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AbstractWe present a type-based approach to eliminating array boundchecking and list tag checking by conservatively extendingStandard ML with a restricted form of dependent types.This enables the programmer to capture more invariantsthrough types while type-checking remains decidable in the-ory and can still be performed e�ciently in practice. We il-lustrate our approach through concrete examples and presentthe result of our preliminary experiments which support sup-port the feasibility and e�ectiveness of our approach.1 IntroductionThe absence of run-time array bound checks is an infamoussource of fatal errors for programs in languages such as C.Nonetheless, compilers o�er the option to omit array boundchecks, since they can turn out to be expensive in prac-tice (Chow 1983; Gupta 1994). In statically typed languagessuch as ML, one would like to provide strong guaranteesabout the safety of all operations, so array bound checkscannot be omitted in general. The same is true for Javabytecode interpreters or compilers (Sun Microsystems 1995)and proof-carrying code (Necula 1997), which are aimed atproviding safety when transmitting code across a networkto be executed at a remote site.Tag checking in functional languages is similar to arraybound checking. For example, we can more e�ciently ac-cess the tail of a list if we know that the list is non-empty.This kind of situation arises frequently in dynamically typedlanguages such as Scheme, but it also arises from the com-pilation of pattern matches in ML.1Traditional compiler optimizations do not fare well in thetask of eliminating redundant array bound checks, so somespecial-purpose methods have been developed for automatedanalysis (see, for example, (Markstein and Markstein 1982;Gupta 1994)). With some notable exceptions (see below)these methods try to infer redundant checks without pro-�This research was sponsored in part by the Advanced ResearchProjects Agency CSTO under the title \The Fox Project: AdvancedLanguages for Systems Software", ARPA Order No. C533.

grammer annotations and are thus limited by their abilityto synthesize loop invariants|a problem that is in theoryundecidable and in practice very di�cult (Susuki and Ishi-hata 1977). In contrast, we pursue a type-based approachwithin a language already statically typed, namely ML. Werely on the programmer to supply some additional type in-formation, which is then used by the compiler to reducestatic array bound checking to constraint satis�ability. Theconstraints consists of linear inequalities and can be solvede�ciently in practice.This approach leads to several language design and im-plementation questions, to which this paper provides a pos-sible answer. We have validated our ideas through a proto-type implementation for a fragment of ML large enough toencompass several standard programs, taken from existinglibrary code. Our experiments demonstrate that� the required extended type annotations are small com-pared to the size of the program,� the constraints which arise during extended type check-ing can be solved e�ciently in practice, and� the compiled code can be signi�cantly faster.Moreover, with one exception (where we had to replace onoccurrence of < by�) we did not have to modify the existingcode, only extend it with some annotations.Our approach is based on the notion of dependent type(Martin-L�of 1980) which allows types to be indexed by terms.For example, in ML we have a type of integer lists int list.Using dependent types we can express the more precise typeof integer lists of length 2 as int list(2). In this example,2 is the index object. An function for appending two inte-ger lists would have type int list(n) -> int list(m) ->int list (n +m) for any n and m. Unfortunately, with-out any restrictions on the form of index objects, automatictype-checking in a language with dependent types is unde-cidable and impractical. We avoid such problems throughthe combination of several important ideas:� We separate the language of type indices from the lan-guage of terms. Among other things, this separationavoids the question of the meaning of e�ects in typeindices and permits a clear phase distinction betweentype-checking and evaluation.1We are not aware of any empirical study regarding its practicalsigni�cance.1



assert length <| {n:nat} 'a array(n) -> int(n)and sub <| {n:nat} {i:nat | i < n} 'a array(n) * int(i) -> 'afun dotprod(v1, v2) =let fun loop(i, n, sum) =if i = n then sumelse loop(i+1, n, sum + sub(v1, i) * sub(v2, i))where loop <| {n:nat} {i:nat | i <= n} int(i) * int(n) * int -> intin loop(0, length v1, 0)endwhere dotprod <| {p:nat} {q:nat | p <= q } int array(p) * int array(q) -> intFigure 1: The dot product function� We employ singleton types (Hayashi 1991) to allow thenecessary interaction between the index and term lan-guages.� We only consider programs which are already well-typed in ML. This allows our extension to be con-servative, that is, without the use of dependent types,programs will elaborate and evaluate exactly as in ML.� We use bi-directional type analysis to generate linearinequality constraints with a minimum of annotations.� The resulting constraints can be solved e�ciently inpractice with a variant of Fourier's method (Pugh andWonnacott 1992).Besides the fact that programs run faster (which tendsto be a strong motivator for programmers), our system en-hances many of the bene�ts one derives from static typing.The dependent types help the programmer to think aboutthe properties he expects to hold, and many (often trivial)errors can be detected early, during dependent type checkingrather than at run-time. The dependent type annotationsserve as formal and machine-checked documentation of pro-gram invariants which greatly aids maintainability through-out the software life-cycle. Dependent types allow programinvariants and properties to be communicated and checkedacross module boundaries if they are included in signatures.2Most closely related to our work is the work on shapechecking by Jay and Sekanina (Jay and Sekanina 1996).They also pursue a language-based approach with a restrictedform of dependent types. However, their language and pro-grams are rather restricted and di�erent from the kind ofprograms typically written in ML (including, for example,explicit shape conditionals). This allows them to performshape analysis through a process of partial evaluation ratherthan constraint simpli�cation, but it does not seem to in-teract well with general recursion. We believe that theirapproach is well-suited for languages such as NESL (Blel-loch 1993), but that it is too restrictive to be practical forML.Dependent types also form the basis of general theoremproving and veri�ed program development environments suchas Coq (Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring, and Werner 1993), Nuprl (Constable et al. 1986),or PVS (Owre, Rajan, Rushby, Shankar, and Srivas 1996).2We have not not yet explored this possibility in our prototypeimplementation, which is restricted to the core language.

Our work can be seen as an attempt to narrow the gap be-tween full veri�cation, which often only works for unrealis-tically small languages or is too time-consuming for practic-ing programmers, and static type systems for programminglanguages, which allow only a very restricted set of pro-gram properties to be expressed and checked. In this way,our work is also related to work on re�nement types (Free-man 1994; Davies 1997) in which ML types are re�ned into�nitely many inductively de�ned sorts.This work is part of a larger e�ort to introduce depen-dent types over tractable constraint domains into ML (Xi1998). In particular, the basic language architecture andthe elaboration algorithm which generates index constraintsdo not depend on particular properties of linear arithmeticand can be used to capture other program invariants.2 PreliminariesIn this section we sketch our type system and give someillustrative examples. Please see (Xi 1998) for a formal de-scription.2.1 An introductory exampleThe code in Figure 1 is an implementation of the dot prod-uct on integer arrays. Even automatic methods are ableto eliminate array bounds checks for this example|we useit here to introduce the language, not to illustrate its fullexpressive power.This example should be read as follows.� int(n) is a built-in singleton type which contains onlythe integer n. The type int used later is the type ofall integers.� 'a array(n) is a built-in polymorphic type of arraysof size n whose elements are of type 'a.� length <| fn:natg 'a array(n) -> int(n) expressesthat length is a function which, when given an arrayof size n yields an integer of type int(n) (which musttherefore be equal to n). In a full language implemen-tation, this would be a pervasive declaration; here, weassert it explicitly.� sub <| fn:natg fi:nat | i < ng'a array(n) * int(i) -> 'ameans that sub can only be applied to an array of sizen and an integer i such that i < n holds. It alwaysyields a a value of type 'a.2



We use fn:natg as an explicit universal quanti�er ordependent function type constructor. Conditions may beattached, so they can be used to describe certain formsof subset types, such as fn:nat | i < ng in the example.The two \where" clauses are present in the code for type-checking purposes, giving the dependent type of the localtail-recursive function loop and the function dotprod itself.After type-checking the code, we are sure that the array ac-cesses through sub cannot result in array bound violations,and therefore there is no need for inserting array boundchecks when we compile the code. Similarly, if we use anarray update function update with the following type,update <| {n:nat} {i:nat | i < n}'a array(n) * int(i) * 'a -> unitthen no array bound checks are needed at run-time.Notice that we can also index lists (and not just arrays)by their lengths and declarenth <| {l:nat} {n:nat | n < l}'a list(l) * int(n) -> 'athereby eliminating the need for list tag checks. Because ofthe similarity of our approach to eliminating array boundchecks and list tag checks, we shall focus on the former inthis paper.2.2 The language of typesType indices may be integer or boolean expressions of theform de�ned below. We use a to range over index variables.Integer index i; j ::= a j i+ j j i� j j i � j j div(i; j)j min(i; j) j max(i; j)j abs(i) j sgn(i) j mod(i; j)Boolean index b ::= a j false j truej i < j j i � jj i = j j i � j j i > jj :b j b1 ^ b2 j b1 _ b2Index d ::= i j bWe also use certain transparent abbreviations, such as 0 �i < n which stands for 0 � i ^ i < n.A system of dependent types allows types to be indexedby terms. For the purpose of this paper, indices are re-stricted to the integer and boolean expressions given above,with the additional constraint of linearity. We have consid-ered a more general language schema in (Xi 1998). We use �for base types or basic type families, either built-in (such asint or array) or user-declared. � stands for type variablesas usual.index sort  ::= int j bool j fa :  j bgtypes � ::= � j (�1; : : : ; �n)�(d1; : : : ; dk)j �1 � � � � � �n j �1 ! �2j �a : :� j �a : :�When a type constructor has no arguments or no indices,we omit the empty parentheses on the left or right or theconstructor, respectively; when a product has no compo-nents we write unit.The sort fa :  j bg stands for those elements of  satisfy-ing the boolean constraint b. We use nat as an abbreviationfor fa : int j a � 0g. Also notice that a is universally quan-ti�ed in �a : :� and existentially quanti�ed in �a : :� .In the concrete syntax, we use fa:gg t for �a : :� and[a:g] t for �a : :� . We can combine several quanti�ers byseparating the quanti�ed variables by commas and directly

attach a condition to the quanti�er. So �a : fa :  j bg:�can be written as fa:g | bg t. We took advantage of theseshorthands in the dot product example above.Our language extension is intended to encompass all ofStandard ML. Our current prototype implementation in-cludes recursion, higher-order functions, polymorphism (witha value restriction), datatypes, pattern matching, and ar-rays, but at present no exceptions or module-level constructs,which are left to future work. We believe that only the ex-tension to modules involves non-trivial language design is-sues.2.3 Built-in type familiesWe have built-in type families for integers, booleans andarrays.� For every integer n, int(n) is a singleton type whichonly contains n.� For false and true, bool(false) and bool(true) aresingleton types which only contain false and true,respectively.� For a natural number n, 'a array(n) is the type ofarrays of size n whose elements are of type 'a.Indices may be omitted in types, in which case they areinterpreted existentially. For example, the type int arraystands for �n : nat :int array(n), that is, an integer arrayof some unknown size n.2.4 Re�nement of datatypesBesides the built-in type families int, bool, and array, anyuser-de�ned data type may re�ned by explicit declarations.An an example, consider the declaration of 'a list:datatype 'a list =nil| :: of 'a * 'a listAfter this declaration, the constructor nil has type 'a listand :: is of type 'a * 'a list -> 'a list. The followingdeclaration indexes the type of a list by a natural numberrepresenting its length.typeref 'a list of natwith nil <| 'a list(0)| :: <| {n:nat} 'a * 'a list(n) -> 'a list(n+1)The structure of the dependent types for the constructorsnil and :: must match the corresponding ML types.Figure 2 displays an implementation of the reverse func-tion on lists. Notice that the type of reverse ensures thatthis function always returns a list of length n when givenone of length n.This illustrates the need for giving explicit types to lo-cal functions (rev, in this case), since they are often moregeneral than the externally visible type (for reverse in thiscase) and cannot be synthesized automatically in general.However, no types need to be given for bound variables.The next example illustrates the need for existentiallyquanti�ed dependent types. The �lter function removes allthe elements in a list l which do not satisfy a given prop-erty p. Clearly, the length of the resulting list cannot be ex-pressed as a type index since it depends on arbitrary compu-tation, which is not permitted in type indices. Nonetheless,we know that the resulting list will be of the length less than3



fun reverse(l) =let fun rev(nil, ys) = ys| rev(x::xs, ys) = rev(xs, x::ys)where rev <| {m:nat} {n:nat} 'a list(m) * 'a list(n) -> 'a list(m+n)in rev(l, nil)endwhere reverse <| {n:nat} 'a list(n) -> 'a list(n)Figure 2: The reverse function for listsor equal to that of the original list. This information can beincorporated into the type of the filter function throughexistentially quanti�ed dependent types.fun filter p nil = nil| filter p (x::xs) =if p(x) then x::(filter p xs)else filter p xswhere filter <| {m: nat}('a -> bool) -> 'a list(m) ->[n:nat | n <= m] 'a list(n)The result of this function has type [n:nat | n <= m]'a list(n) which is concrete syntax for �n : fn : nat j n �mg:�list(n).Existential types can also be used to express subset types(note that this is di�erent from subset sorts ascribed to in-dex variables). For instance, we can use [i:int | 0 <= i+1] int(i) to represent the type for integers which are greaterthan or equal to �1. This feature is exploited to eliminatearray bound checks in the implementation of Knuth-Morris-Pratt string matching algorithm shown in Appendix A. Adetailed description of the algorithm can be found in (Cor-man, Leiserson, and Rivest 1989). Notice that several arraybounds checks in the body of computePrefixFunction can-not be eliminated. Elimination of these checks would requirea representation of deep invariants of the algorithm whichare not expressible in our type system.Existential types are also used to interpret indexed typessuch as int, when used without an index. For example,int is interpreted as �i : int :int(i) (or [i:int] int(i), inconcrete syntax). Thus existential types provide a smoothboundary between annotated and unannotated programs inthe context of a larger implementation. For larger and moreinteresting examples, we refer the reader to (Xi 1997).3 ElaborationThe elaboration process transforms a program writtenin the source language into an expression in an explicitlytyped internal language, performing type-checking along theway. Since it is beyond the scope of the paper to present adetailed treatment of this process, we shall highlight a fewmajor features through examples.One can think of elaboration as a two-phase process. Inthe �rst phase, we ignore dependent type annotations andsimply perform the type inference of ML. If the term iswell-typed, we traverse it again in the second phase and col-lect constraints from the index expressions occurring in typefamilies. Constraints are boolean index expressions b en-riched with explicit quanti�ers and implication. The latteris necessary for type-checking pattern matching expressions.

The syntax for the constraints is given as follows.Constraints � ::= b j �1 ^ �2 j b � �j 9a : :� j 8a : :�3.1 Generating constraintsThe following is the auxiliary tail-recursive function in theimplementation of the reverse function in Figure 2.fun rev(nil, ys) = ys| rev(x::xs, ys) = rev(xs, x::ys)where rev <| {m:nat} {n:nat}'a list(m) * 'a list(n) ->'a list(m+n)Let us elaborate the clause rev(nil, ys) = ys. Accord-ing to the form of the type assigned to rev, we introducetwo index variables M and N , and check nil against type'a list(M) and ys against type 'a list(N).This generates two constraints M = 0 and N = n, whereys is assumed to be of type 'a list(n). Then we checkthe type of the right hand side of the clause, ys against 'alist(M+N), the result type speci�ed for rev. This yieldsthe constraint M +N = n.Thus analyzing the �rst clause in the de�nition of revgenerates the constraint8n : nat:9M : nat:9N : nat:(M = 0^N = n �M+N = n):We then eliminate existential variables, simplifying the con-straint to 8n : nat :0 + n = nwhich is entered into a constraint store and later easily ver-i�ed.Note that we have been able to eliminate all the existen-tial variables in the above constraint. This is true in all ourexamples, but, unfortunately, we have not yet found a cleartheoretical explanation why this is so. In practice, it is cru-cial that we eliminate all existential variables in constraintsbefore passing them to a constraint solver. Otherwise, wewould have to deal with arbitrary formulas in Presburgerarithmetic, which is decidable, but for which there are nopractically e�cient decision procedures available.For the second clause in the de�nition of reverserev(x::xs, ys) = rev(xs, x::ys),we obtain the constraint8m : nat :8n : nat :(m+ 1) + n = m+ (n+ 1)following the same procedure, where xs and ys are assumedto be of type 'a list(m) and 'a list(n), respectively. Notethat m and n are universally quanti�ed, and the constraintcan be solved easily.4



fun('a){size:nat}bsearch cmp (key, arr) = letfun look(lo, hi) =if hi >= lo thenlet val m = lo + (hi - lo) div 2val x = sub(arr, m)in case cmp(key, x) ofLESS => look(lo, m-1)| EQUAL => (SOME(m, x))| GREATER => look(m+1, hi)endelse NONEwhere look <| {l:nat | 0 <= l <= size} {h:int | 0 <= h+1 <= size}int(l) * int(h) -> 'a answerin look (0, length arr - 1)endwhere bsearch <| ('a * 'a -> order) -> 'a * 'a array(size) -> 'a answerFigure 3: The binary search function8h : int :8l : nat :8size : nat :(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � (l+ (h� l)=2) � size8h : int :8l : nat :8size : nat :(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � 0 � l+ (h� l)=2� 1 + 18h : int :8l : nat :8size : nat :(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � l+ (h� l)=2� 1 + 1 � size8h : int :8l : nat :8size : nat :(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � 0 � l+ (h� l)=2 + 18h : int :8l : nat :8size : nat :(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � l+ (h� l)=2 + 1 � sizeFigure 4: Sample constraintsIn the standard basis we have re�ned the types of manycommon functions on integers such as addition, subtraction,multiplication, division, and the modulo operation. For in-stance,+ <| {m:int} {n:int} int(m) * int(n) -> int(m+n)is declared in the system. The code in Figure 3 is an imple-mentation of binary search through an array. As before, weassumesub <| {n:nat} {i:nat | i < n}'a array(n) * int(i) -> 'aThe explicit type parameter 'a is a recent feature ofStandard ML to allow explicit scoping of type variables.We extend this notation to encompass type index variables,fsize:natg in this case.We list some sample constraints generated from type-checking the above code in Figure 4. All of these can besolved easily.Note that if we program binary search in C, the arraybound check cannot be hoisted out of loops using the algo-rithm presented in (Gupta 1994) since it is neither increasingnor decreasing in terms of the de�nition given there. On theother hand, the method in (Susuki and Ishihata 1977) couldeliminate this array bound check by synthesizing an induc-tion hypothesis similar to our annotated type for look. Un-fortunately, synthesizing induction hypotheses is often pro-hibitively expensive in practice. In future work we plan ininvestigate extensions of the type-checker which could in-fer certain classes of generalizations, thereby relieving theprogrammer from the need for certain kinds of \obvious"annotations.

3.2 Solving constraintsWhen all existential variables have been eliminated and theresulting constraints collected, we check them for linearity.We currently reject non-linear constraints rather than post-poning them as hard constraints (Michaylov 1992), which isplanned for future work. If the constraints are linear, wenegate them and test for unsatis�ability. Our technique forsolving linear constraints is mainly based on Fourier vari-able elimination, but there are many other methods avail-able for this purpose such as the SUP-INF method (Shostak1977) and the well-known simplex method. We have chosenFourier's method mainly for its simplicity.We now briey explain this method. We use x for in-teger variables, a for integers, and l for linear expressions.Given a set of inequalities S, we would like to show that Sis unsatis�able. We �x a variable x and transform all thelinear inequalities into one of the forms l � ax or ax � lfor a � 0. For every pair l1 � a1x and a2x � l2, wherea1; a2 > 0, we introduce a new inequality a2l1 � a1l2 intoS, and then remove all the inequalities involving x from S.Clearly, this is a sound but incomplete procedure. If x werea real variable, then the elimination would also be complete.In order to handle modular arithmetic, we also performanother operation to rule out non-integer solutions: we trans-form an inequality of forma1x1 + � � �+ anxn � ainto a1x1 + � � �+ anxn � a0;where a0 is the largest integer such that a0 � a and the5



constraints type annotationsProgram number SML of NJ MLWorks total number total lines code sizebcopy 187 0.59/1.17 0.72/1.37 13 50 281 linesbinary search 13 0.07/0.02 0.10/0.04 2 2 33 linesbubble sort 15 0.08/0.03 0.11/0.06 3 3 37 linesmatrix mult 18 0.10/0.04 0.16/0.06 5 10 50 linesqueen 18 0.11/0.03 0.14/0.04 9 9 81 linesquick sort 135 0.29/0.58 0.37/0.68 16 40 200 lineshanoi towers 29 0.10/0.09 0.13/0.13 4 10 45 lineslist access 4 0.07/0.01 0.08/0.01 2 3 18 linesTable 1: Constraint generation/solution, time in secsgreatest common divisor of a1; : : : ; an divides a0. This isused in type-checking an optimized byte copy function.The above elimination method can be extended to beboth sound and complete while remaining practical (see, forexample, (Pugh and Wonnacott 1992; Pugh and Wonnacott1994)). We hope to use such more sophisticated methodswhich appear to be practical, although we have not yet foundthe need to do so in the context of our current experiments.4 ExperimentsWe have performed some experiments on a small set of pro-grams. Note that three of them (bcopy, binary search, andquicksort) were written by others and just annotated, pro-viding evidence that a natural ML programming style isamenable to our type re�nements.The �rst set of experiments were done on a Dec Alpha3000/600 using SML of New Jersey version 109.32. Thesecond set of experiments were done on a Sun Sparc 20 usingMLWorks version 1.0. Sources of the programs can be foundin (Xi 1997).Table 1 summarizes some characteristics of the programs.We show the number of constraints generated during type-checking and the time taken for generating and solving themusing SML of New Jersey and MLWorks. Also we indicatethe number of total type annotations in the code, the num-ber lines they occupy, and the code size. Note that some ofthe type annotations are already present in non-dependentform in ML, depending on programming style and moduleinterface to the code. A brief description of the programs isgiven below.bcopy This is an optimized implementation of the bytecopy function used in the Fox project. We used thisfunction to copy 1M bytes of data 10 times in a byte-by-byte style.binary search This is the usual binary search function onan integer array. We used this function to look for 220randomly generated numbers in a randomly generatedarray of size 220.bubble sort This is the usual bubble sort function on aninteger array. We used this function to sort a randomlygenerated array of size 213.matrix mult This is a direct implementation of the ma-trix multiplication function on two-dimensional inte-ger arrays. We applied this function to two randomlygenerated arrays of size 256 � 256.

queen This is a variant of the well-known eight queensproblem which requires positioning eight queens on a8 � 8 chessboard without one being captured by an-other. We used a chessboard of size 12 � 12 in ourexperiment.quick sort This implementation of the quick sort algorithmon arrays is copied from the SML of New Jersey library.We sorted a randomly generated integer array of size220.hanoi towers This is a variant of the original problem whichrequires moving 64 disks from one pole to anotherwithout stacking a larger disk onto a smaller one giventhe availability of a third pole. We used 24 disks in ourexperiments.list access We accessed the �rst sixteen elements in a ran-domly generated list at total of 220 times.We used the standard, safe versions of sub and updatefor array access when compiling the programs into the codewith array bound checks. These versions always performrun-time array bound checks according to the semantics ofStandard ML. We used unsafe versions of sub and updatefor array access when generating the code containing noarray bound checks. These functions can be found in thestructure Unsafe.Array (in SML of New Jersey), and inMLWorks.Internal.Value (in MLWorks). Our unsafe ver-sion of the nth function used cast for list access withouttag checking.Notice that unsafe versions of sub, update and nth canbe used in our implementation only if they are assigned thecorresponding types mentioned in Section 2.1.In Table 2 and Table 3, we present the e�ects of eliminat-ing array bound checks and list tag checks. Note that thedi�erence between the number of eliminated array boundchecks in Table 2 and Table 3 reects the di�erence betweenrandomly generated arrays used in two experiments.It is clear that the gain is signi�cant in all cases, re-warding the work of writing type annotations. In addition,type annotations can be very helpful for �nding and �xingbugs, and for maintaining a software system since they pro-vide the user with informative documentation. We feel thatthese factors yield a strong justi�cation for our approach.5 Related workFrom the point of view of language design, our work falls inbetween full program veri�cation, either in type theory (Con-stable et al. 1986; Dowek, Felty, Herbelin, Huet, Murthy,6



Program with checks without checks gain checks eliminatedbcopy 6.52 4.40 32% 20,971,520binary search 40.40 30.10 25% 19,072,212bubble sort 58.90 34.25 42% 134,429,940matrix mult 30.62 16.79 45% 33,619,968queen 15.85 11.06 30% 77,392,496quick sort 29.85 25.32 15% 64,167,588hanoi towers 11.34 8.28 27% 50,331,669list access 2.24 1.24 45% 1,048,576Table 2: Dec Alpha 3000/600 using SML of NJ working version 109.32, time unit = sec.Program with checks without checks gain checks eliminatedbcopy 9.75 2.01 79% 20,971,520binary search 31.78 25.00 21% 19,074,429bubble sort 46.78 25.84 45% 134,654,868matrix mult 60.43 51.27 15% 33,619,968queen 29.81 14.81 50% 77,392,496quick sort 79.95 70.28 12% 63,035,841hanoi towers 9.59 7.20 25% 50,331,669list access 1.58 0.77 51% 1,048,576Table 3: Sun Sparc 20 using MLWorks version 1.0, time unit = sec.Parent, Paulin-Mohring, and Werner 1993) or systems suchas PVS (Owre, Rajan, Rushby, Shankar, and Srivas 1996),and traditional type systems for programming languages.When compared to veri�cation, our system is less expres-sive but more automatic, when compared to traditional pro-gramming languages our system is more expressive, but alsomore verbose. Since we extend ML conservatively, depen-dent types can be used sparingly, and existing ML programswill work as before if there is no keyword conict.Hayashi proposed a type system ATTT (Hayashi 1991),which allows a notion of re�nement types as in (Freemanand Pfenning 1991), plus union and singleton types. Hedemonstrated the value of singleton, union and intersectiontypes in extracting realistic programs, which is similar toour use of the corresponding logical operators on constraints.However, his language does not have e�ects and he does notaddress the practical problem of type checking or partialinference.We have already compared some of the work on arraybound checking for other languages (Markstein and Mark-stein 1982; Gupta 1994; Susuki and Ishihata 1977), most ofwhich is based on automated analysis or inference, and thusmore limited while requiring no annotations. In many casesa considerable number of array bound checks remain, whichlimits the e�ciency gains. Furthermore, these methods pro-vide no feedback to the programmer regarding the correct-ness of his code, which is an important component of oursolution. We also deal with advanced features of ML suchas higher-order functions and polymorphism. The work byJay and Sekanina (Jay and Sekanina 1996) which includesthese features and has similar goals and approach to ours ismore restrictive in the design and seems more promising forlanguages based on iteration schemas rather than generalrecursion.Also related is the work on a certifying compiler by Nec-ula and Lee, which introduces precondition annotations fora type-safe subset of C in order to eliminate array bound

checks (Necula and Lee 1998) and generate proof-carryingcode (Necula 1997). Their language is signi�cantly simpler(for example, it does not include higher-order functions orpolymorphism), which allows them to formulate their exten-sions without constructing a full type system. They also donot include existential types, which we found necessary in anumber of our examples.6 Conclusion and future workWe have demonstrated the practicality of the use of depen-dent types in a statically typed functional language to elim-inate dynamic array bound and tag checks. The requiredadditional type annotations are concise, intuitive and aidthe programmer in writing correct and in many cases sig-ni�cantly more e�cient programs. The necessary constraintsimpli�cation, though theoretically intractable, has provedpractically feasible, even with a simple-minded implementa-tion and currently incomplete algorithm.Our immediate goal is to extend our system to accom-modate full Standard ML which involves treating exceptionsand module-level constructs. We would also like to incorpo-rate the ideas and observations from (Pugh and Wonnacott1994) into our constraint solver and improve its e�ciency.We also plan to pursue using our language as a front-endfor a certifying compiler for ML along the lines of work byNecula and Lee (Necula and Lee 1998) for a safe subset ofC. We can propagate program properties (including arraybound information) through a compiler where they can beused for optimizations or safety certi�cates in proof-carryingcode (Necula 1997).This work arose from a larger e�ort to incorporate a moregeneral form of dependent types into ML (Xi 1998). Our ex-tended type checking algorithm is robust (in the sense thatit can collect constraints independently of their domain),because we separated the language of indices and programs.This allows other program invariants or properties to be7
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assert length <| {n:nat} 'a array(n) -> int(n)and sub <| {size:int, i:int | 0 <= i < size} 'a array(size) * int(i) -> 'a(* sub requires NO bound checking *)and subCK <| 'a array * int -> 'a (* subCK requires bound checking *)type intPrefix = [i:int| 0 <= i+1] int(i) (* notice the use of existential types *)assert arrayPrefix <| {size:nat} int(size) * intPrefix -> intPrefix array(size)and subPrefix <| {size:int, i:int | 0 <= i < size} intPrefix array(size) * int(i) -> intPrefix(* subPrefix requires NO bound checking *)and subPrefixCK <| intPrefix array * int -> intPrefix (* subPrefixCK requires bound checking *)and updatePrefix <| {size:int, i:int | 0 <= i < size}intPrefix array(size) * int(i) * intPrefix -> unit(* updatePrefix requires NO bound checking *)(* computePrefixFunction generates the prefix function table for the pattern pat *)fun computePrefixFunction(pat) = letval plen = length(pat)val prefixArray = arrayPrefix(plen, ~1)fun loop(i, j) = (* calculate the prefix array *)if (j >= plen) then ()elseif sub(pat, j) <> subCK(pat, i+1) thenif (i >= 0) then loop(subPrefixCK(prefixArray, i), j)else loop(~1, j+1)else (updatePrefix(prefixArray, j, i+1); loop(subPrefix(prefixArray, j), j+1))where loop <| {j:nat} intPrefix * int(j) -> unitin (loop(~1, 1); prefixArray)endwhere computePrefixFunction <| {p:nat} int array(p) -> intPrefix array(p)fun kmpMatch(str, pat) = letval strLen = length(str)and patLen = length(pat)val prefixArray = computePrefixFunction(pat)fun loop(s, p) =if s < strLen thenif p < patLen thenif sub(str, s) = sub(pat, p) then loop(s+1, p+1)elseif (p = 0) then loop(s+1, p)else loop(s, subPrefix(prefixArray, p-1)+1)else (s - patLen)else ~1where loop <| {s:nat, p:nat} int(s) * int(p) -> intin loop(0, 0)endwhere kmpMatch <| {s:nat, p:nat} int array(s) * int array(p) -> intFigure 5: An Implementation of Knuth-Morris-Pratt String Matching Alogirithm9


