
THE NUMBER OF CONICS TANGENTTO 5 GIVEN CONICS : THE REAL CASE.Felice Ronga, Alberto Tognoli and Thierry VustUniversit�e de Gen�eve and Universit�a degli studi di TrentoAbstract. It is classical result, �rst established by de Jonqui�eres (1859), that generically the number of conicstangent to 5 given conics in the complex projective plane is 3264. We show here the existence of con�gurations of5 real conics such that the number of real conics tangent to them is 3264.x 0. Introduction.The following is a classical problem in enumerative geometry :Given 5 generic conics, �nd the number of conics tangent to them.In 1848 J. Steiner believed to have found that there are 65. In 1859, E. de Jonqui�eres found the correctanswer : 3264; however, he did not publish his result because it was in contradiction with Steiner's, andbecause M. Chasles didn't trust him. Finally, Chasles established the correct answer in 1864, and Th. Berneragain in (1865) (cf. [4], page 268).The problem has been reworked more recently by Fulton-McPherson [2] and Procesi-De Concini [1].We shall prove the existence of con�gurations of 5 real conics that admit exactly 3264 real conics tangentto them at real points. By a real conic we mean a conic whose equation has real coe�cients and by theexact number we mean that there are no multiplicities to take into account : each solution to the problemis a smooth conic which is simply tangent at exactly 1 real point of each of the 5 given conics.The con�guration of 5 conics will be found as a small deformation of the 5 degenerate conics constitutedby suitable pairs of lines crossing at the vertices of a regular pentagon in an a�ne plane. By taking di�erentpairs of lines, it is possible to �nd con�gurations of 5 conics with a number of conics tangent to them smallerthen 3264, but we do not investigate this any further here.The main ingredient that we shall use to control the deformation in the real case is theorem 8, whichmight have some interest by itself. It says that if the derivatives of a C1 map F at some point x0 coincideup to order 2 with those of the map (x1; : : : ; xk) 7! (x21; : : : ; x2k), then there exist regular values near F (x0)with 2k preimages near x0. x 1. First contactsMost statements of this x will be made over R, but they remain valid, as well as there proofs, over C .Let us denote by Q (respectively Qr) the space of all bilinear symmetric forms (respectively the bilinearsymmetric forms of rank r) on R3. Denote by PQ the projective space of Q and by PQr the locally closedsubvariety of PQ corresponding to Qr. Let P2 = PR2 be the real projective plane.Geometrically, PQ is the space of all (possibly empty) real conics of P2, PQ3 is the set of all smoothconics, PQ2 is the set of all singular conics consisting of 2 distinct lines, and PQ1 is the set of all doublelines.Version: march 31, 1995 Typeset by AMS-TEX1



2 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTFor q 2 Q n f0g (resp. x 2 R3 n f0g) we denote by [q] (resp. [x]) its image in PQ (resp. P2). Consider thesubvariety W of (PQ)5 � �P2�5 �PQ3 de�ned by:W = n([q1]; [q2]; : : : ; [q5]; [x1]; : : : ; [x5]; [q]) 2 (PQ)5 � �P2�5 �PQ3 ���[xi] 6= [xj] ; i 6= j and the following equations hold, i = 1; : : : ; 5 :(I) qi(xi; xi) = 0 ; (II) q(xi; xi) = 0 ; (III) qi(xi; �)^ q(xi; �) = 0 o :Note that in fact the equations q(xi; xi) = 0 and qi(xi; xi) = 0 imply already that qi(xi; �)^ q(xi; �) vanisheson fxig ^ R3 and therefore equation (III) can be viewed in �R3^R3= fxig ^R3�� ' R. Alternatively, ifwe choose x0i ; x00i 2 R3 such that there images in R3=[x0i ] are linearly independent, in a neighbourhood of([q1]; : : : ; [q5]; [x01]; : : : ; [x05]; [q] 2 W equations (III) can be written :(qi(xi; �)^ q(xi; �)) (x0i; x00i ) = qi(xi; x0i)q(xi; x00i )� qi(xi; x00i )q(xi; x0i) = 0 :The conditions de�ning W mean that the 2 conics de�ned by qi(x) = 0 and q(x) = 0 are tangent at [xi];if [xi] is singular on qi, it means simply that xi 2 q \ qi. In order to simplify the notation, we shall say thatxi belongs to q and qi, or xi 2 q \ qi, and that q and qi are tangent at xi. We shall denote by (q)sing and(q)reg respectively the singular and the regular part of q.Denote by F :W ! (PQ)5the restriction to W of the natural projection (PQ)5 � �P2�5 � PQ3 ! (PQ)5. The problem is to �nd themaximal number of elements of F�1(u), for u 2 (PQ)5 belonging to a suitable open, dense subset U � (PQ)5that we will de�ne in this x.Remark. The image of W by the projectionp: (PQ)5 � �P2�5 �PQ3! (PQ)5 �PQ3is the set of ([q1]; : : : ; [q5]; q) such that q is tangent to qi, i = 1; : : : ; 5 at some unspeci�ed point. Denote by
 the locally closed subvariety of (PQ)5 �PQ3 of the ([q1]; : : : ; [q5]; [q]) that are such that the intersectionof q and qi, i = 1; : : : ; 5, consists of 3 distinct points, at 2 of which q and qi are tranversal, and the third(necessarily a real point) at which q and qi are tangent. Our genuine problem is to compute the cardinalityof the �bers of the natural projection 
! (PQ)5.Clearly, 
 is open and dense in p(W ) and p induces a bijection from p�1(
)\W to 
. Moreover, we shallsee shall see in Prop. 1 below that W and (PQ)5 both have dimension 25 and so there exists a non-emptyopen subset U of (PQ)5 such that F�1(U) � p�1(
) (for example, take U = (PQ)5 n closure of F (W np�1(
))in the Zariski topology). Then, for u = ([q1]; : : : ; [q5]) 2 U the cardinality of F�1(u) really is the number ofconics tangent to q1; : : : ; q5.This justi�es that we concentrate on the study of the generic �bers of F .In fact we shall denote by U an open set in (PQ)5 that will shrink during this paragraph, as we add moreand more genericity conditions.Recall that for [x] 2 Pn = P(Rn+1) the tangent space TPn[x] ' Rn+1=[x]; we shall write x for an elementof TPn[x], or for some of its representatives in Rn+1.Proposition 1. The variety W is smooth, of dimension 25. For w = ([qi]; [xi]; [q]) 2W , the tangent spaceTwW is the set of (q1; : : : ; q5; x1; : : : ; x5; q) such that:8><>: (I) 2qi(xi; xi) + qi(xi; xi) = 0(II) 2q(xi; xi) + q(xi; xi) = 0(III) (qi(xi; �) + qi(xi; �)) ^ q(xi; �) + qi(xi; �) ^ (q(xi; �) + q(xi; �)) = 0 for i = 1; : : : ; 5 :



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 3Proof. Let w = ([q1]; [q2]; : : : ; [q5]; [x1]; : : : ; [x5]; [q]) 2 W and let us take the following derivates of theequations de�ning W at the point w :@I@qi (qi) = qi(xi; xi) ; @II@xi (xi) = q(xi; xi) ; @III@qi (qi) = qi(xi; �)^ q(xi; �) :choose x0i ; x00i 2 R3 linearly independent in R3=[xi] ' T[xi]P2, i = 1; : : : ; 5.It is readily checked that the linearmap (qi; xi) 7! �qi(xi; xi); q(xi; xi); �qi(xi; �)^ q(xi; �)�(x0i; x00i )�i=1;:::;5is surjective, which shows that W is smooth of dimension 25, and even that the projection W ! PQ3 is a�bration.The second assertion follows by taking the total derivatives of the equations I, II and III de�ning W �.We now introduce a �rst series of genericity conditions on ([q1]; : : : ; [q5]) 2 (PQ)5. Although the qi's arereal conics, the lines and points mentioned below are taken into account even if they are not in P2(R) :(G1) : 8 distinct i; j; k, qi \ qj \ qk = ; (in P2(C )).( �G1) : 8 distinct i; j; k, qi, qjand qk have no common tangent (in P2(C )).(G2) : 8 distinct i; j; k; `, any commun tangent to qi and qj does not contain points in qk \ q` (in P2(C )).(G3) : 8 distinct i; j; k; `;m, if dr;s is any tangent commun to qr and qs, we have that di;j \ dk;` \ qm = ;(in P2(C )).( �G3) : 8 distinct i; j; k; `;m and 8xr;s 2 qr \ qs the line through xi;j and xk;` is not tangent to qm. (inP2(C )).(G4) : 8i 6= j, qi and qj intersect transversally (in P2(C )) at points that are smooth both on qi and qj.In other words, the con�gurations represented in �gure 1 are excluded (as usual, we draw a real picture thatrepresents objects in P2(C )).
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(G  )4Figure 1. Con�gurations that we don't want in x 1.Let U � (PQ)5 be the set of ([q1]; : : : ; [q5]) satisfying the above genericity conditions. It is readily veri�edthat U is a Zariski-open, nonempty subset of (PQ)5. LetW (U) = �([q1]; : : : ; [q5]; [x1]; : : : ; [x5]; [q]) 2W �� ([q1]; : : : ; [q5]) 2 U	 :



4 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTProposition 2. F :W (U)! U is properProof. LetW (U)0 = n([q1]; [q2]; : : : ; [q5]; [x1]; : : : ; [x5]; [q]) 2 U � �P2�5 �PQ ��qi(xi; xi) = q(xi; xi) = 0 ; qi(xi; �)^ q(xi; �) = 0 ; i = 1; : : : ; 5o ;that is, we drop the conditions that q 2 PQ3 and [xi] 6= [xj], i 6= j, in the de�nition of W (U). LetF 0 : W (U)0 ! U be the restriction to W (U)0 of the natural projection U � �P2�5 � PQ ! U ; since thelatter is proper, it remains to show that W (U) is closed in W (U)0. Since it is clearly open, it will showthat W (U) is a union of connected components of W (U)0. Let fwngn2N� W (U)0 be a sequence convergingto w0 = ([q1]; : : : ; [q5]; [x1]; : : : ; [x5]; [q]) 2 U � �P2�5 � PQ ! U . If q is a singular conic consisting of twodistinct lines `1 and `2, then each conic [qi], i = 1; : : : ; 5 should be tangent to `1 or `2 or pass through theintersection of `1 and `2. If `1 = `2 = `, working with complete conics, it is easily seen that either qi � ` orqi goes through one of two points P;Q 2 `, for i = 1; : : : ; 5. One can check that all the situations that mightoccur are excluded by the genericity conditions de�ning U �.Proposition 3. The �bers of F = F (U) :W (U)! U are �nite.Proof. Consider the complexi�cation FC : W (U)C ! UC of F and the projectionp : W (U)C ! (PQ3)C. Let u 2 UC; since FC is proper and (PQ3)C is an a�ne variety, p(F�1C (u)), u 2 UCconsists of a �nite number of points. Moreover, pjF�1C (u)! (PQ3)C has �nite �bers because of (G4) �.Here comes a genericity condition that we will need later on. Let k 2 f1; : : : ; 5g and denote by Vk thesubvariety of W (U) consisting of the ([qi]; [xi]; [q]) such that the order of contact of q and qk at xk is at least3. For example, let qk 2 PQ2 and let xk be the singular point of qk; if q is tangent to one of the 2 linesthrough xk that constitute qk then the order of contact of q and qk at xk is 3 if q is smooth (see �gure 2).
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kFigure 2. The order of contact is 3.Since W (U) and U have the same dimension, F (Vk)  U and F (Vk) is closed, since F is proper. Our lastgenericity condition is the following :(G5) : ([q1]; : : : ; [q5]) =2 Sk=1;:::;5F (Vk).We shall denote again by U the set of ([q1]; : : : ; [q5]) that satisfy all the genericity conditions introduced sofar.Notice that U contains con�gurations of the form ([q1]; : : : ; [q5]) with qi 2 Q2, i = 1; : : : ; 5. Indeed, thereis no problem in choosing u0 = (q01; : : : ; q05), q0i 2 PQ2, i = 1; : : : ; 5, satisfying conditions (G1) through (G4)and �G1, �G3. For some k 2 f1; : : : ; 5g, let yk denote the singular point of q0k. Consider:F�1(u0)k = �(u0; [xi]; [q]) �� xk = yk	 :For q0i �xed, i 6= k, F�1(u0)k is �nite and depends on yk, but not on qk. Therefore, we can deform u0 intou = ([q1]; : : : ; [q5]), where qi = q0i for i 6= k, and qk is singular at yk, but for all (u; [xi]; [q]) 2 F�1(u)k noneof the two distinct lines composing qk is tangent to [q] at xk = yk, that is : u =2 F (Vk).



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 5x 2. The singularities of the map F .Throughout this x we shall assume that u 2 U \ (PQ2)5.Let w = (u; [xi]; [q]) 2 F�1(u) and s = s(w) = ���xi �� xi 2 (qi)sing	��where jXj denotes the cardinality of X. We shall see that the behaviour of F near w essentially dependsonly on s(w).Proposition 4. Let s 2 f0; : : : ; 5g and assume that xi 2 (qi)sing for i � s and xi 2 (qi)reg for i > s. Thenthe projection (x1; : : : ; x5; q) 7! (x1; : : : ; xs)induces an isomorphism� : Ker (dFw) '! �(x1; : : : ; xs) �� q(xi; �)^ qi(xi; �) = 0 ; i = 1; : : : ; s	 :If �i 2 T[xi ]q n f0g, then Im� = �(x1; : : : ; xs) �� qi(�i; xi) = 0 ; i = 1; : : : ; s	 :Corollary 5. dimKer (dFw) = s(w)Proof. Indeed, since qi consists of 2 distinct lines, the kernel of the linear mapT[xi]P2! R ; xi 7! qi(�; xi)has a kernel of dimension 1 �.We give now a geometric description of Im�. Let PR1[xi] denote the set of lines of PR2 through [xi]. Let usrecall how two lines `0; `00 2 PR1[xi] de�ne a polarity among pairs of lines of PR1[xi]. Let � be a homogeneous2-form in 2 variables whose zeroes are `0 and `00; if v; w 2 R2n f0g are such that �(v; w) = 0, we say that theline through v is polar to the line through w with respect to the two lines `0; `00. Choose �i 2 Txiq nf0g; thenqi(xi; �i) = 0 for (x1; : : : ; xs) 2 Im�. This means that xi must lye on the polar line to Txi (q) with respectto the 2 lines through [xi] de�ned by qi (see �gure 3).
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6 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTProof of proposition 4. According to proposition 1, Ker (dFw) is the subspace of�Li=1;:::;5 T[xi]P2�� T[q]PQ de�ned by the equations:(A) 8><>: (I) qi(xi; xi) = 0(II) 2q(xi; xi) + q(xi; xi) = 0(III) qi(xi; �)^ q(xi; �) + qi(xi; �) ^ (q(xi; �) + q(xi; �)) = 0 i = 1; : : : ; 5 :For i � s, since qi(xi; �) = 0, this set of equations is equivalent to(B) ( (II) 2q(xi; xi) + q(xi; xi) = 0(III) qi(xi; �)^ q(xi; �) = 0 i � sand for i > s there exist scalars �i such that q(xi; �) = �iqi(xi; �). Therefore (A)(I) implies that q(xi; xi) = 0and the set of equations becomes:(C) 8><>: (I) qi(xi; xi) = 0(II) q(xi; xi) = 0(III) qi(xi; �)^ (q(xi; �) + q(xi; �)� �iqi(xi; �)) = 0 i > s :Equation (B)(III) shows that � is well de�ned.� is surjective. Let xi 2 T[xi]P2 be such that q(xi; �) ^ qi(xi; �) = 0 for i � s. Since q is non-singular, threeof the xi's are never aligned and so there exists q 2 Q such thatq(xi; xi) = � �2q(xi; xi) if i � s0 if i > s :We choose xi, i > s, such that (C)(I) is satis�ed. Then xi = �i � �i, where �i is some �xed non zero elementin T[xi ]q and �i is a scalar.We proceed now to choose �i in order to satisfy (C)(III). Since the kernel of q(xi; �) is generated by xiand �i, we have to choose �i in such a way that q(xi; �) + q(xi; �)� �iqi(xi; �) also vanishes on xi and on �i.It clearly vanishes on xi; now qi(�i; �i) = 0 and q(�i; �i) 6= 0. We may therefore take :�i = �q(xi; �i)q(�i; �i) :� is injective. If xi = 0, i � s, then it follows from (B)(II) that q(xi; xi) = 0 for i � s and by (C)(II)q(xi; xi) = 0 for i > s. Therefore, q and q have the 5 distinct points [x1]; : : : ; [x5] in common, and no threeof these are aligned because q is non-singular, and so q = 0 in T[q]PQ.Now it follows from (C)(III) that for i > sqi(xi; �) ^ (q(xi; �)� �iqi(xi; �)) = 0and therefore there are some scalars �i such that:~ q(xi; �) = �iqi(xi; �) + �iqi(xi; �) :Since qi(xi; xi) = 0 and xi =2 (qi)sing for i > s, xi belongs to one of the 2 distinct lines that constitute qi, say`0i, and therefore qi(xi; xi) = 0. Replacing the dot by xi in ~ shows that q(xi; xi) = 0. But q \ `0 = fxig,therefore xi = 0 in T[xi ]P2.Since q is non-singular, q(xi; �) ^ Qi(xi; �) = 0 is equivalent to say that qi(xi; �) vanishes on the kernel ofq(xi; �), which is generated by �i and xi. Therefore :q(xi; �)^Qi(xi; �) = 0, qi(xi; �i) = 0�.



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 7We want now to study the second derivative of F . Recall that for a C1 map G : X ! Y between C1manifolds, the second intrinsic derivative, �rst introduced by Porteous [3], is the linear map� d2 eGx : Ker (dGx)
 TxX ! Coker(dGx)which is obtained from the second derivative at x of G written in local coordinates. If G : Rn ! Rp andh : U ! Rn, H�1 : V ! Rp are local di�eomorphisms on Rn and Rp respectively, where U � Rn, V � Rp,h(0) = x, H�1(0) = G(x), thend2(HGh)0 = dHG(x)(d2Gx(dh0; dh0)) + dHG(x)(dGx(d2h0)) + d2HG(x)(dGx(dh0); dGx(dh0))from which it follows that the linear map d2 eGx : Ker (dGx) 
 TxRn ! Coker(dGx) is a�ected only by thelinear part of the local di�eomorphisms h and H. This shows that the linear map of � is well de�ned.Let now L1, L2 and L3 be open sets in Rn1, Rn2 and Rn3 respectively and let � : L1 � L2 ! L3 be C1and assume that 0 2 L3 is a regular value of �. Set W = ��1(0) and let F : W ! L1 be the map inducedby the projection on the �rst factor. We want to express the second intrinsic derivative of F in terms of thederivatives of �. Denote by @�@w1 (w) and @�@w2 (w) the derivatives of � in the direction L1 and L2 respectivelyat the point w = (w1; w2).Lemma 6. The derivative @�@w1 (w) induces an isomorphism:� : Coker(dFw) '�! Coker� @�@w2 (w)� :We have a commutative diagram:Ker (dFw) 
 TwW d2�w����! Rn3??yd2 eFw ??yCoker (dFw) (�1)�����! Coker ( @�@w2 (w))from which d2 eFw can be expressed in terms of the derivatives of �.Proof.The fact that � is an isomorphism follows easily from the fact that � is a submersion and from thede�nition of F .For the commutative diagram, let h = (h1; h2) : U ! W � L1 � L2 be a local parametrisation of W ,h(0) = w. Since � � h = 0, we have:d2�w(dh0; dh0) + d�w(d2h0) = d2�w(dh0; dh0) + @�@w1 (w)(d2h10) + @�@w2 (w)(d2h20) = 0and therefore, for xi 2 T0U , i = 1; 2, and wi = dh0(xi) :d2�w(w1; w2) � � @�@w1 (w) �d2h10(x1; x2)� mod Im @�@w2 (w) :Since h1 = F � h, d2h10(x1; x2) = d2Fw(dh10(x1); dh10(x2)) + dFw(d2h10(x1; x2)) and so :d2�w(w1; w2) � � @�@w1 (w) �d2Fw(dh0(x1); dh0(x2))� � @�@w1 (w) �dFwd2h0(x1; x2)�� � @�@w1 (w) �d2Fw(w1; w2)� mod Im @�@w2 (w)



8 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTfrom which our assertion follows �.We come back to our map F :W (U)! U . Let L1 be an open subset of U � (PQ)5, L2 an open subset of�P2�5�PQ3 and L3 = R15; we assume that L1 and L2 are contained in products of a�ne open sets, so thatwe have explicit representatives for ([qi]; [xi]; [q]) 2 L1 � L2, and therefore it makes sens to write the map:� : L1 � L2 ! L3 ; ([qi]; [xi]; [q]) 7! ��qi(xi; xi)�i=1;:::;5; �q(xi; xi)�i=1;:::;5�qi(xi; �)^ q(xi; �)�i=1;dots;5� :Note that because the projective space are replaced by a�ne spaces of the same dimension, we can also lookat qi and q as non-homogeneous polynomials of degree 2 on R2. Their derivatives at xi 2 R2 are linear maps:R2! R, and if qi(xi; xi) = q(xi; xi) = 0, the condition d(qi)xi^dqxi = 0 is equivalent to qi(xi; �)^q(xi; �) = 0.We know from proposition 1 that 0 2 R15 is a regular value of �.Recall that we assume that qi 2 PQ2, i = 1; : : : ; 5, xi 2 (qi)sing for i = 1; : : : ; s and xi 2 (qi)reg fori = s+1: : : : ; 5. For w = ([qi]; [xi]; [q]), dimKer (dFw) = s, and so dimCoker (dFw) = dimCoker ( @�@w2 (w)) = s.Since @�@w2 (w)(x1; : : : ; x5; q) = (q1(x1; x1); : : : ; q5(x5; x5); : : : ) = (0; : : : ; 0| {z }s ; �; : : : ; �)the �rst s coordinates ofR15 represent Coker ( @�@w2 (w)) and so the restriction of the second intrinsic derivativeof F to Ker (dFw)
Ker (dFw), that we still denote by d2 eFw, can be identi�ed using Lemma 6 to the bilinearmap:Ker (dFw) 
Ker (dFw)! Rs ; (x1; : : : ; x5; q)
 (x1; : : : ; x5; q) 7! (�1) � �q1(x1; x1); : : : ; qs(xs; xs)� :Recall from Proposition 4 that if (x1; : : : ; x5; q) 2 Ker (dFw) n f0g then q(xi; �)^ qi(xi; �) = 0 for i = 1; : : : ; s.If in addition qi(xi; xi) = 0 for i = 1; : : : ; s, then xi 2 (qi)reg and so the tangent line to q at xi is a componentof qi, which is excluded by the genericity condition (G5).In conclusion, we have proved the following result:Theorem 7. Let u 2 U \ (PQ2)5 and w = (u; [x1]; : : : ; [x5]; [q]) 2 F�1(u); assume that xi 2 (qi)sing fori � s and xi 2 (qi)reg for i > s. Then:� dimKer (dFw) = s = dimCoker (dFw)� Let (x1; : : : ; xs; q) 2 Ker dFw, so that qi(xi; �i) = 0, for �i 2 Txi(q); thend2 eFw(x1; : : : ; xs; q;x1; : : : ; xs; q) = (�1) � �q1(x1; x1); : : : ; qs(xs; xs)�and qi(xi; xi) 6= 0 for xi 6= 0, i = 1; : : : ; s.�.We will show in the next x that the particular properties of the derivatives up to order 2 of F imply thatthere exists u0 near u with 2s non singular points in the �ber near the point w, where s = dimKer dFw.x 2. A deformation theorem.We shall use the euclidean distance on Rn; B(0; r) will denote the open ball of radius r centered at 0.Theorem 8.Let f : 
! Rn, 0 2 
 � Rn open, f(0) = 0, be a C1 map. Let s = dimKer (df0) and assume thatd2 ef0 : Ker (df0)
Ker (df0)! Coker (df0)is the product of s quadratic forms of rank 1 with transversal kernels; that is, for a suitable choice of basisof Ker (df0) and Coker (df0) we can write:for (�1; : : : ; �s); (�1; : : : ; �s) 2 Ker (df0) ; d2 ef0 ((�1; : : : ; �s); (�1; : : : ; �s)) = (�1�1; : : : ; �s�s) :



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 9Then after a change of coordinates in the source and target of f , it can be written :f(x1; : : : ; xn) = (x21; : : : ; x2s; xs+1; : : : ; xn) + g(x1; : : : ; xn)for kxk < 1, where g:B(0; 1)! Rs satis�es:g(0) = 0 ; @g@xi (0) = 0 ; i = 1; : : : ; n ; @2g@xi@xj (0) = 0 ; i; j = 1; : : : ; s :Let y0 = (1; : : : ; 1| {z }s ; 0; : : : ; 0). There exists � > 0 such that for any ", 0 < p" < �, the equation f(x) = "y0has exactly 2s solutions in the ball centered at 0 of radius p2"s, at which the jacobian of f is non zero.Proof. Since f(x) = "y0 implies xs+1 = � � � = xn = 0, we might as well assume that s = n.We have that for t 2]� 1; 1[, g(tx1; : : : ; txs) = t3g1(x; t), where g1:B(0; 1)�]� 1; 1[!Rs is C1. Let�(x; t) = f(tx)=t2 = (x21; : : : ; x2s) + tg1(x; t) :Set � = 18s ; the equation �(x; 0) = � � y0 has 2s solutions �0i , i = 1; : : : ; 2s, of the form (�p�; : : : ;�p�),that lye in the ball B(0; 12 ), and @�@x (�0i ; 0) is invertible. It follows from the implicit function theorem thatthere exists �0 > 0, � > 0 and 2s functions �i(t) : ] � �0; �0[! B(�0i ; �) � B(0; 12 ), i = 1; : : : ; 2s, �i(0) = �0i ,such that for jtj < �0; x 2 [i=1;:::;2sB(�0i ; �) ; �(x; t) = �y0 () 9 i such that x = �i(t)and @�@x (�i(t); t) is invertible. Since � �B(0; 1) n [i=1;:::;2sB(�0i ; �); 0� does not contain �y0, there exists �00 � �0such that for jtj < �00, �y0 =2 � �B(0; 12) n [i=1;:::;2sB(�0i ; �); t�, and therefore :for jtj < �00; kxk < 12 ; �(x; t) = �y0 () 9 i such that x = �i(t) :Now f(x) = "y0 () � xp"=� ;p"=�! = �y0 :If we set � = �002p2s , then " < � ,p"=� < �00 and kxkp"=� < 12 , kxk < p2"s :Our assertion follows at once �.
q'i

q i
Tq

q

yi

y i

x i

Figure 4. If we deform qi to q0i = qi+ " in such a way that q0i appearsin the sector not containing Tqyi , we can guess that there are 2 conicsnear q tangent to q0i.



10 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTLet us sketch how we will use this theorem to calculate the cardinality of a maximal generic �ber of themap F of x 1. Let u 2 U \ (PQ2)5, so that u = ([q1]; : : : ; [q5]) where qi is a degenerate conic that consists of2 distinct lines meeting at a point [yi]. For s 2 f0; : : : ; 5g we setF�1(u)s = �w 2 F�1(u) �� dimKer (dFw) = s	 :We restrict the equations qi, i = 1; : : : ; 5 to some a�ne chart on P2 containing [y1]; : : : ; [y5], that we identifyto R2. For w 2 F�1(u)s, perhaps after renumeration w = ([y1]; : : : ; [ys]; [xs+1]; : : : ; [x5]; [q1]; : : : ; [q5]; [q]).Recall that if (x1; : : : ; xs; q) 2 Ker dFw, then xi is polar to Tqyi with respect to qi, and so xi and Tqyi lye ondi�erent components of the complement of qi. If we choose the equations qi, i = 1; : : : ; s in such a way thatqi(xi; xi) > 0, or equivalently qi(�i; �i) < 0 for �i 2 Tqyi, then it follows from theorems 7 and 8 that if wereplace qi by q0i = qi+ ", " > 0 small enough, then F�1(u0), u0 = (q01; : : : ; q0s; qs+1; : : : ; q5) will have 2s pointsin a neighborhood of w. This can be con�rmed intuitively, because then q0i will have 2 sheets near Tqyi (see�gure 4).The next problem is that if F�1(u) = fw1; : : : ; wtg, we will have to �nd a deformation u0 as above,validfor all the w1; : : : ; wt. This means that whenever ([x1]; : : : ; [x5]; [q1]; : : : ; [q5]; [q]) 2 F�1(u) and [xi] = [yi],then qi(�i; �i) < 0 for �i 2 Tqyi (we will do this in x 4). Then we will have :��F�1(u0)�� = 5Xs=0 2s ��F�1(u)s��Finally, there are �5s�25�s ways of choosing a subset I � f1; : : : ; 5g and 5� s lines, one among each pair oflines that constitute the qi's. Therefore ��F�1(u)s�� = �5s�25�snswhere ns denotes the number of conics passing through s points and tangent to 5� s lines. The number nsdepends on the mutual positions of the s points and the 5� s lines and will be determined in the next x.x 3. Basic enumerations.Given a point [x] 2 P2 and a line ` � P2, we can de�ne the 2 following divisors in PQ:Dx = �[q] 2 PQ �� x 2 q	D` = �q 2 PQ �� q is tangent to `	 :The �rst divisor is a hyperplane, and some properties of the second are given in the following easy lemma,that we leave to the reader :Lemma 9.(1) D` has degree 2(2) (D`)sing = fq j q � `g ' �P2(3) if q 2 (D`)reg and [x] = q \ `, we have:T[q]D` = �[q] �� q(x) = 0	�.We introduce now genericity conditions on the choice of s points and 5 � s lines in P2: we de�ne 
s ��P2�s � ��P2�5�s as the set of ([x1]; : : : ; [xs]; `s+1; : : : ; `5) that satisfy:(1) 3 among the [xi]'s are not aligned (in particular, [xi] 6= [xj] for i 6= j).(2) 3 among the `i's do not go through a same point (in particular, `i 6= `j for i 6= j).(3) 8 i; j xi =2 `j .(4) 8 i1 6= i2; j1 6= j2 any line through xi1 and xi2 does not go through `j1 \ `j2 .(5) 8 distinct i1; i2; i3; i4 and 8 j the intersection of the line through [xi1 ] and [xi2] with the line through[xi3] and [xi4 ] does not belong to `j .(6) 8 distinct i1; i2; i3; i4 and 8 j, xj does not belong to line through `i1 \ `i2 and `i3 \ `i4 .



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 11
(1)x

x

x

1

2

3

(2)
x

l

i

j

(3)

(5)

l

x

x

x x

i

i

i
i

l

l

x
xj

j

i

i

(4)

j

l
l

li
j

k

1

2

1

2

3
4

1

2

l l
l

l

x

i i
i

i

j

1 2

3

4

(6)Figure 5. Con�gurations that we don't want in x 3.In other words, the con�gurations shown in �gure 5 are not allowed.Lemma 10. Let ([x1]; : : : ; [xs]; `s+1; : : : `5) 2 
s and [q] 2 Dx1\� � �\Dxs\D`s+1\� � �\D`5 . Then [q] =2 PQ2and if [q] 2 PQ3, Dx1 ; : : : ; Dxs ; D`s+1 ; : : : ; D`5 intersect transversally at [q].Proof. Assume that [q] 2 PQ2 and let [y] be its singular point. Then the genericity condition (1) impliesthat s � 4. Any tangent to q goes through y, and so condition (3) implies that [xi] 6= [y], i = 1; : : : ; s, andcondition (2) implies that s � 3.If s = 3, condition (1) or (4) is contradicted, and if s = 4 condition (1) or (5) is contradicted.Now let [q] 2 PQ3; then by lemma 9 (2) [q] is a smooth point of each divisor Dxi , D`j and the intersectionof the tangent spaces of the divisors at [q] is�q 2 TqPQ �� q(x1) = � � � = q(xs) = q(ys+1) = � � �= q(y5) = 0	where yj = q\`j. Conditions (1), (2) and (3) imply that the points [x1] : : : ; [xs], [ys+1]; : : : ; [y5] are 5 distinctpoints on q, and therefore 3 of them are never aligned. But there is exectly 1 conic going through 5 points,3 of which are never aligned �.LetVs = ��([x1]; : : : ; [xs]; `s+1; : : : ; `5); [q]� 2 
s �PQ3 �� q 2 Dx1 \ � � � \Dxs \D`s+1 \ � � � \D`5	 :Proposition 11. The variety Vs is smooth and the natural projection �:Vs ! 
s is a proper submersionwith �nite �bers.Proof. The facts that Vs is smooth and that � is a submersion follow from lemma 10.If in the de�nition of Vs we allow [q] 2 PQ , the corresponding projection � is obviously proper. Lemma10 implies in this case that q =2 Q2, and if s � 3 the genericity condition (1) implies that q =2 Q1. Therefore� is proper for s � 3. The case s � 2 is obtained by observing that associating to a conic its dual inducesan isomorphism Vs ' V5�s �.Corollary 12. The map 
s ! N ; ! 7! ����1(!)��is locally constant. �.We compute now ����1(!)�� for various connected components of 
s. By applying our results to the dualconics, the cases s = 3; 4; 5 will be deduced from the cases s = 2; 1; 0 respectively.



12 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTFirst of all, we compexify the situation. Then it follows from lemma 9 (1) that ����1(!)�� = 1; 2; 4; 4; 2;1for all ! 2 (
s)C, s = 0; 1; 2; 3; 4;5. We set Ns = ����1C (!)��. Back to the real case, we shall say that acomponent 
0s of 
s is maximal if ����1(!0)�� = Ns for !0 2 
0s.In what follows, we will make use of the action of the group PGl(3;R) on 
s; since it is connected, it willpreserve the connected components of 
s.
x

x

x

x

1

2

3

4Figure 6. s = 0; the sixth forbidden line is at 1.s = 0 and s = 5 There is exactly one (non-singular) conic through 5 points, 3 of which are never aligned,and so all the components of 
5 are maximal. Dually, it follows that all the components of 
0 are maximal.In fact, the variety 
0 has 12 connected components: the set of 4-tuples of points of P2 3 by 3 not alignedis connected because it is a homogeneous space for PGl(3;R). Therefore we can �xe the �rst 4 points[x1]; : : : ; [x4]; then for the �fth point there will be 6 lines forbidden by the genericity conditions, namelythose through the pairs of the �rst 4 points. It is now easy to check on an explicit example that there are 12connected components in the complement of such 6 lines (see �gure 6, in which one of the forbidden lines isthe line at 1).s = 1 The variety 
1 has 16 connected components. Indeed, using the action of PGl(3;R) we can �xthe four lines and [x1] must belong to the complement E of this 4 lines, but not to the lines joining pairwiseintersections of the `i's. Among the components of E, there are 4 triangles Ti and 3 quadrangles Qj. Clearly(see �gure 5), the components of type Q are maximal, those of type T are not.
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4Figure 7. s = 1; choose x1 in a quadrangle if you want to be in amaximal component.



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 13s = 2 The variety 
2 has 12 connected components. Indeed, we can �x the 3 lines `1, `2, `3 and thepoint [x1]; the point [x2] must be choosen in the complement of the 6 lines `1, `2, `3 and the three linesjoining [x1] to the intersections `j \ `h. The maximal components are those where [x1] and [x2] are in thesame component of the complement of the 3 lines `1; `2; `3. Since the choice of `1, `2 and `3 is irrelevant, itsu�ces to check on a particular case. We take :[x1] = [�1 : 0 : 1] ; [x2] = [1 : 0 : 1] ; `3 = fy = �zg ; `4 = fx = 2zg ; `5 = fx = �2zg :Let q(x; y; z) = ax2 + by2 + cz2 + dxy + exz + fyz = 0 be a conic through [x1], [x2] and tangent to `1, `2and `3. Then: q(x1) =0 =) a+ c � e = 0q(x2) =0 =) a+ c + e = 0) =) a = �c ; e = 0Then the conic q = a(x2 � z2) + (by + dx+ fz)y must be tangent to:`3 =) d2 � 4a(�a + b� f) = 0`4 =) (2d+ f)2 � 12ab = 0`5 =) (�2d+ f)2 � 12ab = 0 :It follows from the last 2 equations that df = 0.If d = 0, we have ( (1) a(�a+ b� f) = 0(2) f2 � 12ab = 0a = 0 gives the double line through [x1] and [x2], for which we don't care. Replacing b = a+ f in equation(2) above gives 2 distinct real solutions: f = a(6 � 4p3).If f = 0, we have ( (1) d2 � 4a(�a+ b) = 0(2) 4d2 � 12ab = 0which implies that a(4a � b) = 0, and replacing b = 4a in equation (1) above gives 2 new real solutions:d = �2ap3. If a = 0, we �nd again the double line through [x1] and [x2].In conclusion, we have 4 good real solutions.
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l 3Figure 8. s = 2; the dashed line should not go through a vertex. Atright, the particular case that we investigate.
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4Figure 9. s = 3 and s = 4.s = 3 This case is dual to s = 2. The maximal components of 
3 are those for which the 3 points [x1],[x3] and [x3] are in the same component of the complement of the 2 lines `1 and `2 (see �gure 9).s = 4 This is dual to s = 1. If we let `5 be the line at 1, its complement can be identi�ed with R2, andit contains the 4 points [x1]; : : : ; [x4]. The maximal components are those for which these 4 points are thevertices of a convex quadrangle in R2 (see �gure 9).x 4. The final stepIn this paragraph we shall work in some a�ne chart of P2 that we identify with R2. Let y1; : : : ; y5 2 R2be the vertices of a regular pentagon and denote by � the convex hull of y1; : : : ; y5 (i.e. the pentagon itself).Denote by �P2yi the space of lines through yi and let `0i 2 �, i = 1; : : : ; 5, be such that for all I � f1; : : : ; 5gthe con�guration ((yi)i2I ; (`0j)j2C(I)), where C(I) = f1; : : : ; 5g n I, belongs to a maximal component of 
jIj(�gure 10 shows such a con�guration). Let Li, i = 1; : : : ; 5 be open neighborhoods of the `0i 's such that forall I � f1; : : : ; 5g the con�gurations ((yi)i2I ; (`j)j2C(I)) still belong to a maximal component of 
jIj.
l

l

l

l

l

1

2

3

4

5Figure 10. 5 generic lines that generate maximal con�gurations.SetV (I) = n�(`j)j2C(I); q� 2 � Yj2C(I)Lj��PQ3 ��� q(yi) = 0 ; 8 i 2 I and 8 j 2 C(I) q is tangent to `joThe following lemma tells us that it is possible to make a good choice of lines and that this choice is stable,in some sense.



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 15Lemma 13. Let U � L1 � � � � � L5 be de�ned as follows :U 3 (`1; : : : ; `5), � 8 I � f1 : : : ; 5g ;�(`j)j2C(I); q� 2 V (I) =) 8 i 2 I ; T qyi 6= `iThen :(1) U is open and dense in L1 � � � � � L5.(2) If (`1; : : : ; `5) 2 U , there exist connected neighborhoods U (`h) = Uh of `h in Lh, h = 1; : : : ; 5 suchthat :8 I � f1; : : : ; 5g ; 8 �`0j�j2C(I) ; `0j 2 Uj we have : ��`0j� ; q� 2 V (I) =) Tqyi =2 Ui ; 8 i 2 IProof.(1) For I � f1; : : : ; 5g and i0 2 I setV 0(I; i0) = n((`1; : : : ; `5); q) 2 5Yh=1 �P2yi �PQ3 ���`j 2 Lj 8 j 2 C(I) ; q(yi) = 0 8 i 2 I ; q is tangent to `j 8 j 2 C(I) and Tqyi0 = `i0o :V 0(I; i0) is a closed subset of codimension 1 of the setV 0(I) =(�(`1; : : : ; `5); q� 2 5Yh=1 �P2yi �PQ3 ��� `j 2 Lj 8 j 2 C(I) ; q(yi) = 0 8 i 2 I ; q is tangent to `j 8 j 2 C(I))and it follows from proposition 11 that the natural projectionpI : V 0(I) ! � Yj2C(I)Lj�� �Yi2I �P2yi�is proper, and therefore the set XI;i0 = pI (V 0(I; i0))is closed, of codimension 1 in �Qj2C(I)Lj�� �Qi2I �P2yi� . Now :U = L1 � � � � � L5 n [I�f1;:::;5g ; i02IXI;i0therefore U is open, dense in L1 � � � � � L5.(2) For I � f1; : : : ; 5g, consider the diagram :V (I) �I����! Qi2I �P2yipC(I)??yQj2C(I)Ljwhere �I �(`j)j2C(I); q� = (Tqyi)i2I . Let u = (`1; : : : ; `5) 2 U and set z = (`j)j2C(I), w = (`i)i2I . Sinceu 2 U , we have that ��1I (w) \ p�1C(I)(z) = ;. It follows from the fact that p�1C(I)(z) is �nite and that pC(I) isa covering that there exist open sets :U 0C(I);j � Lj ; U 0C(I);j 3 `j ; 8 j 2 C(I)U 00I;i � Li ; U 00I;i 3 `i ; 8 i 2 I



16 FELICE RONGA, ALBERTO TOGNOLI AND THIERRY VUSTsuch that, setting U 0C(I) = Qj2C(I) U 0C(I);j and U 00I = Qi2I U 00I;i :p�1C(I)(U 0j) \ ��1I (U 00I ) = ; :If we take Uh to be the connected component of :0@ \C(I)3hU 0C(I);h1A \ \I3hU 00I;h!that contains `h then assertion (2) will be satis�ed �.If `0 and `00 are lines through the point y in R2 that are not perpendicular then they determine twoangles : one that is strictly smaller than �=2, another that is strictly larger than �=2. We shall call thesector determined by `0 and `00 the set of lines that go through y and lye in the smaller angle.Choose (`1; : : : ; `5) 2 U and `0h 6= `00h 2 Uh(`h), h = 1; : : : ; 5; then any pair (`0h; `00h) determines a sector asexplained above, which is contained in Uh. We choose an equation qh of the conic `0h [ `00h, h = 1; : : : ; 5 insuch a way that qh takes negative values in the sector determined by (`0h; `00h). Set u = (q1; : : : ; q5); we mayassume also that u 2 U (that is : u satis�es conditions (G1) through (G5) of x 1).
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qFigure 11. The sector de�ned by (`0i; `00i ) does not contain the tangentto q at yi.It follows from the properties of the Uh's, h = 1; : : : ; 5, that if w = (q1; : : : ; q5; x1; : : : ; x5; q) 2 F�1(u),then for all i such that xi = yi, Tqyi will lye outside the sector determined by `0i, `00i (see �gure 10), andso its polar with respect to qi will lye inside the sector. Therefore it follows from theorems 7 and 8 that ifwe replace qi by q0i = qi + ", where " > 0 is small enough, then there are 2s points of F�1(q01; : : : ; q05) in aneighborhood of w. Note that the conics de�ned by the q0i lye inside the sector de�ned by (`0i; `00i ), which iswhat we expect intuitively.Let s 2 f0; : : : ; 5g and F�1(u)s = �w 2 F�1(u) j dimKer (dFw) = s	as in x 2. Then : ��F�1(u)s�� = �5s�25�snswhere ns = 1; 2; 4; 4; 2;1 for s = 0; 1; 2; 3; 4;5. Finally, we set u0 = (q01; : : : ; q05) and so :��F�1(u0)�� = 5Xi=0 2s25�s�5s�ns = 25��50�1 +�51�2 + �52�4 +�53�4 +�54�2 + �55�1� = 3264 :



THE NUMBER OF CONICS TANGENT TO 5 GIVEN CONICS : THE REAL CASE. 17The following is a picture due to Riccardo Benedetti of the 3264 conics :References1. C. de Concini and C. Procesi, Complete Symmetric Varieties, Proceedings, Montecatini 1982, Springer Lecture Notes inMath., vol. 996, 1983, pp. 1{44.2. W. Fulton and R. MacPherson, De�ning algebraic intersections, Proc. Sympos. Univ. Troms�, Springer Lecture Notes inMath., vol. 687, Berlin, 1978, pp. 1{30.3. I.R. Porteous, preprint, Columbia Univ. (1962); reprinted in : Proc. of the Liverpool Singularities Symp., Springer LectureNotes in Math., vol. 192, 1971, pp. 217{236.4. H.G. Zeuthen, Abz�ahlende Methoden, Enzyklop�adie der MathematischenWissenschaften, Dritter Band, zweiter Teil, ersteH�alfte, Leipzig, 1903-1915, pp. 43{87.F. R. : Section de Math�ematiques, Universit�e de Gen�eve, C.P. 240, CH-1211 Gen�eve 24, Switzerland.E-mail address: Ronga@ibm.unige.chA.T. : Dipartimento di matematica, Universit�a degli studi, TrentoT. V.: Section de Math�ematiques, Universit�e de Gen�eve, C.P. 240, CH-1211 Gen�eve 24, Switzerland.E-mail address: Vusth@ibm.unige.ch


