
Genetic Programming Produced
Competitive Soccer Softbot Teams for RoboCup97

Sean Luke
seanl@cs.umd.edu

http://www.cs.umd.edu/˜seanl/

Department of Computer Science
University of Maryland

College Park, MD 20742

ABSTRACT

At RoboCup, teams of autonomous robots or soft-
ware softbots compete in simulated soccer matches
to demonstrate cooperative robotics techniques
in a very difficult, real-time, noisy environment.
At the IJCAI/RoboCup97 softbot competition, all
entries but ours used human-crafted cooperative
decision-making behaviors. We instead entered
a softbot team whose high-level decision making
behaviors had been entirely evolved using genetic
programming. Our team won its first two games
against human-crafted opponent teams, and re-
ceived the RoboCup Scientific Challenge Award.
This report discusses the issues we faced and the
approach we took to use GP to evolve our robot
soccer team for this difficult environment.

1 Introduction

RoboCup is a competition which pits teams of robots against
each other in a robotic soccer tournament [Kitano et al 1995].
To be successful at RoboCup, a team of robotic soccer play-
ers must be able to cooperate in real time in a noisy, highly-
dynamic environment against an opposing team. In addition
to the two “real-robot” leagues at RoboCup, there is a softbot
league which competes inside a provided soccer simulator,
the RoboCup Soccer Server [Itsuki 1995]. The simulator en-
forces extremely limited and noisy sensor information, com-
plex physics, real-time dynamics, and limited intercommu-
nication among softbots. The result is a rather challenging
real-time domain.

Practically all entrants in the RoboCup simulator league
used hand-coded team strategy algorithms; though some fine-
tuned a few low-level functions (like ball interception) with
backpropagation or decision trees. In contrast, at the Univer-
sity of Maryland a group of undergraduates and I entered a
softbot team whose high-level strategies were entirely learned
through genetic programming [Luke et al 1997].

Unlike other teams, who had refined well-understood
robotics techniques in order to win the competition, we saw
the RoboCup simulator as a very difficult environment to push
the bounds of what was possible to do with existing evolu-
tionary computation techniques. For a variety of reasons
detailed later, the soccer simulator is very difficult to evolve
for. Hence, our goal was relatively modest: to produce a team
which played at all. As it turned out, we were pleasantly sur-
prised with the results. Our evolved teams learned to disperse
throughout the field, pass, kick to the goal, defend the goal,
and coordinate with and defer to other teammates. At the
IJCAI/RoboCup97 competition our team managed to win its
first two matches against human-coded opponents, and took
home the RoboCup97 Scientific Challenge award.

2 The RoboCup Soccer Server Domain

Genetic programming has been successfully applied to mul-
tiagent coordination before. [Andre 1995] evolved com-
munication between agents with different skills. [Qureshi
1996] evolved agent-based communication in a cooperative
avoidance domain. [Raik and Durnota 1994] used GP to
evolve cooperative sporting strategies, and [Luke and Spec-
tor 1996], [Haynes et al 1995] used GP to develop cooper-
ation in predator-prey environments. [Iba 1996] applied a
similar approach to cooperative behavior in the TileWorld
domain. Even so, evolutionary computation is rarely applied
to a problem domain of this difficulty. The RoboCup Soccer
Server (http://ci.etl.go.jp/˜ noda/soccer/server.html) was not
designed with GP in mind. To realize why the Soccer Server
presents such a challenge for evolutionary computation (and
GP in specific), it’s important to understand how the domain
works.

In a full match, the Soccer Server admits eleven separate
player programs per team, each controlling a different virtual
soccer player in its simulation model. By regulation rules,
these player programs must be separate processes which are
not permitted to communicate with each other except through

the limited facilities provided by the Soccer Server. Each
player on the team makes a separate socket connection to the
simulator. Once connected, a player program receives UDP
datagrams once every 300 milliseconds, providing it with
sensor information and messages “yelled” by other players
on the field. The player issues commands to the server by
sending it UDP datagram messages no faster than once every
100 milliseconds. Commands are not queued: if the player
issues commands faster than this, they are simply ignored
by the server. The server updates its internal world model
every ten milliseconds; this places a real-time restriction on
the speed of play.

The simulator maintains a virtual soccer field 105 units
long by 68 units wide, with goals 14 units wide. Sensor
information relays game status and the relative positions of
viewable objects on the field. The only useful sensor op-
tion (and the one used by all players in the competition)
gives both the direction and distance of objects the player
can “see”. Players may choose narrow (45 degrees), medium
(90 degrees — we and most competitors chose this), or wide
(180 degrees) fields of view, but the wider the range, the
more slowly sensor updates are received. Sensor information
includes only:

• The ball position and relative movement.

• Positions and relative movement of other players. If play-
ers are far enough away (over 20 units), their jersey num-
bers cannot be ascertained. If players are very far away
(over 40 units), the team they’re on cannot be determined.

• Goal positions.

• The position of flags placed at corners of the field, and on
the edges of the field at its midpoint.

• The distance to and perceived angle of the soccer field
boundary line crossing the player’s field of vision.

• The state of the ball in play, including free, goal, side,
and corner kicks, out-of-bounds, pre-game and mid-game
setup, kickoffs, etc.

Sensing is further complicated in three ways. First, the co-
ordinate positions of objects are given relative to the player’s
position and the direction he is facing, but the server does not
tell the player any information about his own whereabouts.
Second, the server gives information only about object closer
than 3 units, or within the player’s field of view (the widest
is only 180 degrees). Third, the simulator adds to the sensor
positional information a heavy dose of gaussian noise, and
noise increases as the distance to an object increases.

Player movement is nonholonomic (players can either turn
or dash but not both at the same time), which makes things
messy. And like sensor information, movement is also subject
to a great deal of noise. Each movement cycle, a player may
issue one of several commands:

• Rotate n degrees from his current facing direction.

• Dash in the direction he is facing with n power. A
player must repeatedly dash to keep up forward move-
ment. Dashing also decreases stamina; players that dash
with high power will soon start running much slower than
they realize. A player is not told his current stamina, nor
how fast he is currently running. Players may also dash
backwards, but at most a third of maximum power.

• Kick the ball in a certain direction (relative to the direction
the player is facing) and with a certain power. Players can
only kick a ball when it is under 1.8 units away.

• Yell a message up to 512 bytes long. There are strong
limitations on this. Messages may be yelled only very
infrequently, and fellow players can hear only so many
messages each sensor cycle. Further, players aren’t told
where a yell came from; hence yells can be (and often
are) faked by opponents.

• Move the player to a specific (X,Y) coordinate position
and facing a specific angle. This is only permitted while
the ball is out of play.

Play happens in real time. If a player cannot process sensor
information or make moves fast enough, he will fall behind.
The Soccer Server also maintains complex dynamics among
moving objects. Balls and players have acceleration and
momentum, and cannot immediately stop, change direction,
or move at a certain velocity on command. Players and the
ball have different mass, hence can move at different rates
(the ball can move much faster). Players take up space and
collide with the ball and other players inelastically. When a
team is given possession of the ball (for a goal kick, perhaps),
the server “bumps” opposing players from the general ball
area. Though not used in the competition, the simulator can
also provide wind and other complicating conditions.

The simulator enforces standard soccer rules with one very
large exception: as the robot players have no hands, there is
no goalie, and no goalie area. When a ball is kicked out-of-
bounds, ball control is transferred to opponents and the ball
is moved to the appropriate kick-in position per regulation
rules. Goals are scored when the ball passes through the goal
line. Finally, the server allows a human referee to make foul
calls for ungentlemanly play (for example, the entire team
lining up to block the goal).

3 The Challenge for Evolutionary
Computation

As should be obvious from the above description, the Soc-
cer Server domain is very complex, with a large number of
options and controls, and a correspondingly large number of
boundary conditions and special cases that must be accounted
for. This alone makes it a tough problem to tackle with GP.

As if the Soccer Server’s complex dynamics didn’t make
evolving a robot team hard enough, the server also adds one
enormously problematic issue: time. As provided, the Soccer
Server runs in real-time, and all twenty-two players connect
to it via separate UDP sockets. Because of the enforced
ten-millisecond delay between world model updates, a full
game takes ten minutes to play. Game play can be sped
up by hacking the server and players into a unified program
(removing UDP) and eliminating the ten-millisecond delay.
However, we found that for many reasons this does not in-
crease speed as dramatically as might be imagined, and if not
carefully done, runs the risk of changing the game dynamics
(and hence “changing” the game to optimize over).

The reason all this is such a problem is that evolving a
computer program to work successfully in this domain would
likely require a very large number of evaluations, and each
new evaluation is another soccer simulator trial. In previous
experiments with considerably simpler cooperation domains
[Luke and Spector 1996], we have found that genetic pro-
gramming could require on order of 100,000 evaluations to
find a reasonable solution. We suspected the soccer domain
could be much worse. Consider that just 100,000 5-minute-
long evaluations in serial in the Soccer Server could require
up to a full year of evolution time.

Our challenge was to cut this down from years to a few
weeks or months, but still produce a relatively good-playing
soccer team from only a few evolutionary runs. We accom-
plished this in several ways:

• Brute force. We sped up play by performing up to 32
full-team game evaluations in parallel on a supercomputer
cluster. We also cut down game time from 10 minutes to
between 20 seconds and one minute.

• We attempted to cut down the population size and number
of generations necessary to produce a reasonable team.

• We developed an additional layer of software which sim-
plified and orthogonalized the domain, eliminating many
of the boundary conditions the GP programs would have
to account for. We also spent much time designing a func-
tion set and evaluation criteria to promote better evolution
in the domain.

• We performed parallel runs with different genome struc-
tures to give us more options as competition time neared.

4 Using Genetic Programming to
Evolve Soccer Behaviors

As the Soccer Simulator dynamics were quite complex, we
began by hand-coding a multithreaded socket library which
abstracted away some of the oddities of the domain. The
library received all incoming sensor information and boiled it
down into the absolute position of all visible teammates and
opponents (and the player himself), the ball, and the goals.

We included a simple state-estimation mechanism that inter-
polated teammate and opponent positions in-between sensor
cycles and maintained estimates of the player’s stamina. The
boiled-down domain provided information about whose ball
it was during free-kicks, goal-kicks, etc., but this information
was largely unused as the simulator would keep players out
of the kick area anyway. As we decided to ignore the com-
plexities of intercommunication, our domain also eliminated
the ability to yell or listen.

We also made some significant changes to the traditional
GP genome. Instead of a player algorithm consisting of a
single tree, our players consisted of two algorithm trees. The
first tree was responsible for moving the player, and when
evaluated would output a vector which gave the direction and
speed with which to turn and dash. The second tree was re-
sponsible for making kicks, and when evaluated would output
a vector which gave the direction and power with which to
kick the ball. At evaluation-time, the program executing the
player’s moves would follow the instructions of one or the
other tree based on the following simplifying state-rules:

• If the player can see the ball and is close enough to kick
the ball, call the kick tree. Kick the ball as told, moving
the player slightly out-of-the-way if necessary. Turn in
the direction the ball was kicked.

• If the player can see the ball but isn’t close enough to kick
it, call the move tree. Turn and dash as told; if the player
can continue to watch the ball by doing so, dash instead
by moving in reverse.

• If the player cannot see the ball, turn in the direction last
turned until the player can see it.

This state mechanismeliminated a great many troublesome
boundary conditions. First, by combining “movement” into
turn-dash pairs, we allowed the GP tree function set to as-
sume its player had holonomic movement, that is, the ability
to move immediately in any direction. Second, by doing ev-
erything reasonable to keep the ball in view, we were able to
eliminate many of the boundary conditions which occur when
ball suddenly disappears due to arbitrary player movement (a
big problem in our early tests).

Before evolving a team, we had to create the set of low-
level “basic” behavior functions to be used by its players. This
required some compromise. Ideally, we would have liked to
produce soccer players out of a variety of very low-level,
generic vector functions. This would have allowed us to say
that in no way did we bias the function set to produce certain
kinds of strategies. But our early tests suggested that the
domain was so complex that there was little hope of evolving
a team with this kind of function set. Instead, we designed
a large set of functions (some generic, some specialized) we
thought would have particular utility in the soccer domain.
In doing so, we tried to stay as general as possible but still
come up with a function set that we thought stood a chance
of evolving successfully.

Function Syntax Returns Description
(home) v A vector to my home (my starting position).
(ball) v A vector to the ball.
(findball) v A zero-length vector to the ball.
(block-goal) v A vector to the closest point on the line segment between the ball and the

goal I defend.
(away-mates) v A vector away from known teammates, computed as the inverse of

∑
m∈{vectors to teammates}

max−||m||
||m|| m

(away-opps) v A vector away from known opponents, computed as the inverse of
∑

o∈{vectors to opponents}
max−||o||

||o|| o

(squad1) b t if I am first in my squad, else nil.
(opp-closer) b t if an opponent is closer to the ball than I am, else nil.
(mate-closer) b t if a teammate is closer to the ball than I am, else nil.
(home-of i) v A vector to the home of teammate i.
(block-near-opp v) v A vector to the closest point on the line segment between the ball and the

nearest known opponent to me. If there is no known opponent, return v.
(mate i v) v A vector to teammate i. If I can’t see him, return v.
(inv v) v v rotated 180 degrees.
(if-v b v1 v2) v If b is t, return v1, else return v2.
(sight v) v Rotate v just enough to keep the ball in sight.
(ofme i) b Return t if the ball is within i

max
units of me, else nil.

(ofhome i) b Return t if the ball is within i

max
units of my home, else nil.

(ofgoal i) b Return t if the ball is within i

max
units of the goal, else nil.

(weight-+ i v1 v2) v Return v1(i)+v2(9−i)
9 .

(far-mate i k) k A vector to the most offensive-positioned teammate who can receive the
ball with at least i+1

10 probability. If none, return k.
(mate-m i1 i2 k) k A vector to teammate i1 if his position is known and he can receive the

ball with at least i2+1
10 probability. If not, return k.

(kick-goal i k) k A vector to the goal if the kick will be successful with at least i+1
10

probability. If not, return k.
(dribble i k) k A “dribble” kick of size i

20 (max) in the direction of k.
(kick-goal!) k Kick to the goal.
(far-mate!) k Kick to the most offensive-positioned teammate. If there is none, kick to

the goal.
(kick-clear) k Kick out of the goal area. Namely, kick away from opponents as computed

with (away-opps), but adjust the direction so that it is at least 135 degrees
from the goal I defend.

(kick-if b k1 k2) k If b is t, return k1, else return k2.
(opponent-close i) b Return t if an opponent is within max

(1.5)i of me.
0,1,2,3,4,5,6,7,8,9 i Constant integer values.

Table 1: GP functions used in the soccer evaluation runs. Other functions tried (but not used in the final runs) included internal
state, magnitude and cross-product comparison, angle rotation, boolean operators, move history, etc. max is the approximate
maximum distance of kicking, set to 35. k is a kick-vector, v is a move-vector, i is an integer, and b is a boolean.
Vectors (for either kicking or moving) are a pair of floating-point values.

To achieve this, we used Strongly-Typed GP [Montana
1995] to provide for a variety of different types of data
(booleans, vectors, etc.) accepted and returned by GP func-
tions, restricting tree formation to conform to these type rules.
This allowed us to include a large, rich set of GP functions
(allowing for many more player options), but still constrain
the possible permutations of function combinations.

Table 1 gives the basic functions we provided our GP sys-
tem with which to build GP trees. We decided early on to
enrich a basic function set of vector operators and if-then con-
trol constructs with some relatively domain-specific behavior
functions. Some of these behaviors could be derived directly
from the Soccer Server’s sensor information. This included
vector functions like (kick-goal!), or (home). Others behaviors
were important to include but were hand-coded because we
found evolving them unsuccessful, at least within our limited
time constraints. These included good ball interception (a
surprisingly complex task), which was formed into (ball), or
moving optimally to a point between two objects (forming
(block-near-opp), for example).

We used genetic programming to evolve other low-level
behaviors. Most notably, Charles Hohn used symbolic re-
gression to evolve functions determining the probability of
a successful goal-kick or pass to a teammate, given oppo-
nents in various positions [Hohn 1997]. Our symbolic re-
gression data points were generated by playing actual trials
in the Soccer Server (with a kicker, receiver, and opponent
for teammate-pass trials, or just a kicker and opponent for
goal-kick trials). We used these evolved algorithms as the
basic probabilistic mechanism behind the decision-making
functions (kick-goal ...), (mate-m ...), and (far-mate ...).

Given a basic function set, there are a variety of ways to use
genetic programming to “evolve” a soccer team. An obvious
approach is to form teams from populations of individual
players. The difficulty with this approach is that it introduces
the credit assignment problem: when a team wins (or loses),
how should the blame or credit be spread among the various
teammates? We took a different approach, widely used in GP,
which we had tried before in [Luke and Spector 1996]: the
genetic programming genome is an entire team;all the players
in a team stay together through evaluations and breeding.

This raises the question of a homogenous or heterogeneous
team approach. With a homogenous team approach, each
soccer player would follow effectively the same algorithm,
and so a GP genome would be a single kick-move tree pair
used by all teammates during play. With a heterogeneous
approach, each soccer player would develop and follow its
own unique algorithm, so a GP genome would be not just a
kick-move tree pair, but a forest of such pairs, one pair per
player. In a domain where heterogeneity is useful, the het-
erogeneous approach provides considerably more flexibility
and the promise of specialized behaviors and coordination.
However, homogenous approaches can take far less time to
evolve, since they require evolving only a single algorithm
rather than (in this case) eleven algorithms.

“Move” Tree

“Kick” Tree

“Move” Tree

“Kick” Tree

All Team Members Players on Squad 1

“Move” Tree

“Kick” Tree

Players on Squad 2

“Move” Tree

“Kick” Tree

Players on Squad 3

etc...

Homogenous Pseudo-Heterogeneous (Squad-Based)

Figure 1: Homogeneous and Pseudo-Heterogeneous (Squad-
Based) genome encodings.

To implement a fully heterogeneous approach in the soccer
domain would necessitate evolving a genome consisting of
twenty-two separate GP trees, far more than we felt could
reasonably evolve in the time available. Instead, we ran
separate runs for homogeneous teams and for hybrid pseudo-
heterogeneous teams (see Figure 1). The hybrid teams were
divided into six squads of one or two players each; each
squad evolved a separate algorithm used by all players in the
squad. This way, pseudo-heterogeneous teams had genomes
of twelve trees. Each player could still develop his own
unique behavior, because the function set included functions
which let each player distinguish himself from his squad-
mates. We ran separate runs with these two different ap-
proaches to increase our chance of having something to show
at RoboCup (as discussed later, our concern was justified).

Because our genomes consisted of forests of trees, we
adapted the GP crossover and mutation operators to accom-
modate this. In our runs, crossover and mutation would
apply only to a single tree in the genome. For both homoge-
neous and pseudo-heterogeneous approaches, we disallowed
crossover between a kick tree and a move tree. For pseudo-
heterogeneous approaches, we allowed trees to cross over
only if they were from the same squad: this “restricted breed-
ing” has in previous experience proven useful in promoting
specialization [Luke and Spector 1996]. We also introduced
a special crossover operator, root crossover, which swapped
whole trees at the root instead of swapping subtrees. This
let teams effectively “trade players”, which we hoped would
spread good strategies through the population more rapidly.

To reduce run time, we used population sizes between
100 and 400 (in the final run, 128). We felt these small
populations (given the problem complexity) necessitated a
somewhat unusual mix of breeding operators. As a conse-
quence of findings in [Luke and Spector 1997], we decided
to use a large dose of mutation (30% in the final run) to pro-
duce higher overall fitness with the small population, and to
stave off premature convergence. The rest consisted of 70%
subtree crossover (choosing internal-nodes 30% of the time,

Figure 2: A competition between two initial random (and
randomly-moving) teams.

leaf-nodes 10% of the time, and performing root crossover
60% of the time). Finally, we used tournament selection with
a tournament size of 7.

Another issue was the evaluation function needed to as-
sess a genome’s fitness. One way to assess a team would be
to play the team against one or more hand-created opponent
teams of known difficulty. There are two problems with this
approach. First, from our experience, evolutionary computa-
tion strategies often work more efficiently when the difficulty
of the problem ramps up as evolution progresses, that is, as
the population gets better, the problem gets harder. A good
ramping with a suite of pre-created opponents is difficult to
gauge. Second, unless there are several opponents at any par-
ticular difficulty level, one runs the common risk of evolving
a team optimized to beat that particular set of hand-made
opponents, instead of generalizing to play “good” soccer.

We opted instead for evolving our teams in a competi-
tive fitness environmnent 1: teams’ fitnesses were assessed
based on competition with peers in the population (for a sur-
vey of such environments, see [Angeline and Pollack 1996].
There are a variety of approaches to creating such competi-
tions. One approach is to create a “round-robin” tournament
where every team in the population squares off at least once
against every other team. This approach is very expensive:
(n2

− n)/2 evaluations for a population of size n. Another

1This might all fit under the “co-evolution” umbrella. In theoretical
biology, the definition “co-evolution” (along with the term “species”) has
become rather fuzzy of late. But while I originally used “co-evolution” to
describe this environment, I think the term carries just too much inter-species
(or multi-population) baggage. “Competitive fitness” is more precise.

Figure 3: “Kiddie-Soccer”, a problematic early suboptimal
strategy, where everyone on the team would go after the ball
and try to kick it into the goal. Without careful tuning, many
populations would not escape this suboptima.

approach is to use a traditional single- or double-elimination
tournament (n − 1 evaluations at best). Because of the ex-
treme cost on evaluations, we opted instead to randomly pair
up teams, basing team fitness on the single game each pair
played (n/2 evaluations).

Competitive fitness functions are chaotic and so can occa-
sionally have undesirable effects on the population, but we
found them a useful fit for a naturally competitive domain
such as robotic soccer. Competitive fitness functions also
naturally ramp problem difficulty because teams in the pop-
ulation play against peers of approximately similar ability.
Such functions can also promote generalization, because the
set of possible “opponents” an individual might face is the
population itself.

We initially based fitness on a variety of game factors in-
cluding the number of goals, time in possession of the ball,
average position of the ball, number of successful passes, etc.
However, we found that in our early runs, the entire popula-
tion would converge to very poor solutions. Ultimately, we
found that by simply basing fitness on goal difference alone,
the population avoided such convergence. At first glance,
such a simplistic fitness assessment would seem an overly
crude measure, as many early games might end with 0–0
scores. Luckily, this turned out to be untrue. We discovered
that initial game scores were in fact very high and quite vari-
able: vectors to the ball and to the goal were fundamental
parts of the function set, so teams did simple offense well,
but defense poorly. Only later, as teams evolved better defen-

Figure 4: Some players begin to hang back and protect the
goal, while others chase after the ball.

sive strategies, would scores come down to more reasonable
levels.

We performed our GP runs in parallel using a custom
strongly-typed, multithreaded version of lil-gp 1.1 [Zongker
and Punch 1995], running on a 40-node DEC Alpha super-
computer. At evaluation time, the system paired off competi-
tors, formed the pairs into groups, and assigned each group
to a separate evaluation thread. In parallel, these evaluation
threads would work with the socket communication library
to pair off teams and play competitions in separate Soccer
Server processes.

At some point I felt we would need the population to stop
global searches and start narrowly tweaking its best strate-
gies to date in preparation for the competition. As such, we
ran the final runs for forty generations, at which time we re-
introduced into the population high-fitness individuals from
past generations, and added 10% reproduction (30% muta-
tion, 60% crossover). The intent of this unusual step was
to force the population to rapidly converge to a narrow set
of suboptima. We then continued runs up to the time of the
RoboCup-97 competition (for twelve generations).

Just prior to the competition, we held a “tournament of
champions” among the twenty highest-performing teams at
that point, and submitted the winner. While I feel that, given
enough evolution time, the learned strategies of the pseudo-
heterogeneous teams might ultimately outperform the homo-
geneous teams, the best teams at competition time (including
the one we submitted) were homogeneous.

Figure 5: Teams eventually learn to disperse themselves
throughout the field.

5 A History of Evolution

One of the fun parts of working with this domain is watching
the population learn. In a typical GP experiment one would
conduct a large number of runs, which provides a statistically
meaningful analysis of population growth and change. For
obvious reasons, this was not possible for us to do. Given
the one-shot nature of our RoboCup runs (the final run took
several months’ time), our observations of population devel-
opment are therefore admittedly anecdotal. Still, we observed
some very interesting trends.

Our initial random teams consisted primarily of players
which wandered aimlessly, spun in place, stared at the ball, or
chased after teammates. Because (ball) and (kick-goal!) were
basic functions, there were occasional players which would
go to the ball and kick it to the goal. These players helped their
teams rack up stratospheric scores against helpless opponents.
Figure 2 shows two random teams playing.

Early populations produced all sorts of bizarre strategies.
One particular favorite was a (homogeneous) competition of
one team programmed to move away from the ball, against
another team programmed to move away from the first team.
Thankfully, such strategies didn’t last for many generations.

One suboptimal strategy, however, was particularly trou-
blesome: “everyone chase after the ball and kick it into the
goal”, otherwise known as “kiddie-soccer”, shown in Fig-
ure 3. This strategy gained dominance because early teams
had effectively no defensive ability. Kiddie-soccer proved to
be a major obstacle to evolving better strategies. The over-
whelming tendency to converge to kiddie-soccer and similar

strategies was the chief reason behind our simplification of
the evaluation function (to be based only on goals scored).
After we simplified the evaluation function, the population
eventually found its way out of the kiddie-soccer suboptima
and on to better strategies.

After a number of generations, the population as a whole
began to develop rudimentary defensive ability. One com-
mon approach we noted was to have a few players hang
back near the goal when not close to the ball (Figure 4).
Most teams still had many players which clumped around the
ball, kiddie-soccer-style, but such simple defensive moves
effectively eliminated the long-distance goal shots which had
created such high scores in the past.

Eventually teams began to disperse players throughout the
field and to pass to teammates when appropriate instead of
kicking straight to the goal, as shown in Figure 5. Ho-
mogeneous teams did this usually by using players’ home
positions and information about nearby teammates and ball
position. But some pseudo-heterogeneous teams appeared
to be forming separate offensive and defensive squad algo-
rithms. Although the pseudo-heterogeneous teams were not
sufficiently fit by the time RoboCup arrived, we suspect that
given more time, this approach could have ultimately yielded
better strategies.

6 Conclusions and Future Work

This project was begun to see if it was even possible to suc-
cessfully evolve a team for such a challenging domain as the
RoboCup Soccer Server. Given the richness of the Soccer
Server environment and the very long run time required to
get reasonable results, we are very pleased with the outcome.
Our evolved softbots learned to play rather well given the
constraints we had to place on their evolution, and they beat
teams crafted by hand by real human experts (who weren’t
us). As such, I think the experiment was a success.

Still, we had to compromise in order to make the project
a reality. The function set we provided was heavy on if-then
statements and functional operation, with little internal state.
In the future I hope to try more computationally sophisticated
algorithms. The competition mechanism (only one game
per individual) was also very restrictive: I think a single-
elimination tournament might yield better results. Finally,
the population sizes were very small; enlarging these could
make a significant impact on evolutionary progress.

It is unfortunate that the our pseudo-heterogeneous teams
could not outperform our homogeneous teams by RoboCup
competition-time. Much of this is due to the excessive size of
the pseudo-heterogeneous genomes (which were still much
smaller than full-heterogeneous genomes). Hindsight is 20-
20. In the future I would definitely pick larger squad sizes,
perhaps three squads of three or four each, or two squads of
five or six each. This would bring the total number of trees
in the genome down to six or four, which might evolve more
rapidly.

In the past, genetic programming has been surprisingly
successful in a variety of areas, but real-time robotics is not
one of them. The complex dynamics of the field, plus the long
time necessary to perform evaluations, makes robotics (and
realistic simulator robotics) a difficult problem for evolution-
ary computation to crack. But not an impossible problem. I
hope this paper puts to rest the myth that genetic programming
can compare favorably to human-crafted solutions only in toy
domains, or for problems tailor-made for the constraints of
evolution.

7 Acknowledgements
This research is supported in part by grants to Dr. James
Hendler from ONR (N00014-J-91-1451), AFOSR (F49620-
93-1-0065), ARL (DAAH049610297), and ARPA contract
DAST-95-C0037.

My thanks to the Maryland RoboCup team for their help
in the development of this project: Charles Hohn, Jonathan
Farris, Gary Jackson, Daniel Wigglesworth, John Peterson,
Shaun Gittens, Shu Chiun Cheah, and Tanveer Choudhury.
Thanks also to Jim Hendler, Lee Spector, Kilian Stoffel, Bob
Kohout, Hiroaki Kitano, Minoru Asada, and to the UMIACS
system staff for turning their heads while we played soccer
games on their supercomputers.

References
Andre, D. 1995. The Automatic Programming of Agents

that Learn Mental Models and Create Simple Plans of
Action. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, C. S. Mellish,
ed. 741–747. Morgan Kaufmann, San Mateo CA.

Angeline, P. and J. Pollack. Competitive Environments Evolve
Better Solutionf for Complex Tasks. In Proceedings of the
Fifth International Conference on Genetic Algorithms, S.
Forrest, ed. 264–270. Morgan Kaufmann, San Mateo
CA.

Haynes, T., S. Sen, D. Schoenefeld and R. Wainwright. 1995.
Evolving a Team. In Working Notes of the AAAI-95 Fall
Symposium on Genetic Programming. E. V. Siegel and J.
R. Koza, editors. 23–30. AAAI Press.

Hohn, C. 1997. Evolving Predictive Functions from Observed
Data for Simulated Robots. Senior Honor’s Thesis. De-
partment of Computer Science, University of Maryland
at College Park.

Holland, J. H. 1996. Adaption in Natural and Artificial Sys-
tems. University of Michigan Press.

Iba, H. 1996. Emergent Cooperation for Multiple Agents
using Genetic Programming. In Late Breaking Papers of
the Genetic Programming 1996 Conference, J. R. Koza,
ed. 66–74. Stanford University Bookstore, Stanford CA.

Itsuki, N. 1995. Soccer Server: a simulator for RoboCup. In
JSAI AI-Symposium 95: Special Session on RoboCup.

Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.
1995. RoboCup: The Robot World Cup Initiative. In
Proceedings of the IJCAI-95 Workshop on Entertainment
and AI/ALife.

Koza, J. R. 1992. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. The
MIT Press, Cambridge MA.

Luke, S. and L. Spector. 1996. Evolving Teamwork and
Coordination with Genetic Programming. In Proceedings
of the First Annual Conference on Genetic Programming
(GP-96), J. R. Koza et al, eds. 150–156. The MIT Press,
Cambridge MA.

Luke, S. et al. 1997. Co-evolving Soccer Softbot Team
Coordination with Genetic Programming. In Proceedings
of the RoboCup-97 Workshop at the 15th International
Joint Conference on Artificial Intelligence (IJCAI97). H.
Kitano, ed. 115–118. IJCAI.

Luke, S. and L. Spector. 1997. A Comparison of Crossover
and Mutation in Genetic Programming. In Genetic Pro-
gramming 1997: Proceedings of the Second Annual Con-
ference (GP97). J. Koza et al, eds. 240–248. San Fran-
sisco: Morgan Kaufmann.

Montana, D. J. 1995. Strongly Typed Genetic Programming.
In Evolutionary Computation. 3:2, 199–230. The MIT
Press, Cambridge MA.

Raik, S. and B. Durnota. 1994. The Evolution of Sporting
Strategies. In Complex Systems: Mechanisms of Adap-
tion, R. J. Stonier and X. H. Yu, eds. 85–92. IOS Press,
Amsterdam.

Qureshi, A. 1996. Evolving Agents. In Proceedings of the
First Annual Conference on Genetic Programming (GP-
96), J. R. Koza et al, eds. 369–374. The MIT Press,
Cambridge MA.

Zongker, D. and B. Punch. 1995. lil-gp 1.0 User’s Manual.
Available at http://isl.cps.msu.edu/GA/software/lil-gp

