][''n,''4],'_[_][''n,''2]]],''plus,'_[_][''n,''5]]],'_[_][''edge, '_,_['_[_][''n,''7], ''alias, '_[_][''n,''5]]]]]], 'nondet[''step]], 'aux) .rewrites: 104970 in 2819ms cpu (2829ms real) (37223 rewrites/second)result TermSequence:seq('rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''1]),('_[_][''v, ('_[_][''a, ''1])]),('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]),('_[_][''h, ('_[_][''a, ''2])]),('_[_][''n, ''4])])]),('_[_][''edge, ('_,_[('_[_][''n, ''4]), ''codis, ''nil])]),('_[_][''edge, ('_,_[('_[_][''n, ''6]),('_[_][''h, ('_[_][''bar, ('_[_][''a, ''1])])]),('_[_][''n, ''5])])])])])]), 'idle],'rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''1]),('_[_][''h, ('_[_][''a, ''1])]),('_[_][''n, ''2])])]),('_[_][''edge, ('_,_[('_[_][''n, ''2]), ''codis, ''nil])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]),('_[_][''v, ('_[_][''a, ''2])]),('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[('_[_][''n, ''6]),('_[_][''v, ('_[_][''bar, ('_[_][''a, ''1])])]),('_[_][''n, ''5])])])])])]), 'idle],'rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''1]), ('_[_][''h, ('_[_][''a, ''1])]),('_[_][''n, ''2])])]),('_[_][''edge, ('_,_[('_[_][''n, ''2]), ''codis, ''nil])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]), ('_[_][''v, ('_[_][''a, ''2])]),('_[_][''n, ''5])])]),106



('_[_][''edge, ('_,_[('_[_][''n, ''6]),('_[_][''h, ('_[_][''bar, ('_[_][''a, ''1])])]),('_[_][''n, ''5])])])])])]), 'idle],'rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''1]),('_[_][''h, ('_[_][''a, ''1])]),('_[_][''n, ''2])])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]),('_[_][''h, ('_[_][''a, ''2])]),('_[_][''n, ''4])])]),('_[_][''edge, ('_,_[('_[_][''n, ''6]),('_[_][''v, ('_[_][''bar, ('_[_][''a, ''1])])]),('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[('_[_][''ls, ('_,_[('_[_][''n, ''4]),('_[_][''n, ''2])])]),''plus,('_[_][''n, ''5])])])])])]), 'idle],'rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''1]),('_[_][''v, ('_[_][''a, ''1])]),('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]),('_[_][''h, ('_[_][''a, ''2])]),('_[_][''n, ''4])])]),('_[_][''edge, ('_,_[('_[_][''n, ''4]), ''codis, ''nil])]),('_[_][''edge, ('_,_[('_[_][''n, ''6]),('_[_][''v, ('_[_][''bar, ('_[_][''a, ''1])])]),('_[_][''n, ''5])])])])])]), 'idle])The result is a sequence of meta-representations of terms in TREE[LOCCCS]), each of the kindrewWith(..., idle), where the actions that have been executed from the initial process can beeasily detected looking at the edges containing the v operator.The graphical representation of the last solution is given in Figure 7.Six possible combinations have been found, only the synchronization between a1 and �a1 (rep-resented in Figure 8) is missing. The reason is that it can only be reached after having visited asuccessful state, i.e., it is not a topmost solution. However the following query from one of theprevious solutions (the last one) leads to the detection of the synchronization (notice the hyperarcwith label t in the answer).Maude> rew allRew('rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),107



�xxxxx ,,,,,,,,,,,,,,,(a1)v! �! � (a2)h � � (�a1)v! �! �Figure 7: The graphical representation of the parallel execution of the actions a1 and �a1 in theprocess (a1:nil + a2:nil)j�a1:nil.('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''1]),('_[_][''v, ('_[_][''a, ''1])]),('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]),('_[_][''h, ('_[_][''a, ''2])]),('_[_][''n, ''4])])]),('_[_][''edge, ('_,_[('_[_][''n, ''4]), ''codis, ''nil])]),('_[_][''edge, ('_,_[('_[_][''n, ''6]),('_[_][''v, ('_[_][''bar, ('_[_][''a, ''1])])]),('_[_][''n, ''5])])])])])]), ('nondet[''step])], 'aux) .rewrites: 4496 in 129ms cpu (139ms real) (34584 rewrites/second)result Term:'rewWith[('_[_][''top, ('_[_][''ms, ('_,_[('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''1])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''3])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''5])])]),('_[_][''edge, ('_,_[''nil, ''dis, ('_[_][''n, ''6])])]),('_[_][''edge, ('_,_[('_[_][''n, ''3]),('_[_][''h, ('_[_][''a, ''2])]),('_[_][''n, ''4])])]),('_[_][''edge, ('_,_[('_[_][''n, ''4]), ''codis, ''nil])]),('_[_][''edge, ('_,_[('_[_][''ls, ('_,_[('_[_][''n, ''1]),('_[_][''n, ''6])])]),''t,('_[_][''ls, ('_,_[('_[_][''n, ''5]),('_[_][''n, ''5])])])])])])])]), 'idle]In comparison with the successful states reached starting from the same process in the moduleND-SEM[TREE[CCS]] (see example 7.8), here the number of solutions is smaller than in the othercase, because concurrent (interleaving) computations are identi�ed. 2108



��v}}}}} ***************! �! � (a2)h � �! �! �Figure 8: The graphical representation of the synchronization of the actions a1 and �a1 in theprocess (a1:nil + a2:nil)j�a1:nil.AcknowledgementsWe would like to thank Narciso Mart��-Oliet for his careful reading of a preliminary version of thisreport, and his suggestions and comments that have been very precious to improve the expositionin the �nal version.
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A The Axioms of Process Tile LogicLet R = h�H ;�V ; N;Ri be a pTRS. The class Ap(R) of abstract process sequents informallydescribed in Def. 2.24 has as elements the equivalence classes of Pp(R) modulo the following setof axioms on proof terms:Associativity Axioms for 
 , � , and � .Identity Axioms (for any � : h u�!v g 2 Pp(R)):1v � � = � = � � 1u 1h � � = � = � � 1gMonoidality Axioms (for any h; g 2 S(�H), � 2 Pp(R), and v; u 2 S(�V )):1h
g = 1h 
 1g 1id0 
 � = � = �
 1id0 1v
u = 1v 
 1uFunctoriality Axioms:Identities (for any n 2 lIN, and composable arrows h; g 2 S(�H), and v; u 2 S(�V )):1v;u = 1v � 1u 1idn = 1idn 1h;g = 1h � 1gCompositions (whenever both sides are de�ned):(�
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 (� � �) (� 
 �) � (
 
 �) = (� � 
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 (� � �)(� � �) � (
 � �) = (� � 
) � (� � �)Auxiliary Operators(for any n 2 lIN, and composable arrows v; v0 2 S(�V ), and u; u0 2 S(�V )):
v;v0;u;u0 = 
v;u � 
v0;u0 
idn;idm = 1
n;m(for any n 2 lIN, and composable arrows h; h0 2 S(�H), and g; g0 2 S(�H)):�h;h0 ;g;g0 = �h;g � �h0 ;g0 �idn;idm = 1
n;mNaturality Axioms for derived operators 
 and �(for any sequents � : h u�!v g; �0 : h0 u0�!v0 g0 2 Pp(R)):(�
 �0) � 
u;u0 = 
v;v0 � (�0 
 �) (�
 �0) � �g;g0 = �h;h0 � (�0 
 �)Uniqueness Axioms:Naturality axioms for �(for any v : n �! k; v0 : n0 �! k0 2 S(�V ), and h : n �! m; h0 : n0 �! m0 2 S(�H)):
v;v0 � �k;k0 = �n;n0 � 1v0
v �h;h0 � �m;m0 = �n;n0 � 1h0
hNaturality axioms for �(for any v : n �! k; v0 : n0 �! k0 2 S(�V ), and h : n �! m; h0 : n0 �! m0 2 S(�H)):1v
v0 � �0k;k0 = �0n;n0 � 
v;v0 1h
h0 � �0m;m0 = �0n;n0 � 
h;h0Coherence Axioms for 
 (for any u;w; v 2 S(�V )):
u
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v;u � 
u;v = 1v
u 
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mDouble Coherence Axioms (for any n;m 2 lIN):�0n;m � �n;m = 
idn ;idm �0n;m � �n;m = �idn;idm114



B The Axioms of Term Tile LogicLet R = h�H ;�V ; N;Ri be a tTRS. We say that R entails the class At(R) of abstract termsequents, whose elements are equivalence classes of Pt(R) modulo the following set of axioms onproof terms20:Associativity Axioms for 
 , � , and � .Identity Axioms (for any � : h u�!v g 2 Pt(R)):1v � � = � = � � 1u 1h � � = � = � � 1gMonoidality Axioms (for any h; g 2 A(�H), � 2 Pt(R), and v; u 2 A(�V )):1h
g = 1h 
 1g 1id0 
 � = � = �
 1id0 1v
u = 1v 
 1uFunctoriality Axioms:Identities (for any n 2 lIN, and composable arrows h; g 2 A(�H), and v; u 2 A(�V )):1v;u = 1v � 1u 1idn = 1idn 1h;g = 1h � 1gCompositions (whenever both sides are de�ned):(�
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 (� � �) (� 
 �) � (
 
 �) = (� � 
) 
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) � (� � �)Auxiliary Operators: Symmetries(for any n 2 lIN, and composable arrows v; v0 2 A(�V ), and u; u0 2 A(�V )):
v;v0;u;u0 = 
v;u � 
v0;u0 
idn;idm = 1
n;m(for any n 2 lIN, and composable arrows h; h0 2 A(�H ), and g; g0 2 A(�H)):�h;h0 ;g;g0 = �h;g � �h0 ;g0 �idn;idm = 1
n;mAuxiliary Operators: Duplicators(for any n 2 lIN, and composable arrows v; v0 2 A(�V )):rv;v0 = rv � rv0 ridn = 1rn(for any n 2 lIN, and composable arrows h; h0 2 A(�H )):�h;h0 = �h � �h0 �idn = 1rnAuxiliary Operators: Dischargers(for any n 2 lIN, and composable arrows v; v0 2 A(�H)):!v;v0 =!v�!v0 !idn = 1!n(for any n 2 lIN, and composable arrows h; h0 2 A(�H )):yidn = 1!n yh;h0 = yh � yh0Naturality Axioms (symmetries) for derived operators 
 and �(for any sequents � : h u�!v g; �0 : h0 u0�!v0 g0 2 Pt(R)):(�
 �0) � 
u;u0 = 
v;v0 � (�0 
 �) (�
 �0) � �g;g0 = �h;h0 � (�0 
 �)20Notice that we make use of the notation of algebraic theories (Section 2.1.1) instead of the equivalent \termsand substitutions" notation used in Def. 2.28 and 2.30.115



Naturality Axioms (duplicators) for derived operators r and �(for any sequents � : h u�!v g 2 Pt(R)):� � ru = rv � (� 
 �) � � �g = �h � (�
 �)Naturality Axioms (dischargers) for derived operators ! and y(for any sequents � : h u�!v g 2 Pt(R)):��!u =!v � � yg = yhUniqueness Axioms:Naturality axioms for �(for any v : n �! k; v0 : n0 �! k0 2 A(�V ), and h : n �! m; h0 : n0 �! m0 2 A(�H )):
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Coherence Axioms for �0, � , and  (for any n;m; k 2 lIN):�0n
m;k = (1idn 
 �0m;k) � (1idn

m;k � (�0n;k 
 1idm)) �n � (1rn � �0n;n) = �n�n
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idn ;idm �0n;m � �n;m = �idn;idm�n � �n = ridn �n � �n = �idn n � �n =!idn  n � �n = yidn
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C HypertransformationsAs explained in Section 3.4, since double categories have two di�erent notions of composition, it isnot clear which of them to use for a general notion of double natural transformation. Ehresmannnoticed in [25] that natural transformations can be expressed in terms of functors toward higherfold categories. The key point is that a natural transformation is in some sense a functorialcollection of commuting squares (also called quartets). Therefore, to obtain a suitable notion oftransformation for n-fold categories we have to consider quartets in all the n dimensions.De�nition C.1 [D-wise Transformation] Let A be a category, and let D be a double category.We denote by T (D;A) the category of D-wise transformations from A to D, whose objects arefunctors from A to the 1-vertical category V of D, and whose composition law is deduced fromthat of the category D� (e.g., there is an arrow � from P : A �! V to Q : A �! V i� there is afunctor � : A �! D� such that s� � � = P and t� � � = Q, and given two arrows � and �0 suchthat t� �� = s� ��0 their composition is equal to the functor mapping each arrow v of A onto thecell �(v) � �0(v)). a��v � //�(a)��Pv �(v) � //�0(a)��Qv �0(v) ��� Rv(A) b��u � //��Pu �(u) � //��Qu�0(u) ��� Ru (D)c � //�(c) � //�0(c) �Moreover, T extends to a functor (i.e., given a double functor F : D �! E and a functor G : B �!A it su�ces to de�ne T (F;G) = F1 � � �G, where the functor F1 : D� �! E � is the component ofF relative to the vertical structure). 2Example C.2 Let 2 be the category with two objects (0 and 1) and three arrows (z : 0 �! 1and the identities for 0 and 1). Then, for any double category D, we have that T (D;2) ' D�. 2Proposition C.3 Let A and C be two categories. The category CA of natural transformationsbetween functors from A to C is isomorphic to the category T (2C;A), where 2C is the doublecategory of quartets of C. In fact, a functor from A to the vertical category of 2C (usually denotedby 22C) identi�es a natural transformation between functors from A to C and vice versa.This notion can be generalized to n-fold categories by constructing the 2n-fold category ofquartets of quartets... (n times). Since double categories are 2-fold categories, this means thatwe need to de�ne the 4-fold category of horizontal quartets of vertical quartets. Once a notionof multiple functors among categories of di�erent folds has been given, then the notion of hy-pertransformation arises naturally as a multiple functor between the source n-fold category andthe 2n-fold category of quartets of quartets... (n times) generated by the target n-fold category.This means that a hypertransformation involving two n-fold categories ~C and ~D relates 2n n-foldfunctors from ~C to ~D.De�nition C.4 [n-fold Category] Let n be a positive integer. An n-fold category ~C is a tuple ofn categories (C1; : : : ; Cn) with the same set of morphisms C satisfying the permutability axiom:(Ci; Cj) is a double category for each pair (i; j) of integers 1 � i < j � n.An element of C is called a block. The category Ci is called the i-th category of ~C, and its compositionis denoted by ;i . Notice that the set of objects of Ci de�nes a sub-category of Cj for each i 6= j.If ~C and ~D are n-fold categories, an n-fold functor F : ~C �! ~D is a map F : C �! D de�ninga functor F : Ci �! Di for each i. We denote by Catn the category whose objects are the smalln-fold categories and whose morphisms are the n-fold functors between them. 2118



By convention, a 0-fold category is just a set, and a 1-fold category is a category. Thus Cat0is the category Set and Cat1 is Cat.If 
 is a permutation over the set f1; : : : ; ng then (C
(1); : : : ; C
(n)) is also an n-fold categoryand is denoted by ~C
 . If i1; : : : ; im is a sequence of m distinct element of f1; : : : ; ng, we denote byCi1;:::;im the m-fold category (Ci1 ; : : : ; Cim).De�nition C.5 [Multiple Category] The category MCat of multiple categories is de�ned as fol-lows. Its objects are all the small n-fold categories, for every integer n. Let ~C be an n-fold categoryand ~D be an m-fold category with n � m, then the morphisms F : ~C �! ~D in MCat, calledmultiple functors, are the n-fold functors F from ~C to the n-fold category (D1; : : : ;Dn) (if n > mthen there is no morphism from ~C to ~D). 2De�nition C.6 [Internal Hom ofMCat] Let ~C be an n-fold category and ~D an m-fold category.We denote by Hom(~C; ~D) the multiple category of multiple functors from ~C to ~D which is de�nedas follows: if n > m, then it is the void set, otherwise (n � m) it is the (m � n)-fold category, onthe set of multiple functors F : ~C �! ~D, whose i-th composition, for 1 � i � m � n, is de�ned asF (A);i+nF 0(A) i� the composite exists in Di+n for each block A of C. 2Remark C.7 For each pair (i; j) with 1 � i � m � n and 1 � j � n, the category Hom(~C; ~D)iis a subcategory of the category of (Dj ;Di+n)-wise transformations from Cj to (Dj ;Di+n). Thepermutability axiom is satis�ed by Hom(~C; ~D) since it is satis�ed by ~D and the compositions arede�ned pointwise from that of ~D.Example C.8 If A and C are categories, then Hom(A;2C) is the category CA of natural trans-formations between functors from A to C. 2Now, consider the category 2�2, and let C be a category. A functor F : 2�2 �! C is entirelydetermined by the (commutative) square F of C (see below), because F (z; z) is just the diagonalof this square. (0; 0) //(0;z)��(z;0) ##(z;z)GGG GGG (0; 1)�� (z;1)(1; 0) //(1;z) (1; 1) � //F (0;z)��F (z;0) ��� F (z;1)� //F (1;z) �Moreover, every quartet of C can be obtained in this way. Thus, we can identify the set of functorsHom(2 � 2; C) with the set of quartets of C (which is also the set of blocks of 2C).Now let ~C be an n-fold category (n > 1). Consider the functors from 2�2 to its �rst categoryC1. It follows that, over the set of quartets of C1 we have not only the double category 2C1, butalso the (n�1)-fold category Hom(2�2; ~C) whose i-th composition is deduced pointwise from thatof Ci+1, e.g. given two quartets Q = (A;B;C;D) and Q0 = (A0; B0; C 0; D0) of C1 (this means thatA;1C = B;1D and A0;1C0 = B0;1D0) then Q;Q0 = ((A;i+1A0); (B;i+1B0); (C;i+1C0); (D;i+1D0))(if and only if the four composite are de�ned in Ci+1).De�nition C.9 [Multiple Category of Quartets] The multiple category of quartets of ~C, denotedby SqC, is the (n+1)-fold category on the set of commuting squares of C1 such that: (SqC)1;:::;n�1 =Hom(2 � 2; ~C), (SqC)n = 22C1 and (SqC)n+1 = 22Cn+1. 2The previous construction induces a functor fromCatn toCatn+1 called Square and denoted bySqn;n+1 which maps an n-fold functor F : ~C �! ~D onto the (n+1)-fold functor SqF : SqC �! SqDsuch that (A;B;C;D) 7! (FA;FB;FC; FD). 119



C.1 The 3-fold category SqDGiven a double category D = (D�;D�), the 3-fold category SqD is de�ned as follows: its 2-ndand 3-rd categories are the vertical and horizontal categories 22D� and 22D� of quartets of the �rstcategory D� of D, and the �rst composition is deduced pointwise from that of D�.� //�� � //��D� ! ��� � //�� # � //��(SqD)1 !# ��� ��=======� //��D�# � //�� � � //��22D�# # � //�� ��======= &� ��======= ��� ��=======22D�&� // � � //��======= &� ��======= � //�� ��======= &� ��======= ���� // � � // �C.2 The 4-fold category SqSqDThe 4-fold category SqSqD is constructed as follows: the set of its blocks is 2((SqD)1), i.e., eachblock (Q1; Q2; Q3; Q4) is a quartet of (SqD)1, where Qi = (Ai; Bi; Ci; Di) is a quartet of D� (i.e.,Ai, Bi, Ci and Di are cells of D and Ai � Ci = Bi �Di) for i = 1; : : : ; 4. Thus, we can picture ablock of SqSqD as the frame below:� //Q1��Q2 ======= � ��Q3=======� //Q4 � ��� ��==== && //// �xx �� ��====��� && //��� ��==== // ��� ��==== �xx ����� // ���� ��==== // � ��====� ��==== //88 � // � �ff ��====� //88 �ffThe 1-st and 2-nd compositions are deduced pointwise from that of 22(D�) and 22(D�), thus theyconsist in putting one frame below the other and one frame inside the other.The 3-rd and 4-th categories of SqSqD are the categories 22((SqD)1) and 22((SqD)1) (whosecompositions are induced from that of D�) and they consist in putting one frame behind the other(i.e., the block above has source Q1 and target Q4) and one frame beside the other (source Q2 andtarget Q3)C.3 HypertransformationsNow we try to relate the de�nition of generalized natural transformation as given in Section 3.4with the more general notion of hypertransformation.De�nition C.10 [Hypertransformation] Let ~C and ~D be n-fold categories. Then, consider thecategory 2n ~D which is obtained by applying n times the Sq construction and then swapping theorder of the 2n categories in such a way that, for each i = 1; :::; n the i-th category of2n ~D is derivedfrom 22(Di), and the (i + n)-th category of 2n ~D is derived from 22(Di). Then Hom(~C;2n ~D) isthe category of hypertransformations from ~C to ~D. 2120



Let D and E be double categories. We denote by 22E the 4-fold category which is ob-tained by permuting the 2-nd and 3-rd compositions in SqSqE . We illustrate the double categoryHom(D;22E) as follows:� Objects (i.e., vertices) are the double functors from D to E .� Horizontal arrows (i.e., objects for the 1-st category ofHom(D;22E)) are �-transformations.� Vertical arrows (i.e., objects for the 2-nd category of Hom(D;22E)) are �-transformations.� Cells are generalized transformations between four double functors.� Compositions are deduced pointwise from the compositions one frame inside the other andone frame beside the other (we remind that hypertransformations behave functorially w.r.t.the two compositions one frame below the other and one frame behind the other).
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D MaudeIn this appendix, we summarize some interesting features of Maude and explain some majordi�erences between the Maude-like notation that we have employed and the syntax of the Maudeimplementation.D.1 Basic SyntaxFunctional modules de�ne data types and functions on them by means of equational theories. Theequational logic on which Maude functional modules are based is membership equational logic: itsupports sorts, subsorts, overloading of function symbols, and also membership axioms in which aterm is asserted to have a certain sort if a condition consisting of a conjunction of equations andof membership assertions is satis�ed.We can illustrate some of these ideas using a module FRAG-CCS that corresponds to a fragmentof CCS (see Section 7):fmod FRAG-CCS isprotecting MACHINE-INT .sorts Channel Act Process .subsort Channel < Act .op a : MachineInt -> Channel .op tau : -> Act .op bar : Channel -> Channel .op nil : -> Process .op pre : Act Process -> Process .op plus : Process Process -> Process [assoc comm id: nil] .op par : Process Process -> Process [assoc] .var A : Channel .eq bar(bar(A)) = A .endfmThe module is introduced with the functional module syntax fmod name is ... endfm andhas a name FRAG-CCS. The declaration protecting MACHINE-INT imports a built-in module ofmachine integers.The sorts and subsorts of this module are introduced by the declarationssorts Channel Act Process .andsubsort Channel < Act .respectively (the latter declares that the set of channels is contained in the set of actions, whichalso includes tha action tau).The operators are declared using the syntax:op f : s1 ... sn -> s .where n � 0 (if n = 0 as for nil and tau, then f is a constant of sort s).The attribute [assoc] states that the parallel composition par is associative. This informa-tion is used by the Maude engine that matches the equations in the module regardless of how122



parentheses are left- or right-associated. Moreover the simpler syntax par(P1,P2 : : :,Pn) can beused for any n 2 lIN, exploiting the associativity of par.Similarly, the attribute comm declares the commutativity of plus, and the attribute id: nilsays that nil is the identity for plus.In general, the Maude engine can rewrite modulo di�erent combinations of associativity, com-mutativity, identity (left-, right-, or two sided), and idempotency [14]. Therefore, data structuresas lists, sets, and multisets can be naturally represented in Maude.The equations are de�ned using the syntax:eq t = t0 .where the terms t and t0 can also involve typed variables, that must be declared using the followingsyntax:var x1 : s1 ....var xn : sn .or (for k variables of the same sort s):vars x1 ... xk : s .Also conditional equations can be declared. In this case the syntax isceq t = t0 if �1 and � � � and �m .where each �i is either an equation ti = t0i or a membership assertion ti : si.Remark D.1 Actually for equations in the conditional part of the sentences we should use thesyntax ti == t0i, but we believe that this little abuse of notation will not create any confusion.In a similar way, unconditional and conditional membership assertions can be stated using thesyntax:mb t : s .cmb t : s if �1 and � � � and �m .As an example, we can de�ne a sort of sequential processes (i.e., processes not containingparallel composition) for our fragment of CCS, using the following assertions:sort SeqProcess .subsort SeqProcess < Process .var M : Act .vars P Q : Process .mb nil : SeqProcess .cmb pre(M,P) : SeqProcessif P : SeqProcess .cmb plus(P,Q) : SeqProcessif P : SeqProcess and Q : SeqProcess .The type of rewriting typical of functional modules consists of replacement of equals by equals(until the equivalent, fully evaluated value is found). In general, however, a set of rewrite rulesis neither terminating nor Church-Rosser. The most general Maude modules are system modules,that specify initial models of a rewrite theory. They extend functional modules by a set of labelledrewrite rules, that can also be conditional. The syntax for this kind of rules is the following:123



rl [lab] : t => t0 .crl [lab] : t => t0 if �1 and � � � and �m .Notice that the conditions of a conditional rewrite rule cannot contain rewrite tests. Forexample the following sentence, expressing the usual dynamic evolution of CCS processes, isunparsable:crl plus(P,Q) => P 0 if P => P 0D.2 ShorthandsTo shorten the notation, we have used many (intuitive) shorthands throughout the paper. Forcorrectness, we try to summarize here most of them.D.2.1 Variable DeclarationsWe writevars ~x1 : s1 .~x2 : s2 ....~xn : sn .as a shorthand forvars ~x1 : s1 .vars ~x2 : s2 ....vars ~xn : sn .D.2.2 Subsort DeclarationsWe writesubsorts s1 ... sk < s01 ... s0n .as a shorthand forsubsort s1 < s01 ....subsort s1 < s0n ....subsort sk < s01 ....subsort sk < s0n .We also writesubsorts ~s1 < ~s2 < ... < ~sn .as a shorthand forsubsorts ~s1 < ~s2 .subsorts ~s2 < ~s3 ....subsorts ~sn�1 < ~sn . 124



Furthermore, we sometimes writesubsorts Sl1 .Sl2 ....Sln .where each Sli is a list of subsort expressions, as a shorthand forsubsorts Sl1 .subsorts Sl2 ....subsorts Sln .D.2.3 Membership AssertionsWe writembs t1 ... tk : s .as a shorthand formb t1 : s ....mb tk : s .D.2.4 Using iff in a Conditional SentenceWe writecmb  1 � � �  n iff �1 and � � � and �m .where each  i is a membership assertion, as a shorthand forcmb  1 if �1 and � � � and �m ....cmb  n if �1 and � � � and �m .cmb/ceq �1 if  1 and � � � and  n ....cmb/ceq �m if  1 and � � � and  n .where the use of the symbol ceq, rather than cmb, in the last m sentences depends on the kind ofeach sentence �i (equation or membership assertion).Similarly forceq  1 � � �  n iff �1 and � � � and �m .where each  i is an equation. 125



D.3 Built-insD.3.1 BooleansIn the present version of Maude, the sort Bool with constants true and false is added implicitlyto any module. However, no boolean functions are added, so that and must be de�ned explicitly.For simplicity, we have assumed that the built-in module comes equipped with the usualoperations of and, or, and not de�ned as follows (as we have done to run our examples):op _and_ : Bool Bool -> Bool [assoc comm] .op _or_ : Bool Bool -> Bool [assoc comm] .op not : Bool -> Bool .var TV : Bool .eq true and TV = TV .eq false and TV = false .eq true or TV = true .eq false or TV = TV .eq not(true) = false .eq not(false) = true .D.3.2 Machine IntegersWe have used the functional module MACHINE-INT in Section 7. It provides a fast arithmetic datatype for general purpose programming. The idea is that the (in�nite) constants of sort MachineIntrepresent the C++ data type int, and the various operations de�ned in the module represent theirC++ counterparts. We refer the interested reader to [14] for its description.D.3.3 Quoted Identi�ersThe module QID plays an important role for the meta-programming in Maude. It de�nes an in�niteset of constants of sort Qid with names such as 'a, 'aa, ''1a2b3c, etc. that are used to reify thenames of sorts, operators and variables in the meta-level.D.4 The Meta-LevelFor e�ciency reason, the Maude implementation provides key features of the universal (�nitelypresented) rewrite theory U for rewriting logic in a built-in module called META-LEVEL. In partic-ular, META-LEVEL provides sorts Term and Module, so that the meta-representations of terms andmodules belong, respectively, to the sort Term and to the sort Module. It also provides functionsmeta-reduce, meta-apply, and meta-rewrite that return, respectively, the representation of thereduced form of a term t using the equations in a module T , the representation of the result ofapplying a rule labelled l in the module T to a term t at the top, and the representation of theresult of rewriting a term t with the equations and the rules of a module T using Maude's defaultinterpreter (this last feature has not been used in this paper). We refer the interested readerto [14] for the extensive de�nition of the signature of module META-LEVEL in the current versionof Maude.For example, the representation of module FRAG-CCS in META-LEVEL is the following term ofsort Module:fmod('FRAG-CCS,protecting('MACHINE-INT),sort(qidSet('Channel, 'Act, 'Process)),126



subsort('Channel, 'Act),opDeclList(opDecl('a, 'MachineInt, 'Channel, emptyAttrSet),opDecl('tau, nilQidList, 'Act, emptyAttrSet),opDecl('bar, 'Channel, 'Channel, emptyAttrSet),opDecl('nil, nilQidList, 'Process, emptyAttrSet),opDecl('pre, qidList('Act, 'Process), 'Process, emptyAttrSet),opDecl('plus, qidList('Process, 'Process), 'Process,attrSet(assoc, comm, id('nil))),opDecl('par, qidList('Process, 'Process), 'Process,attrSet(assoc))),varDecl('A, 'Channel),emptyMembAxSet,eq('bar['bar['A]], 'A))Note that names of sorts, operators and variables are represented in META-LEVEL as quotedidenti�ers. For example, the operator plus is rei�ed as 'plus. Terms are rei�ed as elements ofthe data type Term (complex terms are represented using the constructors _[_] and _,_). Forexample, the processpre(a(1),nil)is meta-represented as'pre['a['1],'nil]If an operator has in�x syntax, then its meta-representation includes underscores for its argu-ment places. For example the meta-representation of the termtrue == falseis'_==_['true, 'false]Meta-representation can be iterated. For example, the meta-representation of the meta-term'pre['a['1],'nil]is'_[_][''pre, '_,_['_[_][''a, ''1], ''nil]]The declarationprotecting META-LEVEL[T] .imports the module META-LEVEL, declares a new constant T of sort Module, and adds an equationmaking T equal to the representation of T in META-LEVEL. Therefore, we can regard META-LEVELas a module-transforming operation that maps a module T to another module META-LEVEL[T]that is a de�nitional extension of U .We have assumed a simpli�ed (but consistent) version of META-LEVEL, whose relevant sorts andoperators are listed in section 6.3. The main di�erence is that we have de�ned a parametric ver-sion of META-LEVEL (with a generic module T as the only parameter), assuming that meta-reduceand meta-apply apply reductions and rewriting only in the module T passed as parameter. Fur-thermore, for the meta-apply we are not interested in the argument that can be used to apply asubstitution to the variables in the rules of the module before testing their matching with the termto be rewritten. Therefore, the domain and codomain of the functions that we are using becomes127



op meta-reduce : Term -> Term .op meta-apply : Term Label Nat -> ResultPair .instead ofop meta-reduce : Module Term -> Term .op meta-apply : Module Term Qid Substitution MachineInt -> ResultPair .(we have used the more intuitive names Label and Nat for the sorts Qid and MachineInt tofacilitate the reading to people not acquainted with the Maude implementation).Our changes aimed at a more compact and readable Maude-like notation, abstracting from thedetails of the actual implementation. However, we have tested and experimented the correspondingversion of each module de�ned in the paper using the beta version of Maude.D.5 Parametric Modules and In�x OperatorsFunctional modules can be unparametrized, or they can be parametrized with functional theoriesas their parameters. However, the present beta version only implements unparametrized modules.Furthermore, in the current version module hierarchies { except for protecting importation ofbuilt-in modules { are not supported either. Finally, although we have extensively used in�xsyntax for many operators, only pre�x syntax is allowed in the current version, except for thesyntax of built-in operators.Of course, all these restrictions will be removed in the future full version.
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