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ABSTRACT. It is classical result, first established by de Jonquiéres (1859), that generically the number of conics
tangent to 5 given conics in the complex projective plane is 3264. We show here the existence of configurations of
5 real conics such that the number of real conics tangent to them is 3264.

§ 0. INTRODUCTION.

The following is a classical problem in enumerative geometry :
Given b generic conics, find the number of conics tangent to them.

In 1848 J. Steiner believed to have found that there are 6°. In 1859, E. de Jonquiéres found the correct
answer : 3264; however, he did not publish his result because it was in contradiction with Steiner’s, and
because M. Chasles didn’t trust him. Finally, Chasles established the correct answer in 1864, and Th. Berner
again in (1865) (cf. [4], page 268).

The problem has been reworked more recently by Fulton-McPherson [2] and Procesi-De Concini [1].

We shall prove the existence of configurations of 5 real conics that admit exactly 3264 real conics tangent
to them at real points. By a real conic we mean a conic whose equation has real coefficients and by the
exact number we mean that there are no multiplicities to take into account : each solution to the problem
is a smooth conic which is simply tangent at exactly 1 real point of each of the b given conics.

The configuration of 5 conics will be found as a small deformation of the 5 degenerate conics constituted
by suitable pairs of lines crossing at the vertices of a regular pentagon in an affine plane. By taking different
pairs of lines, it 1s possible to find configurations of 5 conics with a number of conics tangent to them smaller
then 3264, but we do not investigate this any further here.

The main ingredient that we shall use to control the deformation in the real case is theorem 8, which
might have some interest by itself. It says that if the derivatives of a C*™ map F' at some point zy coincide
up to order 2 with those of the map (z1,...,xg) — (23,...,23), then there exist regular values near F(xg)
with 2% preimages near xg.

§ 1. FIRST CONTACTS

Most statements of this § will be made over R, but they remain valid, as well as there proofs, over C.

Let us denote by Q (respectively @Q,) the space of all bilinear symmetric forms (respectively the bilinear
symmetric forms of rank r) on R3. Denote by PQ the projective space of Q and by PQ, the locally closed
subvariety of PQ corresponding to @Q,. Let P? = PIR? be the real projective plane.

Geometrically, PQ is the space of all (possibly empty) real conics of P? PQj is the set of all smooth
conics, PQ5 is the set of all singular conics consisting of 2 distinct lines, and PQ; is the set of all double
lines.
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For ¢ € Q\ {0} (resp. = € R?\ {0}) we denote by [q] (resp. [z]) its image in PQ (resp. P?). Consider the
subvariety W of (]PQ)5 X (]PZ)S x PQ3 defined by:

w={(la] [ Lo T, [es), ) € (PQY x (B9)° x Py
[#:] # [z;], 1 # j and the following equations hold, i =1,...,5:

M ¢i(wi,z) =0 , (A1) ¢(wg,25) =0 (1) gi(2s, ) Ag(ay,-) =0 } .

Note that in fact the equations ¢(#;, z;) = 0 and ¢;(z;, ;) = 0 imply already that ¢;(x;, ) A ¢(#;, ) vanishes
on {z;} AIR3 and therefore equation (III) can be viewed in (R3AR3/ {z;} /\}RB)* ~ [R. Alternatively, if
we choose z!, 2/ € R3 such that there images in R3/[z¥] are linearly independent, in a neighbourhood of

([q1], - -, [gs), 29, - - -, [22], [q) € W equations (III) can be written :
(gi(wi, ) A g, ) (25, 27) = qiles, wi)g(wi, @) — qii, o )q(wi, ) = 0

The conditions defining W mean that the 2 conics defined by ¢;(#) = 0 and ¢(x) = 0 are tangent at [#;];
if [2;] is singular on ¢;, it means simply that @; € ¢ N ¢;. In order to simplify the notation, we shall say that
x; belongs to ¢ and ¢;, or x; € ¢ N¢;, and that ¢ and ¢; are tangent at ;. We shall denote by (¢)sing and
(¢)reg respectively the singular and the regular part of ¢.

Denote by

F:W — (Poy

the restriction to W of the natural projection (]PQ)5 X (]PZ)S x PQs — (]P)Q)s. The problem is to find the

maximal number of elements of F~1(u), for u € (]PQ)5 belonging to a suitable open, dense subset U C (]PQ)5
that we will define in this §.

REMARK. The image of W by the projection
p:(PQY x (P?)° x PQs — (PQ) x PQs

is the set of ([¢1], ..., [g¢5], ¢) such that ¢ is tangent to ¢;, i = 1,...,5 at some unspecified point. Denote by
Q the locally closed subvariety of (]PQ)5 x PQs of the ([q1],...,[¢s], [¢]) that are such that the intersection
of g and ¢;, 2 = 1,...,5, consists of 3 distinct points, at 2 of which ¢ and ¢; are tranversal, and the third
(necessarily a real point) at which ¢ and ¢; are tangent. Our genuine problem is to compute the cardinality
of the fibers of the natural projection  — (]P)Q)s.

Clearly, 2 is open and dense in p(W) and p induces a bijection from p~1(Q)NW to Q. Moreover, we shall
see shall see in Prop. 1 below that W and (]PQ)5 both have dimension 25 and so there exists a non-empty
open subset U of (]IDQ)5 such that F=Y(U) C p=1(Q) (for example, take U = (]PQ)5 \ closure of F(W\p~1(Q))
in the Zariski topology). Then, for u = ([q1],...,[gs]) € U the cardinality of F~1(u) really is the number of
conics tangent to ¢1,...,¢s.

This justifies that we concentrate on the study of the generic fibers of F'.

In fact we shall denote by i an open set in (]PQ)5 that will shrink during this paragraph, as we add more
and more genericity conditions.

Recall that for [z] € P™ = P(R"+1) the tangent space TP ~ R7+1/[z]; we shall write T for an element
of T]P)Fx], or for some of its representatives in R™+1,

Proposition 1. The variety W is smooth, of dimension 25. For w = ([¢;], [%:],[q]) € W, the tangent space
TwW is the set of (¢y,...,qs, %1, ..., ¥s, ) such that:

(D) 2qi(%i, 7)) + (@i, 2) =0
(a0 2q(x;, %) + G4, 4)

=0 fort=1,...,b
(HI) (@(l‘l, ) + Qi(fi’ )) A Q(xi’ ) + Qi(xi’ ) N (?(l‘z’ ) + Q(Ei’ )) =0
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Proof. Let w = ([q1],[qz], - - -, [gs], [#1], - - s [xs], [q]) € VW and let us take the following derivates of the
equations defining W at the point w :

Ol oy o o Ol —\ _ o = omr . _ .
%((h) _qi(xlaxl) ) 8902(%) = Q(xZaxz) ) 6(]2' (qZ) = i(xza )AQ(xza )

K3

choose #} , #/ € R linearly independent in R?/[z;] ~ Tf, jP? ¢ = 1,..., 5.1t is readily checked that the linear

map
(3, %) = (@'(l‘z’a i), q(xe, B), (@ (2, ) A g, ) (2, l‘f))

is surjective, which shows that W is smooth of dimension 25, and even that the projection W — P Qs is a
fibration.
The second assertion follows by taking the total derivatives of the equations I, IT and III defining W 0O.

i=1,...,5

We now introduce a first series of genericity conditions on ([q1], ..., [g5]) € (]P)Q)s. Although the ¢;’s are
real conics, the lines and points mentioned below are taken into account even if they are not in P%(R) :
G4) . VY distinet 4,5, k, i N g; Ngx = 0 (in P*(C)).

Gh) @ Y distinet 4,4, k, g4, gjand g have no common tangent (in P%(C)).
G») . VY distinct 4,7, k, £, any commun tangent to ¢; and ¢; does not contain points in g N g, (in P*(C)).
G's) : V distinet ¢, 4, k, €, m, if d, ; is any tangent commun to ¢, and ¢,, we have that d; ; Ndg ¢ N gn = 0

(
(
(
(

3
(in P%(C)).
(Gg) : V distinet 4,7, k,¢,m and Yz, , € ¢, N ¢, the line through «; ; and 2 ¢ is not tangent to ¢,. (in
P2(C)).

(G4) © Vi#j, ¢; and ¢; intersect transversally (in P%(C)) at points that are smooth both on ¢; and ¢;.

In other words, the configurations represented in figure 1 are excluded (as usual, we draw a real picture that
represents objects in P%(C)).
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qi j ai
@ q
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Ficurge 1. Configurations that we don’t want in § 1.

Let U C (]PQ)5 be the set of ([¢1], ..., [¢5]) satisfying the above genericity conditions. Tt is readily verified
that I/ is a Zariski-open, nonempty subset of (]P)Q)s. Let

wu) = {([QI]a oo lgsl [l [ws) [g]) €W | ([q1], - - - [gs]) ELI}
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Proposition 2. F : W(U) — U is proper
Proof. Let

Wy ={(al e, [os], [o1], - Tas) Tal) €U x (P2)° x PO
qilws, ) = q(zg,25) =0, iy, YA gz, ) =0,i=1,. ..,5} ;

that is, we drop the conditions that ¢ € PQs and [#;] # [#;], ¢ # j, in the definition of W(/). Let
F' : W(U) — U be the restriction to W(U)" of the natural projection U x (]PZ)S x PQ — U; since the
latter is proper, it remains to show that W(U) is closed in W()'. Since it is clearly open, it will show
that W () is a union of connected components of W (U)". Let {wy}, .y C W(U)' be a sequence converging

to wo = ([q1], - -, [as], [x1], - - -, [@s), [q]) € U x (]PZ)S x PQ — U. If ¢ is a singular conic consisting of two
distinct lines £; and £3, then each conic [¢;], ¢ = 1,... 5 should be tangent to ¢; or £5 or pass through the
intersection of {1 and ¢5. If {; = {5 = ¢, working with complete conics, it is easily seen that either ¢; D £ or
q; goes through one of two points P, @) € ¢, for ¢ = 1,...,5. One can check that all the situations that might
occur are excluded by the genericity conditions defining & 0.

Proposition 3. The fibers of F' = F(U) : W(U) — U are finite.

Proof. Consider the complexification Fp : W(U )¢ — Ug of F and the projection
p: WU)c — (PQs)o. Let u € Ug; since F is proper and (PQ3). is an affine variety, p(F(C_l(u)), u € Ue
consists of a finite number of points. Moreover, p|F(C_1(u) — (IPQ3) has finite fibers because of (G4) 0.

Here comes a genericity condition that we will need later on. Let k € {1,...,5} and denote by V the
subvariety of W(U) consisting of the ([¢;], [i], [¢]) such that the order of contact of ¢ and ¢; at xy, is at least
3. For example, let g € PQ, and let xp be the singular point of g; if ¢ is tangent to one of the 2 lines
through #;, that constitute ¢; then the order of contact of ¢ and ¢ at xy is 3 if ¢ is smooth (see figure 2).

q
FIGURE 2. The order of contact 1s 3.

Since W (i) and U have the same dimension, F(V},) G U and F(V}) is closed, since I is proper. Our last
genericity condition is the following :

(Gs) :+ ([qa],- -, [es)) ¢ Uk:1,...,5 F(Vi).
We shall denote again by U the set of ([¢1],. .., [gs]) that satisfy all the genericity conditions introduced so
far.

Notice that ¢ contains configurations of the form ([¢1], ..., [g5]) with ¢; € Q2, i =1,...,5. Indeed, there
is no problem in choosing u® = (¢,...,4¢%), ¢ € PQs, i = 1,...,5, satisfying conditions (G1) through (G4)
and Gy, G3. For some k € {1,...,5}, let 3 denote the singular point of qv. Consider:

FHu), = {(u®, [23), []) | e = i}

For ¢ fixed, i # k, F~(u"); is finite and depends on y, but not on qi. Therefore, we can deform u into
u = ([q1], .- -, [g5]), where q; = ¢? for i # k, and ¢ is singular at yg, but for all (u,[2;],[¢]) € F~1(u)x none
of the two distinct lines composing ¢j, is tangent to [¢] at @ = v, that is : u ¢ F(V4).
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§ 2. THE SINGULARITIES OF THE MAP F'.

Throughout this § we shall assume that w € U N (]P)Qz)s.
Let w = (u, [z], [q]) € F~1(u) and

s =s(w) = |{zi | 2 € (¢i)sing }|

where |X| denotes the cardinality of X. We shall see that the behaviour of F' near w essentially depends
only on s(w).
Proposition 4. Let s € {0,...,5} and assume that #; € (¢;)sing for i < s and x; € (¢;)reg for i > s. Then
the projection

(51,...,55,5) H(fl,...,fs)

induces an isomorphism
¢ Ker(dF,) = {(51, cey Ts) | qzs, YNG(7i, ) =0,i=1,.. .,5}
If 7; € Tp,0q \ {0}, then

Im¢ = {(51,...,55) | 9i(m, %) =0,4i= 1,...,5}

Corollary 5. dim Ker (dFy) = s(w)

Proof. Indeed, since ¢; consists of 2 distinct lines, the kernel of the linear map

TiwgP? =R, T~ q(1, %)

has a kernel of dimension 1 .

We give now a geometric description of Im¢. Let ]P)}R[lxl] denote the set of lines of PR? through [z;]. Let us

recall how two lines £/, 0" € ]P)R[lx] define a polarity among pairs of lines of ]P)}R[lx E Let « be a homogeneous

2-form in 2 variables whose zeroes are £’ and £”; if v,w € R?\ {0} are such that a(v,w) = 0, we say that the
line through v is polar to the line through w with respect to the two lines ¢/, ¢”. Choose 7; € T;.,q\ {0}; then
qi(Zi, 1) = 0 for (Z1,...,%;) € Im¢. This means that Z; must lye on the polar line to Ty, (¢q) with respect
to the 2 lines through [z;] defined by ¢; (see figure 3).

FiGURE 3. Geometric interpretation of the kernel of dF),.
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Proof of proposition 4. According to proposition 1, Ker (dF),) is the subspace of
(@i:l 5 T[xl]]P)Z) ® 11 PQ defined by the equations:

() qi(zs,7)=0
(A) (1) 2q(as, @) + G, 2;) =0 i=1,...,5
(M) @@, ) A g, )+ qi(es, ) A, -) + (T, ) = 0
For i < s, since ¢;(x;,-) = 0, this set of equations is equivalent to
(a0 2q(z;, @) + G5, 2;,) =0
{ (I ¢(7i, )N g(es, ) =0

and for ¢ > s there exist scalars A; such that ¢(z;, ) = A;qi(#;, ). Therefore (A)(T) implies that ¢(z;, %) =0
and the set of equations becomes:
(M) qi(x;,7) =0
(©) (I g(wi, i) =0 i>s
(H)  qi(zs, ) A (a(Zis ) + (@i, ) — Xiqa(Ti, 1)) = 0

Equation (B)(IIT) shows that ¢ is well defined.

(B)

1< s

¢ is surjective. Let T; € Tf,,jP? be such that q(x;,-) A ¢i(T;,-) = 0 for i < s. Since g is non-singular, three
of the z;’s are never aligned and so there exists § € Q such that

7 ) —2q(z;, %) ifi<s
T, T) = o
A 0 ifi>s
We choose T, ¢ > s, such that (C)(I) is satisfied. Then Z; = &; - 7;, where 7; is some fixed non zero element
in 7j,,1¢ and &; is a scalar.

We proceed now to choose & in order to satisfy (C)(II
and 7;, we have to choose &; in such a way that ¢(7;, ) +
It clearly vanishes on #;; now ¢;(7;,7) = 0 and q(7, 1) #

T). Since the kernel of ¢(x;,-) is generated by z;
q(z;, ) — XAqi(T;, -) also vanishes on x; and on ;.
0. We may therefore take :
i)
)

G, T
(TZ 3 TZ

&= -1

¢ is injective. If 7 = 0, i < s, then it follows from (B)(IT) that g(x;,z;) = 0 for ¢ < s and by (C)(II)
Gz, 2;) = 0 for i > s. Therefore q and 7 have the 5 distinct points [#1], ..., [#5] in common, and no three
of these are aligned because ¢ is non-singular, and so 7 = 0 in T[,7PQ.

Now it follows from (C)(IIT) that for i > s

and therefore there are some scalars p; such that:
Q q(Ti, ) = Niqi(Ti, ) + pagqi(zs, )

Since ¢; (x4, T;) = 0 and x; € (¢i)sing for i > s, T; belongs to one of the 2 distinct lines that constitute ¢;, say
£ and therefore ¢;(Z;,Z;) = 0. Replacing the dot by Z; in © shows that ¢(7;,7;) = 0. But ¢ N ¢ = {z;},
therefore T; = 0 in T[xl]]P)Z.

Since ¢ is non-singular, ¢(x;, ) A Q;(z;, ) = 0 is equivalent to say that ¢;(#;,-) vanishes on the kernel of
q(x;, ), which is generated by 7; and #;. Therefore :

q(zi, ) A Qilzi, ) =06 ¢i(wi, ) =0
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We want now to study the second derivative of F'. Recall that for a C*° map G : X — Y between C™
manifolds, the second intrinsic derivative, first introduced by Porteous [3], is the linear map

o d*G, : Ker (dG,) @ Ty X — Coker(dG,)

which 1s obtained from the second derivative at x of G written in local coordinates. If G : R™ — RP and
h:U—=R" H™':V — RP are local diffecomorphisms on R™ and RP respectively, where U C R?, V C R?,
h(0) = 2, H=1(0) = G(z), then

d*(HGh)o = dH () (d>Go(dho, dho)) + dH ) (dGo(d*ho)) + d* Heey (dGo(dho), dGo(dho))

from which it follows that the linear map dzéx s Ker (dGy) ® T, R™ — Coker(d(y) is affected only by the
linear part of the local diffeomorphisms h and H. This shows that the linear map of é# is well defined.

Let now Ly, L, and L3 be open sets in R™!, R™2 and R"™3 respectively and let ® : L1 X Ly — L3 be C*
and assume that 0 € Ls is a regular value of ®. Set W = <I>_1(0) and let ' : W — Ly be the map induced
by the projection on the first factor. We want to express the second intrinsic derivative of /' in terms of the
derivatives of ®. Denote by ;—ﬁ(w) and a%i(w) the derivatives of @ in the direction Ly and Lo respectively
at the point w = (w1, wa).

Lemma 6. The derivative (,?—ﬁ(w) induces an isomorphism:
~ 0P
0 : Coker(dFy ) — Coker (—(w))
6102
We have a commutative diagram:

Ker(dFy) @ T,w —22».  @ns

(. g
(=1)# 2%
Coker (dFy) —_— Coker(a—m(w))

from which dsz can be expressed in terms of the derivatives of ®.

Proof.

The fact that # is an isomorphism follows easily from the fact that & is a submersion and from the
definition of F'.

For the commutative diagram, let h = (h',h?) : U — W C L1 x Lg be a local parametrisation of W,
h(0) = w. Since ® - h = 0, we have:

0] 0]
d*®,, (dho, dho) + d®,,(d*ho) = d*®,,(dho, dho) + o0 (w)(d*hy) + 9% (w)(d*h2) =0
owy Jws
and therefore, for 7; € ToU, i = 1,2, and w; = dho(7;) :

0P
(w) (dzhé(fl,fz)) mod Im—(w)

o
d>d,, (1, W) = —
(wlawZ) 8w2

dw;

Since ht = F - h, d*h}(Z1,%2) = d*Fy(dh§(T1), dh§(T2)) + dFy (d?h§(T1,T2)) and so :

0P 0P
qu)w (ml,mz) = ——(w) (szw (dho(fl), dho(fz))) — —(w) (dedzho(fl,fz))
owy Jwq

_ 0 2 _ 0P
= _6—101(w) (d Fy(wy, wz)) mod Im 6—102(w)
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from which our assertion follows 0O.

We come back to our map F': W(U) — U. Let Ly be an open subset of U C (]P)Q)s, Lo an open subset of

(]PZ)S x PQs and Ly = R we assume that L; and L, are contained in products of affine open sets, so that
we have explicit representatives for ([¢;], [#:],[¢]) € L1 X La, and therefore it makes sens to write the map:

®: Ly x Ly — Ls, ([qi], [, [q]) — ((fh(l‘i, xi)>i:1 5 (q(xia l‘i))i:17...75<Qi(l’i, I A g, .)>i:17d0t575) :

Note that because the projective space are replaced by affine spaces of the same dimension, we can also look
at ¢; and ¢ as non-homogeneous polynomials of degree 2 on R2. Their derivatives at 2; € R? are linear maps:
R? — R, and if ¢;(x;, ;) = q(2;, 2;) = 0, the condition d(g; ), Adgz, = 0 is equivalent to ¢;(x;, ) Aq(z;, ) = 0.
We know from proposition 1 that 0 € R'® is a regular value of ®.

Recall that we assume that ¢; € PQs, i = 1,...,5, #; € (¢)sing for i = 1,...,5 and #; € (¢;)reg for
i=s+1....,5. Forw = ([¢], [i], [¢]), dim Ker (dF},) = s, and so dim Coker (dF,) = dim Coker (g—i(w)) =s.
Since

0P
—a (w)(fl,...,fg,,q) = (ql(l‘l,fl),...,Q5(l‘5,f5),...) = (0,...,0,*,...,*)
w2

9P
dws

of I to Ker (dFy) @ Ker (dFy,), that we still denote by d?F,, can be identified using Lemma 6 to the bilinear
map:

the first s coordinates of RS represent Coker ( (w)) and so the restriction of the second intrinsic derivative

Ker(de)®Ker(de)—>]Rs s (51,...,55,5)(@(%1,...,%5,?)l—>(—1)~(ql(fl,fl),...,qs(fs,fs))

Recall from Proposition 4 that if (Z1,...,%5,7) € Ker (dFy) \ {0} then ¢(z;, )A¢;(Fi, ) =0fori=1,...,s.
If in addition ¢;(%;,%;) = 0 for i = 1,... s, then &; € (¢i)reg and so the tangent line to ¢ at #; is a component
of ¢;, which is excluded by the genericity condition (G5).

In conclusion, we have proved the following result:

Theorem 7. Let u € U N (]PQQ)5 and w = (u,[z1],...,[s), [q]) € F~'(u); assume that x; € (g;)sing for
i < s and ®; € (¢i)reg for i > s. Then:

e dim Ker (dF,,) = s = dim Coker (dF)
o Let (T1,...,%s,q) € KerdF,, so that ¢;(T;, ;) = 0, for 7; € Ty, (q); then

dzﬁw(fla .. 'afsaa;fla .. 'afsaa) = (_1) : (ql(flafl)a ey QS(ESaEs))
and ¢;(T;, %) Z0 for T £0, i =1,.. . s.
O.

We will show in the next § that the particular properties of the derivatives up to order 2 of F' imply that

there exists u’ near uw with 2° non singular points in the fiber near the point w, where s = dim Ker dF,.
§ 2. A DEFORMATION THEOREM.

We shall use the euclidean distance on R"; B(0,r) will denote the open ball of radius r centered at 0.
Theorem 8.

Let f:Q —=R" 0€ Q CR"” open, f(0) =0, be aC>® map. Let s = dim Ker (dfy) and assume that

d*fo : Ker (dfo) @ Ker (dfy) — Coker (dfo)

is the product of s quadratic forms of rank 1 with transversal kernels; that is, for a suitable choice of basis

of Ker (dfy) and Coker (dfy) we can write:

fOI’(O[l,...,OZs), (61,~~~,65)EK6r(df0) ) dzfo((ala"'aas)a(ﬁla"'aﬁs)):(Oflﬁla"'aasﬁs)
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Then after a change of coordinates in the source and target of f, it can be written :

fley, . mn) = (2 et wepr, . wn) Fg(ee, . wn)
for ||z|| < 1, where g: B(0,1) — R* satisfies:
dg . g o
0)=0 0)=0,i=1,... 0)=20 =1,...
g() ; 89:2() 52 ; , ; 3932836]() y 4, ] ; ) S
Let yo = (1,...,1,0,...,0). There exists § > 0 such that for any ¢, 0 < \/z < 8, the equation f(x) = cyo

——

5

has exactly 2° solutions in the ball centered at 0 of radius \/2¢s, at which the jacobian of f is non zero.

Proof. Since f(x) = ey implies #5341 = - - - = #, = 0, we might as well assume that s = n.
We have that for ¢ €] — 1,1[, g(tz1, ..., tas) = t3g1(x, ), where g1: B(0,1)x] — 1, 1[— R* is C*°. Let
oz, t) = f(te)/t? = (x%,...,22) +tgi(x,1)

1
Set v = 35 the equation ¢(x,0) = v - yo has 2% solutions &P, i = 1,...,2% of the form (£/,..., £/V),

s
that lye in the ball B(0, %), and %( 9.0) is invertible. It follows from the implicit function theorem that
there exists 6/ > 0, n > 0 and 2° functions & (t) :] —6',6'[— B(£2,n) C B(0,%), i = 1,...,2%, &(0) = &,
such that

for Jt|< &, € U B(&),n), ¢é(x,t) = vyy < Ji such that z = & (¢)
i=1,...,2°

and %(&(t), t) is invertible. Since ¢ (B(O, D)\ Ui=1, 2:B(&),n), 0) does not contain vyg, there exists 6" < ¢’
such that for [t| < 8", vyo ¢ ¢ (B(0, §) \ Ui=1,...2: B(£2,7m),1), and therefore :

1
for [t] < 8", ||z]| < 3 é(x,t) = vyp <= Ji such that x = &(¢)

flx) =eyy <= ¢ (\/:/_1/’ E/I/) = vy

_ 6”
If we set 6 = EVETE then

[l

e< b elv< & and Vi

Our a5§ertion follows at once 0.

1
<5® ||| < V2es

y

\

ai

F1GURE 4. If we deform ¢; to ¢/ = ¢; + ¢ in such a way that ¢ appears
in the sector not containing 7'qy,, we can guess that there are 2 conics
near ¢ tangent to ¢;.
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Let us sketch how we will use this theorem to calculate the cardinality of a maximal generic fiber of the
map F of § 1. Let u e U N (]P)Qz)s, so that v = ([¢1], .. ., [g5]) where ¢; is a degenerate conic that consists of
2 distinct lines meeting at a point [y;]. For s € {0,...,5} we set

F_l(u)s = {w € F_l(u) | dimKer (dFy) = 5}

We restrict the equations ¢;, i = 1,...,5 to some affine chart on P? containing [y1], ..., [ys], that we identify
to R% For w € F~Y(u)s, perhaps after renumeration w = ([x1], ..., [ys], [Ts+1],- -, [2s], [aa], - - -, [g5), [4])-
Recall that if (Z1,...,7,,q) € Ker dF,,, then F; is polar to T'q,, with respect to ¢;, and so ; and T'gy, lye on
different components of the complement of ¢;. If we choose the equations ¢;, ¢ = 1,...,s in such a way that
¢i(%;,T;) > 0, or equivalently ¢;(7;, 73) < 0 for 7 € T'qy,, then it follows from theorems 7 and 8 that if we
replace ¢; by ¢ = ¢; + ¢, € > 0 small enough, then F~1(u'), v = (¢},...,4%,¢s+1,- - -,q5) will have 2° points
in a neighborhood of w. This can be confirmed intuitively, because then ¢/ will have 2 sheets near T'qy, (see
figure 4).

The next problem is that if F'=(u) = {w1,...,w:}, we will have to find a deformation u’ as above,valid
for all the wy, ... wy. This means that whenever ([z1],...,[xs],[q1], -, [g5], [q]) € F~(u) and [2;] = [w],
then ¢;(7, 1) < 0 for ; € T'qy, (we will do this in § 4). Then we will have :

|F=Y(u')| = Zzs Fa N

Finally, there are (‘;’)25_5 ways of choosing a subset I C {1,...,5} and 5 — s lines, one among each pair of
lines that constitute the ¢;’s. Therefore
5
|F_1(u)s| = ( )25_5715
s

where n; denotes the number of conics passing through s points and tangent to 5 — s lines. The number n,
depends on the mutual positions of the s points and the 5 — s lines and will be determined in the next §.

§ 3. BASIC ENUMERATIONS.

Given a point [z] € P? and a line £ C P?| we can define the 2 following divisors in PQ:

D, ={[q) ePQ|x € q}
Dy = {q €PQ | q 1s tangent to E}

The first divisor 1s a hyperplane, and some properties of the second are given in the following easy lemma,
that we leave to the reader :

Lemma 9.
(1) Dy, has degree 2
(2) (Dz)sing = {q | qD> E} ~ ]P;Z

(3) ifq € (Df)reg and [¢] = ¢ N ¢, we have:

O.

(]PZ % (@2)5_8 as the set of ([#1],...,[®s], €s41, - - ., €5) that satisfy:

1) 3 among the [2;]’s are not aligned (in particular, [¢;] # [#;] for 1 # j).

2) 3 among the ¢;’s do not go through a same point (in particular, ¢; # £; for i # j).

4) Yiy # 49, j1 # jo any line through »;, and z;, does not go through ¢;, N¢;,.

5) V distinct ¢y, 49, 3,74 and V j the intersection of the line through [#;,] and [#;,] with the line through
[#:,] and [z;,] does not belong to ¢;.

(6) V distinct i1, 42, 43,74 and V j, x; does not belong to line through ¢;, N ¢;, and ¢;, N ¢;,.
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FI1GuRrE 5. Configurations that we don’t want in § 3.

In other words, the configurations shown in figure 5 are not allowed.

Lemma 10. Let ([#1],...,[#s], €s41,...05) € Q5 and [¢] € Dy, N---N D, NDy
and if [q) € PQs, Dyyy..., Dy, Dy .., Dy, Intersect transversally at [q].

N---NDy,. Then [q] ¢ PQ>

s41
sH10°
Proof. Assume that [¢] € PQs and let [y] be its singular point. Then the genericity condition (1) implies
that s < 4. Any tangent to ¢ goes through y, and so condition (3) implies that [#;] # [y], i =1,...,s, and
condition (2) implies that s > 3.

If s = 3, condition (1) or (4) is contradicted, and if s = 4 condition (1) or (5) is contradicted.

Now let [¢] € PQ3; then by lemma 9 (2) [¢] is a smooth point of each divisor D,,, D¢, and the intersection
of the tangent spaces of the divisors at [q] is

{TenPQ|q(e) = =7(x:) = Uyesr) = - = (ys) = 0}

where y; = ¢N¢;. Conditions (1), (2) and (3) imply that the points [z1] ..., [zs], [Ys+1], - - -, [y5] are 5 distinct
points on ¢, and therefore 3 of them are never aligned. But there is exectly 1 conic going through 5 points,
3 of which are never aligned 0O.

Let
V, = {(([1‘1],...,[a:s],ﬁs_H,...,Eg,),[q]) €O, xPQ;4 | g€ Dy, N---NDy, N Dy, ﬂ~~~ﬁDz5}

Proposition 11. The variety Vi is smooth and the natural projection w:V; — €, is a proper submersion
with finite fibers.

Proof. The facts that V; is smooth and that 7 is a submersion follow from lemma 10.

If in the definition of V; we allow [¢] € PQ , the corresponding projection 7 is obviously proper. Lemma
10 implies in this case that ¢ ¢ Q2, and if s > 3 the genericity condition (1) implies that ¢ ¢ Q. Therefore
7 is proper for s > 3. The case s < 2 is obtained by observing that associating to a conic its dual induces
an isomorphism Vs ~ Vs_, 0.

Corollary 12. The map
Qs —N | we |7T_1((.d)|

is locally constant. O.

We compute now |7T_1((.d)| for various connected components of €2;. By applying our results to the dual
conics, the cases s = 3,4, 5 will be deduced from the cases s = 2,1, 0 respectively.
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First of all, we compexify the situation. Then it follows from lemma 9 (1) that |7T_1((.d)| =1,2,4,421
for all w € (), s = 0,1,2,3,4,5. We set N, = |7T(El((.d)|. Back to the real case, we shall say that a
component Q¢ of Q, is mazimal if |7T_1((.d0)| = N; for w® € QY.

In what follows, we will make use of the action of the group PGI(3,R) on £2;; since it is connected, it will
preserve the connected components of 2.

X4

FI1GURE 6. s = 0; the sixth forbidden line is at co.

| s=0and s=5 |There is exactly one (non-singular) conic through 5 points, 3 of which are never aligned,
and so all the components of {25 are maximal. Dually, it follows that all the components of 2y are maximal.

In fact, the variety Qg has 12 connected components: the set of 4-tuples of points of P? 3 by 3 not aligned
is connected because it is a homogeneous space for PGI(3,R). Therefore we can fixe the first 4 points
[21], ..., [za4]; then for the fifth point there will be 6 lines forbidden by the genericity conditions, namely
those through the pairs of the first 4 points. It is now easy to check on an explicit example that there are 12
connected components in the complement of such 6 lines (see figure 6, in which one of the forbidden lines is
the line at co).

The variety €; has 16 connected components. Indeed, using the action of PGI(3,R) we can fix
the four lines and [#] must belong to the complement E of this 4 lines, but not to the lines joining pairwise
intersections of the /;’s. Among the components of I, there are 4 triangles 7; and 3 quadrangles ;. Clearly
(see figure 5), the components of type @) are maximal, those of type T' are not.

FiGURE 7. s = 1; choose z; in a quadrangle if you want to be in a
maximal component.
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The variety 25 has 12 connected components. Indeed, we can fix the 3 lines £1, {5, £35 and the
point [21]; the point [23] must be choosen in the complement of the 6 lines £1, £5, £3 and the three lines
joining [1] to the intersections £; N £5. The maximal components are those where [¢1] and [x3] are in the
same component of the complement of the 3 lines £1,£5, 3. Since the choice of £1, 5 and /3 is irrelevant, it
suffices to check on a particular case. We take :

[¢1]=[-1:0:1],[as]=[1:0:1] ,bs={y=—z}, la ={o =2z} , b5 = {o = -2z} .

Let q(z,y,2) = ax? + by? + cz? + dey + exz + fyz = 0 be a conic through [2;], [z2] and tangent to ¢;, ¢5
and f3. Then:
q(1) =0 = a+c—e=0

fr— = —c, =0
q(a:z):0:>a—|—c—|—e:0} ¢ € °

Then the conic ¢ = a(2z? — 2?) + (by + dx + fz)y must be tangent to:

by = d* —da(—a+b—f)=0
by = (2d+ f)* —12ab =0
by = (=2d+ f)? —12ab =0

It follows from the last 2 equations that df = 0.
If d = 0, we have

(1) a(—a+b—f)=0
(2) f*—12ab=0

a = 0 gives the double line through [z1] and [z2], for which we don’t care. Replacing b = a + f in equation
(2) above gives 2 distinct real solutions: f = a(6 & 4/3).
If f =0, we have

(1) d*—4da(—a+b)=0
(2) 4d*—12ab=0
which implies that a(4a — b) = 0, and replacing b = 4a in equation (1) above gives 2 new real solutions:

d = 4+2a+/3. If a = 0, we find again the double line through [z] and [z3].

In conclusion, we have 4 good real solutions.

(-1,0) (1.0)

FIGURE 8. s = 2; the dashed line should not go through a vertex. At
right, the particular case that we investigate.
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“ X1
. X1
DX3 ‘X2
.X4

FIGURE 9. s =3 and s = 4.

This case is dual to s = 2. The maximal components of {25 are those for which the 3 points [21],

[x3] and [z3] are in the same component of the complement of the 2 lines 1 and ¢5 (see figure 9).

This is dual to s = 1. If we let 5 be the line at oo, its complement can be identified with R2, and
it contains the 4 points [21],...,[z4]. The maximal components are those for which these 4 points are the
vertices of a conver quadrangle in R? (see figure 9).

§ 4. THE FINAL STEP

In this paragraph we shall work in some affine chart of P2 that we identify with R2. Let y1,...,ys € R?
be the vertices of a regular pentagon and denote by II the convex hull of y1, ..., y5 (i.e. the pentagon itself).
Denote by @51 the space of lines through y; and let €0 € 11, i = 1,...,5, be such that for all I C {1,...,5}
the configuration ((y;)ser, (E?)jec(j)), where C(I) = {1,...,5} \ I, belongs to a maximal component of |y
(figure 10 shows such a configuration). Let L;, i = 1,...,5 be open neighborhoods of the ¢2’s such that for
all I C {1,...,5} the configurations ((yi)ier, (¢;)jec(r)) still belong to a maximal component of Q7).

FIGURE 10. b generic lines that generate maximal configurations.

Set
v ={((&ecara) e ( TI &) < Ps ‘ aly) =0, Vi€ Tand ¥ j e C(I) g is tangent to (; }
jec)

The following lemma tells us that it is possible to make a good choice of lines and that this choice is stable,
in some sense.
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Lemma 13. Let U C L1 x -+ x Ly be defined as follows :

vIc{l... 5},

U (ly,...,¢ @{ '
(“ 5 ((ﬁj)jecu),q) eV(l) = Viel ,Tq, #4

Then :

(1) U is open and dense in Ly x -+ x Ls.
(2) If (£1,...,85) € U, there exist connected neighborhoods U({y) = Uy, of €y in Ly, h = 1,...,5 such
that :

VIC{l,...,5},V <£})jec(1) Ui € Uy we have : (((;) ,q) e V(I) = Tq,, ¢ U; Viel

Proof.
(1) For I C {1,...,5} and ig € T set

5
VI(I,ig) = {((ﬁl,...,ﬁg,),q) e [] 22 xras ‘
h=1
Gel;VjieO(),q(y;) =0Viel,qis tangent to £; Vj € C(I) and T'qy,, :Eiu}

V'(1,14p) is a closed subset of codimension 1 of the set

V(1) =
5

{((ﬁl,...,ﬁg,),q) € H@;l x PQ3 ‘ e L;YjieC(I),q(y)) =0Vie I, qis tangent to {;Vj € C(I)}
h=1

and it follows from proposition 11 that the natural projection
pr:V'(I) — ( II Lj) x (Hpi,)
jec(n) i€l

is proper, and therefore the set

U:L1X"'XL5\ U XIiu
Ic{1,...,5} ,i0€l

therefore U 1s open, dense in Ly x --- X Lsg.
(2) For I C {1,...,5}, consider the diagram :

V(I) — iel @5,
PC(I)EL
HjeC(I) Lj

where 77 ((ﬁj)jec(j),q) = (T'qy.);cr- Let w=(f1,...,85) € U and set z = (Ej)jEC(I)’ w = ({;);e;- Since
u € U, we have that Tl_l(w) ﬁpa(ll)(z) = (). Tt follows from the fact that pa(ll)(z) is finite and that pe(p) is
a covering that there exist open sets :

Ué(I)J CLy, U/C(I),j 3¢4,YjeC)
Ui C Lo, Uy 36 Vie T
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such that, setting U’C(I) =Iljecn U/C(I),j and U = [l,e; U7

penU) N i (UF) =10

If we take Uy to be the connected component of :

N Uen]n (ﬂ Uf',h)

c(I)3h I3h
that contains € then assertion (2) will be satisfied O.

If # and ¢ are lines through the point y in R? that are not perpendicular then they determine two
angles : one that is strictly smaller than 7/2; another that is strictly larger than #/2. We shall call the
sector determined by ¢’ and ¢ the set of lines that go through y and lye in the smaller angle.

Choose (f1,...,05) € U and £}, # ¢} € Up(€y), h =1,...,5; then any pair (¢;,¢}/) determines a sector as
explained above, which is contained in Up. We choose an equation ¢ of the conic £, U/ h=1...,5in
such a way that ¢, takes negative values in the sector determined by (£, €/). Set u = (q1,...,¢5); we may
assume also that u € Y (that is : w satisfies conditions (G1) through (Gs) of § 1).

q
I I

FIGURE 11. The sector defined by (¢}, ¢/) does not contain the tangent
to q at y;.

It follows from the properties of the Up’s, h = 1,...,5, that if w = (q1,...,¢5,21,...,25,9) € F~(u),
then for all ¢ such that «; = y;, T'qy, will lye outside the sector determined by ¢}, ¢ (see figure 10), and
so 1ts polar with respect to ¢; will lye inside the sector. Therefore it follows from theorems 7 and 8 that if
we replace ¢; by ¢ = q; + ¢, where £ > 0 is small enough, then there are 2° points of F=1(¢},...,¢) in a
neighborhood of w. Note that the conics defined by the ¢} lye inside the sector defined by (¢}, ¢/), which is
what we expect intuitively.

Let s €{0,...,5} and

F_l(u)s = {w € F_l(u) | dim Ker (dFy,) = 5}

|F= ()| = (i) 2°"n,

where n; = 1,2,4,4,2, 1 for s = 0,1,2,3,4,5. Finally, we set «/ = (¢1,...,¢§) and so :

|F~H ()| = 22825—86)% =2° ((g)u G)QJF (g)4+ <§)4+ (i)2+ (g) 1) = 32064.

asin § 2. Then :
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The following is a picture due to Riccardo Benedetti of the 3264 conics :
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