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Abstract

In a similar way as 2-categories can be regarded as a special case of double categories,
rewriting logic (in the unconditional case) can be embedded into the more general tile logic,
where also side-effects and rewriting synchronization are considered. Since rewriting logic is
the semantic basis of several language implementation efforts, it is useful to map tile logic
back into rewriting logic in a conservative way, to obtain executable specifications of tile
systems. We extend the results of earlier work by two of the authors, focusing on some inter-
esting cases where the mathematical structures representing configurations (i.e., states) and
effects (i.e., observable actions) are very similar, in the sense that they have in common some
auxiliary structure (e.g., for tupling, projecting, etc.). In particular, we give in full detail the
descriptions of two such cases where (net) process-like and usual term structures are employed.
Corresponding to these two cases, we introduce two categorical notions, namely, symmetric
strict monotdal double category and cartesian double category with consistently chosen prod-
ucts, which seem to offer an adequate semantic setting for process and term tile systems. The
new model theory of 2EVH-categories required to relate the categorical models of tile logic
and rewriting logic is presented making use of a recently developed framework, called partial
membership equational logic, particularly suitable to deal with categorical structures. Conse-
quently, symmetric strict monoidal and cartesian classes of double categories and 2-categories
are compared through their embedding in the corresponding versions of 2EVH-categories.
As a result of this comparison, we obtain a correct rewriting implementation of tile logic.
This implementation uses a meta-layer to control the rewritings, so that only tile proofs are
accepted. Making use of the reflective capabilities of the Maude language, some (general)
internal strategies are then defined to implement the mapping from tile systems into rewrit-
ing systems, and some interesting applications related to the implementation of concurrent
process calcult are presented.
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1 Introduction

The tile model [32, 35] is a formalism for modular descriptions of the dynamic evolution of con-
current systems. The idea is that a set of rules defines the behaviour of certain basic modules,
which may interact through their interfaces. Roughly speaking, we consider a module to be just
an open (e.g., partially specified) configuration of the system. Then, the behaviour of a whole
system 1s defined as a coordinated evolution of its submodules. The name “tile” is due to the
graphic representation of such rules. Graphically, a tile has the form

and textually it is written 5%}5’, stating that the initial configuration s of the system evolves to
the final configuration s’ producing an effect b, which can be observed by the rest of the system.
However, such a step is allowed if and only if the subcomponents of s (which is in general an
open configuration) evolve to the subcomponents of s, producing the trigger a. The vertices
o of the tile are called interfaces. Tiles can be composed horizontally (through side effects),
vertically (computational evolutions of a certain component), and in parallel (concurrent steps)
to generate larger steps. It is evident that the tile model extends rewriting logic [50] (in the non-
conditional case), taking into account rewriting with side effects and rewriting synchronization, and
can be naturally equipped with observational equivalences and congruences based on effects. In
fact, in (non-conditional) rewriting systems, both triggers and effects are just identities; therefore
rewriting steps may be applied freely, i.e., without interacting with the rest of the system. Thus,
unconditional rewriting logic is obviously embedded in the tile formalism as a special case. The
main goal of this paper 1s to investigate this connection in the opposite direction extending the
results of [58] to the case in which configurations and effects rely on common auxiliary structures
(e.g., for tupling, projecting or permuting interfaces). This is useful because there exist several
languages based on rewriting logic, and the implementation of a conservative mapping of tiles into
rewriting logic supports the execution of tile specifications. The nature of such structures will be
more evident after a brief survey of the motivation for the introduction of tile systems, and of the
techniques and tools employed in their semantical characterization.

The rich compositional nature of the tile model is the result of a progressive exploration of
mathematical structures allowing for finitary descriptions of complex context-dependent transition
systems. In Computer Science, (labelled) transition systems are one of the most widely used
formalisms, intuitively arising from the operational understanding of a computational system.
First, an abstract description of the system is defined, whose set of configurations (i.e., the feasible
assignments to memory cells, registers, data structures, etc.) gives the set of states S of the
transition system. Then, a transition relation T C S x S is defined, representing the possible
evolutions of the system. A set of actions (or labels) A is sometimes introduced to take into account
also observational aspects: T becomes a ternary relation 7'C S x A x S, and an external observer
may have discriminating capabilities over different evolutions between the same pair of states. In
many cases, taking advantage of a possible compositional structure over the states, the relation
T can be inductively defined according to that structure. As an example, the states of a Petr:
net [66] are multisets of places, an elementary evolution is a transition ¢ that rewrites a multiset uy
to a multiset v;, and a transition can fire (i.e., be executed) in every state u with u; < u, leading
to the state v = u © uy ® vy, where _ < _, _© _, and _@ _ respectively denote multiset inclusion,
difference and union. Thus, evolutions of a multiset are defined in terms of its subsets, and
disjoint subsets may concurrently evolve. Another significant paradigm is given by term rewriting
systems [50], where the states are terms of an algebra, and elementary evolutions are rewriting
steps obtained (by closure under substitution and contextualization) from a set of rewriting rules
(with free variables). Also the well-known structural operational semantics approach (SOS) [65]



is a relevant generalization of this kind of methodology. We are especially interested in SOS
specifications for process description algebras [2, 39, 59], where states are terms of a free algebra —
whose operators reflect the basic composition aspects of the system — and a set of inference rules
(guided by the structure of the states) inductively defines the transition relation. In recent years,
the expressiveness and properties of a variety of SOS rule formats have been investigated and
compared [67, 5, 37, 4]. Conlext systems [43], and structured transition systems [22, 26] are two
interesting developments of the SOS approach. In the former, the transition relation is extended to
contexts (that is, terms where free variables may occur) instead of closed terms, thus characterizing
the behaviour of partially specified components of a system. In the latter, also transitions are
equipped with an algebraic structure, usually by lifting the structure defined on the states in such
a way that computationally equivalent evolutions are identified in the algebra of transitions. A
similar methodology is also at the basis of rewriting logic [51, 53]: a logic theory is associated to a
term rewriting system, in such a way that each computation represents a sequent entailed by the
theory. The entailment relation 1is specified by means of simple inference rules, accordingly to the
term algebra under consideration. As an important result, equivalent computations correspond to
the same sequent, and therefore deduction becomes equivalent to concurrent computing.

The tile model [32, 35] allows expressing rewrite rules with side effects, extending both the SOS
approach and also context systems to a framework where the rules have a very general format,
and, as already noticed, trigger and effects extends also rewriting systems with a mechanism of
rewriting synchronization. This aspect is very important when modelling process algebras via
a rewrite system, because the behaviour of most process algebras depends on the interaction
between agents and “the rest of the world”. By analogy with rewriting logic, the tile model also
comes equipped with a purely logical presentation [35], where tiles are just considered as special
(proof) sequents subject to certain inference rules. Since rewriting logic can be considered as
a semantic framework for the study of concurrent systems with state changes, tile logic can be
thought of as a logic of concurrent systems with conditional state changes and synchronization.
Given a tile system, the associated tile logic is obtained by adding some auxiliary tiles and then
freely composing in all possible ways (i.e., horizontally, vertically and in parallel) both auxiliary
and basic tiles. Auxiliary tiles may be necessary to represent consistent rearrangements of the
interfaces due to the topological structure of the actual configuration. To give a formal definition
of auxiliary structure we assume the existence of the categories of configurations and effects (e.g.,
states in S and actions in A of the associated transition systems are arrows of categories). The
advantages of using category theory in computer science are well summarized in [36]. We just
remark here the following aspects: (a) suitable classes of (structure-preserving) functors between
categories (representing transition systems) offer an immediate definition of simulation morphism
between the underlying systems; (b) considering categories “in the small” (i.e., objects are states
and arrows are computations), a commuting diagram may identify “computationally equivalent
behaviours”, also from a concurrent viewpoint; (c¢) considering categories “in the large” (i.e.,
objects are categorical models and arrows are simulation functors), isomorphisms may be used
to characterize equivalent models; (d) universal constructions (i.e., adjunctions, (cojreflections,
etc.) may be used to define a notion of optimal model; (&) (co)limits often summarize useful
compositions also from a model theoretic viewpoint.

Moreover, categories generalize transition systems in an obvious way: states are objects and
transitions are arrows equipped with a partial composition operator _; _ (associative and with iden-
tities), corresponding to the intuitive sequential composition of transitions for expressing computa-
tions (identities represent idle components of the system). As an example, monoidal categories can
effectively model Petri net behaviours [57]; in particular, for each Petri net N, there exists a freely
generated strictly symmetric strict monoidal category 7[N] such that the monoidal operation _® _
defines parallel composition of Best-Devillers processes, and the functoriality axiom (of tensor
product _® _) expresses a basic fact about the true concurrency of the model. A second example,
showing that the use of categories offer a general and convenient characterization also of configu-
rations, is given by Lawvere theories. An algebraic theory [44, 45, 40] is just a cartesian category
having natural numbers as objects. The free algebraic theory associated to a (one-sorted) signature
¥ is called the Lawvere theory for X, and is denoted with Th[X] (also £x): the arrows from m to



n are in a one-to-one correspondence with n-tuples of terms of the free X-algebra with (at most)
m variables, and composition is term substitution. In a certain sense, a Lawvere theory is just an
alternative presentation of a signature, because the additional structure (for tupling, projecting
and permuting the elements of a tuple) is generated in a completely free way: only the operators
of the signature contain information, whereas the other constructors add nothing but auxiliary
structure. From this point of view, the use of a wires and boxes notation turns out to be very useful
for a visual and intuitive understanding of the role played by auxiliary structure: variables are
represented by wires (we assume an implicit total order of the variables involved) and the operator
of the signature are denoted by boxes labelled with the name of the operator. For instance, the
term f(z1,g(x2), h(x1,a)) over the signature ¥ ={a:0—1,9:1 —1,h:2— 1, f:3 — 1}
and variables 1 < x2 admits the following graphical representation:

Ty

It should be obvious that wire duplications (e.g., of #1) and crossing of wires (e.g., of #2 and a copy
of z1) are auxiliary, in the sense that they belong to any wires and boxes model, independently from
the underlying signature. It follows that, if we use the wires and boxes notation for configurations
and effects, then this kind of operations (e.g., rearrangements of wires) belongs to both dimensions
(i.e., they are shared). Moreover, consistent rearrangements of wires on both dimensions do not
change the meaning of a rule, but only its interface. To illustrate this point, let us consider a
simple tile system where the above signature X is the signature of configurations, and ¥/ = {s :
1 —1,t:2 — 1} is the signature of effects, having the following basic tiles:

Ty

Ty Yo

il — U

Then, it should be clear that the configuration f(a, 21, ¢(22)) should be able to evolve to h(xy, z3),
producing an effect s (as a result of the horizontal composition, or synchronization, of the two
tiles). However, we cannot compose the tiles in the obvious way without rearranging the interfaces,
because the arguments of trigger ¢ are separated by a variable in the initial (input) interface of the
second tile (notice the crossing of wires), while the first tile applies only to adjacent arguments
(notice that it is always possible to put an idle component in parallel with the first tile to model
the second argument of f). Thus we have the following naive characterization of auxiliary tiles:

Auxiliary tiles coincide with the consistent rearrangements of interfaces in both di-
mensions, where consistency means that the composition of the wire transformations
induced by the initial configuration and the effect of the tile is equivalent to the com-
position of the wire transformations due to the trigger and the final configuration.



Algebraic theories provide a clear mathematical representation of auxiliary constructors as suitable
natural transformations, whose components are called symmetries, duplicators, and dischargers.
This result will be very useful to relate our naive definition with a more formal definition.

Lawvere theories introduce a very general notion of model (i.e., chosen functor from Th[X] to
a cartesian category with chosen products C) and model morphism (i.e., natural transformation
between two models). This fact has been well-exploited in the categorical semantics of rewriting
systems. In fact, in the field of term rewriting, the states are terms over a certain signature
(i.e., arrows of the associated Lawvere theory), and rewriting steps are transitions between two
terms (with variables). Tt has been shown in [50], that a rewriting theory R yields a cartesian
2-category' Lr, which does for R what a Lawvere theory does for a signature (i.e., models can
be defined as 2-product-preserving 2-functors). Gadducci and Montanari pointed out in [33],
that if also side-effects are to be taken into consideration during the rewriting process, then double
categories [25, 1, 41] should be considered as a natural model. A double category can be informally
described as the superposition of a horizontal and a vertical category of cells, the former defining
effect propagations, and the latter describing state evolutions. Then, in the same way as the
term algebra is freely generated by a signature, and the initial model of rewriting logic 1s freely
generated from the rules of the rewriting system, the tiles freely generate a (monoidal) double
category which constitutes the natural operational characterization? in the spirit of initial model
semantics.

In this paper we consider two main interesting cases of shared auxiliary structures. In particular
the notions of Process Tile Logic and Term Tile Logic are introduced:

o Flat (e.g., any two sequents having the same “border” are identified, thus no emphasis is
given upon the axiomatization of logic proofs) versions of process tile logic have been shown
to be especially useful for defining compositional models of computation of mobile calculi,
and causal and located concurrent systems [27, 28]. The auxiliary tiles of process tile logic
express consistent permutations of interfaces along the horizontal and vertical structures.

e Term tile logic should represent the obvious extension of term rewriting logic. Connections
between the two logics are particularly interesting because in both logics the underlying carte-
sian category structure manifests itself at the level of syntax, allowing the use of the standard
term notation with term substitution as composition. The auxiliary tiles of term tile logic
allow consistent permutations of interfaces along the horizontal and vertical structures (as
for process tile logic), consistent free copying, and consistent projections on subcomponents.

The natural semantics of process and term tile logics are given in terms of suitable classes of
double categories whose equational axioms identify intuitively equivalent tile computations. For
this purpose, we introduce the notions of Symmetric strict monoidal double categories and Carte-
stan double categories (“with consistently chosen products”). As far as we know these definitions
are new, because all the previous attempts (based on internal constructions) for analogous notions
have led to asymmetric models, where the auxiliary structure (i.e., symmetries, duplicators, and
dischargers) is fully exploited in one dimension only. We believe that this should not be the case,
both conceptually and for the kind of applications we have in mind; therefore we propose a broader
notion of double cartesianity by developing an alternative approach, following the idea of hyper-
transformations [25] for many-fold categories, and exploiting the results for double categories. In
particular, we define the notion of generalized transformations, which act in both dimensions, and
assert the coherence of the two ways of transforming the structure. Then, we instantiate the
definition to the special cases of symmetries, duplicators, and dischargers, in a similar way as it

LA 2-category [41, 46] is a category C such that, for any two objects a, and b, the class C[a,b] of arrows from
a to b in C, forms a (vertical) category. The arrows of these hom-categories are called cells and satisfy particular
composition properties. As an example, the category Cat of categories and functors is a 2-category. Actually,
Cat[C,C'] is the category having the functors from C to C’ as objects, and the natural transformations between
such functors as arrows.

2The tiles are cells, the contexts are arrows of the 1-horizontal category, the side-effects are the arrows of the
vertical 1-category, and 0-objects model connections between the somehow syntactic horizontal category and the
dynamic vertical evolution.



happens for the 1-dimensional case. Moreover, by doing that, we give evidence for the usefulness
of axiomatizing the resulting double categories, thus allowing for the definition of more significant
models than the flat ones. Actually such models could also take into account the structure of
proofs. This approach motivates the following formal characterization of auxiliary tiles:

Auxiliary tiles for process and term tile logic are suitable generalized transformations
respecting some coherence equations, where coherence means that they are uniquely

defined.

The comparison between tile logic and rewriting logic is carried out by embedding their correspond-
ing categorical models in a recently developed, more general framework, called partial membership
equational logic [54, 56, 10]. In doing so, we extend the result of [58], by defining an extended
version of 2-categories, called 2EVH-categories, providing a systematic connection between mod-
els of tile logic and of rewriting logic. The idea is to “stretch” double cells into ordinary 2-cells
as pictured below, mantaining the capability to distinguish between configurations and effects,
whereas the auxiliary structure becomes shared, 1.e., it belongs to both classes.

s/> ’ \b
l lb N

a\ o /s/
Doing this, 2EVH-categories are able to simulate — in the sense that the algebraic structure of the
original double categories is recoverable in terms of operations on 2-cells — the structure of double
categories, where both the horizontal and vertical 1-categories share some non-trivial structure
other than objects. In this flattening process we must be careful about two issues, namely, the
possible identification of distinct double cells; and the possible existence of 2-cells having correct
horizontal-vertical partition of the source and vertical-horizontal partition of the target, but which
do not represent any double cell. From the facts that: (1) each arrow of a 2-category can be
viewed as an identity 2-cell, (2) each auxiliary operator is a shared arrow, and (3) auxiliary tiles

are consistent (in the sense that the composition of s with b is equivalent to the composition of a
with §'), it follows that 2EVH-categories allow for a third characterization of auxiliary tiles:

Auxiliary tiles coincide with the possible square-shaped decompositions of the identity
2-cells associated to auxiliary constructors.

We will show that the three different definitions of auxiliary tiles that we have sketched in this
introduction coincide.

Partial membership equational logic 1s particularly suitable for the modelling and the embed-
ding of categorical structures, firstly because the sequential composition of arrows is a partial
operation (e.g., it is defined if and only if the target of the first argument is equal to the source
of the second argument), and secondly because membership predicates over a poset of sorts allow
modelling the objects as a subset of the arrows and arrows as a subset of cells (as it is usually
done in category theory). Moreover, the tensor product construction illustrated in [58] can be eas-
ily formulated in partial membership equational logic and this allows for a convenient definition
of monoidal double categories as the tensor product of the theory of categories (twice) with the
theory of monoids.

Though the results are very satisfying from a theoretical perspective, they cannot be applied
directly to rewriting implementations of tile systems, because we are interested only in correct
computations. Indeed, we need suitable meta-strategies to control the possible nondeterminism
contained in a tile specification and in its translation. This could be summarized by saying that
“the rewriting engine must be able to filter rewriting computations”. To overcome this difficulty,
we make use of the reflective capabilities [17, 18] of the rewriting logic language Maude [15] to
define suitable internal sirategies [19], which help the user control the computation and collect
(some of) the possible (correct) results. The key point is that the internal strategies defined here



for simulating tile systems can also be thought of as general meta-strategies for rewriting systems
in general. We have experimented with Maude some executable tile specifications of interesting
CCS-like process calculi, and have successfully developed and applied general internal strategies
to filter and collect tile computations.

The structure of the paper is as follows. In Section 2 we recall some basic facts about algebraic
theories, rewriting logic, and tile logic (Section 2.1), and then we introduce the new tile models
based on process-like and term structures of configurations and effects. Each model is presented
in its flat version first, then is equipped with an algebra of proofs, and then naturally equivalent
proof terms are equated to characterize the natural semantic framework of the logic.

In Section 3, we introduce suitable categorical models for process and term tile logic, devel-
oping the notion of generalized transformation and diagonal categories to deal with symmetries,
duplicators and dischargers. As a result, we propose a precise characterization of symmetric strict
monoidal double categories and cartesian double categories with chosen products.

In Section 4 and 5 we present the full comparison between tile logic and rewriting logic through
partial membership equational logic, then showing how to map tiles into ordinary rewrite rules.
As a result of this comparison, we obtain a correct rewriting implementation of tile logic, in
which different tile sequents having the same “border” cannot always be distinguished. This
implementation requires a meta-layer to control the rewritings, so that only tile proofs are accepted.
In Section 6 we present some general meta-strategies (written in the Maude language) fulfilling
this last requirement.

In Section 7 we apply the previous results to show how Maude — thanks to its reflective capa-
bilities and, in particular, to the possibility of defining internal strategy languages — can in fact
be used to prototype and execute tile rewriting systems. In particular, we define executable im-
plementations of some CCS-like process calculi (namely, finite CCS and located CCS), preserving
their original semantics.



2 Tile Logic

Tiles are rewrite rules with side-effects, extending the SOS approach to open systems and also
a

to heterogencous systems. A generic tile has the form s—,7s’, stating that the partially specified
configuration s may evolve to s’ producing an observable effect b, but this rewriting step is allowed
if and only if the subcomponents of s evolve to the subcomponents of s’ producing the observation
a, which 1s the trigger of the rule. The notions of configuration and observation are very general
here, the only requirement 1s that they come equipped with operations of parallel and sequential
composition. In fact, tiles can be combined by means of three composition operators, extending
those defined on their border: parallel (- ® _), horizontal (_* _), and vertical (_- _) composition.
Parallel composition intuitively corresponds to the concurrent rewriting of disjoint components
of the system. Vertical composition models successive rewriting, i.e., computations. Horizontal
composition synchronizes evolutions of a configuration and its subcomponents.

Although tile systems are essentially monoidal double categories [25], the tile model allows for
a purely logical presentation, where tiles are considered as sequents (subject to certain inference
rules and normalization axioms), in the style of rewriting logic. Then, deduction in the tile logic
exactly corresponds to computing in the tile model (i.e., applying composition rules in all possible
ways, starting from a set of basic tiles), and the axioms of tile logic identify equivalent proofs of a
sequent entailed by the logic.

The simplest possible interpretation of structured configurations and observations is considered
in [11, 12], consisting of P/T net markings. As an important result, horizontal composition in the
tile model yields a notion of transition synchronization, an important feature for compositionality,
missing in ordinary nets (where only token synchronization is provided), and usually achieved
through complex constructions. As an another example, tile models for most process algebras [35]
have process terms as configurations, and elements of the free monoid on observable actions (which
are unary symbols) as observations. However, when either causality aspects or bound names are
taken into account, it is possible to consider more general horizontal and vertical structures,; dealing
with (local and global) names.

Since models of computation based on the notion of free and bound names are widespread,
the notion of name sharing is essential for several applications, ranging from logic programming,
A-calculus and process algebra with restriction (or name hiding mechanisms) to mobile processes
(where local names may be communicated to the external world, thus becoming global names).
We can think of names as links to communication channels, or to objects; or to locations, or to
remote shared resources, or, also, to some cause in the event history of the system. In general,
names can be freely a-converted, because the only important information they offer is sharing.
The wires and boxes notation presented in the introduction can give an intuitive understanding
of a name sharing mechanism. Let us consider a certain signature ¥ with constants 0, 1 and 2,
and binary operators f and ¢g. Then the configurations ¢; and ¢y in the picture below can model

quite different systems.
[ ]
71— - .
0} :

@—> o
In a wvalue-oriented interpretation, both ¢y and c¢s yield the same term f(0,0). Instead, in a
reference-oriented interpretation, ¢; and ¢y define different situations: in the former the two sub-
components of the f box are uncorrelated, while in the latter they point to the same shared
location. The difference becomes even more clear, if we assume a tile system in which the config-
uration 0 may be rewritten either to 1, producing an effect e1, or to 2, with effect es # ey, and
the configuration f(z1,22) may be rewritten to g(z1, z2) only if #; yields e; and z2 yields es as

C1

® C2
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triggers, becoming z; and zs, 1.e., the basic tiles of the system are as follows:

Ty
I%tj T Y1
€1
Z1 €9
- i T

Z2 g w1

Then, ¢; may be rewritten, while ¢s cannot; in fact, if we try to rewrite 0 with the first tile, the
same effect e; is propagated to both arguments of f, and the configuration is stuck, because we
cannot apply the third tile, and similarly if we try to rewrite 0 with the second tile.

Term graphs [24] are a reference-oriented generalization of the ordinary (value-oriented) notion
of term, where the sharing of subterms can be specified also for closed (i.e., without variables)
terms®. The distinction is made very precisely by the axiomatization of algebraic theories: terms
and term graphs differ by two axioms, representing, in a categorical setting, the naturality of
transformations for copying and discharging arguments [20]. Term graphs have been shown useful
in [27] to define a tile model for the (asynchronous) w-calculus [60] (one of the most studied mobile
calculi), and in [28] to represent both the operational and the abstract semantics of CCS [59] with
locations [9] within the tile model. In both cases, flat versions of the tile model are used, and the
general notion of tile bisimilarily [35] is employed to quotient out configurations, thus recovering
the ordinary abstract semantics.

In this section we introduce two versions of tile logic, called Process Tile Logic, and Term Tile
Logic. They model two specific situations in which the structure of configurations and observations
are quite similar, and a set of auziliary tiles seems to capture precisely their similarity.

Configuration and observation in process tile logic are defined in terms of a subclass of directed,
acyclic hyper-graphs, where each node has at most one entering (exiting) arc. The “process” ter-
minology is taken from net theory, due to the characterization of concatenable (deterministic)
processes of P/T nets via symmetric strict monoidal categories [23]. Here configurations may
model states of a great variety of distributed systems (at a certain level of abstraction), and ob-
servations may exactly model causal dependencies between the resources consumed and generated
by concurrent and cooperative evolutions of distributed agents. Models proposed in [27, 28] are
essentially flat process tile logic modelsa equipped with “ad-hoc” notions of sharing and garbage
collection. Auxiliary tiles for process tile logic are essentially tiles for consistent permutations of
interfaces.

Term tile logic is the natural generalization of term rewriting logic. Here, both configurations
and observations are term algebras. Thanks to the work of Lawvere relating algebraic theories and
cartesian categories, and to classical results on cartesianity (with chosen products) as enriched
monoidality, the auxiliary structure which allows the generation of the term algebra starting from
a signature is characterized by three natural transformations called symmetries, duplicators, and
dischargers. Similarly, auxiliary tiles of term tile logic are the consistent generalization of such
transformations w.r.t. the two dimensions of tile systems.

Intuitively, in process and term tile logic, configurations and observations have in common the
auxiliary structure, i.e., the possibility of re-arranging the interfaces as explained in the introduc-
tion. Moreover, auxiliary tiles model exactly the consistent re-arrangements, in the sense that

a
given any auxiliary tile s™,s’, the composition of the transformation induced by s followed by
the one induced by & should yield the same result as the transformation induced by a followed by
the one induced by s’. An important requirement is that there should be a unique auxiliary tile
for each possible bidimensional transformation, i.e., all the possible decompositions of the proof
terms of auxiliary tiles yielding the same border should be equivalent.

3Terms can share variables, but shared subterms of a closed term can be freely copied, always yielding an
equivalent term.

11



Notice that, although auxiliary tiles for process and term tile logic are introduced in this
section, their characterization, and in particular the axioms we propose, are based on the research
concerning generalized transformations, which is the subject of Section 3. However, for the sake
of an easier presentation, and to afford a better intuitive understanding of the main ideas with
the minimum machinery possible, we have chosen to reverse the “mathematically natural” order
of the two formalizations.

2.1 Background
2.1.1 Algebraic Theories

We recall here some basic definitions from graph theory, used to recast the usual notion of term over
a signature in a more general setting, where suitable equivalence classes of monoidal (hyper)graphs
equipped with auxiliary arrows are considered.

Definition 2.1 [(Hyper)Signatures] A many-sorted hyper-signature ¥ over a set S of sorts is a
family {Ey w' w,wiess of sets of operators. A many-sorted signature is just a hyper-signature such
that Xy o # 0 = w’ € S, i.e., afamily {Xy s twes+ ses. If S is a singleton, we denote the hyper-
signature (signature)X is called one-sorted and is simply denoted by the family {, n o men
({En}nelN)~ o

Definition 2.2 [Graphs] A graph G is a 4-tuple (Og, Ag; 0o, J1), where Og is the set of objects,
Ag 1s the set of arrows, and 0y, 01 : Ag — Og are functions, called respectively source and
target. We use the standard notation f : @ — b to denote an arrow f with source a and target
b. A graph G is reflezive if there exists an identity function id : O — Ag such that Va € Og,
G(id(a)) = a = 61(id(a)); it is with pairing if Og is a monoid; it is monoidal if it is reflexive,
both Og and Ag are monoids, and the functions dy,01, and id are monoid homomorphisms (i.e.,
preserve the monoidal operator and the neutral element). a

It is immediate that a many-sorted hyper-signature X over S may be seen as a graph with
pairing G's; such that its objects are strings on S (i.e., Og,, = S, string concatenation _:: _is the
monoidal operator, and the empty string A is the neutral element), and its arcs are labelled with
operators of the signature (ie., f:w — w' € Ag, iff f € Ey w1).

For simplicity, throughout the paper we will consider one-sorted hyper-signature only, but the
results extend immediately to the many-sorted case.

Definition 2.3 [Graph Theories] Given a one-sorted (hyper)signature X, the associated graph
theory G(X) is the monoidal graph with objects the elements of the additive monoid of natural
numbers (i.e., 0 is the neutral element, and the monoidal operation _®_is defined as n®@m = n+m),
and arrows those generated by the following inference rules:

fE€EZum t:n—m, t':n — m € G
(generators) (pairing)
fin—meG((Y) tet :nen — mem e G(Y)
n €IN
(identities)

idy, :n —n € G(X)

Monoidality implies that _ ® _ is associative on arrows, idy is the neutral element of the monoid
of arrows, and that the monoidalily axiom id,gm = idy, @ idy, holds for all n, m € IN. O

This view is very useful to define a chain of further structural enrichments on graphs, finally
leading to the usual algebraic notion of terms over a signature. We are particularly interested in
this final level, and also in the intermediate level corresponding to symmetric theories. For the
sake of simplicity, we treat here one-sorted signatures only, but the extension to the many-sorted
case should follow immediately.
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Definition 2.4 [Monoidal Theories, Symmetric Theories] Given a (hyper)signature X, the asso-
ciated monoidal theory M(X) is the monoidal graph with objects the elements of the additive
monoid of natural numbers (i.e., 0 is the neutral element, and the monoidal operation - ® _ is
defined as n @ m = n + m), and arrows those generated by the following inference rules:

fE€EZum t:n—m, t':n — m € M(X)
(generators) (pairing)
fin—meM(X) tet :nen — meom e M(Y)
n €N t:n—m, t' :m—keM(X)
(identities) (composition)
idp :n — n € M(X) it in— ke M)

Moreover, _®_1is associative on arrows with identity idy, the composition operator _; _is associative,
and the arrows of M(X) satisfy the identity aziom (¥t : n — m), id,;t = ¢ = t;idy,, and the
Junctoriality aziom (s @ t);(s' @t') = (s;8') ® (t;t') (whenever compositions s;s’ and t;¢' are
defined).

The symmetric theory S(X) associated to the (hyper)signature X is the monoidal graph gener-
ated by the same inference rules and axioms given for M(X), together with the following inference

rule:
n,mée N

(symmetries)

Moreover, the arrows of S(X) satisfy the naturality aziom (Vt :n — m, ' :n/ — m'),
(D) Ymm = Yo (' @ 1),
and the coherence azioms (¥Yn, m,k € IN),

Tn@m,k = (Zdn @ 7m,k); (7n,k ® de)a and Tn,ms Ymn = Z.dn®m~

O

Actually, a (symmetric) monoidal theory is just a particular (symmetric) strict monoidal cat-
egory [46], namely the free such category generated by the signature X.

Definition 2.5 [Algebraic Theories] Given a signature X, the associated algebraic theory A(X)
is the monoidal graph generated by the same inference rules and axioms given for S(X) together
with the following inference rules:

n €N n €N
(duplicators) (dischargers)
Va:n—n@n e AX) hin—0€A(Y)

Moreover, the arrows of A(X) verify the naturality azioms (Vt : n — m),
tVm =V (t@1), and t;1, =l,,
and the coherence azioms (¥Yn, m € IN),
Vinom = (Va @ Vin); (idn @ Ynm @ idy), Vo =ido =lo, lhgm =h®@'m,
Vo (1n @ Vo) = Va; (Va @ 1n), Vai¥nn = Ve, and Vi (1,0,) = id,.
O

It can be considered categorical folklore that a cartesian category can actually be decomposed
into a symmetric monoidal category, together with a family of suitable natural transformations,
usually denoted as diagonals and projections. Then, Def. 2.5 can be proved equivalent to the
classical Lawvere theory construction Th[X], dating back to the early work of Lawvere [44]. A
classical result states the equivalence of these theories with the usual term algebra.
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Definition 2.6 [X-Algebra] Given a signature X = {X, },en, a X-algebra is a set A, together
with an assignment of a function A; : A" — A for each f € X,,. ad

As usual, we write Ty to denote the X-algebra of ground X-terms, and Tx(X) to denote the
Y-algebra of X-terms with variables in a set X.

Proposition 2.7 Let ¥ be a signature. Then, for all n,m € IN, there exists a one-to-one corre-
spondence between the set A(X)[n, m] of arrows fromn to m in A(X) and the m-tuples of elements
of the term algebra Tx(X) over a set X of n variables.

We believe that the constructive definition of algebraic theories separates very nicely the aux-
iliary structure from the Y-structure (better than the ordinary description involving the meta-
operation of substitution). Moreover, the naturality axioms of ¥V and ! allow a controlled form of
duplication and discharging of information.

2.1.2 Rewriting Logic

Rewriting logic [50, 51, 53] is an elegant and expressive semantic framework for the specification of
languages and systems, and it is a good candidate as a logical framework in which many other logics
can be represented [48, 49]. A workshop [55] has been recently dedicated to a great miscellany of
different aspects of rewriting logic, relating many different subjects (object-oriented programming,
reflection, external and internal strategies, different categorical interpretations of rewriting logic,
semantic basis for language implementations, actor systems). Here we just sketch an introductory
description of the subject and the original 2-algebraic semantics as proposed by Meseguer in [50].
A short summary of the reflective capabilities of rewriting logic will be given in Section 6.2.

Let X be a signature. Given a set B of X-equations (i.e., sentences of the form ¢ = ¢/ with
t,t' € T5(X)), Ts,g (resp. T5 r(X)) denotes the X-algebra of equivalence classes of ground X-
terms modulo the equations in F (the X-algebra of equivalence classes of Y-terms with variables
in X modulo the equations in £). We denote the congruence modulo £ by _ =g _, and the
E-equivalence class of a X-term ¢ by [t]g, or just [¢].

Definition 2.8 [Rewrite Theory] A labelled rewrite theory R is a 4-tuple (X, F, L, R) where ¥ is
a signature, E is a set of X-equations, L is the set of labels, and R C L x Ty p(X) x Tx p(X) is
the set of labelled rewrite rules. For (r,[t],[t']) € R we use the notation r : [t] = [¢']. O

Rewrite rules in R may be understood as basic sequents entailed by R. More complex deduction
in the logic of R can be obtained by a finite application of four simple rules.

Definition 2.9 [Rewriting Sequents] Let R = (X, F, L, R) be a rewrite theory. We say that R
entails a flat sequent [t] = [t], written R F [t] = [¢'] iff [t] = [t] can be obtained by a finite
number of applications of the following rules of deduction.

Reflexivity
[t] € T g(X)
[t] = [t]
Congruence
[t =[], - [l = [t], fEXn
e, .. t)]) = [f({t), ..., t)]
Replacement
[wi] = [wi], .o [wa] = [Wh], 7 [t(e, .., 20)] = [H(21,...,20)] €ER

[t(@/&)] = [t'(@/7)]
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Transitivity
[t1] = [t2], [t2] = [ts]

[t1] = [t3]

where ¢(W/#) denotes the simultaneous substitution of w; for #; in ¢. m|

A rewrite theory 1s just a static description of “what a system can do”. The meaning of the
theory should be given by computational models of its actual behaviour. Taking advantage of
the correspondence between deductions in rewriting logic and (concurrent) computations, it is
natural, in the spirit of initial model semantics, to define the initial model T of R as a system
whose states are F-equivalence classes of Y-terms, and whose transitions are equivalence classes
of terms representing proofs in rewriting deduction, i.e., concurrent rewritings using the rules in
R. The rules for generating such proof terms are obtained from the rules of deduction of Def. 2.9
by decorating the sequents with appropriate proof terms.

Definition 2.10 [Proof Terms of Rewrite Logic] Let R = (X, E, L, R) be a rewrite theory such
that each rewrite rule has a different label. We say that R entails the proof term o« : [t] = [t'],
written R F o« : [t] = [t'] (or just R F «), iff the proof term « is generated by a finite number of
applications of the following decorated rules of deduction.

Identities

[t] € Ty, 5(X)
[t]: [t] =[]
Y-structure
ap: ] =[] o an ] =[], f €,
floag, o an)  [f, . te)] = [FE, )]

Replacement
ay cfwn] = [wl], .. an fwe] = [wh], v [t 2n)] = [ (e, 2n)] ER
r(an, o an) 2 [H@/E)] = [t(0/7)]
Composition

a:[t] = [ta], B:[ta] = [ts]

ao B[] = [ts]

Each of the rules presented above defines a different operation, taking certain proof terms
as arguments and returning a resulting proof term. In other words, proof terms form an alge-
braic structure Pr(X) consisting of a graph with nodes Tx g(X), with identity arrows, and with
operations f (for each f € X), r (for each rewrite rule), and _o _ (for composing arrows). a

Notice that we use diagrammatic order for the sequential composition of proofs, and that the
composition operator is denoted by the same symbol of vertical composition of natural trans-
formations to enhance the relations with the categorical semantics described at the end of this
section.

Definition 2.11 [Model 7r(X)] Given a rewrite theory R, the model 7 (X) of R is the quotient
of the algebra of proof terms Pr(X) modulo the following equations (when composition of arrows
is involved, we always implicitly assume that the corresponding source and target match):
Category

Assocrativity:

Va,B,y, ao(foy)=(aopf)oy
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Figure 1: Graphical representation of the Exchange law as a natural transformation.

Identities:
Va:[t]=[t'], aol]l=a=[]ox

Functoriality of the Y-algebraic structure (Vf € X,))
Preservation of composition:

Vala"'aanaﬁla"wﬁna f(alOﬁla"'aanoﬁn):f(ala"'aan)of(ﬁla'“aﬁn)
Preservation of identities:
V[ta], - [En)s F([E], - [En]) = [F(E1, - )]
E-axioms (Vt(x1,...,2p) =t (21,...,2,) € E)
Vay, ..., an, tag, ..., an) =t (e, ... an)

Exchange (Vr : [t(z1,...,20)] = [t'(#1,...,20)] € R)

Note that the set X of variables is actually a parameter of these constructions, and we need
not assume X to be fixed and countable. In particular, for X = () we adopt the notation 7z. O

The Category equations make 7z (X) a category. The Functoriality equations make each
operator f of ¥ a functor. The F-axioms equations extend axioms in E also to proof terms.
The Exchange law 1s particularly relevant, because it states that the simultaneous rewriting of
a “context” t via r and of 1ts “subcomponents” wi,...,w, via «aq,..., o, 1s equivalent to the

—
sequential composition r([w]) o #/(&) (first rewriting on top and then on subcomponents) and also

to the sequential composition ¢(&) o r([;/j) (first rewriting the subcomponents and then the top
of the term). It follows that each proof term in 7g(X) is a description of a concurrent computa-
tion, according to an equational theory of true concurrency. Moreover, since [t(x1,...,z,)] and
[t'(x1,...,2,)] can be regarded as functors from 7 (X)” to 7r(X), the exchange law asserts that
r 18 a naturel transformation. This situation is illustrated in Fig. 1.

Lemma 2.12 ([51]) For each rewrite rule v : [t(z1,...,2,)] = [t'(#1,...,2,)] in R, the family
—

of morphisms {r(m) W/ E)] = H(0/D)] | [w] € Te,g(X)"} defines a natural transformation
from the functor [t(xy, ..., 2,)] : TR(X)" — Tr(X) to the functor [t'(xy1,...,2y)] : TR(X)" —
Tr(X).

The category Tr(X) is a very particular model of the rewrite theory R, in that its objects are
the elements of a very particular X-algebra, namely 7% g(X). The general notion of model, called
R-System, is defined as follows.
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Definition 2.13 [R-System] Given a rewrite theory R = (X, E, L, R), an R-System S is a cate-
gory & together with:

1. a family of functors {Sf : 8" — 8 | f € X, } satisfying the equations in F' (i.e., for any

t(z1,...,2,) the functor & is inductively defined in the obvious way from the functors Sy,
and for each F-equation t(z1,...,2,) = t/(#1,...,2,) the identity of functors & = Sy
holds);

2. for each rewrite rule r : [{(%)] = [t/(¥)] in R, a natural transformation S, from &; to Sy.

An R-homomorphism F : 8 — &' between two R-systems is then a functor from S to &’
such that it is a ¥-algebra homomorphism (i.e., for each f € Z,, §;; F = F™; S}), and such that
F “preserves” R (i.e., for each rewrite rule r: [t(x1,...,2,)] = [t'(#1, ..., 2,)] in R we have that
Sy F'= F";8)). This defines a category R-Sys of models for the rewrite theory R. a

The following theorem [51] characterizes the relevance of the models 7g and 7z (X).

Theorem 2.14 (Initial and Free Model of R) 7r is an initial object in the category R-Sys.
More generally, TR(X) has the following universal property: given an R-system S, each function
F: X — |S| extends uniquely to an R-homomorphism F : Tr(X) — S.

Given an equational theory T' = (3, F) let us denote by Algy, i the category of T-algebras,
and by L the Lawvere theory of 7', having natural numbers as objects, and where an equivalence
class [t(#x1,...,2,)] is viewed as an arrow [t(zy,...,2,)] : n — 1 (from n placeholders for the n
ordered variables of ¢ to the placeholder for the result), arrow composition being substitution (that
is, given n arrows [u;(y1, ..., ym)] :m — 1, fori = 1,...,n, and an arrow [t(z1,...,2y)] :n — 1,
the composition between {[u1],...,[us]) : m — n and [t(x1, ..., z,)]

{lual, - [uad) [
m — n—1
yields [¢(@/Z)] : m — 1 as a result). In particular, for 7' = (X, 0), we have Ly ~ A(X), thanks
to Proposition 2.7.

Lawvere made the seminal discovery that, given a X-algebra A satisfying F, the function map-

ping each F-equivalence class [t(x1, ..., 2,)] to its functional interpretation Apy : A" — A in the

Y-algebra A defines exactly a product-preserving functor A : Lp — Set. Moreover, if we choose
canonical set-theoretic products in the targets of such functors, and denote by Mod(Lr, Set) the
category with objects those functors and morphisms natural transformations between them, then
the assignment A —— A corresponds to an isomorphism of categories Algy, p ~ Mod(Lr, Set).

This situation generalizes very naturally to the case of rewriting logic: it suffices to change the
“ground” on which models exist from the category Set to the 2-category Cat. Hence, models for
rewriting logic are algebraic structures on categories (i.e., sets with additional structure) rather
than on sets. Indeed, given a rewrite theory R the 2-category with 2-products Lx has natural
numbers as objects, F-equivalence classes of terms [t(z1, ..., 2,)] as arrows [t(z1,...,2,)] 1 n —
1, and equivalence classes of proof terms [o] : [t(z1, ..., 2n)] = [t'(21,. .., 2,)] as cells, with vertical
composition given by [a] o [y] = [@ o], and horizontal composition «; 8 given by [t(&/%) o 3(¥/%)] :
[t(d/%)] = [t'(¢/%)]. As illustrated in Fig. 2, the exchange law states the coherence between _;_
and _o _.

As a matter of fact, given an R-systems S, the assignment to each rule r : [t] = [¢'] in R of
a natural transformation S, from the functor &; : 8" — & to S : 8" — § extends naturally
to a 2-product preserving 2-functor S : Lr — Cat, and the assignment & —— S yields an
isomorphism of 2-categories R — Sys ~ Mod(Lz, Cat), where Mod(Lgz, Cat) is the category of
canonical 2-product preserving 2-functors from Lz to Cat. This result can be summarized by
saying that Lr does for R-systems what in the Set case Lp does for T-algebras, i.e.;, L extends
the result of Lawvere to systems with state changes.

More recently, alternative semantics have been proposed for rewriting logic. In [21] it is noticed
that when the rules of R are not right linear — that is, there is a repeated occurrence of a variable
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Figure 2: Graphical representation of the Exchange law in L.

in the righthand side of a rule — then Lz is in a sense too abstract. This is made clear by
associating a poset of partial orders of events to Lr and observing that it is not a prime algebraic
domain. A uniform construction for a sesqui-category model (similar to Lx but satisfying fewer
equations, and in particular such that the exchange axiom is not imposed) is then provided, and
it 1s shown that its associated poset is a prime algebraic model. In this way, the relationship
between rewriting logic models and event structures is clarified, and useful connections with other
concurrency models are provided. In [64] the treatment of conditional rules in the functorial
model for conditional rewriting logic of [51] is generalized and reformulated in terms of weighied
limits rather than 2-limits, i.e., using inserters instead of subequalizers (which however coincide
in Cat). For simplicity, in what follows we restrict ourselves to the original semantics proposed
by Meseguer [50], and to rewrite theories with an empty set of equations (i.e., £ = §).

2.1.3 Algebraic Tile Logic

The rule format of algebraic rewriting systems [35] extends the one of rewriting systems to deal
with side-effects viewed as basic (unary) actions, in the style of SOS semantics for several process
algebras. In this sense, each rule should be considered as a description of a possible behaviour of
a module depending on the behaviours of its sub-components (i.e., the system evolves if and only
if all of its active modules synchronize their actions).

Definition 2.15 [Algebraic Rewriting System] An algebraic rewriting system (ARS for short) R
is a quadruple (Xg, Xy, N, R}, where S and Xy are signatures, N is a set of rule names, and
R is a function R : N — A(Zg) x G(Zv) x G(Zy) x A(Xg) such that for all d € N, if
R(d) = (s,a,b,t), then we have s :n — m, t 1 k — {, a :n — k, and b : m — [ for some
natural numbers n, m, k, and (. a

a
As usual, we will write such a rule d as a sequent d : s—, "t or, graphically, as the tile

5

n——sm
al d lb
k—1

t

thus making explicit the source and target of each operator. It follows that a term rewriting
system is just an ARS with Xy = 0, and a context system [43] is an ARS where Xy contains
unary operators only and R: N — Xy X G(Zv ) x G(Zv ) x Zg. The actual behaviour of a large
system can be recovered from the behaviour of its modules (as specified by the rules of the given
ARS) by regarding the rewriting system as a logical theory, and its rules as basic sequents entailed
by that theory. Then, some simple inference rules allow us to obtain many other “structured”
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sequents. A proof of a sequent is given by the sequence of inference rules applied to prove it. It is
possible to decorate the sequents with proof terms to obtain a more concrete framework, in which
it 1s possible to distinguish between different proofs of the same flat sequent. To be more concise,
we show the decorated version only (the rules for flat sequents are just the same, but without
proof terms).

Definition 2.16 [Algebraic Tile Logic] Let R = (Xg, Xy, N, R) be an ARS. We say that R

entails the class P,(R) of decorated algebraic sequents o : s~ t, written R 4 o : 57, t, obtained

by a finite number of applications of the following deduction rules*:
Basic Proof Sequents

Generators:

d: s%t € R(N)
(gen) ,

d:s7, 7t € Py(R)

Identities:

a:n—keMZy) t:n—meA(Xy)
(v-ref) - (h-ref) .
1o :id,—idy, € Po(R) 10 1=t € Py(R)

Auxiliary Sequents

a:n—kb:m—1€M(Zy)

(v-swap)
a®b
"}/ayb . ’Yn,m b@T’Vk,l & Pa(R)
a:n—keMXZy) a:n—keMXZy)
(v-dup) (v-dis) -
Vai Vi === Vi € Pu(R) L a7tk € Pa(R)

Composition Rules
Parallel composition:

a5, tEPR), BT, t € Po(R)

(par) —
04®635®5/W>t®t/ EPa(R)
Sequential compositions:
a b a a’
a:s, tEP(R), B:5—~t' € Pi(R) a:s,tEP(R), B t?t’ € P,(R)
(hor) - (vert) ,
ax sy —tit € Py(R) a-f:s AL € Po(R)

bib

)

a
Moreover, we say that R entails the class S.(R) of flat algebraic sequents s—, 7t (written

a a
R byq 57, 1) iff there exists a decorated algebraic sequent a € Py(R) such that o : s7,7t. m]

While P,(R) gives a very precise but too concrete description of R, flat sequents are sometimes
too abstract, identifying too much. However, a natural equivalence over proof terms can be
expressed by means of a simple set of axioms, in such a way that computationally equivalent
derivations are identified.

*Notice that the effects of basic tiles are in G(Xy/), but those of generated tiles are in M(Zv ).
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Definition 2.17 [Abstract Algebraic Tile Logic] Let R = (X, Xy, N, R) be an ARS. We say that
R entails the class A4(R) of abstract algebraic sequents, whose elements are equivalence classes of
proof terms in P,(R) modulo the following set of axioms on proof terms:

Assoclativity Axioms for _® _, _* _, and _- _.

Identity Axioms (for each o : s%t € P,(R)):
lyxa=a=axl, P aza=a- 1!
Monoidality Axioms (for each s,t € A(Xg), o € Py(R), and a,b € M(Zv)):
ot =1 1! Ligo @ =a = a® lyg, lags = 1@ 1°

Functoriality Axioms:
Identities (for each n € IN, and composable arrows s,t € A(Xg) and a,b € M(Zy)):

1s;t =1% % 1t 1idn = 1idn 1a;b = 1(1 : 1b
Compositions (whenever both sides are defined):
(@@p)-(y@b)=(a-7)@(8-6) (@@ pB)*(y@8) = (axy)@(F*8)

(axB)-(y*6)=(a-7)*(39)
Auziliary operators (for each n € IN, and composable arrows a,b € M(Zy) and ¢,d € M(Zy)):

Y(ash),(e;d) = Ya,e " Vb,d Yidy idm — LT
Vap =V4-Vy Vig, = 1V=
lap =laly Ya, = 1"
Naturality Axioms (for each o : s7,7¢, o : S/Tt/ € Py(R)):
(@) *x v 0 =Yaa * (&' @ ) axVy=Vi*(a®a) axly =1,
Coherence Axioms (for each a,b,c € M(Zy)):
Ya®b,ce = (1(1 ® P)/b,c) * (P)/a,c ® 1b) va *Ya,a = va
va®b = (va @ vb) * (1(1 @ Ya,p @ 1b) Vi * (1(1 @ va) =Vg* (va @ 1(1)
!a®b =10h Vi * (1a®!a) =1,
Yidoido = lidy = Vidy =lido Ya,b * Vb0 = lage

O

Algebraic tile logic allows defining a suitable notion of behavioural equivalence which is remi-
niscent of the well-known technique of bistmulation.

Definition 2.18 [Tile Bisimulation] Let R = (X¥p, Xy, N, R) be an ARS. A symmetric equiva-
lence relation .= _ C A(Zg) x A(Xg) is a tile bisimulation for R if, whenever s = ¢ for generic

a
s,t € A(Xg), then for any sequent s, 7s" entailed by R, there exists t' € A(Xg) such that also

a
t7, 1 is entailed by R, with s’ = t'. O

Tile bisimulations are closed under union. The maximal tile bisimulation is called strong tile
bisimulation and is denoted by _ =;; _. For some conditions on R ensuring that - =5 _is a
congruence we refer the interested reader to [35]. An algebraic theory for CCS recovering the
ordinary strong congruence via tile bisimulation has been defined in [32, 35]. In Section 7.1 we
will adapt such a model to give an executable specification in term tile logic.
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2.2 Naive Process Tile Logic

The main limitation of algebraic tile logic is that configurations and effects can share only objects,
even when their structure is very similar. As shown in the introduction, using the wires and boxes
notation, it would be desirable to have a model where consistent re-arrangements of interfaces are
allowed by default. In this section we define process tile logic, where all the consistent overlappings
of wires are always introduced for free.

Flat versions of tile logic based on (richer) symmetric monoidal categories on both dimensions
have been extensively used in [27, 28] They offer a very general specification framework. We
formalize here this kind of situations, allowing also for the definition of more general versions
than just flat ones (e.g., introducing proof terms for the sequents entailed by the logic, together
with suitable axioms, which identify intuitively equivalent tile deductions; in particular, all the
auxiliary tiles with the same border are identified). As already said, for simplicity, we will consider
only one-sorted hyper-signatures.

Definition 2.19 [Process Tile Rewrite System] A process tile rewrite system (pTRS for short)
R is a quadruple (Xg, Xy, N, R), where Xy = Ui,jelN Yuij and Xy = Ui,jelN v, ; are hyper-
signatures, N is a set of rule names and R is a function R: N — S(Zp)xS(Xv ) xS(Bv ) xS(Zx),
such that Vd € N if R(d) = (h,u, v, g), then the arrows h and v have the same source, the arrows
g and u have the same target, the source of u is equal to the target of h, and the source of ¢ is

equal to the target of v (i.e., they can correctly compose a tile). a

In the following we will write a generic rule » such that R(r) = (h, v, u, g) either as the tile

h
n——m
b=yl

(for appropriate natural numbers n, m, k and /) or as the sequent r : h%g. As an example,
it is now possible to define a pTRS for the system presented in the introduction using the wires
and boxes notation. In fact, let us consider a pTRS where Xy = {a : 0 — 1,9 : 1 — 1, h :

id
2—1,f:3— 1Ly ={s:1—1,t:2— 1}, and N = {rq,r}, with ry : a®ng>id1,
(71,1®@1d1);(id1 @1)

5

and ro : f h . Notice that a symmetry appears in the trigger of r». Now let

id
us suppose that an auxiliary tile o : 'ylylﬁidz is also introduced. Then, the three tiles can be
composed to obtain a new tile for rewriting the configuration (a ® id; ® ¢); f : 2 — 1 (intuitively
corresponding to f(a,z1,g(x2))), into h: 2 — 1 (i.e., h(z1, z2)) without triggers and yielding an

effect s : 1 — 1. The scheme of composition is the following:

L ] L ] L ] L ]
=]
1 o ——> o T2
]
L ] L ] L ] L ]

2.2.1 The Inference Rules for Process Tile Logic

At this point, it should be clear that rules in R can be interpreted as labelled sequents in an
adequate logic of tiles. Starting from a pTRS, it should be possible to derive all the tiles obtained
by (finite) application of some inference rules, in the same way as it happens for rewriting logic
and algebraic tile logic. In a certain sense, the inference rules define the free compositions of the
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basic tiles in R according to the three operations (parallel composition, horizontal composition,
and vertical composition) of tile systems. Moreover, some auxiliary tiles should be added in order
to allow for consistent reorderings of configurations and side-effects. In what follows, we will
denote by Sym (ranged over by s,s',s1,...) the subcategory of S(X) having exactly the possible
compositions (parallel and sequential) of identities and symmetries as arrows. It can be easily
noticed that, for any arrow s € Sym, the source and target of s coincide. Given n € IN, we denote
by Sym,, the subcategory Sym[n,n] of arrows from n to n in Sym. Since Sym does not depend
on the signature X, we assume that Sym is a subcategory of both S(Xg) and S(Zv).

Definition 2.20 [Process Tile Sequents] Let R = (Xg,Xy, N, R) be a pTRS. We say that R
entails the class S,(R) of flat process sequents obtained by a finite number of applications of the
following inference rules:
Basic Sequents

Generators and Identities:

r:h%gER(N) vin—keS(Zy) h:n—meS(Xy)
(gen) - (v-ref) - (h-ref) '
h=9 € Sp(R) id,—idy € Sp(R) h—">h €5,(R)

Auxiliary Sequents

Symmetries:
n €IN, s1,82,83, 84 € Symy,, s1;82 = s3;54

(swap) 2
517,752 € 5p(R)

Composition Rules
Parallel composition:

i

h=g € Sp(R), "7 g € Sp(R)

(par) —
hoh' ——==g@g €5(R)
Sequential compositions:
h=g € $,(R), W' 7g' € 5,(R) h=r0 € $(R), 470 € Sp(R)
(hor) - (vert) ,
hih' "7 gig' € Sp(R) h——>¢ € S,(R)

For any sequent h%g € Sp(R) we write R Fyp h%g, to be read as “R entails the (flat

process sequent) h%g” . a

The auxiliary inference rule (swap) extensively adds all the sequents needed for simulating any
interface re-arrangement. It is possible to obtain the same result starting from a reduced set of
auxiliary sequents and using the composition rules. As an example, we could replace rule (swap)
by two simpler rules:

n €IN, s € Sym, n €N, s € Sym,
(swap) - (swap’) —
$7iq,, 1dn € Sp(R) idy =5 € Sp(R)

In fact, let n € IN, and consider any s, s2, 83,54 € Sym,, such that s;1;sy = s3;s4. Since
idy, idy,
Sym,, C S(Zp), we can apply the rule (h-ref) to entail the sequents slﬁsl, 54%@4, and
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idy tdn

TS89 = 51;52E>53;54. Next, the two new rules (swap) and (swap’) yield respectively

51582 idn

$3
—
id

idy . . .
the sequents s3 - td, and idn:—2>52. Finally we can compose the entailed sequents via rules (hor)

and (vert) to let R entail the sequent s; z—z>54 (see the composition scheme in the picture below).

But it is possible to do much better: taking advantage of the compositional structure of Sym,
we can have the following finite characterization of basic auxiliary tiles, consisting of only two
auxiliary sequents:

(swap) 11 (swap’) s
i € Sy(R) idy 2, € 5,(R)

Another interesting result is that not only the horizontal swapping of effects (as the one in
algebraic tile logic) can be easily recovered, but also the vertical swapping of configurations is now
entailed, 1.e., the following proposition can be easily proved.

Proposition 2.21 Let R = (X, Xy, N, R) be a pTRS. Then, for any two effects v:n — k,u:
m — | € S(Zv), and for any two configurations h :n — m, g : k — 1 € S(Xpg), the sequents

Yrn,m % Vel and h®g % g @ h are both entailed by R.

We remark that the class of sequents S,(R) is flat, in the sense that we are not able to
distinguish how a certain sequent has been entailed.

2.2.2 Proof Terms for Process Tile Logic

A more concrete version of process tile logic can be defined if we decorate the sequents with proof
terms. Then, proof terms can be axiomatized in order to capture equivalent proofs according
to the intuitive double symmetric structure. However, the resulting equivalence classes make
fewer identifications than those induced by the flat version (where two sequents having the same
border are always identified). We remark that the resulting logic is the same as before (see
Proposition 2.23), the only difference is that proof terms are now made explicit.

Definition 2.22 [Process Tile Logic] Let R = (X5, Xy, N, R) be a pTRS. We say that R entails
the class P,(R) of decorated (process) sequents obtained by a finite number of applications of the
following inference rules:
Basic Proof Sequents

Generators and Identities:

r:h%gER(N) vin—keS(Zy) h:n—meS(Zy)
r:h——g € P,(R) 1, : id,——idy € P,(R) g %h € Py(R)

Auxiliary Proof Sequents
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Symmetries:

V1,1 . . id
o11: 711 Tldz € P,(R) oy ddy 7—1j>71’1 € P,(R)

Composition Rules
Parallel composition:

i

o h%g €P,(R), o : h’Tg’ € P,(R)

v®v'
a®a h®h’W>g®g’ € P,(R)

Sequential compositions:

i
v

o h%g € P,(R), 3 h’Tg’ € P,(R) o h%g € P,(R), 3: ng’ € P,(R)
axf:hih 77 g9 € By(R) o B h——=g €PyR)
For any sequent « : h%g € P,(R) we write R bk, «. a

With proof terms decorating the sequents of the logic, it is possible to use an algebraic notation
to subsume complex entailment in the logic. As an example, consider the following recursive
definition:

oor = lig,
Olr41l = ((0,171 ® 1id1) ¥ 1zd1®’h,k) SOk
Tngrk = ((Lig, @01 p)* 17+ 0) (0 4 © 1ig,)
It follows that for any n, m € IN, then oy, », :© Tn,m % tdmen € Pp (R). An analogous con-
idmen

idp@m
struction yields the sequents o7, ,, © idngm % Ynm € Pp(R), for any n, m € IN. Furthermore,

the swappings of configuration and effects can be easily constructed as follows:

o for any two effects v :n — k, u:m — [ € S(Xy) then
’ vRu
You = Onm Ly, logu Ot Tam ———=Tk1 € Pp(R);
o for any two configurations h:n —m, g : k — [ € S(Xg) then
Phg = Onp k170 5 19 w0l o h@ g —"= g @ h € Py(R).

We remark that, in general the cells 17== and 1., . are different.

Yo, m 1dngm
nm-——mQen nm-——nm
z’dn®ml 1V, m lidw@n + vn,ml T, m lvnm
nRXm-—-smQen mn——smgen
Yo, m 1dm@n

Proposition 2.23 Given a pTRS R, then R Fy, h%g < Ja: h%g € P,(R).
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2.2.3 Axiomatizing Process Tile Logic

The axiomatization we propose aims at the identification of intuitively equivalent tile computation
in process tile logic. As an example, all compositions of auxiliary tiles (and identities) yielding the
same flat sequent must be identified. Since the axiomatization is rather long we prefer to sketch
here the more interesting properties and to refer the reader to Appendix A for the complete list
of axioms.

Definition 2.24 [Abstract Process Tile Logic] Let R = (X, Xy, N, R) be a pTRS. We say that
R entails the class A,(R) of abstract process sequents, whose elements are equivalence classes of
proof terms in P,(R) modulo the set of axioms described below (see also Appendix A for the
complete list of axioms):

Associativity Axioms as in Def. 2.17.

Identity Axioms as in Def. 2.17.

Monoidality Axioms as in Def. 2.17.

Functoriality Axioms for identities and composition as in Def. 2.17.

Functoriality Axioms for derived operators v and p, stating that the swapping of two effects
(configurations) respects identities and sequential composition.

i

LN
/:h/v/

Naturality Axioms for derived operators v and p (for any sequents o : h%g, « g €

Bp(R)):

(@) % Yyu =Yoo ¥ (@' @ ) (@®@a')-pgg = pnp - (' @a)

Uniqueness Axioms stating that any two compositions of basic auxiliary sequents (o711 and
o1 ,1) and identity sequents of configuration and effects (1" and 1,) yielding the same flat sequent
are identified. In Appendix A 1t is shown that these axioms can be partitioned in two main
subclasses: naturality axioms for ¢ and ¢’, and coherence axioms for v, p, ¢, and ¢’. a

Abusing the notation, we will write R I, o to denote the entailment of the abstract process
sequent of & and not just the decorated sequent «.

2.3 Naive Term Tile Logic

In this section we aim at defining a tile format where configurations and side-effects are just (tuples
of) terms over two distinct signatures, and composition becomes just substitution. Since we want
to use a compact notation, to fix the correspondence on the vertices of the tiles, we should decorate
the arrows with assignments rather than with terms; as the following example illustrates.

Example 2.25 Suppose that the vertical signature consists of a binary operator _x _ representing
the product of natural numbers; and that the horizontal signature consists of a binary operator
_+ _ representing the sum of natural numbers. The cells below should both represent different
ways of computing (n + 1) x m, for a generic input pair (n, m), also preserving the input m, i.e.,
the result should be the pair {(n + 1) x m, m):

rz+1, ziz=z+lw:=
9 {(w+1,y) 9 (z, y)< + y) 9
(xxy,y)l A l(zxw,w) (z::xxy,w::y)l B l(@‘::zxw,y::w)
22— 2 - 9
{z4w,w) 2 (v:=24w,y:=w) 2

Tile A is ambiguous, because it does not give any information about the correspondence be-
tween the variables z and w and the terms over # and y. For instance, a horizontal-vertical com-
putation could compute {z x w,w)[x + 1/w,y/z] = {((x + 1) X y,y + 1), while a vertical-horizontal
computation could give {z + w, w)[z x y/w,y/z] = (y+ & x y, & x y), and the results would not
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match. However, the horizontal-vertical computation (z x w, w)[z + 1/z,y/w] = {((x + 1) x y,y}
and the vertical-horizontal computation {z + w, w)[x x y/z,y/w] = {(x X y + y, y) are compatible,
but only if we assume that the term sequences labelling the arrows are ordered. On the other
hand, tile B gives the correct correspondence by making explicit the substitutions, but it becomes
quite verbose. Moreover, in the latter case we should add «a-conversion, to match variable names
when composing the tiles. We prefer to introduce a more compact, easy to understand, standard
notation. Thus we impose a total order on the variable names, and assume a standard order
(i.e., from left to right) on term sequences decorating the arrows. Furthermore, since names do
not matter, we assume that for sequences of terms involving n (ordered) variables, a canonical
(ordered) set of names X, = {#; < -+ < x,} is used. In the previous example the canonical,
non-ambiguous tile is

(r14+1,22)
-

2 2
(r1XT2,22) l l T1XT2,T2)
2 2

_—
(e14w2,72)

O

As we have done for process tile logic, in what follows we will consider the simpler case of
one-sorted signatures. The extension to the many-sorted case should not present any particular
difficulty apart from a more complex notation.

Definition 2.26 [Term Tile Rewrite System] A term (tile) rewrite system (tTRS for short) R is

a quadruple (Xp, Xy, N, R), where Xy = Uz’e]N Yp; and Xy = Uz’e]N Ty, are signatures (each
Y _; containing the function symbols of arity 7), N is a set of (rule) names, and R is a function

R:N — U (T (Xo))™ X (T (X0)F X Ty (X)) x T, (X3)

n,m, k€N
where X; = {1, ..., 21} is a fixed (totally ordered by z; < z; iff i < j) set of variables. a
To shorten the notation we will write a generic rule r such that R(r) = (E,U,u,g) with

he Ts,(Xn)™, and 7 € Ts,, (X,,)* either as the tile

n m
k 1
{7)

or as the sequent r : n« (ﬁ) ———(g) , thus making explicit the number of variables in the

{u)
“north-western” corner of the tile (the values m and k can be easily recovered from the lengths of
the term vectors decorating the tile). Abusing the notation, we denote by A the empty vector of
terms over Tx,, (X,) and Tx, (X,) for each n € IN.

Rules in R can be interpreted as labelled sequents in a logic of tiles. Starting from a tTRS, it
should be possible to derive all the tiles obtained by (finite) application of some inference rules,
that define the free composition of the basic tiles in R according to the three operations (parallel
composition, horizontal composition, and vertical composition) of tile systems. Moreover some
auxiliary tiles should be added in order to allow for consistent reorderings, duplications, and
discharging of the variables, state components, and side-effects.

%

ﬁ
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Example 2.27 Consider the standard tile defined in Ex. 2.25, and suppose that one wants to
compute (n + 1) x n, which has only one argument (n = m). We do not want to redefine an
instantiation of our rule for that particular case, because this would undermine the modularity of
the specification. The simplest solution consists in allowing the user to duplicate its input. But
this must happen consistently in both the horizontal and vertical dimensions. This can be done
by introducing a simple rule 1< {z, 21) lei% (1, ®2) . Informally, both its initial configuration
T1,T2
and trigger (term vector {x1,#,)) duplicate a variable, and both its final configuration and effect
consider the resulting copies as distinct variables (term vector (z1,x2)). To obtain the expected

. . . . (z1Xw2,22) .
sequent we may then consider the horizontal identity 2< (x1, x2) < ) (1, x2) relative to the
T1XT2,T2
. . (xl ><x2,x2)
horizontal source (x1 x ©9, £2) of the basic sequent 2« {#, 4+ 1, 22) <X—>) (z1 4+ 22, 22) . Wecan
L1 XT2,T2
. - .. (z1x@1,21)
now vertically compose the two auxiliary sequents, thus obtaining 1< {1, 1) < ) (21, 22)
T1XT2,T2

which may be horizontally composed with the original sequent. The result i1s the desired sequent

(r1Xz1,21)

1« <l‘1—|—1,l‘1> <l‘1—|—l‘2,l‘2> . (]

(r1Xz2,22)
2.3.1 The Inference Rules for Term Tile Logic

Definition 2.28 [Term Tile Sequents] Let R = (X g, Xy, N, R) be a tTRS. We say that R entails
the class Sy (R) of flat term sequents obtained by a finite number of applications of the following
deduction rules.

Basic Sequents

Generators:
rind (ﬁ)%(g) € R(N)
(gen) {7)
nd (ﬁ) ™ (g9) € S (R)
Identities:
7€ (Ts, (Xn))F h e (Ts, (Xn))™
(v-ref) (<_) () (h-ref) < ( )( )
nd {(x1,..., ) # (T1,...,2k) € Si(R) n< (]_i) % (l_i) € Si(R)
Auxiliary Sequents
Symmetries:
(swap) < ) (swap’) < \
2.4 <x2,xl>%<xl,x2> € S(R) 2.4 (xl,xz)%(xz,xl) € S (R)
Duplicators:
(dup) P (dup’) o
1« <l‘1,l‘1> ﬁ <l‘1,l‘2> S St(R) 14 <l‘1> ﬁ <l‘1,l‘1> € St(R)
Dischargers:
(dis) 0 (dis’) o
A Ty
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Composition Rules
Parallel composition:

na (B) —o= (7) € SUR), ' < (i) —=im () € Si(R)

{u’)

(par)

. , CRU TS L ,
(n+n') @ (b, W [wign/wi]lo)) — — (7, ¢'[vign/xill=,) € St (R)

(u,u"[l‘z+m/l't]:n:1)

U/

h h

Sequential compositions:

(where =m, |0 =k, =m', and

= k')

na () :; (@) € Su(R), ma () —><“f,)) () € SiR), [F =m, 1l =k
(hor) e
na (W [hs/edi) = oo (9 /i) € Si(R)
N I R €710 B o "
(vert) -
n < <]_7:> (v’[v,/x,]le) <—;> c S (R)

m t
@Wlaifedie)

where the notation §[t;/2;]7_, denotes the simultaneous substitution of the variables zq,..., z,

with the corresponding terms ¢1,...,¢, in all the terms of the tuple §. For any sequent n <

<]_i> %) (7) € S¢(R) we write R Fp n < (ﬁ) % (§) , to be read as “R entails the (flat)
sequent n < (ﬁ) L (7. a
(@)

We briefly comment on the above inference rules, showing also some examples of deduction in
the style of Ex. 2.27. The first rule (gen) says that R entails all the flat versions (i.e., without the
label) of the rules in R(N). Rules (v-ref) and (h-ref) define idle vertical and horizontal components
of the system, respectively (we could have used a more finitary approach by defining (v-ref) and
(h-ref) only for the operators of the signatures and deriving the sequents for generic terms by
composing the “basic” auxiliary sequents).

Then, some auxiliary tiles are added “for free”. They are necessary to guarantee the complete-
ness of S(R) w.r.t. all the permutations, tuplings and projections of configurations and effects,
and are independent from the particular tTRS. We can divide the auxiliary rules in three sub-
classes: symmetries, duplicators, and dischargers. Rules (swap) and (swap’) define basic consistent
swappings of adjacent variables according to the fact that a swapping in one dimension shall be
simulated in the other dimension via an analogous swapping. The term-tile framework allows using
a term-like notation instead of symmetries y as in Section 2.2, but the rules (swap) and (swap’)

. , . . id
define exactly the same basic sequents 71,1 % idy € Sp(R), and idy % 71,1 € Sp(R) of
ido s

process tile logic. Analogously to process tile logic, more complex swappings can be entailed by
R. As an example, for any n, m € IN, the sequent

(xn+1,~~~717n+m,x17~~~yfn) <

(N4 m) < (Tng1y ey Tngmy L1y ooy Tn) L1y ooy Tngm)

(1, Tngm)

(swapping the first n variables of the interface with the successive m variables), is in S;(R).
Also the swapping of either side-effects or configurations can be handled as in process tile logic.
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As an example, this means that, for any two effects v € Ty, (X,), and u € Tx, (X,,) then the
sequent

(vulenti/z]i2,)

(w,u[emyi/e:]io,)

(n4+m) D (Tng1, oy Trgmy L1y ooy Tn) (za, 21)

is in S;(R).

The second class of auxiliary rules contains the rules for “making consistent copies”. Rules
(dup) and (dup’) duplicate a variable of the interface in both horizontal and vertical dimension.
A particular application of rule (dup) has been shown in Ex. 2.27. Using the notation of algebraic
theories, rules (dup) and (dup’) should be rewritten as

Vi idy
vlmidz € St(R) idlv_1>V1 € St(R)

For instance, suitably composing the basic auxiliary tiles for duplication and swapping, together
with identities, we can conclude that for any n € IN the tTRS R entails the sequent

(1, Cn,T1..,T0)

N {Ty,...,Tn, L1 ..., Tn) (T1,...,Tan)

(1,..,T2n)

duplicating n variables. Moreover, S;(R) contains also the sequents for the duplication of
any effect and any configuration. As an example, we illustrate this result for a generic configu-

ration h € Ty, (X,). From rule (h-ref) we get the sequent n < (h) <x1<’m’)xn) (h} , which can
be horizontally composed with the basic sequent of (dup’) to obtain n < (k) <x<1w’x)n) (h,h) .

Similarly, we can (horizontally) compose the basic sequent of rule (swap) together with the
parallel composition of the identity sequents for h (with itself). The resulting sequent is n «

(h, h) (xl,...,(xn,xl;...,xn) (h, h[z;4n/2;:)7=1) . The two results can now be vertically composed, yield-
ing the sequent n < (h) <x1’m’<xn’xl;wxn) (h, hlipn/ 20 y)

Example 2.29 Consider a vertical signature with a unary operator v(.). A similar construc-
{v(z1))

oy @) . By verti-

tion to the one illustrated above yields the sequent 1 < (@1, ;)

cal composition with the basic sequent 1 < (21, %1) ixli% (z1,22) we derive also the sequent
T1,%2

{v(z1),v(z1))
{v(z1),v(z2))
whenever the same effects are required for two distinct components, the system can match the
condition with just one component being able to produce the same effect twice. a

1a (x1,21) (z1,22) . Making a backward interpretation, this sequent states that,

The last class of auxiliary rules introduce dischargers. Rules (dis) and (dis’) consistently
discharge variables in both dimensions. Analogously to symmetries and duplicators, they can be
composed to get more complex rules for projecting a configuration, etc.

The composition rules define a general scheme for combining sequents which are “already”
entailed in order to get new ones. The parallel composition defined by the rule (par) is a to-
tal operation. It describes how to put in parallel any two sequents. Intuitively, they are put
side by side, the variables of the “second” sequent being renamed with standard fresh variables
(they are dependent upon the variables used in the “first” sequent). For instance, if we put
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(z1)

in parallel the elementary idle sequent 2 @ (#1) ———= (#1) with itself, we obtain the sequent

(=1
<l‘1,l‘2) . . .y . .
24 (x1,22) ﬁ) (1, ®2) . Horizontal sequential composition, described by the rule (hor), is
T1,%2

partial. It applies exclusively if the side-effects produced by the first sequent correspond exactly
(for instance, no arbitrary renamings of the variables are allowed) to the triggers required by the
second sequent. The horizontal composition of two composable sequents yields the sequent ob-
tained by taking the same trigger of the first sequent, the same side-effects of the second sequent
and consistently substituting the variables involved in the components of the second sequents with
the corresponding components of the first sequent. Similarly for the vertical composition. These
operations have been extensively used in the previous examples.

2.3.2 Proof Terms for Term Tile Logic

As for S,(R), the resulting class of sequents S;(R) is flat. We provide a more concrete inference
system by decorating the entailed sequents with proof terms. Then proof terms can be axiomatized
in order to capture equivalent proofs according to the intuitive cartesian structure. However, the
resulting equivalence classes make fewer identifications than those induced by the flat version
(where two sequents having the same border are always identified). We remark that the resulting
logic is the same as before (see Proposition 2.31).

Definition 2.30 [Term Tile Logic] Let R = (Xg, Xy, N, R) be a tTRS. We say that R entails the
class Pi(R) of decorated term sequents obtained by a finite number of applications of the following
inference rules:

Basic Proof Sequents

rind (]_i) %)> (9) € P(R)
V€ (T (Xn)" h € (Ts, (Xn))"
1y :na (xl,...,xn)%(xl,...,xk) € P(R) 1" naq (ﬁ)%(ﬁ) € P(R)

Auxiliary Proof Sequents

Symmetries:
o1,1 124 {z2, 21) % (z1,22) € P(R) 0’171 224 {wy, 22) % (za,21) € P(R)
Duplicators:
T 1« <l‘1,l‘1> % <l‘1,l‘2> S Pt(R) T - 14 <l‘1> % <l‘1,l‘1> € Pt(R)
Dischargers:
) (A} ) (1)
brila ()~ () €R(R)  ila fon) S () € P(R)
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Composition Rules
Parallel composition:

{(v") "

a:nd (ﬁ) % (§) € P(R), o' :n'« (l;’) T> (¢) € P(R)
/ I N Gk AT e ) B p
a@a (ntn') 9 (h W o, /v]i,) TR (7, 9'[zirn/zi)i=1) € P(R)
@ [igm ()i
(where h =m, |0 =k, % =m', and v/ =k

Sequential compositions:

aina (i) = (7)€ PR), o ima (1) —=—> () € P(R), ‘ﬁ‘:m, @] = k

1
<
1

Wy . ,
———(¢') € B(R), [V]| =k, |d|=1

<U‘I[Uz/xl]lz€:1) "

. € P(R
Gragedy W) ERR)

For any sequent & : n < (ﬁ) o, (§) € Pi(R) we say that R entails «, written either R F; « or
more verbosely, R ¢ v : n < (ﬁ) % (q) . a

The inference rules are the same as those in Def. 2.28 (flat version). The only difference is that
now each sequent is decorated with a proof term uniquely describing the deduction process which
led to that particular sequent.

Proposition 2.31 Given ¢ {TRS R, then

Rbpna () % (§) <> 3a:na () % (@) € P(R).
Proof terms allow the algebraic definition of some interesting classes of sequents. For instance
Tnom, Ugym, Yuu, and pp 4 can be defined exactly as in process tile logic (see page 24). Similarly,
the sequents

(1, Cn,T1...,85)

T i< (L1, ..., &n, L1 .., &) < ) (T1,...,Tap)
and
] (1,..,2n)
Tn 0 {(T1,..., %) < ) (T1, . Tn, @1 ..., 2p)
for the duplication of interfaces can be defined as follows:
T = lig,
Tntt = (M @ 1) * (Lid, 0y,10id,)) - (Lid, @ 0,1 @ lig,)
T = L,
Tot1 = (mmomn)+*(lv,gv,)) (Lig, @ 0n1 @ Lig,)
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Furthermore, the sequents for duplicating configurations and effects can be constructed through
the following expressions:

e for any effect v € (TEV(XH))’“, then

(7)

emgafe Bl (02 Tl 2]

Vo= g 7)) *(mnlgga) :na (X1, ..., Tn, X1, ..., Tn)

e for any configuration he (Ts, (X,))™, then

by = (1h * T )+ (7, - 1E®E) ‘nd (7{)

(1, Cn,&1,..,T0)

(l_i, /_i[xm.z/l‘z]?:l)

(€1, T m,T1, ., T )

Dischargers also admit a similar generalization, yielding the sequents:

¢”:nq<’\>%><’\> ¢n3n4<$1,...,xn)%@)
!5:(19.%)*%:“@)%@) b= (155G - i (R Zii o

where

b0 = lyg,
Pnt1 = Pn @1

Yo = lig,
Yoyl = Yo @Y1

2.3.3 Axiomatizing Term Tile Logic

The class P;(R) turns out to be too concrete, in the sense that sequents that intuitively should
represent the same rewriting may have different representations.

The following axiomatization identifies intuitively equivalent tile computations in term tile
logic. As in the case of process tile logic, all the compositions of auxiliary tiles (and identities)
yielding the same flat sequents are identified. However, the list of axioms is quite long, so that we
prefer to give a briefer and informal description of the more interesting properties. We refer the
interested reader to Appendix B for the complete axiomatization.

Definition 2.32 [Abstract Term Tile Logic] Let R = (X5, Xy, N, R) be a tTRS. We say that R
entails the class A¢(R) of abstract term sequents, whose elements are equivalence classes of proof
terms in P;(R) modulo the set of axioms described below (see also Appendix B for the complete
list of axioms):

Associativity Axioms as in Def. 2.17.

Identity Axioms as in Def. 2.17.

Monoidality Axioms as in Def. 2.17.

Functoriality Axioms for identities and composition as in Def. 2.17.

Functoriality Axioms for derived operators v and p, stating that the swapping of two effects
(configurations) respects identities and sequential composition.

Functoriality Axioms for derived operators V and 6, stating that the duplication of effects
(configurations) respects identities and sequential composition.

Functoriality Axioms for derived operators! and {, stating that the discharging of effects (con-
figurations) respects identities and sequential composition.
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i

U
Naturality Axioms for derived operators v and p (for any sequents o : h%g, o h’Tg’ €
Fi(R)):
(@@ Q) # Yy = Yo (¢ @ ) (@) py g =pap (o ©a)

Naturality Axioms for derived operators V and é (for any sequents o : h%g € P(R)):
a*vuzvv*(a®a) Oz~(5g:6h~(oz®oz)
Naturality Axioms for derived operators ! and 1 (for any sequents « : h%g € P(R)):

akly, =1, a-fg="1s

Uniqueness Axioms, stating that any two compositions of basic auxiliary sequents (o1 1, 0’171,
71, 71, ¢1 and ;) and identity sequents of configuration and effects (1% and 1,) yielding the same
flat sequent are 1dentified. In Appendix B it is shown that these axioms can be partitioned in two
main subclasses: naturality axioms, and coherence axioms. a

Abusing the notation, we will write R F; « to denote the entailment of the abstract term
sequent of & and not just the decorated sequent «.

The comparison with rewriting logic suggested us to look at cartesian double categories as the
basis on which to interpret the algebraic structures of the models. Unfortunately, the notion of
cartesian double categories is not present (at least to our knowledge) in the literature. Thus, an
exploration of the subject has been necessary as part of this research. If we assume the existence
of a double category Lp(R) with chosen double products, where the objects are natural numbers,
the horizontal (vertical) arrows are the terms over the horizontal (vertical) signature and the cells
are (equivalence classes of) proof terms, then a very general notion of term tile model could be
given in terms of double-product-preserving double functor from Lp(R) to a generic cartesian
double category. Keeping this concept in mind, we will explore a suitable definition of cartesian
double categories with chosen products (Section 3) and its relationship to cartesian 2-categories
(Section 4). After that we will eventually show how it is possible to derive the double category
Lp(R) via a free construction (Def. 5.8).
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3 Double Categories

As far as we know, all previous attempts — based on internal constructions — for the definition of
symmetric, and, more generally, of cartesian double categories have led to an asymmetric model,
where the cartesian structure is fully exploited only in one dimension. We believe that this should
not be the case, both conceptually and for the kind of applications to models of concurrency
that we are developing; therefore, in this section, we propose a broader notion of symmetric and
cartesian double category that behaves the same in the horizontal and vertical dimension and fits
very well our concurrency applications.

For the 1-dimensional case there is a suitable equational characterization of cartesian categories
(with chosen products) in terms of monoidal categories equipped with three natural transforma-
tions, called symmetry, duplicator and discharger. In the same way, we look for corresponding
notions in the double case.

The first problem is that the internal definition of natural transformation could be misleading:
since double categories have two different notions of sequential composition, it is not clear which
of them to use for a general notion of double natural transformation.

Ehresmann [25] proposed another way of expressing natural transformations in terms of func-
tors toward higher fold categories. The key point is that a natural transformation is in some sense
a functorial collection of commuting squares in the target category, also called quartets. This
notion can be generalized to n-fold categories by constructing the 2n-fold category of quartets of
quartets... (n times) in all the different n dimensions. Once a notion of multiple functor between
categories of different folds has been given, then the notion of hypertransformation arises natu-
rally as a multiple functor between the source n-fold category and the 2n-fold category which is
generated by the target n-fold category. This means that a hypertransformation between n-fold
categories is defined upon 2" n-fold functors.

Since double categories are 2-fold categories, this means that we need to define the 4-fold cat-
egory of horizontal quartets of vertical quartets, and that the hypertransformations are defined
upon 2?2 = 4 double functors. This yields a definition of transformations which act in both dimen-
sions, asserting the correctness of the two ways of transforming the structure (first horizontally
and then vertically, or vice versa). However, we propose the equivalent definition of generalized
natural transformation as a more concrete rephrasing of the hyper-approach for the 2-fold case.
A generalized transformation involves four double functors, two “horizontal” transformations and
two “vertical” transformations.

We can then instantiate this notion of generalized transformation to deal with symmetries,
duplicators, and dischargers. This study involves the complete case analysis of the possible com-
binations. As an interesting result, we find out that each transformation generates two different
notions. However, the two possible generalized symmetries are shown to be equivalent (the reason
is that symmetries are isomorphisms).

The axiomatization of the basic components of the generalized transformations in order to
state their “coherence” (in the sense that all the horizontal, vertical and parallel composition of
the basic components and possibly some identity cells, yielding cells with the same border, must
be identified) is a more subtle problem. The solution that we propose relies on the characterization
of diagonal categories. We start by considering two particular subclasses of cells, having either
both sources or both targets equal to identities. Then, in addition to the horizontal and vertical
compositions, we define two diagonal compositions (one for each subclass) between cells A and B
such that the “upper-left” vertex of B is equal to the “lower-right” vertex of A. These operations
can always be defined in a double category, and allow expressing the coherence axioms of our
generalized transformations as the intuitive rephrasing of the well-known Kelly-MacLane coherence
axioms.

Hopefully this work could provide suitable notions of symmetric monoidal and cartesian double
categories. Our main motivation is that their explicit axiomatizations can be used to enrich the
expressive power of models based on rewrite rules with side effects and rewriting synchronization
such as the tile model [32, 35]. Although in Section 2 we equipped the tile model with a purely
logical presentation, where the tiles are just considered as special sequents subject to certain
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inference rules, tile systems can be more generally seen as monoidal double categories where
the tiles are just cells, the configurations are arrows of the 1-horizontal category, and the side-
effects are arrows of the vertical 1-category, objects being just variables which are used to connect
the somehow syntactic horizontal category with the dynamic vertical evolution. Moreover, the
axiomatization of symmetric monoidal and cartesian double categories that we propose allows the
definition of more significative models than the flat ones. Actually such models could take into
account the structure of the proof.

In Section 3.1 we give some preliminary definitions regarding double categories, and in Sec-
tions 3.2 and 3.3 we introduce the concepts of generalized inverse of a cell and of diagonal categories.
Section 3.4 formalizes and explains the notion of generalized transformation, which 1s essential in
the rest of the paper. In Sections 3.5 and 3.6 we incrementally enrich the basic monoidal structure
of cells, first with generalized symmetries and then with generalized dischargers and generalized
duplicators, also presenting their complete axiomatization.

3.1 Notation

A double category is an internal category in Cat. Due to the specific structure of Cat, double
categories admit the following naive presentation (adapted from [41]).

Definition 3.1 [Double Category] A double category D consists of a collection a, b, ¢, ... of objects
(also called 0-cells), a collection h, g, f,... of horizontal arrows (also called horizontal 1-cells), a
collection v, u, w, ... of wertical arrows (also called wvertical I1-cells) and a collection A4, B, C, ... of
double cells (also called cells). Objects and horizontal arrows form the horizontal 1-category M,
with identity id® for each object a, and composition _* _.

h g hxg id®
a——ph x b c = a c a—a

Objects and vertical arrows form also a category, the vertical 1-category V, with identity id, for
each object a, and composition _- _. To shorten the notation, and because, when we consider
lower-dimensional objects to be included in higher dimensional ones the notions indeed coincide,
sometimes we will refer to both id® and id, either with the object name a or with ¢d,.

a
b a a
= lvu lida
b c a
C

Cells are assigned horizontal source and target (which are vertical 1-cells, i.e. arrows in the vertical
1-category) and wvertical source and target (which are horizontal 1-cells, i.e. arrows in the horizontal
1-category); furthermore sources and targets must be compatible, in the sense that, given a cell A,
if i 1s the vertical source, ¢ is the vertical target, v is the horizontal source, and u is the horizontal
target, then & and v have the same source object, ¢ and u have the same target object, the target
of h is equal to the source of u, and the target of v is equal to the source of g. Graphically these
constraints can be represented by the diagram:

b

lu

d

v

O=-2=70

h
—_—
A
—_—
g
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To shorten the notation we simply write A : h%g. In addition, cells can be composed both
horizontally (-* _) and vertically (--_) as follows: given B : f%k, and C' : g%h’, then Ax B :

(h* f)%(g xk),and A-C: h%h’ are cells. Both compositions can be pictured by the following
pastings of diagrams:

h
a—-> )
R f hx f h
a4 —>ph——q a——=q’ v A u a——)
vl A i{; B lw = vl AxB lw c—yg—>d = v~zl A.C lus
c——>d——> ¢ c—— ¢ z C s a ——=
g % gk X
a’—,>b’
h

Moreover, given a fourth cell D : k%}f’ the exchange law holds:

(A-C)+«(B-D)=(AxB)-(CxD)

O <«<— O

—_—
A
—_—

O <«<— O

Sk

O=<=—0O0=<—20

—
A

—
C

—

O <«—0O0<«<—20
*
O <«—0O0<«<—20

—
B

—
D

—

0=—0=—0
Il

|

Under these rules, cells form both a horizontal category D* and a vertical category D', with

O <«<— O

—_—
C
—_—

Sl

a a b
identities 1, : a%c and 17 : h™,"h, respectively. Given 1" h™"h and 19 : g——g, the equation

1% % 19 = 179 must hold (and similarly for vertical composition of horizontal identities).

a
a——a
h g hxg a
a——h——>c a —>¢ v 1, v a——a
a\j 1k i 19 ¢ = al 1h*g lc b—bv—b = v~ul ly.w lvu
@ ——ph——>c @ ———=C U 1y u C——>C
h g hxg ¢
C—c>c

Furthermore, horizontal and vertical identities of identities coincide, i.e. 1;5, = 1??" and are simply
denoted by 1,. a

A double category D has two possible interpretations as an internal category in Cat. That is,
due to the symmetric role played by the horizontal and vertical dimensions of a double category,
it 1s possible to adopt a transposed approach in the internal construction:

1. As the internal category (V, D, s*,t*,_ _i*), where® the functors s* and ¢* map each
arrow onto its corresponding horizontal source and target respectively, functor _* _ defines
horizontal composition of cells, and functor ¢* maps each (vertical) arrow of V onto its

5Remember that category V has objects in O and arrows in V equipped with composition _ - _, and that the
objects of category D' are horizontal arrows, while its morphisms are cells equipped with vertical composition _- _.
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orizonta 1dentl cell. 1S corresponds 1o picture a generic ce . — O " as
horizontal) identity cell. Thi ponds to pict generic cell A : h — g of D

below
(inD) & s*(h) —>1*(h) (in D)
A s*(A)é A ét*(A)
Y Y
g s*(9) ——=1"(9)
2. As the internal category (H,D*,s',t',_- _, i) where the functors s and ¢ map each arrow
of D* to its corresponding horizontal source and target, the functor _- _ defines vertical

composition of cells according to the source and target projections s and ', and i (k) = 1%
for each horizontal arrow h € H.

Given two double categories D and &, a double functor F : D — & is a 4-tuple of functions®

mapping objects to objects, horizontal and vertical arrows to horizontal and vertical arrows, and
cells to cells, preserving identities and compositions of all kinds. We denote by DCat the category
of double categories and double functors.

3.2 Inverse

Since double categories have two operators of composition, the definition of the inverse of a cell is
not straightforward. We propose the following:

Definition 3.2 [Generalized Inverse] Let A : h%g be a cell in a double category D. We say that
cell A has a #-inverse iff there exists a cell A* such that 4+ A* = 1,, and A* * A =1, (i.e., A* is
the inverse of A w.r.t. the horizontal composition *, and this implies the existence of the inverses
of the horizontal arrows on the border of A). Similarly, the -inverse A", if it exists, satisfies the
equations A- A = 1" A" - A = 19 (this implies the existence of the inverses of the vertical arrows
on the border of A).

Then, A has a generalized inverse iff A has both a *-inverse and a --inverse, and there exists

a cell A=! such that”, A=t . A* = 197, A*. A~L = 177} (i.e., A7! is the -inverse of A*),

A7 % A =1,-1,and A * A7 = 1,1 (i.e,, A71 is also the x-inverse of A4°). a
a—h>b bh—_1>a
vl A lu Ul A* lv
c—g>d d—_1>c
g
c—g>d d—>g_1 c
v_ll A lu_l u—ll A-1 lv—l
a—h>b b——a
p-t

For instance, it follows that (A - A") x (A* - A7Y) = (A * A*) - (A x A~1) = 1,, and that
(A_l)_l = A.

6Since a double category is a cat-object in Cat, a double functor can be equivalently defined as a pair (Fo, F1)
of functors satisfying the conditions of internal functoriality. The two notions coincide, because each functor in
(Fo, F1) is a pair of mappings on objects and arrows preserving the category structure.

"This definition can be summarized by saying that the s-inverse of the --inverse (A7)
inverse of the x-inverse (A*)" of A and it is denoted by A~?.

*

of cell A is equal to the
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3.3 Diagonal Categories

Sometimes, due to the particular kind of cells involved, it is possible to adopt a more concise
and convenient notation. This fact follows by observing that for any double category, it is always
possible to characterize two suitable diagonal subcategories.

In fact, those cells having identities as both horizontal and vertical target are the arrows of a
diagonal category whose composition _< _is defined uniquely as pictured below.

a$——ph——>c
h g
a—-} b ——c l A l 19 l
vj A lb 4 ul B lc:b—>b—>c:(A*19)~(1u*B)
b—b>b c—c>c l 1y l B l
c——>Cc——>c¢

In a similar way, we could also define a diagonal composition _>_ for those cells having identities
as both horizontal and vertical source:

b =(Ax1,) (1"%B)

o
QeE—-a

a
R ——
A
E——
h

THEe—— R
@
v

b
c

N

b
R ——
B
e
g

NE—— Q=—Q
l Hp‘ l b l
e N E—Q

S

3.4 Transformations between Double Functors

Let F;G : D — & be two double functors. Following the internal construction approach, an
internal natural transformation is an arrow in Cat which verifies the naturality conditions w.r.t.
one composition and which is functorial w.r.t. the other composition. Thus, it is essential to
specify what the internal representations of D and & are.

In [25] the notion of hyperiransformation is proposed as the generalization of natural trans-
formations to the n-fold case. We propose the following definition of generalized natural trans-
formation as a more concrete rephrasing of the hyper-view® for double categories. As a matter
of notation, we call natural comp-transformation a transformation which satisfies the naturality
requirement w.r.t. the composition operator comp and which is functorial w.r.t. the remaining
composition operator. A generalized natural transformation is the key to expressing relationships
between natural *-transformations and --transformations (which are the two possible notions of
internal transformations suggested by the internal category viewpoint).

Definition 3.3 [Generalized Natural Transformation] Let D and £ be double categories. Given
a 4-tuple (Fog, F1o, Fo1, F11) of double functors from D to &, a generalized natural transformation
is a b-tuple (eo_, @1_; B0, B_1; 1) which is pictured as the cell

Qo_
Fog — Foy

al n o

Fro——Fu

where:

8In the original approach, emphasis was given to showing that the category MCat of multiple functors is
cartesian closed.
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e for ¢ = 0,1, the symbol «;_ denotes a natural *-transformation from Fjy to Fjq, i.e., o;_ is
also a functor from the category V of vertical arrows (that is, the objects of D*) of D to the
category &,

e for i = 0,1, the symbol 3_; denotes a natural --transformation from Fy; to Fy; i.e., B_; defines
also a functor from the category H of horizontal arrows (that is, the objects of D) of D to
the category £*, and

o the symbol 5 defines both a natural transformation from ag_ to a_ (seen as functors from
V to £) and also from Sy to 51 (seen as functors from H to £*).
Od

To shorten the notation, we will denote the generalized transformation just by 7, using a figure
to represents also its components.

We now explain more in detail the previous definition. First, consider the double functors
Foo, For : D — &. A natural x-transformation og_ @ Foo = Fpy : D — £ is a functor (i.e.
an arrow in Cat) from the category V of objects of D* to £, which satisfies the equations of
internal natural transformations. Thus, the functor «q_ is a natural transformation from Fyy to
Fo1 w.r.t. horizontal composition, i.e., for each cell A of D we have the naturality law FogA*ao_y =
Qo_y * FolA.

A Fooh do_b Xo_,a Forh
a——-}) Fooa Foob Folb Fooa F01a Folb
vl A lu Fggvl FooA FD|Du Ao_,u lFDlu = Fggvl Ao, v FD\LIU Fo1 A lFDlu

C ——
g d FQQC Foog Food do_a F01d FooC e FOlc Forg Fold

It also follows that, for each horizontal arrow A : @ — b in D, then Fyoh*ao_p = ag_a* Fo1h, e.g.,
the object component of functor «_ defines a natural transformation between the components of
Fyo and Fyp on the horizontal 1-category.

Consider two more double functors Fig, F11 : D — & and a natural x-transformation oq_ :
g = Fy1 : D — & between them. Then, «;_ also defines a functor from V to & and satisfies
the naturality equation w.r.t. horizontal composition. Notice that the functors ag_ and «;_ have
the same source and target categories. The generalized natural transformation 7 acts as a natural
transformation 7 : ag_ = a;1_:V — & between them. Thus, the transformation 7 associates to
each object a of V (i.e., an object of D) an arrow 5, of £ (i.e., a cell of £) in such a way that the
equation ag_y - 1. = 7 - @1_y holds for each arrow v : @ — cin V.

Xo_,a Qo_,a
Fooa—>F01a Fooa—>F01a
a Fggvl QAo_, v lFDlv s*(na)l Na lt*(na)
Ul Fooge 2o Iy1c = Fioa 21 Flqa
c s*(nc)l e lt*(nc) Flgvl a1_y lFuv
Floc—>Fnc Floc—>Fllc
A1_c QA1_,c

This implies that Fupv - s*(n:) = $*(a) - Frov, and Forv -t*(n:) = t*(na) - P11, 1.e., s*(n) (respec-
tively, t*(n)) is a natural transformation between the (projections on the vertical 1-category of)
functors Fyo and Fig (Foy and Fpq, respectively).

A similar reasoning can be applied to the orthogonal representations of D and &, defining two
natural -transformations G ¢ : Foo = Fig : D — & and 31 : Fyp1 = Fy1 : D — & which are
functors from the category H of objects of D' to £ satisfying Fpod - B0,y = Bop - FioA (see
picture below), and Fp1A- 81 4= 81,5 - F11A4 for each cell A of D.
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Fooh Fooh
Fooa%Foob Fooa%Foob

a—"sy Fuuvl FooA lFouu ﬁ_u,al Bon lﬁ_u,b

vj A lu Fyge —Foog= Fpod = Fipa -Fiol= Figb

¢c——>d ﬁ_u)cl Bo,s lﬁ_o,d Fluvl FioA lFlDu
FlOCTDg)Fmd FlOCTDg)Flod

The generalized transformation 5 also defines a natural transformation from G_g to #_;. Thus, for
each arrow h : a — b of H we get:

Fooa fool Foob = o) Fod Fooa = () Foia fonl Fod
a—"sy ﬁ_u,al Bon ﬁ%,b 7 lﬁ_l,b = ﬁ_u,al Na ﬁ.},a Bin lﬁ_l,b
Fioa i Fiob P Fiib Fioa P Iia ) Fi1b

It follows that, for each object @ € O, the shape of the cell 5, is

Qo_;a
Fooa —— F01a

ﬁ_D,al Na lﬁ_l,a

Floa ﬁal Flla
_a

As an example, it follows directly from the definition that, given a cell A, all the cell pastings
on the right of the picture yield identical results.

e
el =]
o ]
el

h . . .

@
e
b
e .
I~
1l
1l

b
N
el ]
o e

All the naturality equations are faithfully represented by the commuting hypercube pictured
below (to ease the interpretation, we draw vertical arrows as dotted lines):
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PN 5 e L N
5 5 5 5 e 5 5
V A FDDA VFIDA vFuA FDIA
AN ol Ny Ny

The hypercube contains 16 vertices, 24 faces, and 8 cubes. Each vertex is the image of one of the
four corner objects of cell A through one of the four functors under consideration. There are eight
empty faces whose border involves either only vertical or only horizontal arrows. All the other
16 faces are cells of the double category £. Four cells are the image of A w.r.t. the four different
functors (see figure). Four cells are the components at h and g of the natural *-transformations ag_
and «q_. Four cells are the components at v and u of the natural --transformations 3_g and 5_;. The
remaining four cells are the components at the objects of the generalized natural transformation
1. FEach cube has two empty faces. The other four faces commute, in the sense that they give a
naturality equation. It follows that the hypercube yields eight equations for each cell A. However,
the naturalities of 7 are both replicated for the two components of each transformation, therefore,
there are six distinct equations. The functoriality axioms are given by composing the hypercubes,
either one below the other or one in front of the other.

Remark 3.4 The notion of generalized transformation generalizes *- and --transformations. In-
deed, a *-transformation o : F' = G : D — & yields a corresponding generalized transformation
1%, Similarly, a -transformation 3 : F* = H : D — & yields a corresponding generalized
transformation 1g:

o 1
F—>( F—"sF
1Fl 1% llG ﬁl 1g lﬁ
F— H——H
o 1

Remark 3.5 % and --transformations are instances of a more general pattern. Notice that, if
we restrict ourselves to only two generic double functors F' and G, then the allowed generalized
natural transformations where the four double functors are chosen from the set { F, G} have 2* = 16
possible shapes. Only six of them do not involve transformations from G to F:

r—r Pr—r r—r F—d F—d G—(
O T S UL S SN R LN RO
r——Fr F—d G—=CG FF—d G—=( G—=(

3.5 Symmetric Monoidal Double Categories

As a matter of notation, in what follows we favour the horizontal dimension, by using the common
symbols associate to ordinary symmetries, duplicators and dischargers to denote *-transformations
rather than --transformations.

Definition 3.6 [(Strict) Monoidal Double Category] A (strict) monoidal double category, sMD in
the following, is a triple (D, ®, €), where:
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e D is the underlying double category,
e ®:D x D — D is a double functor called the tensor product, and

e ¢ is an object of D called the unit object,

such that the following diagrams commute:

DxDxDZDxD L N L B
1><®l ®
1 1
DxD——>D D

where double functor 1 : D — D is the identity on D, the double functor e : D — D (with some
abuse of the notation) is the constant double functor which associates the object e and identities
on e respectively to each object and each morphism/cell of D, and {_,_) denotes the pairing of
double functors induced by the cartesian product of double categories. These equations state that
the tensor product _® _is associative on both objects, arrows and cells, and that e 1s the unit for
_® .

A monoidal double functor is a double functor which preserves tensor product and unit ob-
ject. We denote by sMDCat the category of monoidal double categories and monoidal double
functors. ad

Let X : D xD — D x D be the double functor which swaps the arguments, i.e., such that for
each A, B € D, X(A, B) = (B, A). In the 1-dimensional case, a symmetry is a natural isomorphism
between the tensor product _; ® _» (the functor ®) and the swapped tensor product -2 ® 4 (the
functor ® o X) which verifies some additional coherence axioms [46]. A double symmelry is a
generalized natural transformation, with a generalized inverse, and it verifies some similar axioms.

Definition 3.7 [Symmetric, strict Monoidal Double Categories] A symmelric, strict monoidal
double category, SsMD for short, is a tuple (D, ®, e, o) such that the triple (D, ®, e) is a sMD, and
o is the generalized natural transformation pictured below.

®—7>®0X
pl o ll
®OX?®OX

This means that all the following equations have to be satisfied:

e Naturality of v and p:
For any pair of cells A, A" in D,

a _h> b a! L> B
vl A lu v'l A’ lu'
¢c—>d ¢ —F—d
g
(A®A) *yuur = Yo+ (A" © A) (A@A) pgg = prp - (A @A)
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e Functoriality of v and p:

For any vertical arrows v :a — ¢, v/ 1@/ — ¢, w:¢c—d,and v’ : ¢/ — d’ in D,

Yvw,v'w' = Yvu' Yw,aw!-

For any horizontal arrows h:a — b, h' : ¢’ — V', f :b — ¢, and f' : b’ — ¢’ in D,
Pl hinf! = Phh ¥ Pf g

For any pair of objects @ and a’ in D:

— 1%a,a’
_1a,a’

Yidg idy Pidaidy = lp, i

e Naturality of o:

For any vertical arrows v :a — c and u : b — d in D,
Yvu  Ocd = Oab * 1u®v~

For any horizontal arrows h:a — b and g : ¢ — d in D,
Ph,g ¥ 0bd = Oq,c* 1g®h.

o Kelly-MacLane cohkerence axioms® for v, p and o

For any vertical arrows v : ¢ — ¢, u: b — d, and w: a’ — ¢’ in D,

Yugwr = (Lu @ Yow) * (Yup @ Lu),

Yo,u * Yuow = 1v®u~

For any horizontal arrows h:a — b, g :¢c — d, and f :a’ — V' in D,

piagnh =17 @pgn)-(prn @19),

h
Phg - Pgp = 1799

For any objects a, b, and ¢ in D,

Ta@b,e = (1(1 & O'b,c) < (O'a,c & 1b)a

Oab 40p,q = 1a®b~
O

9For instance, considering v and translating the more general definition of symmetric monoidal category into
the special case of symmetric strict monoidal category it could seem that also the axiom ~;q, , = 1y should be
stated. However it is immediate to show that the others are sufficient to guarantee this constraint. In fact, since
e® e = e, it follows that via, v = Vid.@ide,v = (1e @ Yide,v) * (Vide,v ® 1e) = Vide,v *Vide,v- Thus, composing with
Yu,ide, We obtain 1;q_ gy = Vid, v Finally, recalling that ide ® v = v we can conclude that ~v;q, , = 14.
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The generalized inverse of o, ; can be easily defined in terms of o, v and p as follows:

N : * —_
o the x-inverse of 0,3 is Oup = 0ba- Lo s

o the --inverse of 043 15 0, = 0,4 ¥ 17+%, and
o the generalized tnverse of o3 is 0';[1] =1,, (Gap*1Me)=1" % (045 1,,,).

Remark 3.8 The above notation could be somehow misleading, because the generalized inverse
0';[1] of 04 is not 03 4 as one might expect from the second coherence axiom for o. The fact is
that oq .+ 17« £ 1,, 5 thus, 17« # o7 ;. In some sense, the cell oy 4 is just the diagonal inverse
of 043.

Definition 3.9 [Category SsMDCat] We denote by SsMDCat the category of SsMD’s and
monoidal double functors preserving all the symmetries. a

Proposition 3.10 The forgetful functor from SsMDCat to Set, mapping a SsMD into its set
of objects has a left adjoint which maps each set S into the free SSMD on S (denoted by DSymsg )
whose objects are the elements of the free monoid S® over S.

The following representation theorem states the correspondence between double symmetries
and ordinary symimetries.

Theorem 3.11 For any set S, the double category DSyms s isomorphic to the double category
of quartets over the free symmetric strict monoidal category Symg on S.

It is easy to show that the axiomatization of proof sequents for the process tile logic as given
in Def. 2.24 makes A,(R) into a SsMD (where ¢}, ,, = 0,,',,). In this sense, the models of process
tile logic could be adequately represented as symmetries-preserving monoidal double functors from

A,(R) to generic SsMD'’s.

3.6 Cartesian Double Categories (with consistently chosen products)

A fairly general notion of double products should require the products to exist according to all
the four possible compositions that we have seen: horizontal (_* _), vertical (_-_), and diagonal
(a_, and _»> ).

We recall the ordinary definition of cartesian category.

Definition 3.12 [Terminal Object, Products, Cartesian Category] Let C be a category. We say
that an object ¢ of C is terminal if for any object ¢ of C there is exactly one arrow from ¢ to ¢.

We say that C has binary products, if for any pair of objects a,b € C there exists an object u
together with two projections I, : © — @ and I : u — b satisfying the following condition: for
each object ¢ and arrows f:¢c — a and ¢ : ¢ — b in C, there exists a unique arrow q : ¢ — u
such that f = ¢; 1, and ¢ = ¢;;. The category C has canonical binary products (also called
chosen binary products) if a specific product diagram is given for each pair of objects.

The category C is cartesian if it has a terminal object and all (binary) products. a

Pursuing the analogy with the 1-dimensional case, we propose the following definitions

Definition 3.13 [Double Product] Given a Double category D, we say that D has all double
(binary) products if the categories D*, D', D, and D* all have (binary) products.

We say that D has a double terminal object if the categories D*, D', D, and D" all have a
terminal object. a

Definition 3.14 [Cartesian Double Category] A double category D is called a cartesian double
category if it has all binary double products and a double terminal object. a
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However, we are interested in a much tighter notion of product, similar to the choice of a
“canonical product”. In fact, the more liberal definition does not establish any correspondence
between the same notions on the different dimensions, but simply states their existence. Thus we
adopt the convention that not only the products are chosen in all the four dimensions, but that
they are also consistently chosen. For simplicity, from now on, we will consider only this kind of
cartesian double categories, thus avoiding to always specify that they have “consistently chosen
products”.

Remark 3.15 In general there are many different kinds of cartesian double categories with par-
tially chosen products, where only some of the categories D*, D', D, and D" have chosen products.
In this sense, the more general definition could be called with least chosen products and the defi-
nition which we will discuss could be also called with most chosen products.

Let A : D — D x D be the double functor which makes a copy of the argument: i.e., such that
for each A € D, A(A) = (A, A). A duplicator is a natural transformation between the identity
and the tensor product of two copies of the argument and verifies some additional coherence
axioms involving symmetries and dischargers. A discharger is a natural transformation between
the identity and the constant functor mapping each element into the unit of the tensor product.
Thus, double duplicators and double dischargers are generalized natural transformations verifying
similar coherence axioms.

Definition 3.16 [Cartesian Double Categories with Consistently Chosen Products] A cartesian
double category is a tuple (D, ®, e, o, 7, T, ¢, ¥) such that (D,®,¢e,0) is a SsMD enriched with
the generalized natural transformations w, 7, ¢, and ¥ pictured below.

1p Vo 9oA lp ——1p lp ——>¢ lp ——>1p
l . l l . l Tl s l l y lT
®oA—1>®oA 1D—V>®OA e—]>¢ lp ———e

This means that all the following equations have to be satisfied:

o Naturality of V, 1, {, and é:
For any cell A in D,

AxV, =V, + (A0 A),  Asl,=l,,  A-t,=1, A-8, =6, (A® A).

o FPunctoriality of V, !, {, and é:

For any vertical arrows v :a — cand w:¢ — d in D,

Vyw = Vi - Vy, ow =lo -
For any horizontal arrows h:a — b and f:b — d in D,

Onwp = bn ¥ Of, theg = 1h * 7.
For any object a in D,

Vig, = 1Ve, g, = 1', fid, = 1t,, 6q, = 1s,.

a a
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e Naturality of w, ¢, ¢, and 7:

For any vertical arrow v : a
vv M = Ty - 1v®v
For any horizontal arrow h

— h®h
(Sh*ﬁb—ﬁa*l@,

—cin D,

) !v'¢c:¢aa 11}'1/)021/)(1’ ly 1o =714V,

ca—bin D,

1 * 05 = ¢a, 17 % 4y = g, 1wy = 74 % 63,

o Kelly-MacLane coherence azioms for V1, 8, and §:

For any vertical arrows v
g:c—dinD,

ca — ¢, u : b — d, and for any horizontal arrows h : a — b

bl

vv@u = (vv ® vu) * (11) ® Yv,u ® 1u)a 6h®g = (6h ® 6g) . (1h ® Ph.,g ® 15])’

!v®u :!v®!m Th@g = ]Lh @ ]Lga
Via, = 1le =ha., 8ia, = 1e = tia.,
vv * (vv & 11)) = vv * (11) ® vv)a 6h : (6h ® 1h) = 6h : (1h & 6h)a
Vo *Yow = Vy, 6n - prp = On,

Vy * (1v®'v) = 1o,

op - (1h ®]Lh) = 1%,

e Kelly-MacLane coherence axioms for w, ¢, 7, and .

For any objects a and b in D,

Tagy = (Ta @ M) A(1lg ® 045 ® 1), Tagh = (Ta @) > (14 ® 0;11] ® 1p),

Pagh = Pa @ v, Yags = Va @ Yy,
1. = 1. = ¢, Te = 1o = 1,
Tq < (7Ta @ 1(1) = T d (1(1 @ 77(1); Ta b (Ta @ 1(1) =Ta > (1(1 @ Ta)a

Mg 10q,q4 = Ta,

Ta 4(1(1 ®¢a> = 1(1,

e double coherence arioms for m, ¢, 7, and :

For any objects a in D,

Ty * g = Vg, Ty Ta = 0q,

Vo * g =4, Yo ba = ta.

Tab Oy g = Ta,

1
> (1(1 @ 1/)(1) = la.

O

Since most of the axioms are either just a rephrasing of those for the 1-dimensional case or
are induced by the definition of generalized transformations, we assume that only the last four
double coherence axioms need some comment. They are needed in order to ensure the coherence of
our structure (in the sense that auziliary cells are uniquely identified by looking at their border).
When we considered the symmetric generalization, we should have also required similar axioms for
o and o~ 1. But since symmetries define isomorphisms there was no need to introduce explicitly
o~ ', because its existence was implied by the presence of ¢, v and p. Duplicators and dischargers
are not isomorphisms; thus, we need to introduce both kinds of tiles: # and 7, and ¢ and . In
doing this we need to ensure that their compositions do not introduce any unnecessary additional

structure. For instance, the vertical composition 7 - 7 returns a generalized transformation

lp ——1p

that is already present as the identity of 6.
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Definition 3.17 [Category CDCat] We call CDCat the category of cartesian double categories
and monoidal double functors preserving all the symmetries, duplicators and dischargers. a

Proposition 3.18 The forgetful functor from CDCat to Set, mapping each cartesian double
category into its set of objects has a left adjoint which maps each set S into the free cartesian

double category on S (denoted by DCarts) whose objects are the elements of the free monoid S®
over S.

Theorem 3.19 For any set S, the double category DCarts s isomorphic to the double category
of quartets over the free cartesian category C'artg on S.

Similarly to the case of process tile logic, it is possible to show that the axiomatization of

proof sequents for term tile logic stated in Def. 2.32 makes A;(R) into a cartesian double category,
defining a suitable initial model for term tile logic.
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4 Relating Double Categories with Extended 2-Categories

The definition of cartesian double categories adopted in Section 3 imposes strong restrictions on
the way in which the various products are chosen. However, these restrictions are not arbitrarily
imposed. They are motivated by the observation that symmetries, duplicators and dischargers are
in some sense shared between the two dimensions, and thus must be chosen in a consistent way.

Since 2-categories are one of the most natural frameworks to interpret the semantics of a
rewriting system, we believe that a consistent mapping from cartesian double categories to 2-
categories could offer a good theoretical support for implementing term tile rewrite systems. In
fact, rewriting logic is the semantic basis of several language implementation efforts [7, 30, 15]. In
particular, the language Maude [15, 52], developed at SRI International, is based on rewriting logic
and is efficiently implemented. Maude comes also equipped with the important feature of user-
definable internal execution strategies [19] which allow the meta-control of rewriting computations.
This is very important because a correct embedding of double categories into 2-categories heavily
depends on the execution of suitable (internal) rewriting strategies.

To build a bridge from tiles to ordinary 2-cells we make use of a recent specification methodol-
ogy, called (one-kinded) partial membership equational logic [56]. The features of partial member-
ship equational logic (partiality, poset of sorts, membership assertions) offer a natural framework
for the specification of categorical structures. In [58] two of the authors presented an extended
version of 2-categories, called 2VH-categories, able to include appropriately the structure of double
categories. The theory of 2VH-categories can be easily expressed as a theory in partial member-
ship equational logic, as well as the theories of 2-categories and double categories. Moreover,
in [58] a notion of {ensor product of theories is explicitly defined using the formulae of partial
membership equational logic. The tensor product construction allows a very elegant definition of
double categories (the tensor product of the theory of categories with itself) and their monoidal
version (the tensor product of the theory of double categories with the theory of monoids).

In this section we introduce a richer version of 2VH-categories, able to include in an appro-
priate sense the structure of symmetric strict monoidal double categories and cartesian double
categories (and more generally, double categories with shared structure) by putting in evidence
what the auxiliary common structure is (thus avoiding the explicit definition of the numerous
axioms presented in Section 3).

4.1 Partial Membership Equational Logic

This section defines the basic notions of partial membership equational logic (PMFEqtl) [56, 10, 54].
This is a logic of partial algebras with subsorts and subsort polymorphism whose sentences are
Horn clauses on equations ¢ = ¢’ and membership assertions ¢ : s. We treat here the one kinded
case, in which the poset of sorts has a single connected component. A more detailed exposition
for the many-kinded case can be found in [56].

4.1.1 Partial Algebras and Membership Equational Theories

Definition 4.1 [Partially Ordered Signature] A partially ordered signature (po-signature) is a
triple Q@ = (5, <, X), with (S, <) a poset with a top element T, and ¥ = {X; }rew a family of sets
of operators, indexed by natural numbers. (S, <) is called the poset of sorts of €. a

Definition 4.2 [Partial 2-Algebra] Given a po-signature Q@ = (5, <, %), a partial Q-algebra A
assigns:

1. to each s € S a set Ay, in such a way that whenever s < s’, we have A, C A,/;
2. to each f € X, k > 0, a partial function A; : AR o A7,
Given two partial Q-algebras A and B, an Q-homomorphism from A to B is a function h :

At — Bt such that:
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1. for each s € S, h(A;) C B; (hence, for each s € S the function A restricts to a function
hls : As — By);

2. for each f € Xy, k> 0, and @ € A% | if A;(d) is defined, then B;(h*(@)) is also defined and
equal to h(A;(d)).

This determines a category PAlg,. ad
Definition 4.3 [Declaration, Formula and Sentence] Let = (5, <,X) be a po-signature. Given
a set of variables X = {xy,..., 2.}, a variable declaration X is a sequence

L1851,y Tm  Sm
where for each i = 1,...,m, 5 is a set of sorts {s;1,...,sik, }

Atomic Q-formulas are either equations
t=1t

where ¢, € T (X) (with Tx(X) the usual free E-algebra on variables X') or membership assertions
of the form

where t € T5(X), and s € S.
General €2-sentences are then Horn clauses of the form

VXt=t <cur=v1 A ... Aup=up Awi:isi A ... A Wn: Sm
or of the form
VX t:is<cu=v1 A oo Aty =0 A W81 A .o A Wy Sm
where the ¢, t, u;, v; and w; are all terms in Tx(X). |

Definition 4.4 [Theory, Model] Given a partial 2-algebra A and a variable declaration X, we
can define assignments a : X — A in the obvious way (if # : 5 and s € 5, then we must have
a(z) € A;) and then we can define a partial function @ : Tx(X) -e— Ar, extending a in the
obvious way. For atomic sentences we then define satisfaction by

Ajal t=1t

meaning that @(¢) and @(t') are both defined and @(t) = a(t') (that is, we take an ezistence equation
interpretation) and by

AlakEt:s

meaning that @a(t) is defined and @(t) € A;.

Satisfaction of Horn clauses is then defined in the obvious way. Given a set I' of Q-sentences,
we then define PAlgg, - as the full subcategory of PAlg, determined by those partial 2-algebras
that satisfy all the sentences in T'. In other words, the pair T'= (2, T) is a theory, and PAlg, =
PAlgg 1 is the category of its models. i

As an example, we recall the definition of the theory of categories from [58]. The theory is
presented in a self-explanatory Maude-like notation [15], which will be used extensively in the rest
of the paper. In the following, we will denote theories either by their Maude name (e.g., CAT), or
by their indexed notation (e.g., Tcar).
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Example 4.5 [Categories] The theory of categories Toar is a theory in PMEqtl. Tts poset of sorts
is {Object, Arrow} with Object < Arrow. There are two unary domain and codomain operations
d(_) and c¢(_), and a binary composition operation _;_. The binary composition operator is
defined iff the codomain of the first argument is equal to the domain of the second argument. As
usual in many presentation, here objects are identified with the corresponding identity arrows.
Moreover, to shorten the notation, we write

cmb )y --- 1, iff ¢; and --- and ¢,
where each ; is a membership assertion, as a shorthand for

cmb ¢, if ¢ and --- and ¢,

cmb ¢, if ¢; and --- and ¢,
cmb/ceq ¢1 if ¢ and - - and ¥,

cmb/ceq ¢, if Y1 and - and ¥,

where the use of the symbol ceq, rather than cmb, in the last m sentences depends on the kind
of each sentence ¢; (equation or membership assertion). This and most of the other shorthands
that we use are also summarized in Appendix D. Then the theory of categories can be defined as
follows.

fth CAT is
sorts Object Arrow .
subsort Object < Arrow .

ops d(_) c(L) _;_ .
vars f g h : Arrow .
a : Object .

mbs d(f) c(f) : Object .

eq d(a) = a .

eq cla) = a .

cmb f;¢ : Arrow iff c(f) = d(g)

ceq d(f;9) = d(f) if <(f) = d(g)

ceq c(f;g9) = c(g) if c(f) = d(g)

ceq a; f = f if A(f) = a .

ceq fi;a = f if c(f) = a .

ceq (f;9);h = f;(g;h) if c(f) = d(g) and c(g) = d(h)
endfth

It is easy to check that a model of CAT is exactly a category, and that a CAT-homomorphism is
exactly a functor. a

Definition 4.6 [Signature and Theory Morphism] Given two po-signatures @ = (5,<,X) and
O =(5,< X)), a signature morphism H : Q — Q' is given by:

1. a monotonic function H : (S, <) — (5, <), and
2. an IN-indexed family of functions {H}, : ¥ — ¥ }ren.

Such a signature morphism induces a forgetful functor Uy : PAlgy, — PAlg,, where for each
A’ € PAlgg, we have:

1. for each s € S, Ug(A'),s = Al}[(s);
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2. for each™® f € Xy, Un(A); = Ay O (Al % o X Ay xAler));

k
3. for each Q'-homomorphism A’ : A" — B, Ug(h') = h'|g(T) : Ah(T) — B}I(T), which is
well-defined as a restriction of A’ because I’ is sort-preserving.

Given theories (Q,T) and (', T'), a theory morphism H : (Q,T) — (/,T') is a signature
morphism H : Q@ — Q' such that Uy (PAlgg, 1) C PAlgg 1, so that Upy restricts to a forgetful
functor Uy : PAlgg, 1 — PAlggq . o

The reader is referred to [56] for proof-theoretical conditions on T' and T ensuring that a
signature morphism I : Q@ — Q' is a theory morphism H : (2,T) — (&, T).

Proposition 4.7 (Free Construction Associated to a Theory Morphism [56]) Given «
theory morphism H : (Q,T') — (Q', "), its associated forgetful functor Uy : PAlgg, r — PAlgg
has a left adjoint Fy : PAlgg p — PAlgg, .

Definition 4.8 [Conservative, Complete and Persistent Morphisms] A theory morphism H :
(Q,T) — (1) is conservative (resp. complete, persistent) w.r.t. sort s if, for each algebra
A € PAlgg r, the component (na)s + As — (U (Fr(A));s corresponding to s of the unit of the
adjunction associated to H is injective (resp. surjective, bijective). The morphism H is conserva-
tive (resp. complete, persistent) if it is conservative (resp. complete, persistent) w.r.t. all s € 5.0

Definition 4.9 [Subalgebra] Given a po-signature = (5, <,X) and a partial Q-algebra A, an
Q-subalgebra B of A is an S-sorted family of subsets {B; C A;}ses such that:

-

1. it is closed under the operations of X, that is, for each f € X1, and for each be BY if Ar(d)

-

is defined, then A¢(b) € Br;
2. 1t is closed under subsorts, in the sense that for each sort s € S we have By = A; N B.

It is clear that B with such operations and sorts is itself an 2-algebra, and that the inclusion
function B C A is an Q-homomorphism. a

Lemma 4.10 For any set I’ of Horn sentences in partial membership equational logic, the category
PAlgg - is closed under 2-subalgebras, i.e., if A € PAlgg 1 and B is an Q-subalgebra of A, then
B € PAlgg 1.

Example 4.11 [Subcalegories] For the theory CAT of Example 4.5, the subalgebras of a category
C are exactly its subcategories. ad

Note that the notion of {2-subalgebra is strictly stronger than that of Q-monomorphism. It is
easy to check that, in the category PAlg,, m : C' — A is a monomorphism iff the associated
function m : Ct — Ag is injective. Of course, by taking the smallest image of m, any such
monomorphism always factors through an isomorphism and an inclusion €' = B — A, where B
i1s a weak subalgebra, as defined below.

Definition 4.12 [Weak Subalgebra] Given a signature @ = (5, <, %) and a partial Q-algebra A,
a weak Q-subalgebra of A is a partial Q2-algebra B such that Bt C At and such that the inclusion
map B — A is an 2-homomorphism. a

In general, given a set I' of Horn sentences in PMEqtl, and a partial algebra A € PAlgg, 1, a
weak subalgebra B of A need not satisfy the sentences I'. For example, given a nonempty category
C, the weak subalgebra with same arrows and objects as C, but with all operations everywhere
undefined is not a category. However, for (2,T') = CAT, the following relationship happens to hold
between subalgebras and weak subalgebras.

Example 4.13 Given a category C, if D C C is a weak subalgebra and D itself is a category, then
D C C is a subalgebra, that is, a subcategory. a

10Notice that Upg(A')y =

necessarily T.

A}{(f) would not be correct in general, since Ug (A’)t = A}{(T)’ where H(T) is not
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4.1.2 The Tensor Product Construction

Given a signature Q@ = (5,<,X) and a category C with finite limits and a with suitable poset
of canonical inclusions 7, in [58] it is shown how to define partial Q-algebras in C, denoted by
PAlgq(C) and PAlgg, (C). It is evident that categories PAlg, and PAlgg, - are just the special
case PAlgg(Set) and PAlgg (Set). Noticing that PAlg, and PAlgg o are categories with
limits, and that Q-subalgebra inclusions A C B constitute a poset category of canonical inclusions,
it is possible to define the category PAlgy(PAlgy,) for any two theories T = (,T') and 77 =
(', T'). Moreover, in a way analogous to algebraic theories [45, 29], to lim theories [31], and to
sketches [42], in [58] the construction of a tensor theory T ® T” in partial membership equational
logic is given such that

Notice that we could have chosen a bigger poset of subalgebra inclusions, yielding a looser
definition of PAlgr(PAlgy,). A natural choice would have been the set of weak subalgebra
inclusions. This would yield a notion of tensor product of theories equivalent to the tensor product
of their corresponding sketches. However, as we have already pointed out, the notion of weak
subalgebra is too loose, giving rise in general to somewhat unintuitive models; for this reason
we favor instead the notion of tensor product associated to subalgebras. Nevertheless, in the
special case 7" = CAT, because of the property mentioned in Example 4.13, the definition of
PAlgT(PAlgTCAT) is the same whether we choose subalgebras or instead weak subalgebras as
canonical inclusions in PAlgTCAT.

The explicit definition of T'® 71" is as follows.
Definition 4.14 [Tensor Product] Let 7' = (Q,T) and 77 = (', T”) be theories in partial mem-
bership equational logic, with @ = (5, <, %) and ' = (5, <, ). Then their tensor product
T ® T is the theory with signature  ® €' having;:

1. poset of sorts (5, <) x (S, <');

2. signature ¥ ® ¥/, with an operator'! f' € (X @ '), for each f € ¥,,, and with an operator
g7 € (X @Y)y, for each g € X/ . In particular, for f a constant in Xy we get a constant f!
in (@ %).

The axioms of T'® 7" are the following:

A. Inherited Axioms.

For each axiom in I’

o = V(&1 :51, ., Tm  5m) p(T) < o(F)
with 37 = {s;1,...,51,}, 1 <i<m, we introduce an axiom
ol = V(& :Q, ksl O (F) <= d(F)

with g ={(s:1, "), ..., (511, TV}, 1 <i <m, and with ¢!, ¢/ the obvious translations of ¢,
¢ obtained by replacing each f € ¥ by its corresponding f'.

Similarly, we define for each axiom 8 € I the axiom 3" and impose all these axioms.

11 Here, superscripts [ and r of operators stand respectively for left and right.
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B. Subalgebra Axioms.

For each f € ¥, and each s’ € 5,5 # T’, we introduce the axiom:
V(zy : (T,8"), .. an (T, 5/))fl(x1, coorn) (T, 8) < fl(xl, conxn) (T, T,
For each ¢ € X/ and each s € S;s # T, we introduce the axiom:
V(e : (s, T m s (5, T g (21, yzm) 1 (5, T < g (21, em) (T, T,
For each (s,s") € S x 5" with s # T and s’ # T', we have the axiom:
Ve : (T, T x:(s,8) < x:(T,s) A z:(s,T).

C. Homomorphism Axioms.

For each f€X,,9g € X/, ,n+m > 0, we introduce the axiom:

Vi fg" (1), g (wn) = ¢ (F1 @), f(a5n) =
? ):

<:A1§i§ngr($;— (T, T) A Algjsmfl(xjj):(—l—a—l—/)'

where

/)}1SZSH

(T,

(T, T 125Sm
vi. ={xy (T, Th<j<m, 1<i<n
e =z (T, T h<i<n, 1<j<m.

O

The essential property of T'® T" is expressed in the following theorem, whose proof will be
given elsewhere.

Theorem 4.15 (Models of the Tensor Product) Let T, T be theories in partial membership
equational logic. Then we have the following isomorphisms of categories:

A useful property of the tensor product of theories is its functoriality in the category of theories.
Therefore, if H : Ty — T5 and G : T{ — T} are theory morphisms, we have an associated theory
morphism:

HoG:ThoT —TyoTs.

It can be shown that the tensor product of theories is associative and commutative up to
isomorphism, that is, that we have natural isomorphisms of theories T @ 1" ~ 1" @ T and T' ®
(T"eT") ~(TeT") e T" giving a symmetric monoidal category structure to the category of
theories.

Example 4.16 [Double calegories| A double category has been defined [25] as a category structure
on Cat, that is, as an object of PAlgTCAT (PAlgTCAT) = DCat. The theory CAT ® CAT then
axiomatizes double categories in partial membership equational logic.

Spelling out the specification of T®T” for the case of T = T" = CAT we get the following poset
of sorts, where Square is the top (see Figure refdcatposet):
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Figure 3: The poset of sorts for Theoar.

(Object,Object) = Object, (Arrow,Arrow)= Square,
(Arrow,0Object) = Harrow, (Object, Arrow) = Varrow,
Object < Harrow < Square, 0Object < Varrow < Square.

For the operations in Q ® Q' we adopt the intuitive North-East-West-South notation:
d=w,d=e d=n, =s, (_;_)l =%, () =_-.
The presentation of double categories in Maude-like notation is thus as follows [58].

fth DCAT is

sorts Object Harrow Varrow Square .
subsorts Object < Harrow Varrow < Square .
ops n(_) e(L) w(_) s(_) _*_ _-_ .
vars f h : Harrow .

uw v : Varrow .

A B C D : Square .
*** Inherited Axioms: Horizontal
mbs w(A) e(A) : Varrow .
eq w(v) = v .
eq e(v) = v .
cmb A*B : Square iff e(A) = w(B)
ceq w(A*B) = w(A) if e(A) = w(B)
ceq e(A*B) = e(B) if e(A) = w(B)
ceq v¥A = A if w(A) = v .
ceq A*v = v if e(A) = v .
ceq (A*B)*(' = Ax(B*(') if e(A) = w(B) and e(B) = w(C)
*** Inherited Axioms: Vertical
mbs n(A) s(A4) : Harrow .
eq n(h) = h .
eq sCh) = h .
cmb A-B : Square iff s(A) = n(B)
ceq n(A-B) = n(A) if s(A) = n(B)
ceq s(A-B) = s(B) if s(A4) = n(B)
ceq h-A = A if n(4) = h .
ceq A-h = h if s(4) = h .
ceq (A-B)-C' = A(B-C) if s(A) = n(B) and s(B) = n(C)
*** Subalgebra Axioms
cmb A : Object if A : Harrow and A : Varrow .
mbs w(h) e(h) n(v) s(v) : Object .
mb f*h : Harrow .
mb u-v : Varrow .
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*** Homomorphism Axioms
eq n(w(4)) = w(n(4))
eq n(e(4)) = e(n(A))
eq s(w(4)) = w(s(A))
eq s(e(4)) = e(s(A))

ceq w(A-B) = w(A)w(B) if s(A) = n(B)
ceq e(A-B) = e(A)-e(B) if s(A) = n(B)
ceq n(A*B) = n(A)*n(B) if e(A) = w(B)
ceq s(A*B) = s(A)*s(B) if e(A) = w(B)

ceq (A*B)-(C*D) = (A-C)*(B-D)
if e(A) = w(B) and e(C) = w(D) and s(A) = n(C) and s(B) = n(D)
endfth

Notice that in the above axiomatization we do not present the literal instances of the axioms,
but equivalent forms. For example, we get w(h) : Object from w(h): Varrow (by inherited
axioms), plus w(h): Harrow (by the subalgebra axiom properly speaking), plus the subalgebra
axiom forcing Harrow N Varrow = Object. i

In the following, we enrich our Maude-like notation with the tensor product construction. The
presentation of double categories thus becomes much simpler:

fth DCAT is CAT ® CAT renamed by (
sorts (Object,Object) to Object . (Arrow,Arrow) to Square .
(Arrow,0bject) to Harrow . (Object,Arrow) to Varrow .
ops d(_) left to w(_) . d(_) right to n(_)
c(_) left to e(_) . c(_) right to s(_)
left to _*_ . _;_ right to _-_ )

— —

endfth

4.1.3 2-Categories and 2VH-Categories

2-Categories [41] are probably the best known kind of enriched category. In particular, they
yield models of rewriting logic in a very natural way [50]. It should be clear that they can be
considered as the special case of double categories whose vertical arrows coincide with objects.
In 2-categories, squares are called cells, and horizontal arrows are called arrows. Moreover, the
north and south source and target of a cell A are denoted by d(A) and c(A), while the west and
east source and target become 1(A) and r(A). Also, horizontal composition is denoted _; _ and
vertical composition is denoted _o _. The explicit Maude-like definition of 2-categories [58] will be
useful in the following.

fth 2CAT is including DCAT renamed by (
sorts Square to Cell . Harrow to Arrow . Varrow to Object .
ops w(_) to 1(_) . e(_) to r(_) . n( ) to d() . s(_) to c(L)
_*_ to to _o_ )
endfth

- =

The extended version of a 2-category proposed in [58], called a 2VH-category, includes the
double category structure and has the poset of sorts shown in Figure 4.

The idea is that the theory 2CAT is imported in 2VHCAT as such, without any renaming. In
addition, new sorts Harrow, Varrow and Square are introduced, which correspond to the homony-
mous sorts of double categories. The basic intuition is that, if we are given a 2-category with
subcategories Harrow and Varrow of Arrow such that they are disjoint except for objects, and
such that the horizontal and vertical components can be recovered from their composition, then
we can form a double category by considering squares with horizontal and vertical sides, and we
can define their horizontal and vertical composition by using the already existing cell composition
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Figure 4: The poset of sorts for Toyvgcar.
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Figure 5: The poset of sorts for Tegvicar.

of the 2-category. We omit the complete description of Teygcar (see [58]), but we focus on a
particular axiom of the specification, namely

var ¢ : Arrow .
cmb ¢ : Object if ¢ : Harrow and ¢ : Varrow .

As a consequence, no shared structure between the horizontal and vertical dimensions can
be defined, except for objects. In the cases of symmetric double categories and cartesian double
categories this is clearly too restrictive. We are therefore led to the definition of a more flexible
theory of 2EVH-categories, in which the problem is elegantly solved. Then, analogous results to
those in [58] can be proved in the extended setting.

4.2 Extended 2VH-Categories

Basically, we could think of auxiliary constructors (i.e., symmetries, duplicators and dischargers)
as shared structure between the horizontal and vertical categories. In this sense it would be natural
to introduce a subsort of both Harrow and Varrow containing the auxiliary constructors (and the
objects). However this solution contradicts the subalgebra axiom stating that the only arrows
which are both horizontal and vertical are the identities. The fact is that we need to represent
two disjoint copies of auxiliary constructors, one for each dimension considered.

The poset of sorts that we propose 1s shown in Figure 5. The sort Mix includes the auxiliary
structure which is thus shared between the sorts Horizontal and Vertical. The sort Arrow is
the union of the two. The sorts Harrow and Hmix (respectively Varrow and Vmix) are isomorphic
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copies of sorts Horizontal and Mix (respectively Vertical and Mix). The representation of the
poset given in Figure 5, suggests us to call internal the sorts Mix, Horizontal, and Vertical and
to call lateral, or external their isomorphic copies Harrow, Varrow, Hmix, and Vmix. The sort Basic
contains identity cells and possibly the cells of some 2-computads (see Section refcompsec). The
intuition is that, if we are given a cartesian 2-category such that the subcategories Horizontal and
Vertical of Arrow are disjoint, except for objects and auxiliary arrows, then we can construct
a cartesian double category by considering double cells whose horizontal and vertical sides are
isomorphic to the two partitions of Arrow. Moreover, it is possible to define their horizontal and
vertical composition in terms of the existing cell composition of 2-categories.

Since the sorts Horizontal and Vertical share Mix arrows, it follows that more than one
double cell can correspond to the same 2-cell representation, namely, when they differ only in the
way in which the source and target arrows of the cell are decomposed into the composition of
Horizontal and Vertical arrows. Moreover there are some cells that don’t generate any double
cell. Thus, it 1s possible to define a total mapping from Dcell onto 2cell, but in general this
mapping 1s neither injective, nor surjective. However, the isomorphisms between lateral copies
and internal sorts easily follows from the definition of the more general mapping.

We present the Maude-like definition of the theory Togygcar, alternating the source code
with some explanations and examples. We start by giving the formal translation of Figure 5 and
fixing the variable notation for each subsort.

fth 2EVHCAT is
including 2CAT renamed by (sort Cell to 2cell)
sorts Mix Horizontal Vertical Basic T
Hmix Harrow Vmix Varrow Dcell .
subsorts Object < Hmix Mix Vmix .
Mix < Horizontal Vertical < Arrow < Basic < 2cell .
Hmix < Harrow . Vmix < Varrow .
Harrow Varrow < Dcell .
2cell Dcell < T .
vars a : Object .
m : Mix .
h h A" g g ¢g" f : Horizontal .
v v v ouu v w i Vertical .
t ¢t : Arrow .
s : Basic .
hm : Hmix .
vm : Vmix .
ha : Harrow .
va : Varrow .
p : Dcell .
LU 2cell .

The sequential composition of two Horizontal (resp. Vertical) arrows is also a Horizontal
(resp. Vertical) arrow. Notice that the sort Arrow contains all the existing compositions among
Horizontal and Vertical arrows. Arrows having sort Mix can act as either Horizontal or
Vertical arrows, depending on the circumstances. The only arrows which are both Horizontal
and Vertical are those of sort Mix.

cmb ¢;t : Horizontal iff r(¢) = 1(¢') and ¢ : Horizontal and ¢ : Horizontal .
cmb ¢;t' : Vertical iff r(¢) = 1(¢') and t : Vertical and t' : Vertical .
cmb ¢ : Mix iff ¢ : Horizontal and ¢ : Vertical .

We define a mechanism to construct the double cells starting from the Basic cells. Informally,
we want to distinguish between all the possible double cells which are generated by different
decomposition of the border of the same 2-cell. The partial operation mk(_:_,_,_,_) solves this
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problem. Its first argument is a 2cell element, its second and last arguments are Horizontal
arrows, and the remaining arguments are Vertical arrows. If s is the Basic cell

b

a /sl} a d
VA . /;

where h and g are Horizontal, and « and v are Vertical (we use dotted arrows just to emphasize
vertical arrows), then mk(s:h,u,v,g) is a Dcell. Since the sort Basic contains all the identity
cells (which are in sort Arrow), and Horizontal and Vertical can share more structure than
just Object (the sort Mix), it follows that the decomposition of many cells is not unique. As
an example, let m : @ — b be an arrow having sort Mix, then there are four possible ways in
which the identity cell on m can be decomposed along the correct horizontal-vertical pattern, each
corresponding to a (different, if m is not also an Object) Dcell, namely m; = mk(m:m,b,m,b),
mg = mk(m:m,b,a,m), mg = mk(m:a,m,m,b), and my = mk(m:a,m,a,m) pictured below.

a

a mall b a moll b a mszd b a

mA ) /

b b a.
b

sxxis

m
(.1__{ m m A b a A\
a b a

To shorten the notation, we will use two additional derived operators, mkh(_) and mkv(_), which
are “specialized” versions of the more general mk(_:_,_,_,_). The intuition is that, given a
Horizontal arrow h, then mkh(h) is the Dcell representing the vertical identity of h, and similarly
for a Vertical arrow v then mkv(v) denotes the corresponding Dcell. In the example above my
= mkh(m) and ms = mkv(m). The other two kinds of decompositions return cells having the
“same” Mix arrows as both horizontal and vertical sources (targets), which are the basic ingredients
for the construction of generalized transformations as defined in Section 3. We remark that all
the 1somorphisms between internal and lateral sorts described earlier are given by mkh(_) and
mkv(_). The inverses can be easily defined using a projection operator wcell(_), returning the

2cell assoclated to a Dcell.

ops mk(_:_,_,_,_) mkh(_) mkv(_) wcell(_ )
cmb mk(s:h,u,v,g) : Dcell iff h;u = d(s) and v;g = c(s)

eq mkh(h) = mk(h:h,r(h),1(h),R)

eq mkv(v) = mk(v:1(v),v,v,r(v))

mb mkh(h) : Harrow .

mb mkv(v) : Varrow .

mb mkh(m) : Hmix .

mb mkv(m) : Vmix .

mb mk(a:a,a,a,a) : Object

eq mk(a:a,a,a,a) = a

ceq mcell(mk(l:h,u,v,¢)) = [ iff mk(l:h,u,v,g) : Dcell .

mb  wcell(p) : 2cell .

mb wcell(ha) : Horizontal .

mb wcell(wa) : Vertical .

mb wcell(hm) : Mix .

mb wcell(vm) : Mix .

cmb mk(7cell(p):h,u,v,g) : Dcell iff h;u = d(wcell(p)) and v;g = c(mcell(p)).

operation. As usual, we will refer to the sources and targets of double cells with the self-explanatory
“cardinal-point” notation n(_), s(_), e(_), and w(_). We begin by defining the sort of the four
projections for each kind of arrows (we omit some axioms because they are redundant). Then,
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we explicitly define which are the sources and targets of the Dcell obtained viaamk(_:_,_,_,_)
construction. Eventually we formalize the correctness of the previous definitions w.r.t. the operator
mcell(_) and the sources and targets of the 2cells. Notice that, once either the source d(_) or
the target c(_) of a 2cell has been defined, then the axioms of 2-categories give also the value
of the source 1(_) and target r(_) of the 2cell under consideration.

ops n(_) e(_) w(_) s(0)
mb n(p) : Harrow .
mb s(p) : Harrow .
mb w(p) : Varrow .
mb e(p) : Varrow .
mb w(ha) : Object .
mb e(ha) : Object .
mb n(va) : Object .
mb s(va) : Object .
ceq n(mk(/:h,u,v,g)) = mkh(h) if mk(l:h,u,v,g) : Dcell .
ceq s(mk({:h,u,v,g)) = mkh(g) if mk(l:h,u,v,g) : Dcell .
ceq w(mk({:h,u,v,9)) = mkv(v) if mk(l:h,u,v,g) : Dcell .
ceq e(mk({:h,u,v,g)) = mkv(u) if mk({l:h,u,v,g) : Dcell .
eq d(wmcell(p)) = mcell(n(p));wcell(e(p)) .
eq c(mcell(p)) = mcell(u(p));mcell(s(p)) .
ceq mk(wcell(p):h,u,v,g) =
iff h = wmcell(n(p)) and u = wcell(e(p)) and
wcell(w(p)) and g = wcell(s(p))

v

We now define horizontal (- _) and vertical (_-_) composition operations between composable
Dcells in terms of the given compositions between underlying 2cells. As before, we first express
the membership axioms, and then give the equational definitions.

ops _*_ _-_
cmb mk(l': h’ u,v,g" ) *mk({" A" ,w,u,g”) : Dcell
if mk({':h',u,v,g9’) : Dcell and mk(l":h",w,u,g”) : Dcell .
cmb mk(I':h,u ,v',g) mk(l":g,u",v",f) : Dcell
if mk(/':l':h,u ,v ,9) : Dcell and mk(!":g,u”,v"”,f) : Dcell .
cmb mkh(h')*mkh(h”) : Harrow
if r(h') = 1(h'")
cmb mkv(v') mkv(v”) : Varrow
if r(v') = 1(")
ceq mk(!I": 0/ ,u,v, ¢ ) *mk(I": R ,w,u,q") =
mk (A1) o (U5g") (W5 R) ,w,v, (g5 ¢"))
if mk({':h',u,v,g9’) : Dcell and mk(l":h",w,u,g”) : Dcell .
ceq mk(!':h,u',v/,g) mk(I":g,u",v", f) =
mk((Usu)o(W;17) ch, (W' 50"y, (W 50"), f)
if mk({':h,u ,v ,g9) : Dcell and mk(!":g,u”,v"”,f) : Dcell .
endfth

This concludes the presentation of the theory Topvicar.

4.3 Monoids and Symmetries

For the expressiveness of our approach it 1s essential to add a monoidal structure to the model
presented above. In fact, the shared structures on which we focus rely on the notions of symmetry,
duplicator and discharger, and therefore on the notion of monoidal categories. Nevertheless, this
extension is almost effortless, thanks to the tensor product construction of [58] (see Def. 4.14). Tt
suffices to introduce a theory MON of (strict) monoids and then to apply the tensor construction.
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fth MON is

sort Monoid .
ops 1 _®_ [assoc id: 1]

vars ¢ j : Monoid .
mb :®j : Monoid .
endfth

We remark that 1 is implicitly defined as a constant of sort Monoid (which is the only one
defined) and that we exploit the possibility given by Maude of declaring the associativity and
identity axioms as attributes of the _®_operator. As explained in Appendix D, if a binary operator
£(_,_) 18 declared to be associative, then the Maude engine matches equations regardless of how
parentheses are left- or right-associated, and the simpler syntax £ (¢1,%2...,%,) can be used for any
: Monoid just specifies that the monoidal operation
is total. Then, the theory of (strict) monoidal extended 2VH-categories can be expressed in a
Maude-like notation as follows:

n € IN. The membership assertion mb 7 ® j

sorts (Monoid,Object) to Object
(Monoid,Hmix) to Hmix .

(Monoid,Arrow) to Arrow .
(Monoid,2cell) to 2cell .

fth MON2EVHCAT is MON ® 2EVHCAT renamed by (

(Monoid,Mix) to Mix .

(Monoid,Vmix) to Hmix .
(Monoid,Harrow) to Harrow .
(Monoid,Horizontal) to Horizontal .

(Monoid,Basic) to Basic .
(Monoid,Dcell) to Dcell .

(Monoid,Varrow) to Harrow .
(Monoid,Vertical) to Vertical .

(Monoid,T) to T .

ops 1 left to 1 _®_ left to _®_ .
d(_) right to d(_) . c(_) right to c(_)
1(_) right to 1(_) . r(_) right to r(_)
_;_ right to _;_ o_ right to _o_
n(_) right to n(_) . s(_) right to s(_)
w (_)right to w(_) . e(_) right to e(_)
_*_ right to _*_ _ right to _-_
mk(_:_,_,_,_) right to mk(_:_,_,_,_)
mkh(_) right to mkh(_) . mkv(_) right to mkv(_) . )
endfth

In the same way, it is easy to define the monoidal theories of categories, 2-categories and
double categories by very similar tensor product constructions between MON and CAT, 2CAT and
DCAT, called MONCAT, MON2CAT and MONDCAT respectively (also illustrated in [58]).

fth MONCAT is MON ® CAT renamed by (

sorts (Monoid,Object) to Object .(Monoid,Arrow) to Arrow .
_®_ left to _®_ .

1 left to 1
d(_) right to d()

ops

endfth

c(_) right to c(_) . _;_

fth MON2CAT is MON ® 2CAT renamed by (

sorts (Monoid,Object) to Object

(Monoid,Cell) to Cell .

c(_) right to c(_)

. r(_) right to r(_)

_ right to _o_ . )

ops 1 left to 1 _®_ left to _®_ .
d(_) right to d()
1(_) right to 1()
_;_ right to _;_ _o
endfth

fth MONDCAT is MON ® DCAT renamed by (
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sorts (Monoid,Object) to Object .
(Monoid,Harrow) to Harrow . (Monoid,Varrow) to Harrow .
(Monoid,Arrow) to Arrow . (Monoid,Square) to Square .
(Monoid,Cell) to Cell .
(Monoid,T) to T .
ops 1 left to 1 . _®_ left to _®_ .
n(_) right to n(_) . s(_) right to s(_)
w (_)right to w(_) . e(_) right to e(_)
_*_ right to _*_ . _-_ right to _-_ . )
endfth

The first shared structure that we want to introduce in our model is given by the permutations
over the arguments of a monoidal product, called symmetries. For each pair a, b of Objects we
introduce an arrow sym(a,b) of sort Mix, which plays the role of the symmetry for a and . The
naturality axiom schema is defined for each pair of Arrows ¢ and ¢/, and the coherence axioms are
stated to equate all the different compositions of symmetries leading to the same final result.

fth SYMCAT is
including MONCAT .
op sym(_,_)
vars a @' b b : Object .
t ' : Arrow .
mb sym(a,b) : Arrow .
eq d(sym(a,b)) = a®b .
eq c(sym(a,b)) = b®a .
ceq (t@t');sym(b,V) = sym(a,a’); ')
if d(t) = a and d(¥’) = ¢’ and c(¢) = b and c(¥’) = b .
eq sym(a,1) =
eq sym(il,a) = a .
eq sym(a®b,c) (a@sym(b,c)); (sym(a,c)®b) .
eq sym(a,b);sym(b,a) = a®b .
endfth

n e «

A similar construction applies to the case of 2-categories. In this case, the Maude-like definition
should include MON2CAT instead on MONCAT, the source and target functions d(_) and c(_) should
be renamed by 1(_) and r(_), and the naturality axiom should involve two variables of sort
Cell, [ and !’. Notice that, apart from the renaming of some operators, the difference between
the definitions of SYMCAT and SYM2CAT is given by the naturality axiom, which applies to generic
arrows in SYMCAT and to generic cells in SYM2CAT. Since every arrow of SYM2CAT is also a cell, it
follows that, in SYM2CAT, the naturality of the symmetries holds also for generic arrows. Thus we
propose the following shorter notation for the definition of SYM2CAT:

fth SYM2CAT is
including MON2CAT .
including SYMCAT renamed by ( ops d(_) to 1(_) . c(_) to r(_) .)
vars a @' b b : Object .
[I" : Cell .
ceq (Ua!);sym(b,b') = sym(a,a’); (I'®l)
if 1(I) = a and 1(I") = @’ and r({) = b and x{({') = ¥ .
endfth

In a certain sense, using this notation, we are able to define the union of the two imported
axiomatizations. Apart from a more compact description of the resulting theory, a very important
feature of this approach consists in emphasizing the conceptual extension w.r.t. previously defined
theories. In SYM2CAT the only axiom which really needs to be added is the naturality on cells.
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Notice that such an extension is consistent with the naturality axiom on arrows which is imported
from SYMCAT, but makes it redundant.

The case of symmetric monoidal double categories (the theory SYMDCAT) is more involved
and requires all the axioms presented in Section 3.5 for the generalized symmetries, plus some
additional axioms induced by the membership logic. We leave as an exercise for the really very
interested reader to translate the description of symmetric (strict) monoidal double categories into
Maude-like notation.

The (strict monoidal) extended version of 2VH-categories gives the opportunity of represent-
ing symmetries as arrows of sort Mix, and then defining the generalized symmetries via the
mk(_:_,_,_,_) operation. As before, we can avoid repeating the axiomatization for the sym-
metries by importing it from SYMCAT, the only difference is that now the symmetries have sort
Mix. Then, we can also define the induced transformations v, p and o (respectively v(_,_),
p(_,_),and o(_,_)) acting on Dcells.

fth SYM2EVHCAT is
including MON2EVHCAT .
including SYM2CAT .
ops v(_,_) p(_,2) o(_,0)
vars a @' b b : Object .
ha ha' : Harrow .
va va' : Varrow .
mb sym(a,b) : Mix .
ceq pCha,ha’) = mk((wcell(ha)®wcell(ha’));sym(b,V’):
(wcell(ha)®@ncell(ha’)),sym(b,b),
sym(a,a’), (rcell(ha’)@ncell(ha)))
iff w(ha) = a and e(ha) = b and w(ha') = &' and e(ha') = b .
ceq v(va,va’) = mk((wcell(va)®@wcell(va’));sym(b,b'):
sym(a,a’),(rcell(va’)@ncell(va)),
(rcell(va)®@mcell(va’)),sym(b,b’))
iff n(va) = @ and s(va) = b and n(va’) = @’ and s(va’) = b
eq o(a,b) = mk(sym(a,d):sym(a,b),(a®b),sym(a,b),(a®b)) .
endfth

/

Theorem 4.17 The obvious signature morphism from SYMDCAT to SYM2EVHCAT is a theory mor-
phism.

Proof (Sketch). We need to prove that the axioms of symmetric monoidal double categories
can be derived from the axioms of SYM2EVHCAT. We graphically hint at the part of the naturality
proof. From the axiom

bRb' V' ®b

h@h' ___u®u' A @h -.___u'®u
i Sa.a Saral / T
a®a’ ARA’ dgd' —> d'@d = a®a' —>d'Qa A'QA d'®d
N i /_\ i
VRV g T 909 VOV g, 999
the following equations of symmetric double categories can then be derived:
by — 1o L
Y — ' ® /
_ u®u 5o / o
EN EN _ Bt AoA dod
aga’ A@ A/ dod — d'ga = O 0T © ©
,d G T N
a 7 vau ™ S
e®e’ Se,ef
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The theory morphism above can be specified in Maude-like notation as:

view SE from SYMDCAT to SYM2EVHCAT is
sort Square to Dcell
endview

Then, the following result holds.

Theorem 4.18 The theory morphism SE from SYMDCAT to SYM2EVHCAT s persistent w.r.t. sorts
Objects, Harrow, and Varrow and it is complete.

This means that, in general, it is possible for some double cells which are distinguished in
SYMDCAT to be identified as the same Dcell.

4.4 Cartesian Theories

The theory of cartesian categories is expressed as follows:

fth CARTCAT is

including SYMCAT .
ops dup(_) dis(_)
vars a : Object

t : Arrow .
mb dup(a) : Arrow .
eq 1l(dup(a)) = a .
eq r(dup(a)) = a®a
mb dis(a) : Arrow .
eq 1l(dis(a)) = a .
eq r(dis(a)) =1
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ceq t;dup(b) = dup(a); (t®t) if 1(¢) = a and r(t) = b
ceq t;dis(bd) = dis(a) if 1(¢) = a and r(¥) = b .
eq dup(l) =
eq dis(1) =1 .
eq dup(a®b) (dup(a)®dup(d)); (a®@sym(a,b)Rb) .
eq dis(a®b) = dis(a)®dis(b)
eq dup(a);(dup(a)®a) = dup(a); (e®dup(a)) .
eq dup(a);sym(a,a) = dup(a) .
eq dup(a);(a®dis(a)) = a .

endfth

n = =

As for the symmetric 2-categories, the theory of cartesian 2-categories can be defined simply
adding the naturalities on cells.

fth CART2CAT is
including SYM2CAT .
including CARTCAT renamed by ( ops d(_) to 1(_) . c(_) to r(_.) .) .
vars a b : Object .
[ : Cell .
ceq [;dup(d)
ceq [;dis(b)
endfth

dup(a); (®!) if 1) = a and r(]) = b .
dis(a) if 1(l) = @ and () = b .

The definition of cartesian double categories is subject to the explicit axiomatization given
in Section 3.6. As for the symmetric strict monoidal case it is possible to derive the needed
axiomatization from the one of cartesian extended 2VH-categories given below. Here, duplicators
and dischargers are shared arrows (i.e., have sort Mix) and the additional double transformations

fth CART2EVHCAT is
including SYM2EVHCAT .
including CART2CAT .
ops V() 6() (L) 7L
7(2) 72 o) w()
vars a b : Object .
ha : Harrow .
va : Varrow .
mb dup(a) dis(a): Mix .
ceq V(ha) = mk((wcell(ha);dup(h)):
wcell(ha),dup(b),dup(a), (vcell(ha)®@mcell(ha)))
iff w(ha) = a and e(ha) = b .
ceq 6(va) = mk((wmcell(wa);dup(h)):
dup(a), (rcell(va)®@ncell(va)) ,mcell(va) ,dup(d))
iff n(va) = a and s(va) = b .
eq w(a) = mk(dup(a):dup(a), (a®a) ,dup(a), (a®a)) .
eq 7(a) = mk(dup(a):a,dup(a),a,dup(a))
ceq !(ha) = mk((wcell(ha);dis(b)):mcell(ha),dis(b),dis(a),1)
iff w(ha) = a and e(ha) = b .
ceq t(va) = mk((mcell(wa);dis(b)):dis(a),1,7cell(va),dis(b))
iff n(va) = a and s(va) = b .
eq ¢(a) = mk(dis(a):dis(a),1,dis(a),1) .
eq v(a) = mk(dis(a):a,dis(a),a,dis(a)) .
endfth

Theorem 4.19 The obvious signature morphism between CARTDCAT and CART2EVHCAT is a theory
morphism.
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The theory morphism above can be specified in Maude-like notation as:

view CE from CARTDCAT to CART2EVHCAT is
sort Square to Dcell .
endview

As in the case of symmetric double categories, an analogous result holds for the cartesian case.

Theorem 4.20 The theory morphism CE from CARTDCAT to CART2EVHCAT s persistent w.r.t. sorts
Objects, Harrow, and Varrow and it is complete.
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5 Computads

The notion of computad [68, 69] allows a compact presentation of double categories which are
freely generated from a finitary structure (i.e., from the computad). From the point of view of
presenting a specification this is very relevant, because it is only necessary to deal with a finite set
of rules which can then be composed in all possible ways to derive the more structured rules, but
still mantaining a modular approach to the system description.

Definition 5.1 A computadis a triple (H,V,T), where H and V are categories with the same set
of objects O, and T is a set of cells, each of which has assigned two pairs of compatible arrows,
in H and V| as vertical and horizontal source and target, respectively. Given two computads
(H,V,T) and (H', V', T"), a c-morphism is a triple {Fp, Fy, Fg) such that F, : H — H' and
F, : V. — V"’ are functors which agree on objects, and Fy : T'— 7" is a function such that for
each rule s € T' the horizontal (vertical) source and target of Fy(s) are the images through'? F,
(F3) of the horizontal (vertical) source and target of s.

A computad is symmetric (cartesian) if both H and V are symmetric monoidal categories
(cartesian categories) with symmetries ¥ = {743 }asco and p = {pastapeo, respectively (with
duplicators V = {V,}aco, 6 = {bataco, and dischargers ! = {!,}sco and T = {{a}aco, respec-
tively); c-morphisms then preserve the additional symmetric monoidal (cartesian) structure. O

The Maude-like definition of symmetric (cartesian) computad is obtained by replacing MONCAT
with SYMCAT (CARTCAT) in the theory CTD defined in [58].

fth SYMCTD is
including SYMCAT renamed by (
sort Arrow to Harrow .
ops d(_) to w(_) . c(_) to e(_) . _;_ to _*_
sym(_,_) to v(_,_) .)
including SYMCAT renamed by (
sort Arrow to Varrow .
ops d(_) to n(_) . ¢c() tos() . _;_ to
_®_ to _P_ . sym(_,_) to p(_,_) .)

sort Rule .
subsorts Harrow Varrow < Rule .
vars A B : Rule .
a b : Object .
h g : Harrow .
v u : Varrow .
mbs w(A) e(A) : Varrow .
mbs n(A) s(A) : Harrow .

eq n(h) = h .
eq sCh) = h .
eq w(v) = v .
eq e(v) = v

eq n(w(A)) = w(n(A))

eq n(e(A)) = e(n(A))

eq s(w(A)) = w(s(A4))

eq s(e(A)) = e(s(A))

mb h®g : Harrow .

mb vPu : Harrow .

eq adb = a®b .

cmb A®B : Rule iff A : Harrow and B : Harrow .

12We remind the reader that the horizontal source and target of a rule s are arrows in V', whereas the vertical
source and target of s are arrows in H.
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cmb AGB : Rule iff A : Varrow and B : Varrow .
cmb A*B : Rule iff A : Harrow and B : Harrow and e(A) = w(B)
cmb A-B : Rule iff A : Varrow and B : Varrow and s(A) = n(B)
cmb A : Object if A : Harrow and A : Varrow .
cmb v(A,B) : Rule iff A : Object and B : Object .
cmb p(A,B) : Rule iff A : Object and B : Object .

endfth

A very similar construction applies to the cartesian case.

fth CARTCTD is
including CARTCAT renamed by (
sort Arrow to Harrow .
ops d(_) to w(_) . c(_) to e(_) . _;_ to _*_
sym(_,_) to vy(_,_)
dup(_) to V(_,_) . dis(_) to (L) .)
including CARTCAT renamed by (
sort Arrow to Varrow .
ops d(_) to n(_) . ¢c() tos() . _;_ to
_®_ to _P_ . sym(_,_) to p(_,_)
dup(_) to 6(_,_) . dis(_) to () .)
sort Rule .
subsorts Harrow Varrow < Rule .
vars A B : Rule .
a b : Object .
h g : Harrow .
v u : Varrow .
mbs w(A) e(A) : Varrow .
mbs n(A) s(A) : Harrow .

eq n(h) = h .
eq sCh) = h .
eq w(v) = v .
eq e(v) = v

eq n(w(A)) = wn(4))
eq n(e(A4)) = e(n(4))
eq s(w(A)) = w(s(4))
eq s(e(A)) = e(s(4))
mb h®g : Harrow .
mb vPu : Harrow .
eq adb = a®b .
cmb A®B : Rule iff A : Harrow and B : Harrow .
cmb AGB : Rule iff A : Varrow and B : Varrow .
cmb A*B : Rule iff A : Harrow and B : Harrow and e(A) = w(B)
cmb A-B : Rule iff A : Varrow and B : Varrow and s(A) = n(B)
cmb A : Object if A : Harrow and A : Varrow .
cmb v(A,B) : Rule iff A : Object and B : Object .
cmb V(A) : Rule iff A : Object .
cmb !(A) : Rule iff A : Object .
cmb p(A,B) : Rule iff A : Object and B : Object .
cmb 6(A) : Rule iff A : Object .
cmb $(A) : Rule iff A : Object .
endfth

A brief explanation is necessary. We import two separated symmetric (respectively, cartesian)
structures for both horizontal and vertical arrows. At this level, only the objects are shared. In
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particular, notice that the two monoidal operators are different, except when applied to objects.
However, they will be identified when generating the associated symmetric (respectively, cartesian)
double category. Moreover, the operations apply to elements of sort Rule if and only if those
elements belong to some subsort of Rule. Many of the results presented in [58] for the monoidal
case can then be extended to the symmetric and cartesian cases.

Proposition 5.2 Let SD be the signature morphism from SYMCTD {o SYMDCAT mapping the sort
Rule fo the sort Square, the operator ® to the operator ®, and for the rest relating homonymous
sorts and operators, and, analogously, let CD be the signature morphism from CARTCTD to CARTDCAT
mapping the sort Rule to the sort Square, the operator ® to the operator @, and for the rest relating
homonymous sorts and operators. Then, both SD and CD are theory morphisms.

The theory morphisms above may be represented in Maude-like notation as follows:

view SD from SYMCTD to SYMDCAT is
sort Rule to Square .
op _P_ to _®_ .

endview

view CD from CARTCTD to CARTDCAT is
sort Rule to Square .
op _P_ to _®_ .

endview

Thus, we may compose SD with SE and CD with CE to get theory morphisms from SYMCTD to
SYM2EVHCAT and from CARTCTD to CART2EVHCAT, respectively.

view SVH from SYMCTD to SYM2EVHCAT is SD ; SE
endview

view CVH from CARTCTD to CART2EVHCAT is CD ; CE
endview

Proposition 5.3 The forgetful functor Usp : SymDCat — SymCtd associated to the theory
morphism SD has a left adjoint Fsp : SymCtd — SymDCat. Similarly, the forgetful functor
Usvhg : Sym2EVHCat — SymCtd has a left adjoint Fsyy : SymCtd — Sym2EVHCat.
Furthermore, Fsyy is given by the composition of the functor Fsp with the left adjoint Fsg to the
forgetful functor Usy : Sym2EVHCat — SymDCat.

Proposition 5.4 The forgetful functor Ucp : CartDCat — CartCtd has a left adjoint Fep :
CartCtd — CartDCat. Similarly, the forgetful functor Ucyy : Cart2EVHCat — CartCtd
has a left adjoint Feyp @ CartCtd — Cart2EVHCat. Furthermore, Feovu s gwen by
the composition of the functor Fep with the left adjoint Fcog to the forgetful functor Ucy
Cart2EVHCat — CartDCat.

5.1 VH-computads

Taking advantage of the sort Basic, it is possible to follow an alternative construction, still
obtaining an analogous result. The idea is to reduce each cartesian (respectively symmetric)
computad to a suitable cartesian (respectively symmetric) 2-computad, called VH-computad, which
can then be used to freely generate the associated cartesian (respectively symmetric) 2EVH-
category.

Definition 5.5 A VH-computad is a quadruple (A, H,V, D), where H and V are lluf'® subcate-
gories of the category A (i.e., H, V, and A have exactly the same objects), and D is a set of cells.

13 A lluf subcategory of a category C is just a subcategory of C having exactly the same objects as C.
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Each cell has assigned a pair of compatible arrows in A as vertical source and target, respectively.
Given two computads (A, H,V, D} and (A’ H', V', D"}, a vh-morphism is a pair (F, Fg) such that
F:A— A is a functor with F(H) C H and F(V) C V', and Fy : D — D' is a function such
that for each rule d € D the horizontal (vertical) source and target of Fy(d) are the images through
F of the (vertical) source and target of d. A vh-computad is cartesian (respectively, symmetric)
if both A, H, and V are cartesian (respectively, symmetric) categories. O

fth SYMVHCTD is
including SYMCAT renamed by (
ops d(_) to 1(_) . c(_) to r(_) .)

sorts Mix Horizontal Vertical HV VH 2rule .
subsorts Object < Mix < Horizontal Vertical < Arrow < 2rule .
ops d(_) c(L)
vars A A’ : 2rule .

h : Horizontal .

v : Vertical .
mb sym(a,b) : Mix .

eq d(h) = h .

eq c(h) = h

eq d(v) = v .

eq c(v) = v .

eq 1(d(4)) = 1(4)

eq 1(c(A)) = 1(A)

eq r(d(4)) = r(4)

eq r(c(A)) = r(4) .

cmb A : Mix iff A : Horizontal and A : Vertical .
endfth

fth CARTVHCTD is
including CARTCAT renamed by (
ops d(_) to 1(_) . c(_) to r(_) .)

sorts Mix Horizontal Vertical HV VH 2rule .
subsorts Object < Mix < Horizontal Vertical < Arrow < 2rule .
ops d(_) c(L)
vars A A" : 2rule .

h : Horizontal .

v : Vertical .
mb sym(a,b) : Mix .
mb dup(a) : Mix .
mb dis(a) : Mix .

eq d(h) = h .

eq c(h) = h .

eq d(v) = v .

eq c(v) = v .

eq 1(d(4)) = 1(4)

eq 1(c(4)) = 1(4)

eq r(d(4)) = r(4)

eq r(c(A)) = r(A) .

cmb A : Mix iff A : Horizontal and A : Vertical .
endfth

Notice that the theories SYMVHCTD and CARTVHCTD only differ in the the imported theories.

Proposition 5.6 Lel S2VH be the signature morphism from SYMVHCTD to SYM2EVHCAT mapping
the sort 2rule into the sort Basic, and for the rest relating homonymous sorts and operators.
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Analogously, let C2VH be the signature morphism from CARTVHCTD to CART2EVHCAT mapping
the sort 2rule into the sort Basic, and for the rest relating homonymous sorts and operators.
Then, S2VH and C2VH are theory morphisms.

Theorem 5.14 establishes the relevance of these alternative constructions.

5.2 Term Tile Rewriting Systems and Computads

In this section we establish the correspondence between term tile logic and the free cartesian (dou-
ble category) model which is its natural interpretation. We start by explaining how to translate
a generic tTRS into a suitable computad. As an important result the free cartesian double cat-
egory arising from the computad entails the same flat sequents of the term tile logic associated
to the term tile rewrite system. Then, we show that the extended logic defined upon the same
computad in the theory of cartesian 2EVH-categories also coincides with the cartesian tile logic
when considering their flat version (instead, the same is not necessarily true whenever proof terms
are considered).

Definition 5.7 Let R = (Xg,Xv, N, R) be a tTRS. The associated cartesian computad Ctd(R)
is the triple (Tx, (X),Ts, (X), Tr), where the set of tiles Tx is such that

h
n—=sm
5l r lu € Tgr = r:n<1<]_i>%>(g) ER
k‘—g>1

O

Definition 5.8 Given a tTRS R, the cartesian tile logic of R is the cartesian double category
Lp(R) = Fep(Ctd(R)) freely generated from the computad Ctd(R) by the left adjoint functor
Fer described in Proposition 5.4. For « € Fogp(Ctd(R))square We also write R F. o (R by, _ for
flat sequents). a

Theorem 5.9 Given a tTRSR = (X, Xv, N, R), then R+, a <= R - .

Definition 5.10 Given a tTRS R = (Zg,XZv, N, R) the extended logic of R is the cartesian
2EVH-category Fevp(Ctd(R)) = Fep(Fep(Ctd(R))) freely generated from Ctd(R) by the left
adjoint functor described in Proposition 5.4. For 8 € Fevp(Ctd(R))peen we also write R . 3
(Rt _ for flat sequents). a

Corollary 5.11 Given a tTRS R = (g, Xv, N, R), then R Fp h%g > R Fye h%g.

The relevance of this result is that we can use an implementation of rewriting logic to deduce the
same flat sequents which are entailed in term tile logic. Since there are several available languages
designed for dealing with rewriting logic specifications, we can actually build tools which work
with term tile logic as well. From this perspective, the following result introduces a further step
in the translation from tile logic to rewriting logic. In fact, it shows that it is possible to start
with a suitable 2-computad instead of from the double computad and the result does not change.

Next, we define how to construct a VH-Computad starting from a given tile-computad.

Definition 5.12 Let R = (Zg,Xv, N, R) be a tTRS. The associated cartesian vh-computad
Cvh(R) is the quadruple (Tx,us, (X), Ts, (X), Ts, (X), DR}, where the set of basic cells Dg is
such that

u(h)
Dgr =

3>
3
=
—
~3
3
A
—~
=
-

9(?)
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An important property of C'vh(R) is that the source of each cell in Dp is representable as
the sequential composition of an arrow in H and an arrow in V', and the target is the sequential
composition of an arrow in V' and an arrow in H.

Definition 5.13 Given a tTRS R, the cartestan VH-logic of R is the cartesian 2EVH-category
Feovi(Cvh(R)) freely generated from C'vh(R) by the left adjoint functor associated to the theory
morphism of proposition 5.6. For § € Feovu(Ctd(R))peen we also write R Fovy 8 (R Frove -
for flat sequents). a

Theorem 5.14 Given ¢ tTRS R = (Zg,Xv, N, R), then R Fp h%g <= R FrvH h%g.

Completely analogous results hold for process tile logic.

The constraint imposed on the extended logics that the rewrite proof must be a Square can
be enforced at the meta-level of the rewriting system by means of a particular internal strategy.
Moreover, if — as 1t is the case of the examples we have studied — the term tile rewrite system is
uniform, then the internal strategy becomes very simple and may be inserted in a standard way
directly in the specification layer (see Section 6.6).

Definition 5.15 [Uniform Systems] A cartesian (respectively symmetric strict monoidal) double
category D is uniform if the 2EVH-category Fog(D) (respectively Fsg(D)) satisfies the following
conditional membership axiom:

(VA :2cell, h,g :Horizontal, v,u: Vertical).

mk(A: h,u,v,9):Dcell <= d(A) = hjune(A) =v;g

A tTRS (respectively pTRS) R is uniform if its associated cartesian (respectively symmetric
strict monoidal) double category is uniform. ad
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6 Dealing with Nondeterminism

The theoretical results presented in the previous sections show that there is a strong relationship
between the sequents which are derivable in the two (not so far apart) worlds of term tile logic
and term rewriting logic. Unfortunately, these results cannot be applied directly in rewriting
implementations of tile systems, because of the implicit nondeterminism in the specification. For
instance, the fact that a sequent is entailed by the inference rules of rewriting logic does not imply
that in an actual implementation of the system the particular rewriting computation leading to
that sequent will be performed. Therefore, we are in need of a methodological approach which
could drive the computation along the correct paths. In this section we illustrate in detail the
problems arising in a non-Church-Rosser system, and how they can be solved by means of internal
strategies in reflective languages. In particular we will use Maude to define these strategies as a
general layer to be placed on top of the specification layer.

6.1 Nondeterministic Rewriting Systems

In most cases, the behaviour of a process in a concurrent system is dependent upon the behaviours
of the other processes cooperating in the same system. For instance, in some critical states,
a process must have the opportunity of checking incoming communications from many sources,
without, at least in principle, granting a privilege to some source or to a particular kind of input.
Thus, a specification language for concurrent systems cannot leave out of consideration some
mechanism for expressing (guarded) non-deterministic choices in the body of a process. Such a
mechanism should allow dealing with the possible interactions between each process and the “rest
of the world”.

We can distinguish between three implementations — namely conditional choice, don’t know
nondeterminism, and don’t care nondeterminism — of the mechanism described above, each corre-
sponding to a different language construct!*. Just to fix the notation, we introduce some abstract
definitions, assuming that both the description of the statements of our language, and the notion
of state of the system, are elsewhere defined and known “a priori” by the reader (i.e., a statement
can involve some communication on a given channel, or some assignment to a shared variable,
while the state can be thought of as either local, private to the process, or global, assuming the
knowledge of a snapshot of the whole system at a given moment). Then, a guard is a predicate
over the collection of states. The evaluation Gd(st) of a guard G'd in a state st can give three
possible results: true, false, or undecided. The evaluation of the empty guard € returns {rue in any
state st. If G'd(st) = true, then we say that the state st satisfies the guard Gd. If Gd(st) = false
then we say that the guard G'd fails in the state st. Otherwise, we say that state st postpones
the guard G'd. Now we analyze in some detail the differences between the three approaches listed
above. Each construct is a finite collection of clauses. The first component of a clause is a guard
and the second component 1s a statement, which is called the body of the clause.

1. Conditional choice. This approach provides the user with a powerful control tool on the
execution, because the programmer knows which clause will be chosen if more than one is
satisfied. We denote this construct by

(Gdy — Staty; Gda — Stats; ... Gdy, — Staty,),
where the symbol “—” is read as then. The behaviour of the conditional choice statement
is as follows. Its guards Gdy, Gds, ..., (Gd, are evaluated in the current state st. If a
guard fails, then the corresponding clause is “deleted”. If all clauses are deleted, then the
choice statement fails. If the state st satisfies the first remaining guard, say Gd;, then the
conditional choice statement 1s replaced by the body Stat; of the corresponding clause. If
there are no satisfied guards (i.e., all the remaining guards are postponed by state st and

1% Although the syntax used for each construct has been conveniently adapted from a concurrent constraint
language [38], the notions considered here are very general and widely used [6] in computer science.

72



there’s at least one clause left), then the statement suspends until all the guards will fail or
at least one will be satisfied.

2. Don’t care nondeterminism. This construct is especially useful in concurrent program-
ming, where processes should be able to react to incoming information arriving from different
sources. If the conditional choice operator is used instead, then the sources are totally or-
dered w.r.t. the implicit priority given by the listing order of the clauses. At the semantic
level this represents an unfair policy. The syntax is

(Gdq!Staty; GdalStaty; . .. Gd,y1Staty)
where the symbol “!” is read commit, and where the overall construct is sometimes referred
to as a commitied choice. The behaviour of committed choice is as follows. Its guards Gdy,
Gds,. .., Gd, are evaluated in the current state st. As in the case of conditional choice
statement, if a guard fails, then the corresponding clause is “deleted”, and if all clauses
are deleted, then the choice statement fails. But if any (not necessarily the first) of the
remaining guards, say (Gd;, 1s satisfied by state st, then the committed choice is replaced by
the body Stat; of the corresponding clause. Here, the main assumption is that whatever will
be the selected choice, the system will continue behaving in the expected way. For instance,
this approach is well suited whenever the Church-Rosser property holds.

3. Don’t know nondeterminism. Sometimes it is not enough to explore just one branch, be-
cause many problems (e.g., in Artificial Intelligence or in Operations Research) are currently
solvable only by resorting to some sort of search or by collecting the successful computa-
tions. In this case, the nondeterminism expressed by the constructor leads to a parallel
exploration of the enabled branches. However, performance considerations suggest alterna-
tive ways when exploring the nondeterministic tree of choices (i.e., depth first equipped with
backtracking instead of breadth first). The relevant point is that, under some assumption
(i.e., finiteness of the tree) the user may explore all the branches, and collect all the solutions.
The syntax of this construct is

(GdiTStaty; GdoTStats; . . .; Gd,TStat,,)

where the symbol “I” is read as watt. The behaviour of the nondeterministic choice construct
is as follows. Its guards Gdy, Gda,. .., Gd, are evaluated in the current state st. As for the
previous statements, if a guard fails, then the corresponding clause is “deleted”, and if all
clauses are deleted, then the whole statement fails. However, if only one clause remains
and it is satisfied by the current store st, then the choice statement is said to be determinate
and it is replaced with the body of the corresponding clause. Otherwise, if there are more
clauses left, the statement is said to be nondeterminate and the alternative computation
paths are explored concurrently (in this case, also suspended guards are carried on).

In some sense, all the above descriptions are partial specifications of different informal oper-
ational semantics of some system evolving through states. Now suppose that the system comes
equipped with a general notion of success and failure, which is represented by a partial predicate
ok(_), defined over the collection of states. We say that a state st is final iff ok(st) € {true, false}.
Moreover, a computation ¢ of the system is successful iff ¢ reaches a final state st such that ok(st) =
true and for every state st’ visited by ¢, then ok(st) # false. A successful computation ¢ is min-
imal iff for every state st’ # st visited by ¢, ok(st) & {true, false}. A computation c is failing if
ok(st) = false for some state st visited by ¢. Obviously, one would be interested in discharging all
the failing computations. This means that as soon as a failure is detected the system should stop
and a new run, where different choices are made, should be considered. “Don’t know” nondeter-
minism is very important in this case, because 1t allows exploring the possible computation, thus
capturing all the successful computations. In this sense, if a successful computation exists, then it
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is surely captured by “don’t know” nondeterminism. To ensure that “don’t care” nondeterminism
also leads always to a successful computation it is necessary that all the enabled choices lead to
success. If conditional choice is considered, then it is necessary that the first enabled choice (w.r.t.
the listing order) leads to success.

In (conditional) rewriting logic, a similar problem arises whenever multiple (local) rewritings
are enabled for the same term, and some of them may lead to undesired computations. As an
example the rewriting rules

crl [choice] : t(X) => t;(X) if G (X)

crl [choi‘ce] (X)) = t,(X) if G, (X)

describe a system in which the term t(X) defines the nondeterministic choice

(G1(X) & t1(X);...;Gn(X) K tn(X))

where the value of k € {— !, T}, depends on the rewriting engine.

Maude has a default interpreter for rewrite theories that applies rules in a top-down fashion
and ensure fairness in the choice of rules to be applied. This amounts to a form of “don’t care”
nondeterminism in which the user has virtually no control on the application of the rules. But
since Maude 1s a reflective language it is possible to give the user full control of the rewriting by
importing the metalevel of some specification, and then guiding the computation with suitable
(meta-programmed) strategies [19].

6.2 Internal Strategies in Rewriting Logic

Given a logical theory T in a logic, a strategy is any computational way of looking for certain
proofs of some theorems of T'. In particular, we assume the existence of a strategy language S(7')
associated with 7" in which strategies controlling deduction in 7" can be defined. If such a language
is external to the logic, then control becomes an extralogical feature of the system. If strategies
can be defined wnside the logic that they control, we are in a much better situation, since formal
reasoning within the system can be applied to the strategies themselves. As an example, consider
a metacircular interpreter with a fixed strategy. If such strategy remains outside the logic, this will
make such an interpreter less flexible, and will complicate formal reasoning about its correctness,
whereas strategies defined within the “same” logic can be represented and can be reasoned about
at the object level. Thus, an internal strategy language [17, 13] is a theory-transforming function S
that sends each theory T to another theory S(7') in the same logic, whose deductions simulate
controlled deductions of T'. In our opinion, reflective logics are intrinsically suitable for defining
internal strategy languages of this kind, since control statements at the metalevel may be expressed
within the logic.

Given a logic, we say that it is reflective [18, 19] relative to a class C of theories if we can find
inside C a wuniversal theory U where all the other theories in the class C can be simulated, in the
sense that there exists a representation function (_t ) : Upee {7} x (1) — s(U), where s(T')
denotes the set of meaningful sentences in the language of a theory T, such that for each 7' € C
and ¢ € s(T),

ThoeUFTF .

Since U itself is representable (U € C), representation can be iterated, so that we get a reflective
tower

Thtees UrTro<«=UFUFTFg---.

If a reflective logic has an internal strategy language, then the strategies S(U) for the universal
theory are particularly important, since they represent, at the object level, strategies for computing
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in the universal theory. A metacircular interpreter for such a language can then be regarded as the
implementation of a particular strategy in S(U), and reasoning about the properties of such an
interpreter can then be carried out inside the logic itself. The class of finitely presentable rewrite
theories has universal theories (in the precise sense that there is a finitely presented rewrite theory
U such that can simulate all other finitely presented rewrite theories, including itself), making
rewriting logic reflective [17, 13].

A rewrite theory T consists of a signature X of operators, a set £ of equations, and a set of
labelled rewrite rules. The deductions of T are rewrites modulo F using such rules (also the proofs
of the deductions could be taken into account, but we restrict ourselves to consider the simpler
case). Moreover, since the meaningful sentences in the language of a rewrite theory T are rewrite
sequents ¢ = ¢/, where ¢ and ' are X-terms, the general notion of reflection presented above may
be restated in the following form. The class C is that of finitely presentable rewrite theories. Let
U be a universal finitely presentable theory. The representation function used in [17, 13] (_F )
encodes a pair consisting of a rewrite theory 7" in € and a sentence ¢ = ¢’ in T as a sentence
(T,%) = (T,t) in U, in such a way that

THt=U < UK (T,1) = (T,

where the function (_) recursively defines the representation of rules, terms, etc. as terms in U.

6.3 Collective Strategies in Maude

Maude is a logical language based on rewriting logic. For our present purposes the key point is
that the Maude implementation supports an arbitrary number of levels of reflection and gives
the user access to important reflective capabilities, including the possibility of defining and using
internal strategy languages, their implementation and proof of correctness relying on the notion
of a basic reflective kernel, that is, some basic functionality provided by the universal theory U.

The idea 1s to first define a strategy language kernel as a function Meta-Level of rewrite theories,
that sends 7" to a definitional extension of U that defines how rewriting in 7" is accomplished at the
metalevel. For instance, a typical semantic definition that one wants to have in Meta-Level(T } is
that of meta-apply(t, 7), that simulates, at the metalevel, one step of rewriting at the top of a term
t using the rule labelled [ in 7. Proving the correctness of such a small strategy language kernel
is then easily done, by using the correctness of U itself as a universal theory. The next step is to
define a strategy language of choice, say Strategy, as a function sending each theory 7' to a theory
that extends Meta-Level(T ) by additional strategy expressions and corresponding semantic rules,
all of which are recursive definitional extensions of those in the kernel in an appropriate sense, so
that their correctness can then be reduced to that of the kernel.

6.3.1 The Kernel

The Maude implementation supports meta-programming of strategies via a module META-LEVEL
defined in [14, 19], but, for efficiency reasons, the module META-LEVEL is built-in. In particular,
META-LEVEL provides sorts Term and Module, so that the representations  and T of a term ¢ and
a module 7 have sorts  : Term and T : Module. Then the declaration

protecting META-LEVEL[T]

imports the module META-LEVEL, declares a new constant T of sort Module, and adds an equation
making T equal to the representation of 7" in META-LEVEL. Therefore, we can regard META-LEVEL
as a module-transforming operation that maps a module 7" to another module META-LEVEL[77]
that is a definitional extension of U. Here, for simplicity, we adopt a restricted version of such
meta-level (e.g., we are not interested in partial instantiation of the rules to be applied during the
meta-rewriting). In particular the following operations are defined:

75



e meta-reduce(?) takes the meta-representation ¢ of a term ¢ and evaluates as follows: (a)
first ¢ is converted to the term it represents; (b) then this term is fully reduced using the
equations in T’ (c) the resulting term ¢, is converted to a meta-term ¢, which is returned as
a result.

e meta-apply(7,{,n) takes the meta-representation of a term ¢ and of a rule label [, and a
natural number in Peano representation and is evaluated as follows: (a) first 7 is converted
to the term it represents; (b) then this term is fully reduced using the equations in T'; (¢) the
resulting term ¢, is matched against all rules with label I, with matches that fail to satisfy
the condition of their rule discarded; (d) the first n successful matches are discarded; (e) if
there is an (n41)-th match, its rule is applied using that match; otherwise, {error*, empty?
is returned; (f) if a rule is applied, the resulting term #' is fully reduced using the equations
in T (g) the resulting term ¢, is converted to a meta-term f; which is returned as a result,
paired with the match used in the reduction (the operator {_,_} is used to construct the
term).

——

To make easier the notation, we have used a simpler syntax than the one of the Maude im-
plementation, where meta-reduce has an additional argument representing the module 7' (in the
meta-notation) whose equations are used to reduce the term ¢, and where meta-apply has two
additional arguments: (1) the meta-representation of the module T as for meta-reduce and (2) a
set of assignments (possibly empty) defining a partial substitution ¢ for the variables in the rules
of T labelled by I.

META-LEVEL can be considered in our terminology as a kernel internal strategy language for
rewriting logic. We describe below the part of the signature of the module META-LEVEL that is
relevant for our presentation (omitting the semantic equations). Since in all the applications that
we consider only the meta-level of one module is necessary, we give here a parametric defini-
tion of META-LEVEL, assuming that all the operations (e.g., meta-reduce, meta-apply, etc.) are
instantiated by the parameter T of sort Module.

mod META-LEVEL[T :: Module] is
sorts Qid Term TermList Label Nat Assignment Substitution ResultPair.
subsorts Qid < Term < TermList .
Assignment < Substitution .
op 0 : -> Nat
op suc(_) : Nat -> Nat
op pred(_) : Nat -> Nat
op _[_] : Qid TermList —-> Term .

op _,_ : TermList TermList -> TermList [assoc]

op error* : -> Term .

op _<-_ : Qid Term -> Assignment .

op empty : -> Substitution .

op _;_ : Substitution Substitution -> Substitution [assoc comm id: empty]

op {_,_} : Term Substitution -> ResultPair .
op extTerm : ResultPair -> Term .
op extSubs : ResultPair -> Substitution .
op meta-apply : Term Label Nat -> ResultPair .
op meta-reduce : Term -> Term .
vdots

endm

Some examples on the use of the meta-notation are presented in Appendix D, together with

the description of our Maude-like notation and the main differences with the Maude syntax. We
refer the reader to [14] for an extensive introduction to the subject.
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6.3.2 Collection of Rewritings

In many cases we need to have good ways of controlling the rewriting inference process — which in
principle could go in many undesired directions — by means of adequate strategies. Maude offers
the possibility of making these strategies internal to the logic, i.e., they can be defined by rewrite
rules, and can be reasoned about as rules in any other theory.

We illustrate this idea by partially specifying a basic internal strategy language which is
able to support “don’t know nondeterministic” specifications. In Maude 1t becomes a module-
transforming operation ND-SEM which maps a module 7" to another module ND-SEM[7] that ex-
tends the strategy kernel META-LEVEL, previously defined. Basically we define three different
functionalities, whose correctness can be easily derived from the correctness of meta-apply. The
first functionality, called first, takes as arguments (the meta-representations of) a term ¢, a la-
bel I, and a natural number n and it evaluates to the sequence'® of terms containing the first n
successful rewritings of ¢ in the theory 7" using rules with label {. If no rewrite is possible then the
empty list nilSeq is returned. If only m rewritings are possible, with m < n, then the sequence
contains only the corresponding m terms.

mod ND-SEM[T :: Module] is
protecting META-LEVEL [71]
sort TermSequence .
subsort Term < TermSequence .
op nilSeq : -> TermSequence .
op seq : TermSequence TermSequence —> TermSequence [assoc id: nilSeq]
op first : Term Label Nat -> TermSequence .
op firstAux : Term Label Nat Nat -> TermSequence .
vars ¢ : Term .
[ : Label .
n m : Nat .
eq first(¢,/,0) = nilSeq .
eq first(¢,l,suc(n)) = firstAux({,/,suc(0),suc(n)) .
ceq firstAux(¢,l,n,m) = nilSeq if n > m .
ceq firstAux(¢,l,suc(n),m) =
if meta-apply({,l,n) == error*, empty
then nilSeq
else seq(extTerm(meta-apply(¢,l,n)),
firstAux(¢,!,suc(suc(n)),m))
fi
ifn<m

A second functionality, called last, is given for collecting an unbounded number of possible
rewritings. Since the presentation of the theory 7' is finite and also the term ¢ that one wants
to rewrite is a finite term, it follows that there are always a finite number of possible (one step)
rewritings for the term ¢ in 7. However, it is common that the number of possible rewritings is
unknown by the user, so that the first operation does not give much help. We define last as a
function taking as arguments the meta-representations of a term ¢ of 7" and of a rule label [, and
a natural number n. The evaluation of this construct returns the sequence of terms containing
all the successful rewritings of ¢ in 7' using rules with label [, execept the first n ones. This can
be immediately generalized (when n = 0) to a function allRew taking as arguments the meta-
representations of ¢ and [ and returning all the successful rewritings of ¢ in 7' using rules with

label (.

op last : Term Label Nat -> TermSequence .

15Here we discuss sequences with repetitions. If one is interested (for efficiency reasons, or whatever else) to
sequences without repetitions, then the simple axiom eq seq(t, TL, t) = seq(¢t, TL) should be added for any
term ¢ and any term sequence T'L.
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op allRew : Term Label -> TermSequence .
eq last(¢,l,n) =
if meta-apply({,l,n) == error*, empty
then nilSeq
else seq(extTerm(meta-apply(¢,l,n)),
last(t,l,suc(n)))
fi .

eq allRew(?,l) = last(¢,[,0)
endm

Now it is easy to define a new layer which includes different policies for visiting the tree of non-
deterministic rewritings. Notice that the specification level is not affected by the meta-extensions.
We add a transformation TREE which maps a module 7" to another module TREE[77], extend-
ing ND-SEM[7] with a breadth-first and a depth-first visit mechanism for the nondeterministic
rewriting trees in 7.

A strategy expression [19] has either the form rewWith(¢,S), where S is the rewriting strategy
that we wish to compute, or failure, which means that something goes wrong. As the compu-
tation of a given strategy proceeds, ¢ gets rewritten according to S and S itself is reduced into
the remaining strategy to be computed. In case of termination S becomes the trivial strategy
idle. In what follows, we assume the existence of a user-definable predicate ok(_) as described
in Section 6.1.

mod TREE[7 :: Module] is
protecting ND-SEM [77]
sort TermSet .
subsort Term < TermSet
op emptySet : —-> TermSet .
op set : TermSet TermSet -> TermSet [assoc comm id: emptySet]
op isIn : Term TermSet -> Bool .
vars t t' : Term .
TS : TermSet .
ceq set(t,t’) =1
if meta-reduce(’_==_[t,t']) == ’true .
eq isIn(¢,emptySet) = false .
ceq isIn(¢,set(t’',7S)) = true

if meta-reduce(’_==_[t,t']) == ’true .
ceq isIn(¢,set(#’,7S)) = isIn(¥,TS)
if meta-reduce(’_=/=_[¢,t']) == ’true .

sorts Strategy StrategyExpression .
op idle : -> Strategy .
op rewWith : Term Strategy —> StrategyExpression .
op failure : -> StrategyExpression .
op rewWithBF : TermSequence TermSet Label —-> StrategyExpression .
op breadth : Label —-> Strategy .
vars T'L : TermSequence .
[ : Label .

eq rewWith(¢,breadth(!)) = rewWithBF (¢, emptySet,l)
eq rewWithBF(nilSeq,7'S,l) = failure .
eq rewWithBF(¢,7S,0) =
if isIn(¢,T5)
then failure
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else (if meta-reduce(’ok[t]) == ’true
then rewWith({, idle)
else (if meta-reduce(’ok[t]) == ’false
then failure
else rewWithBF(allRew(¢,l), set({,7'S),D)
fi)
fi)
fi .
eq rewWithBF(seq(¢,7L),TS,]) =
if isIn(¢,T5)
then rewWithBF(T'L,T'S,[)

else (if meta-reduce(’ok[{]) == ’true
then rewWith({¢,idle)
else (if meta-reduce(’ok[{]) == ’false

then rewWithBF(T'L,set(f,75),0)
else rewWithBF(seq(7'L,allRew(?,l)),set(¢,75),0)
fi)
fi)
fi .

We briefly comment on the breadth-first algorithm. The expression rewWith(¢,breadth(l))
means that the user wants to rewrite a term ¢ in 7" using rules with label [, and exploring all
the possibilities “in parallel” until a solution is found. This corresponds to the evaluation of the
expression rewWithBF(¢,emptySet,/). The function rewWithBF takes as arguments a sequence
of terms T'L, a set of terms TS, and a label . TS represents the set of already visited terms.
The sequence T'L contains the terms that have not yet been “checked”. If the first argument is
the empty sequence of terms, then the function evaluates to fatlure, which means that no solution
is reachable (i.e., that all the possible computations fail). If there is at least one term ¢ in the
sequence, such that ¢ ¢ T'S and ok(¢) = false, then the possible rewritings of ¢ in 7" via rules
with label [ are appended to the rest of the list (i.e., the sequence of terms is managed as a queue).
If ok (¢) = true then ¢ is a solution and the evaluation returns rewWith(¢,idle) and we are done.

op depth : Label —-> Strategy .
op rewWithDF : TermSequence TermSet Label —-> StrategyExpression .

eq rewWith(¢,depth(l)) = rewWithDF({,emptySet,{)
eq rewWithDF(nilSeq,7'S,l) = failure .
eq rewWithDF(¢,7S,0) =
if isIn(¢,T5)
then failure

else (if meta-reduce(’ok[{]) == ’true
then rewWith({¢,idle)
else (if meta-reduce(’ok[{]) == ’false

then failure
else rewWithDF(allRew(¢,l),set(¢,1'S),D)
fi)
fi)
fi .

eq rewWithDF(seq(¢,7L),TS,]) =
if isIn(¢,T5)
then rewWithDF(T'L,T'S,[)
else (if meta-reduce(’ok[t]) == ’true
then rewWith({¢,idle)
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else (if meta-reduce(’ok[t]) == ’false
then rewWithDF(T'L,set(f,75),0)
else rewWithDF(seq(allRew(¢,!),TL),set(¢,75),0)
fi)
fi)
fi .

The implementation of the strategy depth(l) for the depth-first visit of the tree is very similar
to the previous one, except that the sequence of terms 7L in rewWithDF(7T'L,T'S,!) 1s managed
as a stack intead of a queue.

Notice that this solution does not correspond exactly to the classical notion of depth-first visit,
because once a term ¢ is selected from the stack, all of its possible rewriting are calculated. To
improve the efficiency of the depth-first visit, we propose the following variant: the stack contains
pairs of the form (¢,¢), where ¢ is a term and ¢ is an integer. When such a pair is selected, it means
that only the first i — 1 rewritings of ¢ have been already inspected and the i-th rewriting ¢; of ¢
(if any) should be the next. The advantage is that the stack is shorter, because all rewritings are
computed by need. We use the name depthBT for this strategy, because it implements a sort of
backtracking mechanism. Since this strategy yields the same result as the depth strategy, in what
follows we do not specify which one is used when a depth-first visit is involved.

sorts Pair PairSequence .
subsort Pair < PairSequence .

op pair : Term Nat -> Pair .
op nilPair : -> Pair .
op seqPair : PairSequence PairSequence -> PairSequence [assoc id : nilPair]

op depthBT : Label —-> Strategy .
op rewWithBT : PairSequence TermSet Label —-> StrategyExpression .

var PL : PairSequence .
eq rewWith(¢,depthBT(!)) = rewWithBT(pair(¢,0),emptySet,{)
eq rewWithBT(nilSeq,7T'S,l) = failure .
eq rewWithBT(pair(f,n),TS,]) =
if isIn(¢,T5)
then failure

else (if meta-reduce(’ok[t]) == ’true
then rewWith({¢,idle)
else (if meta-reduce(’ok[t]) == ’false
then failure
else (if meta-apply(i¢,/,n) == error*,empty

then failure

else rewWithBT(seqPair(pair(
extTerm(meta-apply(¢,/,n)),0),
pair(t,suc(n))),set(¢,75),)

fi)
fi)
fi)
fi .

eq rewWithBT(seqPair(pair(¢,n),PL),TS,]) =
if isIn(¢,T5)
then rewWithDF(PL,TS,l)
else (if meta-reduce(’ok[t]) == ’true
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then rewWith({¢,idle)
else (if meta-reduce(’ok[t]) == ’false
then rewWithBT(PL,set(t,75),0)
else (if meta-apply(i¢,/,n) == error*,empty
then rewWithBT(PL,set(t,75),0)
else rewWithBT(seqPair(pair(
extTerm(meta-apply(¢,/,n)),0),
pair(t,suc(n)),PL),set(t,T5),)
fi)
fi)
fi)
fi .

In both cases (breadth-first or depth-first visits) the solution is processed in a deterministic
way, 1.e., if multiple solutions are reachable, then each strategy selects only one of them. It is
also possible to define a nondeterministic visit of the tree (in the sense that the specification
is nondeterministic, not the Maude-execution). Since we look for some control mechanism over
nondeterministic computations, we could use a rewriting rule with label aux instead of an equation.

op nondet : Label —> Strategy .
op rewWithND : TermSequence TermSet Label —-> StrategyExpression .
var TL' : TermSequence .

eq rewWith(f,nondet(!)) = rewWithND({,emptySet,l) .
eq rewWithND(nilSeq,7'S,l) = failure .
rl [aux] : rewWithND(seq(TL,¢,TL),TS,l) =>
if isIn(¢,7'S)
then rewWithWD(seq(7'L,TL'),TS,!)

else (if meta-reduce(’ok[t{]) == ’true
then rewWith({¢,idle)
else (if meta-reduce(’ok[{]) == ’false

then rewWithWND(seq(7'L,TL'),set(t,7S),D)
else rewWithND(seq(TL,allRew(¢,0),TL"),
set(t,75),D)
fi)
fi)
fi .

If we add an appropriate notion of success, then the module ND-SEM[TREE[7]] would allow
collecting the nondeterministic visits to the (nondeterministic) tree of rewritings in 7', and the
module TREE[TREE[77]] allows different mechanisms for exploring the resulting tree of nondeter-
ministic application of the meta-level rule aux. For instance, it could be possible to collect all the
solutions of the initial nondeterministic system (whereas TREE[7] allows finding only one solution)
by defining a very simple notion of meta-success via a predicate ok at the meta-level. The idea
is to use one of the strategies at the meta-meta-level to explore all the possible nondeterministic
visits of the tree, finding a success iff every application of the rule aux at the meta-level leads to
a meta-success. The notion of meta-success that we are looking for is given by a meta-term of
the type rewInWithND(LT, TS, l) where LT is a TermList such that all the terms in LT are
successful (and LT is not empty).

As an example consider the following module Ex defining the (finite) nondeterministic transition
system below, where the only states with success are s(3), s(4) and s(10).
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mod EX is

sort State .
ops s : Nat -> State .
ok : State -> Bool .

rl [choice] : s(1) => s(2)
rl [choice] : s(1) => s(3)
rl [choice] : s(1) => s(4)
rl [choice] : s(2) => s(5)
rl [choice] : s(2) => s(8)
rl [choice] : s(3) => s(7)
rl [choice] : s(3) => s(8) .
rl [choice] : s(4) => s(9) .
rl [choice] : s(6) => s(10)

eq ok(s(3)) = true .
eq ok(s(4)) = true .
eq ok(s(10)) = true .

endm

Executing the query rew s(1) gives state s(5) as a result, which is not a solution (this
corresponds to executing a run of the system which can terminate in any final state). Executing
the meta-queries

Maude> rew rewWith(’s[’1], breadth(’choice))
Maude> rew rewWith(’s[’1], depth(’choice))
Maude> rew rewWith(’s[’1], nondet(’choice))

leads respectively to the list of results

rewWith(’s[’3], idle)
rewWith(’s[’10], idle)
rewWith(’s[’3], idle)

All of them are acceptable solutions, and we can also observe that the nondeterministic strategy for
the reductions gives the same result as the depth-first strategy. However, none of these strategies
leads to state s(4), which is a reachable solution. But all the executions (in TREE[TREE[EX]]) of
the meta-meta-queries
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Maude> rew rewWith(’rewWith[’_[_J[’’s,’’1], ’nondet[’’choicel], breadth(’aux))
Maude> rew rewWith(’rewWith[’_[_J[’’s,’’1], ’nondet[’’choicel]l, depth(’aux))
Maude> rew rewWith(’rewWith[’_[_J[’’s,’’1], ’nondet[’’choicel]], nondet(’aux))

give as a result the same (meta-meta-)term

rewWith(’rewWithND[(’seq[(’_[_1[’’s, ’’10]),
(’_[_][”S, ::3])’
¢C_10’s, 724D,
Cset[C_[10s, ’11),
(’_[_][”S, ::2])’
(’_[_][”S, ::5])’
¢C_10’s, 7’611,
’2choice],
idle)

collecting all the successful reachable states of the system in the (meta-meta-)term notation
(’seql’_[_10’s, ’7101), (_[10’s, »3]1), C_L[10 s, *’41)1)

A better solution to the problem of collecting the “solutions” of the system can be given by
analyizing the nature of the nondeterministic rule aux. It is possible to distinguish two cases
depending on the selected term ¢. If ¢ is successful, then the rule discharges all the other possible
solutions and chooses ¢ as the final state. If ¢ is not successful (and it is not yet visited) then the
computation proceeds by exploring also the rewritings of t. Whenever we are looking for the whole
set of solutions, we need either to apply rule aux to a selected term ¢ that is not successful, or to
stop as soon as we reach a sequence of successful terms only. Notice that there is only one solution
and that all the computation paths leading to that solution have always the same length. It follows
that we can define a simpler specification by using a (conditional) equation and a (conditional)
rewrite rule. The strategy that we obtain can be described as: “Expand any term that is not a
solution, and eventually choose one of the solutions (if it exists)”. Then, at the meta-meta-level,
we need only one step of rewriting to find a solution, and the set of meta-solutions can be collected
via the function allRew. Moreover, the notion of success at the meta-level is simpler and more
intuitive. We make use of an auxiliary predicate okSeq to recognise the sequences of solutions.

op okSeq : TermSequence —> Bool .
eq okSeq(nilSeq) = true .
ceq okSeq(f) = true
if meta-reduce(’ok[t]) == ’true .
ceq okSeq(f) = false
if meta-reduce(’ok[t]) =/= ’true .
eq okSeq(seq(t,7L)) = okSeq(?) and okSeq(7'L)

eq rewWith(¢,nondet(!)) = rewWithND({,emptySet,()
eq rewWithND(nilSeq,7'S,!) = failure .
ceq rewWithND(seq(7T'L,t,TL"),TS,l) =
if isIn(¢,7'S)
then rewWithND(seq(TL,TL"),TS,I)
else if meta-reduce(’ok[t]) == ’false
then rewWithWND(seq(7'L,TL'),set(t,7S),D)
else rewWithND(seq(TL,allRew(t,l),TL'),set(t,T7S),D)
fi
fi
if meta-reduce(’ok[t]) =/= ’true .
crl [aux] : rewWithND(seq(T'L,t,TL'),TS,l) =>
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rewWith(¢,idle)
if okSeq(seq(TL,t,TL"))

op ok : StrategyExpression —-> Bool .
eq ok(rewWith(¢{,idle)) = true .

If we consider the module ND-SEM[TREE[EX]] where EX is the module defined in the previous
example, then the meta-meta-query

Maude> rew allRew(’rewWith[’_[_J[’’s, ’’1], ’nondet[’’choicel], ’aux)
gives as result the sequence of meta-terms

seq(rewWith[(°_[_1[’’s, *’3]), ’idlel,
‘rewWith[(?_[_1[’’s, ’’4]1), ’idle],
‘rewWith[(*_[_1[’’s, ’’10]), ’idlel)

The results presented in this section can be summarized as follows. Given a nondeterministic
rewriting specification 7', equipped with a general notion of “success”, then:

e the module ND — SEM[T] allows collecting and analyzing all the possible one-step rewritings
of a term (modulo the equations of T);

e the module TREE[T] allows analyzing one solution among those reachable from a term, de-
pending on the adopted strategy among the three proposed;

e the module ND — SEM[TREE[T]] allows collecting and analyzing all the possible (subtree-
topmost) solutions reachable from a term. Notice that each solution (if any) is reachable
with only one step of rewriting. In Section 7 we will illustrate some application of this
procedure to the executable implementation of two tile systems for CCS-like process calculi.

Furthermore, if we assume that we are interested only in solutions which differ from the “initial”
term, then we could change the equations

eq rewWith(¢,depth(l)) = rewWithDF({,emptySet,()
eq rewWith(¢,breadth(!)) = rewWithBF({,emptySet,()
eq rewWith(¢,nondet(!)) = rewWithND({,emptySet,()

which are contained in the module TREE[T] by the following equations

eq rewWith(¢,depth(l)) = rewWithDF(allRew(?,l),t,{)
eq rewWith(?,breadth(!)) = rewWithBF(allRew(?,!),t,()
eq rewWith(¢,nondet(!)) = rewWithND(allRew(?,l),?,l)

Then, the module TREE[TREE[T]] would allow us to collect and analyze all the possible so-
lutions of the system. The result is an abstract view of the system T equipped with one-step
nondeterministic rewritings from one solution to its reachable solutions.

6.4 Nondeterminism and Term Tile Systems

The general strategies that we have presented apply immediately to the translations of uniform tile
systems. All we need to specify is the right notion of success, which is user-definable case by case.
For instance, a general notion of success for uniform tile systems consists of VH configurations as
we will see in Section 6.6. In fact, a typical query in a tile system could be something like “derive
all (some of) the tiles with a given horizontal source h and vertical target @”:
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But also more constrained queries are feasible like “derive all (some of) the tiles with a given
vertical source h and horizontal target « which have the identity as horizontal source”. In both
cases, our strategies have been succesfully implemented and tested.

A surprising thing, in the translation of a tile system, is that queries start with a horizontal
target rather than with a source. The obvious explanation consists in the use of terms to define the
vertical arrows. In this case this is the only correct procedure. However in some of the examples
that we have considered when developing this approach, especially in the case of CCS-like process
algebras [35], we realized that the vertical and horizontal dimension could be swapped in such a
way that the intuitive queries are of the kind “derive all one-step transitions for a given agent
P”. This is possible because the vertical signature consists of unary actions. So we can reverse
the vertical arrow in the tile rewrite system and then rotate clockwise by 90 degrees the tiles
when implementing the system, as illustrated below for the tiles defining the action of a prefix
component of the system:

1471 1t 14
idl Pra lu — idT Pra Tu = zdl Pru lu-
1T>1 171 1—N>1

If we examine the 2-cell translations, then the motivation for this kind of swapping of arrows is
clear:

u(p-P) u.P
AL AL
P u(P)

The cell on the left states that if we try to force the process pu.P to perform a p action, it
succeeds. The other cell states that the process p.P may perform the action pu. Consequently,
an implementation using the first kind of rules can only be used to test CCS process, whereas an
implementation based on the second kind of rules may generate all the possible evolutions of the
system.

6.5 Non Uniform Case

If the tTRS is not uniform, then also the actual proof term decorating the derivation has to
be taken into account. Consequently, the meta-strategies also need to be changed in order to
record not only the state, but also the derivation steps which led to that state. This means
that the structure of the meta-state would become very large very fast during the execution, and
that the computations would be affected by becoming very slow. Since at present we don’t have
any meaningful examples of non-uniform systems, we are not really interested in having such an
implementation.

6.6 Uniform Case

In this section we show how it is possible to make use of the membership assertions to directly

model uniform cartesian theories.
Let R = (¥, Xv, N, R) be a generic tTRS, where ¥ and Ty are two (one-sorted) disjoint
signatures and R(N) is a set of rules having the form
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Figure 6: The poset of sorts for R.
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where h € (T (Xo))™, 7 € (T (Xn))*, u € Tsy (Xim), and g € T, (X}), such that the cartesian
tile logic of R (i.e., the cartesian double category freely generated from Ctd(R) by the left adjoint
functor described in Proposition 5.4) is uniform.

Then, we define a rewrite theory ﬁ, where the poset of its sorts is the one illustrated in Fig. 6.
We briefly comment on their meaning: the sort W informally contains the variables of the system
as constants; the sort H contains the terms over the signature Xp and variables in W (similarly
for the sort V); the sort HV contains those terms over the signature Xgyy and variables in W such
that they are decomposable as terms over the signature Xy applied to terms over the signature
Yg (similarly for VH); the sorts QH, QV, QHV, and QVH are quoted versions of the corresponding
sorts described before (we will denote the quoted version of a signature Xg by Xg/, adopting the
convention that all the operators of the latter are syntactically quoted version of the operators
in X5, 1e., f € Tg, iff f/ € £g/ ). The sort U contains terms over the signature Lgyvumruv
and variables in W. As summarized above; we introduce the following operations and membership
assertions:

oph : U" —>U .
opv :U" —>TU.
opgh : U" -> U .
opqv : U > U .

vars X1 ... Xmax : U .

cmb h(X1,...,Xn) : H iff X1 ... Xn : H .

cmb v(X1,...,Xm) : V iff X1 ... Xn : V .

cmb h(X1,...,Xn) : VH iff X1 ... Xn : VH .
cmb v(X1,...,Xm) : HV iff X1 ... Xn : HV .
cmb gh(X1,...,Xn) : QH iff X1 ... Xn : QH .
cmb qv(X1,...,Xm) : QV iff X1 ... Xn : QV .
cmb gh(X1,...,Xn) : QVH iff X1 ... Xn : QVH .
cmb qv(X1,...,Xm) : QHV iff X1 ... Xn : QHV .
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for each h € X, and v € Yy . After that we add two operations which allow translating a term
into its quoted version and viceversa.

quote : U > U .
unquote : U -> U .

cmb quote(X1) : QH iff X1 : H .
cmb quote(X1) : QV iff X1 : V .
cmb quote(X1) : QHV iff X1 : HV .
cmb quote(X1) : QVH iff X1 : VH .
cmb quote(X1) : W iff X1 : W .

eq quote(h(X1,...,Xn)) = gh(quote(X1),...,quote(Xn))
eq quote(v(X1l,...,Xm)) = gqv(quote(X1),...,quote(Xm))
ceq quote(X1) = X1 if X1 : W .

cmb unquote(X1) : H iff X1 : QH .
cmb unquote(X1) : V iff X1 : QV .
cmb unquote(X1) : HV iff X1 : QHV .
cmb unquote(X1) : VH iff X1 : QVH .
cmb unquote(X1) : W iff X1 : W .

eq unquote(gh(X1,...,%n)) = h(unquote(X1),...,unquote(Xn))
eq unquote(qv(X1,...,Xm)) = v(unquote(X1),...,unquote(Xm))
ceq unquote(X1) = X1 if X1 : W .

The rewriting rules are just the quoted versions of the rules in R:
rl [qr] : quote(u(h)) => quote(g(¥))

We then add an operator top(_) to indicate the term to be rewritten, and two rules to begin and
to end the rewriting computation.

top : U > T .

crl [start] : top(X1) => top(quote(X1)) if X1 : HV .
crl [end] : top(X1) => top(unquote(X1)) if X1 : QVH .

The following result may be easily proved via a simple inspection of the rules in R.

Theorem 6.1 Given a uniform cartesian tile rewrite system R then

R bp h—g <= R F top(u(F)) = top(g(¥)).

In Section 7 this translation is applied to the t TRS for finite C'CS, and an example of execution
is illustrated in detail.
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7 Maude as a Semantic Framework

In this section we will show how Maude — thanks to its reflective capabilities and, in particular,
thanks to the possibility of defining internal strategy languages — can in fact be used to prototype
and execute tile rewriting systems.

7.1 TFinite CCS

Milner’s Calculus for Communicating Systems (CCS) [59] is among the best well-known and stud-
ied concurrency models. In the recent literature, several ways in which CCS can be conservatively
represented in rewriting logic have been proposed [47, 70]. We present here an executable imple-
mentation of CCS arising from the translation in term tile logic of the tile rewriting system given

in [35] for finite CCS.

Definition 7.1 [Calculus of Communicating Systems] Let A (ranged over by «) be the set of
basic actions, and let A be the set of complementary actions (where (_) is an involutive function
such that A = A and AN A = {)). We denote by A (ranged over by ) the set AUA. Let 7 ¢ A
be a distinguished action, and let Act = AU {7} (ranged over by p) be the set of CCS actions.
Then, a finite CCS process is any term generated by the following grammar:

Pu=nil | pP | P\a | Pla/B] | P+ P | PIP.
Welet P, ), R, ...range over the set Proc of CCS processes. m|

Assuming the reader reasonably familiar with the notation, we give an informal description
of CCS algebra operators: the constant nil yields the inactive process (i.e., it cannot perform
any action); the process p.P is a process behaving like P, but only after the execution of the
communication g (.- is called a prefiz operator); the process P\« is the process P with the «
and @ actions blocked by the restriction operator _\«; the process P[a/j] behaves like P with
actions v and & relabelled by 4 and 3; the process P + Q is the nondeterministic (guarded) sum
of processes P and @; finally, the process P|Q is the parallel composition of processes P and Q.
Notice that the only difference w.r.t. the traditional CCS operators is given by the relabelling, for
which we adopt a finitary approach, thus allowing a much simpler representation in the Maude
language. However, the non finitary case could also be handled as well in our framework.

Example 7.2 Assuming A = {a; | i € IN}, then the operator _[®] with & = {[a;/a;41] | i € N}
cannot be defined by a finite application of relabellings in the process algebra of Def. 7.1. However,
since a finite process can only perform finitely many actions, then for each finite CCS process P,
it is possible to “simulate” P[®] in the process algebra of Def. 7.1. o

Given a process P, its dynamic behaviour is usually described by a transition system, presented
in the SOS style, where the transition relation is freely generated from a set of inference rules.
The rules for CCS are usually presented via inference schemes that are parametric w.r.t. either the
action performed, or the operator involved, or the underlying processes (i.e., there are three families
of operators indexed by actions, namely {p._ | p € Act}, {\a | € A}, and {_[o/fF] | o, 3 € A}).

Definition 7.3 [Operational Semantics of CCS] The CCS transition system is the relation T' C
Proc x Act x Proc inductively generated from the following set of axioms and inference rules

PLQ ) P-Q
— T o HEAwal ula/ 5]
WP p P\a -~ Q\a Pla/8) " Qla/ ]
P P-+tQ
P+R-5Q R+P-LqQ
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P P-2Q, P2 Pt

PIR L Q|R PP - Q@ RIP X R|Q
where P -2+ () means that (P, p,Q) € T, and the action p[a/f3] is defined as follows:

B oifp=a

pla/Bl=4q B ifp=a

p otherwise

O

The operational meaning is that a CCS process P may perform an action g becoming the
process @ iff it is possible to inductively construct a sequence of rule applications to conclude
that P - ). More generally, a CCS process Py may evolve to process P, iff there exists a
computation Py 2= Py ... Py_y 22 P,. In [35] it is shown how to associate an algebraic (tile)
rewriting system to CCS. We adapt Gadducci and Montanari’s definition to settle the following
tTRS for CCS.

Definition 7.4 [Term Tile System for Finite CCS] The tTRS associated to CCS is the tuple
Recs = {Za,Xp,N,R), where X4 = {pp : 1 — 1 | pp € Aet}, Xp is the signature of CCS
processes; and the rules are the following:

{z1) (z1\a) . _
acty - 1o (a1) — =" {u(r1)) respa s La (uen)) — = (o) (i p € {a,a})
(#11a/5) ar) ifp=a
relyap 14 (p(e)) ———— (1) witht =< p(z) fpu=a
(wala/ Al p(x1) otherwise
] (z1) ] (z2)
(a1 29 {pler), 22) s (uln) Hhu 29 (wn, ple)) - ()
) (w1]z2) ) (z1]z3)
29 (e o T ) L2 G S ()
< (z1|w2)
[Ix s 29 (A(21), A22)) oo (r(21))

O

Here, the vertical dimension is associated to process descriptions, whereas the horizontal di-
mension represents the (opposite of the) dynamic evolution of the system!®. For the reader already
acquainted with the tile system of Gadducci and Montanari, the previous definition may appear
somewhat odd, because the two dimensions are reversed in a counterintuitive way. The reason 1s
that the direct translation of our system in a Maude module allows collecting the possible evo-
lutions of a process, whereas the ordinary definition would allow only testing executable actions.
The following example should help making our motivation more clear.

16 We say opposite, because the direction of the arrows representing the actions performed by the system is the
opposite from that of their computationally intuitive direction.
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Example 7.5 Let us consider the simple process a.nil. and let us suppose that we have an
executable module both for our system and for the tile system defined in [35, 58]. In our case the
query is uniquely determined, and the system can give only one answer:

0 idg
—_—

nil

= nil

—e— O

a.xy a(zy)

e S S

which corresponds to the proof sequent 1,;; - act,. In the other case, there are as many possible
queries as the actions in Aect, but only one of them enables the rewriting.

0 nel 1 T 1 0
l@(m) = id“l i a=p
1 0 nil 1

O

Given a process Py (i.e., an arrow from 0 to 1 in the process dimension) the comparison between
the two models can be graphically extended to computations Py L P...P_ RLN P,

Po

0
P, / ]l Py

Pp_y

|
1 ﬁu T 1 Hul 1 : computation
n
A
computation
< - —

where dashed arrows represent the direction of computational evolutions of processes.

Analogously to [35], the following result holds, establishing the correspondence from the set-
theoretic view of the traditional SOS semantics for CCS, and the sequents entailed by term tile
logic.

Proposition 7.6 For any CCS agents P and @), and action p:

P
PrQeT e Rocoshp0a <>%><u<x1>>.

Moreover, the tTRS Reccs guarantees the following result:
Proposition 7.7 The iTRS Rccs 15 uniform.

From Proposition 7.7 it follows immediately that a suitable implementation of Rceg can be
obtained by taking the rewriting system Rccg defined in Section 6.6, and considering a success
predicate defined by means of the assertion:

ceq ok(top(t)) = true if ¢ : VH .
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Then, the meta-strategies defined in Section 6.3 for collecting the correct rewritings can be
directly applied. We give the complete description of the resulting module CCS.

mod CCS is protecting MACHINE-INT .
sorts W H V HV VH U QH QV QHV QVH .

subsorts W< HV < HVVH <U.
W< QH QV < QHV QVH < U .

sorts Channel Act
subsort Channel < Act

op a : MachineInt —-> Channel .
op bar : Channel -> Channel .
op tau : -> Act

op nil : -> U .

op pre : Act U > U .

op res : U Channel -> U .

op rel : U Channel Channel -> U .
op plus : UU > U .

oppar : UU -> U .

op exec : U Act -> U .

op gnil : -> U .

op qpre : Act U -> U .

op qres : U Channel -> U .

op qrel : U Channel Channel -> U .
op qplus : UU > U .

op gpar : U U > 1T .

op qexec : U Act > U .

vars P ) : U .
A : Act
C' D : Channel .

eq bar(bar(A4)) = A .

mb nil : H .

cmb pre(A,P) : Hif P : H .

cmb res(P,C) : H if P : H .

cmb rel(P,C', D) : Hif P : H .

cmb plus(P,Q) : Hif P : Hand ) : H .
cmb par(P,Q) : Hif P : Hand @ : H .
cmb exec(P,A) : Vif P : V .

mb nil : VH .

cmb pre(A,P) : VH if P : VH .

cmb res(P,C) : VH if P : VH .

cmb rel(P,C, D) : VH if P : VH .

cmb plus(P,Q) : VH if P : VH and ) : VH .
cmb par(P,Q) : VH if P : VH and ) : VH .
cmb exec(P,A) : HV if P : HV .
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mb gnil : QH .

cmb gqpre(A,P) : QH if P : QH .

cmb qres(P,C') : QH if P : QH .

cmb qrel(P,C', D) : QH if P : QH .

cmb gqplus(P,) : QH if P : QH and () : QH .
cmb gpar(P,Q) : QH if P : QH and @ : QH .
cmb gexec(P,A) : QV if P : QV .

mb gnil : QVH .

cmb qpre(A,P) : QVH if P : QVH .

cmb qres(P,C') : QVH if P : QVH .

cmb qrel(P,C', D) : QVH if P : QVH .

cmb gqplus(P,) : QVH if P : QVH and ) : QVH .
cmb gpar(P,Q) : QVH if P : QVH and ) : QVH .
cmb gqexec(P,A) : QHV if P : QHV .

op quote : U -> U .

cmb quote(P) : QH if P : H .
cmb quote(P) : QV if P : V .
cmb quote(P) : QHV if P : HV .
cmb quote(P) : QVH if P : VH .
cmb quote(P) : W if P : W .

eq quote(nil) = gnil .

eq quote(pre(A,P)) = gpre(A,quote(P)) .

eq quote(res(P,C)) = gres(quote(P),C) .

eq quote(rel(P,C', D)) = grel(quote(P),C,D) .
eq quote(plus(P,@)) = gplus(quote(P),quote(()
eq quote(par(F,Q)) = gpar(quote(P),quote(q))) .
eq quote(exec(P,A)) = gexec(quote(P),A) .

ceq quote(P) = P if P : W .

op unquote : U -> U .

cmb unquote(P) : H if P : QH .
cmb unquote(P) : V if P : QV .
cmb unquote(P) : HV if P : QHV .
cmb unquote(P) : VH if P : QVH .
cmb unquote(P) : W if P : W .

eq unquote(qnil) = nil .

eq unquote(qpre(A4,P)) = pre(A,unquote(F)) .

eq unquote(qres(P,C)) = res(unquote(P),C) .

eq unquote(qrel(P,C', D)) = rel(unquote(P),C,D) .
eq unquote(qplus(P,Q)) = plus(unquote(P),unquote(Q)) .
eq unquote(qpar(P,Q)) = par(unquote(P),unquote())) .
eq unquote(qexec(P,A)) = exec(unquote(P),A) .

ceq unquote(P) = P if P : W .

op top : U > T .

crl [qr] : top(P) => top(quote(P)) if P : VH .
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rl [qr] : gqpre(A,P) => qexec(P,A) .

crl [qr] : gqres(qexec(P,A),C') => gexec(qres(P,(),A)
if A =/= C and A =/= bar(C)

crl [qr] : qrel(qexec(P,A),C,D) => gexec(qrel(P,C,D),A)
if A =/=C, A =/= bar(C) .

crl [qr] : qrel(qexec(P,A),C,D) => gexec(qrel(P,C,D),D)
if A == .

crl [qr] : qrel(qexec(P,A),C,D) => gexec(qrel(P,(',D),bar(D))
if A == bar(C) .

rl [qr] : gqplus(gexec(P,A),Q) => qexec(P,A) .

rl [gr] : gplus((@),qgexec(P,A)) => gexec(P,A) .

rl [qr] : gpar(qexec(P,A4),Q) => gexec(qpar(P,Q),A) .

rl [qr] : qpar(Q,qexec(P,A)) => qexec(gpar(@,P),4) .

crl [qr] : gpar(qgexec(P,(),qexec(Q,D)) => gexec(gpar((),P),tau)
if C' == bar(D)

crl [qr] : top(P) => top(unquote(P)) if P : QHV .
op ok : U —> Bool .

ceq ok(top(P)) = true if P : HV .

endm

The code exactly corresponds to the translation illustrated in section 6.6, but we use a more
verbose syntax for the operators of the tTRS. In particular, we assume that:

e the denumerable set of basic actions is {a(7) | i € IN},

e the special action 7 is denoted by tau,

e the inactive process nil is denoted by nil,

e the action prefix p.P is denoted by pre(u, P),

o the restriction P\« is denoted by res(P, «)

o the relabelling P[a/f] is denoted by rel(P, «, 3),

e the nondeterministic sum P + @ is denoted by plus(P, @),
o the parallel composition P|Q is denoted by par(P,Q), and

e the dynamic evolution u(P) is denoted by exec(P, u).

Notice that the sort W is necessary for executing partially specified queries (in this case the
process variable that are used must be declared as constants having sort W).

In order to apply the internal strategies for collecting the behaviours of a process, the definition
of the function allRew in module ND-SEM must be slightly changed. The reason is that the function
meta-apply apply the rewriting only on top of the term, whereas the rules for CCS can occur in a
proper subterm. Therefore, we define a new allRew that evaluates all the possible rewritings of the
term and also of every proper subterm, by a recursive exploration of each argument, accomplished
by the auxuliary function allRewAux (it receives an additional numeric parameter n, indicating
that we want to collect all the possible rewritings of the n-th argument of ¢, if it exists).
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vars t : Term .
{ : Label .
n : Nat

op allRew : Term Qid —> TermSequence .
op allRewAux : TermList Qid Nat -> TermSequence .
eq allRew(?,l) = seq(last(¢,/,0), allRewAux(?¢,/,suc(0)))
eq allRewAux(?¢,l,n) =
if getArgument({,n) == error*
then nilSeq
else seq(replaceSeq(t,allRew(getArgument({,n),l),n),
allRewhAux(¢,{,suc(n)))
fi

Two additional function getArgument and replaceSeq must be defined to extract the n-th
argument from ¢ and to replace 1t with all its possible rewritings according to rules labelled by .

op getArgument : Term Nat -> Term .
op getArgumentAux : TermList Nat -> Term .

vars F' : Qid .
RL RL' : TermList .
t' : Term .

eq getArgument(F ,n) = error* .
eq getArgument(F'[RL],n) = getArgumentdux(RL,n)
eq getArgumentAux(?,n) =
if n == suc(0)
then ¢
else errorx*
fi .
eq getArgumentAux((¢,RL),n) =
if n == suc(0)
then ¢
else (if n > O
then getArgumentiux(RL,pred(n))
else errorx*
fi)
fi .

op replaceSeq : Term TermSequence Nat -> TermSequence .
op replaceTerm : Term Term Nat -> Term .
op replaceTermAux : TermList Term Nat -> TermList .

eq replaceSeq(t,nilSeq,n) = nilSeq .
eq replaceSeq(t,t',n) = replaceTerm(¢,t,n)
eq replaceSeq(t,seq(t',7L),n) =
seq(replaceTerm(¢,t’,n),replaceSeq(¢,7L,n)) .
eq replaceTerm(F,t,n) = error* .
eq replaceTerm(F[RL],t,n) = FlreplaceTermAux(RL,t,n)]
eq replaceTermAux(?,t',n) =
if n == suc(0)
then t/
else error*
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fi .
eq replaceTermhux((¢{,RL),t',n) =
if n == suc(0)
then (¢, RL)
else (if n > 0
then (¢, replaceTermAux(RL,t',pred(n)))
else error*
fi)
fi .

Example 7.8 We show the result of a computation in ND-SEM[TREE[CCS]], collecting the suc-
cessful states reachable from the process (ay.nil + az.nil)|a;.nil. We use a meta-meta-query to
collect all the interesting solutions. The meta-meta-notation could require some acquaintance with
meta-translations, but some tools will soon be available to perform automatic translations. For
the moment, we hope that the indentation suffices to make easier the reading.

Maude> rew allRew(’rewWith[(’_[_1[’’top,
C_C[A0par, C_,_L
C_C[A0plus, (°_,_L
¢C_C10pre, C_,_[C_L[10’a, *’11), ’’nill)]),
¢C_Cd0pre, C_,_[C_[I0’a, *’21), ’’nill)])
D,
¢C_Cd0pre, C_,_[C_[I0’bar, (°_L[_I0’a, >’11)1), ’’nill)])
DDHD,

(’convnondet[’’qr])], ’caux) .

rewrites: 26822 in 719ms cpu (729ms real) (37252 rewrites/second)
result TermSequence:
seq(
**% a1 (nil |ap.nil)
‘rewWith[(C°_[_1[’’top, (°_[_1L
»rexec, (P_,_[
C_C[A0par, C_,_L
’’nil,
C_[A0pre, C_,_[
¢C_I10°bar, (C_[_10a, >211)1),
’’nil])])
D,
C_[107a, 2211011, idlel,

**% ay(ar(nil | nil))
‘rewWith[(C°_[_1[’’top, (°_[_1L
’rexec, (’_,_L[
(_[ 10 ’exec, (°_,_L
C_[10par, (’_,_[’’nil, ’’nill)]),
C_[10bar, CC_[10a, 2211111,
C_[A0a, »211)1)1)1), ’idlel,

**% a1 (ar(nil | nil))
‘rewWith[(C°_[_1[’’top, (°_[_1L
’rexec, (’_,_L[
C_[10exec, (°_,_L
C_[10par, (’_,_[’’nil, ’’nill)]),
C_[L10a, 221HDH 1),
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C_A0’bar, (C_[_10°a, °711)1)1)1)1), ’idlel,

**% T(nil | nil)

‘rewWith[(C°_[_1[’’top, (°_[_1L

"rexec, (7_,_L
C_[ 10 ’par, (’_,_[’’nil, *’nill)]1),
»2taul)])]), ’idlel,

**% ao(nil |ap.nil)
‘rewWith[(C°_[_1[’’top, (°_[_1L
Yrexec, (’_,_L
C_C[A0par, C_,_L
nil,
C_[A0pre, C_,_[
C_[10bar, CC_[_10a, 2211)1),
»’nil]1H1H1),
C_[A0a, *22]1)1)1)1), ’idlel,

**% as(ar(nil | nil))
‘rewWith[(C°_[_1[’’top, (°_[_1L
Yrexec, (’_,_L
(_[ 10 ’exec, (°_,_L
C_[10par, (’_,_[’’nil, ’’nill)]),
C_[10bar, CC_[10a, 2211111,
C_[A0a, *22]1)1)1)1), ’idlel,

**% a1 (az(nil | nil))
‘rewWith[(C°_[_1[’’top, (°_[_1L
Yrexec, (’_,_L
(_[ 10 ’exec, (°_,_L
C_[10par, (’_,_[’’nil, ’’nill)]),
C_[L10a, 2221H)1H 1),
C_[10bar, (C_[102a, 2211)1)1)1)1), ’idlel,

**% a1((ay.nil + ag.nil) | nil)
‘rewWith[(C°_[_1[’’top, (°_[_1L
Yrexec, (’_,_L
C_C[A0par, C_,_L
C_C[A0plus, (°_,_L
C_[A0pre, C_,_L
(:_[_][::a’ ::1])’
’’nill)]),
C_[A0pre, C_,_L
(:_[_][::a’ ::2])’
»’nil]1H1H1),
’’nill)]),
C_[10bar, (C_[102a, 2211)1)1)1)1), ’idlel,

**% (ap.nil 4+ ag.nil) | a.nil
‘rewWith[(°_[_1[’’top,
C_[10par, C_,_L
C_C[A0plus, (°_,_L
C_[ 10 pre, (’_,_[C_[10[’a, *’11), *’nil])]1),
C_[ 10 pre, (_,_[C_[10[’a, *’2]1), ’’nill)])
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Hh,
C_[ 10 pre, C_,_[C_C[ 10 bar, (°_[_1[’’a, 211)1), ’nill)1)
1)1)1), ’idlel)

Notice that all the possible interleaving computations of the initial process are collected (the
last answer corresponds to the idle computation). a

7.2 Concurrent and Located CCS

In the spirit of true concurrent semantics, the notion of concurrency cannot be reduced to nonde-
terminism via interleaving as it happens for the implementation that we have considered in the last
section. To overcome this problem, one possibility is to define a relation representing those pairs of
events that can occur in any order, i.e., the commuting diamonds of the transition system [8, 26].
From an operational point of view, this corresponds to defining a concrete concurrent machine
implementing the calculus. As an alternative, it could be possible to define a model where the
notion of observation captures causal dependencies between events or between the places where
they occur (e.g., their locations). In [28], a uniform treatment for both the operational and the
abstract concurrent semantics of a CCS-like process calculus is provided by means of tile logic.
In particular, term graphs are used to model the structure of configurations and effects of the
resulting (flat) tile systems. As discussed in Section 2.1.1, the term graph structure is essentially
a weak cartesian category where two naturality axioms are missing. From another perspective,
a weak cartesian category is just a particular symmetric strict monoidal category. Thus, their
systems should be placed somewhere in between process tile logic and term tile logic. In this
section we propose a graph-like presentation of those systems which can be easily formulated in
term tile logic and hence can be implemented in Maude. Although we are convinced that it is
possible to generalize this procedure, here we deal only with our case-study.

Definition 7.9 [Simple Process Calculus] Let A, A, and Act be as in Def. 7.1. Let Loc be a
totally ordered (by <) denumerable set of locations, ranged over by [. Then a located process P is
a term generated by the following grammar:

Go=ni | p.G | G+G | GG

P:=G | l:P | PP

where, for the sake of simplicity, we distinguish the ground processes (i.e., processes without
locations), ranged over by G, G’, and so on. a

Locations [9] are introduced to allow the external observer to see an action together with the
location where it takes place. As an example, this approach distinguishes process «.g.nil+ 5.a.nil
from «.nil|B.nil, because the second process can perform « and @ separately in different places,
while the first process cannot. The operational semantics 1s defined by a transition system whose
labels consist of actions together with strings of locations, denoted by u. In a synchronization, the
strings associated to the synchronizing actions are paired (in the strong version) or erased (in the
weak case). We call a generic label of the transition system a denotation, and denote by Den the
set of denotations (ranged over by k). In lk, the location ! is concatenated with each string in k.
As a matter of notation, we use loc(P) and loc(k) to indicate the set of location names occurring
in process P or in denotation k. It follows that loc(G) = @ for any ground process G.

Definition 7.10 [Operational Semantics] The transition algebra T'A of our simple process calculus
is defined by the following axioms and inference rules:

1
t:P7 7P, 1 &loc(k)

n n
LGy p.G7 7l G Lot le P77l P
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[ GlTGz t: GlTGz

1 1
t<—|-G G+ GTGQ G—|—>t G+ GlTGZ
1 1
t: P17, Py, loc(k)Nloc(P) =0 t: P17, Py, loc(k)Nloc(P) =0
1 1

A by
11 : P1U—I>P1’, iy : qu—2>P2’, loc(uy) Nloc(P3) = 0 = loc(usz) N loc(P])

t1||ts : P1|Py— PI|P}

Up,U2

O

To define the concurrent operational semantics, a concurrency relation x is defined on the alge-
bra of transitions and computations to identify the commuting diamonds of the system, following
the approach proposed in [26].

Definition 7.11 [Concurrency Relation] Let (- then _ x _then _) be a quaternary relation on tran-
sition proof terms, defined as the least commutative! relation defined by the following structural
rules:

(t1 then ty x t3 then t4)

(t1| P2 then Q1|2 x Pits then #1(@2) (l::ty then [ :it9 y itz then [ ty)
(t1 then ty x t3 then t4) (t1 then ty x t3 then t4)
(t1(+G then ta y t3(+G then t4) (G+)ty then ta y G+)t3 then t4)
(t1 then ty x t3 then t4) (t1 then ty x t3 then t4)
(t1| P then ¢3| P x t3| P then t4]|P) (Pt then PJts yx PJts then P|ty)
(t1 then ty x t3 then t4) (t1 then ty x t3 then t4)
(t1]]t then t2|Q x t3| P then t4]|t) (t||t1 then Q[t2 x P|ts then t||t4)

(t1 then ty x t3 then t4), (¢] then t§ y t§ then t})

(1|t then to|th x t3]|th then tu][t))

I

LN / /_}N, / LN
where ;1 ;7 7Qy, t; 0 P Qg and € PTTQ, a

The axiom identifies the basic diamonds, consisting of two transitions performed by two pro-
cesses composed 1n parallel. Then the inductive rules propagate the diamonds in all the possible
contexts. In their paper [28], Ferrari and Montanari propose a tile rewrite system such that a
translation {_[} from transitions in T'A to (freely generated) tiles can be inductively defined with
the property that any diamond (¢; then ¢5 y t3 then ¢4) implies {t1[} - {t2[} = {¢sl} - {talt. Here we

17" Namely, (t1 then ¢ x t3 then t4) iff (¢3 then ¢4 x t1 then t2).
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give a graphical representation of their tile system, using hypergraphs to model configurations and
effects'®. The labels of horizontal hyperarcs are taken over the signature g = {+ :2 — 1,!:
0—1,k:1—0} UuEAct{/’Lh : 1 — 1}, and vertical hyperarcs are labelled over the signature
Yp ={T:2—2}U,cactttv : 1 — 1}. Notice that each hyperarc is labelled with an operator
whose arity and multiplicity exactly matches the number of source and target nodes. Each node
intuitively represents a place where actions may occur, i.e., a location.

We briefly comment on the rules'® of the strong tile rewrite system for the simple process calcu-
lus of Def. 7.9. The first rule simply states that a “prefix” hyperarc can execute the corresponding
action evolving to a new location. The link to the old location is maintained, because other agents

could be already attached there.
o —{inf—o
Prefix, ’g‘a
e — o
[f———-

Two rules are needed to deal with the nondeterministic sum. Whenever the “left” (“right”)
process makes a move, then the other process is eliminated via a nil binding . The locations
promoted by the evolving process are propagated forward.

[ ]

Ea Suml, @a @‘Z‘\ Sumr, Eta
L ] L ] L ] E

. I U

0 L ] L ]

Rule Comp, is the most important. It states that if two processes share the same location and
one of them is making a move, then its subprocesses will be allocated to a new location, whereas
the parallel process will remain linked to the old location. We do not need to distinguish between
a Compl, (left) and a Compr, (right), because they can be obtained one from the other using
auxiliary permutation tiles. Rule Synchy allows synchronizing two parallel complementary moves.
The resulting action T states that the two “new” locations will be both correlated to the two “old”
locations where the complementary actions took place.

18Each hyperarc is represented with a labelled box connected to its source and target nodes. Unlabelled arc
represents sharing (or aliasing) in the style of assignments (see Section 2).
19 The only auxiliary tiles needed here are permutation tiles.
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Then two particular cases have to be taken into account. The following rules show how the T'
events propagate through the sharing. The Twin rules state that if the two synchronizing processes
were allocated in the same place, then the synchronization is possible, but only one copy of that
“old” location has to be mantained.

./ . ./

. T T| TwinComp [T |

™ ! S
\.\N . L .

Notice that a rule such as SynchComp is not needed here because the correct way to synchronize
the processes yielding 7" would consist in using Compy and then Synch,.

[

| [TX . ynchComp. [T/
AN \
v

L )
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As we have done in the example of finite CCS, also in the Maude implementation of this simple
calculus, we “rotate” the rules moving effects to the horizontal dimension and configurations to the
vertical one, then stretching the tiles to ordinary rewrite rules on mixed (vertical and horizontal)
structure. Moreover, sharing is directly modelled with multiple pointers to the same node name
(instead of using a special hyperarc V and imposing the coherence axioms). Permutations are
avoided as well, through explicit name management. Let us take a standard denumerable set of
nodes {n(¢) | i € IN} (sort Node). The operator 1s constructs lists of nodes (sort NodeList),
where the empty list is denoted by nil. Similarly, the operator set constructs sets of nodes (sort
NodeSet), the constant empty representing the empty set of nodes.

mod LOCCCS is protecting MACHINE-INT.

sorts Node NodeList NodeSet .
subsorts Node < NodeSet NodeList .

op n : MachineInt -> Node .

op nil : —> NodeList .

op 1ls : NodeList NodeList -> NodeList [assoc id: nil]

op empty : —> NodeSet .

op set : NodeSet NodeSet -> NodeSet [assoc comm id: emptyl

var F : Node .
eq set(F,E) = E

A hyperarc (sort Edge) is then a triple consisting of a list of source nodes, a label (of sort
Label) and a list of target nodes. The operator edge allows constructing generic hyperarcs. A
hypergraph (sort EdgeMSet) is just a (multi)set collection of hyperarcs (constructor ms and neutral
element zero). We make use of a top operator top to mark the whole actual configuration of the
system (sort State).

sorts Label Edge EdgeMSet State .
subsort Edge < EdgeMSet .

op edge : NodeList Label NodeList -> Edge .

op zero : —> EdgeliSet .

op ms : EdgeMSet EdgeMSet -> EdgeMSet [assoc comm id: zero]
op top : EdgelMSet —-> State .

We define also some useful operators which allow extracting information of various kinds.

*x* proj(/NL) returns the set of nodes contained in the node list NL

op proj : NodeList -> NodeSet

*x* sources(MS) returns the set of source nodes contained in the hypergraph M S
op sources : EdgelMSet -> NodeSet .

*** targets(MS) returns the set of target nodes contained in the hypergraph M.S
op targets : EdgelMSet -> NodeSet .

*x* vertices(MS) returns the set of nodes contained in the hypergraph MS

op vertices : EdgeMSet —> NodeSet .

#%% igIn(F,ES) = true iff the node £ is in the set of nodes ES

op isIn : Node NodeSet -> Bool .

*%* children(F,MS) returns the set of chidren of node F in the hypergraph MS
op children : Node EdgeMSet -> NodeSet .

*x* desc(E,MS) returns the set of descendants of node F in the hypergraph MS
op desc : Node EdgeMSet -> NodeSet

op descaux : NodeSet EdgeliSet NodeSet Node —> NodeSet
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vars F' : Node .
ES ES’ : NodeSet .
EL EL' : NodelList .
MS : EdgeMSet .
F: Label .

eq isIn(F,empty) = false .

eq isIn(F,FE) = true .

ceq isIn(FE,F’') = false if F =/= E' .

eq isIn(F,set(F,ES)) = true .

ceq isIn(F,set(F’',ES)) = isIn(F,ES) if F =/= F'

eq proj(nil) = empty .
eq proj(E) = F .
eq proj(1s(F,EL)) = set(E,proj(EL)) .

eq sources(zero) = empty .

eq sources(edge(FL,F,EL)) = proj(EL)

eq sources(ms(edge(FL,F,EL),MS)) = set(proj(EL),sources(MS)) .
eq targets(zero) = empty .

eq targets(edge(FL,F,EL')) = proj(EL’)

eq targets(ms(edge(FL,F,EL),MS)) = set(proj(EL’),targets(MS)) .
eq vertices(MS) = set(sources(MS),targets(MS)) .

eq children(F ,zero) = empty .

ceq children(F,edge(FL,F,EL')) = empty
if not(isIn(F,proj(EL))) .
ceq children(F,edge(FL,F,EL)) = proj(EL’)

if isIn(F,proj(EL)) .

ceq children(FE ,ms(edge(FL,F,EL),MS))
if not(isIn(F,proj(EL))) .

ceq children(FE ,ms(edge(FL,F,EL),MS))
if isIn(F,proj(EL)) .

children(FE,MS)

set(proj(EL'),children(F,MS))

eq desc(F,MS) = descaux(children(F ,MS),MS,empty,E) .

eq descaux(empty,MS,ES,E') = ES .

ceq descaux(F,MS,ES,E') = ES
if isIn(F,set(L’,ES))

ceq descaux(F,MS,FS,E’) = descaux(children(F,MS),MS,set(F,ES),E")
if not(isIn(F,set(L',ES)))

ceq descaux(set(F,ES"),MS,ES,F') = descaux(FES',MS,ES,E")
if isIn(F,set(L’,ES))

ceq descaux(set(F,ES"),MS,ES,E') =
descaux(set(children(E,MS),ES"),MS,set(E,ES),E")
if not(isIn(F,set(L',ES)))

The label of a hyperarc can be either of sort HSign (associated to Xg), or of sort VSign (asso-
ciated to Xp). We fix a denumerable set of basic actions {a(i) | ¢ € IN} and their complementary
actions {bar(a(¢)) | ¢ € IN} (sort Channel), together with a special action tau. Given an action
p we denote the associated prefix operators pp in Xg and p,, in Xp respectively by h(u) and v(p).
Regarding the other operators, + is denoted by plus, ! is denoted by dis, x is denoted by codis
and 7' is denoted by t. A special horizontal operator alias is introduced to propagate possible
renamings caused by rule Suml, and Sumr,.
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sorts Channel Act HSign VSign .
subsort Channel < Act .
subsorts HSign VSign < Label .

op a : MachineInt —-> Channel .
op bar : Channel -> Channel .
op tau : -> Act .

op v : Act -> VSign .
op t : —> V3ign .

op h : Act -> HSign .
op plus : -> HSign .
op dis : -> HSign .

op codis : —-> HSign .
op alias : —> HSign .

vars BA : Channel .
Fa : Node .
EL" : NodeList .

eq bar(bar(BA)) = BA .

eq ms(edge(EL,F,Fa),edge(Fa,alias,F)) =
ms(edge(EL,F,F),edge(Fa,alias,F)) .

eq ms(edge(FL,F,1s(Fa,EL")),edge(Fa,alias,F)) =
ms(edge(EL,F,1s(E,FL")),edge(ELa,alias,F)) .

eq ms(edge(FL,F,1s(FL ,Ea,FL")),edge(Fa,alias,F)) =
ms(edge(FL,F,1s(EL,E,EL")),edge(Fa,alias,F))

eq ms(edge(FL,F,1s(FL,Ea)),edge(Fa,alias,F)) =
ms(edge(EL,F,1s(EL',F)),edge(ELa,alias,FE))

eq ms(edge(nil,dis, ), edge(nil,dis,F)) = edge(nil,dis,F) .

eq ms(edge(F,codis,nil),edge(F ,codis,nil)) = edge(F,codis,nil) .

ceq top(ms(MS,edge(Fa,alias,F))) = top(MS)

if not(isIn(FLa,vertices(MS))) .

Example 7.12 As an example we show the hypergraph and its Maude representation (assuming
a standard procedure assigning names to nodes, for which we only give an intuitive description)
associated with the process (aj.nil + ag.nil)|a;.nil:

[F—- (@)n | .

ms (edge(nil,dis,n(1)), edge(n(1),h(a(1)),n(2)),
edge(nil,dis,n(3)), edge(n(3),h(a(2)),n(4)), edge(ls(n(2),n(4)),plus,n(5)),
edge(nil,dis,n(6)), edge(n(8),h(bar(a(1))),n(7)), edge(n(7),alias,n(5)))

O

We are now ready to translate the tiles into rewrite rules. Since we are interested in applying
the nondeterministic strategies shown in Section 6.3, we use the same label step for all the rules.
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vars BA’ : Channel .
Mu : Act .
Eb : Node .

%% Prefix(Mu)
rl [step]l : top(ms(edge(E',h(Mu),E),MS)) =>
top(ms(edge(F',v(Mu),E),
edge(nil,dis,F),MS)) .

4% Suml(Mu)
rl [step]l : top(ms(edge(P’,v(Mu),Ea),
edge(1ls(Fa,Eb) ,plus,F),MS)) =>
top(ms(edge(Fb,codis,nil),
edge(F ,v(Mu),E),
edge(Fa,alias,F),MS)) .

*4* Sumr(Mu)
rl [step]l : top(ms(edge(P’,v(Mu),Ea),
edge(1s(Fb,FEa),plus,F),MS)) =>
top(ms(edge(Fb,codis,nil),
edge(F ,v(Mu),E),
edge(Fa,alias,F),MS)) .

*x* Synch(BA)
crl [step] : top(ms(edge(E,v(BA),FEa),
edge(F’,v(BA"),Eb) ,MS)) =>
top(ms(edge(1s(F,E"),t,1s(Fa,Eb)),MS))
if bar(BA) == BA .

In this representation, the other tiles become either trivial or special cases of the previous ones,
and therefore are omitted.

The problem is that not all the rewritings are correct: we have to filter computations. This
can be done at the meta-level using the strategies for collecting rewritings. All that i1s needed is
a good notion of success. In particular, we have just to check if the actual state is acyclic and
decomposable as an hypergraph with labels in HSign followed by an hypergraph with labels in
VSign. We define the predicate ok as follows:

op ok : State —-> Bool .

op okHV : EdgelSet -> Bool .

op acyclic : EdgelMSet -> Bool .

op acycaux : NodeSet EdgeliSet —> Bool .

*** disjoint(ES,FES’) = true iff ESN ES =0

op disjoint : NodeSet NodeSet —-> Bool .

*x* horiz(MS) = true iff all the hyperarcs of MJS have label in HSign
op horiz : EdgeMSet -> Bool .

vars [ : HSign .
V . VSign .
EL" : NodeList .

eq horiz(zero) = true .

eq horiz(edge(FL,H,FL")) = true .

eq horiz(edge(FL,V,EL')) = false .

eq horiz(ms(MS,edge(EL,H,EL"))) = horiz(MS)
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eq horiz(ms(MS,edge(EL,V,EL'))) = false .

eq disjoint(empty,ES’) = true .
ceq disjoint(F,ES’) = true
if not(isIn(F,ES"))
ceq disjoint(E,FES’) = false
if isIn(F,ES’)
ceq disjoint(set(E,ES),ES’) = disjoint(ES,ES")
if not(isIn(E,ES"))
ceq disjoint(set(F,ES),ES’) = false
if isIn(F,ES’)

ceq okHV(ms(MS,edge(EL,V,EL'))) = okHV(MS)
if disjoint(proj(EL’),sources(MS)) .

ceq okHV(MS) = true
if horiz(MS)

ceq okHV(ms(M S,edge(EL,V,EL'),edge(EL",H,EL"))) = false
if not(disjoint(proj(EL’),proj(EL")))

eq acyclic(MS) = acycaux(sources(MS),MS) .
eq acycaux(empty,MS) = true .
ceq acycaux(FE,MS) = true
if disjoint(F ,desc(F,MS)) .
ceq acycaux(F,MS) = false
if not(disjoint(F,desc(E,MS))) .
ceq acycaux(set(E,ES),MS) = acycaux(ES,MS)
if disjoint(F ,desc(F,MS)) .
ceq acycaux(set(E,ES),MS) = false
if not(disjoint(F,desc(E,MS))) .

ceq ok(top(MS)) = true
if and(okHV(MS),acyclic(MS)) .
endm

It can be proved that successful states reachable in LOCCCS starting from the representation of
a process P are exactly the behaviours of P in the tile system of Ferrari and Montanari.

Example 7.13 We show the result of a computation in ND-SEM[TREE [LOCCCS]], collecting the
successful states reachable from the hypergraph representation of the process (ay.nil+ag.nil)|a; .nil
illustrated in the example 7.12. We use a meta-meta-query to collect all the possible (topmost)
solutions.

Maude> rew allRew(’rewWith[’_[_J[’’top, _[_1[’’ms, °_,_[
’_[_][”edge, ’_,_[”nil, ”diS, ’_[_][”n,”i]]],
’_[_][”edge, ’_,_[”nil, ”diS, :_[_][::n’::3]]]’
’_[_][”edge, ’_,_[”nil, ”diS, ’_[_][”n,”6]]],
»_[1[’edge, ’_,_[’_[_1[°’n,>’1],
’_[_][”h,’_[_][”a, ::1]]’
»_[.10n,2]11],

»_[1[’edge, ’_,_[’_[_1[’’n,>’3],
’_[_][”h,’_[_][”a, ::2]]’
»_[10’n,4]11],

»_[1[’edge, ’_,_[’_[_1[’’n,’’86],
»_LI0h, [0 bar,’ _[L10’a, 21111,
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»_[10n,711],
’_[_][”edge, ’_,_[’_[_][”ls, :_’_[:_[_][::n’::4]’
»_[.10n,2]11],
’’plus,
»_[.10’n,511],
’_[_][”edge, :_’_[:_[_][::n’::7]’ ”alias, :_[_][::n’::5]]]
111, ’nondet[’’stepl], ’aux) .

rewrites: 104970 in 2819ms cpu (2829ms real) (37223 rewrites/second)
result TermSequence:
seq(’rewWith[(’_[_1[’’top, (°_[_1[’’ms, (°_,_L
¢_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, >211)1)1),
¢_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °>’31)1)1),
(_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °’51)1)1),
(_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °’61)1)1),
¢C_[ 10 edge, C’_,_[C_[10[’n, *11),
C_aA0°v, C_[0a, »211)1),
¢C_Ca10°n, >261)1H)1),
¢_[ 10 edge, C’_,_[C_L10[’n, *’31),
¢C_CI10°n, ¢C_L10a, »221)1),
¢C_Ca10°n, >4 1),
(_[ 1[0 ’edge, C_,_[C_[_10[’’n, ’°4]1), ’’codis, ’’nill)l),
¢_[ 10 edge, C’_,_[C_[1[’n, *’6]),
¢C_Ca0°n, ¢C_L10bar, (C_L[I10’a, >211)1)1),
¢_C10°n, »261)1)1)
D), ’idlel,

‘rewWith[(°_[_ 1[0’ ’top, C°_[_1["’ms, (’_,_L
(_[_1[’edge, (’°_,_[’’nil, ’’dis, C_[_10[’’n, *211)1)1),
(_[_1[’edge, (’_,_[’’nil, ’’dis, C’_[_10[’’n, *’31)1)1),
("_[_1[’edge, (’_,_[’’nil, ’’dis, (’_[_1[’’n, *’51)1)1),
(_[_ 1[0 ’edge, (’°_,_[’’nil, ’’dis, (’_[_1[’’n, *’61)1)1),
(_[ 10 ’edge, C_,_[C_[_10’'n, *°11),
C_C[20°n, ¢_L20a, 2211)1),
C_[10°n, >221)1H1),
(_[ 1[0 ’edge, C_,_[C_[_10[’’n, ?°2]), ?’codis, ’’nill)l),
(_[ 1[0 ’edge, C_,_[C_[_10[’'n, ?°31),
C_ra0v, ¢_L20a, 2221)1),
¢ _[10’n, >261)1H1),
(_[ 1[0 ’edge, C_,_[C_[_10[’'n, *’6]),
C_[a0v, ¢_[ 20 bar, (°_[_10’’a, *211)1)1),
C_[20°n, 251D
1H1HI1), ’idlel,

‘rewWith[(°_[_ 1[0’ ’top, C°_[_1["’ms, (’_,_L

(_[_1[’edge, (’°_,_[’’nil, ’’dis, C_[_10[’’n, *211)1)1),

(_[_1[’edge, (’_,_[’’nil, ’’dis, C’_[_10[’’n, *’31)1)1),

("_[_1[’edge, (’_,_[’’nil, ’’dis, (’_[_1[’’n, *’51)1)1),

(_[_ 1[0 ’edge, (’°_,_[’’nil, ’’dis, (’_[_1[’’n, *’61)1)1),

(_[ 10 ’edge, C_,_[C_[_10'n, *211), C_[10°h, (°_[_10a, ?211)1),
C_[10°n, >221)1H1),

(_[ 1[0 ’edge, C_,_[C_[_10[’’n, ?°2]), ?’codis, ’’nill)l),

(_[ 10 ’edge, C_,_[C_[_10'n, *°31), C_L[ A0 v, (°_[_10a, ?°21)1),
¢ _[10’n, >261)1H1),
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C_[ 10 edge, C_,_[C_L[_I["’n, >’61),
C_L[I0h, C_LIDbar, (C_L[10a, 211D,
C_[10’n, 22811

DI, ’didlel,

‘rewWith[(°_[_ 1[0’ ’top, C°_[_1["’ms, (’_,_L
¢_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, >211)1)1),
¢_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °>’31)1)1),
(_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °’51)1)1),
(_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °’61)1)1),
¢C_[ 10 edge, C’_,_[C_[10[’n, *11),
¢C_CI10°n, ¢C_L10a, »211)1),
¢C_C10°n, >221H)1H)1),
¢_[ 10 edge, C’_,_[C_L10[’n, *’31),
¢C_CI10°n, ¢C_L10a, »221)1),
¢C_Ca10°n, >4 1),
¢_[ 10 edge, C’_,_[C_[1[’n, *’6]),
C_CA0°v, ¢C_[10bar, CC_L[I0’a, >211)1)1),
¢C_Ca10°n, >261)1H)1),
¢C_[ 10 edge, (’_,_[C_L[10[1s, ¢_,_[C_[_10[’n, >’4]1),
¢C_C10°n, >221H)1H)1),
’’plus,
¢_C10°n, »261)1)1)
1)1)1), ’idlel,

‘rewWith[(°_[_ 1[0’ ’top, C°_[_1["’ms, (’_,_L
(_[_1[’edge, (’°_,_[’’nil, ’’dis, C_[_10[’’n, *211)1)1),
(_[_1[’edge, (’_,_[’’nil, ’’dis, C’_[_10[’’n, *’31)1)1),
("_[_1[’edge, (’_,_[’’nil, ’’dis, (’_[_1[’’n, *’51)1)1),
(_[_ 1[0 ’edge, (’°_,_[’’nil, ’’dis, (’_[_1[’’n, *’61)1)1),
(_[ 10 ’edge, C_,_[C_[_10’'n, *°11),
C_ra0v, ¢_L20a, 2211)1),
¢ _[10’n, >261)1H1),
(_[ 1[0 ’edge, C_,_[C_[_10[’'n, ?°31),
¢C_C[10°n, ¢_L20a, 2°21)1),
¢C_[10°n, >241)1H1),
(_[ 1[0 ’edge, C_,_[C_[_10[’’n, ’°4]1), ’’codis, ’’nill)l),
(_[ 1[0 ’edge, C_,_[C_[_10[’'n, *’6]),
C_[a0v, ¢_[ 20 bar, (°_[_10’’a, *211)1)1),
C_[20°n, 251D
1H1H1), ’idlel)

The result is a sequence of meta-representations of terms in TREE[LOCCCS]), each of the kind
rewWith(..., idle), where the actions that have been executed from the initial process can be
easily detected looking at the edges containing the v operator

The graphical representation of the last solution is given in Figure 7.

Six possible combinations have been found, only the synchronization between a; and a; (rep-
resented in Figure 8) is missing. The reason is that it can only be reached after having visited a
successful state, i.e., it i1s not a topmost solution. However the following query from one of the
previous solutions (the last one) leads to the detection of the synchronization (notice the hyperarc
with label t in the answer).

Maude> rew allRew(’rewWith[(’_[_1[’’top, C(°_[_1[’ms, (’_,_[
(_[_1[’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, *211)1)1),
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Figure 7: The graphical representation of the parallel execution of the actions a; and a; in the
process (ay.nil + ag.nil)|ay.nil.

(_[10’edge, (°_,_[’’ni1, ’’dis, (°_[_10’'n, *°31H1)D),
(_[10’edge, (°_,_[’’ni1, ’’dis, (°_[_10’'n, *’81H)1)1),
(_[10 ’edge, (°_,_[’’ni1, ’’dis, (°_[_10’’'n, *’61)1)1),
(_[10edge, C_,_[C_[_10[’n, *21]),
C_[A0°v, C_[10a, 221D,
C_[10°n, >251)1),
(_[10edge, C_,_[C_[_10[’n, *3]),
C_[20°n, CC_[207a, 221)1),
C_[10°n, 724D,
(_[ 1[0 ’edge, C_,_[C_[_10[’’n, ?°4]1), ?’codis, ’’nill)l),
(_[10edge, (_,_[C_[_10[’n, *6]),
C_[20°v, C_[10°bar, CC_[_10a, 211D,
C_[10°n, 22811
1)1)1), (’nondet[’’stepl)], ’aux) .

rewrites: 4496 in 129ms cpu (139ms real) (34584 rewrites/second)
result Term:
‘rewWith[(°_[_1[’top, C°_[_1["’ms, (’_,_L
¢_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, >211)1)1),
¢_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °>’31)1)1),
(_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °’51)1)1),
(_[ 10 ’edge, (’_,_[’’nil, ’’dis, (°_[_1[’’n, °’61)1)1),
¢_[ 10 edge, C’_,_[C_L10[’n, *’31),
¢C_CI10°n, ¢C_L10a, »221)1),
¢C_Ca10°n, >4 1),
(_[ 1[0 ’edge, C_,_[C_[_10[’’n, ’°4]1), ’’codis, ’’nill)l),
¢C_[10edge, C’_,_[C_L[10[1s, ¢_,_[C_[_10[’n, >’1]1),
¢C_Ca0°n, >261)1H1),
”t’
¢_C10°1s, ¢_,_0C_L10’n, ’’51),
¢C_10°n, >261)1H1HDH1)
1), ridlel

In comparison with the successful states reached starting from the same process in the module
ND-SEM[TREE[CCS]] (see example 7.8), here the number of solutions is smaller than in the other
case, because concurrent (interleaving) computations are identified. a
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Figure 8: The graphical representation of the synchronization of the actions a; and a; in the
process (ay.nil + ag.nil)|ay.nil.
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A The Axioms of Process Tile Logic

Let R = (g, Zv, N, R) be a pTRS. The class A,(R) of abstract process sequents informally
described in Def. 2.24 has as elements the equivalence classes of P,(R) modulo the following set
of axioms on proof terms:

Assoclativity Axioms for _® _, _* _, and _- _.

Identity Axioms (for any « : h%g € P,(R)):

lyxa=a=ax*l, " a=—a=a-19
Monoidality Axioms (for any h,¢g € S(Xg), o € P,(R), and v,u € S(Xy)):
1799 = 1 ¢ 19 lig, ®a = a = a® 14, Ligu = 1" ® 1*

Functoriality Axioms:
Identities (for any n € IN, and composable arrows h, g € S(Xg), and v,u € S(Zv)):

Lyw =1y - 1y Lig, = 1'% 19 = 1" % 19
Compositions (whenever both sides are defined):
(@@p)-(y@8) =(a-7)@(5-9) (@@p)x(y©8)=(axy)@ (9
(ax B)-(y*6) = (a-7)*(G-6)

Auziliary Operators
(for any n € IN, and composable arrows v, v’ € S(Zv ), and u, v’ € S(Xy)):

— . . — 17
Yo’ wu’ = Yo,u - Yol u! Vidn,idn = 170

(for any n € IN, and composable arrows h, b’ € S(Xg), and ¢,¢' € S(Zg)):
Phik!,gig" = Ph,g * Pht g’ Pidn,idm = Lyn m

Naturality Axioms for derived operators v and p
ul
(for any sequents « : h%g, o h’Tg’ € P,(R)):

(@) % Yyu =Yoo ¥ (@' @ ) (@®@a')-pgg = pnp - (' @a)

Uniqueness Axioms:
Naturality axioms for o
(foranyv:n —k, v/ :n' — kK €SEy),and h:n —m, b :n' — m' € S(Zp)):

— _ R'@h
Yvu! Ok k! = Onn' " 1v’®v Phh! X Omm! = Op n! * 1

Naturality axioms for o
(foranyv:n —k, v/ :n' — kK €SEy),and h:n —m, b :n' — m' € S(Zp)):

Lygo’ - U;c,k’ = U;l,n’ *You! 1hER O-;n,m’ = U;l,n’ “Vh,R!
Coherence Axioms for v (for any u,w,v € S(Zy)):
Yugwe = (Lu @ Yww) * (Yup © Lu) You * Yuw = logu Yido,ido = lido
Coherence Axioms for p (for any h, f,9 € S(Zp)):
prosy = (1" @ prg) % (prg @ 17) Phg Py = 1" Pidoidy = Lidy
Coherence Azioms for o (for any n,m, k € IN):
Tnomi = ((Lig, @ o) * 1mxO10m) (g @ 1) (Cnm * 17™") - Omn = Lidygm
Coherence Azioms for o' (for any n,m, k € IN):
Tnamik = (Lid, @00, 1) - (Lidy@vps * (07 @ Lia,, ) T - (1™ %00, ) = Lidyg,
Double Coherence Azioms (for any n,m € IN):
T * Tnm = Yidy idy T Tnm = Pidy idy,
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B The Axioms of Term Tile Logic

Let R = (g, Xy, N, R) be a tTRS. We say that R entails the class A;(R) of abstract term

sequents, whose elements are equivalence classes of P;(R) modulo the following set of axioms on

proof terms?%:

Assoclativity Axioms for _® _, _* _, and _- _.
Identity Axioms (for any « : h%g € P(R)):
lyxa=a=ax*l, " a=—a=a-19
Monoidality Axioms (for any h,g € A(Zp), o € P,(R), and v,u € A(Zv)):
1709 = 1h @ 19 Lig, Da=a=a® l, Lygy = 1" @ 1*

Functoriality Axioms:
Identities (for any n € IN, and composable arrows h, g € A(Xg), and v,u € A(Zy)):

Ly =1y - 1y, lig, = 174n 1m9 =17 5 19
Compositions (whenever both sides are defined):

(@@p)-(y@b) =(a-y)@(8-6) (@@ p)x(y@8) =(axy)@(B*90)
(axB)-(y*6)=(a-7)*(39)

Auziliary Operators: Symmetries
(for any n € IN, and composable arrows v, v' € A(Zv), and u, v’ € A(Xy)):

Yo' uu! = Yv,u © Yolu! Yidn idm = 17

(for any n € IN, and composable arrows h, h’ € A(Zp), and g,9' € A(Zq)):
Phik!,gig" = Ph,g * Pht g’ Pidn,idm = Lyn m

Auziliary Operators: Duplicators
(for any n € IN, and composable arrows v,v' € A(Zy)):

Vi = Vi - Vo Via, =1V~
(for any n € IN, and composable arrows A, h' € A(Zg)):
Onint = Op * Ops bia, = lv,

Auziliary Operators: Dischargers
(for any n € IN, and composable arrows v, v’ € A(Zg)):

1 1 FU

(for any n € IN, and composable arrows i, h' € A(Xg)):
tig, = 1, Thipr = th* th

Naturality Axioms (symmetries) for derived operalors v and p

i

U
(for any sequents « : h%g, o Th'T 79 € P(R)):

(@) % Yyu =Yoo ¥ (@' @ ) (@®@a')-pgg = pnp - (' @a)

20Notice that we make use of the notation of algebraic theories (Section 2.1.1) instead of the equivalent “terms
and substitutions” notation used in Def. 2.28 and 2.30.
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Naturality Axioms (duplicators) for derived operators V and é
(for any sequents « : h%g € P(R)):

a*xVy =Vy*(a®a) a-b,="06, (0 @)
Naturality Axioms (dischargers) for derived operators ! and §
(for any sequents « : h%g € P(R)):
axly =y a-Tg=1n

Uniqueness Axioms:
Naturality axioms for o
(foranyv:n —k, v/ :n' — kK € AXv),and h:n—m, k' :n' — m' € A(Zg)):

_ _ h'®@h
Yvu! Ok k! = Onn' " 1v’®v Phh! X Omm! = Op n! * 1

Naturality azioms for o'
(foranyv:n —k, v/ :n' — kK € AXv),and h:n—m, k' :n' — m' € A(Zg)):

h@h' / /
1 @ * Um,m’ = Un,n’ *Yh,h!

Lygor - U;c,k’ = U;l,n’ *Yo,u!
Naturality azioms for © (for any v:n — k€ A(Zy), and h:n — m € A(Zg)):
Vo T =7n - Luge Sp % Ty = Ty # 1708
Naturality azioms for 7 (for any v :n — k € A(Zy),and h:n — m € A(Zg)):
ly -1 =7, -V, 1" %7 = 70 % 63

Naturality azioms for ¢ (for any v:n — k € A(Zy), and h:n — m € A(Zq)):
ly ¢ = ¢n Th *¢m = ¢n

Naturality azioms for ¢ (for any v:n — k € A(Zy),and h:n — m € A(Zg)):
Ly - ¢ = ¢n 1" h =

Coherence Axioms for v, V, and ! (for any u, w,v € A(Zy)):

Yu@w,v :(1u ®7w,v)*(7u,v®1w) vv*’}/v,v :vv
vv@u = (vv @ vu) * (11) @ Yv,u & 1u) Vi * (11) @ vv) =V, * (vv @ 11))
!v®u :'v®'u vv * (1v®'v) = 11)
Yido,ido = lidy = Vidyido You * Yup = lugu

Coherence Azioms for p, §, and { (for any h, f,g € A(Zg)):

prosg = (1" @ prg) * (pny @ 17) &k - prp = bn
Shog = (6n @ 8g) - (1" @ png @19) 6 (1" @ bn) = bn - (00 @ 1")
Thog = Th © 14 5h'(1h®Th):1h
Pido,ide = Llidy = bidy = Tido Phyg * Pgn = 17€9

Coherence Azxioms for o, w, and ¢ (for any n,m, k € IN):

Tn@m,k = ((Ldn & O'm,k) * 17n’k®idm) : (Un,k & 1idm) (7Tn * 17”’”) *Onn = Tn
Tn@m = ((ﬂ-n & 7Tm) * 1idn®'yn)m®idm) : (Ldn & On,m ® 1idm) ¢n®m = ¢n ® ¢m
(T # 1V 2@y (7, @ Lig, ) = (T % 10OVm) (Lig, @ 1) (T # 1 O) o (Lig, © ¢0) = Lug,
(Cnm * 17m) O = Lidygm oo =My = ¢o = 1;4q,
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Coherence Axioms for o', 7, and ¢ (for any n,m, k € IN):

Tnomi = (lid, @07, 1) - (Lid, @y * (07, 1 @ Lia,, )
Tagm = (Ta @ ) - (17O % (Lig, @ 0, @ Lia,,))
Tn * (1V" * (Tn [029] 1zdn)) = Th (1V" * (1idn [029] Tn))

! !

. Vr, — 1.
Uﬂ,m (1 ok Um,n) - 1ldn®m

Double Coherence Azioms (for any n,m € IN):

Tn - (1Y% % Tnn) = Ta

1/)n®m = 1/% & 1/)m
T - (17 % (Lig, @ ¥n)) = Lia,
o =10 = Yo = lig,

/ — A . / . = -
O'nym * On,m = Yidn,idm O'nym On,m = Pid,,idm

Tn * Tp = vidn

Y * ¢ =ha,
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C Hypertransformations

As explained in Section 3.4, since double categories have two different notions of composition, it is
not clear which of them to use for a general notion of double natural transformation. Ehresmann
noticed in [25] that natural transformations can be expressed in terms of functors toward higher
fold categories. The key point i1s that a natural transformation is in some sense a functorial
collection of commuting squares (also called quartets). Therefore, to obtain a suitable notion of
transformation for n-fold categories we have to consider quartets in all the n dimensions.

Definition C.1 [D-wise Transformation] Let A be a category, and let D be a double category.
We denote by T(D, A) the category of D-wise transformations from A to D, whose objects are
functors from A to the 1-vertical category V of D, and whose composition law is deduced from
that of the category D* (e.g., there is an arrow o from P: A — V to Q@ : A — V iff there is a
functor @ : A — D" such that s* o = P and t* o & = ), and given two arrows « and o’ such
that * o = s o @’ their composition is equal to the functor mapping each arrow v of A onto the

cell a(v) * o/ (v)).

afa)  a'(a)

-]
Pu| a(v) Qua'(v) |Re
|

e (D)

|
Pu| o(u) Qua'(u) |Ru
|

—_— .

ae) o)

—
b
~—
e >N we—Q

Moreover, T extends to a functor (i.e., given a double functor F' : P — £ and a functor G : B —
A it suffices to define T(F,G) = F} o «o (G, where the functor Fy : D" — £ is the component of
F relative to the vertical structure). ad

Example C.2 Let 2 be the category with two objects (0 and 1) and three arrows (z : 0 — 1
and the identities for 0 and 1). Then, for any double category D, we have that T(D,2) ~D*. O

Proposition C.3 Let A and C be two categories. The category C* of natural transformations
between functors from A to C is isomorphic to the category T(OC, A), where OC is the double
catggory of quartets of C. In fact, a functor from A to the vertical category of OC (usually denoted
by oC) identifies a natural transformation between functors from A to C and vice versa.

This notion can be generalized to n-fold categories by constructing the 2n-fold category of
quartets of quartets... (n times). Since double categories are 2-fold categories, this means that
we need to define the 4-fold category of horizontal quartets of vertical quartets. Once a notion
of multiple functors among categories of different folds has been given, then the notion of hy-
pertransformation arises naturally as a multiple functor between the source n-fold category and
the 2n-fold category of quartets of quartets... (n times) generated by the target n-fold category.
This means that a hypertransformation involving two n-fold categories C and D relates 2" n-fold
functors from C to D.

Definition C.4 [n-fold Category] Let n be a positive integer. An n-fold category Cis a tuple of
n categories (C1,...,C") with the same set of morphisms C satisfying the permutability axiom:

(C?,C7) is a double category for each pair (i, j) of integers 1 < i < j < n.

An element of C is called a block. The category C' is called the i-th category of@ and 1ts composition
1s denoted by _;; . Notice that the set of objects of c defines a sub-category of ¢/ for each i # j.

If C and D are n-fold categories, an n-fold functor F : C—Disa map F : C — D defining
a functor I : ¢! — D' for each . We denote by Cat,, the category whose objects are the small
n-fold categories and whose morphisms are the n-fold functors between them. ad
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By convention, a 0-fold category is just a set, and a 1-fold category is a category. Thus Catg
is the category Set and Cat; i1s Cat.

If 4 is a permutation over the set {1,...,n} then (CY™) ... €"™) is also an n-fold category
and 1s denoted by oIt i1, ..., 1m 18 a sequence of m distinct element of {1,... n}, we denote by
Cirim the m-fold category (C't,...,Clm).

Definition C.5 [Multiple Category] The category MCat of multiple calegories is defined as fol-
lows. Its objects are all the small n-fold categories, for every integer n. Let C be an n-fold category
and D be an m-fold category with n < m, then the morphisms F : C—Din MCat, called
multiple functors, are the n-fold functors F' from C to the n-fold category (DY,...,D") (if n > m
then there is no morphism from C to 75) a

Definition C.6 [Internal Hom of MCat] Let € be an n-fold category and D an m-fold category.
We denote by Hom(C, D) the multiple category of multiple functors from C to D which is defined
as follows: if n > m, then it is the void set, otherwise (n < m) it is the (m — n)-fold category, on

the set of multiple functors F' : ¢ — 75, whose ¢-th composition, for 1 < ¢ < m — n, is defined as
F(A);ipn F'(A) iff the composite exists in D**" for each block A of C. a

Remark C.7 For each pair (¢,7) with 1 <7< m—n and 1 < j < n, the category Hom(@, 73)2
is a subcategory of the category of (D?, D**")-wise transformations from ¢’ to (D, D**"). The
permutability axiom is satisfied by Hom(@, 73) since 1t 1s satisfied by D and the compositions are
defined pointwise from that of D.

Example C.8 If A and C are categories, then Hom(A, OC) is the category C* of natural trans-
formations between functors from A to C. a

Now, consider the category 2 x 2, and let C be a category. A functor F': 2 x 2 — (C is entirely
determined by the (commutative) square F' of C (see below), because F(z,z) is just the diagonal
of this square.

(0,0) 2L (0, 1) JFO2)
| | |
(z,O)l (2,2) (2,1) F(z,0) F(z,1)
o
(1,0) s (1,1) CF(Le)

Moreover, every quartet of C can be obtained in this way. Thus, we can identify the set of functors
Hom(2 x 2,C) with the set of quartets of C (which is also the set of blocks of OC).

Now let € be an n-fold category (n > 1). Consider the functors from 2 x 2 to its first category
C'. It follows that, over the set of quartets of C! we have not only the double category OC!, but
also the (n—1)-fold category Hom(2 x 2, 5) whose i-th composition is deduced pointwise from that
of Ci*1 e.g. given two quartets Q = (A, B,C, D) and Q' = (A’, B',C’, D') of C! (this means that
A1 C = B;p Dand A5 C' = B'51 DY) then Q5 Q" = ((A5i41 A'), (Bsip1 B'), (Cri41 C"), (D541 D'))
(if and only if the four composite are defined in C**t1).

Definition C.9 [Multiple Category of Quartets] The mulliple category of quartets of 5, denoted
by SqC, is the (n+1)-fold category on the set of commutingsquares of C* such that: (S¢C)b"=1 =
Hom(2 x 2,C), (S¢C)* = BC* and (S¢C)"+! = ooCn+. 0

The previous construction induces a functor from Cat,, to Cat,, ;1 called Square and denoted by
Sqn n+1 which maps an n-fold functor F' : C — D onto the (n+1)-fold functor S¢F : S¢C — S¢D
such that (A, B,C, D) — (FA, FB,FC,FD).
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C.1 The 3-fold category SqD

Given a double category D = (D', D*), the 3-fold category SqD is defined as follows: its 2-nd
and 3-rd categories are the vertical and horizontal categories 8D and ooD' of quartets of the first
category D of D, and the first composition is deduced pointwise from that of D*.

D* — (SqD)1—>
—_— e —_ s s
oap:
b e N
D _— . — ED _— . — .
1 1

C.2 The 4-fold category SqS¢D

The 4-fold category S¢SqD is constructed as follows: the set of its blocks is O((SqD)!), i.e., each
block (Q1, @2, Qs,Q4) is a quartet of (S¢D)!, where Q; = (A;, B;, C;, D;) is a quartet of D (i.e.,
Ai, By, Cy and D; are cells of D and A; - C; = B; - D;) for ¢ = 1,...,4. Thus, we can picture a
block of S¢S¢D as the frame below:

The 1-st and 2-nd compositions are deduced pointwise from that of E(D') and oo(D"), thus they
consist in putting one frame below the other and one frame inside the other.

The 3-rd and 4-th categories of SqSqD are the categories E((S(ﬂ))l) and oo((S¢D)!) (whose
compositions are induced from that of D*) and they consist in putting one frame behind the other
(i.e., the block above has source @; and target ()4) and one frame beside the other (source @3 and

target (3)

C.3 Hypertransformations

Now we try to relate the definition of generalized natural transformation as given in Section 3.4
with the more general notion of hypertransformation.

Definition C.10 [Hypertransformation] Let ¢ and D be n-fold categories. Then, consider the
category Dnﬁ which is obtained by applying n times the Sq construction and then swapping the
order of the 2n categories in such a way that, for each ¢ = 1, ..., n the ¢-th category of O, D is derived
from E(Di), and the (¢ + n)-th category of 0,D is derived from oo(D?). Then Hom(@, Dnﬁ) is
the category of hypertransformations from CtoD. a
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Let D and £ be double categories. We denote by O2& the 4-fold category which is ob-
tained by permuting the 2-nd and 3-rd compositions in SqSq&. We illustrate the double category
Hom(D, 05¢8) as follows:

Objects (i.e., vertices) are the double functors from D to £.

Horizontal arrows (i.e., objects for the 1-st category of Hom(D, 05&)) are #-transformations.
Vertical arrows (i.e., objects for the 2-nd category of Hom(D,05€)) are -transformations.
Cells are generalized transformations between four double functors.

Compositions are deduced pointwise from the compositions one frame inside the other and
one frame beside the other (we remind that hypertransformations behave functorially w.r.t.
the two compositions one frame below the other and one frame behind the other).

121



D Maude

In this appendix, we summarize some interesting features of Maude and explain some major
differences between the Maude-like notation that we have employed and the syntax of the Maude
implementation.

D.1 Basic Syntax

Functional modules define data types and functions on them by means of equational theories. The
equational logic on which Maude functional modules are based is membership equational logic: 1t
supports sorts, subsorts, overloading of function symbols, and also membership axioms in which a
term is asserted to have a certain sort if a condition consisting of a conjunction of equations and
of membership assertions is satisfied.

We can illustrate some of these ideas using a module FRAG-CCS that corresponds to a fragment

of CCS (see Section T):

fmod FRAG-CCS is
protecting MACHINE-INT .
sorts Channel Act Process .
subsort Channel < Act

op a : MachineInt —> Channel .
op tau : -> Act
op bar : Channel -> Channel .

op nil : -> Process

op pre : Act Process —> Process .

op plus : Process Process -> Process [assoc comm id: nil]
op par : Process Process -> Process [assoc]

var A : Channel .

eq bar(bar(A4)) = A .

endfm

The module is introduced with the functional module syntax fmod name is ... endfm and
has a name FRAG-CCS. The declaration protecting MACHINE-INT imports a built-in module of
machine integers.

The sorts and subsorts of this module are introduced by the declarations

sorts Channel Act Process .
and
subsort Channel < Act

respectively (the latter declares that the set of channels is contained in the set of actions, which
also includes tha action tau).
The operators are declared using the syntax:

op f 81 ... 8, > 5 .

where n > 0 (if n = 0 as for nil and tau, then f is a constant of sort s).
The attribute [assoc] states that the parallel composition par is associative. This informa-
tion is used by the Maude engine that matches the equations in the module regardless of how

122



parentheses are left- or right-associated. Moreover the simpler syntax par(P;, P, ..., P,) can be
used for any n € IN, exploiting the associativity of par.

Similarly, the attribute comm declares the commutativity of plus, and the attribute id: nil
says that nil is the identity for plus.

In general, the Maude engine can rewrite modulo different combinations of associativity, com-
mutativity, identity (left-, right-, or two sided), and idempotency [14]. Therefore, data structures
as lists, sets, and multisets can be naturally represented in Maude.

The equations are defined using the syntax:

eqt =1 .

where the terms ¢ and ¢’ can also involve typed variables, that must be declared using the following
syntax:

var x, : S1

var I, : Sy
or (for k variables of the same sort s):
vars &y ... T 1 S .
Also conditional equations can be declared. In this case the syntax is
ceqt =1t if ¢1 and - - and ¢
where each ¢; is either an equation ¢; = t; or a membership assertion ¢; : s;.

Remark D.1 Actually for equations in the conditional part of the sentences we should use the
syntax t; == ¢}, but we believe that this little abuse of notation will not create any confusion.

In a similar way, unconditional and conditional membership assertions can be stated using the
syntax:

mbi{ : s .
cmb t : s if ¢; and --- and ¢,

As an example, we can define a sort of sequential processes (i.e., processes not containing
parallel composition) for our fragment of CCS, using the following assertions:

sort SeqProcess .
subsort SeqProcess < Process .
var M : Act .
vars P () : Process .
mb nil : SeqProcess .
cmb pre(M,P) : SeqProcess
if P : SeqProcess .
cmb plus(P,Q)) : SeqProcess
if P : SeqProcess and () : SeqProcess .

The type of rewriting typical of functional modules consists of replacement of equals by equals
(until the equivalent, fully evaluated value is found). In general, however, a set of rewrite rules
is neither terminating nor Church-Rosser. The most general Maude modules are system modules,
that specify initial models of a rewrite theory. They extend functional modules by a set of labelled
rewrite rules, that can also be conditional. The syntax for this kind of rules is the following:
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rl [abl : ¢ =>
crl [lab]l : t =>t' if ¢; and --- and ¢,

Notice that the conditions of a conditional rewrite rule cannot contain rewrite tests. For
example the following sentence, expressing the usual dynamic evolution of CCS processes, is
unparsable:

crl plus(P,Q) => P’ if P => P!

D.2 Shorthands

To shorten the notation, we have used many (intuitive) shorthands throughout the paper. For
correctness, we try to summarize here most of them.

D.2.1 Variable Declarations

We write
vars i : i
fz . 89
T, : Sy

as a shorthand for

vars i : i
vars Zs : S

vars Z, :@ Sp

D.2.2 Subsort Declarations
We write

~

/
subsorts 51 ... s < 8 ... 8
as a shorthand for

subsort s; < s

/
subsort s; < s,
subsort s; < s

subsort si < sh
We also write
subsorts §; < 83 < ... < §,
as a shorthand for

subsorts 5 < 55
subsorts 55 < 53

subsorts 5,_1 < 5,
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Furthermore, we sometimes write
subsorts Sl
Sly
Si,
where each SI; is a list of subsort expressions, as a shorthand for

subsorts Sl
subsorts Sl

éubsorts Si,

D.2.3 Membership Assertions
We write

mbs 1 ... {p : s

as a shorthand for

mb #; : s .

r;lb tr + s .
D.2.4 Using iff in a Conditional Sentence
We write
cmb )y --- 1, iff ¢; and --- and ¢,
where each ; is a membership assertion, as a shorthand for

cmb ¢, if ¢ and --- and ¢,

cmb ¢, if ¢; and --- and ¢,
cmb/ceq ¢1 if ¢ and - - and ¥,

cmb/ceq ¢, if Y1 and - and ¥,

where the use of the symbol ceq, rather than cmb, in the last m sentences depends on the kind of
each sentence ¢; (equation or membership assertion).
Similarly for

ceq 7 -+ Wy 1ff ¢ and --- and ¢,

where each ); is an equation.
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D.3 Built-ins
D.3.1 Booleans

In the present version of Maude, the sort Bool with constants true and false is added implicitly

to any module. However, no boolean functions are added, so that and must be defined explicitly.
For simplicity, we have assumed that the built-in module comes equipped with the usual

operations of and, or, and not defined as follows (as we have done to run our examples):

op _and_ : Bool Bool -> Bool [assoc comm]
op _or_ : Bool Bool -> Bool [assoc comm]
op not : Bool —> Bool .

var TV : Bool .

eq true and TV = TV .
eq false and TV = false .

eq true or TV = true .
eq false or TV =TV .

eq not(true) = false .
eq not(false) = true .

D.3.2 Machine Integers

We have used the functional module MACHINE-INT in Section 7. It provides a fast arithmetic data
type for general purpose programming. The idea is that the (infinite) constants of sort MachineInt
represent the C++ data type int, and the various operations defined in the module represent their
C++ counterparts. We refer the interested reader to [14] for its description.

D.3.3 Quoted Identifiers

The module QID plays an important role for the meta-programmingin Maude. It defines an infinite
set of constants of sort Qid with names such as ’a, ’aa, ’>’1a2b3c, etc. that are used to reify the
names of sorts, operators and variables in the meta-level.

D.4 The Meta-Level

For efficiency reason, the Maude implementation provides key features of the universal (finitely
presented) rewrite theory U for rewriting logic in a built-in module called META-LEVEL. In partic-
ular, META-LEVEL provides sorts Term and Module, so that the meta-representations of terms and
modules belong, respectively, to the sort Term and to the sort Module. It also provides functions
meta-reduce, meta-apply, and meta-rewrite that return, respectively, the representation of the
reduced form of a term ¢ using the equations in a module 7', the representation of the result of
applying a rule labelled { in the module 7" to a term ¢ at the top, and the representation of the
result of rewriting a term ¢ with the equations and the rules of a module 7" using Maude’s default
interpreter (this last feature has not been used in this paper). We refer the interested reader
to [14] for the extensive definition of the signature of module META-LEVEL in the current version
of Maude.

For example, the representation of module FRAG-CCS in META-LEVEL is the following term of
sort Module:

fmod (’FRAG-CCS,
protecting(’MACHINE-INT),
sort(qidSet(’Channel, ’Act, ’Process)),
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subsort(’Channel, ’Act),
opDeclList(
opDecl(’a, ’MachineInt, ’Channel, emptyAttrSet),
opDecl(’tau, nilQidList, ’Act, emptyAttrSet),
opDecl(’bar, ’Channel, ’Channel, emptyAttrSet),
opDecl(’nil, nilQidList, ’Process, emptyAttrSet),
opDecl(’pre, qidList(’Act, ’Process), ’Process, emptyAttrSet),
opDecl(’plus, qidList(’Process, ’Process), ’Process,
attrSet(assoc, comm, id(’nil))),
opDecl(’par, qidList(’Process, ’Process), ’Process,
attrSet(assoc))),
varDecl(’A, ’Channel),
emptyMembAxSet,
eq(’bar[’bar[’4]], ’A)
)

Note that names of sorts, operators and variables are represented in META-LEVEL as quoted
identifiers. For example, the operator plus is reified as >plus. Terms are reified as elements of
the data type Term (complex terms are represented using the constructors _[_] and _,_). For
example, the process

pre(a(l),nil)
1s meta-represented as
‘pre[’al’1],’nil]

If an operator has infix syntax, then its meta-representation includes underscores for its argu-
ment places. For example the meta-representation of the term

true == false
1s

’_==_[’true, ’falsel

Meta-representation can be iterated. For example, the meta-representation of the meta-term
‘pre[’al’1],’nil]
is
'_[ 10 pre, ’_,_[’_[10’a, *’11, ’’nill]
The declaration
protecting META-LEVEL[T]

imports the module META-LEVEL, declares a new constant T of sort Module, and adds an equation
making T equal to the representation of 7" in META-LEVEL. Therefore, we can regard META-LEVEL
as a module-transforming operation that maps a module 7" to another module META-LEVEL[77]
that is a definitional extension of U.

We have assumed a simplified (but consistent) version of META-LEVEL, whose relevant sorts and
operators are listed in section 6.3. The main difference is that we have defined a parametric ver-
sion of META-LEVEL (with a generic module T as the only parameter), assuming that meta-reduce
and meta-apply apply reductions and rewriting only in the module 7" passed as parameter. Fur-
thermore, for the meta-apply we are not interested in the argument that can be used to apply a
substitution to the variables in the rules of the module before testing their matching with the term
to be rewritten. Therefore, the domain and codomain of the functions that we are using becomes
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op meta-reduce : Term -> Term .
op meta—-apply : Term Label Nat -> ResultPair .

instead of

op meta-reduce : Module Term —-> Term .
op meta-apply : Module Term Qid Substitution MachineInt —-> ResultPair .

(we have used the more intuitive names Label and Nat for the sorts Qid and Machinelnt to
facilitate the reading to people not acquainted with the Maude implementation).

Our changes aimed at a more compact and readable Maude-like notation, abstracting from the
details of the actual implementation. However, we have tested and experimented the corresponding
version of each module defined in the paper using the beta version of Maude.

D.5 Parametric Modules and Infix Operators

Functional modules can be unparametrized, or they can be parametrized with functional theories
as their parameters. However, the present beta version only implements unparametrized modules.
Furthermore, in the current version module hierarchies — except for protecting importation of
built-in modules — are not supported either. Finally, although we have extensively used infix
syntax for many operators, only prefix syntax is allowed in the current version, except for the
syntax of built-in operators.

Of course, all these restrictions will be removed in the future full version.
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